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Abstra
t

Various features of e
onometri
 data 
an be analyzed by non-parametri


approa
h. This review summarizes some of the most important pro
edures in


urve estimation that has been very useful in the �eld of e
onometri
s. Spe
if-

i
ally, it des
ribes the theory and the appli
ations of non-parametri
 density

and regression estimation problems with emphases in kernel, nearest neighbor,

variable kernel, orthogonal series, smoothing splines, logsplines and H-splines

methods.

1 Introdu
tion

Certainly, the histogram is one of the �rst, and one of the most 
ommon, meth-

ods of density estimation. It is important to bear in mind that the histogram is a

�
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smoothing te
hnique used to estimate the unknown density and hen
e it deserves

some 
onsideration.

Let us try to 
ombine the data by 
ounting how many data points fall into a small

interval of length h. This kind of interval is 
alled a bin. Observe that the well known

dot plot (Box, Hunter and Hunter, 1978, 25{26) is a parti
ular type of histogram

where h = 0.

Without loss of generality, we 
onsider a bin 
entered at 0, namely the interval

[�h=2; h=2). Consequently the probability for an observation of X to fall into the

interval [�h=2; h=2) is given by:

P (X 2 [�h=2; h=2)) =

Z

h=2

�h=2

f(x)dx;

where f is the density of X.

A natural estimate of this probability is the relative frequen
y of the observations

in this interval, that is, we 
ount the number of observations falling into the interval

and divide it by the total number of observations. In other words, given the data

X

1

; : : : ; X

n

, we have:

P (X 2 [�h=2; h=2)) �

1

n

#fX

i

2 [�h=2; h=2)g:

Now applying the mean value theorem for 
ontinuous bounded fun
tion we obtain,

P (X 2 [�h=2; h=2)) =

Z

h=2

�h=2

f(x)dx = f(�)h;

with � 2 [�h=2; h=2). Thus, we arrive at the following density estimate:

^

f

h

(x) =

1

nh

#fX

i

2 [�h=2; h=2)g;

for all x 2 [�h=2; h=2).
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Formally, suppose we observe random variables X

1

; : : : ; X

n

whose unknown den-

sity is f . Let k be the number of bins, and de�ne C

j

= [x

0

+ (j � 1)h; x

0

+ jh),

j = 1; : : : ; k. Now, take n

j

=

P

n

i=1

I(X

i

2 C

j

), su
h that,

P

k

j=1

n

j

= n. Then,

^

f

h

(x) =

1

nh

k

X

j=1

n

j

I(x 2 C

j

);

for all x. Here the fun
tion I(x 2 A) is de�ned to be :

I(x 2 A) =

8

<

:

1 if x 2 A

0 otherwise

Note that the density estimate

^

f

h

depends strongly upon the histogram bandwidth

h. By varying h we 
an have di�erent shapes of

^

f

h

. For example, if one in
reases h, one

is averaging over more data and the histogram appears to be smoother. The extremes

of h, say, when h! 0, the histogram be
omes a very noisy representation of the data

(needle-plot, H�ardle(1990)). In opposite situation when h ! 1, the histogram,

now, be
omes overly smooth (box-shaped, H�ardle(1990)). Thus, h is the smoothing

parameter of this type of density estimate, and the question of how to 
hoose the

histogram bandwidth h turns out to be an important question in representing the

data via the histogram. For details of how to estimate h see H�ardle (1990).

2 Kernel Density Estimation

Naturally, we 
an think of having a more general idea of an density estimate of

the underlying density based on the method of the histogram. For this 
onsider the

weight fun
tion,

K(x) =

8

<

:

1

2

if j x j< 1

0 otherwise

and de�ne the estimator,
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^

f

h

(x) =

1

nh

n

X

i=1

K(

x�X

i

h

):

We 
an see that

^

f

h

extends the idea of the histogram.

Noti
e that this estimate just pla
es a \box" of side (width) 2h and height (2nh)

�1

on ea
h observation and then sums to obtain

^

f

h

. See Silverman (1986) for a dis
ussion

of this kind of estimator. It is not diÆ
ult to verify that

^

f

h

is not a 
ontinuous fun
tion

and has zero derivatives everywhere ex
ept on the jump points X

i

� h. Besides

having the undesirable 
hara
ter of non smoothness (Silverman, 1986), it 
ould give

a misleading impression to a untrained observer.

To over
ome some of those diÆ
ulties, a 
ondition has been introdu
ed on the

fun
tion K. That is, K must be nonnegative kernel fun
tion that satis�es the follow-

ing property:

Z

1

�1

K(x)dx = 1:

Hen
e K(x) is a probability density fun
tion, and usually is a symmetri
 density,

as for instan
e, normal density. Note that an estimate based on the kernel fun
tion

pla
es \bumps" on the observations and the shape of those \bumps" is determined

by the kernel fun
tion K.

The bandwidth h sets the width around ea
h observation and this bandwidth


ontrols the degree of smoothness of a density estimate. It is possible to verify that

as h ! 0, the estimate be
omes a sum of Dira
 delta fun
tions at the observations

while as h!1, it eliminates all the lo
al roughness and possibly important details

are missed.
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Figure 2.1: Bandwidth e�e
t on kernel density estimates

There is a vast (Silverman, 1986), literature on kernel density estimation studying

its mathemati
al properties and proposing several algorithms to obtain an estimated

based on it. This method of density estimation be
ame, apart from histogram, the

most 
ommonly used estimator. However it has the drawba
ks when the underlying

density has long tails (Silverman, 1986). What 
auses this problem is the fa
t that

the bandwidth is �xed for all observations, not 
onsidering any lo
al 
hara
teristi
 of

the data.

In order to solve this problem several other Kernel Density Estimation Methods

were proposed su
h as the nearest neighbor and the variable kernel. A detailed dis-


ussion and illustration of these methods 
an be found in Silverman (1986).
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3 Statisti
al Results of Kernel Density Estimation

As starting point one might want to 
ompute the expe
ted value of

^

f

h

. For this,

suppose we have X

i

; : : : ; X

n

i.i.d. random variables with 
ommon density f and

let K(�) be a probability density fun
tion de�ned on the real line that satis�es the

following 
onditions (Rao, 1983):

� Condition 1. sup

x

K(x) �M <1; jxjK(x)! 0 as jxj ! 1.

� Condition 2. K(x) = K(�x); x 2 (�1;1) with

R

1

�1

x

2

K(x)dx <1.

Then we have,

E[

^

f

h

(x)℄ =

1

nh

n

X

i=1

E[K(

x�X

i

h

)℄ (3.1)

=

1

h

E[K(

x�X

i

h

)℄ (3.2)

=

1

h

Z

K(

x� u

h

)f(u)du (3.3)

=

Z

K(y)f(x+ yh)dy: (3.4)

Now, let h ! 0. We see that E[

^

f

h

(x)℄ ! f(x)

R

K(y)dy = f(x). Thus,

^

f

h

is

asymptoti
 unbiased estimator of f .

In order to 
ompute the bias of this estimator we have to make the assumption that

the underlying density is twi
e di�erentiable. Using a Taylor expansion of f(x+ yh),

the bias of

^

f

h

in estimating f is

b

f

[

^

f

h

(x)℄ =

h

2

2

f

00

(x)

Z

y

2

K(y)dy + o(h

2

):

We observe that sin
e we assumed the kernel K symmetri
 around zero the term

R

yK(y)hf

0

(x)dy = 0, the bias is quadrati
 in h. See (Parzen, 1962).

Using similar approa
h we obtain :

6



� V ar

f

[

^

f

h

(x)℄ =

1

nh

kKk

2

2

f(x) + o(

1

nh

),

� MSE

f

[

^

f

h

(x)℄ =

1

nh

f(x)kKk

2

2

+

h

4

4

(f

00

(x)

R

y

2

K(y)dy) + o(

1

nh

) + o(h

4

) ,

where MSE

f

[

^

f

h

℄ stands for mean squared error of the estimator

^

f

h

of f .

Thus the following 
ondition h ! 0 and nh ! 1 is usually assumed, the

MSE

f

[

^

f

h

℄ ! 0, whi
h means that the kernel density estimate is a 
onsistent es-

timator of the underlying density f . Moreover, MSE balan
es varian
e and squared

bias of the estimate in su
h way that the varian
e term 
ontrols the under-smoothing

and the bias term 
ontrols over-smoothing. In other words, an attempt to redu
e

the bias in
reases the varian
e, making the estimate too noisy (under-smooth). On

the 
ontrary, minimizing the varian
e leads to a very smooth estimate (over-smooth)

with high bias.

4 The nearest neighbor method

The 
on
ept of the nearest neighbor method is to adapt the amount of smoothing

to lo
al density of data. The degree of smoothing is then 
ontrolled by an integer k.

Essentially, the nearest neighbor density estimator uses distan
es from x in f(x) to

the data point that is the kth nearest to x, for suitable k, typi
ally, k / n

1=2

.

The kth nearest neighbor density estimate is de�ned as,

^

f(x) =

k

2nd

k

(x)

;

where, n is the sample size and d

k

(x) is the kth distan
e between x and the kth data

point near to x.

In order to understand this de�nition, suppose that the density at x is f(x). Then,

one would expe
t about 2rnf(x) observations to fall in the interval [x� r; x + r℄ for
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ea
h r > 0. Sin
e, by de�nition, exa
tly k observations fall in the interval [x �

d

k

(x); x + d

k

(x)℄, an estimate of the density at x may be obtained by putting

k = 2d

k

(x)n

^

f (x):

Note that while estimators like histogram are based on the number of observations

falling in a box of �xed width 
entered at the point of interest, the nearest neighbor

estimate is inversely proportional to the size of the box needed to 
ontain a given

number of observations. In the tail of the distribution, the distan
e d

k

(x) will be larger

than in the main part of the distribution, and so the problem of under-smoothing in

the tails should be redu
ed. Like the histogram the nearest neighbor estimate is not

a smooth 
urve. Moreover, the nearest neighbor estimate does not integrate one and

the tails of

^

f(x) die away at rate x

�1

, in other words extremely slowly. Hen
e, this

estimate is not appropriate if it is required to estimate the entire density. However, it

is possible to generalize the nearest neighbor estimate to provide an estimate related

to the kernel estimate. The generalized kth nearest neighbor estimate is de�ned by,

^

f(x) =

1

nd

k

(x)

n

X

i=1

K(

x�X

i

d

k

(x)

):

Observe that the overall amount of smoothing is governed by the 
hoi
e of k, but the

bandwidth used at any parti
ular point depends on the density of observations near

that point. Again, we fa
e the problems of dis
ontinuity of at all the points where

the fun
tion d

k

(x) has dis
ontinuous derivative. The pre
ise integrability and tail

properties will depend on the exa
t form of the kernel.
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Figure 4.2: E�e
t of the smoothing parameter K on the estimates

5 The variable kernel method

The variable kernel method is another method whi
h adapts the amount of smoothing

to the lo
al density of the data. The estimate is 
onstru
ted similarly to the 
lassi
al

kernel estimate, but the s
ale parameter varies from one data point to another.

Let K be a kernel fun
tion and k a positive integer. De�ne d

j;k

to be the distan
e

from X

j

to the kth nearest point in the set 
ontaining the other n � 1 data points.

The variable kernel estimate with the smoothing parameter h is de�ned by

^

f(x) =

1

n

n

X

j=1

1

hd

j;k

K(

x�X

j

hd

j;k

):
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In 
ontrast with the generalized nearest neighbor estimate, the variable kernel

estimate will itself be a probability density fun
tion provided that K is.

6 Bandwidth sele
tion: Kernel estimators

It is natural to think of �nding the optimal bandwidth, say, h

�

su
h that h

�

=

argmin

h

MSE

f

[

^

f

h

℄. H�ardle(1990) shows that

h

�

= (

f(x)kKk

2

2

(f

00

(x))

2

(

R

y

2

K(y)dy)

2

n

)

1=5

/ n

�1=5

: (6.1)

The problem with this approa
h is that h

�

depends on two unknown fun
tions

f(�) and f

00

(�). An approa
h to over
ome this problem uses a global measure that 
an

be de�ned as:

IMSE[

^

f

h

℄ =

Z

MSE

f

[

^

f

h

℄

=

1

nh

kKk

2

2

+

h

4

4

(

Z

y

2

K(y)dy)

2

kf

00

k

2

2

+ o(

1

nh

) + o(h

4

): (6.2)

IMSE is the well known integrated mean squared error of a density estimate.

The optimal value of h 
onsidering the IMSE is de�ne as

h

opt

= argmin

h>0

IMSE[

^

f

h

℄:

it 
an be shown that,

h

opt

= 


�2=5

2

�

Z

K

2

(x)dx

�

1=5

�

kf

00

k

2

2

�

�1=5

n

�1=5

; (6.3)

where 


2

=

R

y

2

K(y)dy. Unfortunately, (6.3) depends on the se
ond derivatives

of f whi
h measures the rapidity of 
u
tuations in density f .

6.1 Referen
e to a standard distribution

A very natural way is to use a standard family of distributions to assign a value of

the term kf

00

k

2

2

in the expression of the ideal bandwidth (6.3). For example, assume
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that a density f belongs to a 
lass normal family with mean � and varian
e �

2

, then

Z

(f

00

(x))

2

dx = �

�5

Z

('

00

(x))

2

dx

=

3

8

�

�1

2�

�5

� 0:212�

�5

: (6.4)

If one uses a Gaussian kernel, then

h

opt

= (4�)

�1=10

(

3

8

�

�1=2

)

�1=5

�n

�1=5

=

�

4

3

�

1=5

�n

�1=5

= 1:06�n

�1=5

(6.5)

In pra
ti
e use 1:06�̂n

�1=5

!!

If we want to make this estimate more insensitive to outliers, we have to use a

more robust estimate for the s
ale parameter of the distribution. Let

^

R be the sample

interquartile, then one possible 
hoi
e for h is

^

h

opt

= 1:06min(�̂;

^

R

(�(3=4)� �(1=4))

)

= 1:06min(�̂;

^

R

1:349

): (6.6)
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6.2 Maximum likelihood Cross-Validation

Consider kernel density estimates f

h

and suppose we want to test for a spe
i�
 h the

hypothesis

f

h

(x) = f(x) vs: f

h

(x) 6= f(x):

The likelihood ratio test would be based on the test statisti
 f(x)=f

h

(x). For a

good bandwidth this statisti
 should thus be 
lose to 1. We would also say that on

the average E [log(f=f

h

)(X)℄ should be 
lose to 0. Thus, a good bandwidth, whi
h

is minimizing this measure of a

ura
y, is in e�e
t optimizing the Kullba
k-Leibler

distan
e:
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d

KL

(f; f

h

) =

Z

log(

f

f

h

)(x)f(x)dx: (6.7)

Of 
ourse, we are able to 
ompute d

KL

(f; f

h

) from the data, sin
e we do not

know f . But from the theoreti
al point of view, we 
an investigate this distan
e for

the 
hoi
e of an appropriate bandwidth h. When d

KL

(f; f

h

) is 
lose to 0 this would

give the best agreement with the hypothesis f

h

= f . Hen
e, we are looking for a

bandwidth h, whi
h minimizes d

KL

(f; f

h

).

Suppose we are given a set of additional observations X

i

, independent of the

others. The likelihood for these observations

Q

i

f

h

(X

i

). The value of this statisti


for di�erent h would indi
ate whi
h value of h is preferable, sin
e the logarithm of

this statisti
 is 
lose to d

KL

(f; f

h

). Usually, we don not have additional observations.

A way out of this dilemma is to base the estimate f

h

on the subset fX

j

g

j 6=i

, and to


al
ulate the likelihood for X

i

. Denoting the leave-one-out estimate

f

h

(X

i

) = (n� 1)

�1

h

�1

X

j 6=i

K(

X

i

�X

j

h

):

Hen
e,

n

Y

i=1

f

h;i

(X

i

) = (n� 1)

�n

h

�n

n

Y

i=1

X

j 6=i

K(

X

i

�X

j

h

): (6.8)

However it is 
onvenient to 
onsider the logarithm of this statisti
 normalized with

the fa
tor n

�1

to get the following pro
edure:

CV

KL

(h) =

1

n

n

X

i=1

log[f

h;i

(X

i

)℄

=

1

n

n

X

i=1

log

h

X

j 6=i

K(

X

i

�X

j

h

)

i

� log[(n� 1)h℄ (6.9)

Naturally, we 
hoose h

KL

su
h that:

h

KL

= argmax

h

CV

KL

(h)
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Sin
e we assumed that X

i

are i.i.d., the s
ores log f

h;i

(X

i

) are identi
ally distributed

and so,

E [CV

KL

(h) = E [log f

h;i

(X

i

)℄:

Disregarding the leave-one-out e�e
t, we 
an write

E [CV

KL

(h) � E

h

Z

log f

h

(x)f(x)dx

i

� �E [d

kl

(f; f

h

)℄ +

Z

log[f(x)℄f(x)dx: (6.10)

The se
ond term of the right-hand side does not depend on h. Then, we 
an expe
t

that we approximate the optimal bandwidth that minimizes [d

kl

(f; f

h

)℄.

The Maximum likelihood 
ross validation has two short
omings:

� When we have identi
al observations in one point, we may obtain an in�nite

value if CV

KL

(h) and hen
e we 
annot de�ne an optimal bandwidth.

� Suppose we use a kernel fun
tion with �nite support, e.g., the interval [�1; 1℄. If

an observation X

i

is more separated from the other observations than the band-

width h, the likelihood f

h;i

(X

i

) be
omes 0. Hen
e the s
ore fun
tion rea
hes the

value �1. Maximizing CV

KL

(h) for
es us to use a large bandwidth to prevent

this degenerated 
ase. This might lead to slight over-smoothing for the other

observations.

The 
omputation of CV

KL

(h) for a set of bandwidths h

1

; : : : ; h

m

may be based

on the following algorithm (see H�ardle (1990)):

Algorithm 6.1 for k=1 to m

for i=1 to n

s
ore=0

for j=1 to n

s
ore=s
ore+K((X[i℄-X[j℄)/h[k℄)

14



endfor j


v.kl[k℄=
v.kl[k℄+log(s
ore-k(0))

endfor i


v.kl[k℄=
v.kl[k℄/n - log((n-1)*h[k℄)

endfor k

Note that this 
omputation requires iterations of the order O(m�n

2

), i.e., is quadrati


in the number of observations. This is a great disadvantage of this te
hnique, whi
h

for
es us to look for other te
hniques with better numeri
al eÆ
ien
y.

6.3 Least-squares 
ross- validation

Consider an alternative distan
e between f

h

and f . The integrated squared error

(ISE)

d

ISE

(h) =

Z

(f

h

� f)

2

(x)dx

=

Z

f

2

h

(x)dx� 2

Z

(f

h

f)(x)dx+

Z

f

2

(x)dx

d

ISE

(h)�

Z

f

2

(x)dx =

Z

f

2

h

(x)dx� 2

Z

(f

h

f)(x)dx (6.11)

For the last term, observe that

R

(f

h

f)(x)dx = E [f

h

(X

i

)℄ where the expe
tation is

understood to be 
omputed with respe
t to an additional and independent observation

X. For estimation of this term de�ne the leave-one-out estimate

^

E

X

[f

h

(X)℄ =

1

n

n

X

i=1

f

h;i

(X

i

) (6.12)

This leads to the Least-squares 
ross-validation:

CV

LS

(h) =

Z

f

2

h

(x)dx� 2

n

X

i=1

f

h;i

(X

i

) (6.13)

The bandwidth minimizing this fun
tion is,

h

LS

= argmin

h

CV

LS

(h):
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This 
ross-validation fun
tion is 
alled an unbiased 
ross-validation 
riterion, sin
e,

E [CV

LS

(h)℄ = E [d

ISE

(h) + 2(E

X

[f

h

(X)℄� E [

1

n

n

X

i=1

f

h;i

(X

i

)℄)� kfk

2

2

= IMSE[f

h

℄� kfk

2

2

: (6.14)

An interesting question is, how good is the approximation of d

ISE

by CV

LS

. To inves-

tigate this de�ne a sequen
e of bandwidths h

n

= h(X

1

; : : : ; X

n

) to be asymptoti
ally

optimal, if

d

ISE

(h

n

)

inf

h>0

d

ISE

(h)

�! 1; a:s: when n �!1:

It 
an be shown that if the density f is bounded then H

LS

is asymptoti
ally opti-

mal. Similarly to maximum likelihood 
ross-validation, H�ardle (1990) suggests the

following algorithm

Algorithm 6.2 for k=1 to m

for i=1 to n

for j=i+1 to n


v.ls[k℄=
v.ls[k℄ + kernel.
onv((X[i℄-X[j℄)/h[k℄)


v.ls[k℄=
v.ls[k℄ - kernel((X[i℄-X[j℄)/h[k℄)*2*n/(n-1)

endfor j

endfor i


v.ls[k℄=
v.ls[k℄+kernel.
onv(0)*n/2


v.ls[k℄=
v.ls[k℄*2/(n**2*h[k℄)

endfor k

7 Orthogonal series estimators

Orthogonal series estimators approa
h the density estimation problem from a quite

di�erent point of view. While kernel estimators is 
lose related to statisti
al thinking

16



orthogonal series relies on the ideas of approximation theory. Without loss of gener-

ality let us assume that we are trying to estimate a density f on the interval [0; 1℄.

The idea is to use the theory of orthogonal series method and then to redu
e the

estimation pro
edure by estimating the 
oeÆ
ients of its Fourier expansion. De�ne

the sequen
e �

v

(x) by

8

>

>

>

<

>

>

>

:

�

0

(x) = 1

�

2r�1

(x) =

p

2 
os 2�rx r = 1; 2; : : :

�

2r

(x) =

p

2 sin 2�rx r = 1; 2; : : :

It is well known that f 
an be represented as Fourier series

P

1

i=0

a

i

�

i

, where, for

ea
h i � 0,

a

i

=

Z

f(x)�

i

(x)dx: (7.1)

Now, suppose that X is a random variable with density f . Then (7.1) 
an be

written

a

i

= E�

i

(X)

and so an unbiased estimator of f based on X

1

; : : : ; X

n

is

â

i

=

1

n

n

X

i=1

�

(

X

i

):

Note that the

P

1

i=1

â

i

�

i


onverges to a sum of delta fun
tions at the observations,

sin
e

!(x) =

1

n

n

X

i=1

Æ(x�X

i

) (7.2)

where Æ is the Dira
 delta fun
tion. Then for ea
h i,

â

i

=

Z

1

0

!(x)�

i

(x)dx

17



and hen
e the â

i

are exa
tly the Fourier 
oeÆ
ients of the fun
tion !. The easiest to

way to smooth ! is to trun
ate the expansion

P

â

i

�

i

at some point. That is, 
hoose

K and de�ne a density estimate

^

f by

^

f(x) =

K

X

i=1

â

i

�

i

(x): (7.3)

Note that the amount of smoothing is determined by K. Small value of K implies in

over-smoothing, large value of K under-smoothing.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

data

de
ns

ity

100 obs from N(.5,.1)

True
K=3
K=10
K=100

Figure 7.4: E�e
t of the smoothing parameter K on the orthogonal series method for

density estimation

A more general approa
h would be, 
hoose a sequen
e of weights �

i

, su
h that,

�

i

! 0 as i!1. Then

^

f(x) =

1

X

i=0

â

i

�

i

(x):

18



The rate at whi
h the weights �

i


onverge to zero will determine the amount of

smoothing. For non �nite interval we 
an have weight fun
tions a(x) = e

x

2

=2

and

orthogonal fun
tions �(x) proportional to Hermite polynomials.

Histogram of icms

icms

R
el

at
iv

e 
F

re
qu

en
cy

−0.2 −0.1 0.0 0.1 0.2

0
2

4
6

8

ortho−series
knn
R−default

Figure 7.5: A 
omparison of three methods of density estimation, orthogonal series

with 10 basis, k-th nearest neighbor with smoothing parameter k=5 and kernel density

estimate with bandwidth h=2.5

8 Penalized Maximum Likelihood Estimation

The method of penalized maximum likelihood in the 
ontext of density estimation


onsist of estimating a density f by minimizing a penalized likelihood s
ore L (f) +

�J(f), where L (f) is a goodness-of-�t measure, and J(f) is a roughness penalty.

This se
tion is developed 
onsidering histori
al results, beginning with Good and

19



Gaskins (1971), and ending with the most re
ent result given by Gu (1993).

The maximum likelihood (M.L.) method has been used as statisti
al standard pro-


edure in the 
ase where the underlying density f is known ex
ept by a �nite number

of parameters. It is well known the M.L. has optimal properties (asymptoti
ally un-

biased and asymptoti
ally normal distributed) to estimate the unknown parameters.

Thus, it would be interesting if su
h standard te
hnique 
ould be applied on a more

general s
heme where there is no assumption on the form of the underlying density

by assuming f to belong to a prespe
i�ed family of density fun
tions.

LetX

1

; : : : ; X

n

be i.i.d. random variables with unknown density f . The likelihood

fun
tion is given by:

L(f jX

1

; : : : ; X

n

) =

n

Y

i=1

f(X

i

):

The problem with this approa
h 
an be des
ribed by the following example. Re
all

^

f

h

(x) a kernel estimate, that is,

^

f

h

0

(x) =

1

nh

0

n

X

i=1

K(

x�X

i

h

0

) ;

with h

0

= h=
, where 
 is 
onstant greater than 0, i.e., for the moment the bandwidth

is h=
. Let h be small enough su
h that j

X

i

�X

0

i

h=


j > M > 0, and assume K has been


hosen so that K(u) = 0, if juj > M . Then,

^

f

h

0

(X

i

) =




nh

K(0):

If 
 >

1

K(0)

then

^

f

h

0

(X

i

) >

1

nh

: For �xed n, we 
an do this for all X

i

simultaneously.

Thus,

L � (

1

nh

)

n

:

Letting h! 0, we have L !1.

Consequently, L(f jX

1

; : : : ; X

n

) does not have a �nite maximum over the 
lass of

all densities. That is, the likelihood fun
tion 
an be as large as one wants it just
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by taking densities with h approa
hing zero. Densities having this 
hara
teristi
,

bandwidth h ! 0, approximate to delta fun
tions and the likelihood fun
tion ends

up to be a sum of spikes delta fun
tions. Therefore, without putting 
onstraints on

the 
lass of all densities, the M.L. pro
edure 
annot be used properly.

One possible way to over
ome the problem des
ribed above is to 
onsider a pe-

nalized log-likelihood fun
tion. The idea is to introdu
e a penalty term on the log-

likelihood fun
tion su
h that this penalty term quanti�es the smoothness of g = log f .

Let us take, for instan
e, the fun
tional J(g) =

R

(g

00

)

2

as a penalty term. Then

de�ne the penalized log-likelihood fun
tion by

L

�

(g) =

1

n

n

X

i=1

g(X

i

)� �J(g) ; (8.1)

where � is the smoothing parameter whi
h 
ontrols two 
on
i
ting goals, the �delity

to the data given by

P

n

i=1

g(X

i

) and the smoothness, given by the penalty term J(g).

The pioneer work on penalized log-likelihood method is due to Good and Gask-

ins(1971), who suggested a Bayesian s
heme with penalized log-likelihood (using their

notation) be
omes:

! = !(f) = L(f)� �(f) ;

where L =

P

n

i=1

g(X

i

) and � is the smoothness penalty.

In order to simplify the notation, let

R

h have the same meaning as

R

1

�1

h(x)dx.

Now, 
onsider the number of bumps in the density as the measure of roughness or

smoothness. The �rst approa
h was to take the penalty term proportional to Fisher's

information, that is,

�(f) =

Z

(f

0

)

2

=f:

Now by setting f = 


2

, �(f) be
omes

R

(


0

)

2

, and then repla
e f by 
 in the penalized

likelihood equation. Doing that the 
onstraint f � 0 is eliminated and the other


onstraint,

R

f = 1, turns out to be equivalent to

R




2

= 1, with 
 2 L

2

(�1;1).
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Good and Gaskins(1971) veri�ed that when the penalty 4�

R

(


0

)

2

yielded density


urves having portions that looked \too straight". This fa
t 
an be explained noting

that the 
urvature depends also on the se
ond derivatives. Thus (


00

)

2

should be

in
luded on the penalty term. The �nal roughness fun
tional proposed was:

�(f) = 4�

Z

(


0

)

2

+ �

Z

(


00

)

2

;

with �, � satisfying,

2��

2

+

3

4

� = �

4

; (8.2)

where �

2

is either an initially guessed value of the varian
e or it 
an be estimated

the sample varian
e based on the data. A

ording to Good and Gaskins (1971),

the basis for this 
onstraint is the feeling that the 
lass of normal distributions form

the smoothest 
lass of distributions, the improper uniform distribution being limiting

form. Moreover, they pointed out that some justi�
ation for this feeling is that a

normal distribution is the distribution of maximum entropy for a given mean and

varian
e. The integral

R

(


0

)

2

is also minimized for a given varian
e when f is nor-

mal (Good and Gaskins, 1971). They thought was reasonable to give the normal

distribution spe
ial 
onsideration and de
ided to 
hoose �, � su
h that !(�; �; f) is

maximized by taking the mean equal to �x and varian
e as

P

N

i=1

(x

i

� �x)

2

=N�1. That

is, if f(x) � N (�; �

2

) then

R

(


0

)

2

=

1

4�

2

,

R

(
")

2

=

3

16�

4

and hen
e we have,

!(�; �; f) = �

N

2

log(2��

2

)�

1

2�

2

N

X

i=1

(x

i

� �)

2

�

�

�

2

�

3�

16�

4

:

The s
ore fun
tion !(�; �; f) is maximized when � = �x and � is su
h that,

�N +

P

N

i=1

(x

i

� �x)

2

�

2

+

2�

�

2

+

3�

4�

4

= 0: (8.3)

If we put �

2

=

P

N

i=1

(x

i

� �x)

2

=N � 1, the equation (7.3) be
omes,

�

4

(N � 1) + 2��

2

+

3�

4

= �

4

N:
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Hen
e we have the 
onstraint (7.2).

Pursuing the idea of Good and Gaskins, Silverman (1982) proposed a similar

method where the log density is estimated instead of the density itself. An advantage

of Silverman's approa
h is that using the logarithm of the density and the augmented

Penalized likelihood fun
tional, any density estimates obtained will automati
ally be

positive and integrate to one.

Let (m

1

; : : : ; m

k

) be a sequen
e of natural numbers so that 1 �

P

k

i=1

m

i

� m,

where m > 0 is su
h that g

(m�1)

exists and is 
ontinuous. De�ne a linear di�erential

operator D as:

D(g) =

X


(m

1

; : : : ; m

k

)(

�

�x

1

)

m

1

: : : (

�

�x

k

)

m

k

(g) :

Now assume that at least one of the 
oeÆ
ients 
(m

1

; : : : ; m

k

) 6= 0 for

P

m

i

= m.

Using this linear di�erential operator de�ne a bilinear fun
tional h�; �i by

hg

1

; g

2

i =

Z

D(g

1

)D(g

2

) :

where the integral is taken over a open set 
 with respe
t to Lebesgue measure.

Let S be the set of real fun
tions g on 
 for whi
h:

� the (m� 1)th derivatives of g exist everywhere and are pie
ewise di�erentiable,

� hg; gi <1,

�

R

e

g

<1.

Given the data X

1

; : : : ; X

n

i.i.d. with 
ommon density f , su
h that g = log f , ĝ is

the solution, if it exists, of the optimization problem

maxf

1

n

n

X

i=1

g(X

i

)�

�

2

hg; gig ;

subje
t to

R

e

g

= 1. And the density estimate

^

f = e

ĝ

, where the the null spa
e of the

penalty term is the set fg 2 S : hg; gi = 0g.
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Note that the null spa
e of hg; gi is an exponential family with at most (m � 1)

parameters, for example, if hg; gi =

R

(g

(3)

)

2

then g = log f is in an exponential family

with 2 parameters. See Silverman (1982).

Silverman presented an important result whi
h makes the 
omputation of the


onstrained optimization problem a \relatively" easy 
omputational s
heme of �nding

the minimum of an un
onstrained variational problem. Pre
isely, for any g in S and

for any �xed positive �, let

!

0

(g) = �

1

n

n

X

i=1

g(X

i

) +

�

2

hg; gi

and

!(g) = �

1

n

n

X

i=1

g(X

i

) +

Z

e

g

+

�

2

hg; gi :

Silverman proved that un
onstrained minimum of !(g) is identi
al with the 
on-

strained minimum of !

0

, if su
h a minimizer exists.

9 Approximation by Spline fun
tions

Due to its simple stru
ture and good approximation properties, polynomials are

widely used in pra
ti
e for approximating fun
tions. For this propose, one usu-

ally divides the original interval [a; b℄ into suÆ
iently small subintervals of the form

[x

0

; x

1

℄; : : : ; [x

k

; x

k+1

℄ and then uses a low degree polynomial p

i

for approximation over

ea
h interval [x

i

; x

i+1

℄, i = 0; : : : ; k. This pro
edure produ
es a pie
ewise polynomial

approximating fun
tion s(�);

s(x) = p

i

(x) on [x

i

; x

i+1

℄; i = 0; : : : ; k:

In the general 
ase, the polynomial pie
es p

i

(x) are 
onstru
ted independently of

ea
h other and therefore do not 
onstitute a 
ontinuous fun
tion s(x) on [a; b℄. This
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annot be a

epted if one wants, parti
ularly, to approximate a smooth fun
tion.

Naturally, it is ne
essary to require the polynomial pie
es p

i

(x) to join smoothly at

knots x

1

; : : : ; x

k

, and to have all derivatives up to a 
ertain order, 
oin
ide at knots.

As a result, we get a smooth pie
ewise polynomial fun
tion, 
alled a spline fun
tion.

De�nition 9.1 The fun
tion s(x) is 
alled a spline fun
tion (or simply \spline") of

degree r with knots at fx

i

g

k

i=1

if �1 =: x

0

< x

1

< : : : < x

k

< x

k+1

:=1 and

� for ea
h i = 0; : : : ; k, s(x) 
oin
ides on [x

i

; x

i+1

℄ with polynomial of degree not

greater than r;

� s(x); s

0

(x); : : : ; s

r�1

(x) are 
ontinuous fun
tions on (�1;1).

The set of su
h fun
tions, S

r

(x

1

; : : : ; x

k

), is a linear spa
e whose elements are

spline fun
tions and it is 
alled spline spa
e.

De�nition 9.2 For a given point x 2 (a; b) the fun
tion

(t� x)

r

+

=

8

<

:

(t� x)

r

if t > x

0 if t � x

is 
alled the trun
ated power fun
tion of degree r with knot x.

It 
an be shown (S
humaker, 1981) that S

r

(x

1

; : : : ; x

k

) is a linear spa
e with

dimension r+k+1. Then we 
an express any spline fun
tion by a linear 
ombination

of r+k+1 basis fun
tions. It would be interesting if we 
ould have basis fun
tions that

make it easy to 
ompute the spline fun
tions. It 
an be shown that B-splines form a

basis of spline spa
es (S
humaker, 1981). Also, B-splines have an important property

toward 
omputation that they are splines whi
h have smallest possible support. In

other words, B-splines are zero on a large set. Furthermore, a stable evaluation of

B-splines with aid of re
urren
e relation is possible.
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De�nition 9.3 Let 


1

= fx

j

g

fj2Zg

su
h that x

j

< x

j+1

, that is, 


1

is the in�nite

knot set. A B-spline of degree r is de�ned to be

B

r

j

(x) = �(x

r+j+1

� x

j

)(x� x

j

)

r

+

[x

j

; : : : ; x

r+j+1

℄ ;

where, (x� x

j

)

r

+

[�; : : : ; �℄ is (r � 1)th divided di�eren
e of the fun
tion (x� x

j

)

r

+

evaluated at points x

j

; : : : ; x

r+j+1

.

Of spe
ial interest is the set of natural splines of order r = 2m with K knots at

x

j

. A spline fun
tion is a natural spline of order 2m with knots at x

1

; : : : ; x

K

, if, in

addition to the properties implied by de�nition ( 9.1), it satis�es an extra 
ondition:

� s is polynomial of order m outside of [x

1

; x

K

℄.

Pre
isely speaking, let's 
onsider the interval [a; b℄ � R and the knot sequen
e

a := x

0

< x

1

< : : : < x

k

< x

k+1

:= b. Then, NS

2m

= fs 2 S(P

2m

) : s

0

=

sj

[a;x

1

)

and s

k

= sj

[x

k

;b)

2 P

m

g, is the natural polynomial spline spa
e of order 2m

with knots at x

1

; : : : ; x

k

. The name \natural spline" stems from the fa
t that, as a

result of this extra 
ondition, s satis�es the so 
alled natural boundary 
onditions

s

j

(a) = s

j

(b) = 0, j = m; : : : ; 2m� 1.

Now, sin
e the dimension of S(P

2m

) is 2m + K and we have enfor
ed 2m extra


onditions to de�ne NS

2m

, it is natural to expe
t the dimension of NS

2m

to be K.

A
tually, it is well known that NS

2m

is linear spa
e of dimension K. See details in

S
humaker (1981).

In some appli
ations it may be possible to deal with natural splines by using a basis

for S(P

2m

) and enfor
ing the end 
onditions. For other appli
ations it is desirable

to have a basis for NS

2m

itself. To 
onstru
t su
h a basis 
onsisting of splines with

small supports we just need fun
tions based on the usual B-splines. Parti
ularly,

when m = 2, we will be 
onstru
ting basis fun
tions for the Natural Cubi
 Spline

Spa
e, NS

4

.
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S
humaker (1972) showed that the basis obtained by Greville (1969) (ex
ept for

a normalization 
onstant!) and re
ently used by Kooperberg and Stone (1991)is a

basis for NS

4

.

De�nition 9.4 Let M(x; y) = (y � x)

3

+

and let M [x; x

1

; : : : ; x

K

℄ be the (K � 1)st

divided di�eren
e of M as a fun
tion of x taken over the knot sequen
e x

1

� x

2

: : : �

x

K

with h

i+1

= x

i+1

� x

i

, i = 1; : : : ; K � 1 Then

B

i

(x) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

M [x; x

1

; x

2

; x

3

℄=(h

3

+ 2h

2

) if i = 1

M [x; x

1

; x

2

; x

3

; x

4

℄ if i = 2

(x

i+2

� x

i�2

)M [x; x

i�2

; : : : ; x

i+2

℄ if i = 3; : : : ; K � 2

M [x; x

K�3

; x

K�2

; x

K�1

; x

K

℄ if i = K � 1

M [x; x

K�2

; x

K�1

; x

K

℄(h

K�1

+ 2h

K

) if i = K
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Basis for Natural Spline

Figure 9.6: Basis Fun
tions with 6 knots pla
ed at \x"

28



10 Computing Penalized Log-likelihood density es-

timates

Based on Silverman's approa
h, O'Sullivan(1988) developed an algorithm whi
h is a

fully automati
, data driven version of Silverman's estimator. Furthermore, the esti-

mators obtained by O'Sullivan's algorithm are approximated by linear 
ombination

of basis fun
tions. Similarly to the estimators given by Good and Gaskins(1971),

O'Sullivan proposed that 
ubi
 B-splines with knots at data points should be used as

the basis fun
tions. A summary of de�nitions and properties of B-splines are given

in the next 
hapter.

The basi
 idea of 
omputing a density estimate provided by penalized likelihood

method is to 
onstru
t approximations to it. Given x

1

; : : : ; x

n

, the realizations of

random variables X

1

; : : : ; X

n

, with 
ommon log density g. We are to solve a �nite

version of ( 8.1) whi
h are reasonable approximations to the in�nite dimensional

problem (Thompson and Tapia, 1990, 121{145). Good and Gaskins (1971) based

their 
omputational s
heme on the fa
t that sin
e 
 2 L

2

(�1;1) then for a given

orthonormal system of fun
tions f�

n

g,

1

X

n=0

a

n

�

n

m:s:

�! g 2 L

2

;

with

P

1

n=0

ja

n

j <1 and fa

n

g 2 R. That is, 
 in L

2


an be arbitrarily approximated

by a linear 
ombination of basis fun
tions. In their paper, Hermite polynomials were

used as basis fun
tions. Spe
i�
ally:

�

n

(x) = e

�x

2

=2

H

n

(x)2

�n=2

�

�1=4

(n!)

1=2

;

where,

H

n

(x) = (�1)

n

e

x

2

(

d

n

dx

n

e

�x

2

) :
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The log density estimator proposed by O'Sullivan (1988) is de�ned as the mini-

mizer of

�

1

n

n

X

i=1

g(x

i

) +

Z

b

a

e

g(s)

ds+ �

Z

b

a

(g

(m)

)

2

ds; (10.1)

for �xed � > 0, and data points x

1

; : : : ; x

n

. The minimization is over a 
lass of

absolutely 
ontinuous fun
tions on [a; b℄ whose mth derivative is square integrable.

O'Sullivan noti
ed that the minimizer of ( 10.1) satis�es a nonlinear fourth order

di�erential equation in between distin
t data points with dis
ontinuity in the third

derivatives at the data points. For details see O'Sullivan (1988). Given this behavior

the exa
t 
omputation has to be ruled out. His approa
h is to use 
ubi
 B-splines (see

Chapter 3 for de�nitions and properties of B-splines) to approximate the estimator

of ( 10.1).

Computational advantages of this log density estimators using approximations by


ubi
 B-splines are:

� It is a fully automati
 pro
edure for sele
ting an appropriate value of the

smoothing parameter �, based on the AIC type 
riteria.

� The banded stru
tures indu
ed by B-splines leads to an algorithm where the


omputational 
ost is linear in the number of observations (data points).

� It provides approximate pointwise Bayesian 
on�den
e intervals for the estima-

tor.

A disadvantage of O'Sullivan's work is that it does not provide any 
omparison of

performan
e with other available te
hniques.

We see that the previous 
omputational framework is unidimensional, although

Silverman's approa
h 
an be extended to higher dimensions.
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11 Smoothing Spline Density Estimation

In order to provide an algorithm whi
h is not restri
ted to the unidimensional 
ase

under penalized maximum likelihood estimation, Gu (1993) proposed a dimension-

less fully automati
 algorithm whi
h updates the smoothing parameter jointly with

the estimate in a performan
e oriented iteration via 
ross validation estimate. The

performan
e is measured by a proxy of the symmetrized Kullba
k-Leibler distan
e

between the true density and the estimate. Spe
i�
ally, let X

1

; : : : ; X

n

be i.i.d. sam-

ple from an unknown probability density fun
tion f on a �nite domain X . The goal

is to estimate the density f from the data X

i

. For this, assume f > 0 and take the

logisti
 transformation f = e

g

=(

R

e

g

). Observe that the logisti
 transformation is not

one-to-one. For instan
e take g� = g + 
. Then f = e

g�

=(

R

e

g�

) = e

g

=(

R

e

g

). Hen
e

some extra 
ondition is ne
essary.

Gu and Qiu (1993) proposed side 
onditions on g, g(x

0

) = 0, x

0

2 X or

R

X

g = 0

and de�ned the smoothing spline density estimate to be the minimizer of the penalized

likelihood s
ore,

�

1

n

n

X

i=1

g(X

i

) + log

Z

X

e

g

+

�

2

J(g) (11.1)

in a fun
tion spa
e H, where J is a roughness penalty and � is the smoothing param-

eter. The roughness penalty J is taken as square semi-norm in H and H is a Hilbert

spa
e in whi
h evaluation fun
tionals are 
ontinuous so that the �rst term of ( 11.1)

is 
ontinuous.

The Hilbert spa
e with 
ontinuous evaluation fun
tionals is 
alled reprodu
ing

kernel Hilbert spa
e (RKHS) possessing a reprodu
ing kernel (RK) R(�; �), a positive

de�nite bivariate fun
tion on X�X , su
h that, for all x in X we have, R(x; �) = R(�; x)

in H, and, for any fun
tion g in H, hR(x; �); g(�)i = g(x) (the reprodu
ing property).

Here, the notation h�; �i stands for the inner produ
t in H. Moreover, H 
an be

de
omposed as:

H = H

J

M

J

?
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where, H

J

= fg : J(g) 2 (0;1)g, is a RKHS with a square norm J , and J

?

= fg :

J(g) = 0g. Denote the RK of H

J

as R

J

. Observe that the SSDE (smoothing splines

density estimate) depends on the data X

i

on the domain X , the reprodu
ing kernel

R

J

and the null spa
e J

?

.

Note that the spa
e H is usually in�nite dimensional and the minimizer in H is in

general not easy to 
ompute. An attempt to solve this problem was proposed by Gu

and Qiu (1993), where the minimizer is 
al
ulated in an adaptive �nite dimensional

spa
e H

n

= J

?

L

H

n

J

, where H

n

J

= fR

J

(X

i

; �); i = 1; : : : ; ng with R

J

the RK of H

J

.

Using the notation of Gu (1993), let �

i

= R

J

(X

i

; �), and let f�g

M

n=1

be a basis for

J

?

. Thus, any fun
tion in H

n


an be written as,

g =

n

X

i=1




i

�

i

+

M

X

k=1

d

k

�

k

= �

T


 + �

T

d

where � and � are ve
tor fun
tions and 
 and d are ve
tor of 
oeÆ
ients. Conse-

quently, the variational problem ( 11.1) be
omes for a �xed � > 0,

A

�

(
,d) =

�1

T

n

(Q
+ Sd) + log

Z

X

exp(�

T


 + �

T

d) +

�

2




T

Q
 ;

where Q is n � n matrix with (i; j)th entry �

i

(X

i

) = R

J

(X

i

; X

j

) and S is n � M

matrix with (i; j)th entry �

k

(X

i

).

A standard te
hnique to �nd the minimizer of A

�

(
,d) is to apply the Newton-

Raphson iteration method (Wahba, 1990). Let �

g

(h) =

R

he

g

=

R

e

g

, V

g

(f; h) =

�

g

(fh) � �

g

(f)�

g

(h) and V

g

(h) = V

g

(h; h). Take ~g = �

T


 + �

T

d as the 
urrent

iterate of g. Then it 
an be shown, (Gu, 1993) that the Newton updating equation

be
omes:

0

�

V

~g

(�; �

T

) + �Q V

~g

(�;�

T

)

V

~g

(�; �

T

) V

~g

(�;�

T

1

A

0

�


� ~


d�

~

d

1

A

=

0

�

Q

1

n

� �

~g

(�)� �Q~


S

T

1

n

� �

~g

(�)

1

A

(11.2)
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The performan
e of a smoothing spline estimate depends strongly on the 
hoi
e

of the smoothing parameter �. Gu (1993) proposed an iteration s
heme that updates

� and g jointly a

ording to a performan
e estimate. The performan
e is measured

by loss fun
tion L(g; g

0

) = �

g

0

(g

0

�g)+�

g

(g�g

0

), the symmetrized Kullba
k-Leibler

distan
e between an estimate g = log f and the true density g

0

= log f

0

.

Sin
e L is not easy to 
ompute and it depends on g

0

, approximation are made and

the minimization goes over a proxy of L namely,

^

L

~g

(g; ~g

0

) = V

~g

(g)=2� V

�g

(g; ~g) + �

~g

(g)� �

~g

0

(g);

with an update ~g using ( 11.2) (with a variable �), and ~g

0

is an approximation by

sample means of the true density g

0

. See Gu (1993) for details of this approximation.

The algorithm to 
arry out the performan
e-oriented iteration is of the order

O(n

3

) and it 
an be used \easily" to estimate multivariate densities. Simulations

(Dias, 1993) have shown that when the data have too mu
h stru
ture (multi-modal,

large numbers of bumps), Gu's algorithm has a good performan
e, although the


omputational 
ost is extremely big for large data sets (> 200).

12 Logspline density estimation

In 1990, Kooperberg and Stone introdu
ed another type of algorithm to estimate an

univariate density. This algorithm was based on the work of Stone (1990) and Stone

and Koo (1985) where the theory of the logspline family of fun
tions was developed.

Consider an in
reasing sequen
e of knots ft

j

g

K

j=1

, K � 4, in R . Denote by S

0

the set of real fun
tions su
h that s is a 
ubi
 polynomial in ea
h interval of the form

(�1; t

1

℄; [t

1

; t

3

℄; : : : ; [t

K

;1). Elements in S

0

are the well-known 
ubi
 splines with

knots at ft

j

g

K

j=1

. (Properties of splines are given in the next 
hapter.) Noti
e that

S

0

is a (K + 4)-dimensional linear spa
e. Now, let S � S

0

su
h that the dimension

of S is K with fun
tions s 2 S linear on (�1; t

1

℄ and on [t

K

;1). Thus, S has a

basis of the form 1; B

1

: : : ; B

K�1

, su
h that B

1

is linear fun
tion with negative slope
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on (�1; t

1

℄ and B

2

; : : : ; B

K�1

are 
onstant fun
tions on the same interval. Similarly,

B

K�1

is linear fun
tion with positive slope on [t

K

;1) and B

1

; : : : ; B

K�2

are 
onstant

on the interval [t

K

;1) (Kooperberg and Stone, 1991).

Let � be the parametri
 spa
e of dimension p = K � 1, su
h that for � =

(�

1

; : : : ; �

p

) 2 R

p

, �

1

< 0 and �

p

> 0. Then, de�ne


(�) = log(

Z

R

exp(

K�1

X

j=1

�

j

B

j

(x))dx

and

f(x; �) = expf

K�1

X

j=1

�

j

B

j

(x)� 
(�)g:

The p-parametri
 exponential family f(�; �), � 2 � � R

p

of positive twi
e di�er-

entiable density fun
tion on R is 
alled logspline family and the 
orresponding log-

likelihood fun
tion is given by

L(�) =

X

log f(x; �) ; � 2 � :

The log-likelihood fun
tion L(�) is stri
tly 
on
ave and hen
e the maximum like-

lihood estimator

^

� of � is unique, if it exists. We refer to

^

f = f(�;

^

�) as the logspline

density estimate. Note that the estimation of

^

� makes logspline pro
edure not es-

sentially non-parametri
. Thus, estimation of � by Newton-Raphson, together with

small numbers of basis fun
tion ne
essary to estimate a density, make the logspline

algorithm extremely fast when it is 
ompared with Gu's algorithm for smoothing

spline density estimation, (Gu, 1993).

In the Logspline approa
h the number of knots is the smoothing parameter. That

is, too many knots leads to a noisy estimate while too few knots gives a very smooth


urve. Based on their experien
e of �tting logspline models, Kooperberg and Stone

provide a table with the number of knots based on the number of observations. No

indi
ation was found that the number of knots takes in 
onsideration the stru
ture

of the data (number of modes, bumps, asymmetry, et
.). However, an obje
tive
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riterion for the 
hoi
e of the number of knots, Stepwise Knot Deletion, is in
luded

in the logspline pro
edure.

For 1 � j � p, let B

j

be a linear 
ombination of a trun
ated power basis (de�nition

on page 39),

B

j

(x) = �

j

+ �

j0

x +

X

k

�

jk

(x� t

k

)

3

+

:

Then

X

j

�

j

B

j

(x) =

X

�

j

�

j0

+

X

j

X

k

�

jk

�

j

(x� t

k

)

3

+

:

Let

P

j

^

�

j

�

jk

= �

T

k

^

�. Then, for 1 � k � K Kooperberg and Stone (1991),

SE(�

T

k

^

�) =

q

�

T

k

(I(

^

�))

�1

�

k

)

where I(�) is the Fisher information matrix obtained from the log-likelihood

fun
tion.

The knots t

1

and t

K

are 
onsidered permanent knots, and t

k

, 2 � k � K, are non-

permanent knots. Then at any step delete that knot whi
h has the smallest value of

j�

T

k

^

�j=SE(�

T

k

^

�). In this matter, we have a sequen
e of models whi
h ranges from

2 to p � 1 knots. Now, denote by

^

L

m

the log-likelihood fun
tion of the mth model

(2 � m + 2 � p � 1) evaluated at the maximum likelihood estimate for that model.

To spe
ify a stop 
riteria, Kooperberg and Stone make use of the Akaike Information

Criterion (AIC), that is, AIC

�;m

= �2

^

L

m

+ �(p�m) and 
hoose m̂ that minimizes

AIC

3;m

. There is no theoreti
al justi�
ation for 
hoosing � = 3. The 
hoi
e was

made, a

ording to them, be
ause this value of � makes the probability that

^

f is

bimodal when f is Gamma(5) to be about .1.

It would be interesting to have an algorithmwhi
h 
ombines the low 
omputational


ost of logsplines (due to B-splines and the estimation of their 
oeÆ
ients) and the

performan
e of the automati
 smoothing parameter sele
tion developed by Gu (1993).
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Figure 12.7: Histogram, SSDE, Kernel and Logspline density estimates

The �gure (12.7) give us a 
omparison of four di�erent methods of density es-

timation, histogram, smoothing spline density estimation(SSDE), logspline and ker-

nel. The data is the well known Bu�alo, NY, snowfall and Logspline(d) stands for

logspline with deletion pro
edure. Even though the smoothing parameters of those

four methods are not 
omparable we present them just as information. The smooth-

ing parameters are, 7 knots for logspline, kernel bandwidth equal to 8 for kernel,

histogram bandwidth equal to 10 for the histogram and � = 10

�5:18

(Gu, 1993).

Moreover, in �gure (12.7), we see that logspline method, with 7 knots, the estimates

provided by SSDE and kernel methods are very similar while the Logspline method
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produ
es a smoother density estimate. Sin
e we do not know the underlying density

we are not able to say logspline provides, for this 
ase, a poor estimate. But based on

the histogram, SSDE and kernel estimates we tend to believe that logspline estimate

is not the most appropriate estimate.

13 Penalized Log-likelihood for H-splines Estima-

tion

Re
all the problem of estimating an unknown density f based on the observations

X

1

; : : : ; X

n

, using the penalized maximum likelihood method. Now, take the logisti


transformation f = e

g

=(

R

e

g

). We know that this transformation is not one-to-one

and Gu and Qiu (1993) proposed side 
onditions on g su
h that g(x

0

) = 0; x

0

2 X

or

R

X

g = 0. Given those 
onditions we have to �nd the solution of the variational

problem in ( 11.1). That is, �nd the minimizer of

�

1

n

n

X

i=1

g(X

i

) + log

Z

X

e

g

+

�

2

J(g) (13.1)

Now, by taking J(g) =

R

(g

00

)

2

we have as solution of ( 13.1) a 
ubi
 spline with

knots at every data point x

1

; : : : ; x

n

.

As des
ribed in the previous se
tion we have good 
omputational reasons to write

the solution of ( 13.1) as a linear 
ombination of B-splines. A
tually, we are going to

make use of the basis fun
tions as in the De�nition ( 9.4).

Under this approa
h, one might ask the following questions:

� Is it possible to estimate a density using K � n basis fun
tions instead of the

original n su
h that it redu
es the 
omputational 
ost of getting the solution

( 13.1) signi�
antly ?

� How good would su
h an approximation be ?
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Dias (1998) gave reasonable answers to those questions by �rst noti
ing that the

basis fun
tions B

i

(x) given in De�nition ( 9.4) form a basis for NS

4

. It is possible

to verify that if x

0

� x � x

K

, then 0 � B

i

(x) � 1,

P

K�2

i=2

B

i

(x) � 1, and B

0

(x

0

) =

B

1

(x

0

) = B

K�1

(x

K

) = B

K

(x

K

) = 1. See for details Greville (1969). Observe that

(x

i+2

� x

i�2

)M [x; x

i�2

; : : : ; x

i+2

℄, for i = 3; : : : ; K � 2, are the usual normalized B-

splines.

Let us assume that a density fun
tion f

0

is in H. Then, we approximate g

0

, the

solution of ( 13.1), by linear 
ombinations of basis fun
tions that span H

K

= fg 2

NS

4

: g =

P

K

i=1




i

B

i

g, that is:

g

0

� g =

K

X

i=1




i

B

i

;

where the notation g

0

� g means g

0

is approximately equal to g. Later, we mea-

sure this approximation by taking the symmetrized Kullba
k-Leibler distan
e.

Consider X , the domain of the density fun
tion f

0

, and the logisti
 transformation

f

0

= e

g

0

=

R

X

e

g

0

. By taking the side 
ondition

R

X

g

0

= 0, (Gu and Qiu, 1993), we

obtain,

Z

X

g

0

(x)dx �

Z

X

g(x)dx =

Z

X

K

X

j=1




j

B

j

(x) (13.2)

=

K

X

j=1




j

Z

X

B

j

(x)dx:

Letting p

j

=

R

X

B

j

(x)dx, we have

P

K

j=1




j

p

j

= 0, or 


K

= �

P

K�1

j=1




j

p

j

=p

K

.
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Therefore for any fun
tion g, su
h that g 2 H

K


an be written as

g(x) =

K�1

X

j=1




j

B

j

(x) + 


K

B

K

(x)

=

K�1

X

j=1




j

(B

j

(x)�

p

j

p

k

B

K

(x))

=

K�1

X

j=1




j

R

j

(x)

= R

T


 (13.3)

where R = (R

1

; : : : ; R

K�1

)

T

and R

j

= B

j

�

p

j

p

k

B

K

for j = 1; : : : ; K � 1.

Now the numeri
al problem be
omes to minimize:

A

�

(
) =

�1

T

n

(Q
) + log

Z

X

exp( R

T


) + (�=2)


T



 (13.4)

where Q is nx(K � 1) matrix with entry R

i

(X

j

) = R

ij

and 
 =

R

(R

00

)(R

00

)

T

is the

penalty, matrix with entry 


ij

=

R

R

00

i

R

00

j

for i; j = 1: : : : ; K�1, and rank(
) = K�2,

sin
e two of the basis fun
tions are linear.

A standard pro
edure to minimize A

�

(
) is to apply Newton-Raphson iteration.

For any two densities f and h, de�ne the following:

�

g

(h) =

R

he

g

=

R

e

g

, V

g

(f; h) = �

g

(fh)� �

g

(f)�

g

(h) with V

g

(h) = V

g

(h; h). Write

~g = R

T

~
 as the 
urrent iteration of g. Then

�A

�

(
)

�


j

~g

= �Q

T

1/n + �

~

R

+ �
~
;

where �

~g

(R) = �

R

. And,

�

2

A

�

(
)

�
�


T

j

~g

= �

~g

(R;R

T

)� �

~g

(R)�

~g

(R

T

) + �


= V

~g

(R;R

T

) + �


= V

R;R

+ �


where V

~g

(R;R

T

) = V

R;R

.
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Hen
e, the Newton updating equation is:

(V

R;R

+ �
)

T

(
� ~
) = Q1=n� �

~g

(R)� �
~


(V

R;R

+ �
)

T


� (V

R;R

)

T

~
� (�
)

T

~
 = Q1=n� �

~g

(R)� �
~


(V

R;R

+ �
)

T


 = Q1=n� �

~g

(R) + (V

R;R

)

T

~
:

It is easy to show that V

R;R

~
 = V

R;g

where V

R;g

= V

~g

(R; ~g). Thus the Newton updat-

ing equation be
omes:

(V

R;R

+ �
)

T


 = Q1=n� �

~g

(R) + V

R;g

: (13.5)

14 Performan
e-Oriented Iteration

Given any density f , let g = log f and 
onsider the Kulba
k-Leibler measure of

the di�eren
e between f and f

0

, that is,

KL(f; f

0

) =

Z

(log f � log f

0

)f

=

Z

(g � g

0

)e

g

:

Similarly,

KL(f

0

; f) =

Z

(log f

0

� log f)f

0

=

Z

(g

0

� g)e

g

0

:

Hen
e, the symmetrized Kulba
k-Leibler distan
e between f and f

0

is :

L(g; g

0

) = KL(f; f

0

) +KL(f

0

; f)

=

Z

(g

0

� g)e

g

+

Z

(g � g

0

)e

g

0

= �

g

(g

0

� g) + �

g

0

(g � g

0

):
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Thus, given the data drawn from g

0

our obje
tive is to �nd an estimate g whi
h

delivers a small L(g; g

0

). To 
ompute the minimizer of ( 13.4) for a �xed �, one

iterates ( 13.5). Note that equation ( 13.5) de�nes a 
lass of estimates with variable

�, and a better use of this equation is to start from a 
urrent ~g, instead of 
al
ulating

the next iterate based on any prespe
i�ed �, one may 
hoose � whi
h delivers a small

L(g; g

0

) for g among the 
lass of estimates de�ned by ( 13.5). Now, 
ompute an

update using su
h a �. This iteration s
heme tries to minimize the loss fun
tion

L(g; g

0

) that is interested, instead of the penalized likelihood s
ore A

�

with a �xed �

whi
h the Newton iteration is after. Gu, pointed out that when su
h a performan
e-

oriented iteration 
onverges at �

�

, and g

�

is apparently the �xed point of the Newton

iteration for minimizing A

�

�

, and hen
e is the minimizer of A

�

�

.

Gu noti
ed that su
h a L is not easily 
omputable for a 
lass of estimates de�ned

by ( 13.5), even with a known g

0

. Thus, approximation is needed. In the same paper

Gu showed that a proxy of L is given by

L

~g

(g; g

0

) = V

~g

(g)=2� V

~g

(g; ~g) + �

~g

(g)� �

g

0

(g)

and then tried to minimize it by 
al
ulating an update from ~g using ( 13.5) with

variable �. Observe that the �rst three terms of L

~g

are readily 
omputable, but the

fourth needs estimation. For that, de�ne:

H = V

R;R

+ �
;

with u

R

= Q1=n� �

R

+ V

R;g

and v

R

= V

R;g

� �

R

:

It 
an be shown that 
 = H

�1

u

R

and that the estimate de�ned by ( 13.5) has an

expression:

g = R

T


 = R

T

(H

�1

u

R

)

= R

T

H

�1

(Q1=n� �

R

+ V

R;g

)

= R

T

H

�1

Q1=n+R

T

H

�1

v

R

: (14.1)
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Straightforward 
al
ulations give,

�

~g

(g)� V

~g

(g; ~g) = �v

T

R

H

�1

u

R

(14.2)

V

~g

(g) = u

T

R

H

�1

u

R

� �u

T

R

H

�1

QH

�1

u

R

: (14.3)

To estimate �

g

0

(g), the only sour
e of information is the empiri
al distribution of

the data. For the last term of ( 14.1), sample means simply give (See Gu eq. 3.4),

Q1=nH

�1

v

R

. For the �rst term,

�

g

0

(R

T

H

�1

Q1=n) =

1

n

n

X

i=1

�

g

0

(R

T

(X

i

)H

�1

R(X

i

)):

It 
an be seen that the problem with the naive sample mean is the use of X

i

itself

in the estimation of �

g

0

(R

T

(X

i

)H

�1

R(X

i

)). Using the empiri
al distribution of the

remaining n� 1 data to estimate �

g

0

(R

T

(X

i

)H

�1

R(X

i

)), we have:

1

n(n� 1)

n

X

i=1

X

j 6=i

R

T

(X

j

)H

�1

R(X

i

) =

=

1

n(n� 1)

n

X

i=1

n

X

j=1

R

T

(X

j

)H

�1

R(X

i

)

�

1

n(n� 1)

n

X

i=1

R

T

(X

j

)H

�1

R(X

i

)

=

n

n� 1

(Q1=n)

T

H

�1

Q1=n

�

1

n(n� 1)

tra
e(QH

�1

Q): (14.4)

Letting tr(�) = tra
e(�) and noting that

V

~g

(g)

2

� �

g

0

(g) =

tr(QH

�1

Q)

n(n� 1)

�

(Q1=n)

T

H

�1

Q1=n

n� 1

�

u

T

R

H

�1

u

R

2

+ v

T

R

H

�1

u

R

;

we have a proxy of L as:

^

L

�

(g; g

0

) =

tr(QH

�1

Q)

n(n� 1)

�

(Q1=n)

T

H

�1

Q1=n

n� 1

�

u

T

R

H

�1

u

R

2

�

�u

T

R

H

�1

QH

�1

u

R

2

:

(14.5)
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The last equation is similar to the 
ross-validation s
ore given by (Gu, 1993). And

sin
e (15.4) is a 
ross-validation of �

g

0

(R

T

H

�1

Q1=n), is natural to think of it as 
ross-

validation s
ore under the 
ontext of Hybrid splines. Moreover, the performan
e-

oriented iteration 
an then be 
ondu
ted by minimizing ( 14.5) in ea
h iteration.

15 Examples and Comparisons

In this se
tion we present various examples of the performan
e of Hybrid Splines

when it is 
ompared with other related methods su
h as Logspline density estimation

and Kernel density estimation. The data sets were obtained by simulations either by

using ratfor programs based on algorithms found in (Kennedy, Jr and Gentle, 1980)

or by making use of S-language (S-plus and R) (Be
ker, Chambers and Wilks, 1988)

routines.

0 2 4 6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

data

True
Logspline
Hspline

200 obs. from .8*N(3,1)+.2*N(12,1)

Figure 15.8: True density, Logspline and Hybrid Spline methods are 
ompared
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The plot above show us that even under obvious 
ase when two normal distribu-

tions with di�erent means are 
ombined, Hybrid Spline, logspline and kernel estimate

methods have a very satisfa
tory performan
e.

0 1 2 3 4 5

0.
0

0.
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0.
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0.
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0.
4

0.
5

data

200 obs. from Gamma(2)

TRUE
Logpsline(d)
Hspline

Figure 15.9: True density of Gamma(2), estimates given by Logspline, Hybrid Splines
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Comparing Hybrid Spline method with Logspline using deletion pro
edure we

see in Figure 4.3 that Hybrid Spline does a better job identifying peaks and valleys

of the underlying density. Deletion pro
edure of Logspline allows it to have the

position of the knots that is more signi�
ant for the �tting and hen
e provides the

best estimate that Logspline method 
an produ
e. Note that logspline adapts using

deletion pro
edure while H-spline adapts using addition. A new version of logspline


ode in
orporates the addition pro
edure.

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

data

TRUE
Logspline
H-spline
Kernel

300 obs.(1/3.518548)*(sin(x*2*pi)+exp(-x))**2

Figure 15.10: True density and estimates given by Logspline, Hybrid spline and kernel

methods
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From the �gure (15.10) 
learly kernel method produ
es the best and fastest esti-

mate of the underlying density. The bandwidth was 
hosen by eyeball and sin
e that

one might have a prior information about the true density, this 
hoi
e 
an be well

a

epted. We noti
e that Hybrid Spline, again, has a superior performan
e over the

other methods when identifying 5 of the 6 peaks and 6 out of 7 valleys. Hybrid spline

has shown in simulations that it is suitable in situation where the data have a lot of

stru
ture.

16 Non-parametri
 regression

The goal of regression 
urve �tting is to �nd a relationship between the response

variable Y and the predi
t variable X. If we have n independent measurements

f(X; Y )g

n

i=1

, the regression equation is, in general, des
ribed as

Y

i

= g(x

i

) + "

i

i = 1; : : : ; n;

where "'s are un
orrelated random variables with mean zero and independent of Y

i

and g(x

i

) = E [Y

i

jX = x

i

℄. As an example, let's 
onsider the s
atter plot of the

revenue passenger miles 
own by 
ommer
ial airlines in the United States for ea
h

year from 1937 to 1960. (This data 
an be found in the software R)
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Figure 16.11: A time-series of 24 observations; yearly, 1937-1960.

When we try to approximate the mean response fun
tion g, we 
on
entrate on

the average dependen
e of Y on X = x. This means that we try to estimate the


onditional mean 
urve

g(x) = E [Y jX = x℄ =

R

yf(x; y)dy

f(x)

; (16.1)

where f(x; y) denotes the jointly density of (X; Y ) and f(x) the marginal density of

X.

16.1 Kernel regression smoothing

Suppose we have i.i.d. observations f(X; Y )g

n

i=1

. Re
all equation (16.1), we know

how to estimate the numerator by using the kernel density estimation method. For

the numerator we 
an estimate the joint density using the multipli
ative kernel
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f

h

1

;h

2

(x; y) =

1

n

n

X

i=1

K

h

1

(x�X

i

)K

h

2

(x� Y

i

):

where, K

h

j

(x� �) = h

�1

j

K(x� �), with j = 1; 2. It is not diÆ
ult to show that

Z

yf

h

1

;h

2

(x; y) =

1

n

n

X

i=1

K

h

1

(x�X

i

)Y

i

:

Hen
e a natural estimate of the 
onditional expe
tation g

h

(x) where h = h

1

is the

well known Nadaraya-Watson estimate

g

h

(x) = n

�1

P

n

i=1

K

h

(x�X

i

)Y

i

n

�1

P

n

j=1

K

h

(x�X

j

)

(16.2)

The Nadaraya-Watson g

h

(x) is a 
onsistent estimate of the regression 
urve g(x) if

h! 0 and nh!1. (See details in H�ardle (1990))
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Estimate

Figure 16.12: kernel smoothing method with bandwidth=1 for airmiles data.
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16.2 K-Nearest neighbor (K-NN)

One may noti
e that regression by kernels is based on lo
al averaging of observations

Y

i

in a �xed neighborhood of x. Instead of this �xed neighborhood K � nn employs

varying neighborhoods in the X variable. That is,

g

K

(x) =

1

n

N

X

i=1

W

Ki

(x)Y

i

; (16.3)

where,

W

Ki

(x) =

8

<

:

n=K if i 2 J

x

0 otherwise,

(16.4)

with J

x

= fi : X

i

is one of the K nearest observations to xg
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Figure 16.13: E�e
t of the smoothing parameter K on the K-NN regression estimates.
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16.3 Smoothing splines te
hniques for non-parametri
 re-

gression

There are many appli
ations where a unknown fun
tion g of one or more variables

and a set of measurements are given su
h that:

y

i

= L

i

g + �

i

where L

1

; : : : ; L

n

are linear fun
tionals de�ned on some linear spa
e H 
ontaining g,

and �

1

; : : : ; �

n

are measurement errors usually assumed to be independently identi
ally

normal distributed with mean zero and unknown varian
e �

2

. Typi
ally, the L

i

will

be point evaluation of the fun
tion g.

Straight forward least square �tting is often appropriate but it produ
es a fun
tion

whi
h is not suÆ
iently smooth for some data �tting problems. In su
h 
ases, it

may be better to look for a fun
tion whi
h minimizes a 
riterion that involves a


ombination of goodness of �t and an appropriate measure of smoothness. Su
h


riterion is the well known penalized least square problem de�ned as the following:

Finding the minimizer of the penalized least square equation whi
h is,

A

�

(g) =

n

X

i=1

(y

i

� L

i

g)

2

+ �J(g); (16.5)

where J(g) is the penalty term usually taken as

R

(g

00

)

2

and � is the smoothing pa-

rameter whi
h 
ontrols the trade o� between �delity to the data and smoothness.

It is of interest to estimate the 
urve g. For this assume that the points t

1

<

t

2

< : : : ; < t

n

are in the interval [a; b℄ su
h that L

i

g = g(t

i

) and the fun
tion g 2

W

2

2

[a; b℄ = fg : g

0

abs. 
ontinuous and

R

(g

00

)

2

<1g. De�ne ĝ as the estimate of the


urve g so that:

ĝ = arg min

g2W

2

2

[a;b℄

A

�

(g):

It is well known that ĝ is ne
essarily a natural 
ubi
 spline with knots at t

i

(see,

for example, Silverman and Green (1994), Wahba (1981) and Craven and Wahba
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(1979)). Note that the roughness penalty

R

b

a

(g

00

(t))

2

dt has the property of redu
ing the

problem of 
hoosing g from an in�nite-dimensional 
lass of fun
tions to a �nite 
lass

of fun
tions sin
e ĝ 
an be written as linear 
ombination of basis fun
tions. Although

this fa
t might lead someone to think that the non-parametri
 regression problem

be
omes a parametri
 problem, one noti
es that the number of parameters 
an be as

large as the number of observations, and there may be diÆ
ulties in interpreting a


urve or surfa
e g. Moreover, if the number of observations is large, the system of

linear equations for exa
t solution is too expensive to solve.
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Figure 16.14: Smoothing spline �tting with smoothing parameter obtained by GCV

method

In regression splines, the idea is to approximate g by a �nite dimensional subspa
e

of W spanned by basis fun
tions B

1

; : : : ; B

K

, K � n. That is,

g � g

K

=

K

X

j=1




j

B

j

;
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where the parameter K 
ontrols the 
exibility of the �tting. A very 
ommon 
hoi
e

for basis fun
tions is the set of 
ubi
 B-splines (de Boor, 1978). The B-splines basis

fun
tions provide numeri
ally superior s
heme of 
omputation and have the main

feature that ea
h B

j

has 
ompa
t support. In pra
ti
e, it means that we obtain a

stable evaluation of the resulting matrix with entries B

i;j

= B

j

(x

i

), for j = 1; : : : ; K

and i = 1; : : : ; n is banded.

Unfortunately, the main diÆ
ulty when working with regression splines is to sele
t

the number and the positions of a sequen
e of breakpoints 
alled knots where the

pie
ewise 
ubi
 polynomials are tied to enfor
e 
ontinuity and lower order 
ontinuous

derivatives. (See S
humaker (1972) for details. )

Regression splines are attra
tive be
ause of their 
omputational s
heme where

standard linear model te
hniques 
an be applied. But smoothness of the estimate


annot easily be varied 
ontinuously as fun
tions of a single smoothing parameter

(Hastie and Tibshirani, 1990). In parti
ular, when � = 0 we have the regression

spline 
ase, where K is the parameter that 
ontrols the 
exibility of the �tting. To

exemplify the a
tion of K on the estimated 
urve, let us 
onsider an example by

simulation with y(x) = exp(�x) sin(�x=2) 
os(�x) + " with " � N(0; :05). The 
urve

estimates were obtained by least square method with four di�erent numbers of basis

fun
tions whi
h are the 
ubi
 B-splines.

Figure 16.15 shows the e�e
t of varying the number of basis fun
tions on the

estimation of the true 
urve. Note that the number of basis fun
tions is the same as

the number of knots sin
e it is assumed that we are dealing with natural 
ubi
 splines

spa
e. Observe that small values of K make smoother the estimate and hen
e over

smoothing may o

ur. Large values of K may 
ause under-smoothing.
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Figure 16.15: Spline least square �ttings for di�erent values of K

16.3.1 The hybrid splines method

In smoothing te
hniques, the number of basis fun
tions is 
hosen to be as large as the

number of observations and then the smoothing parameter is 
hosen to 
ontrol the


exibility of the �tting (Bates and Wahba, 1982). The h-splines method (Luo and

Wahba (1997), Dias (1998) and Dias (1999)) 
ombines ideas from regression splines

and smoothing splines methods by �nding the number of basis fun
tions and the

smoothing parameter iteratively. By taking the penalty term J(g) as

R

(g

00

)

2

,the point

evaluation fun
tionals L

i

g = g(t

i

) y = (y

1

; : : : ; y

n

)

T

and g = (g(t

1

); : : : ; g(t

n

))

T

, the

penalized least square 
riterion (16.5) be
omes,

L

�

(g) = jjy� gjj

2

+ �

Z

(g

00

)

2

; (16.6)

Assume that g � g

K;�

=

P

K

i=1

�

i

B

i

= X

K

� so that g

K;�

2 H

K

, where H

K

denotes

the spa
e of natural 
ubi
 splines (NCS) spanned by the basis fun
tions fB

i

g

K

i=1
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and X

K

is a n � K matrix with entries (X

K

)

fi;jg

= B

i

(t

j

), for i = 1; : : : ; K and

j = 1; : : : ; n. Then, the numeri
al problem is to �nd a ve
tor � = (�

1

; : : : ; �

K

)

T

that

minimizes,

L

�

�

(�) = ky�X

K

�k

2

2

+ ��

T


�; (16.7)

where 
 is K �K matrix with entries 


ij

=

R

B

00

i

(t)B

00

j

(t)dt . Standard 
al
ulations

(de Boor, 1978) provide � as a solution of the following linear system (X

T

X+�
)�

�

=

X

T

y. Note that the linear system now involves K�K matri
es instead of using n�n

matri
es whi
h is the 
ase of smoothing splines. Both K and � 
ontrols the trade o�

between smoothness and �delity to the data.
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Figure 16.16: H-spline �tting exhibits for airmiles data

By 
onstru
tion H-splines is more adaptive than the regular smoothing splines

method. Simulations (see Dias (1999)) show that H-splines method has better per-

forman
e for small data sets (50 observations) and relatively large varian
e in the

measurement errors.
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Comparing with parametri
 te
hniques we have, for the non-parametri
 approa
h,

more 
exibility sin
e it allows one to 
hoose the in�nity dimensional 
lass of fun
tions

that the underlying density belongs. In general, this type of 
hoi
e depends on the

unknown smoothness of the true density. But for the most of the 
ases one 
an assume

mild restri
tions su
h that a density has an absolutely 
ontinuous �rst derivative and

a square integrable se
ond derivative. Nevertheless, non-parametri
 estimators are

less eÆ
ient than the parametri
 ones when a parametri
 model is valid. For many

parametri
 estimators the mean square error goes to zero with rate of n

�1

, while non-

parametri
 estimators have rate of n

��

, � 2 [0; 1℄, and � depends on the smoothness

of the underlying 
urve. When the postulate parametri
 model is not valid, many

parametri
 estimators 
annot have, ad ho
, rate n

�1

. In fa
t, those estimators will

not 
onverge to the true 
urve. Consequently, non-parametri
 estimators are good


andidates when one does not know the form of the underlying 
urve.
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