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Abstract

In conventional seismic processing, the classical algorithm of Hubral and Krey is rou-
tinely applied to extract an initial macrovelocity model that consists of a stack of homoge-
neous layers bounded by curved interfaces. Input for the algorithm are identified primary
reflections together with normal moveout (NMO) velocities, as derived from a previous
velocity analysis conducted on common midpoint (CMP) data. This work presents a
modified version of the Hubral and Krey algorithm that is designed to extend the original
version in two ways, namely (a) it makes an advantageous use of previously obtained
common reflection surface (CRS) attributes as its input and (b) it also allows for gradient
layer velocities in depth. A new strategy to recover interfaces as optimized cubic splines
is also proposed. Some synthetic examples are provided to illustrate and explain the im-
plementation of the method.
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1 Introduction

The CRS stacking method (see, e.g., Müller et al. (1998)) is a recent technique that is establish-
ing itself as a better alternative to the conventional NMO/DMO stacking. As recently shown
in Trappe et al. (2001) (see also more references therein), the CRS stack is able to provide, in
a number of cases, significantly improved stacked sections that represent simulated zero-offset
sections. The CRS stacking method provides, in addition to a better stacking, a set of parame-
ters (called the CRS attributes) that convey more information of the propagating medium than
the single parameter, the NMO-velocity, that results from the NMO/DMO stack. The present
paper is concerned with the use of CRS attributes for velocity model inversion.

One of the important aims of seismic processing is the construction of a depth velocity
model that is consistent with the traveltimes of previously identified primary reflections. In
this sense, the classical algorithm of Hubral and Krey (1980), is routinely used to produce a
layered homogeneous velocity model that makes use of NMO analysis of CMP data. The natural
question is, can the additional information provided by the CRS attributes, that naturally result
from the application of the CRS stacking, be advantageously used for model inversion purposes?

Following earlier initial publications (Majer (2000) and Vieth (2001)), we provide a positive
answer to that question. As shown below (see also Biloti et al. (2001) and Biloti (2001)), we can
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readily adapt the Hubral and Krey algorithm to use the CRS attributes, that naturally result
from the application of the CRS stacking method to the given multicoverage data, so as to
also obtain a layered model that is consistent with identified reflections. Because of the cleaner
sections that result from the CRS stack, the input reflections tend to be easier to identify and
select, leading to a more stable and reliable procedure.

An important feature of the proposed algorithm is that it allows for velocity gradients
within the layers, thus enlarging the application possibilities for subsequent imaging procedures.
Moreover, special schemes designed for keeping track of the correct selection of attributes in the
presence of complicated regions, such as caustic triplications, guarantees the stable recovery of
the interfaces that define the layer model.

Hyperbolic Traveltime and CRS parameters. For a given fixed, reference ray, the hy-
perbolic traveltime moveout expression (see, e.g., Schleicher et al. (1993);, Tygel et al. (1997)),
relates the (squared) traveltime of that ray with the (squared) traveltime of any other ray (of
the same code) in its vicinity. The denominations central ray and paraxial ray are commonly
employed to designate the reference and vicinity rays, respectively. The important property of
the traveltime moveout expression under consideration is that it is completely given in terms
of (a) the initial and end point relative positions of the paraxial with respect to the central ray
and (b) the dynamic properties of the central ray only. The latter are specified by means of
the so-called surface-to-surface propagator matrix of the central ray.

In the case the central ray zero-offset (or normal reflection) ray at X0, called the central
point (see Figure 1) and sources and receivers are distributed on a single, horizontal seismic
line (2-D situation), the hyperbolic moveout formula reads

T 2(x, h) =

(
t0 +

2x sin β0

v0

)2

+
2t0 cos2 β0

v0

(KN x2 + KNIP h2) . (1)

Here, x and h are the midpoint and half-offset coordinates of the source and receiver pair in
the vicinity of the normal ray. More specifically,

x = (xG + xS)/2− x0 and h = (xG − xS)/2 ,

where xS and xG are the horizontal coordinate of the source and receiver pair (S,G) near
X0. Moreover, t0 is the zero-offset traveltime at X0 and β0 is the angle of emergence at
the zero-offset ray with respect to the surface normal at the central point X0. Finally, the
quantities KNIP and KN are the wavefront curvatures of the normal-incident-point wave (NIP-
wave) and the normal wave (N-wave) (Hubral (1983)), respectively, measured at the central
point X0. The traveltime formula (1) is of fundamental use in the CRS method. Therefore,
those three parameters, β0, KN and KNIP are called CRS parameters.

2 The Hubral and Krey algorithm

Our inversion method is based on the well-established algorithm described in Hubral and Krey
(1980). There, the velocity model to be inverted from the data is assumed to consist of a stack
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Figure 1: CRS Parameters for a normal central ray X0 NIP X0: the emergence angle β0 and
the NIP- and N-wavefront curvatures. Σ is the reflector, X0 is the central point coordinate,
and S and G are the source and receiver positions for a paraxial ray, reflecting at R.

of homogeneous layers bounded by smoothly curved interfaces. The unknowns are the velocity
in each layer and the shape of each interface. These unknowns are iteratively obtained from
top to bottom by means of a layer stripping process.

The main idea of the Hubral and Krey algorithm is to backpropagate the NIP-wave down
to the NIP located at the bottom interface of the layer to be determined (see Figure 2). This
means that the velocities and the reflectors above the layer under consideration have already
been determined. Since the NIP-wave is due to a point source at the NIP, the backpropagation
through this last layer gives us a focusing condition for the unknown layer velocity.

NIP

X0

Figure 2: NIP-wavefront associated to the central zero-offset ray X0 NIP X0.

To describe the wavefront curvature along a ray path that propagates through the layered
medium, Hubral and Krey (1980) consider two distinct situations: (a) the propagation occurs
inside a homogeneous layer and (b) transmission occurs across an interface.

Figure 3 depicts a ray that traverses the j-th homogeneous layer (of velocity vj) being
transmitted (refracted) at the interface j + 1. Let us denote by K+

j the wavefront radius of
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Figure 3: Ray propagation through homogeneous layer j.

curvature at the initial point of the ray (that is, just below the j-th interface). The wavefront
of curvature, K−

j+1, just before transmission, satisfies the relationship

1

K−
j+1

=
1

K+
j

+ vj ∆tj , (2)

where ∆tj is the traveltime of the ray inside the layer. The change in wavefront curvature due
to transmission at the interface, as also shown in Hubral and Krey (1980), is given by

K+
j+1 =

vj+1

vj

cos2 αj

cos2 βj+1

K−
j+1 +

(
vj+1

vj

cos αj − cos βj+1

)
KI

j+1

cos2 βj+1

, (3)

where, αj and βj+1 are the incident and transmission angles of the ray, respectively, and KI
j+1

is the interface of curvature, all these quantities being measured at the transmission point.
Observe that Snell’s law,

sin αj

vj

=
sin βj+1

vj+1

, (4)

is valid. Assume now that the NIP is located at the (N + 1)-th interface. This leads to the
focusing conditions

1

K−
N+1

= 0 =
1

K+
N

+ vN ∆tN and ∆tN = t0 −



N−1∑

j=1

∆tj


 , (5)

that determine the velocity vN . Here, K−
N+1 is the curvature of the wavefront at the NIP (it

starts as a point source) and K+
N is the curvature of the wavefront after transmission across

the interface N . Note that K+
N , as given by setting j = N − 1 in equation (3), has an implicit

dependence on vN and βN . This is because, by Snell’s law,

sin βN =
sin αN−1

vN−1

vN . (6)

Once vN and βN were determined, the segment of the zero-offset ray inside the N -th layer can
be constructed. The sought-for NIP location is then such that its distance to that transmission
point is vN∆tN .

4



Summary of the Hubral and Krey algorithm

It is instructive to discuss the key ideas involved in the preceding strategy. This is done below.
We first present the main steps of the algorithm. Next we make some comments about the
implementation of the various steps.

The method aims to extract a model composed by homogeneous layers separated by smoothly
curved reflectors, corresponding to the well identified interfaces within the data only. This
choice is made a priori by the user.

Determination of the first layer: The input data is, for each zero-offset ray, the traveltime
t0, the emergence angle β0 and the wavefront curvature KNIP . The velocity of the first
layer is assumed to be known. Thus, only the reflector (the bottom of the first layer)
should be determined. As explained below, this can be achieved in many different ways.

Determination of the jth-layer: Suppose that the model has been already determined up
to the (j − 1)th-layer. The method will proceed to the determination of the next layer,
that is, the velocity of the jth-layer and the (j + 1)th-interface. The input data is again,
for each zero-offset ray reflecting at the interface (j +1), the traveltime t0, the emergence
angle β0 and the wavefront curvature KNIP . Trace the zero-offset ray down to the j-th
interface. Recall that this ray makes the angle β0 with the surface normal at its initial
point. Now, using equations (2) and (3), back-propagate the NIP-wave from the surface
to the j-th interface along that ray. Now use the focusing conditions (5) to determine the
layer velocity vj, the angle βj and the NIP.

The above procedure can, in principle, be done to each zero-offset ray. However, under
the constraint that the layer velocity vj is constant, we obtain an over-determined system
for that unknown. How to deal with this problem will be discussed below.

3 Brief discussion of the algorithm

We now comment on the above algorithm with regards to its accuracy and implementation.
Our aim is to identify those aspects that can be improved upon the introduction of the CRS
methodology.

• The quantities needed by the method (emergence angles, normal traveltimes and NIP-
wavefront curvatures) are not directly available, but have to be extracted from the data. In
the description in Hubral and Krey (1980), these quantities are obtained by conventional
processing on CMP data.

• Note that the main idea of the method, the back-propagation of the NIP-wavefront,
is carried out independently for each ray. Thus, in principle, each ray carries enough
information to recover the layer velocity, that can be translated into many equations
depending on the same unknown. Since we are assuming homogeneous layers, this implies
an over-determination of the velocity. Of course, this question was faced on the original
algorithm, but the methodology applied is not stated in the text. Hubral and Krey (1980)
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have pointed out that this “excess” of information could be used to improve the velocity
distribution considered, for example, assuming a linear velocity variation.

• Note that the law of transmission for the wavefront curvatures depends on the curvature
of the interface (KI) at the transmission point, as we can see on formula (3). Hubral and
Krey (1980) state that this can be obtained by a normal ray migration.

• As stated in Hubral and Krey (1980), after the determination of the velocity, the location
of each NIP can be obtained by down propagating the last ray segment. Since each ray
hits the interface normally, the local dip can also be determined.

In the next section we show, with the help of the CRS attributes, how most of the difficulties
addressed above can be solved. In this way, a more accurate and efficient version of the
algorithm can be obtained and, moreover, preserving its elegant structure.

4 The revised Hubral and Krey algorithm

In this section we discuss how the CRS parameters can be used to fully supply the requirements
of the Hubral and Krey algorithm and also how to address the involved numerical aspects. Then,
we present a revised version of the original algorithm.

The obvious advantage of having the CRS parameters is that emergence angles and NIP-
wavefront curvatures have been already determined. Thus, nor a velocity analysis neither a
traveltime gradient estimation are required to obtain the input data for the inversion process.
Moreover, with the help of the well-defined coherence section provided by the CRS method,
it becomes easier to select the horizons of interest. We now proceed to point out the main
features of the proposed algorithm.

Smoothing. Special care is to be taken when using estimated quantities as input data. We
have to try to avoid or, at least, reduce the effect of the estimation errors on the inversion
process. The strategy applied in our implementation is to smooth the parameter curves. This
makes physical meaning, since no abrupt variations on the parameters can in general occur.
The method used is stated in Leite (1998): For each five neighboring points on the curve, we fit
a least-square parabola and replace the middle point by the corresponding one that belongs to
the parabola (see Figure 4). This smoothing technique can be applied several times (we have
used five times) to each parameter curve.

Unfolding criterion. The above-described smoothing method can be applied to any curve
on the plane. All we need to know is how to follow the curve. In our case, the curves are
parametrized by the central point coordinate. In caustic regions, more than one set of parameter
values are associated to the same central point. This could generate a problem to find out the
correct sequence. The reader could argue that perhaps the correct order is already known.
However, since the CRS parameters are extracted from the parameter sections by some picking
process, the method that we describe can be automatically built in the picking process. At
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Figure 4: For each five points, the smoothing scheme fits a parabola and replaces the central
point to its corresponding value at the parabola.

the left side of Figure 5 we can see a situation where the parameter values are sorted by their
central-point coordinates.

5.5 6.0 6.5 7.0 7.5 8.0

Central Point Coordinate

5.5 6.0 6.5 7.0 7.5 8.0

Central Point Coordinate

Figure 5: Both figures show a parameter curve within a caustic region. The small circles denote
the sampled values of the parameter. At left, the points on the curve are sorted by their central-
point coordinates. The arrows indicate the obtained sequence. At right, the same points were
resorted to the correct sequence by the application of the unfolding criterion.

We have formulated a criterion to unfold the parameter curve. When the curve has more
than one value for the same central point coordinate, the proposed criterion tries to keep the
variations of the CRS parameters between two neighboring points on the curve as small as
possible. This is a reasonable assumption since a smooth behavior of the CRS parameters is
expected. The merit function which is to be minimized is

F (pj,pi) =
|tj0 − ti0|

ti0
+
|βj

0 − βi
0|

|βi
0|

. (7)

Here, pi = (ti0, β
i
0) is a vector with components ti0 (traveltime) and βi

0 (emergence angle), that
refer to the central-point coordinate, xi

0. Also, i is the index of the current point and j varies
on the set of indices that specify their associated neighboring points. We calculate the function
above for each point in the vicinity of point i. Thereafter, we assign the point that has achieved
the minimum value of F to be the next one in the reordered sequence. We observe that we
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made additional tests including, in the merit function F , two more terms, one for KNIP and
one for KN . However, we got worse results concerning the stability of the scheme. Recall that
the above unfolding criterion is to be applied before the smoothing process. So it should work
even if there is noise in the obtained parameter values. Several tests have confirmed the ability
of the proposed criterion to effectively unfold the parameter curve.

Model with vertical velocity gradients. As earlier described, the velocity determination
is carried out at each normal ray, leading to an over determination problem. To approach the
velocity over-determination, we consider a solution in the sense of least squares as described
below.

Our proposed algorithm assumes that the layered velocity model to be constructed is such
that the velocity, in each layer, has a constant gradient in depth z-direction (an affine function
on the depth). In other words, the velocity of the jth-layer is

vj(z) = ajz + bj , (8)

with constant values of aj and bj. As previously indicated, this feature is a significant im-
provement of the original Hubral and Krey algorithm in the sense that the latter admits only
constant-velocity layers. Use of more general velocity profiles as in equation (8), implies that
the the formulas (2) and (3), designed for homogeneous layers, are no longer valid. To account
for variations of velocity inside the layers, we have used standard ray-theoretical results (see,
e.g., Červený (2001)), to derive the corresponding expressions for propagation and transmis-
sion of wavefront curvatures in layered media with velocity as in (8). For the propagation of
wavefront curvatures from a point A to a point B we found

K(B) =
v(B)

v(A)

(
K(A)−1 +

σ(B,A)

v(A)

)−1

, (9)

where

σ(B, A) =
sign(cos γ)

ap2
0

(√
1− p2

0v(A)2 −
√

1− p2
0v(B)2

)
, (10)

γ is the angle between the tangent of the ray at A and the vertical axis, a is the angular
coefficient of v, and p0 is the ray parameter. The transmission law of curvatures across an
interface is found to be

K+ =
v+

v−

(
cos α

cos β

)2

K− +

(
v+

v−
cos α− cos β

)
KI

cos2 β
+

2 cos α(sin α)2 sin γ−a−

v−(z)
, (11)

where a− is the angular coefficient of v−. The superscripts - and + account for the quantities
before and after the transmission through the interface, respectively.

Interface construction. Concerning the construction of the layer interfaces, our approach
is to fit a cubic spline, in the sense of least squares, to a set of obtained NIPs. Remember that,
after the determination of the layer velocity, each zero-offset ray can be propagate down to its
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Figure 6: Several NIPs (crosses) obtained by propagation of the last ray segments.

correspondent NIP (see Figure 6). The optimization solver employed is the GENCAN, proposed
by Birgin and Mart́ınez (2001). GENCAN is an active-set method for smooth box-constrained
minimization. The algorithm combines an unconstrained method, including a line-search which
aims to add many constraints to the working set at a single iteration, with a recently introduced
technique (spectral projected gradient) for dropping constraints from the working set.

5 Implementation of the revised Hubral and Krey algo-

rithm

In the following, we present and comment our implementation scheme of the algorithm of
revised Hubral and Krey as proposed in this work.

Input data. Recall that after the application of the CRS method, we obtain a simulated
zero-offset section in which the events of interest (selected primary reflections) are well
identified. This means that the traveltimes t0 at each reflection are known. The identified
primary reflections will provide the interfaces of the layered model to be inverted. Also
recall that, attached to each point of the simulated zero-offset section, we have the three
parameters β0, KNIP and KN , that have been extracted from the multicoverage data.
We finally note that the velocity of the medium in the vicinity of each central point is
assumed to be a priori known.

Determination of the first layer. For a given central point, X0, let t0 be the zero-offset
traveltime of the primary reflection at the first interface. Also, let β0 be the corresponding
emergence angle. In the present form of the algorithm, we assume that the velocity of
the first layer is known and has the form given by equation (8). We trace from X0 a ray
segment that makes an angle β0 with the surface normal at X0 and has length equals to
v0t0/2. The extreme of that ray segment is the NIP. Do this for all central points that
illuminate the first interface. Finally, we fit a cubic spline to the obtained NIPs, in a
least-squares sense, to represent the interface. As a result of this process, the first layer
is completely determined.
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Subsequent layers. Let us assume that the model has been already determined up to the
layer (j − 1). Note that this means that interface j has been already constructed. The
input data are now the CRS parameters that refer to the zero-offset rays that reflect at
the interface (j + 1). Trace the rays down to the interface j and back-propagate the
NIP-wavefront along those rays. Applying the focusing conditions, estimate vj by least
squares. Using Snell’s law calculate βj and, knowing the remaining traveltimes, trace the
last segment of each ray. To fit the many obtained NIPs an optimized cubic spline is
estimated, representing, in this way, the interface (j + 1).

6 Synthetic examples

The algorithm was applied to the model depicted in Figure 7. That model consists of three
interfaces separating four homogeneous layers. The second reflector has a synclinal region
between 6.5km and 7.5km that generates caustics. The data was modeled by ray tracing, using
the package Seis88, designed by Červený and Pšenč́ık (Červený (1985)). Noise was added to
the data. The CRS parameters were estimated by the strategy described in Birgin et al. (1999).
Finally, those parameters were inverted by the proposed method. The obtained model, depicted
by solid lines in Figure 7, shows a very good agreement with the input model.
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real interface
recovered interfacev0 = 1.40 km/s

v1 = 2.00 km/s
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e
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v2
e
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Figure 7: Synthetic model with four homogeneous layers separated by smooth interfaces (dashed
lines). Inverted model composed by layers separated by the recovered interfaces (solid lines).
vj and ve

j are the real and estimated velocities, respectively.

As a second example, we consider the model depicted in Figure 8(a). It is composed by four
layers. The first and the fourth layers are homogeneous. The second and the third layers are
inhomogeneous, in the sense that the velocity varies both in vertical and in horizontal directions.
As before, the multicoverage data was modeled by ray tracing and noise was added to it. The
estimated CRS parameters were inverted by the method. The result is the model depicted in
Figure 8(b). Note that the resulting model has, of course vertical gradients. To better assess the
accuracy of the recovered model, Figure 8(c) shows the percentual error between the synthetic
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and the inverted model. Note that the errors are, almost everywhere, below 5%. In fact, the
euclidian norm of the relative error is approximately 3.9.
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Figure 8: (a) Synthetic model with four layers, two homogeneous and two inhomogeneous. (b)
Obtained model with gradients. (c) Percentual error, between the synthetic and the obtained
model.

7 Summary and Conclusions

The contribution of this work is an extension of the classical Hubral and Krey velocity-model
inversion algorithm. That extension uses CRS parameters, obtained from previous application
of the CRS stacking method. A significant improvement of the proposed algorithm is that it
allows for (vertical) gradient velocity profiles inside each layer. The algorithm is also able to
efficiently and accurately consider caustic regions. Finally, the obtained interfaces are repre-
sented by optimized cubic splines, leading to very stable results. A discussion on the important
aspects of the numerical implementation of the algorithm, as needed for an efficient application
of the method, is provided.

Two synthetic examples are shown, where the main features of the method can be illustrated.
The results are encouraging. Concerning more complex velocities profiles, we may consider the
application of algorithm on separated parts of the domain. Thus, each inverted model would
be composed by layers with gradient-type velocity profiles that could, in a next step, be put
together to form a complete inverted model. Research on these and other aspects of the
algorithm are under current investigation.
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8 Publications

Detailed discussions on the various topics addressed in this paper are provided in Biloti (2001).
Some of the material of the present paper has been presented at 7th International Congress of
the Brazilian Geophysical Society (Biloti et al. (2001)).
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