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1 Introdu
tion

The geometri
-qualitative study of 
ows and general dynami
al systems on

surfa
es has been during many de
ades obje
t of a growing interest in many

bran
hes of pure and applied mathemati
s. After the works of Poin
ar�e, Lya-

punov and Bendixson this has be
ome a well-established subje
t in mathe-

mati
s and fo
us of 
onsiderable attention. Moreover, nowadays it is fairly

a

essible for a broad s
ienti�
 audien
e. From various sides, attention has

been paid to the stru
tural stability 
on
ept and spe
ially to the results of

Peixoto ( mainly those published in An. A
. Bras. S
i , 1959 and Topology,

1962) and higher dimensional extensions (due mainly to Smale and Anosov).

A brief histori
al outline follows: in 1937 Andronov and Pontrjagin [AP℄

announ
ed the 
hara
terization of the stru
tural stability of a 
lass of ve
tor

�elds de�ned on a 
ompa
t region in the plane. In 1959 , Peixoto & Peixoto

[PP℄ generalized this result to a larger 
lass of systems still de�ned on a planar

region. This last theorem was extended by Peixoto [P℄ in 1962 to 2-dimensional

manifolds. A bibliographi
al guide of this matter is 
ontained in many exposi-

tory works (for example in [AZ℄ or in [MP℄).

Here we present an elementary dis
ussion of three aspe
ts of this theory:


lassi�
ation problems arising in bifur
ation of ve
tor �elds de�ned in mani-

folds with boundary, ordinary di�erential equations with dis
ontinuous se
ond

members and reversible systems. All of them strongly depend on results and

te
hniques appearing for the �rst time in the work of M. Peixoto on stru
tural

stability. We fo
us the dis
ussion on two-dimensional systems.

The main point treated here 
on
erns the 
onta
t between a general ve
tor

�eld and the boundary of a manifold. More spe
i�
ally, a tangen
y point

between the ve
tor �eld and the boundary is a distinguished singularity- an

important obje
t to be analyzed when one studies dis
ontinuous or reversible

systems. We observe also that in [A℄, Arnold observed the importan
e of su
h

singularities in the oblique-derivative problem. We still point out that there is
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a natural mathemati
al approa
h to studying su
h a phenomenon by means of

singularity mappings theory; see for instan
e [S1℄, [ST1℄, [T1℄ and [V℄.

2 Histori
al remarks

In 1937, Andronov & Pontrjagin (in [AP℄ introdu
ed the 
on
ept of stru
tural

stability (via C

0

� orbital equivalen
e) for C

r

(r � 1) planar ve
tor �elds X

de�ned in a neighborhood of a 
ompa
t region M in R

2

bounded by a Jordan


urve �M . They 
onsidered the set �

�

of all su
h ve
tor �elds whi
h are

transverse to �M: The following result was stated:

Theorem 1- X 2 �

�

is stru
turally stable (in �

�

) if and only if,

(1i) all its 
riti
al points and periodi
 orbits are hyperboli
;

(1ii) there is no saddle 
onne
tion.

In 1959, Peixoto & Peixoto (in [PP℄) generalized Theorem 1, by 
onsidering

the set � of all C

r

(r � 1) ve
tor �elds X de�ned in a neighborhood of a


ompa
t region M in R

2

: That is:

Theorem 2- X 2 � is stru
turally stable (in �) if and only if,

(1i) all its 
riti
al points and periodi
 orbits are hyperboli
;

(1ii) there is no saddle 
onne
tion;

(2i) all 
riti
al points and periodi
 orbits are in the interior of M ;

(2ii) any traje
tory of X has at most one point of tangen
y with

�M ;

(2iii) any saddle separatrix is transverse to �M ;

(2iv) if a traje
tory of X is tangent to �M at p, then this 
onta
t

is quadrati
.

It is 
onvenient to observe that the C

0

�equivalen
e introdu
ed by Andronov-

Pontryagin was made via an "� homeomorphism whereas in the Peixoto sense

the equivalen
e is 
onsidered just as an homeomorphism.

Let M be a 2-dimensional manifold and � = �

r

(M) be the spa
e of all

C

r

� ve
tor fields on M with the C

r

�topology. We denote by �

0

= �

0

(M)

the set of all stru
turally stable ve
tor �elds in �: For simpli
ity, we may 
all

any element of �

0

a 
odimension�zero ve
tor �eld of �:

In 1962 , M. Peixoto (in [P℄) proved the following result:

Theorem 3- Let X 2 �

r

(M) (r � 1) where M is a 
ompa
t orientable surfa
e

or 
ompa
t non-orientable surfa
e of genus 1 � g � 3: Then X 2 �

0

(M) if and

only if it is a Morse-Smale ve
tor �eld.

By means of a result of C. Pugh (in [Pu℄) in the C

1

�topology we may

add to the last result that �

0

is open and dense in �: In this dire
tion many

2



results were obtained (also in higher dimension), for example by Gutierrez,

deMelo/Gutierrez, Palis, Smale, Ma~ne, Robbin et
..This subje
t is so ri
h in

many aspe
ts whi
h makes to be inevitable that a number of distinguished

mathemati
ians, topi
s and results deriving from the last theorem, re
eive no

mention here.

In our approa
h we have to mention the work of Sotomayor in [S1℄ whi
h

generalizes (or 
ontinues) the results of Andronov- Pontrjagin-Peixoto for the

so 
alled 
odimension�one element of � or in Sotomayor's nomen
lature: "�rst

order stru
turally stable ve
tor �elds of " �: In [T1℄ this result was generalized

for 2-manifolds with boundary in whi
h the te
hniques and results of Theorem

2 were fundamental. These two results are summarized as follows:

Theorem 4: Call �

r

1

= �

r

� �

0

(r � 3) the bifur
ation set of �: There

exists a C

r�1

� immersed 
odimension-one submanifold �

1

of � su
h

that:

(i) �

1

is dense in �

1

;

(ii) for any X in �

1

, there exists a neighborhood B in the intrinsi


topology of �

1

su
h that any Y in B is C

0

� equivalent to X ;

(iii) �

r

1

; as well as the part of �

r

1

imbedded in � , are 
hara
terized.

Following the last theorem we may of 
ourse 
lassify the stable one-parameter

families X

�

of ve
tor �elds in � by means of the 
on
ept of transversality. It

is usual to say that X

�

presents a 
odimension-one bifur
ation at � = 0 if

X

0

2 �

1

: This resear
h program attempts the 
lassi�
ation of the 
odimension

- k bifur
ations in �

r

(M): It should be mentioned that [T2℄ 
ontains results


on
erning 
odimension 2 bifur
ations of ve
tor �elds de�ned on manifolds with

boundary. Again the main ideas and te
hniques 
ome from the former results

of Peixoto. When, throughout the paper, the treatment is lo
al we use the

germ terminology.

3 Ve
tor �elds in manifolds with boundary

In this se
tion we dis
uss some results 
on
erning the problem of 
lassi�
ation

of dynami
al systems de�ned on manifolds with boundary under C

0

� orbital

equivalen
e. The te
hniques introdu
ed in above results on the 
onta
t between

ve
tor �elds and S are used frequently, but details are omitted: We also re
all

that, tools in singularity of mappings are fundamental in this approa
h.

3.1 In dimension 2

We present here the terminology, 
on
epts and some results introdu
ed in [T1℄.

3



3.1.1 Stru
tural stability in manifolds with boundary

For simpli
ity we assume in this subse
tion that there exists f :M ! R, a C

1

fun
tion having 0 as regular value with S = ff

�1

(0)g and f(q) � 0 for all q in

M:

Let X 2 � be as above. Call S = �M:

De�nition 1: We say that p 2 S is an S�singularity of X if either X(p) = 0

or X(p) 6= 0 and Xf(p) = 0:

De�nition 2: We say that p 2 S is a fold singularity of X if X(p) 6= 0,

Xf(p) = 0 and XXf(p) 6= 0: In this 
ase we say that the 
onta
t between the

orbit of X and S at p is quadrati
:

A separatrix of X is an orbit whi
h 
onne
ts either two saddle 
riti
al points

or two tangen
y points between the ve
tor �eld and S or a tangen
y point and

a saddle 
riti
al point. Any equivalen
e between two ve
tor �elds in � must

preserve su
h obje
ts.

3.1.2 Generi
 bifur
ation in manifolds with boundary (lo
al set-

ting)

In this subse
tion we 
omment brie
y the boundary 
odimension-one singular-

ities. They play an important role in 
hara
terizing the set �

1

presented in

Theorem 4.

Let p 2 S and �(p) be the spa
e of all germs of C

r

� ve
tor fields at p:

The sets �

0

(p)

and �

1

(p) are de�ned as above: Assume that X 2 �

1

(p):

De�nition 3: We say that p 2 S is a 
usp singularity of X if X(p) 6= 0,

Xf(p) = XXf(p) = 0 and XXXf(p) 6= 0:

De�nition 4: A 
odimension-one S � singularity of X is either a 
usp sin-

gularity or an S � hyperboli
 
riti
al point p in S of the ve
tor �eld. In the

se
ond 
ase this means that p is a hyperboli
 
riti
al point of X . Some generi


extra assumptions are usually assumed.

The set of elements X 2 �

1

(p) su
h that p is an S � singularity of X will be

denoted by �

1

(p).

We re
all that given X 2 �

1

(p); the following orbits have to be distin-

guished: a) an invariant manifold of a saddle 
riti
al point p 2 S ; b) a strong

invariant manifold of a nodal 
riti
al point p 2 S ; 
) an orbit of X tangent

to S at p. Any C

0

equivalen
e between two elements of � must ne
essarily

preserve su
h obje
ts. We may refer to them as S � separatri
es of X:

The next result is in proved in [T1℄ will be used in the sequel

Proposition 1 Let X 2 �

1

(p) and p 2 S: The ve
tor �eld X is stru
turally
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stable (at p 2 S) relative to �

1

(p) if and only if X 2 �

1

(p): Moreover, �

1

(p) is

an embedded 
odimension-one submanifold and dense in �

1

(p):

The following result is also in [T1℄.

Proposition 2(Normal forms) (1) X 2 �

0

(p) i� X is equivalent to one of

the following normal forms:

(0:i) : X(x; y) = (0; 1) (regular 
ase);

(0:ii) : X(x; y) = (1; Æx) with Æ = �1 (fold singularity):

(2) Any one-parameter family X

�

, (� 2 (�"; ")) in � transverse to �

1

(p)

at X

0

; has one of the following normal forms:

(1.1) X

�

(x; y) = (1; �+ x

2

) (
usp singularity);

(1.2) X

�

(x; y) = (ax; x+ by + �); a = �1; b = �2;

(1.3) X

�

(x; y) = (x; x � y + �);

(1.4) X

�

(x; y) = (x+ y;�x+ y + �):

3.2 In dimension 3:

We dis
uss here the results in [ST1℄, where is studied the lo
al behavior of a a

ve
tor �eld near the boundary of a 3-manifold. We use the same notations

as in 3.1 (in 2D); that means M and S = �M: In this way let f :M;S ! R; 0

be a germ representation of the boundary of M around p:

Theorem 5:

(i) X 2 �

0

(p) if and only if

a) X(p) 6= 0;

b) either (b

1

) Xf(p) 6= 0;(b

2

) Xf(p) = 0 and X

2

f(p) 6= 0 or (b

3

)

Xf(p) = X

2

f(p) = 0 and fdf(p); dXf(p); dX

2

f(p)g are linearly indepen-

dent;

(ii) �

0

(p) is open and dense in �(p):

The points in S at whi
h Xf 6= 0 (resp. Xf = 0) are 
alled S � regular

(resp. S � singular) points of X: The points of S where (b

2

) is satis�ed

are 
alled fold singularities; they form smooth 
urves in S, along whi
h X has

quadrati
 
onta
t with S: The set where (b

3

) is satis�ed is the union of isolated

points of 
ubi
 
onta
t between X and S , lo
ated at the extremes of the 
urves

of fold singularities, 
alled 
usp singularities.

At this point we observe that �

1

(p) splits as �

1

(p) = A[B su
h that X 2 A

(resp. X 2 B) provided X(p) = 0 (resp. X(p) 6= 0):

De�nition 5: An S � hyperboli
 
riti
al point of X is a hyperboli
 
riti
al

point p 2 S of X su
h that:

(i) the eigenvalues of DX(p) are pairwise distin
t and the 
orresponding

eigenspa
es are transverse to S at p;

(ii) ea
h pair of non 
omplex 
onjugate eigenvalues have distin
t real parts.
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Denote by �

1

(a) the the 
olle
tion ofX in A su
h that p is an S�hyperboli



riti
al point of X:

De�nition 6: Call �

1

(b) the set of ve
tor �elds X in B su
h that X(p) 6=

0; Xf(p) = 0; X

2

f(p) = 0 and one of the following 
onditions hold:

Q

1

: X

3

f(p) 6= 0; and rankfDf(p); DXf(p); DX

2

f(p)g = 2 and the fun
-

tion Xf j

S

has a non-degenerate 
riti
al point at p;

Q

2

: X

3

f(p) = 0; X

4

f(p) 6= 0 and p is a regular point of Xf j

S

:

The following result is proved in [ST1℄.

Theorem 6:(i) �

1

(p) = �

1

(a)[�

1

(b);(ii) �

1

(p) is a 
odimension-one subman-

ifold of �(p);(iii) �

1

(p) is open and dense in �

1

(p);(iv) the normal forms of the

stable one-parameter families of ve
tor �elds in �(p) transversal to �

1

(p) are

exhibited.

3.3 In dimension n:

3.3.1 A theorem of Sotomayor:

Consider now � be the spa
e of C

1

ve
tor �elds de�ned on a 
ompa
t C

1

n-dimensional manifold with boundary. Endow � with the C

r

� topology with

r > n: In [S2℄ is stated the following result:

Theorem 7: There is an open generi
 set � � � su
h that: (i) for any

� : [0; 1℄ ! �; 
ontinuous, whose the evaluation �(�)(x) is C

1

on [0; 1℄ �M;

there is an isotopy h(�) (between h(1) and h(0) = Id) of M su
h that h(�)

maps orbits of �(�) onto orbits of �(0); for every � 2 [0; 1℄; (ii) Any X 2 � is

isotopi
ally C

r

stru
turally stable.

3.3.2 A theorem of Per
ell:

In [Pe℄, Per
ell presents the normal forms for 
odimension 0 tangential singu-

larities of X 2 �: Also he 
lassi�es the 
lass of transient ve
tor �elds generi
ally

in �: That means those ve
tor �elds where ea
h integral 
urve leavesM in �nite

positive and negative time. The result is:

Theorem 8: (i) The set � � � of transient ve
tor �elds is non-empty and

open in �; (ii) X 2 � i� it is a gradient �eld (for some metri
) with no 
riti
al

points; (iii) The set of stru
turally stable ve
tor �elds is open and dense in �:

Finally we re
all that Vishik in [V℄ has presented a very ni
e normal form

of a generi
 ve
tor �eld near p; obtained from a smooth 
hange of 
oordinates.

It is:

Theorem 9: (Vishik's normal form): Assume that X 2 �; with p 2 �M

and X(p) 6= 0: There exists a 
oordinate systems around p su
h that:

X(x

1

; x

2

; :::::::; x

n

) = (x

2

; x

3

; ::::; x

k+1

; 1; 0; :::; 0) with 0 � k � m� 1;
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and the boundary is represented by the the equation fx

1

= 0g:

4 Dis
ontinuous ve
tor �elds

Some problems in 
ontrol theory and nonlinear os
illations lead to di�erential

equations whose right hand terms are de�ned by dis
ontinuous ve
tor �elds.

Let N be an n�dimensional 
ompa
t manifold and f : N!R be a C

1

fun
tion having 0 as regular value. Denote S = ff

�1

(0)g; N

+

= f

�1

(0;1)

and N

�

= f

�1

(�1; 0):

Denote the spa
e of C

r

ve
tor �elds on M (r > 1) by �.

Let 
 = 
(N; f) be the spa
e of ve
tor �elds Z on N de�ned by:

Z(q) =

�

X(q) if f(q) > 0:

Y (q) if f(q) < 0:

where X;Y 2 �

r

: To point out the dependen
e on X and Y we write Z =

(X;Y ).

On S the solution 
urves of Z are given by the rules of Gantmaher and

Filippov (see [F℄) whi
h are given in what follows

.

Given any Z = (X;Y ) in 
 we distinguish the following regions in S :

� Sewing Region (SW ), 
hara
terized by (Xf)(Y f) > 0.

� Es
aping Region (ES) , given by the inequalities Xf > 0 and Y f < 0.

� Sliding Region (SL), given by the inequalities XXfXf < 0 and Y f > 0.

On this region we de�ne a ve
tor �eld F

+

= F

+

(X;Y ) (
alled the SL-

ve
tor �eld asso
iated to Z = (X;Y )) as follows. If p 2 SL , then F

+

(p)

denotes the ve
tor in the 
one spanned by X(p) and Y (p) tangent to S:

Observe that onES we de�ne another ve
tor �eld F

�

by F

�

(p) = (�F

+

(�X;�Y ))(p).

We refer to either F

+

or F

�

as F (Z):

4.1 Regularization

In what follows we are going to dis
uss some results on regularization of dis-


ontinuous planar ve
tor �elds 
ontained in [ST2℄. We restri
t ourselves to the
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lo
al theory. We just mention that in [LT℄ similar results were also obtained in

3D.

Let N be the standard 2-sphere in R

3

and f : N!R be a C

1

fun
tion hav-

ing 0 as regular value. We assume for simpli
ity that S = ff

�1

(0)g has a single


onne
ted 
omponent in su
h a way that N nS has two 
onne
ted 
omponents,

that are two dis
s denoted by N

+

= f

�1

(0;1) and N

�

= f

�1

(�1; 0):

By a transition fun
tion we mean a C

1

fun
tion

' :! < su
h that: '(t) = 0 if t � �1, '(t) = 1 if t � 1 and '

0

(t) > 0 if

t 2 (�1; 1):

De�nition 8: The '

"

-regularization of Z = (X;Y ) 2 
 is the one param-

eter family of ve
tor �elds Z

"

in �

r

given by

Z

"

(q) = (1� '

"

(f(q))Y (q) + '

"

(f(q))X(q) where '

"

(t) = '(

t

"

) .

In that paper we gave 
onditions on Z = (X;Y ) whi
h determine the global

phase portrait of its regularization and guarantee the stru
tural stability of

Z

"

, for any transition fun
tion and small ". This is a
hieved by using the


hara
terization of the 
lass �

0

of the stru
turally stable ve
tor �elds on smooth

submanifolds of N , due to Andronov-Pontryaguin and Peixoto (given above).

In our approa
h we restri
ted ourselves to lo
al settings.

4.1.1 Lo
al Settings

Let p 2 S and Z = (X;Y ).

De�nition 9: A point p 2 S is an S-regular point of Z if one of the following


onditions is satis�ed:

De�nition 10: p 2 S is an elementary S-singular point of Z = (X;Y ) if

one of the following 
onditions is satis�ed:

(i) p is a fold point of Z = (X;Y ). This means that:

either p is a "fold point of Y ": Xf(p) 6 =0; Y f(p) = 0 and Y Y f(p) 6 =0;

or "p is a fold point of X ": Y f(p) 6 =0; Xf(p) = 0 and XXf(p) 6 =0;

(ii) Xf(p):Y f(p) < 0, Det[X;Y ℄(p) = 0 but d(Det[X;Y ℄

jS

)(p) 6 =0. A

simple 
al
ulation shows that this 
ondition is equivalent to: " p is a hyperboli



riti
al point of F (Z)".

Theorem 10: Let p be an elementary S�singularity of Z = (X;Y ). Then

there exists a positive number "

0

su
h that for any " < "

0

, Z

"

is in �

0

(p) .

4.2 Stability

It should be mentioned that the stru
tural stability inside the 
lass of dis
ontin-

uous systems has been studied by Kozlova [K℄ with no appeal to regularization
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methods. In [T4℄ and [T7℄ aspe
ts of the stru
tural stability and asymptoti


stability of dis
ontinuous ve
tor �elds in 3D are analyzed.

5 Reversible ve
tor �elds

It is generally a
knowledged that time-reversal symmetry is one of the fun-

damental symmetries dis
ussed in many bran
hes of physi
s. Time-reversible

systems share many properties of Hamiltonian systems. In [LR℄ an interesting

survey on reversibility in dynami
al systems is presented.

LetM be a C

1


ompa
t orientable two-dimensional manifold and f :M !

R be a C

1

fun
tion having 0 as regular value. Call S = ff

�1

(0)g, M

+

=

f

�1

[0;1), M

�

= f

�1

(�1; 0℄:

Let ' : M !M be a C

1

di�eomorphism (an involution) from M onto M

su
h that ' Æ ' = Id (' is an involution) and Fix' = S:

We say that a ve
tor �eld X on M is '� reversible (or simply reversible)

if

' �X = �X Æ '.

Let �

r

be the spa
e of the C

r

'�reversible ve
tor �elds on M endowed

with the C

r

- topology (r > 2).

Any 
riti
al point of X 2 �

r


ontained in S is 
alled a symmetri
 singu-

larity of the ve
tor �eld.

The main result in[T6℄ has a 
lose 
onne
tion with the results in [A℄, [P℄,

[PP℄, [S1℄ and [T1℄. It says that:

Theorem 11: The set �

0

of all ve
tor �elds in M whi
h are stru
turally

stable is open and dense in �

r

: Moreover X 2 �

0

if and only if the following


onditions are satis�ed:

� (0) X does not have nontrivial re
urrent traje
tories;

� (i) all asymmetri
 
riti
al points of X are hyperboli
;

� (ii) all asymmetri
 periodi
 orbits of X are hyperboli
;

� (iii) X does not have saddle 
onne
tions on M

+

;

� (iv) all symmetri
 singularities of X are of 
odimension 0.

Call �

1

= �

r

��

0

the bifur
ation set of �

r

: There exists a C

r�1

immersed


odimension-one submanifold �

1

of �

r

su
h that:

(i) �

1

is dense in �

1

(both with the relative topology);
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(ii) for any X in �

1

, there exists a neighborhood B

1

in the intrinsi
 topology

of �

1

su
h that any Y in B

1

is topologi
ally equivalent to X;

(iii) the part of �

1

imbedded in �

r

is also 
hara
terized.

In [T5℄, we 
lassi�ed all the symmetri
 singularities of 
odimension 0, 1 and

2 of X 2 �

r

: There we presented a te
hnique whi
h enabled us to 
lassify in

a simple manner those singularities. In that paper the treatment is lo
al and

the te
hnique 
onsists in making a spe
ial 
hange of 
oordinates around the

point and then address the analysis to the study of the 
onta
t between a

general system and S. We followed those ideas and use extensively the tools

of the Singularity Theory and the results 
ontained in [A℄, [P℄, [PP℄ and [T1℄.

In our setting, the strategy is to establish a 
onne
tion between a reversible

system on M and a ve
tor de�ned on M

+

. Roughly speaking, having redu
ed

the system to the study of ve
tor �elds de�ned in manifolds with boundary,

the next step is to employ known results.

In the 
lass of reversible ve
tor �elds some persistent phenomena o

ur

whi
h 
annot be destroyed by perturbations in �: Examples ares periodi
 orbits

and saddle 
onne
tions whi
h meet the submanifold S. However, 
on
erning

non trivial re
urren
es no surprises arise at all. As a matter of fa
t, this point

be
omes in some sense simpler in this 
lass. We mention for example that su
h

reversible systems on the torus do not admit an irrational 
ow.

5.1 Lo
al Settings

Let 


0

be the spa
e of the germs of C

r

reversible ve
tor �elds at 0 on R

2

endowed with the C

r

topology, r > 3.

Theorem 9: (i) The normal forms of a 
odimension 0 singularity in 


0

are:

(0) X

0

(x; y) = (0; 1=2), (i) X

01

(x; y) = (y;

x

2

) and (ii) X

02

(x; y) = (�y;

x

2

).

(b) (
odimension one singularity 
lassi�
ation) - In the spa
e of one-parameter

families of ve
tor �elds in 


0

, an everywhere dense set is formed by generi
 fam-

ilies su
h that their (C

0

-) normal forms are:

(1.0) The 
odimension 0 normal forms in 


0

;

(1.1) X

�

(x; y) = (y;

�+x

2

2

);

(1.2) X

�

(x; y) = ("xy;

2"y

2

+x+�

2

) with " = �1;

(1.3) X

�

(x; y) = (xy;

�y

2

+x+�

2

);

(1.4) X

�

(x; y) = (xy + y

3

;

�x+y

2

+�

2

).
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5.1.1 Basi
 
on
epts and de�nitions

We shall deal with those involutions whi
h are germs of C

1

di�eomorphisms (at

0) � : IR

2

; 0) IR

2

; 0, satisfying (�Æ�) = Id and Det(D�(0)) = �1. The set S =

Fixf�g is a smooth 
urve in IR

2

; 0. It is well known (Montgomery-Bo
hner The-

orem in [MZ℄) that su
h an involution is C

1


onjugated to �(x; y) = (x;�y).

Let X be a ( germ of) C

1

ve
tor �eld onR

2

; 0 and � be an involution.

We �x 
oordinates inR

2

; 0 in su
h a way that �(x; y) = (x;�y) and denote

by 
 the set of all �-reversible (or just reversible) ve
tor �elds onR

2

; 0. In these


oordinates we have that S = fy = 0g.

Endow 


0

with the C

r

-topology with r > 3.

Any 
riti
al point of X 2 


0

on S (�xed set of �) is 
alled a symmetri
 sin-

gularity (or simply singularity) of X ; otherwise it is an asymmetri
 singularity.

Any other point inR

2

; 0 is a regular point of X .

5.1.2 A 
onstru
tion

The 
oming 
onstru
tion will be useful in the sequel.

Let X be in 


0

. In the 
oordinates (x; y) given above, the de�nition 2.1.1

implies the following general form for X :

X(x; y) = (yf(x; y

2

);

g(x;y

2

)

2

) (III.1)

In the half-plane y > 0, 
onsider

u = x and v = y

2

:

A simple 
al
ulation shows that in these 
oordinates X is transformed into:

X

0

(u; v) = (

p

vf(u; v);

p

vg(u; v)) in v > 0:

It follows that in y > 0; X is topologi
ally equivalent to F = F (X), where

F (u; v) = (f(u; v); g(u; v)) for v > 0:

Observe now that F 
an be C

r

extended to a full neighborhood of 0. Due

to the symmetry properties of X (with respe
t to the 
anoni
al involution) we

dedu
e that the behavior of F (X) at M; 0 determines 
ompletely the behavior

of X at 0. So the problem now is 
arried out to analyze the phase portrait of

11



F in M . We make no distin
tion between F and any one of its extensions.

Re
all that at a regular point the traje
tory of X is always orthogonal to

S. At a 
riti
al point of X , the 
onta
t between an invariant manifold and S

de
ays by a fa
tor of 1/2 in 
omparison with the orbit or invariant manifold

of F (X) passing through the same point. We illustrate this fa
t by assuming

that fv = u

k

; k > 0g is an invariant manifold of F (X) on the region v � 0.

This implies that the 
urve y = x

k=2

is a an invariant manifold of X on y � 0.

5.1.3 Symmetri
 singularities

Now we present some examples where a key 
onne
tion between ve
tor �elds

de�ned in manifolds with boundary and reversible systems is established

Example 1: As X(0) = 0 we have that g(0) = 0. So we may write f(u; v) =

a

0

+ a

10

u+ a

01

v+ h.o.t and g(u; v) = b

01

u+ b

10

v+ h.o.t.

Observe that Fh(u; v) = g(u; v).

Assume that 0 is a 
odimension zero singularity of F (X) . Then the origin

is either a saddle 
riti
al point (in the 
ase F

2

h(0) > 0) or a ellipti
 
riti
al

point (in the 
ase F

2

h(0) < 0).

By means of the results in [T1℄ and using the same te
hnique of the lemma

we may 
lassify the 
odimension-k symmetri
 singularities in 


0

: We mention

that in [MT℄ similar result as Theorem 8 was obtained in 3D:

Example 2: Consider now X a germ of a C

1

ve
tor �eld on IR

2

; 0 with

X(0) = 0 whi
h is C

0

� equivalent to:

X

k;m

(x; y) = (y

2k�1

(a+ f(x; y

2k

)); bx

m

+ g(x; y

2k

))

with k;m 2 N , k � 1; f(0; 0) = 0 , g(0; 0) = 0 and g(x; 0) = O(m+ 1):

For ea
h X

��

given above we 
onsider the asso
iated linear ve
tor �eld T

��

given by:

T

��

(u; v) = (�(au+ bv); 2�(
u+ bv)):

Let �

1

and �

2

be the eigenvalues of T

��

and denote T

1

, T

2

the respe
-

tive eigenspa
es. Denote Tra
e(T

��

) = Tr

��

; D

��

= Det(T

��

) and �

��

=

(Tr

��

)

2

� 4D

��

:

As a matter of fa
t, we 
an 
lassify generi
ally this 
lass of ve
tor �elds

by means of su
h T

��

: Below the 
onditions imposed on T

��

are easy to be

expressed from the parameters a, b, 
 and d:

In [T8℄ it is proved the following result:
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"(i) 0 is a singularity of 
enter type of X provided that m is odd and ab < 0:

(ii) 0 is a 
usp provided m is even (the degenera
y of su
h 
usp depends on m

and k):

(iii) 0 is a saddle point provided m is odd and ab > 0 (the degenera
y of su
h

saddle depends on m and k):

(iv) X

k;m

(x; y) = (ay

2k�1

; bx

m

) is in fa
t a C

0

�normal form for this 
lass of

ve
tor �elds."

We give a brief idea of the proof of the above 
ase (i); the other 
ases are

treated similarly.

First of all, observe that the ve
tor �eld X is '�reversible, with '(x; y) =

(x;�y):

On the region K = fy > 0g; we de�ne the following 
oordinates:

u = x and v = y

2k

:

So

X(u; v) = y

2k�1

((a+ f(u; v)); 2ky

2k�1

(bu

m

+ g(u; v))) on fv � 0g

In the same spirit as the above 
onstru
tion we de�ne the asso
iated ve
tor

�eld :

H(u; v) = (a+ f(u; v); 2kbu

m

+ 2kg(u; v)):

The 
onta
t between H and v = 0 at 0 is even. Due to the relation ab < 0;

we easily dedu
e that 0 is a 
enter for X:

6 Open problems on regularization of dis
on-

tinuous ve
tor �elds

6.1 Introdu
tion

LetM be a n-dimensional 
ompa
t, 
onne
ted and orientable C

1

manifold

.

Let f : M!IR be a C

1

fun
tion having 0 as regular value. Call S =

ff

�1

(0)g. Denote by �

r

the spa
e of C

r

ve
tor �elds on M with r > 1 and by

� the spa
e of Lips
hitz ve
tor �elds on M:

Denote M

+

= ff

�1

[0;1)g and M

�

= ff

�1

(�1; 0℄g:

Let 


r

be the spa
e of ve
tor �elds Z on M de�ned by

Z(q) =

�

X(q) if f(q) > 0;

Y (q) if f(q) < 0;
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where X;Y 2 �

r

. This ve
tor �eld is denoted by Z = (X;Y ).

Let Z = (X;Y ) be in 


r

. Given a positive number " we 
onsider the C

r

fun
tion '

"

: IR! IR su
h that

� '

"

(t) = 0 if t � ��

� '

"

(t) = 1 if t � �

� '

0

"

(t) > 0 if t 2 (�"; ")

Re
al that an "� regularization of Z = (X;Y ) 2 


r

is a ve
tor �eld Z

"

in

�

r

de�ned by

Z

"

(q) = (1� '

"

(f(q)))Y (q) + '

"

(f(q))X(q):

We also 
onsider the pie
ewise linear fun
tion �

"

: IR! IR su
h that

�

"

(t) =

8

<

:

0 if if t � �";

t+"

2"

if if t 2 (�"; ");

1 if if t � ":

An " � L � regularization of Z = (X;Y ) 2 


r

is a ve
tor �eld Z

"

in �

de�ned by

Z

"

(q) = (1� �

"

(f(q)))Y (q) + �

"

(f(q))X(q):

This kind of regularization of Z unfolds the dis
ontinuous surfa
e S =

ff

�1

(0)g; and we are able to dis
uss whether the lim

"!0

Z

"

agrees with the

Filippov's 
onvention (in [F℄) about the extension of orbit solutions of the

ve
tor �eld Z through the dis
ontinuous surfa
e.

Re
all the de�nitions 
ontained in Se
tion 4.

6.2 Problems

I - CASE �M = ;

1. Lo
al Settings

In [ST2℄ and [LT℄ the extension of orbit solutions through the dis
ontinuity

surfa
e of Z = (X;Y ) in 


r

and its relationship with the Filippov's 
onvention

in dimension two and three respe
tively, was analyzed using this regularization

te
hnique. Moreover the qualitative behavior of the " � regularizated and

" � L � regularized ve
tor �elds Z

"

around generi
 singularities were also

studied there.
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The problems in question are:

Question (i): Classify the generi
 S-singularities of Z 2 


r

and exhibit their

C

0

� normal forms (Papers related with this question: [F℄, [K℄, [LT℄, [ST1℄,

[ST2℄, [T3℄, [T4℄ and [V℄).

Question (ii): Study the behavior of the " � regularized and " � L �

regularized ve
tor �elds Z

"

derived from the normal forms found above (Papers

related with this question: [LT℄ and [ST2℄).

Question (iii): Prove or disprove the following statement: x : [0; T ℄ ! IR is

a (Filippov) solution of the dis
ontinuous di�erential equation x

0

(t) = Z(x(t));

x(0) 2 S if and only if there is a sequen
e of smooth solutions x

"

: [0; T ℄! IR

of the regularized di�erential system x

0

"

(t) = Z

"

(x(t) uniformly 
onverging to

x(t) as "! 0

+

( Papers related with this question: [F℄, [LT℄ and [ST2℄).

2. Periodi
 Orbits

A 
losed 
urve 
 formed by pie
es of regular orbits of X in M

+

and regular

orbits of Y in M

�

is an S � periodi
 orbit of Z = (X;Y ) if 
 meets S only in

SW .

Question (iv): Under whi
h 
onditions on Z there exists "

0

> 0 su
h that

for every positive " < "

0

, Z

"

has a periodi
 orbit 


"

nearby 
 in M?

How about its hyperboli
ity? (Paper related with this question:[ST2℄).

3. Invariant manifolds

Assume that S is 
onne
ted.

Question (v): Suppose that every point p in S satis�es Xf(p):Y f(p) < 0.

This phenomenon is 
alled a simple graph.

Prove or disprove: There exists "

0

> 0 su
h that for every positive " < "

0

, Z

"

has an invariant manifold S

"

, di�eomorphi
 to S: If the last assertion is

true then under whi
h 
onditions is Z

"

j

S

"

a Morse-Smale ve
tor �eld? (Paper

related with this question: [ST2℄).

Question (vi): For simpli
ity assume here that n = 3:We assume that there

are an annulus A 
ontained in S and V a small neighborhood of A in S, su
h

that:

(a) �A = A

1

[ A

2

(union of two 
ir
les);

(b) A

1

= fp 2 R; Xf(p) = 0g . Moreover any p 2 A

1

satis�es XXf(p) > 0:

(
) A

1

is a separating 
urve in V; of the regions A

+

= fXf > 0g and

A

�

= fXf < 0g: We are imposing that A

2

is 
ontained in A

�

:

d) Any forward (resp. ba
kward) orbit of X passing through any point

q

1

2 A

1

(resp. q

2

2 A

2

) meets S at p

2

2 A

2

(resp. p

1

2 A

1

):

(d) All points in A outside A

1

is a regular point of Z.
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(e) Y f(q) > 0 for every q 2 V:

A singular graphi
 of Z is the topologi
al surfa
e T formed by A and the

saturated of A

1

, by the 
ow of X , bounded by A

1

and A

2

in M

+

.

Prove or disprove: There exists "

0

> 0 su
h that for every positive " < "

0

, Z

"

has an invariant torus T

"

: If the last assertion is true then under whi
h


onditions is Z

"

j

T

"

a Morse-Smale ve
tor �eld? (Paper related with this

question: [ST2℄).

We remark that similar question 
an be stated in higher dimension.

4. General Problem

Give ne
essary and suÆ
ient 
onditions on Z for the existen
e of an "

0

> 0

su
h that for every positive " < "

0

, Z

"

is a Morse-Smale ve
tor �eld.

II- Case �M 6= ;

5. Transient ve
tor �elds

The problem 
ontained in this se
tion was 
ommuni
ated to me by J. So-

tomayor.

Problem: Give ne
essary and suÆ
ient 
onditions on Z for the existen
e of

an "

0

> 0 su
h that for every positive " < "

0

, Z

"

is a transient ve
tor �eld. (

Papers related with this question: [Pe℄ and [ST2℄).
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