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1. Introduction

Many problems in fluid mechanics occur in time-varying regions. Such situations
arise for instance in the case

- A fluid in a vessel with moving boundaries.

- A fluid in a vessel containing rigid bodies moving through it.

Partial differential equations governing such phenomena are defined in a non-
cylindrical domain. This leads to theorical as well as numerical difficulties.

Is well known that the micropolar fluids model is an essential generalization of
the well established Navier-Stokes model in the sense that it takes into account the
microstructure of the fluid. It may represent fluids consisting of randomly oriented
(or spherical) particles suspended in a viscous medium, whom the deformation of
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fluid particles is ignored. Micropolar fluid were introduced in [4]. They are non-
Newtonian fluids with nonsymmetric stress tensor.

The purpose of this paper is to show the existence and periodicity of weak
solutions of the initial-boundary value problem for the micropolar equations in
domains with smoothly moving boundaries.

The micropolar fluids equations in Qu, = Ueg2(t) x {t} is the following:

| 88_1751+(u-V)u—(1/+1/r)A11+ Vp=2v, rot w1, inx € Q(1),

divu=01in x € Q(t),,

0

a—vtv+(u-V)W— (Co + ca) AW — (co + ¢4 — ¢,)V div w (1.1)
+4v,w = 2v, rot u+g, in x € Q(t),

u=/0p, w=mn, on x € 0t),

L u(x,0) = uy(x), w(x,0)=wp(x), xe0).

where u = (uy, uy, u3) is the velocity field, p is the pressure, and w = (wy, we, ws) is
the microrotational interpreted as the angular velocity field of rotational of parti-
cles. The fields f = (f1, f2, f3) and g = (g1, g1, g3) are external forces and moments
respectively. Positive constants v, v,., ¢y, ¢4, cq represent viscosity coefficients, v is
the usual Newtonian viscosity and v, is called the microrotational viscosity. And
Q(t) is a bounded domain in IR?, with smooth boundary 9Q(t). 8 = (8, 8y, B5)
and 1 = (1,14, n5) are given on the boundary 0Q« = U pd€2(t) x {t}.

It has pointed out that similar time-dependent problem but for the Navier-
Stokes equations have been studied by many different authors. This is the case,
for instance, of the works by J.L. Lions [8], [9], H. Fujita and N. Sauer [5], H. Mo-
rimoto [13], T. Miyakawa and Y. Teramoto [14], R. Salvi [20], etc. In particular,
we would like to emphasize that the arguments in [9] requires €2(¢) to be nonde-
creasing with respect to ¢ (see problem 11.9, p. 426 of this book). Our paper,
other generalize these previous works in the sense that problem (1.1) includes the
microrotational velocity, does not assume this nondecreasing condition on €(t).

We observe that the model (1.1) was early studied in [19], [16] for a class
special of domains (see also [2]). In this work, we use the approach given in [14].



The class of domains considered in [14] is very general and include the domains
used in [19], [16].

Over the past years, many existence (weak and strong), uniqueness results has
been done for micropolar fluids. In a fixed domain see [10], [11], [12], [17], [1§]
and the references therein.

2. Statements and notations

In addition to the conditions (A.1) and (A.2) given for Q(t) and [ respectively in
[14], we give the condition (A.3):

(A.1) There exist a cylindrical domain Qoo = Q x IR and a level-preserving O
diffeomorphism @ : Q. — Q.,
(v,8) = (x,t) = (¢1(x, 1), 9o(w, 1), p3(x, 1), 1)
such that
det [0¢,(x,t)/0x;] = J(t)™' > 0 for (x,t) € Q.
(A.2) [ is the restriction to Q4 of a C? vector field ¢, which is divergence-free on
each Q(¢) and bounded on @, together with its first and second derivatives.
(A.3) n is the restriction to 0Q« of a C? vector field .

Then, by (A.2) and (A.3) the micropolar fluids equations can be reduced to
the case zero boundary values.
Putting u = ¢ + v and w = ¢ + z in the above equations, we obtain,

( OV

E—cAv—i—(v-V)z/hL(w-V)v—l—(v-V)v—i-Vp:
2u, ot z+ F, x € Qt),

divu=0 xe€Q(),,

%_C]_AZ—CZV divz+ (v-V)o+ (¢ -V)z+ (v-V)z (2.1)

ot
+v,z =2v, ot v+ G,  x € 1),

v=0, z=0, xe€1),

v(x,0) = a(x), z(x,0) =b(x), xe€Q(0).
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where ¢ = (v+v,), c1 = (ca+¢q), o = (co+ca—¢o), F= =0, +(v+v,)Atp— (¢ -
V) 4 2v, tot P, G = —p, + C1Ap + CoV div ¢ — v, — (¢ - V) + 2v, rot 1),
a(X) = uO(X) - w(xa 0)7 and b(X) = WO(X) - (,O(X, 0)

Here for every vectorial field, we denote

" Oy
analogously for every scalar field

q(y,s) = q(®; (y, 9))

Using these transformations, the original system of equations (1)-(3) in @, be-
comes:

,

0 -

5V = OV + MY+ NV + Np¥ = rot 2+ F —V,p
s .
y € Q(s), s>0,

diva=0 yeQs),

agz—Lz+Tz+X1z+X2z+4Vrz = rot gu+G (2:2)
y € Q(s), s>0,
¥v=0,2=0, yedQs), s>0,
| v(y,0) =0, z(y,00=0, yedQ0),
where
~ , ~ ~ oy; 0%
R JkN7 | ) — Jk ¢
(OV); cg’"V;V vy, (Lv)i = 1¢’"V,; Vv + co=— o1, (azrjayl)
- oy — ay xy N Oy — 8 0%z,
M i = 3 . e . T “J)
(M) ot VIV o (asayj) (T2)i = 5, Vit + 5,0 asay])
(Niv); = ¢,V ivi+v; Vi, (Nov); = v, Vv,
(X1z); = ¥;V;z+V;Vp,  (XeZ); = V;V;z;,
(vgﬁ)l - g]k@7

8yj



and

ko 9% 9y _ O O

I Oxy, Oxy,’ "1 Oy Oy,

- ov; -

Vjvi = a—yj —+ F;ka,
ViV,vi = ay]k + T3, Vv — T, Vv,

k= Oys O

" Ox; 0y;0y;

We are using summation convention, i.e.e take sum over repeated indices. For
details about above, see [14].

3. Existence of weak solutions

We will denote by €' a generic constant. This will appear in most of the
estimates to the be obtained. When for any reason we want to emphasize the
dependence of a certain constant on a given parameter we will denote this constant

with a subscript. Throughout the paper we need the following function spaces
Cgo(Q)", L2 ()", HY()? and

C’(‘f’a(Q)” {veor )" /div =0in Q},

H = closure of C’(‘)’oa(Q) in L*(Q)",
V' = closure of Cg7, > ()™ in HY(Q)",
U = closure of Co Q)™ in L*(Q)",

S = closure of C5°(Q)™ in HY(Q)",

and similarly are defined the spaces H;, V;, U; and S; on (), with their inner
products and norms following:



For H and U

@b = [ galy, %) ()3 (0)dy;
|v|t = <i7 i7->l%/27

for V and S

<vg‘~/; Vgﬁ>t - /gz] Y7 )vkvz( )Vlﬁ](y)‘](t)dya
|Vg‘~’|t = (Vyv, ng>1/2=

for H; and U,

(v,u); = /Q(t)vi(x)ui(x)dx;

vl = (v,v)",

for V; and S;
(Vv,Vu), = /( | Vivi(x)Viu,(x)dx;
Q(t
19Vl = (Tv, V¥

We denote also, for each ¢, V,* the dual space of V;. The norm of f € V" is
defined by

If1li = sup (f,v),

IVvil,<1

analogously is defined the norm on V* and denoted it by |-|; .
Now we define a weak solution of the problem (2.1).

Definition 3.1. Givena € Hy andb € Uy, andF €L*(0,T;V/), and G €L?(0,T; S;}),
with T > 0. We say that v €L*(0,T;V,) N L>°(0,T; H;) and z €L*(0,T;S;) N
L>(0,T;U,;) are a weak solution of problem (2.1), if and only if the following
identity is satisfied:

—/ v, uy t—/ (v,Mﬁ>t+/OT(VgV,Vgﬁ>t—i—/OT(Nﬁ’-i-Nﬁ’,ﬁﬁ
— (@ (0)) + /0T<f‘,ﬁ>t + /0T< rot 3, ).

6



- /0 (@, i) — /0 @ Tw)+ /0 (V,8, V) + /0T<div z, div (Vyw)),
+/OT<X12 + Xz, W), + 4v, /OT(ZV’ W)
= 6w O+ [ @t [ (10t 7.,

for any @ = [(t)d and W = h(t)é such that @ € V, w € U, and I, h € C*([0,T); IR)
with [(T') = h(T) =

The results that we will prove are

Theorem 3.2. Givena € Hyandb € Uy, andF €L?(0,T;V;), and G €L*(0,T;S;}),
with T' > 0. Then exist a weak solution of problem (2.1), on [0, T7.

Theorem 3.3. When n = 2, the solution given in Theorem is unique.

4. Auxiliar problems

In order to prove our results, we established some preliminaries results. We use
Galerkin approximation , then we define approximate solution v,,(¢), m > 1 as
follows,

V(¥ t) = Lin(t)d;(y, 1),
Vul(y,0) = 0,d;(y,0) and 1, = (a,d;)o
Zp(y,t) = him(t)&;(y. 1),
Zm(y,0) = h9,&(y,0) and h%, = (b,&;)q

where {Elj(y,t)} and {€;(y,t)} are the Schmidt orthogonalization with respect
to the inner product of H and V, of the sequences {&;} and {B]} of linearly

independent vectors in ng;(fz), and in C§°(€2), respectively.
{ljm(t)} and {h;,,(t)} are defined as solution of problem following:

(¥ ) 4 (MY, dj)y — (0%, dj)y + (NV + No¥y, dy)y
= (F,d;); + ( 10t yZp,d;), (4.1)



and

<i;n; éj>t + (T'Zn, éj>t + (Lz,,, éj>t + (X412, + XoZ, éj>t + 4v, (2, éj>t
= <G’, 6_’)>t + < rot givfm,éj>t. (42)

Analogously to [14], [17], [19], it is easy to see that (V,,,Z,,) is determined
uniquely by the above relation, in a neighborhood of ¢ = 0. The proof of the next
lemma guarantees that (v,,,Z,,) is defined on the whole interval [0,T].

Lemma 4.1. The solution (v, 2,,), is bounded in [L*(0,T; V;) N L>(0, T; H;)] %
[L2 (07 T; St) n.L® (07 T; Ut)}

Proof. Multiplying (4.2) and (4.3) by [, (t) and hjn,(t), respectively and then
summing in j, after returning to (), we have

d
T vm O+ 2¢[ Vv (017 + (4.3)
< 2|{(vin Vo, vin)e| + 2(F(2), vin (t))e + +4v2( 10t 200 (£), Vin (£) )1,
and
d 1
Tllzm@E + 20127207 + 8vr[|zn (1) [7ds (4.4)
< 2|{(vin Ve, zm)i| + 2(G(t), 2m(1)): + 4vp( rOt Vin(2), 2 (1))
where the operator L is defined by
Lz = —(cq + ¢9)Az — (co + cq — ¢,)V div z,

with domain D(L) = H} N H.
By using the condition (A.2), we have

[(Vin - VI, vin )| < Sup Y1 v @7 < Cllvim(D]]7-

Also, by using the condition (A.3), we obtain

IN

(Vi + Vo, 2 )¢ sup |V () lel|2m (@) ]2

Cllvim (@®)lel1zm )12
cellvim (D)1} + €llzm (®)]I7-

ININA
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Using the Cauchy-Schwarz and Young inequalities, we have
(F(), v (1)) < cs|F @7 + 0l Vvam(D)I7,
analogously
(G(1)s2n()e < GO + 0l L P20 (8|7,

here was used the equivalence de norms between V and L'/2.

Then taking 6 = £ and n = 5 in the above estimates and replacing in (4.3)

and (4.4), after addying and integrating in ¢ we obtain

2 2 ¢ 2 barl 2
Va1 + 2@ + ¢ [ IVVan(I2 + [ 1L 2072
0 0
t
< NV O + Iz O + ([ Ivn()2 + 2n()[2)
t t
*2 *2
20 [ IF@I2 +2¢, [ 1GEI;

from the Gronwall’ inequality we conclude that {v,,(¢)} is bounded in L*(0,7; H;)N
L*(0,T;V;) and {z,,(¢)} is bounded in L>(0,T;U;) N L*(0,T;S;). &
In the proof of our result we need the Lemma 2.5 of [14], this is

Lemma 4.2. For each € > 0 there exist a positive integer N = N, independent
of t € [0,T] such that for any v € V; we have

N
IvIIZ < D o(v.dy)f + el Vvl
7j=1

Analogous result is true for z € S;. With this estimates we prove

Lemma 4.3. The solution (V,,, Zy,), is precompact in [L*(0, T; V;)NL*>(0, T'; H;)] X
Proof. Put p,,;(t) = (v, d;); for m > j. we shall show that {pmj(t)} L. s
m>j

uniformly bounded and equicontinuous on [0,7T| for each fixed j. In fact, since
there exists for each j a constant M; such that

d;(x0)] < M;, |Vd;(xt)] < M; and
forallx € Q(t), t€[0,T],

dj(xt)| < M;



it follows from Lemma 3.3 that
9 (0] < M5 1900)[2 v, (1)1 < M,

Furthermore, for t € [0,7] and s > 0

t+s
ot +9) = o] = |[ V),

t+s , t+s ,
< | Wdu] +| [ v )]
t+s t+s t+s
< c/ (Vv, V), +/ (Vi V¥ ), +/ Vv, d;),
t t t
t+s t+s
[ Ve d) [ ||+
t t
t+s t+s
21/T/ | rot z,,,d;):| + ‘/ (Vi dj):
t t
t+s t+s t+s
< o[ Ivvale+ [ IVl lvale+ [ 1Vall
t+s t+s
[ UF+ [ I zl)
T 1/2
< o s vl { [ I9all) s sup vl

- 1/2 - 1/2
w0 { e

where C; is a constant depending only on n and M;. So the equicontinuity is

obtained. Therefore, applying the diagonal argument we can choose a sequence

{my} of positive integers such that { Pon, j(t)} _, converge uniformly on [0, T for
my,>j

each fixed j. Considering v = v, — V,,, in the Lemma 4.4 and integrating in t,

we obtain

T ) kT
Jy I =l < 32 [ s =
]:

letting k,l — oo,

T T
limsup [ [V, = Vo I2 < 25500 [ Vvl
m

1

2 T
+2esup [ [[VVial2
m 0

since & > 0 is arbitrary and {v,,} is bounded in L?*(0,T'; V}) the proof is completed,
for v in the first equation of (2.1). Analogously we can conclude for z.
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5. Proof of the Theorems

In this Section, we prove the main results. In first time, we prove the Theorem
3.2.

By Lemmas 3.3 we may assume that there exist (v,,,z,) €[L*(0,T;V;) N
L>(0,T; Hy)] x [L*(0,T; Sy) N L>®(0, T; Uy)], such that

V,, — v, in L>(0,T; H;) weak-start |
Vi, — v, in L*(0,T;V;) weak ,

Zm — z,in L®(0,T;U;) weak-start ,
z, — zin L*(0,T;S;) weak ,

and the Lemma 4.3 imply

Vi, — vin L*(0,T; H;) strong ,
z,, — zin L*(0,T;U,) strong .

Taking h,l € C*([0,T]; R) with h(T) = L(T) = 0, and setting G = d;{(¢) and
w = e;[(t). Multiplying the equalities (4.1) and (4.2) by [ and h respectively, and
returning to ), we obtain by integration by parts

(Vi Wi+ (Vi V) = (Vi - V) Vi, w)e = ((Vin - V)$b,0)e = (¢ V) vin, u)

= (2v, rot z,, +f, u),,
(zy,, W), + 1 (Vzp, VW) + c2(div 2y, div W), — ((Vin, - V) 2z, W),
—((vin - V), W)t — (¥ - V)2, W) + 40, (21, W),
= (2u, rot u,, + g, W)y,
integrating by parts in [0, 7], we obtain

T

— /OT(vm, u'), + C/OT(va, Vu), — /0 (Vin - V) vy, u) — /OT((Vm - V)b, u);

- /OT((w V)V 1)y = (Vi (0), 1(0))o + /OT(2VT Yot 2y, + £, 1),

T
—/0 (zm,w')t—i-cl/o (Vzm,Vw)t—l—cQ/O

T

T
(div z,,, div W), — / (Vi - V)2Zp, W)y
0
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T

—/OT((vm Vo, w), — /OTW V)2, W) +4Vr/0 (Zm, W),

= (2,,(0), w(0))o + /(2ur rot Uy, + g, ).
Since v,,(0) — a in H, and z,,(0) — b in Uy, as m — oo, we have
T
0

_ /OT(V, u')t—i—c/OT(Vv, Vu)t—/OT((v-V)v,u)t—/OT((v-V)z/), W [ (-9)v, )

T
= (a,u(0))o +/ (2v, rot z + f,u),,
0

T

_/OT(Z,W')chl /OT(Vz,VW)t+CQ/0 (div z, div w)t_/OT((v.v)z,w)t

_/OT((V-V)%W)t_/OT(w-V)z,W)t+41/r/0 (2, W),

- (b,w(O))0+/(2ur rot u-+ g, w).

The convergence in the terms non lineares is warranted by the fact that u and
w are a linear combinations of functions Cg%, and Cg°, which are denses in V},
and Sy, respectively.

Expressing the above equality in Qoo, we have

_ /OT<‘77 )y — /OT<\~/, Mu); + C/OT<V9\~/, V), + /OT<N1\~/' + Nov, i),
= (a,u(0))o + /OT(F, u); + /OT( rot 4z, ).
- /OT(Z,VNVt>t - /OT@’ Tw)+a /0T<Vgi, VW) + 2 /0T<div z, divw), (5.1)

T T
+/0 (X12+X22,v~v>t—|—4u,n/0 (7, %)

_ <B,v~v(o)>0+/0T<é’,v~v>t+/0T< rot ¥, ).
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Remark 1. By taking @ = [(t)d and W = h(t)é such thata € ng,(@), € CP(Q),
and [, h € C§°([0,T]; IR) in (5.1), we see that in sense of distribution

Vi), = (v, M), —c(V,¥, Vi), — (NiV + Nov, i),
(F, 1), + ( rot ,z,1),
—(z,€;); = (z,Tw), —1(V,z,V,W), — co(div z, divw),
—(X1Z + X2, W) — 40, (2, W), + (G, W), + ( Tt 4%, W),.

by definition of M, N1,T, and X, and the estimates obtain in the above Lemmas,
we see that the right-hand side defines an elements of L'(0,T;V*) and L' (0, T; S*),
respectively. By applying Lemma in ([21], chap. 3 §1), it follow that v',Z', exist
as elements of L'(0,T;V*) and L*(0,T;S*), respectively, and so v,z are weakly
continuous on [0, T with values in H and U, respectively, since v.€ L*(0,T7; H),
and Z € L>®(0,T;U). Hence we have ¥v(0) = &, and z(0) = b.

The following result is necessary to prove the Theorem 3.3.

Lemma 5.1. If v € L*([0,T);V), z € L*([0,T);S), and v' € L*([0,T); V"),
z € L*([0,T); S*), then v, is continuous on [0,T]| with values in H. Furthermore,
we have

d . - -~ -
p V|7 = 2(3' 4+ M¥,%),.
Analogous results are true for z.

Now, we prove the Theorem 3.3. To do it we consider that (vi,z1) and (v, Z,)
are two solution of problem (2.1) corresponding to the same a,b F and G. Define
differences

V=V|—Vy, Z=2Z — Zs.
They satisfy
(v',a), = (v, Mu), — «(V, v, Va), — (N1V + Novy — Novo, i),
2u,( 1ot 4Z, 1)y, (5.2)
and
(z', &) = (2, TwW), — c1(V,z,V W), — co(div z, div W),

—<X12 + Xﬂl — X222, V~V>t — 4Vr<z, V~V>t + 2Vr< rot g\Nf, V~V>t (53)
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for every ueV and wes.
On the other hand,

Nzivfl — Nzivfg = vl-Vvl — VQ'VVQ = Vl'VV — V'VVQ.

Since
|(v-Vu, w)| = |(v-Vw, u),| < 22 V][] V][ {llull] [Vl [[wl],

for every v,u,we V or S

Then
[(Navi = Nova, V)i = [((v - V) v, v)e| < c|[ Ve[ Vvl Vgvall:
analogously
X5z, — X9z = v-Vz; — vy-V2zy = v;-Vz — v-Vz,
and

[(Xoz1 — X2, 2)i| = |((v - V)z2,2)i| < cf[2]|o[[VVI|]|V g2l
Since v/ € L*([0,T); V*),and z € L*([0,T); S*), it follows from (5.2) and (5.3),
in the above Lemmas and Young Inequality that
1d
2 dt
eIVl + el VoIl + el VIEIV Vol + 01V oVIIE + 20 12]]7 + %IIVMI?

IVl + el V¥l

IN

and
1d
2dt
~ ~ ~ ~ ~ ~ Vy ~
< co|BIE +ENVzlE + o |zl NV 2l + 0V ¥IIF + 2v.|2]]F + EHVgVH?

IZI17 + cal|Vozll} + 2| div Z[17 + 4|27

taking appropiate ¢,¢’,.6, and ¢', then additying, we have

1d, . - - - - -
57 (VI +1ZI0) < cQ+ VWl IVIE + cx 2171V o217
~12 L (=12
< (vl + [1z[;)
integrating in ¢, we obtain
t
¥ + N12l)7 S/O c(IvlI7 + 112]17)-
Applying Gronwall’s inequality we obtain v =0 and z = 0. B
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