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1 Introduction

The geometric-qualitative study of flows and general dynamical systems on
surfaces has been during many decades object of a growing interest in many
branches of pure and applied mathematics. After the works of Poincaré, Lya-
punov and Bendixson this has become a well-established subject in mathe-
matics and focus of considerable attention. Moreover, nowadays it is fairly
accessible for a broad scientific audience. From various sides, attention has
been paid to the structural stability concept and specially to the results of
Peixoto ( mainly those published in An. Ac. Bras. Sci, 1959 and Topology,
1962) and higher dimensional extensions (due mainly to Smale and Anosov).

A brief historical outline follows: in 1937 Andronov and Pontrjagin [AP]
announced the characterization of the structural stability of a class of vector
fields defined on a compact region in the plane. In 1959 , Peixoto & Peixoto
[PP] generalized this result to a larger class of systems still defined on a planar
region. This last theorem was extended by Peixoto [P] in 1962 to 2-dimensional
manifolds. A bibliographical guide of this matter is contained in many exposi-
tory works (for example in [AZ] or in [MP]).

Here we present an elementary discussion of three aspects of this theory:
classification problems arising in bifurcation of vector fields defined in mani-
folds with boundary, ordinary differential equations with discontinuous second
members and reversible systems. All of them strongly depend on results and
techniques appearing for the first time in the work of M. Peixoto on structural
stability. We focus the discussion on two-dimensional systems.

The main point treated here concerns the contact between a general vector
field and the boundary of a manifold. More specifically, a tangency point
between the vector field and the boundary is a distinguished singularity- an
important object to be analyzed when one studies discontinuous or reversible
systems. We observe also that in [A], Arnold observed the importance of such
singularities in the oblique-derivative problem. We still point out that there is
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a natural mathematical approach to studying such a phenomenon by means of
singularity mappings theory; see for instance [S1], [ST1], [T1] and [V].

2 Historical remarks

In 1937, Andronov & Pontrjagin (in [AP] introduced the concept of structural
stability (via C° — orbital equivalence) for C™ (r > 1) planar vector fields X
defined in a neighborhood of a compact region M in R? bounded by a Jordan
curve OM . They considered the set x* of all such vector fields which are
transverse to 0M. The following result was stated:

Theorem 1- X € x* is structurally stable (in x*) if and only if,
(1i) all its critical points and periodic orbits are hyperbolic;
(1ii) there is no saddle connection.

In 1959, Peixoto & Peixoto (in [PP]) generalized Theorem 1, by considering
the set x of all C™ (r > 1) vector fields X defined in a neighborhood of a
compact region M in R2. That is:

Theorem 2- X € yx is structurally stable (in x) if and only if,

(1i) all its critical points and periodic orbits are hyperbolic;

(1ii) there is no saddle connection;

(2i) all critical points and periodic orbits are in the interior of AM;

(2ii) any trajectory of X has at most one point of tangency with
oM,

(2iii) any saddle separatrix is transverse to 0M;

(2iv) if a trajectory of X is tangent to 0M at p, then this contact
is quadratic.

It is convenient to observe that the C°—equivalence introduced by Andronov-
Pontryagin was made via an € — homeomorphism whereas in the Peixoto sense
the equivalence is considered just as an homeomorphism.

Let M be a 2-dimensional manifold and x = x"(M) be the space of all
C" — vector fields on M with the C"—topology. We denote by X¢ = Yo (M)
the set of all structurally stable vector fields in x. For simplicity, we may call
any element of ¥y a codimension—zero vector field of .

In 1962 , M. Peixoto (in [P]) proved the following result:

Theorem 3- Let X € x" (M) (r > 1) where M is a compact orientable surface
or compact non-orientable surface of genus 1 < g < 3. Then X € ¥¢(M) if and
only if it is a Morse-Smale vector field.

By means of a result of C. Pugh (in [Pu]) in the C'—topology we may
add to the last result that X is open and dense in . In this direction many



results were obtained (also in higher dimension), for example by Gutierrez,
deMelo/Gutierrez, Palis, Smale, Maile, Robbin etc..This subject is so rich in
many aspects which makes to be inevitable that a number of distinguished
mathematicians, topics and results deriving from the last theorem, receive no
mention here.

In our approach we have to mention the work of Sotomayor in [S1] which
generalizes (or continues) the results of Andronov- Pontrjagin-Peixoto for the
so called codimension—one element of x or in Sotomayor’s nomenclature: ”first
order structurally stable vector fields of 7 x. In [T1] this result was generalized
for 2-manifolds with boundary in which the techniques and results of Theorem
2 were fundamental. These two results are summarized as follows:

Theorem 4: Call x7 = x" — Xy (r > 3) the bifurcation set of y. There
exists a C" ! — immersed codimension-one submanifold ¥; of y such
that:

(i) ¥, is dense in xi;

(ii) for any X in ¥, there exists a neighborhood B in the intrinsic
topology of ¥; such that any Y in B is C° — equivalent to X;

(iii) X7, as well as the part of ¥ imbedded in y , are characterized.

Following the last theorem we may of course classify the stable one-parameter
families X, of vector fields in x by means of the concept of transversality. It
is usual to say that X, presents a codimension-one bifurcation at A = 0 if
Xo € X;. This research program attempts the classification of the codimension
- k bifurcations in x"(M). It should be mentioned that [T2] contains results
concerning codimension 2 bifurcations of vector fields defined on manifolds with
boundary. Again the main ideas and techniques come from the former results
of Peixoto. When, throughout the paper, the treatment is local we use the
germ terminology.

3 Vector fields in manifolds with boundary

In this section we discuss some results concerning the problem of classification
of dynamical systems defined on manifolds with boundary under C° — orbital
equivalence. The techniques introduced in above results on the contact between
vector fields and S are used frequently, but details are omitted. We also recall
that, tools in singularity of mappings are fundamental in this approach.

3.1 In dimension 2

We present here the terminology, concepts and some results introduced in [T1].



3.1.1 Structural stability in manifolds with boundary

For simplicity we assume in this subsection that there exists f : M — R, a C*
function having 0 as regular value with S = {f=1(0)} and f(q) > 0 for all ¢ in
M.

Let X € x be as above. Call S = M.

Definition 1: We say that p € S is an S — singularity of X if either X (p) =0
or X(p) #0 and X f(p) = 0.

Definition 2: We say that p € S is a fold singularity of X if X (p) # 0,
X f(p) =0 and XX f(p) # 0. In this case we say that the contact between the
orbit of X and S at p is quadratic.

A separatrix of X is an orbit which connects either two saddle critical points
or two tangency points between the vector field and S or a tangency point and
a saddle critical point. Any equivalence between two vector fields in x must
preserve such objects.

3.1.2  Generic bifurcation in manifolds with boundary (local set-
ting)

In this subsection we comment briefly the boundary codimension-one singular-
ities. They play an important role in characterizing the set ¥; presented in
Theorem 4.

Let p € S and x(p) be the space of all germs of C" — vector fields at p.
The sets Xo(p)
and x1(p) are defined as above. Assume that X € x1(p).

Definition 3: We say that p € S is a cusp singularity of X if X (p) # 0,
Xf(p) = XX f(p)=0and XXX f(p) #0.

Definition 4: A codimension-one S — singularity of X is either a cusp sin-
gularity or an S — hyperbolic critical point p in S of the vector field. In the
second case this means that p is a hyperbolic critical point of X. Some generic
extra assumptions are usually assumed.

The set of elements X € x1(p) such that p is an S — singularity of X will be
denoted by X;(p).

We recall that given X € xi(p), the following orbits have to be distin-
guished: a) an invariant manifold of a saddle critical point p € S ; b) a strong
invariant manifold of a nodal critical point p € S ; ¢) an orbit of X tangent
to S at p. Any C° equivalence between two elements of y must necessarily
preserve such objects. We may refer to them as S — separatrices of X.

The next result is in proved in [T1] will be used in the sequel

Proposition 1 Let X € x;(p) and p € S. The vector field X is structurally



stable (at p € S) relative to x1(p) if and only if X € ¥;(p). Moreover, ¥ (p) is
an embedded codimension-one submanifold and dense in x1(p).

The following result is also in [T1].
Proposition 2(Normal forms) (1) X € ¥y(p) iff X is equivalent to one of
the following normal forms:
(0.1) : X(x,y) = (0,1) (regular case);
(0.i7) : X(x,y) = (1,dz) with 6 = %1 (fold singularity).

(2) Any one-parameter family Xy , (A € (—¢,¢)) in x transverse to X1 (p)
at X, has one of the following normal forms:
(1.1) Xz(z,y) = (1, A + 22) (cusp singularity);

(1.2) X)\(z,y) = (az,x + by + \),a = £1,b = +2;
(1.3) Xx(z,y) = (z,2 —y + N);
(1.4) Xp(z,y) = (x+y,—z+y+ ).

3.2 In dimension 3:

We discuss here the results in [ST1], where is studied the local behavior of a a
vector field near the boundary of a 3-manifold. We use the same notations
as in 3.1 (in 2D); that means M and S = OM. In this way let f: M,S — R,0
be a germ representation of the boundary of M around p.

Theorem 5:
(i) X € Xo(p) if and only if

a) X(p) # 0;

b) either (b;) X f(p) # 0,(b2) Xf(p) = 0 and X?f(p) # 0 or (bs)
Xf(p) = X2f(p) = 0 and {df(p),dX f(p),dX*f(p)} are linearly indepen-
dent;

(ii) Xo(p) is open and dense in x(p).

The points in S at which X f # 0 (resp. Xf = 0) are called S — regular
(resp. S — singular) points of X. The points of S where (by) is satisfied
are called fold singularities; they form smooth curves in S, along which X has
quadratic contact with S. The set where (bs) is satisfied is the union of isolated
points of cubic contact between X and S | located at the extremes of the curves
of fold singularities, called cusp singularities.

At this point we observe that xi (p) splits as x1(p) = AUB such that X € A
(resp. X € B) provided X (p) =0 (resp. X (p) #0).

Definition 5: An S — hyperbolic critical point of X is a hyperbolic critical
point p € S of X such that:

(i) the eigenvalues of DX (p) are pairwise distinct and the corresponding
eigenspaces are transverse to S at p;

(ii) each pair of non complex conjugate eigenvalues have distinct real parts.



Denote by ¥ (a) the the collection of X in A such that p is an S —hyperbolic
critical point of X.
Definition 6: Call X, (b) the set of vector fields X in B such that X(p) #
0,X f(p) =0,X2f(p) = 0 and one of the following conditions hold:

Q1 : X3f(p) #0, and rank{Df(p), DX f(p), DX?f(p)} = 2 and the func-
tion X f |s has a non-degenerate critical point at p;

Q2: X3f(p) =0,X*f(p) # 0 and p is a regular point of X f |s .

The following result is proved in [ST1].

Theorem 6:(i) X1 (p) = £1(a) UX1(b);(ii) X1 (p) is a codimension-one subman-
ifold of x(p);(iil) X4 (p) is open and dense in xi(p);(iv) the normal forms of the
stable one-parameter families of vector fields in x(p) transversal to X, (p) are
exhibited.

3.3 In dimension n:

3.3.1 A theorem of Sotomayor:

Consider now x be the space of C*° vector fields defined on a compact C'*
n-dimensional manifold with boundary. Endow x with the C™ — topology with
r > n. In [S2] is stated the following result:

Theorem 7: There is an open generic set ¥ C x such that: (i) for any
£ :10,1] — X, continuous, whose the evaluation £(\)(x) is C* on [0,1] x M,
there is an isotopy h(A) (between h(1) and h(0) = Id) of M such that h(\)
maps orbits of £(A) onto orbits of £(0), for every A € [0,1]; (ii) Any X € ¥ is
isotopically C" structurally stable.

3.3.2 A theorem of Percell:

In [Pe], Percell presents the normal forms for codimension 0 tangential singu-
larities of X € x. Also he classifies the class of transient vector fields generically
in x. That means those vector fields where each integral curve leaves M in finite
positive and negative time. The result is:

Theorem 8: (i) The set T C x of transient vector fields is non-empty and
open in x; (ii) X € Y iff it is a gradient field (for some metric) with no critical
points; (iii) The set of structurally stable vector fields is open and dense in Y.
Finally we recall that Vishik in [V] has presented a very nice normal form
of a generic vector field near p, obtained from a smooth change of coordinates.
It is:
Theorem 9: (Vishik’s normal form): Assume that X € x, with p € OM
and X (p) # 0. There exists a coordinate systems around p such that:

X(x1, 22, e &) = (T2, T3, oy Thy1,1,0,...,0) with 0 < k <m — 1;



and the boundary is represented by the the equation {z; = 0}.

4 Discontinuous vector fields

Some problems in control theory and nonlinear oscillations lead to differential
equations whose right hand terms are defined by discontinuous vector fields.

Let N be an n—dimensional compact manifold and f : N—R be a C*
function having 0 as regular value. Denote S = {f1(0)}, N* = f~1(0,00)
and N~ = f~1(—00,0).

Denote the space of C" vector fields on M (r > 1) by x.

Let Q = Q(N, f) be the space of vector fields Z on N defined by:

_ | X(g) if f(g)>0.
Z(q)_{ Y(g) if f(q) <O.

where X,Y € x". To point out the dependence on X and Y we write Z =
(X,Y).

On S the solution curves of Z are given by the rules of Gantmaher and
Filippov (see [F]) which are given in what follows

Given any Z = (X,Y) in Q we distinguish the following regions in S :

e Sewing Region (SW), characterized by (X f)(Y f) > 0.
e Escaping Region (ES) , given by the inequalities X f > 0 and Y f < 0.

e Sliding Region (SL), given by the inequalities XXfX f < 0 and Y f > 0.
On this region we define a vector field F* = FT(X,Y) (called the SL-
vector field associated to Z = (X,Y)) as follows. If p € SL , then FT(p)
denotes the vector in the cone spanned by X (p) and Y (p) tangent to S.

Observe that on ES we define another vector field F~ by F~(p) = (—F*(—X, -Y))(p).
We refer to either F'* or F'~ as F(Z).

4.1 Regularization

In what follows we are going to discuss some results on regularization of dis-
continuous planar vector fields contained in [ST2]. We restrict ourselves to the



local theory. We just mention that in [LT] similar results were also obtained in
3D.

Let N be the standard 2-sphere in R? and f : N—R be a C* function hav-
ing 0 as regular value. We assume for simplicity that S = {f~1(0)} has a single
connected component in such a way that N\ S has two connected components,
that are two discs denoted by N* = f71(0,00) and N~ = f~1(—00,0).

By a transition function we mean a C'*° function
¢ = R such that: @(t) = 0if ¢t < =1, p(t) = 1if t > 1 and ¢'(¢) > 0 if
te(-1,1).

Definition 8: The ¢.-regularization of Z = (X,Y) € Q is the one param-
eter family of vector fields Z. in x" given by

Z:(q) = (1 —@:(f(q)Y (q) + ¢ (f(q)) X (q) where ¢ (t) = ¢(L) .

In that paper we gave conditions on Z = (X,Y") which determine the global
phase portrait of its regularization and guarantee the structural stability of
Z., for any transition function and small . This is achieved by using the
characterization of the class Xy of the structurally stable vector fields on smooth
submanifolds of N, due to Andronov-Pontryaguin and Peixoto (given above).
In our approach we restricted ourselves to local settings.

4.1.1 Local Settings

Let p€ S and Z = (X,Y).

Definition 9: A point p € S is an S-regular point of Z if one of the following
conditions is satisfied:

Definition 10: p € S is an elementary S-singular point of Z = (X,Y) if
one of the following conditions is satisfied:

(i) p is a fold point of Z = (X,Y’). This means that:
either p is a ” fold point of Y”: X f(p) ~0,Y f(p) =0 and YY f(p) ~0;
or ”p is a fold point of X”: Y f(p) ~0,X f(p) =0 and XX f(p) ~0;

(i) Xf(p).Yf(p) < 0, Det[X,Y](p) = 0 but d(Det[X,Y];s)(p) /=0. A
simple calculation shows that this condition is equivalent to: ” pis a hyperbolic
critical point of F(Z)”.

Theorem 10: Let p be an elementary S—singularity of Z = (X,Y). Then
there exists a positive number ¢y such that for any € < eo , Z. is in Xo(p) .

4.2 Stability

It should be mentioned that the structural stability inside the class of discontin-
uous systems has been studied by Kozlova [K] with no appeal to regularization



methods. In [T4] and [T7] aspects of the structural stability and asymptotic
stability of discontinuous vector fields in 3D are analyzed.

5 Reversible vector fields

It is generally acknowledged that time-reversal symmetry is one of the fun-
damental symmetries discussed in many branches of physics. Time-reversible
systems share many properties of Hamiltonian systems. In [LR] an interesting
survey on reversibility in dynamical systems is presented.

Let M be a C'*° compact orientable two-dimensional manifold and f : M —
R be a C* function having 0 as regular value. Call S = {f~1(0)}, MT =
f71[07 OO), M- = fﬁl(_ooao]'

Let ¢ : M — M be a C> diffeomorphism (an involution) from M onto M
such that ¢ o p = Id (p is an involution) and Fizp = S.

We say that a vector field X on M is ¢ — reversible (or simply reversible)
if

px X =—-Xoop.

Let ®" be the space of the C" y—reversible vector fields on M endowed
with the C" - topology (r > 2).

Any critical point of X € ®" contained in S is called a symmetric singu-
larity of the vector field.

The main result in[T6] has a close connection with the results in [A], [P],
[PP], [S1] and [T1]. It says that:
Theorem 11: The set Yo of all vector fields in M which are structurally
stable is open and dense in ®". Moreover X € X if and only if the following
conditions are satisfied:

(0) X does not have nontrivial recurrent trajectories;

(1) all asymmetric critical points of X are hyperbolic;

(17) all asymmetric periodic orbits of X are hyperbolic;
e (iii) X does not have saddle connections on M™T;
* (

i) all symmetric singularities of X are of codimension 0.

Call ®; = ®" — X the bifurcation set of ®". There exists a C"~! immersed
codimension-one submanifold X1 of ®" such that:
(i) X1 is dense in ®1 (both with the relative topology);



(i) for any X in Xy, there exists a neighborhood By in the intrinsic topology
of X1 such that any Y in By is topologically equivalent to X;
(i) the part of X1 imbedded in ®" is also characterized.

In [T5], we classified all the symmetric singularities of codimension 0, 1 and
2 of X € ®". There we presented a technique which enabled us to classify in
a simple manner those singularities. In that paper the treatment is local and
the technique consists in making a special change of coordinates around the
point and then address the analysis to the study of the contact between a
general system and S. We followed those ideas and use extensively the tools
of the Singularity Theory and the results contained in [A], [P], [PP] and [T1].
In our setting, the strategy is to establish a connection between a reversible
system on M and a vector defined on M. Roughly speaking, having reduced
the system to the study of vector fields defined in manifolds with boundary,
the next step is to employ known results.

In the class of reversible vector fields some persistent phenomena occur
which cannot be destroyed by perturbations in ®. Examples ares periodic orbits
and saddle connections which meet the submanifold S. However, concerning
non trivial recurrences no surprises arise at all. As a matter of fact, this point
becomes in some sense simpler in this class. We mention for example that such
reversible systems on the torus do not admit an irrational flow.

5.1 Local Settings

Let y be the space of the germs of C” reversible vector fields at 0 on R?
endowed with the C" topology, r > 3.
Theorem 9: (i) The normal forms of a codimension 0 singularity in g are:

(0) XO(m;y) = (0a1/2)7 (1) Xo]_(il?,y) = (y; %) and (11) XOZ(m;y) = (_y; %)

(b) (codimension one singularity classification) - In the space of one-parameter
families of vector fields in 29, an everywhere dense set is formed by generic fam-
ilies such that their (C°-) normal forms are:

(1.0) The codimension 0 normal forms in o;

2

(1) Xa(zy) = (y, 255

(1.2) Xi(z,y) = (exy, W%‘H‘) with e = £1;

(13)  Xa(z,y) = (vy, 52

(14)  Xa(x,y) = (zy +y?, =),

10



5.1.1 Basic concepts and definitions

We shall deal with those involutions which are germs of C* diffeomorphisms (at
0) ¢ : IR%,0 = IR?,0, satisfying (¢po¢) = Id and Det(D¢(0)) = —1. The set S =
Fix{¢} is a smooth curve in IR?, 0. It is well known (Montgomery-Bochner The-
orem in [MZ]) that such an involution is C* conjugated to ¢(x,y) = (z, —y).

Let X be a ( germ of) C° vector field onR?,0 and ¢ be an involution.

We fix coordinates inR?, 0 in such a way that ¢(z,y) = (z,—y) and denote
by € the set of all ¢-reversible (or just reversible) vector fields onR?,0. In these
coordinates we have that S = {y = 0}.

Endow Qg with the C"-topology with r > 3.

Any critical point of X € Qg on S (fixed set of ¢) is called a symmetric sin-
gularity (or simply singularity) of X; otherwise it is an asymmetric singularity.
Any other point inR?2, 0 is a regular point of X.

5.1.2 A construction

The coming construction will be useful in the sequel.
Let X be in Qp. In the coordinates (z,y) given above, the definition 2.1.1
implies the following general form for X:

X(2,y) = (yf(x,y?), 2oy (IIL.1)

In the half-plane y > 0, consider
wu=2z and v=y>.
A simple calculation shows that in these coordinates X is transformed into:
X'(u,v) = (Vof(u,v),vvg(u,v)) in v >0.
It follows that in y > 0, X is topologically equivalent to F' = F(X), where
F(u,v) = (f(u,v),g(u,v)) for v >0.

Observe now that F' can be C” extended to a full neighborhood of 0. Due
to the symmetry properties of X (with respect to the canonical involution) we
deduce that the behavior of F(X) at M,0 determines completely the behavior
of X at 0. So the problem now is carried out to analyze the phase portrait of

11



F in M. We make no distinction between F' and any one of its extensions.

Recall that at a regular point the trajectory of X is always orthogonal to
S. At a critical point of X, the contact between an invariant manifold and S
decays by a factor of 1/2 in comparison with the orbit or invariant manifold
of F(X) passing through the same point. We illustrate this fact by assuming
that {v = u¥,k > 0} is an invariant manifold of F(X) on the region v > 0.
This implies that the curve y = 2*/2 is a an invariant manifold of X on y > 0.

5.1.3 Symmetric singularities

Now we present some examples where a key connection between vector fields
defined in manifolds with boundary and reversible systems is established
Example 1: As X(0) = 0 we have that g(0) = 0. So we may write f(u,v) =
ap + ajou + ap1v+ h.o.t and g(u,v) = boru + bipv+ h.o.t.

Observe that Fh(u,v) = g(u,v).

Assume that 0 is a codimension zero singularity of F(X) . Then the origin
is either a saddle critical point (in the case F?h(0) > 0) or a elliptic critical
point (in the case F2?h(0) < 0).

By means of the results in [T1] and using the same technique of the lemma
we may classify the codimension-k symmetric singularities in y. We mention
that in [MT] similar result as Theorem 8 was obtained in 3D.

Example 2: Consider now X a germ of a C* vector field on IR*,0 with
X (0) = 0 which is C° — equivalent to:

Xim(w,y) = (2 Ha+ f(z,y?*)), bz™ + g(z,y?*))

with k,m € N, k> 1, f(0,0) =0, g(0,0) =0 and g(z,0) = O(m + 1).

For each X, given above we consider the associated linear vector field Ti, g
given by:

Top(u,v) = (alau + bv), 26(cu + bv)).

Let A1 and Az be the eigenvalues of 1,3 and denote T3, 15 the respec-
tive eigenspaces. Denote Trace(Tog) = Trag, Dap = Det(Top) and Ay =
(T’I‘ag)Z - 4Da5.

As a matter of fact, we can classify generically this class of vector fields
by means of such Tj,g. Below the conditions imposed on 1,3 are easy to be
expressed from the parameters a, b, ¢ and d.

In [T8] it is proved the following result:

12



7 (i) 0 is a singularity of center type of X provided that m is odd and ab < 0.
(i1) 0 is a cusp provided m is even (the degeneracy of such cusp depends on m
and k).

(iii) 0 is a saddle point provided m is odd and ab > 0 (the degeneracy of such
saddle depends on m and k).

(iv) Xgm(z,y) = (ay® =1, bz™) is in fact a CO—normal form for this class of
vector fields.”

We give a brief idea of the proof of the above case (i); the other cases are
treated similarly.

First of all, observe that the vector field X is ¢ —reversible, with ¢(z,y) =
(QZ, _y)

On the region K = {y > 0}, we define the following coordinates:

u==zx and v =y
So
X (u,v) = y***((a + f(u,v)), 2ky** =1 (bu™ + g(u,v))) on {v > 0}

In the same spirit as the above construction we define the associated vector
field :

H(u,v) = (a + f(u,v),2kbu™ + 2kg(u,v)).

The contact between H and v = 0 at 0 is even. Due to the relation ab < 0,
we easily deduce that 0 is a center for X.

6 Open problems on regularization of discon-
tinuous vector fields

6.1 Introduction

Let M be a n-dimensional compact, connected and orientable C*° manifold

Let f : M—IR be a C* function having 0 as regular value. Call S =
{f~1(0)}. Denote by x" the space of C" vector fields on M with r > 1 and by
X the space of Lipschitz vector fields on M.

Denote M = {f71[0,00)} and M~ = {f*(—o00,0]}.

Let Q" be the space of vector fields Z on M defined by

_ ] X(¢) if f(q) >0,
Z(q)‘{ Y(g) if f(g) <0,
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where X,Y € x". This vector field is denoted by Z = (X,Y).
Let Z = (X,Y) be in Q". Given a positive number £ we consider the C”
function ¢, : IR — IR such that

e o.(t)y=0ift < —e
e p(t)=1ift >e¢
e O (t)y>0ift € (—e¢,¢)

Recal that an € —regularization of Z = (X,Y) € Q" is a vector field Z. in
X" defined by

Ze(q) = (L = =(f(2)Y (q) + »=(f(2) X (q).

We also consider the piecewise linear function ¢, : IR — IR such that

0 if ift<—¢,
ge(t) = ¢ H= if ifte(—ee),
1if ift>e.

An e — L — regularization of Z = (X,Y) € Q" is a vector field Z. in x
defined by

Ze(q) = (1 = 9=(f(2))Y (@) + ¢=(f(2)) X (q).

This kind of regularization of Z unfolds the discontinuous surface S =
{f~1(0)}, and we are able to discuss whether the lim. o Z. agrees with the
Filippov’s convention (in [F]) about the extension of orbit solutions of the
vector field Z through the discontinuous surface.

Recall the definitions contained in Section 4.

6.2 Problems
I -casE OM =10

1. Local Settings

In [ST2] and [LT] the extension of orbit solutions through the discontinuity
surface of Z = (X,Y) in Q" and its relationship with the Filippov’s convention
in dimension two and three respectively, was analyzed using this regularization
technique. Moreover the qualitative behavior of the € — regularizated and
€ — L — regularized vector fields Z. around generic singularities were also
studied there.
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The problems in question are:
Question (i): Classify the generic S-singularities of Z € Q" and exhibit their
C°— normal forms (Papers related with this question: [F], [K], [LT], [ST1],
[ST2], [T3], [T4] and [V]).
Question (ii): Study the behavior of the ¢ — regularized and ¢ — L —
regularized vector fields Z. derived from the normal forms found above (Papers
related with this question: [LT] and [STZ2]).
Question (iii): Prove or disprove the following statement: x : [0,T] — IR is
a (Filippov) solution of the discontinuous differential equation z'(t) = Z(x(t)),
z(0) € S if and only if there is a sequence of smooth solutions x. : [0,T] — IR
of the reqularized differential system z.(t) = Z.(x(t) uniformly converging to
z(t) as £ — 01 ( Papers related with this question: [F], [LT] and [ST2]).

2. Periodic Orbits

A closed curve v formed by pieces of regular orbits of X in M ™ and regular
orbits of Y in M~ is an S — periodic orbit of Z = (X,Y") if v meets S only in
SW.

Question (iv): Under which conditions on Z there exists €9 > 0 such that
for every positive € < eg , Z. has a periodic orbit . mnearby vy in M?
How about its hyperbolicity? (Paper related with this question:[ST2]).

3. Invariant manifolds

Assume that S is connected.
Question (v): Suppose that every point p in S satisfies X f(p).Y f(p) < 0.
This phenomenon is called a simple graph.

Prove or disprove: There exists €9 > 0 such that for every positive € < g
, Ze has an invariant manifold S, , diffeomorphic to S. If the last assertion is
true then under which conditions is Z. |s. a Morse-Smale vector field? (Paper
related with this question: [ST2]).
Question (vi): For simplicity assume here that n = 3. We assume that there
are an annulus A contained in S and V a small neighborhood of A in S, such
that:

(a) 9A = Ay U A, (union of two circles);

(b) Ay ={p € R; Xf(p) =0} . Moreover any p € Ajsatisfies X X f(p) > 0.

(c) A; is a separating curve in V, of the regions AT = {Xf > 0} and
A= ={Xf < 0}. We are imposing that A, is contained in A~.

d) Any forward (resp. backward) orbit of X passing through any point
q1 € Ay (resp. q2 € As) meets S at py € Az (resp. p1 € Ay).

(d) All points in A outside A; is a regular point of Z.
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(e) Yf(q) > 0 for every q € V.

A singular graphic of Z is the topological surface T' formed by A and the
saturated of A; , by the flow of X, bounded by 4; and Ay in M ™.

Prove or disprove: There exists €9 > 0 such that for every positive € < g¢
, Z- has an invariant torus T.. If the last assertion is true then under which
conditions is Z. |r. a Morse-Smale vector field? (Paper related with this
question: [ST2]).

We remark that similar question can be stated in higher dimension.

4. General Problem

Give necessary and sufficient conditions on Z for the existence of an ey > 0
such that for every positive € < €y , Z. is a Morse-Smale vector field.

II- Case OM ?é @

5. Transient vector fields

The problem contained in this section was communicated to me by J. So-
tomayor.
Problem: Give necessary and sufficient conditions on Z for the ezistence of
an €9 > 0 such that for every positive € < €y , Z. is a transient vector field. (
Papers related with this question: [Pe] and [ST2]).
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