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1 Introdution

The geometri-qualitative study of ows and general dynamial systems on

surfaes has been during many deades objet of a growing interest in many

branhes of pure and applied mathematis. After the works of Poinar�e, Lya-

punov and Bendixson this has beome a well-established subjet in mathe-

matis and fous of onsiderable attention. Moreover, nowadays it is fairly

aessible for a broad sienti� audiene. From various sides, attention has

been paid to the strutural stability onept and speially to the results of

Peixoto ( mainly those published in An. A. Bras. Si , 1959 and Topology,

1962) and higher dimensional extensions (due mainly to Smale and Anosov).

A brief historial outline follows: in 1937 Andronov and Pontrjagin [AP℄

announed the haraterization of the strutural stability of a lass of vetor

�elds de�ned on a ompat region in the plane. In 1959 , Peixoto & Peixoto

[PP℄ generalized this result to a larger lass of systems still de�ned on a planar

region. This last theorem was extended by Peixoto [P℄ in 1962 to 2-dimensional

manifolds. A bibliographial guide of this matter is ontained in many exposi-

tory works (for example in [AZ℄ or in [MP℄).

Here we present an elementary disussion of three aspets of this theory:

lassi�ation problems arising in bifuration of vetor �elds de�ned in mani-

folds with boundary, ordinary di�erential equations with disontinuous seond

members and reversible systems. All of them strongly depend on results and

tehniques appearing for the �rst time in the work of M. Peixoto on strutural

stability. We fous the disussion on two-dimensional systems.

The main point treated here onerns the ontat between a general vetor

�eld and the boundary of a manifold. More spei�ally, a tangeny point

between the vetor �eld and the boundary is a distinguished singularity- an

important objet to be analyzed when one studies disontinuous or reversible

systems. We observe also that in [A℄, Arnold observed the importane of suh

singularities in the oblique-derivative problem. We still point out that there is
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a natural mathematial approah to studying suh a phenomenon by means of

singularity mappings theory; see for instane [S1℄, [ST1℄, [T1℄ and [V℄.

2 Historial remarks

In 1937, Andronov & Pontrjagin (in [AP℄ introdued the onept of strutural

stability (via C

0

� orbital equivalene) for C

r

(r � 1) planar vetor �elds X

de�ned in a neighborhood of a ompat region M in R

2

bounded by a Jordan

urve �M . They onsidered the set �

�

of all suh vetor �elds whih are

transverse to �M: The following result was stated:

Theorem 1- X 2 �

�

is struturally stable (in �

�

) if and only if,

(1i) all its ritial points and periodi orbits are hyperboli;

(1ii) there is no saddle onnetion.

In 1959, Peixoto & Peixoto (in [PP℄) generalized Theorem 1, by onsidering

the set � of all C

r

(r � 1) vetor �elds X de�ned in a neighborhood of a

ompat region M in R

2

: That is:

Theorem 2- X 2 � is struturally stable (in �) if and only if,

(1i) all its ritial points and periodi orbits are hyperboli;

(1ii) there is no saddle onnetion;

(2i) all ritial points and periodi orbits are in the interior of M ;

(2ii) any trajetory of X has at most one point of tangeny with

�M ;

(2iii) any saddle separatrix is transverse to �M ;

(2iv) if a trajetory of X is tangent to �M at p, then this ontat

is quadrati.

It is onvenient to observe that the C

0

�equivalene introdued by Andronov-

Pontryagin was made via an "� homeomorphism whereas in the Peixoto sense

the equivalene is onsidered just as an homeomorphism.

Let M be a 2-dimensional manifold and � = �

r

(M) be the spae of all

C

r

� vetor fields on M with the C

r

�topology. We denote by �

0

= �

0

(M)

the set of all struturally stable vetor �elds in �: For simpliity, we may all

any element of �

0

a odimension�zero vetor �eld of �:

In 1962 , M. Peixoto (in [P℄) proved the following result:

Theorem 3- Let X 2 �

r

(M) (r � 1) where M is a ompat orientable surfae

or ompat non-orientable surfae of genus 1 � g � 3: Then X 2 �

0

(M) if and

only if it is a Morse-Smale vetor �eld.

By means of a result of C. Pugh (in [Pu℄) in the C

1

�topology we may

add to the last result that �

0

is open and dense in �: In this diretion many
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results were obtained (also in higher dimension), for example by Gutierrez,

deMelo/Gutierrez, Palis, Smale, Ma~ne, Robbin et..This subjet is so rih in

many aspets whih makes to be inevitable that a number of distinguished

mathematiians, topis and results deriving from the last theorem, reeive no

mention here.

In our approah we have to mention the work of Sotomayor in [S1℄ whih

generalizes (or ontinues) the results of Andronov- Pontrjagin-Peixoto for the

so alled odimension�one element of � or in Sotomayor's nomenlature: "�rst

order struturally stable vetor �elds of " �: In [T1℄ this result was generalized

for 2-manifolds with boundary in whih the tehniques and results of Theorem

2 were fundamental. These two results are summarized as follows:

Theorem 4: Call �

r

1

= �

r

� �

0

(r � 3) the bifuration set of �: There

exists a C

r�1

� immersed odimension-one submanifold �

1

of � suh

that:

(i) �

1

is dense in �

1

;

(ii) for any X in �

1

, there exists a neighborhood B in the intrinsi

topology of �

1

suh that any Y in B is C

0

� equivalent to X ;

(iii) �

r

1

; as well as the part of �

r

1

imbedded in � , are haraterized.

Following the last theorem we may of ourse lassify the stable one-parameter

families X

�

of vetor �elds in � by means of the onept of transversality. It

is usual to say that X

�

presents a odimension-one bifuration at � = 0 if

X

0

2 �

1

: This researh program attempts the lassi�ation of the odimension

- k bifurations in �

r

(M): It should be mentioned that [T2℄ ontains results

onerning odimension 2 bifurations of vetor �elds de�ned on manifolds with

boundary. Again the main ideas and tehniques ome from the former results

of Peixoto. When, throughout the paper, the treatment is loal we use the

germ terminology.

3 Vetor �elds in manifolds with boundary

In this setion we disuss some results onerning the problem of lassi�ation

of dynamial systems de�ned on manifolds with boundary under C

0

� orbital

equivalene. The tehniques introdued in above results on the ontat between

vetor �elds and S are used frequently, but details are omitted: We also reall

that, tools in singularity of mappings are fundamental in this approah.

3.1 In dimension 2

We present here the terminology, onepts and some results introdued in [T1℄.
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3.1.1 Strutural stability in manifolds with boundary

For simpliity we assume in this subsetion that there exists f :M ! R, a C

1

funtion having 0 as regular value with S = ff

�1

(0)g and f(q) � 0 for all q in

M:

Let X 2 � be as above. Call S = �M:

De�nition 1: We say that p 2 S is an S�singularity of X if either X(p) = 0

or X(p) 6= 0 and Xf(p) = 0:

De�nition 2: We say that p 2 S is a fold singularity of X if X(p) 6= 0,

Xf(p) = 0 and XXf(p) 6= 0: In this ase we say that the ontat between the

orbit of X and S at p is quadrati:

A separatrix of X is an orbit whih onnets either two saddle ritial points

or two tangeny points between the vetor �eld and S or a tangeny point and

a saddle ritial point. Any equivalene between two vetor �elds in � must

preserve suh objets.

3.1.2 Generi bifuration in manifolds with boundary (loal set-

ting)

In this subsetion we omment briey the boundary odimension-one singular-

ities. They play an important role in haraterizing the set �

1

presented in

Theorem 4.

Let p 2 S and �(p) be the spae of all germs of C

r

� vetor fields at p:

The sets �

0

(p)

and �

1

(p) are de�ned as above: Assume that X 2 �

1

(p):

De�nition 3: We say that p 2 S is a usp singularity of X if X(p) 6= 0,

Xf(p) = XXf(p) = 0 and XXXf(p) 6= 0:

De�nition 4: A odimension-one S � singularity of X is either a usp sin-

gularity or an S � hyperboli ritial point p in S of the vetor �eld. In the

seond ase this means that p is a hyperboli ritial point of X . Some generi

extra assumptions are usually assumed.

The set of elements X 2 �

1

(p) suh that p is an S � singularity of X will be

denoted by �

1

(p).

We reall that given X 2 �

1

(p); the following orbits have to be distin-

guished: a) an invariant manifold of a saddle ritial point p 2 S ; b) a strong

invariant manifold of a nodal ritial point p 2 S ; ) an orbit of X tangent

to S at p. Any C

0

equivalene between two elements of � must neessarily

preserve suh objets. We may refer to them as S � separatries of X:

The next result is in proved in [T1℄ will be used in the sequel

Proposition 1 Let X 2 �

1

(p) and p 2 S: The vetor �eld X is struturally
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stable (at p 2 S) relative to �

1

(p) if and only if X 2 �

1

(p): Moreover, �

1

(p) is

an embedded odimension-one submanifold and dense in �

1

(p):

The following result is also in [T1℄.

Proposition 2(Normal forms) (1) X 2 �

0

(p) i� X is equivalent to one of

the following normal forms:

(0:i) : X(x; y) = (0; 1) (regular ase);

(0:ii) : X(x; y) = (1; Æx) with Æ = �1 (fold singularity):

(2) Any one-parameter family X

�

, (� 2 (�"; ")) in � transverse to �

1

(p)

at X

0

; has one of the following normal forms:

(1.1) X

�

(x; y) = (1; �+ x

2

) (usp singularity);

(1.2) X

�

(x; y) = (ax; x+ by + �); a = �1; b = �2;

(1.3) X

�

(x; y) = (x; x � y + �);

(1.4) X

�

(x; y) = (x+ y;�x+ y + �):

3.2 In dimension 3:

We disuss here the results in [ST1℄, where is studied the loal behavior of a a

vetor �eld near the boundary of a 3-manifold. We use the same notations

as in 3.1 (in 2D); that means M and S = �M: In this way let f :M;S ! R; 0

be a germ representation of the boundary of M around p:

Theorem 5:

(i) X 2 �

0

(p) if and only if

a) X(p) 6= 0;

b) either (b

1

) Xf(p) 6= 0;(b

2

) Xf(p) = 0 and X

2

f(p) 6= 0 or (b

3

)

Xf(p) = X

2

f(p) = 0 and fdf(p); dXf(p); dX

2

f(p)g are linearly indepen-

dent;

(ii) �

0

(p) is open and dense in �(p):

The points in S at whih Xf 6= 0 (resp. Xf = 0) are alled S � regular

(resp. S � singular) points of X: The points of S where (b

2

) is satis�ed

are alled fold singularities; they form smooth urves in S, along whih X has

quadrati ontat with S: The set where (b

3

) is satis�ed is the union of isolated

points of ubi ontat between X and S , loated at the extremes of the urves

of fold singularities, alled usp singularities.

At this point we observe that �

1

(p) splits as �

1

(p) = A[B suh that X 2 A

(resp. X 2 B) provided X(p) = 0 (resp. X(p) 6= 0):

De�nition 5: An S � hyperboli ritial point of X is a hyperboli ritial

point p 2 S of X suh that:

(i) the eigenvalues of DX(p) are pairwise distint and the orresponding

eigenspaes are transverse to S at p;

(ii) eah pair of non omplex onjugate eigenvalues have distint real parts.
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Denote by �

1

(a) the the olletion ofX in A suh that p is an S�hyperboli

ritial point of X:

De�nition 6: Call �

1

(b) the set of vetor �elds X in B suh that X(p) 6=

0; Xf(p) = 0; X

2

f(p) = 0 and one of the following onditions hold:

Q

1

: X

3

f(p) 6= 0; and rankfDf(p); DXf(p); DX

2

f(p)g = 2 and the fun-

tion Xf j

S

has a non-degenerate ritial point at p;

Q

2

: X

3

f(p) = 0; X

4

f(p) 6= 0 and p is a regular point of Xf j

S

:

The following result is proved in [ST1℄.

Theorem 6:(i) �

1

(p) = �

1

(a)[�

1

(b);(ii) �

1

(p) is a odimension-one subman-

ifold of �(p);(iii) �

1

(p) is open and dense in �

1

(p);(iv) the normal forms of the

stable one-parameter families of vetor �elds in �(p) transversal to �

1

(p) are

exhibited.

3.3 In dimension n:

3.3.1 A theorem of Sotomayor:

Consider now � be the spae of C

1

vetor �elds de�ned on a ompat C

1

n-dimensional manifold with boundary. Endow � with the C

r

� topology with

r > n: In [S2℄ is stated the following result:

Theorem 7: There is an open generi set � � � suh that: (i) for any

� : [0; 1℄ ! �; ontinuous, whose the evaluation �(�)(x) is C

1

on [0; 1℄ �M;

there is an isotopy h(�) (between h(1) and h(0) = Id) of M suh that h(�)

maps orbits of �(�) onto orbits of �(0); for every � 2 [0; 1℄; (ii) Any X 2 � is

isotopially C

r

struturally stable.

3.3.2 A theorem of Perell:

In [Pe℄, Perell presents the normal forms for odimension 0 tangential singu-

larities of X 2 �: Also he lassi�es the lass of transient vetor �elds generially

in �: That means those vetor �elds where eah integral urve leavesM in �nite

positive and negative time. The result is:

Theorem 8: (i) The set � � � of transient vetor �elds is non-empty and

open in �; (ii) X 2 � i� it is a gradient �eld (for some metri) with no ritial

points; (iii) The set of struturally stable vetor �elds is open and dense in �:

Finally we reall that Vishik in [V℄ has presented a very nie normal form

of a generi vetor �eld near p; obtained from a smooth hange of oordinates.

It is:

Theorem 9: (Vishik's normal form): Assume that X 2 �; with p 2 �M

and X(p) 6= 0: There exists a oordinate systems around p suh that:

X(x

1

; x

2

; :::::::; x

n

) = (x

2

; x

3

; ::::; x

k+1

; 1; 0; :::; 0) with 0 � k � m� 1;
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and the boundary is represented by the the equation fx

1

= 0g:

4 Disontinuous vetor �elds

Some problems in ontrol theory and nonlinear osillations lead to di�erential

equations whose right hand terms are de�ned by disontinuous vetor �elds.

Let N be an n�dimensional ompat manifold and f : N!R be a C

1

funtion having 0 as regular value. Denote S = ff

�1

(0)g; N

+

= f

�1

(0;1)

and N

�

= f

�1

(�1; 0):

Denote the spae of C

r

vetor �elds on M (r > 1) by �.

Let 
 = 
(N; f) be the spae of vetor �elds Z on N de�ned by:

Z(q) =

�

X(q) if f(q) > 0:

Y (q) if f(q) < 0:

where X;Y 2 �

r

: To point out the dependene on X and Y we write Z =

(X;Y ).

On S the solution urves of Z are given by the rules of Gantmaher and

Filippov (see [F℄) whih are given in what follows

.

Given any Z = (X;Y ) in 
 we distinguish the following regions in S :

� Sewing Region (SW ), haraterized by (Xf)(Y f) > 0.

� Esaping Region (ES) , given by the inequalities Xf > 0 and Y f < 0.

� Sliding Region (SL), given by the inequalities XXfXf < 0 and Y f > 0.

On this region we de�ne a vetor �eld F

+

= F

+

(X;Y ) (alled the SL-

vetor �eld assoiated to Z = (X;Y )) as follows. If p 2 SL , then F

+

(p)

denotes the vetor in the one spanned by X(p) and Y (p) tangent to S:

Observe that onES we de�ne another vetor �eld F

�

by F

�

(p) = (�F

+

(�X;�Y ))(p).

We refer to either F

+

or F

�

as F (Z):

4.1 Regularization

In what follows we are going to disuss some results on regularization of dis-

ontinuous planar vetor �elds ontained in [ST2℄. We restrit ourselves to the
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loal theory. We just mention that in [LT℄ similar results were also obtained in

3D.

Let N be the standard 2-sphere in R

3

and f : N!R be a C

1

funtion hav-

ing 0 as regular value. We assume for simpliity that S = ff

�1

(0)g has a single

onneted omponent in suh a way that N nS has two onneted omponents,

that are two diss denoted by N

+

= f

�1

(0;1) and N

�

= f

�1

(�1; 0):

By a transition funtion we mean a C

1

funtion

' :! < suh that: '(t) = 0 if t � �1, '(t) = 1 if t � 1 and '

0

(t) > 0 if

t 2 (�1; 1):

De�nition 8: The '

"

-regularization of Z = (X;Y ) 2 
 is the one param-

eter family of vetor �elds Z

"

in �

r

given by

Z

"

(q) = (1� '

"

(f(q))Y (q) + '

"

(f(q))X(q) where '

"

(t) = '(

t

"

) .

In that paper we gave onditions on Z = (X;Y ) whih determine the global

phase portrait of its regularization and guarantee the strutural stability of

Z

"

, for any transition funtion and small ". This is ahieved by using the

haraterization of the lass �

0

of the struturally stable vetor �elds on smooth

submanifolds of N , due to Andronov-Pontryaguin and Peixoto (given above).

In our approah we restrited ourselves to loal settings.

4.1.1 Loal Settings

Let p 2 S and Z = (X;Y ).

De�nition 9: A point p 2 S is an S-regular point of Z if one of the following

onditions is satis�ed:

De�nition 10: p 2 S is an elementary S-singular point of Z = (X;Y ) if

one of the following onditions is satis�ed:

(i) p is a fold point of Z = (X;Y ). This means that:

either p is a "fold point of Y ": Xf(p) 6 =0; Y f(p) = 0 and Y Y f(p) 6 =0;

or "p is a fold point of X ": Y f(p) 6 =0; Xf(p) = 0 and XXf(p) 6 =0;

(ii) Xf(p):Y f(p) < 0, Det[X;Y ℄(p) = 0 but d(Det[X;Y ℄

jS

)(p) 6 =0. A

simple alulation shows that this ondition is equivalent to: " p is a hyperboli

ritial point of F (Z)".

Theorem 10: Let p be an elementary S�singularity of Z = (X;Y ). Then

there exists a positive number "

0

suh that for any " < "

0

, Z

"

is in �

0

(p) .

4.2 Stability

It should be mentioned that the strutural stability inside the lass of disontin-

uous systems has been studied by Kozlova [K℄ with no appeal to regularization

8



methods. In [T4℄ and [T7℄ aspets of the strutural stability and asymptoti

stability of disontinuous vetor �elds in 3D are analyzed.

5 Reversible vetor �elds

It is generally aknowledged that time-reversal symmetry is one of the fun-

damental symmetries disussed in many branhes of physis. Time-reversible

systems share many properties of Hamiltonian systems. In [LR℄ an interesting

survey on reversibility in dynamial systems is presented.

LetM be a C

1

ompat orientable two-dimensional manifold and f :M !

R be a C

1

funtion having 0 as regular value. Call S = ff

�1

(0)g, M

+

=

f

�1

[0;1), M

�

= f

�1

(�1; 0℄:

Let ' : M !M be a C

1

di�eomorphism (an involution) from M onto M

suh that ' Æ ' = Id (' is an involution) and Fix' = S:

We say that a vetor �eld X on M is '� reversible (or simply reversible)

if

' �X = �X Æ '.

Let �

r

be the spae of the C

r

'�reversible vetor �elds on M endowed

with the C

r

- topology (r > 2).

Any ritial point of X 2 �

r

ontained in S is alled a symmetri singu-

larity of the vetor �eld.

The main result in[T6℄ has a lose onnetion with the results in [A℄, [P℄,

[PP℄, [S1℄ and [T1℄. It says that:

Theorem 11: The set �

0

of all vetor �elds in M whih are struturally

stable is open and dense in �

r

: Moreover X 2 �

0

if and only if the following

onditions are satis�ed:

� (0) X does not have nontrivial reurrent trajetories;

� (i) all asymmetri ritial points of X are hyperboli;

� (ii) all asymmetri periodi orbits of X are hyperboli;

� (iii) X does not have saddle onnetions on M

+

;

� (iv) all symmetri singularities of X are of odimension 0.

Call �

1

= �

r

��

0

the bifuration set of �

r

: There exists a C

r�1

immersed

odimension-one submanifold �

1

of �

r

suh that:

(i) �

1

is dense in �

1

(both with the relative topology);
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(ii) for any X in �

1

, there exists a neighborhood B

1

in the intrinsi topology

of �

1

suh that any Y in B

1

is topologially equivalent to X;

(iii) the part of �

1

imbedded in �

r

is also haraterized.

In [T5℄, we lassi�ed all the symmetri singularities of odimension 0, 1 and

2 of X 2 �

r

: There we presented a tehnique whih enabled us to lassify in

a simple manner those singularities. In that paper the treatment is loal and

the tehnique onsists in making a speial hange of oordinates around the

point and then address the analysis to the study of the ontat between a

general system and S. We followed those ideas and use extensively the tools

of the Singularity Theory and the results ontained in [A℄, [P℄, [PP℄ and [T1℄.

In our setting, the strategy is to establish a onnetion between a reversible

system on M and a vetor de�ned on M

+

. Roughly speaking, having redued

the system to the study of vetor �elds de�ned in manifolds with boundary,

the next step is to employ known results.

In the lass of reversible vetor �elds some persistent phenomena our

whih annot be destroyed by perturbations in �: Examples ares periodi orbits

and saddle onnetions whih meet the submanifold S. However, onerning

non trivial reurrenes no surprises arise at all. As a matter of fat, this point

beomes in some sense simpler in this lass. We mention for example that suh

reversible systems on the torus do not admit an irrational ow.

5.1 Loal Settings

Let 


0

be the spae of the germs of C

r

reversible vetor �elds at 0 on R

2

endowed with the C

r

topology, r > 3.

Theorem 9: (i) The normal forms of a odimension 0 singularity in 


0

are:

(0) X

0

(x; y) = (0; 1=2), (i) X

01

(x; y) = (y;

x

2

) and (ii) X

02

(x; y) = (�y;

x

2

).

(b) (odimension one singularity lassi�ation) - In the spae of one-parameter

families of vetor �elds in 


0

, an everywhere dense set is formed by generi fam-

ilies suh that their (C

0

-) normal forms are:

(1.0) The odimension 0 normal forms in 


0

;

(1.1) X

�

(x; y) = (y;

�+x

2

2

);

(1.2) X

�

(x; y) = ("xy;

2"y

2

+x+�

2

) with " = �1;

(1.3) X

�

(x; y) = (xy;

�y

2

+x+�

2

);

(1.4) X

�

(x; y) = (xy + y

3

;

�x+y

2

+�

2

).
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5.1.1 Basi onepts and de�nitions

We shall deal with those involutions whih are germs of C

1

di�eomorphisms (at

0) � : IR

2

; 0) IR

2

; 0, satisfying (�Æ�) = Id and Det(D�(0)) = �1. The set S =

Fixf�g is a smooth urve in IR

2

; 0. It is well known (Montgomery-Bohner The-

orem in [MZ℄) that suh an involution is C

1

onjugated to �(x; y) = (x;�y).

Let X be a ( germ of) C

1

vetor �eld onR

2

; 0 and � be an involution.

We �x oordinates inR

2

; 0 in suh a way that �(x; y) = (x;�y) and denote

by 
 the set of all �-reversible (or just reversible) vetor �elds onR

2

; 0. In these

oordinates we have that S = fy = 0g.

Endow 


0

with the C

r

-topology with r > 3.

Any ritial point of X 2 


0

on S (�xed set of �) is alled a symmetri sin-

gularity (or simply singularity) of X ; otherwise it is an asymmetri singularity.

Any other point inR

2

; 0 is a regular point of X .

5.1.2 A onstrution

The oming onstrution will be useful in the sequel.

Let X be in 


0

. In the oordinates (x; y) given above, the de�nition 2.1.1

implies the following general form for X :

X(x; y) = (yf(x; y

2

);

g(x;y

2

)

2

) (III.1)

In the half-plane y > 0, onsider

u = x and v = y

2

:

A simple alulation shows that in these oordinates X is transformed into:

X

0

(u; v) = (

p

vf(u; v);

p

vg(u; v)) in v > 0:

It follows that in y > 0; X is topologially equivalent to F = F (X), where

F (u; v) = (f(u; v); g(u; v)) for v > 0:

Observe now that F an be C

r

extended to a full neighborhood of 0. Due

to the symmetry properties of X (with respet to the anonial involution) we

dedue that the behavior of F (X) at M; 0 determines ompletely the behavior

of X at 0. So the problem now is arried out to analyze the phase portrait of

11



F in M . We make no distintion between F and any one of its extensions.

Reall that at a regular point the trajetory of X is always orthogonal to

S. At a ritial point of X , the ontat between an invariant manifold and S

deays by a fator of 1/2 in omparison with the orbit or invariant manifold

of F (X) passing through the same point. We illustrate this fat by assuming

that fv = u

k

; k > 0g is an invariant manifold of F (X) on the region v � 0.

This implies that the urve y = x

k=2

is a an invariant manifold of X on y � 0.

5.1.3 Symmetri singularities

Now we present some examples where a key onnetion between vetor �elds

de�ned in manifolds with boundary and reversible systems is established

Example 1: As X(0) = 0 we have that g(0) = 0. So we may write f(u; v) =

a

0

+ a

10

u+ a

01

v+ h.o.t and g(u; v) = b

01

u+ b

10

v+ h.o.t.

Observe that Fh(u; v) = g(u; v).

Assume that 0 is a odimension zero singularity of F (X) . Then the origin

is either a saddle ritial point (in the ase F

2

h(0) > 0) or a ellipti ritial

point (in the ase F

2

h(0) < 0).

By means of the results in [T1℄ and using the same tehnique of the lemma

we may lassify the odimension-k symmetri singularities in 


0

: We mention

that in [MT℄ similar result as Theorem 8 was obtained in 3D:

Example 2: Consider now X a germ of a C

1

vetor �eld on IR

2

; 0 with

X(0) = 0 whih is C

0

� equivalent to:

X

k;m

(x; y) = (y

2k�1

(a+ f(x; y

2k

)); bx

m

+ g(x; y

2k

))

with k;m 2 N , k � 1; f(0; 0) = 0 , g(0; 0) = 0 and g(x; 0) = O(m+ 1):

For eah X

��

given above we onsider the assoiated linear vetor �eld T

��

given by:

T

��

(u; v) = (�(au+ bv); 2�(u+ bv)):

Let �

1

and �

2

be the eigenvalues of T

��

and denote T

1

, T

2

the respe-

tive eigenspaes. Denote Trae(T

��

) = Tr

��

; D

��

= Det(T

��

) and �

��

=

(Tr

��

)

2

� 4D

��

:

As a matter of fat, we an lassify generially this lass of vetor �elds

by means of suh T

��

: Below the onditions imposed on T

��

are easy to be

expressed from the parameters a, b,  and d:

In [T8℄ it is proved the following result:
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"(i) 0 is a singularity of enter type of X provided that m is odd and ab < 0:

(ii) 0 is a usp provided m is even (the degeneray of suh usp depends on m

and k):

(iii) 0 is a saddle point provided m is odd and ab > 0 (the degeneray of suh

saddle depends on m and k):

(iv) X

k;m

(x; y) = (ay

2k�1

; bx

m

) is in fat a C

0

�normal form for this lass of

vetor �elds."

We give a brief idea of the proof of the above ase (i); the other ases are

treated similarly.

First of all, observe that the vetor �eld X is '�reversible, with '(x; y) =

(x;�y):

On the region K = fy > 0g; we de�ne the following oordinates:

u = x and v = y

2k

:

So

X(u; v) = y

2k�1

((a+ f(u; v)); 2ky

2k�1

(bu

m

+ g(u; v))) on fv � 0g

In the same spirit as the above onstrution we de�ne the assoiated vetor

�eld :

H(u; v) = (a+ f(u; v); 2kbu

m

+ 2kg(u; v)):

The ontat between H and v = 0 at 0 is even. Due to the relation ab < 0;

we easily dedue that 0 is a enter for X:

6 Open problems on regularization of dison-

tinuous vetor �elds

6.1 Introdution

LetM be a n-dimensional ompat, onneted and orientable C

1

manifold

.

Let f : M!IR be a C

1

funtion having 0 as regular value. Call S =

ff

�1

(0)g. Denote by �

r

the spae of C

r

vetor �elds on M with r > 1 and by

� the spae of Lipshitz vetor �elds on M:

Denote M

+

= ff

�1

[0;1)g and M

�

= ff

�1

(�1; 0℄g:

Let 


r

be the spae of vetor �elds Z on M de�ned by

Z(q) =

�

X(q) if f(q) > 0;

Y (q) if f(q) < 0;

13



where X;Y 2 �

r

. This vetor �eld is denoted by Z = (X;Y ).

Let Z = (X;Y ) be in 


r

. Given a positive number " we onsider the C

r

funtion '

"

: IR! IR suh that

� '

"

(t) = 0 if t � ��

� '

"

(t) = 1 if t � �

� '

0

"

(t) > 0 if t 2 (�"; ")

Real that an "� regularization of Z = (X;Y ) 2 


r

is a vetor �eld Z

"

in

�

r

de�ned by

Z

"

(q) = (1� '

"

(f(q)))Y (q) + '

"

(f(q))X(q):

We also onsider the pieewise linear funtion �

"

: IR! IR suh that

�

"

(t) =

8

<

:

0 if if t � �";

t+"

2"

if if t 2 (�"; ");

1 if if t � ":

An " � L � regularization of Z = (X;Y ) 2 


r

is a vetor �eld Z

"

in �

de�ned by

Z

"

(q) = (1� �

"

(f(q)))Y (q) + �

"

(f(q))X(q):

This kind of regularization of Z unfolds the disontinuous surfae S =

ff

�1

(0)g; and we are able to disuss whether the lim

"!0

Z

"

agrees with the

Filippov's onvention (in [F℄) about the extension of orbit solutions of the

vetor �eld Z through the disontinuous surfae.

Reall the de�nitions ontained in Setion 4.

6.2 Problems

I - CASE �M = ;

1. Loal Settings

In [ST2℄ and [LT℄ the extension of orbit solutions through the disontinuity

surfae of Z = (X;Y ) in 


r

and its relationship with the Filippov's onvention

in dimension two and three respetively, was analyzed using this regularization

tehnique. Moreover the qualitative behavior of the " � regularizated and

" � L � regularized vetor �elds Z

"

around generi singularities were also

studied there.
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The problems in question are:

Question (i): Classify the generi S-singularities of Z 2 


r

and exhibit their

C

0

� normal forms (Papers related with this question: [F℄, [K℄, [LT℄, [ST1℄,

[ST2℄, [T3℄, [T4℄ and [V℄).

Question (ii): Study the behavior of the " � regularized and " � L �

regularized vetor �elds Z

"

derived from the normal forms found above (Papers

related with this question: [LT℄ and [ST2℄).

Question (iii): Prove or disprove the following statement: x : [0; T ℄ ! IR is

a (Filippov) solution of the disontinuous di�erential equation x

0

(t) = Z(x(t));

x(0) 2 S if and only if there is a sequene of smooth solutions x

"

: [0; T ℄! IR

of the regularized di�erential system x

0

"

(t) = Z

"

(x(t) uniformly onverging to

x(t) as "! 0

+

( Papers related with this question: [F℄, [LT℄ and [ST2℄).

2. Periodi Orbits

A losed urve  formed by piees of regular orbits of X in M

+

and regular

orbits of Y in M

�

is an S � periodi orbit of Z = (X;Y ) if  meets S only in

SW .

Question (iv): Under whih onditions on Z there exists "

0

> 0 suh that

for every positive " < "

0

, Z

"

has a periodi orbit 

"

nearby  in M?

How about its hyperboliity? (Paper related with this question:[ST2℄).

3. Invariant manifolds

Assume that S is onneted.

Question (v): Suppose that every point p in S satis�es Xf(p):Y f(p) < 0.

This phenomenon is alled a simple graph.

Prove or disprove: There exists "

0

> 0 suh that for every positive " < "

0

, Z

"

has an invariant manifold S

"

, di�eomorphi to S: If the last assertion is

true then under whih onditions is Z

"

j

S

"

a Morse-Smale vetor �eld? (Paper

related with this question: [ST2℄).

Question (vi): For simpliity assume here that n = 3:We assume that there

are an annulus A ontained in S and V a small neighborhood of A in S, suh

that:

(a) �A = A

1

[ A

2

(union of two irles);

(b) A

1

= fp 2 R; Xf(p) = 0g . Moreover any p 2 A

1

satis�es XXf(p) > 0:

() A

1

is a separating urve in V; of the regions A

+

= fXf > 0g and

A

�

= fXf < 0g: We are imposing that A

2

is ontained in A

�

:

d) Any forward (resp. bakward) orbit of X passing through any point

q

1

2 A

1

(resp. q

2

2 A

2

) meets S at p

2

2 A

2

(resp. p

1

2 A

1

):

(d) All points in A outside A

1

is a regular point of Z.
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(e) Y f(q) > 0 for every q 2 V:

A singular graphi of Z is the topologial surfae T formed by A and the

saturated of A

1

, by the ow of X , bounded by A

1

and A

2

in M

+

.

Prove or disprove: There exists "

0

> 0 suh that for every positive " < "

0

, Z

"

has an invariant torus T

"

: If the last assertion is true then under whih

onditions is Z

"

j

T

"

a Morse-Smale vetor �eld? (Paper related with this

question: [ST2℄).

We remark that similar question an be stated in higher dimension.

4. General Problem

Give neessary and suÆient onditions on Z for the existene of an "

0

> 0

suh that for every positive " < "

0

, Z

"

is a Morse-Smale vetor �eld.

II- Case �M 6= ;

5. Transient vetor �elds

The problem ontained in this setion was ommuniated to me by J. So-

tomayor.

Problem: Give neessary and suÆient onditions on Z for the existene of

an "

0

> 0 suh that for every positive " < "

0

, Z

"

is a transient vetor �eld. (

Papers related with this question: [Pe℄ and [ST2℄).
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