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Abstract

Various features of econometric data can be analyzed by non-parametric
approach. This review summarizes some of the most important procedures in
curve estimation that has been very useful in the field of econometrics. Specif-
ically, it describes the theory and the applications of non-parametric density
and regression estimation problems with emphases in kernel, nearest neighbor,
variable kernel, orthogonal series, smoothing splines, logsplines and H-splines

methods.

1 Introduction

Certainly, the histogram is one of the first, and one of the most common, meth-

ods of density estimation. It is important to bear in mind that the histogram is a
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smoothing technique used to estimate the unknown density and hence it deserves
some consideration.

Let us try to combine the data by counting how many data points fall into a small
interval of length h. This kind of interval is called a bin. Observe that the well known
dot plot (Box, Hunter and Hunter, 1978, 25-26) is a particular type of histogram
where h = 0.

Without loss of generality, we consider a bin centered at 0, namely the interval
[—h/2,h/2). Consequently the probability for an observation of X to fall into the
interval [—h/2, h/2) is given by:

h/2
P(X €[=h/2,h/2)) = _h/zf(x)dx,

where f is the density of X.

A natural estimate of this probability is the relative frequency of the observations
in this interval, that is, we count the number of observations falling into the interval
and divide it by the total number of observations. In other words, given the data

Xq,...,X,, we have:

P(X € [=h/2,h/2)) ~ %#{Xi € [=h/2,h/2)}.

Now applying the mean value theorem for continuous bounded function we obtain,

h)2

P(X € [=h/2,h/2)) = _h/Zf(:L‘)dx = [(E)h,

with £ € [-h/2,h/2). Thus, we arrive at the following density estimate:

Fule) = (X0 € [0/2,1/2),

for all x € [-h/2,h/2).



Formally, suppose we observe random variables X,... , X, whose unknown den-
sity is f. Let k be the number of bins, and define C; = [zy + (j — 1)h, o + jh),
j=1,... k. Now, take n; = >  I(X; € C;), such that, Zle n; = n. Then,

. 1 &
fula) = — > nil(z € Cy),
7=1

for all . Here the function I(x € A) is defined to be :

(e A) = 1 ifzeA
0 otherwise
Note that the density estimate fh depends strongly upon the histogram bandwidth
h. By varying h we can have different shapes of fh. For example, if one increases h, one
is averaging over more data and the histogram appears to be smoother. The extremes
of h, say, when h — 0, the histogram becomes a very noisy representation of the data
(needle-plot, Hardle(1990)). In opposite situation when h — oo, the histogram,
now, becomes overly smooth (box-shaped, Hérdle(1990)). Thus, h is the smoothing
parameter of this type of density estimate, and the question of how to choose the

histogram bandwidth A turns out to be an important question in representing the

data via the histogram. For details of how to estimate h see Hérdle (1990).

2 Kernel Density Estimation

Naturally, we can think of having a more general idea of an density estimate of
the underlying density based on the method of the histogram. For this consider the

weight function,

if |z <1

O N

otherwise

and define the estimator,



fale) = - SRS,

We can see that f, extends the idea of the histogram.

Notice that this estimate just places a “box” of side (width) 2h and height (2nh)
on each observation and then sums to obtain f),. See Silverman (1986) for a discussion
of this kind of estimator. It is not difficult to verify that fh is not a continuous function
and has zero derivatives everywhere except on the jump points X; + h. Besides
having the undesirable character of non smoothness (Silverman, 1986), it could give
a misleading impression to a untrained observer.

To overcome some of those difficulties, a condition has been introduced on the
function K. That is, K must be nonnegative kernel function that satisfies the follow-

ing property:

/Z K(x)dz = 1.

Hence K(x) is a probability density function, and usually is a symmetric density,
as for instance, normal density. Note that an estimate based on the kernel function
places “bumps” on the observations and the shape of those “bumps” is determined
by the kernel function K.

The bandwidth h sets the width around each observation and this bandwidth
controls the degree of smoothness of a density estimate. It is possible to verify that
as h — 0, the estimate becomes a sum of Dirac delta functions at the observations
while as h — oo, it eliminates all the local roughness and possibly important details

are missed.
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Figure 2.1: Bandwidth effect on kernel density estimates

There is a vast (Silverman, 1986), literature on kernel density estimation studying
its mathematical properties and proposing several algorithms to obtain an estimated
based on it. This method of density estimation became, apart from histogram, the
most commonly used estimator. However it has the drawbacks when the underlying
density has long tails (Silverman, 1986). What causes this problem is the fact that
the bandwidth is fixed for all observations, not considering any local characteristic of

the data.

In order to solve this problem several other Kernel Density Estimation Methods
were proposed such as the nearest neighbor and the variable kernel. A detailed dis-

cussion and illustration of these methods can be found in Silverman (1986).



3 Statistical Results of Kernel Density Estimation

As starting point one might want to compute the expected value of fh. For this,
suppose we have X;, ..., X, i.i.d. random variables with common density f and
let K(-) be a probability density function defined on the real line that satisfies the
following conditions (Rao, 1983):

e Condition 1. sup, K(x) < M < oo; |z|K(z) — 0 as || — oo.
e Condition 2. K(z) = K(—z), z € (—o00,00) with [* 2?K(z)dz < co.

Then we have,

n

Elfu(z)] = %Z (3.1)
= (S X")] (32)
1 T—u
3 [ KCET (33)
/K(y)f(x + yh)dy. (3.4)
Now, let b — 0. We see that E[f,(x z) [ K(y) f(x). Thus, f, is

asymptotic unbiased estimator of f.

In order to compute the bias of this estimator we have to make the assumption that
the underlying density is twice differentiable. Using a Taylor expansion of f(x + yh),

the bias of fh in estimating f is

2

bilfa(e) =5 £0) [ K@y + o(h?)

We observe that since we assumed the kernel K symmetric around zero the term
JyK(y)hf'(z)dy = 0, the bias is quadratic in h. See (Parzen, 1962).

Using similar approach we obtain :



o Varg[fa(x)] = JFI KI5/ (@) +ol55),
o MSEf[fu(w)] = 2 f (@)K} + % (f"(@) [ y*K (y)dy) + o(55) + o(h*) |

where MSEy [fn] stands for mean squared error of the estimator fj, of f.

Thus the following condition h — 0 and nh — oo is usually assumed, the
MSEf[fh] — 0, which means that the kernel density estimate is a consistent es-
timator of the underlying density f. Moreover, MSE balances variance and squared
bias of the estimate in such way that the variance term controls the under-smoothing
and the bias term controls over-smoothing. In other words, an attempt to reduce
the bias increases the variance, making the estimate too noisy (under-smooth). On
the contrary, minimizing the variance leads to a very smooth estimate (over-smooth)

with high bias.

4 The nearest neighbor method

The concept of the nearest neighbor method is to adapt the amount of smoothing
to local density of data. The degree of smoothing is then controlled by an integer k.
Essentially, the nearest neighbor density estimator uses distances from x in f(z) to
the data point that is the kth nearest to x, for suitable k, typically, k oc n'/2.

The kth nearest neighbor density estimate is defined as,

5 k
fla) = Inde(z)
where, n is the sample size and di(x) is the kth distance between x and the kth data
point near to x.
In order to understand this definition, suppose that the density at x is f(z). Then,

one would expect about 2rnf(z) observations to fall in the interval [x — r, x + r] for



each r > 0. Since, by definition, exactly k observations fall in the interval [z —

di(x),x + di(x)], an estimate of the density at x may be obtained by putting

k= 2d(x)nf(z).

Note that while estimators like histogram are based on the number of observations
falling in a box of fixed width centered at the point of interest, the nearest neighbor
estimate is inversely proportional to the size of the box needed to contain a given
number of observations. In the tail of the distribution, the distance d(x) will be larger
than in the main part of the distribution, and so the problem of under-smoothing in
the tails should be reduced. Like the histogram the nearest neighbor estimate is not
a smooth curve. Moreover, the nearest neighbor estimate does not integrate one and

! in other words extremely slowly. Hence, this

the tails of f(z) die away at rate z~
estimate is not appropriate if it is required to estimate the entire density. However, it
is possible to generalize the nearest neighbor estimate to provide an estimate related

to the kernel estimate. The generalized kth nearest neighbor estimate is defined by,

ndk

Observe that the overall amount of smoothing is governed by the choice of k, but the
bandwidth used at any particular point depends on the density of observations near
that point. Again, we face the problems of discontinuity of at all the points where
the function di(z) has discontinuous derivative. The precise integrability and tail

properties will depend on the exact form of the kernel.
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Figure 4.2: Effect of the smoothing parameter K on the estimates

5 The variable kernel method

The variable kernel method is another method which adapts the amount of smoothing
to the local density of the data. The estimate is constructed similarly to the classical
kernel estimate, but the scale parameter varies from one data point to another.

Let K be a kernel function and k a positive integer. Define d;; to be the distance
from X to the kth nearest point in the set containing the other n — 1 data points.

The variable kernel estimate with the smoothing parameter h is defined by

B 1i Xj)
_n hd,; hdjk

J=1



In contrast with the generalized nearest neighbor estimate, the variable kernel

estimate will itself be a probability density function provided that K is.

6 Bandwidth selection: Kernel estimators

It is natural to think of finding the optimal bandwidth, say, A, such that h, =
arg min, MSE;[f,]. Hirdle(1990) shows that

FOUER s s
" = TP Ky ' o)

The problem with this approach is that h, depends on two unknown functions

f(-) and f”(-). An approach to overcome this problem uses a global measure that can

be defined as:
IMSE[f,)] = / MSE;[fn]

= IR RIS o) o). (62)

IMSE is the well known integrated mean squared error of a density estimate.

The optimal value of h considering the IMSE is define as
hop = arg min IM SE] fnl-

it can be shown that,

_ 1/5
e S I () s (63)

where ¢, = [y?K(y)dy. Unfortunately, (6.3) depends on the second derivatives

of f which measures the rapidity of fluctuations in density f.

6.1 Reference to a standard distribution

A very natural way is to use a standard family of distributions to assign a value of

the term || f"]|3 in the expression of the ideal bandwidth (6.3). For example, assume

10



that a density f belongs to a class normal family with mean p and variance o2, then

Jr@ra = o [ )z

= §w1205 ~ 0.2120°. (6.4)
If one uses a Gaussian kernel, then
hopt — (47T)—1/10(gﬂ_—l/Z)—l/E)an—l/E)
4N 1/5
= <§> on~'/® = 1.060n""/° (6.5)

In practice use 1.066n /5 !
If we want to make this estimate more insensitive to outliers, we have to use a
more robust estimate for the scale parameter of the distribution. Let R be the sample

interquartile, then one possible choice for A is

~

N L R
hopt = 1.06 min(a, (@®3/4) = o(1/D)
R

). (6.6)

)

= 1.06 min(o,

1.349

11
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Figure 6.3: Comparison of two bandwidths, 6 and R.

6.2 Maximum likelihood Cross-Validation

Consider kernel density estimates fj, and suppose we want to test for a specific h the

hypothesis

fu(w) = f(x) wvs. fulz) # f(2).

The likelihood ratio test would be based on the test statistic f(z)/fn(x). For a
good bandwidth this statistic should thus be close to 1. We would also say that on
the average E[log(f/fx)(X)] should be close to 0. Thus, a good bandwidth, which
is minimizing this measure of accuracy, is in effect optimizing the Kullback-Leibler

distance:

12



f
Jn

Of course, we are able to compute dgr(f, fn) from the data, since we do not

din(f, fa) = / log(L)(2) f (2)d. (6.7)

know f. But from the theoretical point of view, we can investigate this distance for
the choice of an appropriate bandwidth h. When dg(f, f) is close to 0 this would
give the best agreement with the hypothesis f;, = f. Hence, we are looking for a
bandwidth h, which minimizes dgr(f, fr).

Suppose we are given a set of additional observations X;, independent of the
others. The likelihood for these observations [ [, f,(X;). The value of this statistic
for different h would indicate which value of h is preferable, since the logarithm of
this statistic is close to dx(f, fr). Usually, we don not have additional observations.
A way out of this dilemma is to base the estimate fj, on the subset {X;},;, and to

calculate the likelihood for X;. Denoting the leave-one-out estimate
X, —X;
fu(X5) = (”—1)_1h_IZK(TJ)-
JFi
Hence,

Hfhz (n—1) """ HZKX A (6.8)

=1 j#i
However it is convenient to consider the logarithm of this statistic normalized with

the factor n=! to get the following procedure:
1 n
h - - l i X
CVikw(h) - Z 0g[fn,i(

_ 1 Zlog PR X ~log[(n — 1)A] (6.9)

i=1 J#

Naturally, we choose hg such that:
hyr = argml?XCVKL(h)

13



Since we assumed that X; are i.i.d., the scores log f ;(X;) are identically distributed

and so,
Disregarding the leave-one-out effect, we can write

E[CVis(h) ~ E / log fi(x) f (2)da]
~ —E[du(f, )] + / loglf ()] f (x)dz. (6.10)

The second term of the right-hand side does not depend on h. Then, we can expect
that we approximate the optimal bandwidth that minimizes [dg(f, f4)]-

The Maximum likelihood cross validation has two shortcomings:

e When we have identical observations in one point, we may obtain an infinite

value if C'Vi(h) and hence we cannot define an optimal bandwidth.

e Suppose we use a kernel function with finite support, e.g., the interval [—1, 1]. If
an observation X; is more separated from the other observations than the band-
width h, the likelihood fi, ;(X;) becomes 0. Hence the score function reaches the
value —oo. Maximizing C'Vip(h) forces us to use a large bandwidth to prevent
this degenerated case. This might lead to slight over-smoothing for the other

observations.

The computation of C'Vi(h) for a set of bandwidths hy, ..., h, may be based
on the following algorithm (see Hardle (1990)):

Algorithm 6.1 for k=1 to m

for i=1 to n

score=0

for j=1 ton
score=score+K((X[1]1-X[j1) /h[k])

14



endfor j
cv.k1l[k]=cv.k1l[k]+log(score-k(0))
endfor i

cv.kl[k]l=cv.k1l[k]l/n - log((n-1)xh[k])

endfor k

Note that this computation requires iterations of the order O(mxn?), i.e., is quadratic
in the number of observations. This is a great disadvantage of this technique, which

forces us to look for other techniques with better numerical efficiency.

6.3 Least-squares cross- validation

Consider an alternative distance between f, and f. The integrated squared error

(ISE)
diseh) = [ (= $P(@)to
/fh dx—2/fhf dx-l-/f
dsut) - [ Plads = [ e =2 [ ()@ (6.11)

For the last term, observe that [(f,f)(x)dx = E[f,(X;)] where the expectation is
understood to be computed with respect to an additional and independent observation

X. For estimation of this term define the leave-one-out estimate

Ex[fu(X Zf;” (6.12)

This leads to the Least-squares cross-validation:

CVys(h) = / fr@)de —2) " fri(X5) (6.13)
i=1
The bandwidth minimizing this function is,
hrs = arg mhin CVis(h).

15



This cross-validation function is called an unbiased cross-validation criterion, since,

BICVis ()] = Eldsss (h) +2(Ex [fa(X)]  BL- Y fusXa)) — 1113

— IMSE[f] - /I3 (6.14)

An interesting question is, how good is the approximation of d;sg by C'Vys. To inves-
tigate this define a sequence of bandwidths h,, = h(X1,... ,X,) to be asymptotically
optimal, if

drsg(hn) 1

_ , a.s. when n — oo.
infy,~0 dISE(h)

It can be shown that if the density f is bounded then Hg is asymptotically opti-
mal. Similarly to maximum likelihood cross-validation, Hardle (1990) suggests the

following algorithm

Algorithm 6.2 for k=1 to m

for i=1 to n

for j=i+1 ton

cv.ls[k]=cv.1ls[k] + kernel.conv((X[i]-X[jl)/h[k])
cv.ls[k]l=cv.1ls[k] - kernel((X[il-X[jl)/h[k])*2%n/(n-1)
endfor j

endfor 1

cv.ls[k]=cv.ls[k]+kernel.conv(0)*n/2
cv.ls[k]=cv.1ls[k]*2/(nx*2*h[k])

endfor k

7 Orthogonal series estimators

Orthogonal series estimators approach the density estimation problem from a quite

different point of view. While kernel estimators is close related to statistical thinking

16



orthogonal series relies on the ideas of approximation theory. Without loss of gener-
ality let us assume that we are trying to estimate a density f on the interval [0, 1].
The idea is to use the theory of orthogonal series method and then to reduce the
estimation procedure by estimating the coefficients of its Fourier expansion. Define

the sequence ¢,(x) by

Qﬁg(l’) =1
Gor_1(x) = V2cos2mre r=1,2,...
b9 (z) = V2sin2mrz T =1,2,...

It is well known that f can be represented as Fourier series . °° a;¢;, where, for

each 7 > 0,

ai:/f(x)qﬁi(x)dx. (7.1)

Now, suppose that X is a random variable with density f. Then (7.1) can be

written
and so an unbiased estimator of f based on Xy,..., X, is
= o)
a; = — i)-
i3 (

Note that the > a;¢; converges to a sum of delta functions at the observations,

since
wix) ==Y iz - X;) (7.2)
where 0 is the Dirac delta function. Then for each 1,

o= [ @

17



and hence the a; are exactly the Fourier coefficients of the function w. The easiest to

way to smooth w is to truncate the expansion ) a;¢; at some point. That is, choose

~

K and define a density estimate f by
A K
fla)=>"api(v). (7.3)
i=1

Note that the amount of smoothing is determined by K. Small value of K implies in

over-smoothing, large value of K under-smoothing.

100 obs from N(.5,.1)

v !I — True
: --- K=3
I K=10
L 'l ---  K=100

density
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Figure 7.4: Effect of the smoothing parameter K on the orthogonal series method for

density estimation

A more general approach would be, choose a sequence of weights \;, such that,

A — 0 as ¢ — oo. Then

o0

flz) = Z&z@(vf)

1=0

18



The rate at which the weights \; converge to zero will determine the amount of

z2/2

smoothing. For non finite interval we can have weight functions a(x) = e*/* and

orthogonal functions ¢(z) proportional to Hermite polynomials.
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Figure 7.5: A comparison of three methods of density estimation, orthogonal series
with 10 basis, k-th nearest neighbor with smoothing parameter k=5 and kernel density

estimate with bandwidth h=2.5

8 Penalized Maximum Likelihood Estimation

The method of penalized maximum likelihood in the context of density estimation
consist of estimating a density f by minimizing a penalized likelihood score £ (f) +
AJ(f), where £ (f) is a goodness-of-fit measure, and J(f) is a roughness penalty.

This section is developed considering historical results, beginning with Good and

19



Gaskins (1971), and ending with the most recent result given by Gu (1993).

The maximum likelihood (M.L.) method has been used as statistical standard pro-
cedure in the case where the underlying density f is known except by a finite number
of parameters. It is well known the M.L. has optimal properties (asymptotically un-
biased and asymptotically normal distributed) to estimate the unknown parameters.
Thus, it would be interesting if such standard technique could be applied on a more
general scheme where there is no assumption on the form of the underlying density
by assuming f to belong to a prespecified family of density functions.

Let Xy,..., X, bei.i.d. random variables with unknown density f. The likelihood

function is given by:
i=1

The problem with this approach can be described by the following example. Recall

fh(x) a kernel estimate, that is,

n

; 1 - X
fuw) = 2 3K (75

=1

with A’ = h/c, where ¢ is constant greater than 0, i.e., for the moment the bandwidth

X;—X/

is h/c. Let h be small enough such that n7e

chosen so that K(u) =0, if |u| > M. Then,

| > M > 0, and assume K has been

fur(X0) = K (0).

If ¢ > ﬁ then fh, (X;) > # For fixed n, we can do this for all X; simultaneously.
Thus,

1
L>(—)".
- (nh)
Letting h — 0, we have £ — oo.
Consequently, L(f|X1,...,X,) does not have a finite maximum over the class of

all densities. That is, the likelihood function can be as large as one wants it just

20



by taking densities with h approaching zero. Densities having this characteristic,
bandwidth h — 0, approximate to delta functions and the likelihood function ends
up to be a sum of spikes delta functions. Therefore, without putting constraints on
the class of all densities, the M.L. procedure cannot be used properly.

One possible way to overcome the problem described above is to consider a pe-
nalized log-likelihood function. The idea is to introduce a penalty term on the log-
likelihood function such that this penalty term quantifies the smoothness of ¢ = log f.

Let us take, for instance, the functional J(g) = [(¢”)* as a penalty term. Then
define the penalized log-likelihood function by

£a(9) =+ D" 9(X0) = M(9) (5.1

where A is the smoothing parameter which controls two conflicting goals, the fidelity
to the data given by Y " | g(X;) and the smoothness, given by the penalty term .J(g).

The pioneer work on penalized log-likelihood method is due to Good and Gask-
ins(1971), who suggested a Bayesian scheme with penalized log-likelihood (using their

notation) becomes:

where £=3"", g(X;) and @ is the smoothness penalty.

In order to simplify the notation, let [ A have the same meaning as ffooo h(z)dx.
Now, consider the number of bumps in the density as the measure of roughness or
smoothness. The first approach was to take the penalty term proportional to Fisher’s

information, that is,

Now by setting f = 7%, ®(f) becomes [(7')?, and then replace f by 7 in the penalized
likelihood equation. Doing that the constraint f > 0 is eliminated and the other

constraint, [ f =1, turns out to be equivalent to [v* =1, with v € L*(—o0, 00).
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Good and Gaskins(1971) verified that when the penalty 4« [(7')? yielded density
curves having portions that looked “too straight”. This fact can be explained noting
that the curvature depends also on the second derivatives. Thus (7”)? should be

included on the penalty term. The final roughness functional proposed was:
o(f) =da [P 45 [0,
with «, § satisfying,
2 3 4
2a0° + 1[3 =0, (8.2)

2 is either an initially guessed value of the variance or it can be estimated

where o
the sample variance based on the data. According to Good and Gaskins (1971),
the basis for this constraint is the feeling that the class of normal distributions form
the smoothest class of distributions, the improper uniform distribution being limiting
form. Moreover, they pointed out that some justification for this feeling is that a
normal distribution is the distribution of maximum entropy for a given mean and

2 is also minimized for a given variance when f is nor-

variance. The integral [(v/)
mal (Good and Gaskins, 1971). They thought was reasonable to give the normal
distribution special consideration and decided to choose «, [ such that w(a, f3; f) is
maximized by taking the mean equal to 7 and variance as Y~ | (z; —7)?/N — 1. That

is, if f(z) ~ N(p,0?) then [(7)? = 22, [(77)* = 724 and hence we have,

4027 160

w(a, B; f) = —g log(2mo?) — T; Z(xz —u)?— «a 30

o2 1604

The score function w(a, B; f) is maximized when p = Z and o is such that,

SV (@i —7)? 20 38
LN o = @27, 8.3
+ 02 + 02 + 401 (8.3)

If we put 02 = SN (2; — Z)?/N — 1, the equation (7.3) becomes,

3
o' (N — 1) + 2a0” + Zﬁ =o'N.

22



Hence we have the constraint (7.2).

Pursuing the idea of Good and Gaskins, Silverman (1982) proposed a similar
method where the log density is estimated instead of the density itself. An advantage
of Silverman’s approach is that using the logarithm of the density and the augmented
Penalized likelihood functional, any density estimates obtained will automatically be
positive and integrate to one.

Let (mq,...,my) be a sequence of natural numbers so that 1 < Zle m; < m,
where m > 0 is such that g™ ) exists and is continuous. Define a linear differential

operator D as:

0 0
D(g) = e —)" o (=—)"*(g) .
(g) Zc(mla 7mk)(8l‘1) (al'k;) (g)
Now assume that at least one of the coefficients c¢(my, ... ,mg) # 0 for > m; = m.

Using this linear differential operator define a bilinear functional (-, -) by

(91, 92) = / D(:)D(gs)

where the integral is taken over a open set (2 with respect to Lebesgue measure.

Let S be the set of real functions g on €2 for which:

e the (m — 1)th derivatives of g exist everywhere and are piecewise differentiable,
* (9,9) < oo,

o [ef < 0.

Given the data Xi,..., X, i.i.d. with common density f, such that ¢ = log f, ¢ is

the solution, if it exists, of the optimization problem
1« A
- xX) -2
max{ ;:1 9(Xi) = 5{9.9)}

subject to f e9 = 1. And the density estimate f = €9, where the the null space of the

penalty term is the set {g € S : (g, g) = 0}.
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Note that the null space of (g, g) is an exponential family with at most (m — 1)
parameters, for example, if (g, g) = [(¢/®)? then g = log f is in an exponential family
with 2 parameters. See Silverman (1982).

Silverman presented an important result which makes the computation of the
constrained optimization problem a “relatively” easy computational scheme of finding
the minimum of an unconstrained variational problem. Precisely, for any ¢g in S and

for any fixed positive A, let

wo(g) = - 9(Xi) + 549, 9)
and
w(g) = —% . 9(Xi) +/6g + %(g,m :

Silverman proved that unconstrained minimum of w(g) is identical with the con-

strained minimum of wy, if such a minimizer exists.

9 Approximation by Spline functions

Due to its simple structure and good approximation properties, polynomials are
widely used in practice for approximating functions. For this propose, one usu-
ally divides the original interval [a, b] into sufficiently small subintervals of the form
(g, 1], .. , [Tk, Tky1] and then uses a low degree polynomial p; for approximation over
each interval [z;, x;11], i = 0,...,k. This procedure produces a piecewise polynomial

approximating function s(+);
s(z) = pi(w) on [x4, zi41], i =0,... k.

In the general case, the polynomial pieces p;(x) are constructed independently of

each other and therefore do not constitute a continuous function s(x) on [a,b]. This
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cannot be accepted if one wants, particularly, to approximate a smooth function.
Naturally, it is necessary to require the polynomial pieces p;(z) to join smoothly at
knots x1, ... ,xk, and to have all derivatives up to a certain order, coincide at knots.

As a result, we get a smooth piecewise polynomial function, called a spline function.

Definition 9.1 The function s(z) is called a spline function (or simply “spline”) of

degree r with knots at {x;}f_| if —oo =1 mp < 31 < ... < T} < Ty := 00 and

e for eachi=0,...,k, s(x) coincides on [x;, x;y1] with polynomial of degree not

greater than r;
e s(z),s(x),...,s" " (x) are continuous functions on (—o0,00).

The set of such functions, S,(z1,...,xx), is a linear space whose elements are

spline functions and it is called spline space.

Definition 9.2 For a given point x € (a,b) the function

(t—x) ift>x

(t—2) =
! 0 ift <uw

15 called the truncated power function of degree r with knot x.

It can be shown (Schumaker, 1981) that S¢(z1,...,z) is a linear space with
dimension r + k4 1. Then we can express any spline function by a linear combination
of r+k+1 basis functions. It would be interesting if we could have basis functions that
make it easy to compute the spline functions. It can be shown that B-splines form a
basis of spline spaces (Schumaker, 1981). Also, B-splines have an important property
toward computation that they are splines which have smallest possible support. In
other words, B-splines are zero on a large set. Furthermore, a stable evaluation of

B-splines with aid of recurrence relation is possible.
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Definition 9.3 Let Qo = {;}{jez) such that x; < x;41, that is, Qs is the infinite

knot set. A B-spline of degree r is defined to be

B;(x) = — (@i — z5) (@ — )L T4y Tyl
where, (x — ;) [-,... -] is (r — 1)th divided difference of the function (x — x;)".
evaluated at points xj, ..., Tpiji1.

Of special interest is the set of natural splines of order r = 2m with K knots at
xj. A spline function is a natural spline of order 2m with knots at x1,..., 2k, if, in

addition to the properties implied by definition ( 9.1), it satisfies an extra condition:
e s is polynomial of order m outside of [z, xf].

Precisely speaking, let’s consider the interval [a,b] C R and the knot sequence
a =Ty < 2 < ... < 2 < Ty = b. Then, NSy, = {s € S(Pan) : 0 =
s|[a,x1) and s, = s|[xk,b) € P}, is the natural polynomial spline space of order 2m
with knots at xq, ... ,x,. The name “natural spline” stems from the fact that, as a
result of this extra condition, s satisfies the so called natural boundary conditions
s'(a) =5'(b)=0,7=m,...,2m — 1.

Now, since the dimension of S(Pay,) is 2m + K and we have enforced 2m extra
conditions to define N'Sy,,, it is natural to expect the dimension of NS¢y to be K.
Actually, it is well known that NSy, is linear space of dimension K. See details in
Schumaker (1981).

In some applications it may be possible to deal with natural splines by using a basis
for S(Pay,) and enforcing the end conditions. For other applications it is desirable
to have a basis for NSy, itself. To construct such a basis consisting of splines with
small supports we just need functions based on the usual B-splines. Particularly,

when m = 2, we will be constructing basis functions for the Natural Cubic Spline

Space, N'S,.
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Schumaker (1972) showed that the basis obtained by Greville (1969) (except for
a normalization constant!) and recently used by Kooperberg and Stone (1991)is a

basis for N'S.

Definition 9.4 Let M(z,y) = (y — x)% and let M[x;xq,... x| be the (K — 1)st

divided difference of M as a function of x taken over the knot sequence v1 < xo... <

rx with hixy = x4 —x;,0=1,... ,K —1 Then
( M x; 1, v, 23]/ (h3 + 2h2) ifi=1
Mx; 1, 29, T3, T4 if i =2
Bi(z) = (Tiye — 2io)M[x;2 2, ... ,Tipo) ifi=3,..., K—2
Mz 2k 3,CK_2,TK_1, k| ifi=K-—1
Mz 9,2 1,xk](hx_1+ 2hk) ifi=K
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Basis for Natural Spline
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Figure 9.6: Basis Functions with 6 knots placed at “x”
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10 Computing Penalized Log-likelihood density es-
timates

Based on Silverman’s approach, O’Sullivan(1988) developed an algorithm which is a
fully automatic, data driven version of Silverman’s estimator. Furthermore, the esti-
mators obtained by O’Sullivan’s algorithm are approximated by linear combination
of basis functions. Similarly to the estimators given by Good and Gaskins(1971),
O’Sullivan proposed that cubic B-splines with knots at data points should be used as
the basis functions. A summary of definitions and properties of B-splines are given

in the next chapter.

The basic idea of computing a density estimate provided by penalized likelihood
method is to construct approximations to it. Given zy,...,x,, the realizations of
random variables X,..., X, with common log density g. We are to solve a finite
version of ( 8.1) which are reasonable approximations to the infinite dimensional
problem (Thompson and Tapia, 1990, 121-145). Good and Gaskins (1971) based
their computational scheme on the fact that since v € L*(—o00,00) then for a given

orthonormal system of functions {¢,},
oo
Y b, "B gel’,
n=0

with > la,| < oo and {a,} € R. That is, v in L? can be arbitrarily approximated
by a linear combination of basis functions. In their paper, Hermite polynomials were

used as basis functions. Specifically:
¢n($) _ e—x2/2Hn(x)2—n/27r—1/4(n!)1/2 :

where,




The log density estimator proposed by O’Sullivan (1988) is defined as the mini-

mizer of
1 b b
e Zg(xl) —I—/ e?ds + )\/ (g"™)2ds, (10.1)
n - a a
=1
for fixed A > 0, and data points xy,...,z,. The minimization is over a class of

absolutely continuous functions on [a,b] whose mth derivative is square integrable.
O’Sullivan noticed that the minimizer of ( 10.1) satisfies a nonlinear fourth order
differential equation in between distinct data points with discontinuity in the third
derivatives at the data points. For details see O’Sullivan (1988). Given this behavior
the exact computation has to be ruled out. His approach is to use cubic B-splines (see
Chapter 3 for definitions and properties of B-splines) to approximate the estimator
of (10.1).

Computational advantages of this log density estimators using approximations by

cubic B-splines are:

e It is a fully automatic procedure for selecting an appropriate value of the

smoothing parameter A\, based on the AIC type criteria.

e The banded structures induced by B-splines leads to an algorithm where the

computational cost is linear in the number of observations (data points).

e It provides approximate pointwise Bayesian confidence intervals for the estima-

tor.

A disadvantage of O’Sullivan’s work is that it does not provide any comparison of
performance with other available techniques.
We see that the previous computational framework is unidimensional, although

Silverman’s approach can be extended to higher dimensions.
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11 Smoothing Spline Density Estimation

In order to provide an algorithm which is not restricted to the unidimensional case
under penalized maximum likelihood estimation, Gu (1993) proposed a dimension-
less fully automatic algorithm which updates the smoothing parameter jointly with
the estimate in a performance oriented iteration via cross validation estimate. The
performance is measured by a proxy of the symmetrized Kullback-Leibler distance
between the true density and the estimate. Specifically, let Xy,... , X, be i.i.d. sam-
ple from an unknown probability density function f on a finite domain X. The goal
is to estimate the density f from the data X;. For this, assume f > 0 and take the
logistic transformation f = e9/([ e?). Observe that the logistic transformation is not
one-to-one. For instance take gx = g + ¢. Then f = 9 /([ e9*) = e9/([ e9). Hence
some extra condition is necessary.

Gu and Qiu (1993) proposed side conditions on g, g(zq) =0, zo € X or [,,g =0
and defined the smoothing spline density estimate to be the minimizer of the penalized

likelihood score,

—%gg(xoﬂog e300 (11.1)

in a function space H, where J is a roughness penalty and A is the smoothing param-
eter. The roughness penalty J is taken as square semi-norm in ‘H and H is a Hilbert
space in which evaluation functionals are continuous so that the first term of ( 11.1)
is continuous.

The Hilbert space with continuous evaluation functionals is called reproducing
kernel Hilbert space (RKHS) possessing a reproducing kernel (RK) R(:,-), a positive
definite bivariate function on X x X', such that, for all z in X we have, R(z,-) = R(-, z)
in #, and, for any function g in H, (R(z,-),¢(-)) = g(z) (the reproducing property).
Here, the notation (-,-) stands for the inner product in H. Moreover, H can be

decomposed as:

H=H,PJ.
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where, #, = {g: J(g) € (0,00)}, is a RKHS with a square norm J, and J; = {g:
J(g) = 0}. Denote the RIC of H,; as R;. Observe that the SSDE (smoothing splines
density estimate) depends on the data X; on the domain X, the reproducing kernel
R; and the null space J,.

Note that the space H is usually infinite dimensional and the minimizer in H is in
general not easy to compute. An attempt to solve this problem was proposed by Gu
and Qiu (1993), where the minimizer is calculated in an adaptive finite dimensional
space H, = J, @ H’}, where H} = {R,(X;,-),i=1,... ,n} with R, the RK of H,.

Using the notation of Gu (1993), let & = R;(X;,-), and let {¢}M | be a basis for

J1. Thus, any function in H,, can be written as,

n M
9= &+ digr=¢Tc+ ¢Td
i=1 k=1

where & and ¢ are vector functions and ¢ and d are vector of coefficients. Conse-

quently, the variational problem ( 11.1) becomes for a fixed A > 0,

Ax(e,d) = _TIT(QC + Sd) + logAexp(ch + ¢Td) + %CTQC :
where () is n x n matrix with (¢, j)th entry &(X;) = R,(X;, X;) and S is n x M
matrix with (7, j)th entry ¢ (X;).

A standard technique to find the minimizer of A,(e,d) is to apply the Newton-
Raphson iteration method (Wahba, 1990). Let pg(h) = [hed/ [e9, Vo(f,h) =
pg(fh) — pg(fpg(h) and Vy(h) = Vy(h,h). Take g = €Te + ¢Td as the current
iterate of g. Then it can be shown, (Gu, 1993) that the Newton updating equation

becomes:
V(& €T) +2Q Vi€, ¢7) c—¢& | _ QL — 1506 — MQé 1)
Vi(9,€7) Vi(¢, o* d—d ST _ (o)



The performance of a smoothing spline estimate depends strongly on the choice
of the smoothing parameter A. Gu (1993) proposed an iteration scheme that updates
A and ¢ jointly according to a performance estimate. The performance is measured
by loss function L(g, go) = ttg, (g0 — 9) + 1t4(g — go), the symmetrized Kullback-Leibler
distance between an estimate g = log f and the true density gy = log fo.

Since L is not easy to compute and it depends on ¢y, approximation are made and

the minimization goes over a proxy of L namely,

Ly(g.90) = Va(9)/2 = Vi(9,9) + 113(9) — 1130(9),

with an update g using ( 11.2) (with a variable \), and gy is an approximation by
sample means of the true density go. See Gu (1993) for details of this approximation.

The algorithm to carry out the performance-oriented iteration is of the order
O(n?) and it can be used “easily” to estimate multivariate densities. Simulations
(Dias, 1993) have shown that when the data have too much structure (multi-modal,
large numbers of bumps), Gu’s algorithm has a good performance, although the

computational cost is extremely big for large data sets (> 200).

12 Logspline density estimation

In 1990, Kooperberg and Stone introduced another type of algorithm to estimate an
univariate density. This algorithm was based on the work of Stone (1990) and Stone
and Koo (1985) where the theory of the logspline family of functions was developed.

Consider an increasing sequence of knots {tj}]K:l, K > 4, in R . Denote by Sy
the set of real functions such that s is a cubic polynomial in each interval of the form
(—o0, t1], [t1,t3], - - - , [tx,00). Elements in Sy are the well-known cubic splines with
knots at {t;};<,. (Properties of splines are given in the next chapter.) Notice that
So is a (K + 4)-dimensional linear space. Now, let & C Sy such that the dimension
of § is K with functions s € S linear on (—oo, ;] and on [tx,00). Thus, S has a

basis of the form 1, B, ..., Bk 1, such that B, is linear function with negative slope

33



on (—oo,t;] and By, ..., Bx_; are constant functions on the same interval. Similarly,
By 1 is linear function with positive slope on [tg, 00) and By, ... , Bx 5 are constant
on the interval [tg, co) (Kooperberg and Stone, 1991).

Let © be the parametric space of dimension p = K — 1, such that for 8 =
(01,...,0,) e R?, 6§ <0 and 6, > 0. Then, define

=

-1

c(0) = log(/R exp(» 0;B;(z))dx

j=1

and
F(2:0) = exp{Y_ 0:55(2) — e(0)}

The p-parametric exponential family f(-,0), @ € © C RP of positive twice differ-
entiable density function on R is called logspline family and the corresponding log-

likelihood function is given by

L(6) :Zlogf(x;e) ;0 €0.

The log-likelihood function L(@) is strictly concave and hence the maximum like-
lihood estimator @ of @ is unique, if it exists. We refer to f = I, é) as the logspline
density estimate. Note that the estimation of 6 makes logspline procedure not es-
sentially non-parametric. Thus, estimation of @ by Newton-Raphson, together with
small numbers of basis function necessary to estimate a density, make the logspline
algorithm extremely fast when it is compared with Gu’s algorithm for smoothing
spline density estimation, (Gu, 1993).

In the Logspline approach the number of knots is the smoothing parameter. That
is, too many knots leads to a noisy estimate while too few knots gives a very smooth
curve. Based on their experience of fitting logspline models, Kooperberg and Stone
provide a table with the number of knots based on the number of observations. No
indication was found that the number of knots takes in consideration the structure

of the data (number of modes, bumps, asymmetry, etc.). However, an objective
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criterion for the choice of the number of knots, Stepwise Knot Deletion, is included
in the logspline procedure.
For1 < j < p, let B; be a linear combination of a truncated power basis (definition

on page 39),
Bj(x) = Bj + Bjox + ;ﬁjk(x — 1)
Then
> 0:Bi(2) =Y 0B+ > zkj Bty (& — )2 .
J j

Let >, éjﬁjk = B¢ 6. Then, for 1 < k < K Kooperberg and Stone (1991),

SE(BT0) = \/BT(1(6))1By)

where I(0) is the Fisher information matrix obtained from the log-likelihood
function.

The knots t; and tx are considered permanent knots, and %, 2 < k < K, are non-
permanent knots. Then at any step delete that knot which has the smallest value of
|B£é|/SE(Bfé) In this matter, we have a sequence of models which ranges from
2 to p — 1 knots. Now, denote by L, the log-likelihood function of the mth model
(2 <m+2 < p-—1) evaluated at the maximum likelihood estimate for that model.
To specify a stop criteria, Kooperberg and Stone make use of the Akaike Information
Criterion (AIC), that is, AIC,,,, = —2L,, + a(p — m) and choose 7 that minimizes
AICs . There is no theoretical justification for choosing @ = 3. The choice was
made, according to them, because this value of a makes the probability that f is
bimodal when f is Gamma(5) to be about .1.

It would be interesting to have an algorithm which combines the low computational
cost of logsplines (due to B-splines and the estimation of their coefficients) and the

performance of the automatic smoothing parameter selection developed by Gu (1993).
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Figure 12.7: Histogram, SSDE, Kernel and Logspline density estimates

The figure (12.7) give us a comparison of four different methods of density es-
timation, histogram, smoothing spline density estimation(SSDE), logspline and ker-
nel. The data is the well known Buffalo, NY, snowfall and Logspline(d) stands for
logspline with deletion procedure. Even though the smoothing parameters of those
four methods are not comparable we present them just as information. The smooth-
ing parameters are, 7 knots for logspline, kernel bandwidth equal to 8 for kernel,
histogram bandwidth equal to 10 for the histogram and A = 107°!% (Gu, 1993).
Moreover, in figure (12.7), we see that logspline method, with 7 knots, the estimates

provided by SSDE and kernel methods are very similar while the Logspline method
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produces a smoother density estimate. Since we do not know the underlying density
we are not able to say logspline provides, for this case, a poor estimate. But based on
the histogram, SSDE and kernel estimates we tend to believe that logspline estimate

is not the most appropriate estimate.

13 Penalized Log-likelihood for H-splines Estima-

tion

Recall the problem of estimating an unknown density f based on the observations
Xy,...,X,, using the penalized maximum likelihood method. Now, take the logistic
transformation f = e9/([ e9). We know that this transformation is not one-to-one
and Gu and Qiu (1993) proposed side conditions on g such that g(z) = 0,29 € X
or fx g = 0. Given those conditions we have to find the solution of the variational

problem in ( 11.1). That is, find the minimizer of
1 ¢ A
—— Zg(Xi) +log | e+ =J(g) (13.1)
n < X 2

Now, by taking J(g) = [(¢")* we have as solution of ( 13.1) a cubic spline with
knots at every data point x1,...,x,.

As described in the previous section we have good computational reasons to write
the solution of ( 13.1) as a linear combination of B-splines. Actually, we are going to
make use of the basis functions as in the Definition ( 9.4).

Under this approach, one might ask the following questions:

e [s it possible to estimate a density using K < n basis functions instead of the
original n such that it reduces the computational cost of getting the solution

( 13.1) significantly ?
e How good would such an approximation be ?
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Dias (1998) gave reasonable answers to those questions by first noticing that the
basis functions B;(x) given in Definition ( 9.4) form a basis for N'Sy. It is possible
to verify that if o < o < xg, then 0 < B;(z) < 1, Zfif Bi(xz) < 1, and By(xy) =
Bi(z9) = Bi_1(vx) = Bg(xzk) = 1. See for details Greville (1969). Observe that
(Tizo — xi o) Mz 9,... ,2i40], for i = 3,... K — 2, are the usual normalized B-
splines.

Let us assume that a density function fy is in H. Then, we approximate gg, the
solution of ( 13.1), by linear combinations of basis functions that span Hx = {g €

NS, :g= Zfil ¢;B;}, that is:

where the notation gy &~ ¢ means gy is approximately equal to g. Later, we mea-

sure this approximation by taking the symmetrized Kullback-Leibler distance.

Consider X, the domain of the density function fj, and the logistic transformation

fo = €%/ [,e%. By taking the side condition [, go = 0, (Gu and Qiu, 1993), we

obtain,
K
/go(x)dx%/g(:r)d:r = /chBj(:r) (13.2)
X X x4
K
= ch/Bj(x)dx.
=1 74X
Letting p; = [, Bj(z)dz, we have Z]K:l cipj = 0, or cx = —Zf:_ll cip;/PK-
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Therefore for any function g, such that g € Hx can be written as

K—1
g(r) = ¢;jBj(z) + cx Bk ()
7j=1
K—1 D
= ¢;(Bj(z) — =2 Bk (x))
— Dk
7=1
K—1
= cjR;(x)
7j=1
= RTc (13.3)

where R = (Rl,... ,RKfl)T and R] :BJ — i—iBK fOI'j = ]_, ,K— 1.
Now the numerical problem becomes to minimize:

1T

Ay(e) = 21 (Qe) + log / exp( RTe) + (\/2)T Qe (13.4)

n X
where @ is nx(K — 1) matrix with entry R;(X;) = R;; and Q = [(R")(R")" is the
penalty, matrix with entry Q;; = [ R/ Rj fori,j = 1.... , K—1, and rank(Q) = K -2,
since two of the basis functions are linear.
A standard procedure to minimize Ay(e¢) is to apply Newton-Raphson iteration.
For any two densities f and h, define the following:
p(h) = [ et/ €9, Vy(F,h) = g 1) — 1y (P ) with Vi (h) = Viy(h, h). Wite

g = RT¢ as the current iteration of g. Then

; = —QT1/n+ pp+ A8,

= pg(R, RT) — pig(R) g (RT) + \Q
= V3(R,RY) +\Q
= Vir+ A

where V3(R, R") = Vg g

39



Hence, the Newton updating equation is:

Ver + A (c—¢&) = Q1/n— uz(R) — \Qé
(Ver + 20 Tc— (Vep)te— (A)Te = Q1/n — pg(R) — \Qé
(Ve + A0 c = Q1/n — pg(R) + (Va,r)'e.

It is easy to show that Vi ¢ = Vi, where Vi, = V3(R, g). Thus the Newton updat-

ing equation becomes:
(Var +AQ) ¢ = Q1/n — pg(R) + Vg, (13.5)

14 Performance-Oriented Iteration

Given any density f, let ¢ = log f and consider the Kulback-Leibler measure of
the difference between f and fy, that is,

KL(f. fo) = / (log f — log fo)/

— [to- e

KL(f07f) = /(logfo —]ogf)fo — /(go _g)ego.

Similarly,

Hence, the symmetrized Kulback-Leibler distance between f and fj is :

L(g,90) = KL(f, fo) + KL(fo, f)

= /(go —g)ed + /(g — go)e”

= fig(g90 — 9) + tgo(9 — 90)-
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Thus, given the data drawn from gy our objective is to find an estimate g which
delivers a small L(g,g0). To compute the minimizer of ( 13.4) for a fixed A, one
iterates ( 13.5). Note that equation ( 13.5) defines a class of estimates with variable
A, and a better use of this equation is to start from a current g, instead of calculating
the next iterate based on any prespecified A, one may choose A which delivers a small
L(g,go) for g among the class of estimates defined by ( 13.5). Now, compute an
update using such a A. This iteration scheme tries to minimize the loss function
L(g, go) that is interested, instead of the penalized likelihood score A, with a fixed A
which the Newton iteration is after. Gu, pointed out that when such a performance-
oriented iteration converges at \., and g, is apparently the fixed point of the Newton
iteration for minimizing A, , and hence is the minimizer of A,, .

Gu noticed that such a L is not easily computable for a class of estimates defined
by ( 13.5), even with a known gy. Thus, approximation is needed. In the same paper

Gu showed that a proxy of L is given by

L;(9,90) = V5(9)/2 — V5(9,9) + 115(9) — 1145 (9)

and then tried to minimize it by calculating an update from ¢ using ( 13.5) with
variable A. Observe that the first three terms of L are readily computable, but the

fourth needs estimation. For that, define:
H =Vpr+ A\,

with ug = Q1/n — pr + Vi and vg = Viy — fig.
It can be shown that ¢ = H 'uy and that the estimate defined by ( 13.5) has an

expression:

g=R'c = RY(H ‘'ug)
= R'HY(Q1/n— pr + Vry)
= R'H™'Q1/n+ R"H 'vg. (14.1)
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Straightforward calculations give,

ng(9) = Vy(9,9) = —vpH ‘ug (14.2)

Vilg) = upH ‘up— MupH 'QH ‘ug. (14.3)

To estimate ji4,(g), the only source of information is the empirical distribution of
the data. For the last term of ( 14.1), sample means simply give (See Gu eq. 3.4),
Q1/nH ' vg. For the first term,

Hoo(RTH Q1 /n) = Zﬂgo (RY(X)H 'R(X;)).

It can be seen that the problem with the naive sample mean is the use of X; itself
in the estimation of . (R"(X;)H 'R(X;)). Using the empirical distribution of the
remaining n — 1 data to estimate pg, (RT(X;)H 'R(X;)), we have:

T L E R R -
1=1 j#i

= oD > RY(X;)H 'R(X;)
i=1 j=1

n

—ﬁ ZRT(XJ)HflR(Xz‘)
_ nﬁ : (Q1/n)"H™'Q1/n

1 -1
—mtmce(QH Q). (14.4)

Letting tr(-) = trace(-) and noting that

Vi(9) _r(QH Q) (Q1/n)TH 'Q1/n  uhH !
) M) =Ty n—1 R

UR
+ URH U:R,

we have a proxy of L as:

tr(QH™'Q)  (Q1/n)"H'Q1/n  upH 'up  MupH 'QH 'ug

L =
M990 = =T n—1 > 2

(14.5)
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The last equation is similar to the cross-validation score given by (Gu, 1993). And
since (15.4) is a cross-validation of p, (RT H~'Q1/n), is natural to think of it as cross-
validation score under the context of Hybrid splines. Moreover, the performance-

oriented iteration can then be conducted by minimizing ( 14.5) in each iteration.

15 Examples and Comparisons

In this section we present various examples of the performance of Hybrid Splines
when it is compared with other related methods such as Logspline density estimation
and Kernel density estimation. The data sets were obtained by simulations either by
using ratfor programs based on algorithms found in (Kennedy, Jr and Gentle, 1980)
or by making use of S-language (S-plus and R) (Becker, Chambers and Wilks, 1988)

routines.
200 obs. from .8*N(3,1)+.2*N(12,1)

<

g ] — True
""""" Logspline
---- Hspline

g _

g _

data

Figure 15.8: True density, Logspline and Hybrid Spline methods are compared
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The plot above show us that even under obvious case when two normal distribu-
tions with different means are combined, Hybrid Spline, logspline and kernel estimate

methods have a very satisfactory performance.

200 obs. from Gamma(2)

o o
0 — TRUE
,,,,,,,,, Logpsline(d)

. ---- Hspline

S

o

o )

S l

N

g M

-

2

o

g J

Figure 15.9: True density of Gamma(2), estimates given by Logspline, Hybrid Splines
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Comparing Hybrid Spline method with Logspline using deletion procedure we
see in Figure 4.3 that Hybrid Spline does a better job identifying peaks and valleys
of the underlying density. Deletion procedure of Logspline allows it to have the
position of the knots that is more significant for the fitting and hence provides the
best estimate that Logspline method can produce. Note that logspline adapts using

deletion procedure while H-spline adapts using addition. A new version of logspline
code incorporates the addition procedure.

300 0bs.(1/3.518548)*(sin(x*2*pi)+exp(-x))**2

o
—
—— TRUE
————————— Logspline
---- H-spline
o —
S Kernel
", “
iy
il
;‘/ \,
[Te} I
) | |
o ,f i
X '
I I
LS 1
i !
i !
‘l \ - I!’
l T
i o
\ //
i I
\ I
VX
o |. .
o
[ I
0 1 2 3 4
data

Figure 15.10: True density and estimates given by Logspline, Hybrid spline and kernel

methods
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From the figure (15.10) clearly kernel method produces the best and fastest esti-
mate of the underlying density. The bandwidth was chosen by eyeball and since that
one might have a prior information about the true density, this choice can be well
accepted. We notice that Hybrid Spline, again, has a superior performance over the
other methods when identifying 5 of the 6 peaks and 6 out of 7 valleys. Hybrid spline
has shown in simulations that it is suitable in situation where the data have a lot of

structure.

16 Non-parametric regression

The goal of regression curve fitting is to find a relationship between the response
variable Y and the predict variable X. If we have n independent measurements

{(X,Y)},, the regression equation is, in general, described as
YVi=g(x;)+e i=1,... n,

where €’s are uncorrelated random variables with mean zero and independent of Y;
and g(z;) = E[Y;|X = z;]. As an example, let’s consider the scatter plot of the
revenue passenger miles flown by commercial airlines in the United States for each

year from 1937 to 1960. (This data can be found in the software R)
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airmiles data

airmiles
10000 15000 20000 25000 30000
! ! ! ! !

5000

T T T T T
1940 1945 1950 1955 1960

Passenger-miles flown by U.S. commercial airlines

Figure 16.11: A time-series of 24 observations; yearly, 1937-1960.

When we try to approximate the mean response function g, we concentrate on
the average dependence of ¥ on X = x. This means that we try to estimate the
conditional mean curve
_ Jyf(,y)dy

fl@) 7
where f(x,y) denotes the jointly density of (X,Y’) and f(z) the marginal density of
X.

g(x) =E]Y|X = z] (16.1)

16.1 Kernel regression smoothing

Suppose we have i.i.d. observations {(X,Y)}”,. Recall equation (16.1), we know
how to estimate the numerator by using the kernel density estimation method. For

the numerator we can estimate the joint density using the multiplicative kernel
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fhl,hz x y ZK’M r—X Khz( Y)

where, K, (x —-) = h; 'K (x —-), with j = 1,2. Tt is not difficult to show that

/yfhl,hz x y ZK’ZI z

Hence a natural estimate of the conditional expectation gj(x) where h = hy is the

well known Nadaraya-Watson estimate

_ L > i Kn(z — Xp)Y,
gn(z) =n"—= ST Kalt — X)) (16.2)

The Nadaraya-Watson gp,(x) is a consistent estimate of the regression curve g(z) if

h — 0 and nh — co. (See details in Hérdle (1990))

airmiles data

30000
|

25000
|

—— Data
- Estimate

airmiles
10000 15000 20000
! ! !

5000

T T T T T
1940 1945 1950 1955 1960

Passenger—miles flown by U.S. commercial airlines

Figure 16.12: kernel smoothing method with bandwidth=1 for airmiles data.
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16.2 K-Nearest neighbor (K-NN)

One may notice that regression by kernels is based on local averaging of observations
Y; in a fixed neighborhood of x. Instead of this fixed neighborhood K — nn employs
varying neighborhoods in the X variable. That is,

N
1
gk (x) = " leKz(x)Y;, (16.3)
where,
n/K ifie€ J,
Wi(z) = (16.4)
0 otherwise,

with J, = {i : X; is one of the K nearest observations to x}

airmiles data

30000
|

25000
|

airmiles
10000 15000 20000
! ! !

5000
|

T T T T T
1940 1945 1950 1955 1960

Passenger—miles flown by U.S. commercial airlines

Figure 16.13: Effect of the smoothing parameter K on the K-NN regression estimates.
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16.3 Smoothing splines techniques for non-parametric re-

gression

There are many applications where a unknown function g of one or more variables

and a set of measurements are given such that:

yi=Lig+e
where Ly, ..., L, are linear functionals defined on some linear space H containing g,
and €, ... , €, are measurement errors usually assumed to be independently identically

normal distributed with mean zero and unknown variance 2. Typically, the L; will
be point evaluation of the function g.

Straight forward least square fitting is often appropriate but it produces a function
which is not sufficiently smooth for some data fitting problems. In such cases, it
may be better to look for a function which minimizes a criterion that involves a
combination of goodness of fit and an appropriate measure of smoothness. Such
criterion is the well known penalized least square problem defined as the following:

Finding the minimizer of the penalized least square equation which is,

n

Ax(g) =D (wi — Lig)* + A (9), (16.5)

1=1

where J(g) is the penalty term usually taken as [(g”)?

and A is the smoothing pa-
rameter which controls the trade off between fidelity to the data and smoothness.

It is of interest to estimate the curve ¢g. For this assume that the points ¢; <
ty < ...,< t, are in the interval [a,b] such that L;g = ¢(¢;) and the function g €
Wila,b] = {g : ¢’ abs. continuous and [(g")? < oo}. Define g as the estimate of the
curve g so that:

g = arg geryrééﬁyb] Ax(g).
It is well known that ¢ is necessarily a natural cubic spline with knots at ¢; (see,

for example, Silverman and Green (1994), Wahba (1981) and Craven and Wahba
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(1979)). Note that the roughness penalty fab(g"(t))Zdt has the property of reducing the
problem of choosing ¢g from an infinite-dimensional class of functions to a finite class
of functions since ¢ can be written as linear combination of basis functions. Although
this fact might lead someone to think that the non-parametric regression problem
becomes a parametric problem, one notices that the number of parameters can be as
large as the number of observations, and there may be difficulties in interpreting a
curve or surface g. Moreover, if the number of observations is large, the system of

linear equations for exact solution is too expensive to solve.

airmiles data

30000
|

25000
|

airmiles
10000 15000 20000
! ! !

5000
|

0
|

T T T T T
1940 1945 1950 1955 1960

Passenger—miles flown by U.S. commercial airlines
Figure 16.14: Smoothing spline fitting with smoothing parameter obtained by GCV
method

In regression splines, the idea is to approximate ¢g by a finite dimensional subspace
of W spanned by basis functions By, ..., Bg, K <n. That is,

K

gng:ZCij

j=1

ol



where the parameter K controls the flexibility of the fitting. A very common choice
for basis functions is the set of cubic B-splines (de Boor, 1978). The B-splines basis
functions provide numerically superior scheme of computation and have the main
feature that each B; has compact support. In practice, it means that we obtain a
stable evaluation of the resulting matrix with entries B; ; = B;(z;), for j =1,... | K
and 2 =1,...,n is banded.

Unfortunately, the main difficulty when working with regression splines is to select
the number and the positions of a sequence of breakpoints called knots where the
piecewise cubic polynomials are tied to enforce continuity and lower order continuous
derivatives. (See Schumaker (1972) for details. )

Regression splines are attractive because of their computational scheme where
standard linear model techniques can be applied. But smoothness of the estimate
cannot easily be varied continuously as functions of a single smoothing parameter
(Hastie and Tibshirani, 1990). In particular, when A = 0 we have the regression
spline case, where K is the parameter that controls the flexibility of the fitting. To
exemplify the action of K on the estimated curve, let us consider an example by
simulation with y(z) = exp(—=x) sin(nz/2) cos(nz) + ¢ with e ~ N(0,.05). The curve
estimates were obtained by least square method with four different numbers of basis
functions which are the cubic B-splines.

Figure 16.15 shows the effect of varying the number of basis functions on the
estimation of the true curve. Note that the number of basis functions is the same as
the number of knots since it is assumed that we are dealing with natural cubic splines
space. Observe that small values of K make smoother the estimate and hence over

smoothing may occur. Large values of K may cause under-smoothing.
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100 obs. from y(x)=-exp(-x)*sin(pi*x/2)*cos(pi*x)+N(0,.025)

0.2

0.0

-0.2

-0.4

0.0 0.5 1.0 15 2.0 25 3.0
X

Figure 16.15: Spline least square fittings for different values of K

16.3.1 The hybrid splines method

In smoothing techniques, the number of basis functions is chosen to be as large as the
number of observations and then the smoothing parameter is chosen to control the
flexibility of the fitting (Bates and Wahba, 1982). The h-splines method (Luo and
Wahba (1997), Dias (1998) and Dias (1999)) combines ideas from regression splines
and smoothing splines methods by finding the number of basis functions and the
smoothing parameter iteratively. By taking the penalty term J(g) as [(g”)?,the point
evaluation functionals £;9 = g(t;) y = (y1,... ,yn)T and g = (g(t1), ..., g(t,))T, the

penalized least square criterion (16.5) becomes,

L) = Iy — gl + ) [ (6" (166

Assume that g ~ g = Zfil 0;B; = X0 so that gk 9 € Hg, where Hg denotes
the space of natural cubic splines (NCS) spanned by the basis functions {B;}X,
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and Xg is a n x K matrix with entries (Xx)g; = Bi(t;), for i = 1,... K and
j=1,...,n. Then, the numerical problem is to find a vector 6 = (6, ... ,0x)" that
minimizes,

Li(0) = |ly — X«l3 + A7, (16.7)
where Q is K x K matrix with entries Q;; = [ Bf'(t)B](t)dt . Standard calculations
(de Boor, 1978) provide 6 as a solution of the following linear system (X7 X + Q)0 =
X7Ty. Note that the linear system now involves K x K matrices instead of using n x n

matrices which is the case of smoothing splines. Both K and A controls the trade off

between smoothness and fidelity to the data.

airmiles data

30000
|

25000
|

— Data
- H-splines

airmiles
5000 10000 15000 20000
! ! ! !

0
|

T T T T T
1940 1945 1950 1955 1960

Passenger—miles flown by U.S. commercial airlines

Figure 16.16: H-spline fitting exhibits for airmiles data

By construction H-splines is more adaptive than the regular smoothing splines
method. Simulations (see Dias (1999)) show that H-splines method has better per-
formance for small data sets (50 observations) and relatively large variance in the

measurement errors.
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Comparing with parametric techniques we have, for the non-parametric approach,
more flexibility since it allows one to choose the infinity dimensional class of functions
that the underlying density belongs. In general, this type of choice depends on the
unknown smoothness of the true density. But for the most of the cases one can assume
mild restrictions such that a density has an absolutely continuous first derivative and
a square integrable second derivative. Nevertheless, non-parametric estimators are
less efficient than the parametric ones when a parametric model is valid. For many
parametric estimators the mean square error goes to zero with rate of n~*, while non-
parametric estimators have rate of n=%, a € [0, 1], and « depends on the smoothness
of the underlying curve. When the postulate parametric model is not valid, many

1

parametric estimators cannot have, ad hoc, rate n=". In fact, those estimators will

not converge to the true curve. Consequently, non-parametric estimators are good

candidates when one does not know the form of the underlying curve.
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