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Abstrat

In reent years, the phase-�eld methodology has ahieved onsiderable im-

portane in modeling and numerially simulating a range of phase transitions

and omplex growth strutures that our during solidi�ation proesses. In

attempt to understand the mathematial aspets of suh methodology, in

this artile we onsider a simpli�ed model of this sort for a nonstationary

proess of solidi�ation/melting of a binary alloy with thermal properties.

The model inludes the possibility of ourrene of natural onvetion in

non-solidi�ed regions and, therefore, leads to a free-boundary value prob-

lem for a highly non-linear system of partial di�erential equations onsisting

of a phase-�eld equation, a heat equation, a onentration equation and a

modi�ed Navier-Stokes equations by a penalization term of Carman-Kozeny

type, whih aounts for the mushy e�ets, and Boussinesq terms to take in

onsideration the e�ets of variations of temperature and onentration in

the ow.

A proof of existene of weak solutions for the system is given. The prob-

lem is �rstly approximated and a sequene of approximate solutions is ob-

tained by Leray-Shauder's �xed point theorem. A solution of the original

problem is then found by using ompatness arguments.
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1 Introdution

In reent years, the phase-�eld methodology, whih is an alternative formu-

lation both to the sharp-interfae methodology (Stefan type approah) or to

the enthalpy methodology, has ahieved onsiderable importane in modeling

and numerially simulating a range of phase transitions and omplex growth

strutures that our during solidi�ation. This has spurred many artiles

using this approah and proposing several mathematial models onsisting

of highly nonlinear systems of partial di�erential equations.

Rigorous mathematial analysis is in general diÆult, but for pure ma-

terials undergoing phase hange, several authors have undertaking the task.

Examples of this sort of analysis are [4, 14, 16, 20℄, where existene and

uniqueness results are investigated for various types of non-linearities.

Several phase-�eld models have also been developed for binary alloys.

One of the �rst works in this diretion was due to Wheeler et al. [30℄ and

was onerned with isothermal solidi�ation. Warren and Boettinger [29℄

extended this model, while reently Rappaz and Sheid [22℄ investigated the

well-posedness under suitable assumptions for the non-linearities. Caginalp

et al. [6, 5℄ extended this kind of model by inluding temperatures hanges.

For suh model, the governing equations for the phase-�eld and the onen-

tration are derived from a free energy funtional; then an appropriate balane

equation for the temperature, aounting for the liberation of latent heat by

addition of a term proportional to the time derivative of the phase-�eld, is

added to omplete the model. The existene of weak solutions for this model

was reently studied in [3℄.

The previously mentioned phase-�eld models do not onsider the possi-

bility of ow of the non-solidi�ed material. However, there are many ases

where suh ows do our and are signi�ant, having important e�ets on the

outome of the solidi�ation proess. From the mathematial point of view,

the inlusion of suh e�ets in the model brings another order of diÆulty

to the analysis, whatever the approah used for modeling phase hange. For

instane [7, 8, 9, 10, 21, 24℄ onsider several mathematial aspets of the

interplay between uid motion and phase hange for pure material; the �rst

four of these papers used the Stefan approah, while the last two used the

enthalpy approah.

Voller et al. [26, 27℄ proposed models using the enthalpy tehnique for

a onvetion/di�usion phase hange proess by inluding in the model a

modi�ation of the Navier-Stokes equations by the inlusion of a ertain term

3



that takes in onsideration the ow in mushy regions. Partiular expressions

for this term may be obtained by modeling the mushy region as porous

medium. Another model of this type was proposed by Voss and Tsai [28℄. In

Blan et al. [1℄ performed a rigorous mathematial analysis of a stationary

model for the solidi�ation proess with onvetion of a binary alloy. The

model in [1℄ used an enthalpy approah and, as suggested in Voller et al.

[27℄, a Carman-Kozeny penalization term was added to the Navier-Stokes

equations to model the ow in mushy regions. Other authors have proposed

models using the phase-�eld method for solidi�ation proess of binary alloys

in presene of onvetion. For instane, Bekermann et al. [2℄ and Diepers

et al. [11℄ proposed models of this sort using arguments of mixture theory.

They also presented numerial simulations to validate their models.

In this paper we are interested in the rigorous mathematial analysis of a

phase-�eld type model for a non-stationary solidi�ation proess of a binary

alloy, with the possibility of ow of the non-solid phase. Di�erently of models

in [2℄ and [11℄, the model we onsider here ombines ideas of Voller et al. [27℄

and of Blan et al. [1℄ to model the possibility of ow with those of Caginalp

et al. [6℄ for the phase-�eld and the thermal properties of the alloy. Our

system of equations will desribed in detail in the next setion; here we just

observe that our system inludes the Navier-Stokes equations with a Carman-

Kozeny type term as desribed above, and also a Boussinesq type term to take

in onsideration buoyany fores due to thermal and onentration e�ets.

Sine these equations for the ow only hold in an a priori unknown non-solid

region, the model orresponds to a free boundary value problem. Moreover,

sine the Carman-Kozeny term is dependent on the loal solid fration, this

is assumed to be funtionally related to the the phase-�eld.

Our objetive is to present a result on existene of weak solutions for this

mathematial model. The proof will be based on a regularization tehnique

that ombines ideas already used in [1℄ and [3℄: an auxiliary positive param-

eter will be introdued in the equations in suh way that the original free

boundary value problem will be transformed in a more standard (penalized)

problem. We say that this transformed problem is the regularized problem.

By solving it, one hopes to reover a solution of the original problem as

the parameter approahes zero. To aomplish suh program, we will �rstly

solve the regularized problem by using the Faedo-Galerkin method, just in

the modi�ed Navier-Stokes equations, and the Leray-Shauder �xed point

theorem. Then, by taking a sequene of values of the parameter approah-

ing zero, we will have a sequene of approximate solutions. By obtaining
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suitable estimates for this sequene, we will then be able to take the limit

along a subsequene and, by ompatness arguments, to show that we have

a solution of the original problem.

The paper is organized as follows. In Setion 2 we desribe the mathemat-

ial model and its variables; we �x the notation and desribe the funtional

spaes to be used; we also state our tehnial hypotheses and main result.

In Setion 3 we introdue and analyze the regularized problem. Setion 4 is

dediated to the proof of the existene of weak solutions of the original free

boundary value problem.

2 The model and main result

Let 0 < T < +1 and 
 be an open bounded domain in IR

N

, N = 2 or 3,

with smooth boundary �
 (of lass C

3

will be enough for our purposes).

Being Q = 
� (0; T ), we will onsider the following system of equations:

��

2

�

t

� �

2

�� =

1

2

(�� �

3

) + � (� � �

A

� (1� )�

B

) in Q; (1)

v

t

� ��v +rp+ v � rv + k(f

s

(�))v = F(; �) in Q

ml

; (2)

div v = 0 in Q

ml

; (3)

v = 0 in Q

s

; (4)

C

v

�

t

+ C

v

v � r� = r � [K

1

(�)r�℄ +

l

2

f

s

(�)

t

in Q; (5)



t

+ v:r = K

2

(� +Mr � [(1� )r�℄) in Q; (6)

��

�n

=

��

�n

=

�

�n

= 0 on �
� (0; T ); v = 0 on �Q

ml

; (7)

�(0) = �

0

; �(0) = �

0

; (0) = 

0

in 
; v(0) = v

0

in 


ml

(0); (8)

Here, � is the phase-�eld variable (sometimes alled order parameter), whih

is the state variable haraterizing the di�erent phases; v is the veloity �eld;

p is the assoiated hydrostati pressure; f

s

2 [0; 1℄ is the solid fration; � is

the temperature;  2 [0; 1℄ is the onentration of the solute (i.e., the fration

of one of the two materials in the mixture).

We reall that the phase-�eld methodology in its simplest approah as-

sumes the existene of two real numbers �

s

< �

l

and a order parameter

(phase-�eld) �(x; t), depending on the spatial variable x and time t, suh
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that if �(x; t) � �

s

then the material at point x at time t is in solid

state; if �

l

� �(x; t) the material at point x at time t is in liquid state;

if �

s

< �(x; t) < �

l

then, at time t the point x is in the mushy region (a

region of mirosopi mixture of solid and liquid). This setting must be

physially oherent with the onept of solid fration, whih we assume to be

funtionally dependent on the phase-�eld. This requires that f

s

(z) be a fun-

tion suh that f

s

(z) = 1 for z � �

s

, f

s

(z) = 0 for z � �

l

, and 0 < f

s

(z) < 1

for �

s

< z < �

l

. The required regularity assumptions on f

s

will be desribed

later on.

In the �rst of the previous equations (the phase-�eld equation), � >

0 is the relaxation saling; � = �[s℄=3� where � > 0 is a measure of the

interfae width; � the surfae tension, and [s℄ is the entropy density di�erene

between phases. �

A

and �

B

are the melting temperatures of the two materials

omposing the binary alloy.

In the seond of the previous equations, � > 0 is the visosity, assumed to

be onstant. The penalization term k(f

s

) aounts for the mushy e�et in the

ow. The original Carman-Kozeny expression for it is k(x) = C

0

x

2

=(1� x)

3

;

however, we will onsider more general expressions for this term. The term

F(; �) is the buoyany fore, whih by using Boussinesq approximation an

be expressed as F(; �) = �g (

1

(� � �

r

) + 

2

(� 

r

)) + F , where � is the

mean value of the density (whih for simpliity we will assume to be a positive

onstant); g is the aeleration of gravity (for simpliity also assumed to be

onstant); 

1

and 

2

are two onstants; �

r

, 

r

are respetively the referene

temperature and onentration (again for simpliity of exposition, both will

be assumed to be zero), and F is an external fore �eld.

In the equation for the temperature, C

v

> 0 is the spei� heat (onstant);

l is a positive onstant assoiated to the latent heat. We also observe that

this equation omes from the balane of the internal energy that in this ase

has the form e = C

v

� +

l

2

(1 � f

s

), where 1 � f

s

is the liquid fration. The

thermal ondutivity K

1

> 0 is assumed to depend on the phase-�eld.

In the last equation, K

2

> 0 is the solute di�usivity and M is a onstant

related to the slopes of solidus and liquidus lines.

The domain Q is omposed of three regions, Q

s

, Q

m

and Q

l

. The �rst

one orresponds to the fully solid region; the seond one orresponds to the
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mushy region, while the third is fully liquid region. They are de�ned by

Q

s

= f(x; t) 2 Q : f

s

(�(x; t)) = 1g;

Q

m

= f(x; t) 2 Q : 0 < f

s

(�(x; t)) < 1g;

Q

l

= f(x; t) 2 Q : f

s

(�(x; t)) = 0g:

(9)

Q

ml

will refer to the non-solid region, i.e.,

Q

ml

= Q

m

[Q

l

= f(x; t) 2 Q : 0 � f

s

(�(x; t)) < 1g: (10)

We also de�ne the subsets of 
 assoiated respetively to the solid and non-

solid regions at time t 2 (0; T ℄




s

(t) = fx 2 
 : f

s

(�(x; t)) = 1g ;




ml

(t) = fx 2 
 : 0 � f

s

(�(x; t)) < 1g :

(11)

Observe that as we said above, all these previously desribed regions are a

priori unknown, the model orresponds to a free boundary value problem.

Throughout this paper we will assume the following assumptions:

(H1) k is nondereasing funtion of lass C

1

[0; 1) satisfying k(0) = 0 and

lim

x!1

�

k(x) = +1;

(H2) f

s

depends only on the phase �eld and is a Lipshitz ontinuous

funtion de�ned on IR and satisfying 0 � f

s

(r) � 1 for r 2 IR with f

0

s

measurable,

(H3) K

1

depends only on the phase-�eld and is a Lipshitz ontinuous

funtion de�ned on IR; moreover, there exist a > 0 and b > 0 suh that

0 < a � K

1

(r) � b for all r 2 IR;

(H4) F is a given funtion in L

2

(Q):

We remark that the onentration equation as it is written in [6℄ (up to

addition of a proper onvetion term) is the following:



t

+ v:r = K

2

r �

�

(1� )r

�

M�+ ln



1� 

��

in Q:

This form of the equation fores  2 (0; 1) and is equivalent to equation (6)

in this ase. Thus, (6) is more general than this last form sine it allows  to

assume the values 0 and 1, whih are assoiated to regions of pure materials.
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We use standard notation in this paper. We just briey reall the follow-

ing funtional spaes assoiated to the Navier-Stokes equations. Let G � IR

N

be a non-void bounded open set; for T > 0, onsider also Q

G

= G � (0; T )

Then,

V(G) =

n

w 2 (C

1

0

(G))

N

; div w = 0

o

;

H(G) = losure of V(G) in (L

2

(G))

N

;

V (G) = losure of V(G) in (H

1

0

(G))

N

;

H

�;�=2

(Q

G

) = H�older ontinuous funtions of exponent � in x

and exponent �=2 in t;

W

2;1

q

(Q

G

) = fw 2 L

q

(Q

G

)=D

x

w;D

2

x

w 2 L

q

(Q

G

); w

t

2 L

q

(Q

G

)g :

When G = 
, we denote H = H(
), V = V (
). Properties of these fun-

tional spaes an be found for instane in [15, 25℄. We denote by h�; �i the

duality pairing between H

1

(
) and H

1

(
)

0

: We also put (�; �) = (�; �)




the

inner produt of (L

2

(
))

N

:

The main result of this paper is the following.

Theorem 1 Let be given T > 0, 
 � IR

N

, N = 2, or 3, a bounded open

domain of lass C

3

, and assume that (H1)-(H4) hold. Let also be given

(N + 2)=2 < q � 2(N + 2)=N , �

0

2 W

2�2=q;q

(
) \ H

1+

(
); 1=2 <  � 1;

satisfying the ompatibility ondition

��

�n

= 0 on �
, v

0

2 H(


ml

(0)), �

0

2

L

2

(
), and 

0

2 L

2

(
) satisfying 0 � 

0

� 1 a.e. in 
. Then, there exist

funtions (�; v; �; ; J) satisfying:

(i) � 2 W

2;1

q

(Q), �(0) = �

0

,

(ii) v 2 L

2

(0; T ;V ) \ L

1

(0; T ;H), v = 0 a.e. in

o

Q

s

, v(0) = v

0

in 


ml

(0),

where Q

s

is de�ned by (9) and 


ml

(0) by (11),

(iii) � 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)), �(0) = �

0

,

(iv)  2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)), (0) = 

0

, 0 �  � 1 a.e. in Q

Moreover, they satisfy

��

2

�

t

� �

2

�� =

1

2

(�� �

3

) + � (� + (�

B

� �

A

)� �

B

) a.e. in Q; (12)

��

�n

= 0 a.e. on �
� (0; T ); (13)
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(v(t); �(t))




ml

(t)

�

Z

t

0

(v; �

t

)




ml

(s)

ds+ �

Z

t

0

(rv;r�)




ml

(s)

ds

+

Z

t

0

(v � rv; �)




ml

(s)

ds+

Z

t

0

(k(f

s

(�))v; �)




ml

(s)

ds

=

Z

t

0

(F(; �); �)




ml

(s)

ds+ (v

0

; �(0))




ml

(0)

;

(14)

for t 2 (0; T ℄ and any � 2 L

2

(0; T ;V (


ml

(t))) with ompat support ontained

in Q

ml

[


ml

(0)[


ml

(T ) and �

t

2 L

2

(0; T ;V (


ml

(t))

0

) where Q

ml

is de�ned

by (10) and 


ml

(t) by (11),

�C

v

Z




�

0

�(0)dx� C

v

Z

T

0

Z




��

t

dxdt� C

v

Z

T

0

Z




v� � r� dxdt

+

Z

T

0

Z




K

1

(�)r� � r� dxdt =

l

2

Z

T

0

Z




f

s

(�)

t

� dxdt

(15)

for any � 2 L

4

(0; T ;H

1

(
)) with �

t

2 L

2

(Q) and �(T ) = 0 in 
;

�

Z

T

0

Z




�

t

dxdt�

Z

T

0

Z




v � r� dxdt+K

2

Z

T

0

Z




r � r� dxdt

+K

2

M

Z

T

0

Z




(1� )r� � r� dxdt =

Z






0

�(0)dx;

(16)

for any � 2 L

2

(0; T ;H

1

(
)) with �

t

2 L

2

(Q) and �(T ) = 0 in 
:

Remarks:

1. The restrition q > N + 2=2 ensures the ontinuity of phase-�eld;

in fat, in this ase W

2;1

q

(Q) � H

�;�=2

(

�

Q), for � = 2 � (N + 2)=q ([15℄ p.

80). Therefore, the set Q

ml

is open, and we have a suitable interpretation

for the equations of veloity �eld. The restrition q � 2(N + 2)=N is on-

sequene of the obtained regularity of the temperature. (iii) implies that

� 2 L

2(N+2)=N

(Q), and then, from the existene theorem for the phase-�eld

equation given in ([14℄ Thm 2.1), we know that � 2 W

2;1

2(N+2)=N

(Q).

2. We observe that the phase-�eld models without onvetion studied in

[3℄ or [16℄ allow the thermal ondutivity K

1

to vanish. In the presene of

onvetion, we were not able to prove the existene of global weak solutions in

this degenerate ase; thus, we had to assume the more restritive assumption

(H3). It is possible, however, to prove the existene of a slightly di�erent

loal weak solution of (1)-(8) in the degenerate ase. This will be done

elsewhere.
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3 A regularized problem

In this setion we introdue an auxiliary regularized problem by performing

suitable modi�ations of the original equations. The �rst objetive of these

modi�ations is to introdue oeÆients ensuring enough regularity for the

arguments to be used. The seond objetive, as in Blan [1℄, is to hange

the modi�ed Navier-Stokes equations in suh way that it holds in the whole

domain instead of holding just in an a priori unknown region.

The proof of existene of solutions for suh regularized problem will be

done by using Faedo-Galerkin method, with the help of the Leray-Shauder

Fixed Point Theorem as stated in ([12℄, p. 189):

Theorem (Leray-Shauder): Consider a transformation y = T

�

(x) where

x; y belong to a Banah spae B and � is a real parameter whih varies in a

bounded interval, say 0 � � � 1: Assume:

(a) T

�

(x) is de�ned for all x 2 B; 0 � � � 1;

(b) for any �xed �; T

�

(x) is ontinuous in B;

() for x in bounded sets of B; T

�

(x) is uniformly ontinuous in �;

(d) for any �xed �; T

�

(x) is a ompat transformation,

(e) there exists a (�nite) onstant M suh that every possible solution x

of T

�

(x) = x satis�es: kxk

B

�M;

(f) the equation T

0

(x) = x has a unique solution in B:

Under the assumptions (a)-(f), there exists a solution of the equation x �

T

1

(x) = 0:

Now, we reall ertain results that will be helpful in the introdution of

suh regularized problem.

Reall that there is an extension operator Ext(�) taking any funtion w

in the spae W

2;1

2

(Q) and extending it to a funtion Ext(w) 2 W

2;1

2

(IR

N+1

)

with ompat support satisfying

kExt(w)k

W

2;1

2

(IR

N+1

)

� C kwk

W

2;1

2

(Q)

;

with C independent of w (see [19℄ p. 157).

For Æ 2 (0; 1), let �

Æ

2 C

1

0

(IR

N+1

) be a family of symmetri positive mol-

li�er funtions with ompat support onverging to the Dira delta funtion

(we an take the support of �

Æ

ontained in the ball of radius Æ), and denote

by � the onvolution operation. Then, given a funtion w 2 W

2;1

2

(Q), we
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de�ne a regularization �

Æ

(w) 2 C

1

0

(IR

N+1

) of w by

�

Æ

(w) = �

Æ

� Ext(w):

This sort of regularization will be used with the phase-�eld variable. We

will also need a regularization for the veloity, and for it we proeed as follows.

Given v 2 L

2

(0; T ;V ), �rst we extend it as zero in IR

N+1

nQ. Then, as in

[19℄ p. 157, by using reetion and utting-o�, we extend the resulting fun-

tion to another one de�ned on IR

N+1

and with ompat support. Without

the danger of onfusion, we again denote suh extension operator by Ext(v).

Then, being Æ > 0, �

Æ

and � as above, operating on eah omponent, we an

again de�ne a regularization �

Æ

(v) 2 C

1

0

(IR

N+1

) of v by

�

Æ

(v) = �

Æ

� Ext(v):

Besides having properties of ontrol of Sobolev norms in terms of the orre-

sponding norms of the original funtion (exatly as above), suh extension

has the property desribed below.

For 0 < Æ � 1, de�ne �rstly the following family of uniformly bounded

open sets




Æ

= fx 2 IR

N

: d(x;
) < Æg: (17)

We also de�ne the assoiated spae-time ylinder

Q

Æ

= 


Æ

� (0; T ): (18)

Obviously, for any 0 < Æ

1

< Æ

2

, we have 
 � 


Æ

1

� 


Æ

2

, Q � Q

Æ

1

� Q

Æ

2

.

Also, by using properties of onvolution, we onlude that �

Æ

(v)j

�


Æ
= 0.

In partiular, for v 2 L

1

(0; T ;H) \ L

2

(0; T ;V ), we onlude that �

Æ

(v) 2

L

1

(0; T ;H(


Æ

)) \ L

2

(0; T ;V (


Æ

)).

Moreover, sine 
 is of lass C

3

, there exists Æ(
) > 0 suh that for

0 < Æ � Æ(
), we onlude that 


Æ

is of lass C

2

and suh that the C

2

norms

of the maps de�ning �


Æ

are uniformly estimated with respet to Æ in terms

of the C

3

norms of the maps de�ning �
.

Sine we will be working with the sets 


Æ

, the main objetive of this last

remark is to ensure that the onstants assoiated to Sobolev immersions and

interpolations inequalities, involving just up to seond order derivatives and

used with 


Æ

, are uniformly bounded for 0 < Æ � Æ(
). This will be very

important to guarantee that ertain estimates will be independent of Æ.

Finally, let f

Æ

s

be any regularization of f

s

.
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Now, we are in position to de�ne the regularized problem. Let Æ(
) be

as desribed after (17); for eah Æ 2 (0; Æ(
)℄, we onsider the system

��

2

�

Æ

t

� �

2

��

Æ

�

1

2

(�

Æ

� (�

Æ

)

3

) = �

�

�

Æ

+ (�

B

� �

A

)

Æ

� �

B

�

in Q

Æ

; (19)

d

dt

(v

Æ

; u) + �(rv

Æ

;ru) + (v

Æ

� rv

Æ

; u) + (k(f

Æ

s

(�

Æ

)� Æ)v

Æ

; u)

= (F(

Æ

; �

Æ

); u) for all u 2 V (


Æ

); t 2 (0; T );

(20)

C

v

�

Æ

t

+ C

v

�

Æ

(v

Æ

) � r�

Æ

= r �

�

K

1

(�

Æ

(�

Æ

))r�

Æ

�

+

l

2

f

Æ

s

(�

Æ

)

t

in Q

Æ

; (21)



Æ

t

�K

2

�

Æ

+ �

Æ

(v

Æ

) � r

Æ

= K

2

Mr �

�



Æ

(1� 

Æ

)r�

Æ

(�

Æ

)

�

in Q

Æ

; (22)

��

Æ

�n

= 0;

��

Æ

�n

= 0;

�

Æ

�n

= 0 on �


Æ

� (0; T ); (23)

�

Æ

(0) = �

Æ

0

; v

Æ

(0) = v

Æ

0

; �

Æ

(0) = �

Æ

0

; 

Æ

(0) = 

Æ

0

in 


Æ

: (24)

Conerning this system we will prove the following existene result.

Proposition 1 Let T > 0, Æ(
) > 0 be as desribed following (17), and

1=2 <  � 1. For eah Æ 2 (0; Æ(
)℄, onsider �

Æ

0

2 H

1+

(


Æ

), v

Æ

0

2 H(


Æ

),

�

Æ

0

2 H

1+

(


Æ

) and 

Æ

0

2 C

1

(


Æ

) satisfying the ompatibility onditions

��

Æ

0

�n

=

��

Æ

0

�n

=

�

Æ

0

�n

= 0 on �


Æ

and 0 � 

Æ

0

� 1 in 


Æ

. Assume also that (H1)-(H4)

hold. Then, there exist a solution (�

Æ

; v

Æ

; �

Æ

; 

Æ

) of (19)-(24) satisfying

i) �

Æ

2 L

2

(0; T ;H

2

(


Æ

)), �

Æ

t

2 L

2

(Q

Æ

),

ii) v

Æ

2 L

2

(0; T ;V (


Æ

)) \ L

1

(0; T ;H(


Æ

)), v

Æ

t

2 L

2

(0; T ;V (


Æ

)

0

),

iii) �

Æ

2 L

2

(0; T ;H

2

(


Æ

)), �

Æ

t

2 L

2

(Q

Æ

),

iv) 

Æ

2 C

2;1

(Q

Æ

); 0 � 

Æ

� 1:

The proof of this proposition will depend on an another existene result

for other approximate problem, obtained from (19)-(24) by disretizing just

the modi�ed Navier-Stokes equations using Faedo-Galekin method. By solv-

ing this approximate problem, we will reover the solution of the regularized

problem as the disretization dimension m inreases to +1.

12



For this purpose, �rst we introdue the spaes V

s

(


Æ

),

V

s

(


Æ

) = the losure of V(


Æ

) in (H

s

(


Æ

))

N

; s � 1;

endowed with the usual Hilbert salar produt

((u; v))

s

=

N

X

i=1

(u

i

; v

i

)

H

s

(


Æ

)

:

We also onsider the spetral problem:

((u; v))

s

= �(u; v) for all v 2 V

s

(


Æ

) and s =

N

2

;

whih admits a sequene of solutions w

j

orresponding to the sequene of

eigenvalues �

j

> 0.

With the help of these eigenfuntions, we de�ne the following approximate

problem of order m: �nd (�

Æ

m

; v

Æ

m

; �

Æ

m

; 

Æ

m

), with

v

Æ

m

(t) =

m

X

j=1

g

Æ

jm

(t)w

j

2 V

m

= spanfw

1

; : : : ; w

m

g;

suh that

��

2

�

Æ

m

t

� �

2

��

Æ

m

�

1

2

(�

Æ

m

� (�

Æ

m

3

) = �

�

�

Æ

m

+ (�

B

� �

A

)

Æ

m

� �

B

�

in Q

Æ

; (25)

d

dt

(v

Æ

m

; w

j

) + �(rv

Æ

m

;rw

j

) + (v

Æ

m

� rv

Æ

m

; w

j

) + (k(f

Æ

s

(�

Æ

m

)� Æ)v

Æ

m

; w

j

)

= (F(

Æ

m

; �

Æ

m

); w

j

) 1 � j � m; t 2 (0; T ); (26)

C

v

�

Æ

m

t

+ C

v

�

Æ

(v

Æ

m

) � r�

Æ

m

= r �

�

K

1

(�

Æ

(�

Æ

m

))r�

Æ

m

�

+

l

2

f

Æ

s

(�

Æ

m

)

t

in Q

Æ

; (27)



Æ

m

t

�K

2

�

Æ

m

+�

Æ

(v

Æ

m

) �r

Æ

m

= K

2

Mr�

�



Æ

m

(1� 

Æ

m

)r�

Æ

(�

Æ

m

)

�

in Q

Æ

; (28)

��

Æ

m

�n

= 0;

��

Æ

m

�n

= 0;

�

Æ

m

�n

= 0 on �


Æ

� (0; T ); (29)

�

Æ

m

(0) = �

Æ

0m

; v

Æ

m

(0) = v

Æ

0m

; �

Æ

m

(0) = �

Æ

0m

; 

Æ

m

(0) = 

Æ

0m

in 


Æ

: (30)

We then have the following existene result.

13



Proposition 2 Let T > 0, Æ(
) be as desribed after (17), and 1=2 <  �

1. Fix Æ 2 (0; Æ(
)℄ and m 2 IN ; let �

Æ

0m

2 H

1+

(


Æ

), v

Æ

0m

2 H(


Æ

),

�

Æ

0m

2 H

1+

(


Æ

) and 

Æ

0m

2 C

1

(


Æ

) satisfying the ompatibility onditions

��

Æ

0m

�n

=

��

Æ

0m

�n

=

�

Æ

0m

�n

= 0 on �


Æ

and 0 < 

Æ

0m

< 1 in 


Æ

: Assume also

that (H1)-(H4) hold. Then, there exist a solution (�

Æ

m

; v

Æ

m

; �

Æ

m

; 

Æ

m

) satisfying

(25)-(30) and

i) �

Æ

m

2 L

2

(0; T ;H

2

(


Æ

)), �

Æ

m

t

2 L

2

(Q

Æ

),

ii) v

Æ

m

2 C

1

([0; T ℄;V

m

),

iii) �

Æ

m

2 L

2

(0; T ;H

2

(


Æ

)), �

Æ

m

t

2 L

2

(Q

Æ

),

iv) 

Æ

m

2 C

2;1

(Q

Æ

), 0 < 

Æ

m

< 1.

Proof: For simpliity of notation, in this proof we shall omit the index

Æ used in �

Æ

m

, v

Æ

m

, �

Æ

m

, 

Æ

m

.

We onsider the family of operators, for 0 � � � 1;

T

�

: B ! B;

where B is the Banah spae

B = L

2

(Q

Æ

)� L

2

(0; T ;H(


Æ

))� L

2

(Q

Æ

)� L

2

(Q

Æ

);

whih maps (

^

�

m

; v̂

m

;

^

�

m

; ̂

m

) 2 B into (�

m

; v

m

; �

m

; 

m

), with

v

m

(t) =

m

X

j=1

g

jm

(t)w

j

2 V

m

, obtained by solving the problem

��

2

�

m

t

� �

2

��

m

�

1

2

(�

m

� �

3

m

) = ��

�

^

�

m

+ (�

B

� �

A

)̂

m

� �

B

�

in Q

Æ

; (31)

d

dt

(v

m

; w

j

) + �(rv

m

;rw

j

) + (v

m

� rv

m

; w

j

) + (k(f

Æ

s

(�

m

)� Æ)v

m

; w

j

)

= �(F(̂

m

;

^

�

m

); w

j

) 1 � j � m; t 2 (0; T ); (32)

C

v

�

m

t

+ C

v

�

Æ

(v

m

) � r�

m

= r � (K

1

(�

Æ

(�

m

))r�

m

) +

l

2

f

Æ

s

(�

m

)

t

in Q

Æ

; (33)



m

t

�K

2

�

m

+�

Æ

(v

m

) �r

m

= K

2

Mr� (

m

(1� 

m

)r�

Æ

(�

m

)) in Q

Æ

; (34)
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��

m

�n

=

��

m

�n

=

�

m

�n

= 0 on �


Æ

� (0; T ); (35)

�

m

(0) = �

Æ

0m

; v

m

(0) = v

Æ

0m

; �

m

(0) = �

Æ

0m

; 

m

(0) = 

Æ

0m

in 


Æ

: (36)

Clearly (�

m

; v

m

; �

m

; 

m

) is a solution of (25)-(30) if and only if it is a �xed

point of the operator T

1

: In the following, we prove that T

1

has at least one

�xed point using the Leray-Shauder Fixed Point Theorem.

To begin with, observe that sine

^

�

m

; ̂

m

2 L

2

(Q

Æ

) we infer from The-

orem 2.1 [14℄ that there is a unique solution �

m

of equation (31) with

�

m

2 W

2;1

2

(Q

Æ

):

Now, (32) is a nonlinear system of ordinary di�erential equations for the

funtions g

1m

; : : : ; g

mm

. This problem has an unique maximal solution de-

�ned on same interval [0; t

m

) and v

m

2 C

1

([0; t

m

);V

m

). The a priori estimates

we shall prove later will show in partiular that t

m

= T .

Observe that sine K

1

is a bounded Lipshitz ontinuous funtion and

�

Æ

(�

m

) 2 C

1

(IR

N+1

), we have that K

1

(�

Æ

(�

m

)) 2 W

1;1

r

(Q

Æ

), 1 � r � 1, and

sine �

Æ

(v

m

) 2 L

N+2

(Q

Æ

) and f

Æ

s

(�

m

)

t

= f

Æ

s

0

(�

m

)�

m

t

2 L

2

(Q

Æ

), we infer from

L

p

-theory of paraboli equations ([15℄, Thm. 9.1 in Chapter IV, p. 341 and

the remark at the end of Setion 9 of the same hapter, p. 351) that there is

a unique solution �

m

of equation (33) with �

m

2 W

2;1

2

(Q

Æ

).

We observe that equation (34) is a semi-linear paraboli equation with

smooth oeÆients and growth onditions on the nonlinear foring terms as

the ones required for a semigroup result on global existene result given in

[13℄, p. 75. Thus, there is a unique lassial global solution 

m

. In addition,

note that equation (34) does not admit onstant solutions, exept  � 0

and  � 1. Thus, by using Maximum Priniple together with the onditions

0 < 

Æ

0m

< 1 and



m

�n

= 0 on �


Æ

, we an dedue that

0 < 

m

(x; t) < 1; 8 (x; t) 2 Q

Æ

: (37)

Therefore, the mapping T

�

is well de�ned from B into B:

To prove the ontinuity of T

�

, let (

^

�

k

m

; v̂

k

m

;

^

�

k

m

; ̂

k

m

), k 2 IN be a se-

quene in B strongly onverging to (

^

�

m

; v̂

m

;

^

�

m

; ̂

m

) 2 B and for eah k,

let (�

k

m

; v

k

m

; �

k

m

; 

k

m

), the solution of the problem:

��

2

�

k

m

t

��

2

��

k

m

�

1

2

(�

k

m

�(�

k

m

)

3

) = ��

�

^

�

k

m

+ (�

B

� �

A

)̂

k

m

� �

B

�

in Q

Æ

; (38)
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v

k

m

(t) =

m

X

j=1

g

k

jm

(t)w

j

2 V

m

;

d

dt

(v

k

m

; w

j

) + �(rv

k

m

;rw

j

) + (v

k

m

� rv

k

m

; w

j

) + (k(f

Æ

s

(�

k

m

)� Æ)v

k

m

; w

j

)

= �(F(̂

k

m

;

^

�

k

m

); w

j

); 1 � j � m; t 2 (0; T ); (39)

C

v

�

k

m

t

+ C

v

�

Æ

(v

k

m

) � r�

k

m

= r �

�

K

1

(�

Æ

(�

k

m

))r�

k

m

�

+

l

2

f

Æ

s

(�

k

m

)

t

in Q

Æ

; (40)



k

m

t

�K

2

�

k

m

+ �

Æ

(v

k

m

) � r

k

m

= K

2

Mr �

�



k

m

(1� 

k

m

)r�

Æ

(�

k

m

)

�

in Q

Æ

; (41)

��

k

m

�n

=

��

k

m

�n

=

�

k

m

�n

= 0 on �


Æ

� (0; T ); (42)

�

k

m

(0) = �

Æ

0m

; v

k

m

(0) = v

Æ

0m

; �

k

m

(0) = �

Æ

0m

; 

k

m

(0) = 

Æ

0m

in 


Æ

: (43)

We show that the sequene (�

k

m

; v

k

m

; �

k

m

; 

k

m

) onverges strongly in B to

(�

m

; v

m

; �

m

; 

m

) = T

�

(

^

�

m

; v̂

m

^

�

m

; ̂

m

): For that purpose, we will obtain esti-

mates to (�

k

m

; v

k

m

; �

k

m

; 

k

m

) independent of k. As usual, we will denote by C

i

,

with a proper indexes i, positive onstants independent of k.

We multiply (38) by �

k

m

; �

k

m

t

and ���

k

m

; we integrate over 


Æ

� (0; t)

and by parts, and we use the H�older's and Young's inequalities to obtain the

following three estimates:

��

2

2

Z




Æ

j�

k

m

j

2

dx+

Z

t

0

Z




Æ

�

�

2

jr�

k

m

j

2

+

1

4

(�

k

m

)

4

�

dxdt

� C

1

+ C

2

Z

t

0

Z




Æ

�

j

^

�

k

m

j

2

+ ĵ

k

m

j

2

+ j�

k

m

j

2

�

dxdt; (44)

��

2

2

Z

t

0

Z




Æ

j�

k

m

t

j

2

dxdt+

Z




Æ

 

�

2

jr�

k

m

j

2

+

(�

k

m

)

4

8

�

(�

k

m

)

2

4

!

dx

� C

1

+ C

2

Z

t

0

Z




Æ

�

j

^

�

k

m

j

2

+ ĵ

k

m

j

2

�

dxdt; (45)

��

2

2

Z




Æ

jr�

k

m

j

2

dx+

�

2

2

Z

t

0

Z




Æ

j��

k

m

j

2

dxdt

� C

1

+ C

2

Z

t

0

Z




Æ

�

jr�

k

m

j

2

+ j

^

�

k

m

j

2

+ ĵ

k

m

j

2

�

dxdt: (46)

Multiplying (45) by ��

2

and adding the result to (44), we �nd

Z




Æ

j�

k

m

j

2

+ jr�

k

m

j

2

+ (�

k

m

)

4

dx

� C

1

+ C

2

Z

t

0

Z




Æ

�

j

^

�

k

m

j

2

+ ĵ

k

m

j

2

+ j�

k

m

j

2

�

dxdt: (47)
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Sine k

^

�

k

m

k

L

2

(Q

Æ

)

and k̂

k

m

k

L

2

(Q

Æ

)

are bounded independent of k, we infer from

(47) and Gronwall's inequality that

k�

k

m

k

L

1

(0;T ;H

1

(


Æ

))

� C

1

: (48)

Then, thanks to (44)-(46) we have

k�

k

m

k

L

2

(0;T ;H

2

(


Æ

))

+ k�

k

m

t

k

L

2

(Q

Æ

)

� C

1

: (49)

We multiply (39) by g

k

jm

(t) and add these equations for j = 1; : : : ; m: Using

that (u � rv; v) = 0; u 2 V (


Æ

); v 2 (H

1

(


Æ

))

N

we get

d

dt

Z




Æ

jv

k

m

j

2

dx +

Z




Æ

�

�jrv

k

m

j

2

+ k(f

Æ

s

(�

k

m

)� Æ)jv

k

m

j

2

�

dx

� C

1

Z




Æ

�

jF j

2

+ j

^

�

k

m

j

2

+ ĵ

k

m

j

2

+ jv

k

m

j

2

�

dx:

By using Gronwall's inequality, we obtain

kv

k

m

k

L

1

(0;T ;H(


Æ

))\L

2

(0;T ;V (


Æ

))

� C

1

: (50)

Let now P

m

be the projetor of H(


Æ

) on the spae V

m

. Note that P

m

is a V

s

(


Æ

)-orthogonal projetor on V

m

and thus kP

m

k

L(V

s

(


Æ

);V

s

(


Æ

))

� 1.

Therefore, from equation (39), we infer that

kv

k

m

t

k

V

s

(


Æ

)

0 � C

1

�

kv

k

m

k

V (


Æ

)

+ kv

k

m

k

2

L

2N

N�1

(


Æ

)

+ kFk

L

2

(


Æ

)

+ k

^

�

k

m

k

L

2

(


Æ

)

+ k̂

k

m

k

L

2

(


Æ

)

�

:

Then, by using (50) and interpolation ([17℄ p.73), we obtain

kv

k

m

t

k

L

2

(0;T ;V

s

(


Æ

)

0

)

� C

1

: (51)

Now, by multiplying (40) by �

k

m

, one obtains similarly that

Z




Æ

j�

k

m

j

2

dx+

Z

t

0

Z




Æ

jr�

k

m

j

2

dxdt � C

1

+C

2

Z

t

0

Z




Æ

�

j�

k

m

t

j

2

+ j�

k

m

j

2

�

dxdt; (52)

and we infer from (49) and Gronwall's inequality that

k�

k

m

k

L

1

(0;T ;L

2

(


Æ

))

� C

1

: (53)
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Hene, it follows from (52) that

k�

k

m

k

L

2

(0;T ;H

1

(


Æ

))

� C

1

: (54)

Now we take the salar produt of (40) with � 2 H

1

(


Æ

) and integrate by

parts using H�older's and Young's inequalities to obtain

k�

k

m

t

k

H

1

(


Æ

)

0
� C

1

�

kr�

k

m

k

L

2

(


Æ

)

+ kv

k

m

k

L

4

(


Æ

)

k�

k

m

k

L

4

(


Æ

)

+ k�

k

m

t

k

L

2

(


Æ

)

�

and we infer from (49),(50) and (54) that

k�

k

m

t

k

L

4=3

(0;T ;H

1

(


Æ

)

0

)

� C

1

: (55)

Next, multiplying (41) by 

k

m

and reasoning as before with the help of (37),

we onlude that

Z




Æ

j

k

m

j

2

dx+

Z

t

0

Z




Æ

jr

k

m

j

2

dxdt � C

1

+ C

2

Z

t

0

Z




Æ

jr�

k

m

j

2

dxdt:

Hene, from (49), we obtain

k

k

m

k

L

2

(0;T ;H

1

(


Æ

))\L

1

(0;T ;L

2

(


Æ

))

� C

1

: (56)

In order to get an estimate for (

k

m

t

) in L

2

(0; T ;H

1

(


Æ

)

0

), we go bak to

equation (41) and proeed similarly as before to obtain

k

k

m

t

k

L

2

(0;T ;H

1

(


Æ

)

0

)

� C

1

: (57)

We now infer from (48)-(57) that the sequene (�

k

m

) is uniformly bounded

with respet to k in

W

1

=

n

w 2 L

2

(0; T ;H

2

(


Æ

)); w

t

2 L

2

(0; T ;L

2

(


Æ

))

o

and in

W

2

=

n

w 2 L

1

(0; T ;H

1

(


Æ

)); w

t

2 L

2

(0; T ;L

2

(


Æ

))

o

;

the sequene (v

k

m

) is bounded in

W

3

=

n

w 2 L

2

(0; T ;V (


Æ

)); w

t

2 L

2

(0; T ;V

s

(


Æ

)

0

)

o

and in

W

4

=

n

w 2 L

1

(0; T ;H(


Æ

)); w

t

2 L

2

(0; T ;V

s

(


Æ

)

0

)

o

;
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the sequene (�

k

m

) is bounded in

W

5

=

n

w 2 L

2

(0; T ;H

1

(


Æ

)); w

t

2 L

4=3

(0; T ;H

1

(


Æ

)

0

)

o

and in

W

6

=

n

w 2 L

1

(0; T ;L

2

(


Æ

)); w

t

2 L

4=3

(0; T ;H

1

(


Æ

)

0

)

o

;

and the sequene (

k

m

) is bounded in

W

7

=

n

w 2 L

2

(0; T ;H

1

(


Æ

)); w

t

2 L

2

(0; T ;H

1

(


Æ

)

0

)

o

and in

W

8

=

n

w 2 L

1

(0; T ;L

2

(


Æ

)); w

t

2 L

2

(0; T ;H

1

(


Æ

)

0

)

o

:

Now we observe that W

1

is ompatly embedded into L

2

(0; T ;H

1

(


Æ

)), and

the same holds forW

2

into C([0; T ℄;L

2

(


Æ

)); forW

3

,W

5

andW

7

into L

2

(Q

Æ

);

with W

4

into C([0; T ℄;V

s

(


Æ

)

0

), and with W

6

and W

8

into C([0; T ℄;H

1

(


Æ

)

0

)

([23℄ Cor.4).

It follows that there exist (�

m

, v

m

, �

m

, 

m

) satisfying:

�

m

2 L

2

(0; T ;H

2

(


Æ

)) \ L

1

(0; T ;H

1

(


Æ

)); with �

m

t

2 L

2

(Q

Æ

);

v

m

2 L

2

(0; T ;V (


Æ

)) \ L

1

(0; T ;H(


Æ

)); with v

m

t

2 L

2

(0; T ;V

s

(


Æ

)

0

);

�

m

2 L

2

(0; T ;H

1

(


Æ

)) \ L

1

(0; T ;L

2

(


Æ

)); with �

m

t

2 L

4=3

(0; T ;H

1

(


Æ

)

0

);



m

2 L

2

(0; T ;H

1

(


Æ

)) \ L

1

(0; T ;L

2

(


Æ

)); with 

m

t

2 L

2

(0; T ;H

1

(


Æ

)

0

);

and a subsequene of (�

k

m

; v

k

m

; �

k

m

; 

k

m

), whih for simpliity of notation we

keep denoting (�

k

m

; v

k

m

; �

k

m

; 

k

m

) , suh that as k ! +1 we have

�

k

m

! �

m

strongly in L

2

(0; T ;H

1

(


Æ

)) \ C([0; T ℄;L

2

(


Æ

));

�

k

m

* �

m

weakly in L

2

(0; T ;H

2

(


Æ

));

v

k

m

! v

m

strongly in L

2

(Q

Æ

) \ C([0; T ℄;V

s

(


Æ

)

0

);

v

k

m

* v

m

weakly in L

2

(0; T ;V (


Æ

));

�

k

m

! �

m

strongly in L

2

(Q

Æ

) \ C([0; T ℄;H

1

(


Æ

)

0

);

�

k

m

* �

m

weakly in L

2

(0; T ;H

1

(


Æ

));



k

m

! 

m

strongly in L

2

(Q

Æ

) \ C([0; T ℄;H

1

(


Æ

)

0

);



k

m

* 

m

weakly in L

2

(0; T ;H

1

(


Æ

)):

(58)

It now remains to pass to the limit as k tends to +1 in (38)-(43).
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Sine the embedding of W

2;1

2

(Q

Æ

) into L

9

(Q

Æ

) is ompat ([18℄ p.15), and

(�

k

m

) is bounded in W

2;1

2

(Q

Æ

), we infer that (�

k

m

)

3

onverges to �

3

m

in L

2

(Q

Æ

).

We then pass to the limit as k tends to +1 in (38) and get

��

2

�

m

t

� �

2

��

m

�

1

2

(�

m

� �

3

m

) = ��

�

^

�

m

+ (�

B

� �

A

)̂

m

� �

B

�

a.e. in Q

Æ

:

Now we observe that for �xed Æ > 0, k(f

Æ

s

(�)� Æ) is a bounded Lipshitz

ontinuous funtion from IR in IR; therefore, k(f

Æ

s

(�

k

m

) � Æ) onverges to

k(f

Æ

s

(�

m

)� Æ) in L

p

(Q

Æ

) for any 1 � p < +1: Sine the passing to the limit

of the other terms of (39) an be done in standard ways, we get

d

dt

(v

m

; w

j

) + �(rv

m

;rw

j

) +(v

m

� rv

m

; w

j

) + (k(f

Æ

s

(�

m

)� Æ)v

m

; w

j

)

= �(F(̂

m

;

^

�

m

); w

j

) 1 � j � m; t 2 (0; T ):

Also, sine V

m

is a losed subspae, we have that v

m

(t) =

m

X

j=1

g

jm

(t)w

j

2 V

m

.

Sine K

1

(�

Æ

) and f

Æ

s

0

are bounded Lipshitz ontinuous funtions and �

k

m

onverges to �

m

in L

2

(Q

Æ

), we have thatK

1

(�

Æ

(�

k

m

)) onverges toK

1

(�

Æ

(�

m

))

and f

Æ

s

0

(�

k

m

) onverges to f

Æ

s

0

(�

m

) in L

p

(Q

Æ

) for any p 2 [1;1). These fats

and (58) yield the weak onvergene of K

1

(�

Æ

(�

k

m

))r�

k

m

to K

1

(�

Æ

(�

m

))r�

m

and f

Æ

s

0

(�

k

m

)�

k

m

t

to f

Æ

s

0

(�

m

)�

m

t

in L

3=2

(Q

Æ

). Now, multiplying (40) by � 2

D(Q

Æ

), integrating over 


Æ

� (0; T ) and by parts, we obtain

Z

T

0

Z




Æ

C

v

�

�

k

m

t

+ �

Æ

(v

k

m

) � r�

k

m

�

� + K

1

(�

Æ

(�

k

m

))r�

k

m

� r� dxdt

=

Z

T

0

Z




Æ

l

2

f

Æ

s

0

(�

k

m

)�

k

m

t

� dxdt:

Then, we may pass to the limit and �nd that

C

v

�

m

t

+ C

v

�

Æ

(v

m

) � r�

m

= r � (K

1

(�

Æ

(�

m

))r�

m

) +

l

2

f

Æ

s

0

(�

m

)�

m

t

in D

0

(Q

Æ

):

(59)

Now, by using the L

p

-theory of paraboli equations, we onlude that (59)

holds almost everywhere in Q

Æ

.

It remains to pass to the limit in (41). We infer from (58) that r�

Æ

(�

k

m

)

onverges tor�

Æ

(�

m

) in L

2

(Q

Æ

). Also, sine k

k

m

k

L

1

(Q

Æ

)

is bounded, it follows

that 

k

m

(1� 

k

m

) onverges to 

m

(1� 

m

) in L

p

(Q

Æ

) for any p 2 [1;1). Thus,

we may pass to the limit in (41) to obtain



m

t

�K

2

�

m

+ �

Æ

(v

m

) � r

m

= K

2

Mr � (

m

(1� 

m

)r�

Æ

(�

m

)) in Q

Æ

:
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Therefore, T

�

is ontinuous for eah 0 � � � 1.

At the same time, T

�

is bounded inW

1

�W

3

�W

5

�W

7

, and the embedding

of this spae in B is ompat. We onlude that T

�

is a ompat operator.

To prove that for (

^

�

m

; v̂

m

;

^

�

m

; ̂

m

) in a bounded set of B, T

�

is uniformly

ontinuous with respet to �, let 0 � �

1

; �

2

� 1 and (�

m

i

; v

m

i

; �

m

i

; 

m

i

); (i =

1; 2) the orresponding solutions of (31)-(36). We observe that �

m

= �

m

1

�

�

m

2

, v

m

= v

m

1

� v

m

2

(v

m

(t) =

m

X

j=1

g

jm

(t)w

j

2 V

m

), �

m

= �

m

1

� �

m

2

and



m

= 

m

1

� 

m

2

satisfy the following problem:

��

2

�

m

t

� �

2

��

m

=

1

2

�

m

�

1� (�

m

2

1

+ �

m

1

�

m

2

+ �

m

2

2

)

�

+(�

1

� �

2

)�

�

^

�

m

+ (�

B

� �

A

)̂

m

� �

B

�

in Q

Æ

;

(60)

d

dt

(v

m

; w

j

) + �(rv

m

;rw

j

) + (v

m

� rv

m

1

; w

j

)� (v

m

2

� rv

m

; w

j

)

+(k(f

Æ

s

(�

m

1

)� Æ)v

m

; w

j

) +

�h

k(f

Æ

s

(�

m

1

)� Æ)� k(f

Æ

s

(�

m

2

)� Æ)

i

v

m

2

; w

j

�

= (�

1

� �

2

)(F(̂

m

;

^

�

m

); w

j

); 1 � j � m;

(61)

C

v

�

m

t

�r � (K

1

(�

Æ

(�

m

1

))r�

m

)�r � [K

1

(�

Æ

(�

m

1

))�K

1

(�

Æ

(�

m

2

))℄r�

m

2

+ C

v

�

Æ

(v

m

) � r�

m

1

+ C

v

�

Æ

(v

m

2

) � r�

m

=

l

2

f

Æ

s

0

(�

m

1

)�

m

t

+

l

2

h

f

Æ

s

0

(�

m

1

)� f

Æ

s

0

(�

m

2

)

i

�

m

2

t

in Q

Æ

; (62)



m

t

�K

2

�

m

= K

2

Mr � (

m

1

(1� 

m

1

) [r�

Æ

(�

m

1

)�r�

Æ

(�

m

2

)℄)

+ �

Æ

(v

m

) � r

m

1

+ �

Æ

(v

m

2

) � r

m

+ K

2

Mr � (

m

(1� (

m

1

+ 

m

2

))r�

Æ

(�

m

2

)) in Q

Æ

; (63)

��

m

�n

=

��

m

�n

=

�

m

�n

= 0 on �


Æ

� (0; T ); (64)

�

m

(0) = 0; v

m

(0) = 0; �

m

(0) = 0; 

m

(0) = 0 in 


Æ

: (65)

We remark that d := �

m

2

1

+ �

m

1

�

m

2

+ �

m

2

2

= (�

m

1

=

p

2 + �

m

2

=

p

2)

2

+

�

m

2

1

=2 + �

m

2

2

=2 � 0. Now, by multiplying equation (60) by �

m

, integrating

by parts and using H�older's and Young's inequalities, we obtain

Z




Æ

j�

m

j

2

dx +

Z

t

0

Z




Æ

jr�

m

j

2

dxdt � C

1

Z

t

0

Z




Æ

j�

m

j

2

(1� d)dxdt

+ C

2

j�

1

� �

2

j

2

Z

t

0

Z




Æ

�

j

^

�

m

j

2

+ ĵ

m

j

2

�

dxdt:
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Applying Gronwall's inequality, we get

k�

m

k

2

L

1

(0;T ;L

2

(


Æ

))

+ k�

m

k

2

L

2

(0;T ;H

1

(


Æ

))

� C

1

j�

1

� �

2

j

2

: (66)

Now, by multiplying (60) by �

m

t

and using H�older's inequality, we on-

lude

��

2

Z

t

0

Z




Æ

j�

m

t

j

2

dxdt +

�

2

2

Z




Æ

jr�

m

j

2

dx

� C

1

Z

t

0

Z




Æ

j�

m

j

2

dxdt+

��

2

2

Z

t

0

Z




Æ

j�

m

t

j

2

dxdt

+ C

2

�

Z

t

0

Z




Æ

j�

m

j

10=3

dxdt

�

3=5

�

Z

t

0

Z




Æ

jdj

5

dxdt

�

2=5

+ C

2

j�

1

� �

2
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), the following interpolation inequality holds
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for all � > 0;
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)
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m

2
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)
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ranging the di�erent terms, we obtain
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Multiplying (60) by ���

m

, and proeeding similarly as before, we infer that
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Taking � > 0 small enough and onsidering (66), we onlude from (67) and

(68) that
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Multiplying (61) by g

jm

(t) and adding these equations for j = 1; � � � ; m, we

obtain
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By integrating this last inequality with respet to t and using our previous

estimates and Gronwall's inequality, we obtain
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Multiplying (62) by �

m

; integrating over 


Æ

using H�older's inequality and

that K

1

and f

Æ

s

0

are bounded Lipshitz ontinuous funtions, we have
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Integration with respet to t and the use of Gronwall's Lemma and (69)-(70)

lead to the estimate
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: (71)

We multiply (63) by 

m

, integrate over 


Æ

� (0; t) and by parts, and we use
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H�older's and Young's inequalities and (37) to obtain
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Applying Gronwall's inequality and using (69)-(70) we arrive at
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Therefore, it follows from (69)-(72) that T

�

is uniformly ontinuous with

respet to � on bounded sets of B.

To estimate the set of all �xed points of T

�

, let (�

m

; v

m

; �

m
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m

) 2 B be

suh any given �xed point, i.e., it is a solution of the problem
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Multiplying the �rst equation (73) by �

m

; �

m

t

and ���

m

; respetively, in-

tegrating over 


Æ

and by parts, using H�older's and Young's inequalities, we

obtain
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��

2

2

Z




Æ

j�

m

t

j

2

dx +

d

dt

Z




Æ

 

�

2

2

jr�

m

j

2

+

1

8

�

4

m

�

1

4

j�

m

j

2

!

dx

� C

1

+ C

2

Z




Æ

�

j�

m

j

2

+ j

m

j

2

�

dx; (80)

��

2

2

d

dt

Z




Æ

jr�

m

j

2

dx +

Z




Æ

�

2

2

j��

m

j

2

dx

� C

1

+ C

2

Z




Æ

�

j�

m

j

2

+ j

m

j

2

+ jr�

m

j

2

�

dx: (81)

Now, for eah j = 1; : : : ; m, we multiply (74) by g

jm

(t) and add the resulting

equations to obtain
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By multiplying (75) by �

m

and (76) by 

m

and proeeding similarly as above

lead us to the following inequalities
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where we used (37) to obtain the last inequality.

Now, by multiplying (80) by ��

2

and adding the result to (79),(81)-(84),

we obtain
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where C

1

is independent of �; m and Æ:
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Hene, integrating (85) with respet t and using Gronwall's inequality,

we obtain
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where C

1

is independent of �: Therefore, we have a bound for all �xed points

of T

�

in B independent of �:

Finally, proeeding exatly as we did to prove that T

�

is well de�ned, we

onlude that for � = 0, problem (31)-(36) has a unique solution.

Thus, we an apply Leray-Shauder theorem and onlude that there is
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This is a solution of problem (25)-(30), and the proof of Proposition 2 is

omplete.

We now proeed with the

Proof of Proposition 1: We hoose �

Æ

0m

= �

Æ

0

, �

Æ

0m

= �

Æ

0

, 

Æ

0m

2 C

1

(

�


)

with 0 < 

Æ

0m

< 1; and v

Æ

0m

2 V

m

suh that 

Æ

0m

! 

Æ

0

and v

Æ

0m

! v

Æ

0

in the

norm of H(


Æ

) as m! +1. We then infer from Proposition 2 that, for eah

Æ 2 (0; Æ(
)℄ and m 2 IN , there exist funtions (�

Æ

m

; v

Æ

m

; �
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Æ
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) satisfying the

system (25)-(30). We will derive bounds, independent of m, for this solution

and then pass to the limit in the approximate problem as m tends to +1

by using ompatness arguments.
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Proof: It follows from the inequality (85).

Lemma 2 There exists a onstant C
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Proof: From the equation (26), we infer that
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Then, by using (87)-(89) and interpolation ([17℄ p.73), we obtain (90). By

taking the salar produt of (27) with � 2 H
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) and using H�older's inequal-
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Then, (91) follows from (86)-(88). (92) an be obtained similarly by using

Lemma 1.
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s

(


Æ

)

0

);

�

Æ

m

! �

Æ

strongly in L

2

(Q

Æ

) \ C([0; T ℄;H

1

(


Æ

)

0

);

�

Æ

m

* �

Æ

weakly in L

2

(0; T ;H

1

(


Æ

));



Æ

m

! 

Æ

strongly in L

2

(Q

Æ

) \ C([0; T ℄;H

1

(


Æ

)

0

);



Æ

m

* 

Æ

weakly in L

2

(0; T ;H

1

(


Æ

)):

(93)

Thus, letting m! +1 in (25), we get

��

2

�

Æ

t

� �

2

��

Æ

�

1

2

(�

Æ

� (�

Æ

)

3

) = �

�

�

Æ

+ (�

B

� �

A

)

Æ

� �

B

�

a.e. in Q

Æ

:
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Sine k(f

Æ

s

(�) � Æ) is a bounded Lipshitz ontinuous funtion we have

that k(f

Æ

s

(�

Æ

m

)� Æ) onverges to k(f

Æ

s

(�

Æ

)� Æ) in L

p

(Q

Æ

), for p 2 [1;1); then

k(f

Æ

s

(�

Æ

m

)� Æ)v

Æ

m

onverges to k(f

Æ

s

(�

Æ

)� Æ)v

Æ

in L

3=2

(Q

Æ

) as m tends to +1.

As usual ([17℄ p.76) we may pass to the limit in the other terms in (26) and

get

d

dt

(v

Æ

; w

j

) + �(rv

Æ

;rw

j

) +(v

Æ

� rv

Æ

; w

j

) + (k(f

Æ

s

(�

Æ

)� Æ)v

Æ

; w

j

)

= (F(

Æ

; �

Æ

); w

j

) for all j 2 IN:

We onlude that

d

dt

(v

Æ

; u) + �(rv

Æ

;ru) + (v

Æ

� rv

Æ

; u) + (k(f

Æ

s

(�

Æ

)� Æ)v

Æ

; u) = (F(

Æ

; �

Æ

); u);

for all u 2 V

s

(


Æ

), and then for all u 2 V (


Æ

).

Sine K

1

(�

Æ

) and f

Æ

s

0

are bounded Lipshitz ontinuous funtions we have

that K

1

(�

Æ

(�

Æ

m

)) onverges to K

1

(�

Æ

(�

Æ

)) and f

Æ

s

0

(�

Æ

m

) to f

Æ

s

0

(�

Æ

) in L

p

(Q

Æ

)

for any p 2 [1;1) as m tends to +1. Using these fats and (93) we pass to

the limit in (27) and obtain

C

v

�

Æ

t

+ C

v

�

Æ

(v

Æ

) � r�

Æ

= r �

�

K

1

(�

Æ

(�

Æ

))r�

Æ

�

+

l

2

f

Æ

s

0

(�

Æ

)�

Æ

t

in D

0

(Q

Æ

):

Applying L

p

-theory of paraboli equations, we have that �

Æ

2 W

2;1

2

(Q

Æ

).

Similarly we pass to the limit in (28) and obtain



Æ

t

�K

2

�

Æ

+ �

Æ

(v

Æ

) � r

Æ

= K

2

Mr �

�



Æ

(1� 

Æ

)r�

Æ

(�

Æ

)

�

in Q

Æ

:

Observe that 

Æ

is a lassial solution and satis�es 0 � 

Æ

� 1: Finally, it

follows from (93) that

��

Æ

�n

=

��

Æ

�n

=

�

Æ

�n

= 0, �

Æ

(0) = �

Æ

0

, v

Æ

(0) = v

Æ

0

,

�

Æ

(0) = �

Æ

0

and 

Æ

(0) = 

Æ

0

. Therefore, the proof of Proposition 1 is omplete.

4 Proof of Theorem 1

In this setion we prove the existene Theorem 1. For 0 < Æ � Æ(
) as

in the statement of Theorem 1, we hoose �

Æ

0

2 W

2�2=q;q

(


Æ

) \ H

1+

(


Æ

),

v

Æ

0

2 H(


Æ

), �

Æ

0

2 H

1+

(
), 1=2 <  � 1, 

Æ

0

2 C

1

(


Æ

), satisfying

��

Æ

0

�n

=
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��

Æ

0

�n

=

�

Æ

0

�n

= 0 on �


Æ

; k�

Æ

0

k

L

2

(


Æ

)

� C; and 0 � 

Æ

0

� 1 in 


Æ

; and suh that

the restritions of these funtions to 
 (reall that 
 � 


Æ

) satisfy as Æ ! 0+

the following: �

Æ

0

! �

0

in the norm of W

2�2=q;q

(
) \ H

1+

(
), v

Æ

0

! v

0

in

the norm of H(


ml

(0)), �

Æ

0

! �

0

in the norm of L

2

(
), 

Æ

0

! 

0

in the norm

of L

2

(
).

We then infer from Proposition 1 that there exists (�

Æ

; v

Æ

; �

Æ

; 

Æ

) solution

the regularized problem (19)-(24). We will derive bounds, independent of

Æ, for this solution and then use ompatness arguments and passage to the

limit proedure for Æ tends to 0 to establish the desired existene result. They

are stated in following in a sequene of lemmas; however, most of them are

ease onsequene of the previous estimates (those that are independent of Æ)

and the fat that 
 � 


Æ

. We begin with the following:

Lemma 3 There exists a onstant C

1

suh that, for any Æ 2 (0; Æ(
))

k�

Æ

k

L

1

(0;T ;H

1

(
))\L

2

(0;T ;H

2

(
))

+ k�

Æ

t

k

L

2

(Q)

� k�

Æ

k

L

1

(0;T ;H

1

(


Æ

))\L

2

(0;T ;H

2

(


Æ

))

+ k�

Æ

t

k

L

2

(Q

Æ

)

� C

1

; (94)

kv

Æ

k

L

1

(0;T ;L

2

(
))\L

2

(0;T ;H

1

(
))

+

Z

T

0

Z




k(f

Æ

s

(�

Æ

)� Æ)jv

Æ

j

2

dxdt (95)

� kv

Æ

k

L

1

(0;T ;H(


Æ

))\L

2

(0;T ;V (


Æ

))

+

Z

T

0

Z




Æ

k(f

Æ

s

(�

Æ

)� Æ)jv

Æ

j

2

dxdt � C

1

;

k�

Æ

k

L

1

(0;T ;L

2

(
))\L

2

(0;T ;H

1

(
))

� k�

Æ

k

L

1

(0;T ;L

2

(


Æ

))\L

2

(0;T ;H

1

(


Æ

))

� C

1

; (96)

k

Æ

k

L

1

(0;T ;L

2

(
))\L

2

(0;T ;H

1

(
))

� k

Æ

k

L

1

(0;T ;L

2

(


Æ

))\L

2

(0;T ;H

1

(


Æ

))

� C

1

: (97)

Proof: It follows from the inequality (85).

Lemma 4 There exists a onstant C

1

suh that, for any Æ 2 (0; Æ(
))

k

Æ

t

k

L

2

(0;T ;H

1

o

(
)

0

)

� C

1

; (98)

k�

Æ

t

k

L

4=3

(0;T ;H

1

o

(
)

0

)

� C

1

; (99)

k�

Æ

k

W

2;1

q

(Q)

� C

1

; for any 2 � q � 2(N + 2)=N: (100)

Proof: Using that 0 � 

Æ

� 1 in Q; we infer from (22) that,

k

Æ

t

k

H

1

o

(
)

0

� C

1

�

kr

Æ

k

L

2

(
)

+ kv

Æ

k

L

2

(
)

+ kr�

Æ

k

L

2

(
)

�

:

29



Then, (98) follows from Lemma 3.

Now, we take the salar produt of (21) with � 2 H

1

o

(
); using H�older's

inequality and (H3) we �nd

C

v

k�

Æ

t

k

H

1

o

(
)

0

� C

1

�

kr�

Æ

k

2

L

2

(
)

+ k�

Æ

k

L

4

(
)

kv

Æ

k

L

4

(
)

+ k�

Æ

t

k

L

2

(
)

�

:

Then, (99) follows from Lemma 3.

Now, from a result of Ho�man and Jiang ([14℄ Thm 2.1), we onlude

that �

Æ

satis�es the following inequality, for any 2 � q <1,

k�

Æ

k

W

2;1

q

(Q

Æ

)

� C

1

�

k�

Æ

k

L

q

(Q

Æ

)

+ k

Æ

k

L

q

(Q

Æ

)

+ k�

Æ

0

k

W

2;1

(


Æ

)

+ C

1

�

: (101)

Then, (100) holds due to k

Æ

k

L

1

(Q

Æ

)

and by interpolation k�

Æ

k

L

2(N+2)=N

(


Æ

)

are bounded independent of Æ.

Lemma 5 There exist a onstant C

1

and Æ

0

2 (0; Æ(
)) suh that, for any

Æ < Æ

0

;

kv

Æ

t

k

L

4=3

(t

1

;t

2

;V (U)

0

)

� C

1

(102)

where 0 � t

1

< t

2

� T; U � 


ml

(t

1

) and suh that [t

1

; t

2

℄ �

�

U � Q

ml

[




ml

(0) [ 


ml

(T ):

Proof: Let 0 � t

1

< t

2

� T; U � 


ml

(t

1

) be suh that [t

1

; t

2

℄ �

�

U �

Q

ml

[


ml

(0)[


ml

(T ). It is veri�ed by means of (20) that for a.e. t 2 (t

1

; t

2

),

(v

Æ

t

; u) = ��

Z

U

rv

Æ

� rudx�

Z

U

v

Æ

� rv

Æ

udx�

Z

U

k(f

Æ

s

(�

Æ

)� Æ)v

Æ

udx

+

Z

U

F(

Æ

; �

Æ

)udx for u 2 V (U):

In order to estimate kv

Æ

t

k

V (U)

0

, we observe that the sequene (�

Æ

) is bounded

in W

2;1

q

(Q); for 2 � q � 2(N + 2)=N , in partiular, for q > (N + 2)=2

we have that W

2;1

q

(Q) � H

�;�=2

(

�

Q) where � = 2 � (N + 2)=q ([15℄ p.

80). Due to theorem of Arzela-Asoli, there exist � and a subsequene of

(�

Æ

) (whih we still denote by �

Æ

), suh that �

Æ

onverges uniformly to �

in

�

Q. Reall that Q

ml

= f(x; t) 2 Q : 0 � f

s

(�(x; t)) < 1g and 


ml

(t) =

fx 2 
 : 0 � f

s

(�(x; t)) < 1g. Note that there is  2 (0; 1) suh that for any

(x; t) 2 [t

1

; t

2

℄�

�

U , we have

f

s

(�(x; t)) < 1� :

30



Due to the uniform onvergene of f

Æ

s

towards f

s

on any ompat subset,

there is an Æ

0

suh that for all Æ 2 (0; Æ

0

) and for all (x; t) 2 [t

1

; t

2

℄�

�

U;

f

Æ

s

(�

Æ

(x; t)) < 1� =2:

By assumption (H1) we infer that

k(f

Æ

s

(�

Æ

(x; t))� Æ) < k(1� =2) for (x; t) 2 [t

1

; t

2

℄�

�

U and Æ < Æ

0

:

Thus,

kv

Æ

t

k

V (U)

0

� C

1

�

kv

Æ

k

V

+ kv

Æ

k

2

L

4

(
)

+ kFk

L

2

(
)

+ k

Æ

k

L

2

(
)

+ k�

Æ

k

L

2

(
)

+ kk(f

Æ

s

(�

Æ

(x; t))� Æ)k

L

1

(U)

kv

Æ

k

L

2

(
)

�

:

Hene, (102) follows from Lemma 3.

>From (95), we onlude that the sequene (v

Æ

) is also uniformly bounded

in L

2

(t

1

; t

2

;H

1

(U)). Then, by the ompat embedding ([23℄ Cor. 4) , there

exist v and a subsequene of (v

Æ

) (whih we still denote by v

Æ

), suh that

v

Æ

! v strongly in L

2

((t

1

; t

2

)� U):

Observe that Q

ml

is an open set and an be overed by a ountable number

of open sets (t

i

; t

i+1

)�U

i

suh that U

i

� 


ml

(t

i

); then by means of a diagonal

argument, we obtain

v

Æ

! v strongly in L

2

lo

(Q

ml

[ 


ml

(0) [ 


ml

(T )): (103)

Moreover, from (95) and the fat that v

Æ

2 L

2

(0; T ;V (


Æ

)) we have that

v 2 L

2

(0; T ;V ) \ L

1

(0; T ;H) and

v

Æ

* v weakly in L

2

(0; T ;H

1

(
));

v

Æ

�

* v weakly star in L

1

(0; T ;L

2

(
)):

(104)

Now, from Lemma 3 and Lemma 4, by using ompat embedding ([23℄ Cor.4),

we infer that there exist

� 2 W

2;1

q

(Q) for 2 � q � 2(N + 2)=N;

� 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
));

 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
));
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and a subsequene of (�

Æ

; �

Æ

; 

Æ

) (whih we still denote by (�

Æ

; �

Æ

; 

Æ

) ) suh

that, as Æ ! 0;

�

Æ

! � uniformly in Q;

�

Æ

! � strongly in L

q

(0; T ;W

2�;q

(
)); 0 <  < 1=2;

�

Æ

t

* �

t

weakly in L

q

(Q);

�

Æ

! � strongly in L

2

(Q) \ C([0; T ℄;H

1

o

(
)

0

);

�

Æ

* � weakly in L

2

(0; T ;H

1

(
));



Æ

!  strongly in L

2

(Q) \ C([0; T ℄;H

1

o

(
)

0

);



Æ

*  weakly in L

2

(0; T ;H

1

(
)):

(105)

It now remains to pass to the limit as Æ dereases to zero in (19)-(24).

It follows from (105) that we may pass to the limit in (19), and �nd that

(12) holds almost everywhere.

Now, we take u = �(t) in (20) where � 2 L

2

(0; T ;V (


ml

(t))) with ompat

support ontained in Q

ml

[ 


ml

(0) [ 


ml

(T ) and �

t

2 L

2

(0; T ;V (


ml

(t))

0

);

after integration over (0; t); we �nd

Z

t

0

�

(v

Æ

t

; �) + (rv

Æ

;r�) + (v

Æ

� rv

Æ

; �) + (k(f

Æ

s

(�

Æ

)� Æ)v

Æ

; �)

�

ds

=

Z

t

0

(F(

Æ

; �

Æ

); �)ds:

(106)

Sine supp � � Q

ml

[ 


ml

(0) [ 


ml

(T ) we have that supp �(t) � 


ml

(t) a.e.

t 2 [0; T ℄: Moreover, we observe that

Z

t

0

(v

Æ

t

; �)ds = �

Z

t

0

(v

Æ

; �

t

)




ml

(s)

ds+ (v

Æ

(t); �(t))




ml

(t)

� (v

Æ

0

; �(0))




ml

(0)

:

Beause of uniform onvergene of f

Æ

s

to f

s

on ompat subsets, as well

as the assumption (H1), it follows that k(f

Æ

s

(�

Æ

)� Æ) onverges to k(f

s

(�))

uniformly on ompat subsets of Q

ml

[


ml

(0)[


ml

(T ). These fats, together

with (103)-(105), ensure that we may pass to the limit in (106) and get (14).

To hek that v = 0 a.e. in

o

Q

s

; take a ompat set K �

o

Q

s

: Then there

is an Æ

K

2 (0; 1) suh that

f

Æ

s

(�

Æ

(x; t)) = 1 in K for Æ < Æ

K

;

hene, k(f

Æ

s

(�

Æ

(x; t) � Æ) = k(1 � Æ) in K for Æ < Æ

K

: From (95) we infer

that

k(1� Æ)kv

Æ

k

2

L

2

(K)

� C

1

for Æ < Æ

K
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where C

1

is independent of Æ: As Æ tends to 0; by assumption (H1), k(1� Æ)

blows up and onsequently kv

Æ

k

L

2

(K)

onverges to 0: Therefore v = 0 a.e. in

K: Sine K is an arbitrary subset, we onlude that v = 0 a.e. in

o

Q

s

:

In order to pass to the limit in (21), we notie that given � 2 L

4

(0; T ;H

1

(
))

with �

t

2 L

2

(0; T ;L

2

(
)) satisfying �(T ) = 0; we an onsider an extension

of � suh that �

Æ

2 L

4

(0; T ;H

1

(


Æ

)) with �

Æ

t

2 L

2

(0; T ;L

2

(


Æ

)) satisfying

�

Æ

(T ) = 0: Now, we take the salar produt of (21) with �

Æ

;

�C

v

Z




Æ

�

Æ

0

�

Æ

(0)dx� C

v

Z

T

0

Z




Æ

�

Æ

�

Æ

t

dxdt� C

v

Z

T

0

Z




Æ

�

Æ

(v

Æ

)�

Æ

� r�

Æ

dxdt

+

Z

T

0

Z




Æ

K

1

(�

Æ

(�

Æ

))r�

Æ

� r�

Æ

dxdt =

l

2

Z

T

0

Z




Æ

f

Æ

s

0

(�

Æ

)�

Æ

t

�

Æ

dxdt:

(107)

Observe that, sineK

1

is a bounded Lipshitz ontinuous funtion,K

1

(�

Æ

(�

Æ

))

onverges to K

1

(�) in L

p

(Q) for p 2 [1;1): We notie that sine �

Æ

(v

Æ

) on-

verges weakly to v in L

2

(0; T ;H

1

(
)) and �

Æ

! � strongly in C([0; T ℄;H

1

o

(
)

0

)

we have that �

Æ

(v

Æ

)�

Æ

onverges to v� in D

0

(Q): Observe also that f

Æ

s

0

! f

0

s

in L

q

(IR) for 2 � q < 1; then from (105) we infer that f

Æ

s

0

(�

Æ

)�

Æ

t

onverges

weakly to f

0

s

(�)�

t

in L

q=2

(Q): Moreover, from Lemma 3 the integrals over




Æ

n
 are bounded independent of Æ and sine j


Æ

n
j ! 0 as Æ ! 0; we have

that these integrals tend to zero as Æ ! 0: Therefore, we may pass to the

limit in (107) and obtain
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0
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��

t

dxdt� C

v
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0
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+

Z

T

0

Z




K

1

(�)r� � r� dxdt =

l

2

Z

T

0

Z




f

0

s

(�)�

t

� dxdt

for all � 2 L

4

(0; T ;H

1

(
)) with � 2 L

2

(0; T ;L

2

(
)) and �(T ) = 0:

It remains to pass to the limit in (22). For that purpose, we proeed in

similar ways as before, taking the salar produt of it with �

Æ

2 L

2

(0; T ;H

1

(


Æ

))

with �

Æ

t

2 L

2

(0; T ;L

2

(


Æ

)) and �

Æ

(T ) = 0;

�
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T

0
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Æ



Æ

�

Æ

t

dxdt�
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T

0
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Æ

�

Æ
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Æ
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Æ
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Æ
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T
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T
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Then, from (104),(105), and using the fat that sequene (

Æ

) is bounded in
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L

1

(Q), we may pass to the limit as Æ ! 0 to obtain
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+K

2

M
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T

0
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�(0)dx;

whih holds for any � 2 L

2

(0; T ;H

1

(
)) with � 2 L

2

(0; T ;L

2

(
)) satisfying

�(T ) = 0: Observe that sine 0 � 

Æ

� 1 and 

Æ

onverges to  in L

2

(Q) we

have that 0 �  � 1 a.e. in Q:

Finally, it follows from (105) that

��

�n

= 0, �(0) = �

0

, �(0) = �

0

and

(0) = 

0

. Furthermore, v(0) = v

0

in 


ml

(0) beause v

Æ

(0) ! v(0) in V

0

(U)

for any U suh that

�

U � 


ml

(0): The proof of Theorem 1 is then omplete.

Referenes

[1℄ Blan, Ph., Gasser, L., Rappaz,J., `Existene for a stationary model of

binary alloy solidi�ation', Math. Mod. and Num. Anal. 29(6),687-699

(1995).

[2℄ Bekerman, C., Diepers, H.-J., Steinbah, I., Karma, A., Tong, X.,

`Modeling melt onvetion in phase-�eld simulations of solidi�ation',

Journal of Computational Physis 154, 468-496 (1999).

[3℄ Boldrini, J.L., Planas, G., `Weak solutions to a phase �eld model for an

alloy with thermal properties', to be published in Mathematial Methods

in Applied Siene.

[4℄ Caginalp, G., `An analysis of a phase �eld model of a free boundary',

Arh. Rat. Meh. Anal., 92, 205-245 (1986).

[5℄ Caginalp, G. and Jones, J., `A derivation and analysis of phase-�eld

models of thermal alloys', Annals of Phy., 237, 66-107 (1995).

[6℄ Caginalp, G. and Xie, W., `Phase-�eld and sharp-interfase alloys mod-

els', Phys. Rev. E, 48(3), 1897-1909 (1993).

[7℄ Cannon, J.R., DiBenedetto,E., Knightly, G.H., `The steady state Stefan

Problem with onvetion', Arh. Rat. Meh. Anal. 73, 79-97 (1980).

34



[8℄ Cannon, J.R., DiBenedetto,E., Knightly,G.H.,`The bidimensional Stefan

Problem with onvetion: the time dependent ase', Comm. in Part.

Di�. Eq. 14, 1549-1604 (1983).

[9℄ DiBenedetto, E., Friedman, A. `Condution-Convetion Problems with

Change of Phase', J. of Di�. Eq. 62, 129-185 (1986).

[10℄ DiBenedetto, E., O'Leary, M. `Three-Dimensional Condution-

Convetion Problems with Change of Phase', Arh. Rat. Meh. Anal.

123, 99-116 (1993).

[11℄ Diepers, H.-J., Bekermann, C., Steinbah, I., `Simulation of onvetion

and ripening in a binary alloy mush using the the phase-�eld method',

Ata mater. 47 (13), 3663-3678 (1999).

[12℄ Friedman, A., Partial Di�erential Equation of Paraboli Type, Prentie-

Hall, 1964.

[13℄ Henry, D., Geometri Theory of Semilinear Paraboli Equations, Leture

Notes in Math, Vol 840, Springer-Verlag, 1981.

[14℄ Ho�man, K-H. and Jiang, L., `Optimal ontrol of a phase �eld model

for solidi�ation', Numer. Funt. Anal. and Optim., 13, 11-27 (1992).

[15℄ Ladyzenskaja, O.A., Solonnikov, V.A. and Ural'eva, N.N., Linear and

Quasilinear Equations of Paraboli Type, Amerian Mathematial Soi-

ety, Providene, 1968.

[16℄ Lauren�ot, Ph., `Weak solutions to a phase-�eld model with non-

onstant thermal ondutivity', Quart. Appl. Math., 15(4), 739-760

(1997).

[17℄ Lions, J.L., Quelques m�ethodes de resolution des probl�emes aux limites

non lin�eaires, Dunod, Gauthier-Villars, 1969.

[18℄ Lions, J.L., Control of Distributed Singular Systems, Gauthier-Villars,

1985.

[19℄ Mikhailov, V.P., Partial Di�erential Equations, Mir, 1978.

[20℄ Moro�sanu, C. and Motreanu, D., `A generalized phase-�eld system', J.

Math. Anal. Appl., 237, 515-540 (1999).

35



[21℄ O'Leary, M., `Analysis of the mushy region in ondution-onvetion

problems with hange of phase' , Elet. J. Di�. Eqs. 1997(4), 1-14

(1997).

[22℄ Rappaz, J. and Sheid, J.F., `Existene of solutions to a Phase-�eld

model for the isothermal solidi�ation proess of a binary alloy', Math.

Meth. Appl. Si., 23, 491-512 (2000).

[23℄ Simon, J., `Compats sets in the spae L

p

(0; T; B)', Ann. Mat. Pura

Appl., 146, 65-96 (1987).

[24℄ Soto Segura, H.P., `An�alise de um Modelo Matem�atio de Condu�~ao-

Conve�~ao do Tipo Entalpia para Solidi�a�~ao', Ph.D. Thesis, IMECC-

UNICAMP, Brazil (2000).

[25℄ Temam, R., Navier-Stokes Equations, AMS Chelsea Publishing, 2001.

[26℄ Voller,V.R., Cross,M., Markatos,N.C., `An enthalpy method for on-

vetion/di�usion phase hange', Int. J. for Numer. Meth. in Eng. 24,

271-284 (1987).

[27℄ Voller, V.R., Prakash, C., `A �xed grid numerial modeling methodology

for onvetion-di�usion mushy region phase-hange problems', Int. J.

Heat Mass Trans., 30 (8), 1709-1719 (1987).

[28℄ Voss, M.J., Tsai, H.L., `E�ets of the rate of latente heat release on

uid ow and solidi�ation patterns during alloy solidi�ation', Int. J.

Engng. Si., 34 (6), 715-737 (1996).

[29℄ Warren, J.A. and Boettinger, W.J., `Predition of dendriti growth

and mirosegregation patterns in a binary alloy using the phase-�eld

method', Ata Metall. Mater., 43(2), 689-703 (1995).

[30℄ Wheeler, A.A., Boettinger, W.J. and MFadden, G.B., `Phase-�eld

model for isothermal phase transitions in binary alloys', Phys. Rev. A,

45, 7424-7439 (1992).

36


