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Abstrat

Various features of eonometri data an be analyzed by non-parametri

approah. This review summarizes some of the most important proedures in

urve estimation that has been very useful in the �eld of eonometris. Speif-

ially, it desribes the theory and the appliations of non-parametri density

and regression estimation problems with emphases in kernel, nearest neighbor,

variable kernel, orthogonal series, smoothing splines, logsplines and H-splines

methods.

1 Introdution

Certainly, the histogram is one of the �rst, and one of the most ommon, meth-

ods of density estimation. It is important to bear in mind that the histogram is a

�
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smoothing tehnique used to estimate the unknown density and hene it deserves

some onsideration.

Let us try to ombine the data by ounting how many data points fall into a small

interval of length h. This kind of interval is alled a bin. Observe that the well known

dot plot (Box, Hunter and Hunter, 1978, 25{26) is a partiular type of histogram

where h = 0.

Without loss of generality, we onsider a bin entered at 0, namely the interval

[�h=2; h=2). Consequently the probability for an observation of X to fall into the

interval [�h=2; h=2) is given by:

P (X 2 [�h=2; h=2)) =

Z

h=2

�h=2

f(x)dx;

where f is the density of X.

A natural estimate of this probability is the relative frequeny of the observations

in this interval, that is, we ount the number of observations falling into the interval

and divide it by the total number of observations. In other words, given the data

X

1

; : : : ; X

n

, we have:

P (X 2 [�h=2; h=2)) �

1

n

#fX

i

2 [�h=2; h=2)g:

Now applying the mean value theorem for ontinuous bounded funtion we obtain,

P (X 2 [�h=2; h=2)) =

Z

h=2

�h=2

f(x)dx = f(�)h;

with � 2 [�h=2; h=2). Thus, we arrive at the following density estimate:

^

f

h

(x) =

1

nh

#fX

i

2 [�h=2; h=2)g;

for all x 2 [�h=2; h=2).
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Formally, suppose we observe random variables X

1

; : : : ; X

n

whose unknown den-

sity is f . Let k be the number of bins, and de�ne C

j

= [x

0

+ (j � 1)h; x

0

+ jh),

j = 1; : : : ; k. Now, take n

j

=

P

n

i=1

I(X

i

2 C

j

), suh that,

P

k

j=1

n

j

= n. Then,

^

f

h

(x) =

1

nh

k

X

j=1

n

j

I(x 2 C

j

);

for all x. Here the funtion I(x 2 A) is de�ned to be :

I(x 2 A) =

8

<

:

1 if x 2 A

0 otherwise

Note that the density estimate

^

f

h

depends strongly upon the histogram bandwidth

h. By varying h we an have di�erent shapes of

^

f

h

. For example, if one inreases h, one

is averaging over more data and the histogram appears to be smoother. The extremes

of h, say, when h! 0, the histogram beomes a very noisy representation of the data

(needle-plot, H�ardle(1990)). In opposite situation when h ! 1, the histogram,

now, beomes overly smooth (box-shaped, H�ardle(1990)). Thus, h is the smoothing

parameter of this type of density estimate, and the question of how to hoose the

histogram bandwidth h turns out to be an important question in representing the

data via the histogram. For details of how to estimate h see H�ardle (1990).

2 Kernel Density Estimation

Naturally, we an think of having a more general idea of an density estimate of

the underlying density based on the method of the histogram. For this onsider the

weight funtion,

K(x) =

8

<

:

1

2

if j x j< 1

0 otherwise

and de�ne the estimator,
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^

f

h

(x) =

1

nh

n

X

i=1

K(

x�X

i

h

):

We an see that

^

f

h

extends the idea of the histogram.

Notie that this estimate just plaes a \box" of side (width) 2h and height (2nh)

�1

on eah observation and then sums to obtain

^

f

h

. See Silverman (1986) for a disussion

of this kind of estimator. It is not diÆult to verify that

^

f

h

is not a ontinuous funtion

and has zero derivatives everywhere exept on the jump points X

i

� h. Besides

having the undesirable harater of non smoothness (Silverman, 1986), it ould give

a misleading impression to a untrained observer.

To overome some of those diÆulties, a ondition has been introdued on the

funtion K. That is, K must be nonnegative kernel funtion that satis�es the follow-

ing property:

Z

1

�1

K(x)dx = 1:

Hene K(x) is a probability density funtion, and usually is a symmetri density,

as for instane, normal density. Note that an estimate based on the kernel funtion

plaes \bumps" on the observations and the shape of those \bumps" is determined

by the kernel funtion K.

The bandwidth h sets the width around eah observation and this bandwidth

ontrols the degree of smoothness of a density estimate. It is possible to verify that

as h ! 0, the estimate beomes a sum of Dira delta funtions at the observations

while as h!1, it eliminates all the loal roughness and possibly important details

are missed.
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Figure 2.1: Bandwidth e�et on kernel density estimates

There is a vast (Silverman, 1986), literature on kernel density estimation studying

its mathematial properties and proposing several algorithms to obtain an estimated

based on it. This method of density estimation beame, apart from histogram, the

most ommonly used estimator. However it has the drawbaks when the underlying

density has long tails (Silverman, 1986). What auses this problem is the fat that

the bandwidth is �xed for all observations, not onsidering any loal harateristi of

the data.

In order to solve this problem several other Kernel Density Estimation Methods

were proposed suh as the nearest neighbor and the variable kernel. A detailed dis-

ussion and illustration of these methods an be found in Silverman (1986).
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3 Statistial Results of Kernel Density Estimation

As starting point one might want to ompute the expeted value of

^

f

h

. For this,

suppose we have X

i

; : : : ; X

n

i.i.d. random variables with ommon density f and

let K(�) be a probability density funtion de�ned on the real line that satis�es the

following onditions (Rao, 1983):

� Condition 1. sup

x

K(x) �M <1; jxjK(x)! 0 as jxj ! 1.

� Condition 2. K(x) = K(�x); x 2 (�1;1) with

R

1

�1

x

2

K(x)dx <1.

Then we have,

E[

^

f

h

(x)℄ =

1

nh

n

X

i=1

E[K(

x�X

i

h

)℄ (3.1)

=

1

h

E[K(

x�X

i

h

)℄ (3.2)

=

1

h

Z

K(

x� u

h

)f(u)du (3.3)

=

Z

K(y)f(x+ yh)dy: (3.4)

Now, let h ! 0. We see that E[

^

f

h

(x)℄ ! f(x)

R

K(y)dy = f(x). Thus,

^

f

h

is

asymptoti unbiased estimator of f .

In order to ompute the bias of this estimator we have to make the assumption that

the underlying density is twie di�erentiable. Using a Taylor expansion of f(x+ yh),

the bias of

^

f

h

in estimating f is

b

f

[

^

f

h

(x)℄ =

h

2

2

f

00

(x)

Z

y

2

K(y)dy + o(h

2

):

We observe that sine we assumed the kernel K symmetri around zero the term

R

yK(y)hf

0

(x)dy = 0, the bias is quadrati in h. See (Parzen, 1962).

Using similar approah we obtain :
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� V ar

f

[

^

f

h

(x)℄ =

1

nh

kKk

2

2

f(x) + o(

1

nh

),

� MSE

f

[

^

f

h

(x)℄ =

1

nh

f(x)kKk

2

2

+

h

4

4

(f

00

(x)

R

y

2

K(y)dy) + o(

1

nh

) + o(h

4

) ,

where MSE

f

[

^

f

h

℄ stands for mean squared error of the estimator

^

f

h

of f .

Thus the following ondition h ! 0 and nh ! 1 is usually assumed, the

MSE

f

[

^

f

h

℄ ! 0, whih means that the kernel density estimate is a onsistent es-

timator of the underlying density f . Moreover, MSE balanes variane and squared

bias of the estimate in suh way that the variane term ontrols the under-smoothing

and the bias term ontrols over-smoothing. In other words, an attempt to redue

the bias inreases the variane, making the estimate too noisy (under-smooth). On

the ontrary, minimizing the variane leads to a very smooth estimate (over-smooth)

with high bias.

4 The nearest neighbor method

The onept of the nearest neighbor method is to adapt the amount of smoothing

to loal density of data. The degree of smoothing is then ontrolled by an integer k.

Essentially, the nearest neighbor density estimator uses distanes from x in f(x) to

the data point that is the kth nearest to x, for suitable k, typially, k / n

1=2

.

The kth nearest neighbor density estimate is de�ned as,

^

f(x) =

k

2nd

k

(x)

;

where, n is the sample size and d

k

(x) is the kth distane between x and the kth data

point near to x.

In order to understand this de�nition, suppose that the density at x is f(x). Then,

one would expet about 2rnf(x) observations to fall in the interval [x� r; x + r℄ for
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eah r > 0. Sine, by de�nition, exatly k observations fall in the interval [x �

d

k

(x); x + d

k

(x)℄, an estimate of the density at x may be obtained by putting

k = 2d

k

(x)n

^

f (x):

Note that while estimators like histogram are based on the number of observations

falling in a box of �xed width entered at the point of interest, the nearest neighbor

estimate is inversely proportional to the size of the box needed to ontain a given

number of observations. In the tail of the distribution, the distane d

k

(x) will be larger

than in the main part of the distribution, and so the problem of under-smoothing in

the tails should be redued. Like the histogram the nearest neighbor estimate is not

a smooth urve. Moreover, the nearest neighbor estimate does not integrate one and

the tails of

^

f(x) die away at rate x

�1

, in other words extremely slowly. Hene, this

estimate is not appropriate if it is required to estimate the entire density. However, it

is possible to generalize the nearest neighbor estimate to provide an estimate related

to the kernel estimate. The generalized kth nearest neighbor estimate is de�ned by,

^

f(x) =

1

nd

k

(x)

n

X

i=1

K(

x�X

i

d

k

(x)

):

Observe that the overall amount of smoothing is governed by the hoie of k, but the

bandwidth used at any partiular point depends on the density of observations near

that point. Again, we fae the problems of disontinuity of at all the points where

the funtion d

k

(x) has disontinuous derivative. The preise integrability and tail

properties will depend on the exat form of the kernel.
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Figure 4.2: E�et of the smoothing parameter K on the estimates

5 The variable kernel method

The variable kernel method is another method whih adapts the amount of smoothing

to the loal density of the data. The estimate is onstruted similarly to the lassial

kernel estimate, but the sale parameter varies from one data point to another.

Let K be a kernel funtion and k a positive integer. De�ne d

j;k

to be the distane

from X

j

to the kth nearest point in the set ontaining the other n � 1 data points.

The variable kernel estimate with the smoothing parameter h is de�ned by

^

f(x) =

1

n

n

X

j=1

1

hd

j;k

K(

x�X

j

hd

j;k

):
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In ontrast with the generalized nearest neighbor estimate, the variable kernel

estimate will itself be a probability density funtion provided that K is.

6 Bandwidth seletion: Kernel estimators

It is natural to think of �nding the optimal bandwidth, say, h

�

suh that h

�

=

argmin

h

MSE

f

[

^

f

h

℄. H�ardle(1990) shows that

h

�

= (

f(x)kKk

2

2

(f

00

(x))

2

(

R

y

2

K(y)dy)

2

n

)

1=5

/ n

�1=5

: (6.1)

The problem with this approah is that h

�

depends on two unknown funtions

f(�) and f

00

(�). An approah to overome this problem uses a global measure that an

be de�ned as:

IMSE[

^

f

h

℄ =

Z

MSE

f

[

^

f

h

℄

=

1

nh

kKk

2

2

+

h

4

4

(

Z

y

2

K(y)dy)

2

kf

00

k

2

2

+ o(

1

nh

) + o(h

4

): (6.2)

IMSE is the well known integrated mean squared error of a density estimate.

The optimal value of h onsidering the IMSE is de�ne as

h

opt

= argmin

h>0

IMSE[

^

f

h

℄:

it an be shown that,

h

opt

= 

�2=5

2

�

Z

K

2

(x)dx

�

1=5

�

kf

00

k

2

2

�

�1=5

n

�1=5

; (6.3)

where 

2

=

R

y

2

K(y)dy. Unfortunately, (6.3) depends on the seond derivatives

of f whih measures the rapidity of utuations in density f .

6.1 Referene to a standard distribution

A very natural way is to use a standard family of distributions to assign a value of

the term kf

00

k

2

2

in the expression of the ideal bandwidth (6.3). For example, assume
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that a density f belongs to a lass normal family with mean � and variane �

2

, then

Z

(f

00

(x))

2

dx = �

�5

Z

('

00

(x))

2

dx

=

3

8

�

�1

2�

�5

� 0:212�

�5

: (6.4)

If one uses a Gaussian kernel, then

h

opt

= (4�)

�1=10

(

3

8

�

�1=2

)

�1=5

�n

�1=5

=

�

4

3

�

1=5

�n

�1=5

= 1:06�n

�1=5

(6.5)

In pratie use 1:06�̂n

�1=5

!!

If we want to make this estimate more insensitive to outliers, we have to use a

more robust estimate for the sale parameter of the distribution. Let

^

R be the sample

interquartile, then one possible hoie for h is

^

h

opt

= 1:06min(�̂;

^

R

(�(3=4)� �(1=4))

)

= 1:06min(�̂;

^

R

1:349

): (6.6)
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6.2 Maximum likelihood Cross-Validation

Consider kernel density estimates f

h

and suppose we want to test for a spei� h the

hypothesis

f

h

(x) = f(x) vs: f

h

(x) 6= f(x):

The likelihood ratio test would be based on the test statisti f(x)=f

h

(x). For a

good bandwidth this statisti should thus be lose to 1. We would also say that on

the average E [log(f=f

h

)(X)℄ should be lose to 0. Thus, a good bandwidth, whih

is minimizing this measure of auray, is in e�et optimizing the Kullbak-Leibler

distane:
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d

KL

(f; f

h

) =

Z

log(

f

f

h

)(x)f(x)dx: (6.7)

Of ourse, we are able to ompute d

KL

(f; f

h

) from the data, sine we do not

know f . But from the theoretial point of view, we an investigate this distane for

the hoie of an appropriate bandwidth h. When d

KL

(f; f

h

) is lose to 0 this would

give the best agreement with the hypothesis f

h

= f . Hene, we are looking for a

bandwidth h, whih minimizes d

KL

(f; f

h

).

Suppose we are given a set of additional observations X

i

, independent of the

others. The likelihood for these observations

Q

i

f

h

(X

i

). The value of this statisti

for di�erent h would indiate whih value of h is preferable, sine the logarithm of

this statisti is lose to d

KL

(f; f

h

). Usually, we don not have additional observations.

A way out of this dilemma is to base the estimate f

h

on the subset fX

j

g

j 6=i

, and to

alulate the likelihood for X

i

. Denoting the leave-one-out estimate

f

h

(X

i

) = (n� 1)

�1

h

�1

X

j 6=i

K(

X

i

�X

j

h

):

Hene,

n

Y

i=1

f

h;i

(X

i

) = (n� 1)

�n

h

�n

n

Y

i=1

X

j 6=i

K(

X

i

�X

j

h

): (6.8)

However it is onvenient to onsider the logarithm of this statisti normalized with

the fator n

�1

to get the following proedure:

CV

KL

(h) =

1

n

n

X

i=1

log[f

h;i

(X

i

)℄

=

1

n

n

X

i=1

log

h

X

j 6=i

K(

X

i

�X

j

h

)

i

� log[(n� 1)h℄ (6.9)

Naturally, we hoose h

KL

suh that:

h

KL

= argmax

h

CV

KL

(h)
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Sine we assumed that X

i

are i.i.d., the sores log f

h;i

(X

i

) are identially distributed

and so,

E [CV

KL

(h) = E [log f

h;i

(X

i

)℄:

Disregarding the leave-one-out e�et, we an write

E [CV

KL

(h) � E

h

Z

log f

h

(x)f(x)dx

i

� �E [d

kl

(f; f

h

)℄ +

Z

log[f(x)℄f(x)dx: (6.10)

The seond term of the right-hand side does not depend on h. Then, we an expet

that we approximate the optimal bandwidth that minimizes [d

kl

(f; f

h

)℄.

The Maximum likelihood ross validation has two shortomings:

� When we have idential observations in one point, we may obtain an in�nite

value if CV

KL

(h) and hene we annot de�ne an optimal bandwidth.

� Suppose we use a kernel funtion with �nite support, e.g., the interval [�1; 1℄. If

an observation X

i

is more separated from the other observations than the band-

width h, the likelihood f

h;i

(X

i

) beomes 0. Hene the sore funtion reahes the

value �1. Maximizing CV

KL

(h) fores us to use a large bandwidth to prevent

this degenerated ase. This might lead to slight over-smoothing for the other

observations.

The omputation of CV

KL

(h) for a set of bandwidths h

1

; : : : ; h

m

may be based

on the following algorithm (see H�ardle (1990)):

Algorithm 6.1 for k=1 to m

for i=1 to n

sore=0

for j=1 to n

sore=sore+K((X[i℄-X[j℄)/h[k℄)

14



endfor j

v.kl[k℄=v.kl[k℄+log(sore-k(0))

endfor i

v.kl[k℄=v.kl[k℄/n - log((n-1)*h[k℄)

endfor k

Note that this omputation requires iterations of the order O(m�n

2

), i.e., is quadrati

in the number of observations. This is a great disadvantage of this tehnique, whih

fores us to look for other tehniques with better numerial eÆieny.

6.3 Least-squares ross- validation

Consider an alternative distane between f

h

and f . The integrated squared error

(ISE)

d

ISE

(h) =

Z

(f

h

� f)

2

(x)dx

=

Z

f

2

h

(x)dx� 2

Z

(f

h

f)(x)dx+

Z

f

2

(x)dx

d

ISE

(h)�

Z

f

2

(x)dx =

Z

f

2

h

(x)dx� 2

Z

(f

h

f)(x)dx (6.11)

For the last term, observe that

R

(f

h

f)(x)dx = E [f

h

(X

i

)℄ where the expetation is

understood to be omputed with respet to an additional and independent observation

X. For estimation of this term de�ne the leave-one-out estimate

^

E

X

[f

h

(X)℄ =

1

n

n

X

i=1

f

h;i

(X

i

) (6.12)

This leads to the Least-squares ross-validation:

CV

LS

(h) =

Z

f

2

h

(x)dx� 2

n

X

i=1

f

h;i

(X

i

) (6.13)

The bandwidth minimizing this funtion is,

h

LS

= argmin

h

CV

LS

(h):
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This ross-validation funtion is alled an unbiased ross-validation riterion, sine,

E [CV

LS

(h)℄ = E [d

ISE

(h) + 2(E

X

[f

h

(X)℄� E [

1

n

n

X

i=1

f

h;i

(X

i

)℄)� kfk

2

2

= IMSE[f

h

℄� kfk

2

2

: (6.14)

An interesting question is, how good is the approximation of d

ISE

by CV

LS

. To inves-

tigate this de�ne a sequene of bandwidths h

n

= h(X

1

; : : : ; X

n

) to be asymptotially

optimal, if

d

ISE

(h

n

)

inf

h>0

d

ISE

(h)

�! 1; a:s: when n �!1:

It an be shown that if the density f is bounded then H

LS

is asymptotially opti-

mal. Similarly to maximum likelihood ross-validation, H�ardle (1990) suggests the

following algorithm

Algorithm 6.2 for k=1 to m

for i=1 to n

for j=i+1 to n

v.ls[k℄=v.ls[k℄ + kernel.onv((X[i℄-X[j℄)/h[k℄)

v.ls[k℄=v.ls[k℄ - kernel((X[i℄-X[j℄)/h[k℄)*2*n/(n-1)

endfor j

endfor i

v.ls[k℄=v.ls[k℄+kernel.onv(0)*n/2

v.ls[k℄=v.ls[k℄*2/(n**2*h[k℄)

endfor k

7 Orthogonal series estimators

Orthogonal series estimators approah the density estimation problem from a quite

di�erent point of view. While kernel estimators is lose related to statistial thinking
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orthogonal series relies on the ideas of approximation theory. Without loss of gener-

ality let us assume that we are trying to estimate a density f on the interval [0; 1℄.

The idea is to use the theory of orthogonal series method and then to redue the

estimation proedure by estimating the oeÆients of its Fourier expansion. De�ne

the sequene �

v

(x) by

8

>

>

>

<

>

>

>

:

�

0

(x) = 1

�

2r�1

(x) =

p

2 os 2�rx r = 1; 2; : : :

�

2r

(x) =

p

2 sin 2�rx r = 1; 2; : : :

It is well known that f an be represented as Fourier series

P

1

i=0

a

i

�

i

, where, for

eah i � 0,

a

i

=

Z

f(x)�

i

(x)dx: (7.1)

Now, suppose that X is a random variable with density f . Then (7.1) an be

written

a

i

= E�

i

(X)

and so an unbiased estimator of f based on X

1

; : : : ; X

n

is

â

i

=

1

n

n

X

i=1

�

(

X

i

):

Note that the

P

1

i=1

â

i

�

i

onverges to a sum of delta funtions at the observations,

sine

!(x) =

1

n

n

X

i=1

Æ(x�X

i

) (7.2)

where Æ is the Dira delta funtion. Then for eah i,

â

i

=

Z

1

0

!(x)�

i

(x)dx

17



and hene the â

i

are exatly the Fourier oeÆients of the funtion !. The easiest to

way to smooth ! is to trunate the expansion

P

â

i

�

i

at some point. That is, hoose

K and de�ne a density estimate

^

f by

^

f(x) =

K

X

i=1

â

i

�

i

(x): (7.3)

Note that the amount of smoothing is determined by K. Small value of K implies in

over-smoothing, large value of K under-smoothing.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

data

de
ns

ity

100 obs from N(.5,.1)

True
K=3
K=10
K=100

Figure 7.4: E�et of the smoothing parameter K on the orthogonal series method for

density estimation

A more general approah would be, hoose a sequene of weights �

i

, suh that,

�

i

! 0 as i!1. Then

^

f(x) =

1

X

i=0

â

i

�

i

(x):

18



The rate at whih the weights �

i

onverge to zero will determine the amount of

smoothing. For non �nite interval we an have weight funtions a(x) = e

x

2

=2

and

orthogonal funtions �(x) proportional to Hermite polynomials.

Histogram of icms
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R
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at
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F

re
qu

en
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0
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4
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8

ortho−series
knn
R−default

Figure 7.5: A omparison of three methods of density estimation, orthogonal series

with 10 basis, k-th nearest neighbor with smoothing parameter k=5 and kernel density

estimate with bandwidth h=2.5

8 Penalized Maximum Likelihood Estimation

The method of penalized maximum likelihood in the ontext of density estimation

onsist of estimating a density f by minimizing a penalized likelihood sore L (f) +

�J(f), where L (f) is a goodness-of-�t measure, and J(f) is a roughness penalty.

This setion is developed onsidering historial results, beginning with Good and

19



Gaskins (1971), and ending with the most reent result given by Gu (1993).

The maximum likelihood (M.L.) method has been used as statistial standard pro-

edure in the ase where the underlying density f is known exept by a �nite number

of parameters. It is well known the M.L. has optimal properties (asymptotially un-

biased and asymptotially normal distributed) to estimate the unknown parameters.

Thus, it would be interesting if suh standard tehnique ould be applied on a more

general sheme where there is no assumption on the form of the underlying density

by assuming f to belong to a prespei�ed family of density funtions.

LetX

1

; : : : ; X

n

be i.i.d. random variables with unknown density f . The likelihood

funtion is given by:

L(f jX

1

; : : : ; X

n

) =

n

Y

i=1

f(X

i

):

The problem with this approah an be desribed by the following example. Reall

^

f

h

(x) a kernel estimate, that is,

^

f

h

0

(x) =

1

nh

0

n

X

i=1

K(

x�X

i

h

0

) ;

with h

0

= h=, where  is onstant greater than 0, i.e., for the moment the bandwidth

is h=. Let h be small enough suh that j

X

i

�X

0

i

h=

j > M > 0, and assume K has been

hosen so that K(u) = 0, if juj > M . Then,

^

f

h

0

(X

i

) =



nh

K(0):

If  >

1

K(0)

then

^

f

h

0

(X

i

) >

1

nh

: For �xed n, we an do this for all X

i

simultaneously.

Thus,

L � (

1

nh

)

n

:

Letting h! 0, we have L !1.

Consequently, L(f jX

1

; : : : ; X

n

) does not have a �nite maximum over the lass of

all densities. That is, the likelihood funtion an be as large as one wants it just
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by taking densities with h approahing zero. Densities having this harateristi,

bandwidth h ! 0, approximate to delta funtions and the likelihood funtion ends

up to be a sum of spikes delta funtions. Therefore, without putting onstraints on

the lass of all densities, the M.L. proedure annot be used properly.

One possible way to overome the problem desribed above is to onsider a pe-

nalized log-likelihood funtion. The idea is to introdue a penalty term on the log-

likelihood funtion suh that this penalty term quanti�es the smoothness of g = log f .

Let us take, for instane, the funtional J(g) =

R

(g

00

)

2

as a penalty term. Then

de�ne the penalized log-likelihood funtion by

L

�

(g) =

1

n

n

X

i=1

g(X

i

)� �J(g) ; (8.1)

where � is the smoothing parameter whih ontrols two oniting goals, the �delity

to the data given by

P

n

i=1

g(X

i

) and the smoothness, given by the penalty term J(g).

The pioneer work on penalized log-likelihood method is due to Good and Gask-

ins(1971), who suggested a Bayesian sheme with penalized log-likelihood (using their

notation) beomes:

! = !(f) = L(f)� �(f) ;

where L =

P

n

i=1

g(X

i

) and � is the smoothness penalty.

In order to simplify the notation, let

R

h have the same meaning as

R

1

�1

h(x)dx.

Now, onsider the number of bumps in the density as the measure of roughness or

smoothness. The �rst approah was to take the penalty term proportional to Fisher's

information, that is,

�(f) =

Z

(f

0

)

2

=f:

Now by setting f = 

2

, �(f) beomes

R

(

0

)

2

, and then replae f by  in the penalized

likelihood equation. Doing that the onstraint f � 0 is eliminated and the other

onstraint,

R

f = 1, turns out to be equivalent to

R



2

= 1, with  2 L

2

(�1;1).
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Good and Gaskins(1971) veri�ed that when the penalty 4�

R

(

0

)

2

yielded density

urves having portions that looked \too straight". This fat an be explained noting

that the urvature depends also on the seond derivatives. Thus (

00

)

2

should be

inluded on the penalty term. The �nal roughness funtional proposed was:

�(f) = 4�

Z

(

0

)

2

+ �

Z

(

00

)

2

;

with �, � satisfying,

2��

2

+

3

4

� = �

4

; (8.2)

where �

2

is either an initially guessed value of the variane or it an be estimated

the sample variane based on the data. Aording to Good and Gaskins (1971),

the basis for this onstraint is the feeling that the lass of normal distributions form

the smoothest lass of distributions, the improper uniform distribution being limiting

form. Moreover, they pointed out that some justi�ation for this feeling is that a

normal distribution is the distribution of maximum entropy for a given mean and

variane. The integral

R

(

0

)

2

is also minimized for a given variane when f is nor-

mal (Good and Gaskins, 1971). They thought was reasonable to give the normal

distribution speial onsideration and deided to hoose �, � suh that !(�; �; f) is

maximized by taking the mean equal to �x and variane as

P

N

i=1

(x

i

� �x)

2

=N�1. That

is, if f(x) � N (�; �

2

) then

R

(

0

)

2

=

1

4�

2

,

R

(")

2

=

3

16�

4

and hene we have,

!(�; �; f) = �

N

2

log(2��

2

)�

1

2�

2

N

X

i=1

(x

i

� �)

2

�

�

�

2

�

3�

16�

4

:

The sore funtion !(�; �; f) is maximized when � = �x and � is suh that,

�N +

P

N

i=1

(x

i

� �x)

2

�

2

+

2�

�

2

+

3�

4�

4

= 0: (8.3)

If we put �

2

=

P

N

i=1

(x

i

� �x)

2

=N � 1, the equation (7.3) beomes,

�

4

(N � 1) + 2��

2

+

3�

4

= �

4

N:
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Hene we have the onstraint (7.2).

Pursuing the idea of Good and Gaskins, Silverman (1982) proposed a similar

method where the log density is estimated instead of the density itself. An advantage

of Silverman's approah is that using the logarithm of the density and the augmented

Penalized likelihood funtional, any density estimates obtained will automatially be

positive and integrate to one.

Let (m

1

; : : : ; m

k

) be a sequene of natural numbers so that 1 �

P

k

i=1

m

i

� m,

where m > 0 is suh that g

(m�1)

exists and is ontinuous. De�ne a linear di�erential

operator D as:

D(g) =

X

(m

1

; : : : ; m

k

)(

�

�x

1

)

m

1

: : : (

�

�x

k

)

m

k

(g) :

Now assume that at least one of the oeÆients (m

1

; : : : ; m

k

) 6= 0 for

P

m

i

= m.

Using this linear di�erential operator de�ne a bilinear funtional h�; �i by

hg

1

; g

2

i =

Z

D(g

1

)D(g

2

) :

where the integral is taken over a open set 
 with respet to Lebesgue measure.

Let S be the set of real funtions g on 
 for whih:

� the (m� 1)th derivatives of g exist everywhere and are pieewise di�erentiable,

� hg; gi <1,

�

R

e

g

<1.

Given the data X

1

; : : : ; X

n

i.i.d. with ommon density f , suh that g = log f , ĝ is

the solution, if it exists, of the optimization problem

maxf

1

n

n

X

i=1

g(X

i

)�

�

2

hg; gig ;

subjet to

R

e

g

= 1. And the density estimate

^

f = e

ĝ

, where the the null spae of the

penalty term is the set fg 2 S : hg; gi = 0g.
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Note that the null spae of hg; gi is an exponential family with at most (m � 1)

parameters, for example, if hg; gi =

R

(g

(3)

)

2

then g = log f is in an exponential family

with 2 parameters. See Silverman (1982).

Silverman presented an important result whih makes the omputation of the

onstrained optimization problem a \relatively" easy omputational sheme of �nding

the minimum of an unonstrained variational problem. Preisely, for any g in S and

for any �xed positive �, let

!

0

(g) = �

1

n

n

X

i=1

g(X

i

) +

�

2

hg; gi

and

!(g) = �

1

n

n

X

i=1

g(X

i

) +

Z

e

g

+

�

2

hg; gi :

Silverman proved that unonstrained minimum of !(g) is idential with the on-

strained minimum of !

0

, if suh a minimizer exists.

9 Approximation by Spline funtions

Due to its simple struture and good approximation properties, polynomials are

widely used in pratie for approximating funtions. For this propose, one usu-

ally divides the original interval [a; b℄ into suÆiently small subintervals of the form

[x

0

; x

1

℄; : : : ; [x

k

; x

k+1

℄ and then uses a low degree polynomial p

i

for approximation over

eah interval [x

i

; x

i+1

℄, i = 0; : : : ; k. This proedure produes a pieewise polynomial

approximating funtion s(�);

s(x) = p

i

(x) on [x

i

; x

i+1

℄; i = 0; : : : ; k:

In the general ase, the polynomial piees p

i

(x) are onstruted independently of

eah other and therefore do not onstitute a ontinuous funtion s(x) on [a; b℄. This
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annot be aepted if one wants, partiularly, to approximate a smooth funtion.

Naturally, it is neessary to require the polynomial piees p

i

(x) to join smoothly at

knots x

1

; : : : ; x

k

, and to have all derivatives up to a ertain order, oinide at knots.

As a result, we get a smooth pieewise polynomial funtion, alled a spline funtion.

De�nition 9.1 The funtion s(x) is alled a spline funtion (or simply \spline") of

degree r with knots at fx

i

g

k

i=1

if �1 =: x

0

< x

1

< : : : < x

k

< x

k+1

:=1 and

� for eah i = 0; : : : ; k, s(x) oinides on [x

i

; x

i+1

℄ with polynomial of degree not

greater than r;

� s(x); s

0

(x); : : : ; s

r�1

(x) are ontinuous funtions on (�1;1).

The set of suh funtions, S

r

(x

1

; : : : ; x

k

), is a linear spae whose elements are

spline funtions and it is alled spline spae.

De�nition 9.2 For a given point x 2 (a; b) the funtion

(t� x)

r

+

=

8

<

:

(t� x)

r

if t > x

0 if t � x

is alled the trunated power funtion of degree r with knot x.

It an be shown (Shumaker, 1981) that S

r

(x

1

; : : : ; x

k

) is a linear spae with

dimension r+k+1. Then we an express any spline funtion by a linear ombination

of r+k+1 basis funtions. It would be interesting if we ould have basis funtions that

make it easy to ompute the spline funtions. It an be shown that B-splines form a

basis of spline spaes (Shumaker, 1981). Also, B-splines have an important property

toward omputation that they are splines whih have smallest possible support. In

other words, B-splines are zero on a large set. Furthermore, a stable evaluation of

B-splines with aid of reurrene relation is possible.
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De�nition 9.3 Let 


1

= fx

j

g

fj2Zg

suh that x

j

< x

j+1

, that is, 


1

is the in�nite

knot set. A B-spline of degree r is de�ned to be

B

r

j

(x) = �(x

r+j+1

� x

j

)(x� x

j

)

r

+

[x

j

; : : : ; x

r+j+1

℄ ;

where, (x� x

j

)

r

+

[�; : : : ; �℄ is (r � 1)th divided di�erene of the funtion (x� x

j

)

r

+

evaluated at points x

j

; : : : ; x

r+j+1

.

Of speial interest is the set of natural splines of order r = 2m with K knots at

x

j

. A spline funtion is a natural spline of order 2m with knots at x

1

; : : : ; x

K

, if, in

addition to the properties implied by de�nition ( 9.1), it satis�es an extra ondition:

� s is polynomial of order m outside of [x

1

; x

K

℄.

Preisely speaking, let's onsider the interval [a; b℄ � R and the knot sequene

a := x

0

< x

1

< : : : < x

k

< x

k+1

:= b. Then, NS

2m

= fs 2 S(P

2m

) : s

0

=

sj

[a;x

1

)

and s

k

= sj

[x

k

;b)

2 P

m

g, is the natural polynomial spline spae of order 2m

with knots at x

1

; : : : ; x

k

. The name \natural spline" stems from the fat that, as a

result of this extra ondition, s satis�es the so alled natural boundary onditions

s

j

(a) = s

j

(b) = 0, j = m; : : : ; 2m� 1.

Now, sine the dimension of S(P

2m

) is 2m + K and we have enfored 2m extra

onditions to de�ne NS

2m

, it is natural to expet the dimension of NS

2m

to be K.

Atually, it is well known that NS

2m

is linear spae of dimension K. See details in

Shumaker (1981).

In some appliations it may be possible to deal with natural splines by using a basis

for S(P

2m

) and enforing the end onditions. For other appliations it is desirable

to have a basis for NS

2m

itself. To onstrut suh a basis onsisting of splines with

small supports we just need funtions based on the usual B-splines. Partiularly,

when m = 2, we will be onstruting basis funtions for the Natural Cubi Spline

Spae, NS

4

.
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Shumaker (1972) showed that the basis obtained by Greville (1969) (exept for

a normalization onstant!) and reently used by Kooperberg and Stone (1991)is a

basis for NS

4

.

De�nition 9.4 Let M(x; y) = (y � x)

3

+

and let M [x; x

1

; : : : ; x

K

℄ be the (K � 1)st

divided di�erene of M as a funtion of x taken over the knot sequene x

1

� x

2

: : : �

x

K

with h

i+1

= x

i+1

� x

i

, i = 1; : : : ; K � 1 Then

B

i

(x) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

M [x; x

1

; x

2

; x

3

℄=(h

3

+ 2h

2

) if i = 1

M [x; x

1

; x

2

; x

3

; x

4

℄ if i = 2

(x

i+2

� x

i�2

)M [x; x

i�2

; : : : ; x

i+2

℄ if i = 3; : : : ; K � 2

M [x; x

K�3

; x

K�2

; x

K�1

; x

K

℄ if i = K � 1

M [x; x

K�2

; x

K�1

; x

K

℄(h

K�1

+ 2h

K

) if i = K
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Figure 9.6: Basis Funtions with 6 knots plaed at \x"
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10 Computing Penalized Log-likelihood density es-

timates

Based on Silverman's approah, O'Sullivan(1988) developed an algorithm whih is a

fully automati, data driven version of Silverman's estimator. Furthermore, the esti-

mators obtained by O'Sullivan's algorithm are approximated by linear ombination

of basis funtions. Similarly to the estimators given by Good and Gaskins(1971),

O'Sullivan proposed that ubi B-splines with knots at data points should be used as

the basis funtions. A summary of de�nitions and properties of B-splines are given

in the next hapter.

The basi idea of omputing a density estimate provided by penalized likelihood

method is to onstrut approximations to it. Given x

1

; : : : ; x

n

, the realizations of

random variables X

1

; : : : ; X

n

, with ommon log density g. We are to solve a �nite

version of ( 8.1) whih are reasonable approximations to the in�nite dimensional

problem (Thompson and Tapia, 1990, 121{145). Good and Gaskins (1971) based

their omputational sheme on the fat that sine  2 L

2

(�1;1) then for a given

orthonormal system of funtions f�

n

g,

1

X

n=0

a

n

�

n

m:s:

�! g 2 L

2

;

with

P

1

n=0

ja

n

j <1 and fa

n

g 2 R. That is,  in L

2

an be arbitrarily approximated

by a linear ombination of basis funtions. In their paper, Hermite polynomials were

used as basis funtions. Spei�ally:

�

n

(x) = e

�x

2

=2

H

n

(x)2

�n=2

�

�1=4

(n!)

1=2

;

where,

H

n

(x) = (�1)

n

e

x

2

(

d

n

dx

n

e

�x

2

) :
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The log density estimator proposed by O'Sullivan (1988) is de�ned as the mini-

mizer of

�

1

n

n

X

i=1

g(x

i

) +

Z

b

a

e

g(s)

ds+ �

Z

b

a

(g

(m)

)

2

ds; (10.1)

for �xed � > 0, and data points x

1

; : : : ; x

n

. The minimization is over a lass of

absolutely ontinuous funtions on [a; b℄ whose mth derivative is square integrable.

O'Sullivan notied that the minimizer of ( 10.1) satis�es a nonlinear fourth order

di�erential equation in between distint data points with disontinuity in the third

derivatives at the data points. For details see O'Sullivan (1988). Given this behavior

the exat omputation has to be ruled out. His approah is to use ubi B-splines (see

Chapter 3 for de�nitions and properties of B-splines) to approximate the estimator

of ( 10.1).

Computational advantages of this log density estimators using approximations by

ubi B-splines are:

� It is a fully automati proedure for seleting an appropriate value of the

smoothing parameter �, based on the AIC type riteria.

� The banded strutures indued by B-splines leads to an algorithm where the

omputational ost is linear in the number of observations (data points).

� It provides approximate pointwise Bayesian on�dene intervals for the estima-

tor.

A disadvantage of O'Sullivan's work is that it does not provide any omparison of

performane with other available tehniques.

We see that the previous omputational framework is unidimensional, although

Silverman's approah an be extended to higher dimensions.
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11 Smoothing Spline Density Estimation

In order to provide an algorithm whih is not restrited to the unidimensional ase

under penalized maximum likelihood estimation, Gu (1993) proposed a dimension-

less fully automati algorithm whih updates the smoothing parameter jointly with

the estimate in a performane oriented iteration via ross validation estimate. The

performane is measured by a proxy of the symmetrized Kullbak-Leibler distane

between the true density and the estimate. Spei�ally, let X

1

; : : : ; X

n

be i.i.d. sam-

ple from an unknown probability density funtion f on a �nite domain X . The goal

is to estimate the density f from the data X

i

. For this, assume f > 0 and take the

logisti transformation f = e

g

=(

R

e

g

). Observe that the logisti transformation is not

one-to-one. For instane take g� = g + . Then f = e

g�

=(

R

e

g�

) = e

g

=(

R

e

g

). Hene

some extra ondition is neessary.

Gu and Qiu (1993) proposed side onditions on g, g(x

0

) = 0, x

0

2 X or

R

X

g = 0

and de�ned the smoothing spline density estimate to be the minimizer of the penalized

likelihood sore,

�

1

n

n

X

i=1

g(X

i

) + log

Z

X

e

g

+

�

2

J(g) (11.1)

in a funtion spae H, where J is a roughness penalty and � is the smoothing param-

eter. The roughness penalty J is taken as square semi-norm in H and H is a Hilbert

spae in whih evaluation funtionals are ontinuous so that the �rst term of ( 11.1)

is ontinuous.

The Hilbert spae with ontinuous evaluation funtionals is alled reproduing

kernel Hilbert spae (RKHS) possessing a reproduing kernel (RK) R(�; �), a positive

de�nite bivariate funtion on X�X , suh that, for all x in X we have, R(x; �) = R(�; x)

in H, and, for any funtion g in H, hR(x; �); g(�)i = g(x) (the reproduing property).

Here, the notation h�; �i stands for the inner produt in H. Moreover, H an be

deomposed as:

H = H

J

M

J

?
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where, H

J

= fg : J(g) 2 (0;1)g, is a RKHS with a square norm J , and J

?

= fg :

J(g) = 0g. Denote the RK of H

J

as R

J

. Observe that the SSDE (smoothing splines

density estimate) depends on the data X

i

on the domain X , the reproduing kernel

R

J

and the null spae J

?

.

Note that the spae H is usually in�nite dimensional and the minimizer in H is in

general not easy to ompute. An attempt to solve this problem was proposed by Gu

and Qiu (1993), where the minimizer is alulated in an adaptive �nite dimensional

spae H

n

= J

?

L

H

n

J

, where H

n

J

= fR

J

(X

i

; �); i = 1; : : : ; ng with R

J

the RK of H

J

.

Using the notation of Gu (1993), let �

i

= R

J

(X

i

; �), and let f�g

M

n=1

be a basis for

J

?

. Thus, any funtion in H

n

an be written as,

g =

n

X

i=1



i

�

i

+

M

X

k=1

d

k

�

k

= �

T

 + �

T

d

where � and � are vetor funtions and  and d are vetor of oeÆients. Conse-

quently, the variational problem ( 11.1) beomes for a �xed � > 0,

A

�

(,d) =

�1

T

n

(Q+ Sd) + log

Z

X

exp(�

T

 + �

T

d) +

�

2



T

Q ;

where Q is n � n matrix with (i; j)th entry �

i

(X

i

) = R

J

(X

i

; X

j

) and S is n � M

matrix with (i; j)th entry �

k

(X

i

).

A standard tehnique to �nd the minimizer of A

�

(,d) is to apply the Newton-

Raphson iteration method (Wahba, 1990). Let �

g

(h) =

R

he

g

=

R

e

g

, V

g

(f; h) =

�

g

(fh) � �

g

(f)�

g

(h) and V

g

(h) = V

g

(h; h). Take ~g = �

T

 + �

T

d as the urrent

iterate of g. Then it an be shown, (Gu, 1993) that the Newton updating equation

beomes:

0

�

V

~g

(�; �

T

) + �Q V

~g

(�;�

T

)

V

~g

(�; �

T

) V

~g

(�;�

T

1

A

0

�

� ~

d�

~

d

1

A

=

0

�

Q

1

n

� �

~g

(�)� �Q~

S

T

1

n

� �

~g

(�)

1

A

(11.2)
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The performane of a smoothing spline estimate depends strongly on the hoie

of the smoothing parameter �. Gu (1993) proposed an iteration sheme that updates

� and g jointly aording to a performane estimate. The performane is measured

by loss funtion L(g; g

0

) = �

g

0

(g

0

�g)+�

g

(g�g

0

), the symmetrized Kullbak-Leibler

distane between an estimate g = log f and the true density g

0

= log f

0

.

Sine L is not easy to ompute and it depends on g

0

, approximation are made and

the minimization goes over a proxy of L namely,

^

L

~g

(g; ~g

0

) = V

~g

(g)=2� V

�g

(g; ~g) + �

~g

(g)� �

~g

0

(g);

with an update ~g using ( 11.2) (with a variable �), and ~g

0

is an approximation by

sample means of the true density g

0

. See Gu (1993) for details of this approximation.

The algorithm to arry out the performane-oriented iteration is of the order

O(n

3

) and it an be used \easily" to estimate multivariate densities. Simulations

(Dias, 1993) have shown that when the data have too muh struture (multi-modal,

large numbers of bumps), Gu's algorithm has a good performane, although the

omputational ost is extremely big for large data sets (> 200).

12 Logspline density estimation

In 1990, Kooperberg and Stone introdued another type of algorithm to estimate an

univariate density. This algorithm was based on the work of Stone (1990) and Stone

and Koo (1985) where the theory of the logspline family of funtions was developed.

Consider an inreasing sequene of knots ft

j

g

K

j=1

, K � 4, in R . Denote by S

0

the set of real funtions suh that s is a ubi polynomial in eah interval of the form

(�1; t

1

℄; [t

1

; t

3

℄; : : : ; [t

K

;1). Elements in S

0

are the well-known ubi splines with

knots at ft

j

g

K

j=1

. (Properties of splines are given in the next hapter.) Notie that

S

0

is a (K + 4)-dimensional linear spae. Now, let S � S

0

suh that the dimension

of S is K with funtions s 2 S linear on (�1; t

1

℄ and on [t

K

;1). Thus, S has a

basis of the form 1; B

1

: : : ; B

K�1

, suh that B

1

is linear funtion with negative slope
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on (�1; t

1

℄ and B

2

; : : : ; B

K�1

are onstant funtions on the same interval. Similarly,

B

K�1

is linear funtion with positive slope on [t

K

;1) and B

1

; : : : ; B

K�2

are onstant

on the interval [t

K

;1) (Kooperberg and Stone, 1991).

Let � be the parametri spae of dimension p = K � 1, suh that for � =

(�

1

; : : : ; �

p

) 2 R

p

, �

1

< 0 and �

p

> 0. Then, de�ne

(�) = log(

Z

R

exp(

K�1

X

j=1

�

j

B

j

(x))dx

and

f(x; �) = expf

K�1

X

j=1

�

j

B

j

(x)� (�)g:

The p-parametri exponential family f(�; �), � 2 � � R

p

of positive twie di�er-

entiable density funtion on R is alled logspline family and the orresponding log-

likelihood funtion is given by

L(�) =

X

log f(x; �) ; � 2 � :

The log-likelihood funtion L(�) is stritly onave and hene the maximum like-

lihood estimator

^

� of � is unique, if it exists. We refer to

^

f = f(�;

^

�) as the logspline

density estimate. Note that the estimation of

^

� makes logspline proedure not es-

sentially non-parametri. Thus, estimation of � by Newton-Raphson, together with

small numbers of basis funtion neessary to estimate a density, make the logspline

algorithm extremely fast when it is ompared with Gu's algorithm for smoothing

spline density estimation, (Gu, 1993).

In the Logspline approah the number of knots is the smoothing parameter. That

is, too many knots leads to a noisy estimate while too few knots gives a very smooth

urve. Based on their experiene of �tting logspline models, Kooperberg and Stone

provide a table with the number of knots based on the number of observations. No

indiation was found that the number of knots takes in onsideration the struture

of the data (number of modes, bumps, asymmetry, et.). However, an objetive
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riterion for the hoie of the number of knots, Stepwise Knot Deletion, is inluded

in the logspline proedure.

For 1 � j � p, let B

j

be a linear ombination of a trunated power basis (de�nition

on page 39),

B

j

(x) = �

j

+ �

j0

x +

X

k

�

jk

(x� t

k

)

3

+

:

Then

X

j

�

j

B

j

(x) =

X

�

j

�

j0

+

X

j

X

k

�

jk

�

j

(x� t

k

)

3

+

:

Let

P

j

^

�

j

�

jk

= �

T

k

^

�. Then, for 1 � k � K Kooperberg and Stone (1991),

SE(�

T

k

^

�) =

q

�

T

k

(I(

^

�))

�1

�

k

)

where I(�) is the Fisher information matrix obtained from the log-likelihood

funtion.

The knots t

1

and t

K

are onsidered permanent knots, and t

k

, 2 � k � K, are non-

permanent knots. Then at any step delete that knot whih has the smallest value of

j�

T

k

^

�j=SE(�

T

k

^

�). In this matter, we have a sequene of models whih ranges from

2 to p � 1 knots. Now, denote by

^

L

m

the log-likelihood funtion of the mth model

(2 � m + 2 � p � 1) evaluated at the maximum likelihood estimate for that model.

To speify a stop riteria, Kooperberg and Stone make use of the Akaike Information

Criterion (AIC), that is, AIC

�;m

= �2

^

L

m

+ �(p�m) and hoose m̂ that minimizes

AIC

3;m

. There is no theoretial justi�ation for hoosing � = 3. The hoie was

made, aording to them, beause this value of � makes the probability that

^

f is

bimodal when f is Gamma(5) to be about .1.

It would be interesting to have an algorithmwhih ombines the low omputational

ost of logsplines (due to B-splines and the estimation of their oeÆients) and the

performane of the automati smoothing parameter seletion developed by Gu (1993).
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Figure 12.7: Histogram, SSDE, Kernel and Logspline density estimates

The �gure (12.7) give us a omparison of four di�erent methods of density es-

timation, histogram, smoothing spline density estimation(SSDE), logspline and ker-

nel. The data is the well known Bu�alo, NY, snowfall and Logspline(d) stands for

logspline with deletion proedure. Even though the smoothing parameters of those

four methods are not omparable we present them just as information. The smooth-

ing parameters are, 7 knots for logspline, kernel bandwidth equal to 8 for kernel,

histogram bandwidth equal to 10 for the histogram and � = 10

�5:18

(Gu, 1993).

Moreover, in �gure (12.7), we see that logspline method, with 7 knots, the estimates

provided by SSDE and kernel methods are very similar while the Logspline method
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produes a smoother density estimate. Sine we do not know the underlying density

we are not able to say logspline provides, for this ase, a poor estimate. But based on

the histogram, SSDE and kernel estimates we tend to believe that logspline estimate

is not the most appropriate estimate.

13 Penalized Log-likelihood for H-splines Estima-

tion

Reall the problem of estimating an unknown density f based on the observations

X

1

; : : : ; X

n

, using the penalized maximum likelihood method. Now, take the logisti

transformation f = e

g

=(

R

e

g

). We know that this transformation is not one-to-one

and Gu and Qiu (1993) proposed side onditions on g suh that g(x

0

) = 0; x

0

2 X

or

R

X

g = 0. Given those onditions we have to �nd the solution of the variational

problem in ( 11.1). That is, �nd the minimizer of

�

1

n

n

X

i=1

g(X

i

) + log

Z

X

e

g

+

�

2

J(g) (13.1)

Now, by taking J(g) =

R

(g

00

)

2

we have as solution of ( 13.1) a ubi spline with

knots at every data point x

1

; : : : ; x

n

.

As desribed in the previous setion we have good omputational reasons to write

the solution of ( 13.1) as a linear ombination of B-splines. Atually, we are going to

make use of the basis funtions as in the De�nition ( 9.4).

Under this approah, one might ask the following questions:

� Is it possible to estimate a density using K � n basis funtions instead of the

original n suh that it redues the omputational ost of getting the solution

( 13.1) signi�antly ?

� How good would suh an approximation be ?
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Dias (1998) gave reasonable answers to those questions by �rst notiing that the

basis funtions B

i

(x) given in De�nition ( 9.4) form a basis for NS

4

. It is possible

to verify that if x

0

� x � x

K

, then 0 � B

i

(x) � 1,

P

K�2

i=2

B

i

(x) � 1, and B

0

(x

0

) =

B

1

(x

0

) = B

K�1

(x

K

) = B

K

(x

K

) = 1. See for details Greville (1969). Observe that

(x

i+2

� x

i�2

)M [x; x

i�2

; : : : ; x

i+2

℄, for i = 3; : : : ; K � 2, are the usual normalized B-

splines.

Let us assume that a density funtion f

0

is in H. Then, we approximate g

0

, the

solution of ( 13.1), by linear ombinations of basis funtions that span H

K

= fg 2

NS

4

: g =

P

K

i=1



i

B

i

g, that is:

g

0

� g =

K

X

i=1



i

B

i

;

where the notation g

0

� g means g

0

is approximately equal to g. Later, we mea-

sure this approximation by taking the symmetrized Kullbak-Leibler distane.

Consider X , the domain of the density funtion f

0

, and the logisti transformation

f

0

= e

g

0

=

R

X

e

g

0

. By taking the side ondition

R

X

g

0

= 0, (Gu and Qiu, 1993), we

obtain,

Z

X

g

0

(x)dx �

Z

X

g(x)dx =

Z

X

K

X

j=1



j

B

j

(x) (13.2)

=

K

X

j=1



j

Z

X

B

j

(x)dx:

Letting p

j

=

R

X

B

j

(x)dx, we have

P

K

j=1



j

p

j

= 0, or 

K

= �

P

K�1

j=1



j

p

j

=p

K

.
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Therefore for any funtion g, suh that g 2 H

K

an be written as

g(x) =

K�1

X

j=1



j

B

j

(x) + 

K

B

K

(x)

=

K�1

X

j=1



j

(B

j

(x)�

p

j

p

k

B

K

(x))

=

K�1

X

j=1



j

R

j

(x)

= R

T

 (13.3)

where R = (R

1

; : : : ; R

K�1

)

T

and R

j

= B

j

�

p

j

p

k

B

K

for j = 1; : : : ; K � 1.

Now the numerial problem beomes to minimize:

A

�

() =

�1

T

n

(Q) + log

Z

X

exp( R

T

) + (�=2)

T


 (13.4)

where Q is nx(K � 1) matrix with entry R

i

(X

j

) = R

ij

and 
 =

R

(R

00

)(R

00

)

T

is the

penalty, matrix with entry 


ij

=

R

R

00

i

R

00

j

for i; j = 1: : : : ; K�1, and rank(
) = K�2,

sine two of the basis funtions are linear.

A standard proedure to minimize A

�

() is to apply Newton-Raphson iteration.

For any two densities f and h, de�ne the following:

�

g

(h) =

R

he

g

=

R

e

g

, V

g

(f; h) = �

g

(fh)� �

g

(f)�

g

(h) with V

g

(h) = V

g

(h; h). Write

~g = R

T

~ as the urrent iteration of g. Then

�A

�

()

�

j

~g

= �Q

T

1/n + �

~

R

+ �
~;

where �

~g

(R) = �

R

. And,

�

2

A

�

()

��

T

j

~g

= �

~g

(R;R

T

)� �

~g

(R)�

~g

(R

T

) + �


= V

~g

(R;R

T

) + �


= V

R;R

+ �


where V

~g

(R;R

T

) = V

R;R

.
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Hene, the Newton updating equation is:

(V

R;R

+ �
)

T

(� ~) = Q1=n� �

~g

(R)� �
~

(V

R;R

+ �
)

T

� (V

R;R

)

T

~� (�
)

T

~ = Q1=n� �

~g

(R)� �
~

(V

R;R

+ �
)

T

 = Q1=n� �

~g

(R) + (V

R;R

)

T

~:

It is easy to show that V

R;R

~ = V

R;g

where V

R;g

= V

~g

(R; ~g). Thus the Newton updat-

ing equation beomes:

(V

R;R

+ �
)

T

 = Q1=n� �

~g

(R) + V

R;g

: (13.5)

14 Performane-Oriented Iteration

Given any density f , let g = log f and onsider the Kulbak-Leibler measure of

the di�erene between f and f

0

, that is,

KL(f; f

0

) =

Z

(log f � log f

0

)f

=

Z

(g � g

0

)e

g

:

Similarly,

KL(f

0

; f) =

Z

(log f

0

� log f)f

0

=

Z

(g

0

� g)e

g

0

:

Hene, the symmetrized Kulbak-Leibler distane between f and f

0

is :

L(g; g

0

) = KL(f; f

0

) +KL(f

0

; f)

=

Z

(g

0

� g)e

g

+

Z

(g � g

0

)e

g

0

= �

g

(g

0

� g) + �

g

0

(g � g

0

):
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Thus, given the data drawn from g

0

our objetive is to �nd an estimate g whih

delivers a small L(g; g

0

). To ompute the minimizer of ( 13.4) for a �xed �, one

iterates ( 13.5). Note that equation ( 13.5) de�nes a lass of estimates with variable

�, and a better use of this equation is to start from a urrent ~g, instead of alulating

the next iterate based on any prespei�ed �, one may hoose � whih delivers a small

L(g; g

0

) for g among the lass of estimates de�ned by ( 13.5). Now, ompute an

update using suh a �. This iteration sheme tries to minimize the loss funtion

L(g; g

0

) that is interested, instead of the penalized likelihood sore A

�

with a �xed �

whih the Newton iteration is after. Gu, pointed out that when suh a performane-

oriented iteration onverges at �

�

, and g

�

is apparently the �xed point of the Newton

iteration for minimizing A

�

�

, and hene is the minimizer of A

�

�

.

Gu notied that suh a L is not easily omputable for a lass of estimates de�ned

by ( 13.5), even with a known g

0

. Thus, approximation is needed. In the same paper

Gu showed that a proxy of L is given by

L

~g

(g; g

0

) = V

~g

(g)=2� V

~g

(g; ~g) + �

~g

(g)� �

g

0

(g)

and then tried to minimize it by alulating an update from ~g using ( 13.5) with

variable �. Observe that the �rst three terms of L

~g

are readily omputable, but the

fourth needs estimation. For that, de�ne:

H = V

R;R

+ �
;

with u

R

= Q1=n� �

R

+ V

R;g

and v

R

= V

R;g

� �

R

:

It an be shown that  = H

�1

u

R

and that the estimate de�ned by ( 13.5) has an

expression:

g = R

T

 = R

T

(H

�1

u

R

)

= R

T

H

�1

(Q1=n� �

R

+ V

R;g

)

= R

T

H

�1

Q1=n+R

T

H

�1

v

R

: (14.1)
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Straightforward alulations give,

�

~g

(g)� V

~g

(g; ~g) = �v

T

R

H

�1

u

R

(14.2)

V

~g

(g) = u

T

R

H

�1

u

R

� �u

T

R

H

�1

QH

�1

u

R

: (14.3)

To estimate �

g

0

(g), the only soure of information is the empirial distribution of

the data. For the last term of ( 14.1), sample means simply give (See Gu eq. 3.4),

Q1=nH

�1

v

R

. For the �rst term,

�

g

0

(R

T

H

�1

Q1=n) =

1

n

n

X

i=1

�

g

0

(R

T

(X

i

)H

�1

R(X

i

)):

It an be seen that the problem with the naive sample mean is the use of X

i

itself

in the estimation of �

g

0

(R

T

(X

i

)H

�1

R(X

i

)). Using the empirial distribution of the

remaining n� 1 data to estimate �

g

0

(R

T

(X

i

)H

�1

R(X

i

)), we have:

1

n(n� 1)

n

X

i=1

X

j 6=i

R

T

(X

j

)H

�1

R(X

i

) =

=

1

n(n� 1)

n

X

i=1

n

X

j=1

R

T

(X

j

)H

�1

R(X

i

)

�

1

n(n� 1)

n

X

i=1

R

T

(X

j

)H

�1

R(X

i

)

=

n

n� 1

(Q1=n)

T

H

�1

Q1=n

�

1

n(n� 1)

trae(QH

�1

Q): (14.4)

Letting tr(�) = trae(�) and noting that

V

~g

(g)

2

� �

g

0

(g) =

tr(QH

�1

Q)

n(n� 1)

�

(Q1=n)

T

H

�1

Q1=n

n� 1

�

u

T

R

H

�1

u

R

2

+ v

T

R

H

�1

u

R

;

we have a proxy of L as:

^

L

�

(g; g

0

) =

tr(QH

�1

Q)

n(n� 1)

�

(Q1=n)

T

H

�1

Q1=n

n� 1

�

u

T

R

H

�1

u

R

2

�

�u

T

R

H

�1

QH

�1

u

R

2

:

(14.5)
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The last equation is similar to the ross-validation sore given by (Gu, 1993). And

sine (15.4) is a ross-validation of �

g

0

(R

T

H

�1

Q1=n), is natural to think of it as ross-

validation sore under the ontext of Hybrid splines. Moreover, the performane-

oriented iteration an then be onduted by minimizing ( 14.5) in eah iteration.

15 Examples and Comparisons

In this setion we present various examples of the performane of Hybrid Splines

when it is ompared with other related methods suh as Logspline density estimation

and Kernel density estimation. The data sets were obtained by simulations either by

using ratfor programs based on algorithms found in (Kennedy, Jr and Gentle, 1980)

or by making use of S-language (S-plus and R) (Beker, Chambers and Wilks, 1988)

routines.
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0.
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0.
1
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2

0.
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0.
4

data

True
Logspline
Hspline

200 obs. from .8*N(3,1)+.2*N(12,1)

Figure 15.8: True density, Logspline and Hybrid Spline methods are ompared
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The plot above show us that even under obvious ase when two normal distribu-

tions with di�erent means are ombined, Hybrid Spline, logspline and kernel estimate

methods have a very satisfatory performane.
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0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

data

200 obs. from Gamma(2)

TRUE
Logpsline(d)
Hspline

Figure 15.9: True density of Gamma(2), estimates given by Logspline, Hybrid Splines
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Comparing Hybrid Spline method with Logspline using deletion proedure we

see in Figure 4.3 that Hybrid Spline does a better job identifying peaks and valleys

of the underlying density. Deletion proedure of Logspline allows it to have the

position of the knots that is more signi�ant for the �tting and hene provides the

best estimate that Logspline method an produe. Note that logspline adapts using

deletion proedure while H-spline adapts using addition. A new version of logspline

ode inorporates the addition proedure.
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data

TRUE
Logspline
H-spline
Kernel

300 obs.(1/3.518548)*(sin(x*2*pi)+exp(-x))**2

Figure 15.10: True density and estimates given by Logspline, Hybrid spline and kernel

methods
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From the �gure (15.10) learly kernel method produes the best and fastest esti-

mate of the underlying density. The bandwidth was hosen by eyeball and sine that

one might have a prior information about the true density, this hoie an be well

aepted. We notie that Hybrid Spline, again, has a superior performane over the

other methods when identifying 5 of the 6 peaks and 6 out of 7 valleys. Hybrid spline

has shown in simulations that it is suitable in situation where the data have a lot of

struture.

16 Non-parametri regression

The goal of regression urve �tting is to �nd a relationship between the response

variable Y and the predit variable X. If we have n independent measurements

f(X; Y )g

n

i=1

, the regression equation is, in general, desribed as

Y

i

= g(x

i

) + "

i

i = 1; : : : ; n;

where "'s are unorrelated random variables with mean zero and independent of Y

i

and g(x

i

) = E [Y

i

jX = x

i

℄. As an example, let's onsider the satter plot of the

revenue passenger miles own by ommerial airlines in the United States for eah

year from 1937 to 1960. (This data an be found in the software R)
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Figure 16.11: A time-series of 24 observations; yearly, 1937-1960.

When we try to approximate the mean response funtion g, we onentrate on

the average dependene of Y on X = x. This means that we try to estimate the

onditional mean urve

g(x) = E [Y jX = x℄ =

R

yf(x; y)dy

f(x)

; (16.1)

where f(x; y) denotes the jointly density of (X; Y ) and f(x) the marginal density of

X.

16.1 Kernel regression smoothing

Suppose we have i.i.d. observations f(X; Y )g

n

i=1

. Reall equation (16.1), we know

how to estimate the numerator by using the kernel density estimation method. For

the numerator we an estimate the joint density using the multipliative kernel
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f

h

1

;h

2

(x; y) =

1

n

n

X

i=1

K

h

1

(x�X

i

)K

h

2

(x� Y

i

):

where, K

h

j

(x� �) = h

�1

j

K(x� �), with j = 1; 2. It is not diÆult to show that

Z

yf

h

1

;h

2

(x; y) =

1

n

n

X

i=1

K

h

1

(x�X

i

)Y

i

:

Hene a natural estimate of the onditional expetation g

h

(x) where h = h

1

is the

well known Nadaraya-Watson estimate

g

h

(x) = n

�1

P

n

i=1

K

h

(x�X

i

)Y

i

n

�1

P

n

j=1

K

h

(x�X

j

)

(16.2)

The Nadaraya-Watson g

h

(x) is a onsistent estimate of the regression urve g(x) if

h! 0 and nh!1. (See details in H�ardle (1990))
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Figure 16.12: kernel smoothing method with bandwidth=1 for airmiles data.
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16.2 K-Nearest neighbor (K-NN)

One may notie that regression by kernels is based on loal averaging of observations

Y

i

in a �xed neighborhood of x. Instead of this �xed neighborhood K � nn employs

varying neighborhoods in the X variable. That is,

g

K

(x) =

1

n

N

X

i=1

W

Ki

(x)Y

i

; (16.3)

where,

W

Ki

(x) =

8

<

:

n=K if i 2 J

x

0 otherwise,

(16.4)

with J

x

= fi : X

i

is one of the K nearest observations to xg
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Figure 16.13: E�et of the smoothing parameter K on the K-NN regression estimates.
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16.3 Smoothing splines tehniques for non-parametri re-

gression

There are many appliations where a unknown funtion g of one or more variables

and a set of measurements are given suh that:

y

i

= L

i

g + �

i

where L

1

; : : : ; L

n

are linear funtionals de�ned on some linear spae H ontaining g,

and �

1

; : : : ; �

n

are measurement errors usually assumed to be independently identially

normal distributed with mean zero and unknown variane �

2

. Typially, the L

i

will

be point evaluation of the funtion g.

Straight forward least square �tting is often appropriate but it produes a funtion

whih is not suÆiently smooth for some data �tting problems. In suh ases, it

may be better to look for a funtion whih minimizes a riterion that involves a

ombination of goodness of �t and an appropriate measure of smoothness. Suh

riterion is the well known penalized least square problem de�ned as the following:

Finding the minimizer of the penalized least square equation whih is,

A

�

(g) =

n

X

i=1

(y

i

� L

i

g)

2

+ �J(g); (16.5)

where J(g) is the penalty term usually taken as

R

(g

00

)

2

and � is the smoothing pa-

rameter whih ontrols the trade o� between �delity to the data and smoothness.

It is of interest to estimate the urve g. For this assume that the points t

1

<

t

2

< : : : ; < t

n

are in the interval [a; b℄ suh that L

i

g = g(t

i

) and the funtion g 2

W

2

2

[a; b℄ = fg : g

0

abs. ontinuous and

R

(g

00

)

2

<1g. De�ne ĝ as the estimate of the

urve g so that:

ĝ = arg min

g2W

2

2

[a;b℄

A

�

(g):

It is well known that ĝ is neessarily a natural ubi spline with knots at t

i

(see,

for example, Silverman and Green (1994), Wahba (1981) and Craven and Wahba
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(1979)). Note that the roughness penalty

R

b

a

(g

00

(t))

2

dt has the property of reduing the

problem of hoosing g from an in�nite-dimensional lass of funtions to a �nite lass

of funtions sine ĝ an be written as linear ombination of basis funtions. Although

this fat might lead someone to think that the non-parametri regression problem

beomes a parametri problem, one noties that the number of parameters an be as

large as the number of observations, and there may be diÆulties in interpreting a

urve or surfae g. Moreover, if the number of observations is large, the system of

linear equations for exat solution is too expensive to solve.
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Figure 16.14: Smoothing spline �tting with smoothing parameter obtained by GCV

method

In regression splines, the idea is to approximate g by a �nite dimensional subspae

of W spanned by basis funtions B

1

; : : : ; B

K

, K � n. That is,

g � g

K

=

K

X

j=1



j

B

j

;
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where the parameter K ontrols the exibility of the �tting. A very ommon hoie

for basis funtions is the set of ubi B-splines (de Boor, 1978). The B-splines basis

funtions provide numerially superior sheme of omputation and have the main

feature that eah B

j

has ompat support. In pratie, it means that we obtain a

stable evaluation of the resulting matrix with entries B

i;j

= B

j

(x

i

), for j = 1; : : : ; K

and i = 1; : : : ; n is banded.

Unfortunately, the main diÆulty when working with regression splines is to selet

the number and the positions of a sequene of breakpoints alled knots where the

pieewise ubi polynomials are tied to enfore ontinuity and lower order ontinuous

derivatives. (See Shumaker (1972) for details. )

Regression splines are attrative beause of their omputational sheme where

standard linear model tehniques an be applied. But smoothness of the estimate

annot easily be varied ontinuously as funtions of a single smoothing parameter

(Hastie and Tibshirani, 1990). In partiular, when � = 0 we have the regression

spline ase, where K is the parameter that ontrols the exibility of the �tting. To

exemplify the ation of K on the estimated urve, let us onsider an example by

simulation with y(x) = exp(�x) sin(�x=2) os(�x) + " with " � N(0; :05). The urve

estimates were obtained by least square method with four di�erent numbers of basis

funtions whih are the ubi B-splines.

Figure 16.15 shows the e�et of varying the number of basis funtions on the

estimation of the true urve. Note that the number of basis funtions is the same as

the number of knots sine it is assumed that we are dealing with natural ubi splines

spae. Observe that small values of K make smoother the estimate and hene over

smoothing may our. Large values of K may ause under-smoothing.
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Figure 16.15: Spline least square �ttings for di�erent values of K

16.3.1 The hybrid splines method

In smoothing tehniques, the number of basis funtions is hosen to be as large as the

number of observations and then the smoothing parameter is hosen to ontrol the

exibility of the �tting (Bates and Wahba, 1982). The h-splines method (Luo and

Wahba (1997), Dias (1998) and Dias (1999)) ombines ideas from regression splines

and smoothing splines methods by �nding the number of basis funtions and the

smoothing parameter iteratively. By taking the penalty term J(g) as

R

(g

00

)

2

,the point

evaluation funtionals L

i

g = g(t

i

) y = (y

1

; : : : ; y

n

)

T

and g = (g(t

1

); : : : ; g(t

n

))

T

, the

penalized least square riterion (16.5) beomes,

L

�

(g) = jjy� gjj

2

+ �

Z

(g

00

)

2

; (16.6)

Assume that g � g

K;�

=

P

K

i=1

�

i

B

i

= X

K

� so that g

K;�

2 H

K

, where H

K

denotes

the spae of natural ubi splines (NCS) spanned by the basis funtions fB

i

g

K

i=1
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and X

K

is a n � K matrix with entries (X

K

)

fi;jg

= B

i

(t

j

), for i = 1; : : : ; K and

j = 1; : : : ; n. Then, the numerial problem is to �nd a vetor � = (�

1

; : : : ; �

K

)

T

that

minimizes,

L

�

�

(�) = ky�X

K

�k

2

2

+ ��

T


�; (16.7)

where 
 is K �K matrix with entries 


ij

=

R

B

00

i

(t)B

00

j

(t)dt . Standard alulations

(de Boor, 1978) provide � as a solution of the following linear system (X

T

X+�
)�

�

=

X

T

y. Note that the linear system now involves K�K matries instead of using n�n

matries whih is the ase of smoothing splines. Both K and � ontrols the trade o�

between smoothness and �delity to the data.
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Figure 16.16: H-spline �tting exhibits for airmiles data

By onstrution H-splines is more adaptive than the regular smoothing splines

method. Simulations (see Dias (1999)) show that H-splines method has better per-

formane for small data sets (50 observations) and relatively large variane in the

measurement errors.
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Comparing with parametri tehniques we have, for the non-parametri approah,

more exibility sine it allows one to hoose the in�nity dimensional lass of funtions

that the underlying density belongs. In general, this type of hoie depends on the

unknown smoothness of the true density. But for the most of the ases one an assume

mild restritions suh that a density has an absolutely ontinuous �rst derivative and

a square integrable seond derivative. Nevertheless, non-parametri estimators are

less eÆient than the parametri ones when a parametri model is valid. For many

parametri estimators the mean square error goes to zero with rate of n

�1

, while non-

parametri estimators have rate of n

��

, � 2 [0; 1℄, and � depends on the smoothness

of the underlying urve. When the postulate parametri model is not valid, many

parametri estimators annot have, ad ho, rate n

�1

. In fat, those estimators will

not onverge to the true urve. Consequently, non-parametri estimators are good

andidates when one does not know the form of the underlying urve.
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