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Abstract

In recent years, the phase-field methodology has achieved considerable im-
portance in modeling and numerically simulating a range of phase transitions
and complex growth structures that occur during solidification processes. In
attempt to understand the mathematical aspects of such methodology, in
this article we consider a simplified model of this sort for a nonstationary
process of solidification/melting of a binary alloy with thermal properties.
The model includes the possibility of occurrence of natural convection in
non-solidified regions and, therefore, leads to a free-boundary value prob-
lem for a highly non-linear system of partial differential equations consisting
of a phase-field equation, a heat equation, a concentration equation and a
modified Navier-Stokes equations by a penalization term of Carman-Kozeny
type, which accounts for the mushy effects, and Boussinesq terms to take in
consideration the effects of variations of temperature and concentration in
the flow.

A proof of existence of weak solutions for the system is given. The prob-
lem is firstly approximated and a sequence of approximate solutions is ob-
tained by Leray-Schauder’s fixed point theorem. A solution of the original
problem is then found by using compactness arguments.



1 Introduction

In recent years, the phase-field methodology, which is an alternative formu-
lation both to the sharp-interface methodology (Stefan type approach) or to
the enthalpy methodology, has achieved considerable importance in modeling
and numerically simulating a range of phase transitions and complex growth
structures that occur during solidification. This has spurred many articles
using this approach and proposing several mathematical models consisting
of highly nonlinear systems of partial differential equations.

Rigorous mathematical analysis is in general difficult, but for pure ma-
terials undergoing phase change, several authors have undertaking the task.
Examples of this sort of analysis are [4, 14, 16, 20|, where existence and
uniqueness results are investigated for various types of non-linearities.

Several phase-field models have also been developed for binary alloys.
One of the first works in this direction was due to Wheeler et al. [30] and
was concerned with isothermal solidification. Warren and Boettinger [29]
extended this model, while recently Rappaz and Scheid [22] investigated the
well-posedness under suitable assumptions for the non-linearities. Caginalp
et al. [6, 5] extended this kind of model by including temperatures changes.
For such model, the governing equations for the phase-field and the concen-
tration are derived from a free energy functional; then an appropriate balance
equation for the temperature, accounting for the liberation of latent heat by
addition of a term proportional to the time derivative of the phase-field, is
added to complete the model. The existence of weak solutions for this model
was recently studied in [3].

The previously mentioned phase-field models do not consider the possi-
bility of flow of the non-solidified material. However, there are many cases
where such flows do occur and are significant, having important effects on the
outcome of the solidification process. From the mathematical point of view,
the inclusion of such effects in the model brings another order of difficulty
to the analysis, whatever the approach used for modeling phase change. For
instance [7, 8, 9, 10, 21, 24| consider several mathematical aspects of the
interplay between fluid motion and phase change for pure material; the first
four of these papers used the Stefan approach, while the last two used the
enthalpy approach.

Voller et al. [26, 27] proposed models using the enthalpy technique for
a convection/diffusion phase change process by including in the model a
modification of the Navier-Stokes equations by the inclusion of a certain term



that takes in consideration the flow in mushy regions. Particular expressions
for this term may be obtained by modeling the mushy region as porous
medium. Another model of this type was proposed by Voss and Tsai [28]. In
Blanc et al. [1] performed a rigorous mathematical analysis of a stationary
model for the solidification process with convection of a binary alloy. The
model in [1] used an enthalpy approach and, as suggested in Voller et al.
[27], a Carman-Kozeny penalization term was added to the Navier-Stokes
equations to model the flow in mushy regions. Other authors have proposed
models using the phase-field method for solidification process of binary alloys
in presence of convection. For instance, Beckermann et al. [2] and Diepers
et al. [11] proposed models of this sort using arguments of mixture theory.
They also presented numerical simulations to validate their models.

In this paper we are interested in the rigorous mathematical analysis of a
phase-field type model for a non-stationary solidification process of a binary
alloy, with the possibility of low of the non-solid phase. Differently of models
in [2] and [11], the model we consider here combines ideas of Voller et al. [27]
and of Blanc et al. [1] to model the possibility of flow with those of Caginalp
et al. [6] for the phase-field and the thermal properties of the alloy. Our
system of equations will described in detail in the next section; here we just
observe that our system includes the Navier-Stokes equations with a Carman-
Kozeny type term as described above, and also a Boussinesq type term to take
in consideration buoyancy forces due to thermal and concentration effects.
Since these equations for the flow only hold in an a priori unknown non-solid
region, the model corresponds to a free boundary value problem. Moreover,
since the Carman-Kozeny term is dependent on the local solid fraction, this
is assumed to be functionally related to the the phase-field.

Our objective is to present a result on existence of weak solutions for this
mathematical model. The proof will be based on a regularization technique
that combines ideas already used in [1] and [3]: an auxiliary positive param-
eter will be introduced in the equations in such way that the original free
boundary value problem will be transformed in a more standard (penalized)
problem. We say that this transformed problem is the regularized problem.
By solving it, one hopes to recover a solution of the original problem as
the parameter approaches zero. To accomplish such program, we will firstly
solve the regularized problem by using the Faedo-Galerkin method, just in
the modified Navier-Stokes equations, and the Leray-Schauder fixed point
theorem. Then, by taking a sequence of values of the parameter approach-
ing zero, we will have a sequence of approximate solutions. By obtaining
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suitable estimates for this sequence, we will then be able to take the limit
along a subsequence and, by compactness arguments, to show that we have
a solution of the original problem.

The paper is organized as follows. In Section 2 we describe the mathemat-
ical model and its variables; we fix the notation and describe the functional
spaces to be used; we also state our technical hypotheses and main result.
In Section 3 we introduce and analyze the regularized problem. Section 4 is
dedicated to the proof of the existence of weak solutions of the original free
boundary value problem.

2 The model and main result

Let 0 < T < 400 and Q be an open bounded domain in IRY, N = 2or3,
with smooth boundary 9Q (of class C* will be enough for our purposes).
Being Q@ = Q x (0,7, we will consider the following system of equations:

ae’p, — AP = %(d’ — @)+ (0 —chr—(1—-c)fp) nQ, (1)

b= VA £ Vp b Vo b K(A@) = F0) nQu. ()
divo =0 in Qyuu, (3)
v=0 inQ,, (4)
Ciby+ Cov-VO =V - [K(¢)VO] + éfs(qﬁ)t in Q, (5)
¢ +v.Ve=Ky(Ac+ MV - [c(1 —¢)V¢]) inQ, (6)

0 a0 0
a_i:%:a_;:() on 02 x (0,7), v=0 on 0oQm, (7)

#(0) = ¢, 6(0) =6y, ¢c(0)=cy inQ, v(0)=vy in Qy(0), (8)

Here, ¢ is the phase-field variable (sometimes called order parameter), which
is the state variable characterizing the different phases; v is the velocity field;
p is the associated hydrostatic pressure; f; € [0, 1] is the solid fraction; 6 is
the temperature; ¢ € [0, 1] is the concentration of the solute (i.e., the fraction
of one of the two materials in the mixture).

We recall that the phase-field methodology in its simplest approach as-
sumes the existence of two real numbers ¢, < ¢; and a order parameter
(phase-field) ¢(x,t), depending on the spatial variable z and time ¢, such
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that if ¢(x,t) < ¢s then the material at point = at time ¢ is in solid
state; if ¢ < ¢(z,t) the material at point x at time ¢ is in liquid state;
if ¢s < ¢(x,t) < ¢ then, at time ¢ the point z is in the mushy region (a
region of microscopic mixture of solid and liquid). This setting must be
physically coherent with the concept of solid fraction, which we assume to be
functionally dependent on the phase-field. This requires that f(z) be a func-
tion such that fs(z) =1 for z < ¢, fs(2) =0 for 2 > ¢, and 0 < f(2) < 1
for ¢ps < 2z < ¢;. The required regularity assumptions on f; will be described
later on.

In the first of the previous equations (the phase-field equation), a >
0 is the relaxation scaling; § = €[s]/30 where € > 0 is a measure of the
interface width; o the surface tension, and [s] is the entropy density difference
between phases. f, and fg are the melting temperatures of the two materials
composing the binary alloy.

In the second of the previous equations, v > 0 is the viscosity, assumed to
be constant. The penalization term k( f;) accounts for the mushy effect in the
flow. The original Carman-Kozeny expression for it is k(x) = Cox?/(1 — x)?;
however, we will consider more general expressions for this term. The term
F(c,0) is the buoyancy force, which by using Boussinesq approximation can
be expressed as F(c,0) = pg(ci(0 —60,) + c2(c — ¢;)) + F, where p is the
mean value of the density (which for simplicity we will assume to be a positive
constant); g is the acceleration of gravity (for simplicity also assumed to be
constant); ¢; and ¢y are two constants; 6,, ¢, are respectively the reference
temperature and concentration (again for simplicity of exposition, both will
be assumed to be zero), and F is an external force field.

In the equation for the temperature, C, > 0 is the specific heat (constant);
[ is a positive constant associated to the latent heat. We also observe that
this equation comes from the balance of the internal energy that in this case

)
has the form e = C,0 + 5(1 — fs), where 1 — f; is the liquid fraction. The

thermal conductivity K; > 0 is assumed to depend on the phase-field.

In the last equation, Ky > 0 is the solute diffusivity and M is a constant
related to the slopes of solidus and liquidus lines.

The domain () is composed of three regions, @), @, and ;. The first
one corresponds to the fully solid region; the second one corresponds to the



mushy region, while the third is fully liquid region. They are defined by

Qs = {(,t) €Q : [fuo(z,1)) =1},
Qm = {(z,1) €@ : 0< filo(x,1)) <1}, (9)
Q = {(x1) e : fox,1)) =0}

@y will refer to the non-solid region, i.e.,

Qm = QmUQ ={(z,1) € Q : 0< fio(x,1)) <1} (10)

We also define the subsets of {2 associated respectively to the solid and non-
solid regions at time ¢ € (0, 7]

Q)= fo et f(o(r,0) =1}, a)
Quil) = {2 €Q : 0< £(0(r,8)) < 1}

~+

—~

Observe that as we said above, all these previously described regions are a
priori unknown, the model corresponds to a free boundary value problem.
Throughout this paper we will assume the following assumptions:

(H1) k is nondecreasing function of class C'[0, 1) satisfying k(0) = 0 and
lim k(z) = +oo,

(H2) f; depends only on the phase field and is a Lipschitz continuous
function defined on IR and satisfying 0 < fi(r) < 1 for r € IR with f!
measurable,

(H3) K, depends only on the phase-field and is a Lipschitz continuous
function defined on IR; moreover, there exist ¢ > 0 and b > 0 such that

0<a<Ki(r)<b for all r € IR,

(H4) F is a given function in L*(Q).

We remark that the concentration equation as it is written in [6] (up to
addition of a proper convection term) is the following:

¢ +v.Ve= KV -

d1-@V<M¢+1n1iJ]inQ

This form of the equation forces ¢ € (0,1) and is equivalent to equation (6)
in this case. Thus, (6) is more general than this last form since it allows ¢ to
assume the values 0 and 1, which are associated to regions of pure materials.



We use standard notation in this paper. We just briefly recall the follow-
ing functional spaces associated to the Navier-Stokes equations. Let G C IRY
be a non-void bounded open set; for T > 0, consider also Qg = G x (0,T)
Then,

V(G) = {we (CR@G)Y, divw =0},
H(G) = closure of V(G) in (L2(G))",
V(@) = closure of V(G) in (HG)),
H™/2(Q,) = Holder continuous functions of exponent 7 in z

and exponent 7/2 in t,
W2 (Qa) = {w € LYQg)/ Dyw, Diw € LUQq), w; € LI(Qc)} -

When G = 2, we denote H = H(2), V = V(Q). Properties of these func-
tional spaces can be found for instance in [15, 25]. We denote by (-,-) the
duality pairing between H'(Q) and H'(Q)'. We also put (-,-) = (+,-)q the
inner product of (L2(€2))".

The main result of this paper is the following.

Theorem 1 Let be given T > 0, Q C IRN, N = 2, or 3, a bounded open
domain of class C*, and assume that (H1)-(H4) hold. Let also be given
(N+2)/2 < q<2(N+2)/N, ¢y € WE2/01(Q)n HF7(Q), 1/2 < v < 1,

satisfying the compatibility condition o = 0 on 0, vy € H(Qp(0)), Oy €

n
L3(2), and ¢y € L*(Q) satisfying 0 < cg < 1 a.e. in Q. Then, there exist
functions (¢,v,0, ¢, J) satisfying:

(i) ¢ € WPHQ), ¢(0) = ¢y,

(ii) v € L*(0,T; V)N L®(0,T;H), v =0 a.e. in és, v(0) = wvg in Ly (0),
where Qs is defined by (9) and Q,,,(0) by (11),

(iii) 6 € L*(0,T; H'(Q2)) N L*°(0,T; L*(Q)), 6(0) = 6y,
(iv) ¢ € L*(0,T; H'(2)) N L>(0,T; L*(Q2)), ¢(0) = ¢y, 0 < ¢ <1 a.e. in Q
Moreover, they satisfy

aé@—8A¢:%w—¢%+5w+w3—@p—ew ae inQ, (12)

g—i =0 a.e ondQx(0,T), (13)



t t
(U(t)a n(t))ﬂml(t) - (U’ nt)le(S)dS +v (VU’ Vn)QmI(S)dS
t 0 t 0

[ Vomamds+ [ GG Mamds (14
= /0 (.7:(6, 9),7])le(5)d8+ (UU’n(O))sz(O)’

fort € (0,T) and anyn € L*(0,T; V(Qu(t))) with compact support contained
i Qi U QLmi(0) U Qi (T) and ny € L2(0,T; V(Qu(t))') where Qo is defined
by (10) and Quy(t) by (11),

—CV/QH()g(O)dx— C, /OT/Qegtda;dt— C, /OT/Qw-vgdxdt

T l T (15)
+ [ [ Ki()V0-Vedudt =3 [ [ f(0) daat

for any & € L*(0,T; HY(2)) with & € L*(Q) and £&(T) =0 in Q,

—/OT/chtdxdt—/OTIAvc-vgdxdt+K2/0T/ch-v<dxdt )
+K2M/0 /Qc(l—c)Vqﬁ-VCdxdt:/QcoC(O)dx,

for any ¢ € L*(0,T; H'(Q)) with ¢, € L*(Q) and ¢(T) =0 in Q.

Remarks:

1. The restriction ¢ > N + 2/2 ensures the continuity of phase-field;
in fact, in this case W2'(Q) € H™™/*(Q), for 7 = 2 — (N + 2)/q ([15] p.
80). Therefore, the set @, is open, and we have a suitable interpretation
for the equations of velocity field. The restriction ¢ < 2(N + 2)/N is con-
sequence of the obtained regularity of the temperature. (7ii) implies that
0 € L*NF2/N(@Q), and then, from the existence theorem for the phase-field
equation given in ([14] Thm 2.1), we know that ¢ € WQQ(’}VH)/N(Q).

2. We observe that the phase-field models without convection studied in
[3] or [16] allow the thermal conductivity K; to vanish. In the presence of
convection, we were not able to prove the existence of global weak solutions in
this degenerate case; thus, we had to assume the more restrictive assumption
(H3). It is possible, however, to prove the existence of a slightly different
local weak solution of (1)-(8) in the degenerate case. This will be done
elsewhere.



3 A regularized problem

In this section we introduce an auxiliary regularized problem by performing
suitable modifications of the original equations. The first objective of these
modifications is to introduce coefficients ensuring enough regularity for the
arguments to be used. The second objective, as in Blanc [1], is to change
the modified Navier-Stokes equations in such way that it holds in the whole
domain instead of holding just in an a priori unknown region.

The proof of existence of solutions for such regularized problem will be
done by using Faedo-Galerkin method, with the help of the Leray-Schauder
Fixed Point Theorem as stated in ([12], p. 189):

Theorem (Leray-Schauder): Consider a transformationy = Ty(x) where
x, y belong to a Banach space B and X is a real parameter which varies in a
bounded interval, say 0 < X\ < 1. Assume:

(a) Tx(x) is defined for all z € B, 0 < X <1,

(b) for any fized X, Tx(x) is continuous in B,

(c) for x in bounded sets of B, T\(x) is uniformly continuous in A,

(d) for any fized \, Tx(x) is a compact transformation,

(e) there exists a (finite) constant M such that every possible solution x
of Tx(x) = x satisfies: ||z]|p < M,

(f) the equation To(x) = = has a unique solution in B.

Under the assumptions (a)-(f), there exists a solution of the equation x —

Ti(x) = 0.

Now, we recall certain results that will be helpful in the introduction of
such regularized problem.

Recall that there is an extension operator Ext(-) taking any function w
in the space W, (Q) and extending it to a function Ext(w) € Wy (IRN*1)
with compact support satisfying

||Ext(w)||w22’1(RN+1) <C ||w||W22’1(Q)7

with C' independent of w (see [19] p. 157).

For 6 € (0,1), let ps € C°(IRN*) be a family of symmetric positive mol-
lifier functions with compact support converging to the Dirac delta function
(we can take the support of ps; contained in the ball of radius §), and denote
by * the convolution operation. Then, given a function w € W22’1(Q), we
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define a regularization ps(w) € C°(IRN*1) of w by

ps(w) = ps * Ext(w).

This sort of regularization will be used with the phase-field variable. We
will also need a regularization for the velocity, and for it we proceed as follows.

Given v € L?(0,T;V), first we extend it as zero in IRN*1\@Q. Then, as in
[19] p. 157, by using reflection and cutting-off, we extend the resulting func-
tion to another one defined on IRM*! and with compact support. Without
the danger of confusion, we again denote such extension operator by Ezt(v).
Then, being 6 > 0, ps and * as above, operating on each component, we can
again define a regularization p;(v) € C°(IRNT!) of v by

ps(v) = ps * Ext(v).

Besides having properties of control of Sobolev norms in terms of the corre-
sponding norms of the original function (exactly as above), such extension
has the property described below.
For 0 < ¢ < 1, define firstly the following family of uniformly bounded
open sets
Q' ={zc R" :d(z,Q) < §}. (17)

We also define the associated space-time cylinder
QR =Q° x (0,7). (18)

Obviously, for any 0 < §; < 62, we have Q C Q% C Q%, Q C Q" C Q.
Also, by using properties of convolution, we conclude that ps(v)|sqs = 0.
In particular, for v € L*°(0,T; H) N L*(0,T;V), we conclude that ps(v) €
L>=(0,T; H(Q°)) N L2(0,T; V(Q?)).

Moreover, since € is of class C3, there exists §(€2) > 0 such that for
0 < § < (), we conclude that Q° is of class C? and such that the C? norms
of the maps defining 9Q° are uniformly estimated with respect to d in terms
of the C3 norms of the maps defining 9.

Since we will be working with the sets %, the main objective of this last
remark is to ensure that the constants associated to Sobolev immersions and
interpolations inequalities, involving just up to second order derivatives and
used with Q, are uniformly bounded for 0 < § < §(f2). This will be very
important to guarantee that certain estimates will be independent of 4.

Finally, let f° be any regularization of f;.
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Now, we are in position to define the regularized problem. Let §(2) be
as described after (17); for each § € (0,(€2)], we consider the system

ae’g) — AP’ — %Ws — (")) =8 (95 + (0 — 04)c" — 93) in Q°, (19)

C0%u) (T V)4 (0 V) + (7 (6) — ), )
= (F(,0%),u) foralluc V(Q), t € (0,7),

Ov0?+cvp5(v5)-w5=v(Kl(pa(qﬁﬁ))w&)%ff(qﬁﬁ)t in @, (21)

¢ — KA 4 ps(v°) - Ve = KoMV - (05(1 - CJ)VP5(¢5)) in @, (22)

¢’ 09° oc’ P
oo Tco, Lomaorx0n), (09
P(0)=¢3,  0)=2),  0°0)=6), 0)=c in Q0. (24)
Concerning this system we will prove the following existence result.
Proposition 1 Let T > 0, 6(Q2) > 0 be as described following (17), and
1/2 <y < 1. For each 6 € (0,6()], consider ¢ € H'*7(Q°%), v) € H(Q?),
o 5
05 € H(Q%) and ¢} € C*(Q°) satisfying the compatibility conditions % =
n
5 5 -
% = % =0 0n 9 and 0 < ¢ <1in Q. Assume also that (H1)-(H4)
n n
hold. Then, there exist a solution (¢°,v°,0°,¢°) of (19)-(24) satisfying
i) ¢° € L2(0,T; H* (), ¢ € L*(Q°),
ii) v € L2(0,T; V(29)) N L>(0,T; H(Y)), v} € L0, T;V(Q%)"),
iii) 0° € L%(0,T; H?(Q)), 62 € L*(Q°%),

iv) ¢ € C?1(Q%), 0< <.

The proof of this proposition will depend on an another existence result
for other approximate problem, obtained from (19)-(24) by discretizing just
the modified Navier-Stokes equations using Faedo-Galekin method. By solv-
ing this approximate problem, we will recover the solution of the regularized
problem as the discretization dimension m increases to +00.
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For this purpose, first we introduce the spaces V,(Q°),
V,(Q°) = the closure of V(Q7) in (H*(Q")N, s > 1,

endowed with the usual Hilbert scalar product
N
((uy))s = > (us, Vi) s () -

=1

We also consider the spectral problem:
5 N
((w,v))s = Mu,v) forall v € V5(Q°) and s = o

which admits a sequence of solutions w; corresponding to the sequence of
eigenvalues \; > 0.

With the help of these eigenfunctions, we define the following approximate
problem of order m: find (¢° ,v% ,6° ¢ ), with

m’ "m? 7 m’m
m
vl (t) = Zg?m(t)wj € Vi = span{wy, ..., wy},
7=1

such that
1 :
acdh,, — NG, — 5 (3, — (60,") = B (05, + (0 — 04)c), — 0p) in @, (25)

%(Uzw wj) + l/(vvgm ij) + (Ugm ' VU;, wj) + (k(fj(qﬁfn) - 6)”7(;’ wj)
= (F(S,0),w;) 1<j<m, te(0,T), (26)

m?’’m

l
Cvegzt + Cvp5(vzz) ) V@fn =V (Kl (p5(¢§n))vefn) + ifsé(@sn)t in an (27)
by = Ko A, + ps(v3,) - Vb, = KoMV - (b, (1= ¢,) Vs () in Q°, (28)

8@5% B 39,‘; B acfn B 5
a—n = 0, % = 0, % =0 on 00° x (O,T), (29)
31 (0) = Bos U (0) = 05, 00,(0) =65, €0,(0) = 5, 0 Q. (30)

We then have the following existence result.
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Proposition 2 Let T > 0, §(2) be as described after (17), and 1/2 < v <
1. Fizé € (0,6(Q)] and m € IN; let ¢}, € HT(Q), v}, € H(Q),
05, € H™Y(Q0) and ¢, € CH(Q0) satisfying the compatibility conditions
a¢gm aegm acgm 5 J ()0
= = =0 ond and 0 < ¢, < 1 in Q°. Assume also
on on on
that (H1)-(H4) hold. Then, there exist a solution (¢°,, v ,0° ¢ ) satisfying

(25)-(30) and

i) ¢y, € L*(0,T; HX(Q)), ¢y, € L*(Q°),
i) v2, € C'([0,T); Vin),

iii) 07 e L2(0,T; HX()), 07, € L*(Q%),
iv) &, € C*1(Q°), 0 <, < 1.

Proof: For simplicity of notation, in this proof we shall omit the index

§ used in @2 w2 00 .

We consider the family of operators, for 0 < A <1,
T\: B— B,
where B is the Banach space
B = L(Q7) x LX(0, T; H(@)) x L2(Q") x L(Q"),

which maps (qgm,ﬁm,ém,ém) € B into (¢m, Um, Om, ¢, With
Um(t) =Y gjm(t)w; € Vi, obtained by solving the problem
j=1

APy — NGy, — %(% — 03) = AB (0 + (05 — 04)ém — 05) in Q°, (31)

%(Uma wj) + I/(va, ij) + (Um Vg, wj) + (k(f§(¢m) - 6)vma wj)

= AF(mb)wy) 1<5<m, te(0,7), (32)

Coli + Cops(v) -V = 7 - (K (ps(6)) V) + 575 (0m), i Q7 (39)

Cmt — KZACm +P5(Um) . vCm - KZMV ' (Cm(l - Cm)vp5(¢m)) in Q57 (34)
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00y, 00y,  dcy
on  On  On

¢m(0) = d)gmv Um(o) = Ugnv gm(O) = egmv Cm(O) = Cgm iIl Q(S' (36)
Clearly (¢m, Um, Om, cm) is a solution of (25)-(30) if and only if it is a fixed
point of the operator 77. In the following, we prove that 7} has at least one
fixed point using the Leray-Schauder Fixed Point Theorem.

To begin with, observe that since 6,,, én € L*(Q%) we infer from The-
orem 2.1 [14] that there is a unique solution ¢,, of equation (31) with
bm € Wy (Q).

Now, (32) is a nonlinear system of ordinary differential equations for the
functions g1y, - .-, gmm-. This problem has an unique maximal solution de-
fined on same interval [0, ¢,,) and v,, € C'([0,¢,,); V;,). The a prioriestimates
we shall prove later will show in particular that ¢, = T.

Observe that since K is a bounded Lipschitz continuous function and
ps(bm) € C(IRN+1), we have that K;(ps(d)) € WHH(Q%), 1 < r < oo, and
since ps(vm) € LV2(Q%) and 2 (¢m), = f2 (dm)Pmy € L2(Q?), we infer from
LP-theory of parabolic equations ([15], Thm. 9.1 in Chapter IV, p. 341 and
the remark at the end of Section 9 of the same chapter, p. 351) that there is
a unique solution 6, of equation (33) with 6,, € W3 (Q?).

We observe that equation (34) is a semi-linear parabolic equation with
smooth coefficients and growth conditions on the nonlinear forcing terms as
the ones required for a semigroup result on global existence result given in
[13], p. 75. Thus, there is a unique classical global solution ¢,,. In addition,
note that equation (34) does not admit constant solutions, except ¢ = 0
and ¢ = 1. Thus, by using Maximum Principle together with the conditions

0<¢), <1and g—m =0 on 0Q°, we can deduce that
n

=0 on 0Q° x (0,7), (35)

0 < cem(z,t) <1, V(x,t) € Q°. (37)

Therefore, the mapping T is well defined from B into B.
To prove the continuity of T, let (¢, 05,05, ¢5), k € IN be a se-
quence in B strongly converging to (¢m, Om,Om,¢m) € B and for each £k,

let (¢F vk 0k ck), the solution of the problem:

m YmrYmr*m

060k, G, (0, —(65)%) = N3 (0, + (0 — 0.)¢k, — 0) n @, (39)
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Ckwg) (o, V) (o - ok ) + (R0 — 6)ok, )
= MNF(@Ek,05),w)), 1< ]<mt€(OT) (39)

Colly, + Cops(v),) - V05, = V - (Ki(ps(67,) VO3, ) + 5 Lyt in @2, (40)

chy = KoACh, + ps(v),) - Vb, = KoMV - (b, (1= ¢,)Vps(f)) in @7, (41)
ook, o0k, ack,
on  On  On

O (0) = s V3 (0) = Ugs O (0) =65, € (0) =5, In Q. (43)

m om>» m

=0 on a0 x(0,T), (42)

We show that the sequence (4%, vk, 0y, cy,) converges strongly in B to
(Dumy Vs O cm) TA(qﬁm,vm@m,cm) For that purpose, we will obtain esti-
mates to (¢F ,vF 0% k) independent of k. As usual, we will denote by C;,
with a proper indexes 1, positive constants independent of k.

We multiply (38) by ¢F, ¢ and —A¢F,, we integrate over Q x (0,1)
and by parts, and we use the Holder’s and Young’s inequalities to obtain the

following three estimates:

O‘—GQ/ o+ [ [ (@965 +(04)") dods
2 Jos T 0 Jas T4

t ~
<O+ Cy [ [ (10512 1652+ 105 ) du, (44)
0 JQS
2ot € (o) (0)°
e k Qd dt / - k |2 m/ m d
R N A e
t ~
<Ci+Cy [ [ (18P + 1k 2) dadt, (45)
0 JQs
e’ k12 et
ac d —/ / AE 2dzdt
t N
§01+02// (|V¢ﬁ1|2+|9f§1|2+|éﬁ1 2) dudt. (46)
0 JQS

Multiplying (45) by ae® and adding the result to (44), we find
|5+ IVOLE + (¢h)dr

t ~
<0+ 02// (1052 + 165, 2 + |0k, 2) dadt.  (47)
0 JQs
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Since ||é';1||L2(Q5) and ||¢& || 72(gs) are bounded independent of k, we infer from
(47) and Gronwall’s inequality that

105 2o (05111 (0y) < Ch- (48)
Then, thanks to (44)-(46) we have
||¢51||L2(0,T;H2(Q5)) + ||¢Ir€nt||L2(Q5) < (. (49)
We multiply (39) by g7,,(¢) and add these equations for j =1,...,m. Using
that (u- Vo,v) =0, u € V(Q), v € (H'(Q°))N we get

d
a/Q [z + /Q (VIV ol + k(2 (8h,) — 0)| ok ) da
< G [ (IFP+ 1052 165 + ob?) do
0o

By using Gronwall’s inequality, we obtain

|08 || oo (0 77028 Dz 0.7 (025y) < Chr.- (50)

Let now P,, be the projector of H(Q’) on the space V,,. Note that P,
is a V;(Q°)-orthogonal projector on V;, and thus [|Py|zv; 08 vis) < 1-
Therefore, from equation (39), we infer that

vy < Ci(Iohllvios + 1050 gy, o + 1Pl

||U7Iin s
+ ||0m||L2(Q5) + ||Cm||L2(95 )

T(Q%)

Then, by using (50) and interpolation ([17] p.73), we obtain

[om |22 0/mv2 00y < Ch (51)

Now, by multiplying (40) by 6% | one obtains similarly that

/ 0% |2 d:z;—i-/ / Vok |2 d:z;dt<01+02/ / 65,2 + 165 ) dardt, (52)
and we infer from (49) and Gronwall’s inequality that

161l oo (0,752 (025y) < Ch. (53)
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Hence, it follows from (52) that
16051 220,750 25y < Ch- (54)

Now we take the scalar product of (40) with n € H'(92) and integrate by
parts using Holder’s and Young’s inequalities to obtain

165, Nl sy < Ch (||V9k 1 e2gsy + [vf Nl naos) 108Nl o5y + 100, t||L2(Q5))
and we infer from (49),(50) and (54) that
||9mt||L4/3 0,T;HL(Q5) < Ch. (55)

Next, multiplying (41) by c£ and reasoning as before with the help of (37),
we conclude that

t t
[ ket [ 9k Pdudt < €3+ Cy [ [Vl Pdudt.
Qo 0 JQs 0 JQS
Hence, from (49), we obtain

el (o, ()L (0,712 (00)) < C1. (56)

In order to get an estimate for (cF,) in L?(0,T; H'(Q°)'), we go back to
equation (41) and proceed similarly as before to obtain

llemll 2. @syy < Ch. (57)

We now infer from (48)-(57) that the sequence (¢F,) is uniformly bounded
with respect to & in

Wi = {w € L2(0,T; H(Q)), w, € L*(0, T; LX) }
and in
Wy = {w e L0, T; H'(Q%)), wy € L*(0,T; L*(2°)) } ;
the sequence (v¥) is bounded in
Wy = {w € L0, T; V(Q)), w, € L*(0,T; Vi(2°))}

and in
Wy = {w e L=(0,T; H(Q)), w, € L2(0,T; Vy(Q7))};
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the sequence (6% ) is bounded in

Ws = {w e L2(0,T; H'(Q)), w, € LY3(0,T; H'(Q))}
and in
Ws = {w € L2(0,T; (7)), w, € L0, T; HY(27)') };
and the sequence (cf ) is bounded in
Wy ={w e L2(0,T; H'(Q)), w, € L*(0, T; H'()') }
and in
We = {w € L0, T; L)), w, € L*(0, T; H'(2)) }.

Now we observe that W, is compactly embedded into L?(0,T; H'(©°)), and
the same holds for Wy into C'([0, T; L?(2%)); for Wy, W5 and Wy into L2(Q°);
with Wy into C'([0,T]; V5(£2°)"), and with Ws and Wy into C([0, T]; H*(Q°)")
([23] Cor.4).

It follows that there exist (¢m, Vm, Om, Cm) satisfying:

bm € L0, T; H*(Q%) N L®(0,T; HY(Q?)), with ¢,,, € L*(Q°),

v € L0, T; V()N L0, T; H(Q?)), with v, € L2(0,T;V,(Q°%)"),

0 € L*0,T; H'(Q%) N L®(0,T; L*(Q°)), with 0,,, € L*3(0,T; H'(Q%)"),
cm € L20,T; HY(Q%) N L*>®(0,T; L?(Q%)), with ¢,y € L0, T; HY(20)"),

and a subsequence of (¢F vk 6F k) which for simplicity of notation we

m’» “m’ YV m’ m

keep denoting (¢ vk 6% k) such that as k — 400 we have

m’ “m’m’ - m

ko — ¢, strongly in L2(0,T; HY(Q°)) N C([0, T); L*(2?)),
ok — ¢, weakly in L2(0,T; H*(Q?)),
vk — v, strongly in L2(Q%) N C([0, T); V4(2°)),
vk — v, weakly in L?(0,T;V(Q°)),
6F 5 0, strongly in L2(Q%) N C([0, T]; H(Q)), (58)
ok — 0, weakly in L2(0,T; H*(Q?)),
ck— cn strongly in L2(Q°) N C([0,T); HY(Q°)'),
ck — ¢, weaklyin L2(0,T; H'(Q)).

[t now remains to pass to the limit as k tends to 400 in (38)-(43).

19



Since the embedding of W3 (Q%) into L°(Q?) is compact ([18] p.15), and
(¢F ) is bounded in W5 (Q?), we infer that (¢F )3 converges to ¢3, in L2(Q°).
We then pass to the limit as & tends to +oo in (38) and get

0562¢mt - €2A¢m - %(¢m - ¢§n) - )\6 (ém + (03 - GA)ém — 03) a.e. in QJ.

Now we observe that for fixed § > 0, k(f2(-) — ) is a bounded Lipschitz
continuous function from IR in IR; therefore, k(f°(¢F) — d) converges to
E(f2(¢pm) — 8) in LP(Q°) for any 1 < p < +oo. Since the passing to the limit
of the other terms of (39) can be done in standard ways, we get

d
%(Um; U)j) + Z/(VUm, ij) —|—(Um . va: wj) + (k(ff(¢m) - 6)Um; wj)
= MF(m,0m),w;) 1<j<m, te(0,T).

Also, since Vj, is a closed subspace, we have that v,,(t) = > gjm(t)w; € V.
=1

Since K (ps) and 9" are bounded Lipschitz continuous functions and ¢F
converges to ¢, in L2(Q°%), we have that K;(ps(¢%)) converges to K;(ps(dm))
and f¥'(¢* ) converges to f¥'(¢n) in LP(Q%) for any p € [1,00). These facts
and (58) yield the weak convergence of K;(ps(¢F ))VOE to Ki(ps(dm)) VO
and f2'(¢E )k to £ (dm)dm, in L3*(Q%). Now, multiplying (40) by n €
D(Q?), integrating over Q% x (0,7) and by parts, we obtain

T
LG (O + pseh) - VL) + Kalps(65) V0%, - Vi dadt
T Y
= [ [ 557 @h)skun daat.

Then, we may pass to the limit and find that

Ol + Cops(va) - Ve = 7 - (K (03(60))0) + 2 7 (00)m 0 D(Q°).

(59)
Now, by using the LP-theory of parabolic equations, we conclude that (59)
holds almost everywhere in Q°.

It remains to pass to the limit in (41). We infer from (58) that Vp;(¢F )
converges to Vp;(¢m) in L2(Q°). Also, since ||ck || 1< (qgs) is bounded, it follows
that & (1 — k) converges to ¢, (1 — ¢p) in LP(Q°) for any p € [1,00). Thus,
we may pass to the limit in (41) to obtain

Cmi — KoAcy, + ps(vm) - Ve = KoMV - (¢n(1 — )V ps(0r)) in Q°.
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Therefore, T) is continuous for each 0 < \ < 1.

At the same time, T) is bounded in W, x W3 x W5 x W5, and the embedding
of this space in B is compact. We conclude that T is a compact operator.

To prove that for (¢3m, Doy Orms ¢m) in a bounded set of B, T) is uniformly
continuous with respect to A, let 0 < A, Ao < 1 and (dm;, Ui, Omi, Cmi), (1 =
1,2) the corresponding solutions of (31)-(36). We observe that ¢, = ¢, —

¢m2; Un = Umi — Um2 (Um(t) = Zgjm(t)wj € Vm); 9m — eml - 9m2 and
j=1

Cm = Cmy — Cmo satisfy the followiné problem:

a€2¢mt - €2A¢m = %Qsm (1 - (d)m% + d)m1¢m2 + ¢m§))

60
+(M = A2)B (O + (05 — 04)em — 05) in Q° o0

d
a(vm, wj) + v(Vom, Vw;) + (Un, - Vo, wj) — (U - Vo, w;)

(kO Gmr) = 8)vm, w5) + ([ (Bm) = 8) = k(F2(Sma) = 0)] vima, ;)
= (M = ) (F(lmy Om),wy), 1< 5 <m,
(61)
Cobmi = V- (K1 (ps(dm1)) V) = V- [Ki(ps(Dm1)) — K1 (0s(dm2))] VOmo

+ Cvpé(vm) ' veml + CVPJ(UmZ) ' vem
l ! l ! !
= ifsé (¢m1)¢)mt + 5 {fsé (¢m1) - fs(s (d)mQ)] d’mQt in Qéa (62)

Cmy — KoAcm = KoMV - (eni(1 = n1) [Vos (dm1) — Vos(dma)])
+ p&(vm) : chl + p5(vm2) : ch
+ KoMV - (e (1 = (em1 + €m2)) Vps(dmo)) in Q°, (63)
00m 00,  Ocpm 5
o = n =~ on =0 onodQ’ x(0,7T), (64)
om(0) =0, v,(0)=0, 6,(0)=0, cn(0)=0 in Q°.  (65)
We remark that d = d)m% + Py Omy + d>m§ = (m1/V2 + dimo/V2)? +
Gmi/2 + bma/2 > 0. Now, by multiplying equation (60) by ¢,,, integrating
by parts and using Holder’s and Young’s inequalities, we obtain

t t
[ onlde + [ 1Vouldudt <y [ [ 1oul2(1~ d)dudt
Qs 0 JQs . o Qd
+ 02|)\1—)\2|2// (100 ? + [é[?) davdt.
0 JQs
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Applying Gronwall’s inequality, we get

1Bml[7oe (0,r:200)) + 10mllZ20rsm1 @07y < Cr A1 = Aol (66)

Now, by multiplying (60) by ¢,,, and using Holder’s inequality, we con-
clude

t 2
[ Vomildudt + 6—/ IV |2
0 JQS

< 01// P d:rdt+—// |y |2t
+ Oy (/0 /m |¢m|10/3dxdt> (// 1d] dxdt>2/5
Ol —)\2|2/0t/m (10 + ém|?) dadt.

Since W, (Q?) — L'°(Q%), the following interpolation inequality holds
||¢m||L10/3 (Q%) < n ||¢m||Wz 1 (Q%) + CN' ||¢M||%2(Q5) for all n > 0,

and since ||d|[;5gsy < C, depending on ||¢pm||110(gsy and ||@ms||110(gs), rear-
ranging the different terms, we obtain

t
// (o, Pt + / IV |2 d
0 JQs Qs
t
< 01/0/m|¢m|2dxdt+02n||¢>m||3v22,1@6) (67)
t ~
2 2 ~ 2
+ Gl =Xl [ [ (0nf? + lenf?) dad
Multiplying (60) by —A¢,,, and proceeding similarly as before, we infer that
t
/5|V¢m|2d:1: v // (A |2 dudt
Q
< Oy [ [ Nbul?+ [V onfdrdt + Con gl e (69
Ol — Ao // (100l + [ém[?) ddr.
0 JQs

Taking > 0 small enough and considering (66), we conclude from (67) and
(68) that

18ml[52:1 sy + 1BmllToe 0,111 0y < C1 M = Ao, (69)
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Multiplying (61) by ¢;m(f) and adding these equations for j =1,---,m, we
obtain

1d
S | ol + [ VTl (7 (Gmi) = 0)lom P
< s E(f (dm1) = 6) = k(f2(Dma) — O [vmal|vm|d
+ / (0| [V 0| 0m]d + [Ar — Do /Q F ey b))
< Oy (19mll7oo (0122605 1oma 05
2 2 v 2
vm e o lom ) + 5 [ [Vnl*de
ol = Xaf? [ PP 4+ Ol + el + Cs [ Jold,
Qs Qs
By integrating this last inequality with respect to ¢ and using our previous

estimates and Gronwall’s inequality, we obtain

[0m| 200 (0,75 110520, (@5y) < O [Ar = Aol (70)

Multiplying (62) by 6,,, integrating over Q° using Holder’s inequality and

that K and ff' are bounded Lipschitz continuous functions, we have

d 2 2
%/m 10,0] da:+a/m V0,02
< o [ 1s(8) V00l V00] + 50 )]V 61
+Cs [ 6millon] + 10nl| gl 10m|dz
a
< Cillgmlie o piz2(0my | V0malian) + 5 [ V0 ldo

+C?||Um||%°°(U,T;H(Q5)) 1V ||%2(Q5)
Ol vy mad By + Cs [, (16ml? + 16 P?)

Integration with respect to ¢ and the use of Gronwall’s Lemma and (69)-(70)
lead to the estimate

10l 700 0,752 (05yy) < Ct [A = Aol (71)

We multiply (63) by c,,, integrate over Q° x (0,t) and by parts, and we use
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Hélder’s and Young's inequalities and (37) to obtain

/|c 2dz+ /t/ Ve, [Pdadt
Qs o Jor' T
< O[] (195(6m) = Tps(bm) P + lom]? + |el?) dodt

¢
< 0// Voml? + [oml? + le|?) dadt.
< G (Yol + ol + lenl?) da
Applying Gronwall’s inequality and using (69)-(70) we arrive at
lemlFoo o205y < ChlA1 = Ao, (72)

Therefore, it follows from (69)-(72) that T is uniformly continuous with
respect to A on bounded sets of B.

To estimate the set of all fixed points of Ty, let (¢m, Vm, Om, cm) € B be
such any given fixed point, i.e., it is a solution of the problem

A Py — E APy — %(qﬁm — )= A8 (O + (08 — 04)cm — 05) in Q°, (73)

vm(t) = Zgjm(t)wj € Vi = span{wy, ..., wpy},
7j=1

— (O, w;) 4 V(Vm, Vwy) + (U, - Vg, w5) + (k(f2 ($m) = 6)vm, w;)
= MF(em, ), w;) 1<j<m, te(0,7), (74)

Cvemt + Cvpé(vm) ' v0m =V- (Kl(p5(¢m))vem) + éfsé(¢m)t in Q(sa (75)

Cint = KA+ p5(vn) - Ve = KoMV - (e (1 = ¢0)V (p5(6m))) in Q°, (76)
0Py 00y,  Ocy,
on  On  On

Sm(0) = Goms U (0) = Uy 0 (0) =05, m(0) =5y, in Q0. (T8)

Multiplying the first equation (73) by ¢y, ¢m; and —Ag,,, respectively, in-

tegrating over ° and by parts, using Hélder’s and Young’s inequalities, we
obtain

=0 on o x(0,7), (77)

ae? d

1
- 2 2 2, -4
; dt/m GmlPdr + /m <e V| +4d>m>dx
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< GGy [ (10n + el +160l) dr,  (79)
(o)
e’ ) d €2 s Lo, 1,
7/95|¢mt| dr + = |, (§|V¢m| + gbm = ;1oml" ) du
2 2
< G4 Co [ (10 +lenl?) do, (80)

ae® d 9 €? 5

2 2 2
< 01+02/m (10l + lem|* + [V ial?) dr. (81)

Now, for each j = 1,...,m, we multiply (74) by g,;m(t) and add the resulting
equations to obtain

S [ et [ (V0?4 K G) — D))

(82)
<Cr [ PP+l + lenl? + [omld.

By multiplying (75) by 6,, and (76) by ¢, and proceeding similarly as above
lead us to the following inequalities

dt/ _|9 |d‘”+“/ [V < 2 / |G| dfr+01/ 10,,|%d, (83)

d
%/m e |2d + E /m Ve|2dz < O /QJ IV 61 |2d, (84)

where we used (37) to obtain the last inequality.
Now, by multiplying (80) by ae? and adding the result to (79),(81)-(84),
we obtain

d e’ ae4
a95<—'¢m'2 (% >|v¢m|2+—¢4 o

4
V 2 2 2 2 4 2
+ C 10, 4 el )dx+/m (90 + 68+ = lomd
2
+ 518 6nl? + v Vunf? + E(FI(6m) = 6) vl + a| V6| + K2|ch|2> dz

<CAC [ (10 + lenl? + 18l + Vol +[val?) o
(85)
where (' is independent of A\, m and 9.
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Hence, integrating (85) with respect ¢ and using Gronwall’s inequality,
we obtain
||¢m||L°°(0,T;H1(96)) + ||Um||L°°(o,T;H(96))
F10rm| oo 0,7 22(05y) + lemll oo 0,722(05y) < Ci,s
where ('] is independent of A. Therefore, we have a bound for all fixed points
of T in B independent of \.
Finally, proceeding exactly as we did to prove that T} is well defined, we
conclude that for A = 0, problem (31)-(36) has a unique solution.
Thus, we can apply Leray-Schauder theorem and conclude that there is
a fixed point (G, Vm, Om, €m) € BOWFH(Q?) x CH(0,T; V) x Wi (Q0) x
C?1(Q°%) of the operator Ty, that is, (G, VimsOmsCm) = T1(Pms Vs Omy Cm)-
This is a solution of problem (25)-(30), and the proof of Proposition 2 is
complete. [ |

We now proceed with the
Proof of Proposition 1: We choose ¢),, = ¢3, 63,, = 65, 5, € C'(Q)
with 0 < ¢}, < 1, and v, € V,, such that ¢} — ¢ and v3  — v5 in the
norm of H(°) as m — +oo. We then infer from Proposition 2 that, for each
§ € (0,0(2)] and m € IN, there exist functions (¢ ,v3 02 ) satisfying the
system (25)-(30). We will derive bounds, independent of m, for this solution
and then pass to the limit in the approximate problem as m tends to +o0o

by using compactness arguments.

Lemma 1 There exists a constant Cy independent of m € IN such that

169,11 oo (0.1 (@ ynz2 o2 @) + Ol 2200y < Ch, (86)

|02, oo (0.5 Yz omvsyy < Ch, (87)

109, || oo (0. 722 @0 L2 0. @iy < Ch, (88)

1 e rrz@innrzorm@sy < Ci. (89)

Proof: It follows from the inequality (85). ]

Lemma 2 There exists a constant Cy independent of m € IN such that

||Uzn||L2(o,T;vs(96y) < C, (90)
||9fm||L4/3(o,T;H1(Qéy) < (y, (91)
||ngt||L2(0,T;H1(Q5)’) < (. (92)
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Proof: From the equation (26), we infer that

vy < Ch (||v;||v(95) + ||v£1||2N_N(96)
+F | 2208y + ||9fn||L2(m + ||cm||L2(Qa)) )

||v7(§1t

Then, by using (87)-(89) and interpolation ([17] p.73), we obtain (90). By
taking the scalar product of (27) with n € H'(Q2) and using Holder’s inequal-
ity, we find

||976nt||H1(96)' <y (IIWZLHL%QS) + ||¢fnt||L2(96) + ||ng||L4(96) ||976n||L4(m)) .

Then, (91) follows from (86)-(88). (92) can be obtained similarly by using
Lemma 1. n

We infer from Lemma 1 and 2 using the compact embedding ([23] Cor.4)
that there exist

¢ € L*(0,T; H*(Q)) N L>(0,T; H'(Q)) with ¢} € L*(Q),

v € L2(0,T;V(Q0)) N L>(0,T; H(Q)) with v) € L2(0,T; Vs(Q2°)),

0° € L*0,T; H{(Q%) N L>®(0,T; L2(Q2°)) with ¢ € L*3(0,T; HY(Q°)"),

& e I2(0,T: H\(Q0)) N L%(0, T: LX) with ¢ € L2(0,T; H'(QP)),
and a subsequence of (¢ ,v°  0° ¢ ), which we keep calling (¢° ,v2 ,6° ¢ )

to ease the notation, such that, as m — o0,

¢, — ¢ strongly in L?(0,T; H>77(Q°)) N C([0, T]; L*(Q?)),
0<y<1/2
0. — @) weakly in L?*(Q%),
v — v’ stronly in L2(Q%) N C([0,T]; V5(Q2°)),
vl — v} weakly in L*(0,T; V;(Q2°)), (93)
0°, — 6° strongly in LQ(Q5) N C([0,T); H'(Q°)),
0°, — 0° weakly in L2(0,T; H'(Q?)),
& — ¢ strongly in L2(Q5) N C([0,T]; HL(Q°)),
A — ¢ weakly in L2(0,T; H'(Q)).

Thus, letting m — +o0 in (25), we get

1(¢5 —(¢)*) =5 (95 + (g — 04)c — 93) a.e. in Q°.

ae%f — 2A¢’ — 5
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Since k(f2(-) — &) is a bounded Lipschitz continuous function we have
that k(f2(¢?2 ) —d) converges to k(f2(¢°) — ) in LP(Q°), for p € [1,00); then
E(fO(2) —68)vd, converges to k(fO(4°) —0)v® in L¥2(Q%) as m tends to +oo.
As usual ([17] p.76) we may pass to the limit in the other terms in (26) and
get

d

E(U‘S,wj)JrV(W‘sanj) +(0° - Vol wy) + (K(f7(6°) — 6)0°, w;)

= (F(,6°),w;) for all j € IN.

We conclude that

6;lt(v u) 4+ v(Vo, Vu) + (v° - Voo u) + (E(f2(¢°) — 6)v°,u) = (F(,0%),u),

for all u € V,(Q°%), and then for all u € V(Q?).
Since K (ps) and f?" are bounded Lipschitz continuous functions we have

that K (ps(¢°)) converges to Ky (ps(¢°)) and f2'(¢2) to f¥'(¢°) in LP(Q7)
for any p € [1,00) as m tends to +o00. Using these facts and (93) we pass to

the limit in (27) and obtain
I s
Cub] + Cups(v”) - VO° = V - (Ki(p5(8°)) V) + 5 £ (6) ] in D'(Q°).

Applying LP-theory of parabolic equations, we have that 6° € W22’1(Q5).
Similarly we pass to the limit in (28) and obtain

— KA + p5(0°) -V = KoMV - (05(1 — c‘s)Vp5(¢5)) in Q°.

Observe that ¢’ is a classical solution and satisfies 0 < ¢’ < 1. Finally, it
follows from (93) that o0 _ % _ o 0, ¢°(0) = ¢3, v°(0) b
ws from -/ = = = = — v —
an on on ’ 0 0

0°(0) = 65 and c(0) = c. Therefore, the proof of Proposition 1 is complete.
"

4  Proof of Theorem 1

In this section we prove the existence Theorem 1. For 0 < ¢ < () as
in the statement of Theorem 1, we choose ¢} € W?~2/1(Q%) N H'*7(Q?%),
5

o5 9]
vy € H(Q), 0) € H(Q), 1/2 < v < 1, ¢ € CY(Q), satisfying % N
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00y _ dc 5 (198 5 in QF

I 0 on 9, ||05]|z2(asy < Cy and 0 < ¢j < 1in ©, and such that
the restrictions of these functions to € (recall that Q C Q?) satisfy as § — 0+
the following: ¢) — ¢o in the norm of W?2=2/%4(Q) N H'*(Q), v) — v in
the norm of H(,,,(0)), 63 — 6 in the norm of L?(2), ¢} — ¢ in the norm
of L*(Q).

We then infer from Proposition 1 that there exists (¢°,v?,8°, ¢’) solution
the regularized problem (19)-(24). We will derive bounds, independent of
0, for this solution and then use compactness arguments and passage to the
limit procedure for § tends to 0 to establish the desired existence result. They
are stated in following in a sequence of lemmas; however, most of them are
ease consequence of the previous estimates (those that are independent of 0)
and the fact that Q C Q9. We begin with the following:

Lemma 3 There exists a constant Cy such that, for any § € (0,6(Q2))

16° 1o 0,71 20,720 + 167 2

< ||¢>5||L°o (0,T;HL(Q9))NL2(0,T;H2(Q9)) + ||¢’f||L2(Q5) < Cla (94)
[l Py T p——— / [ (28 = o)l Pdrt (95)

< |0z 0.7 (05 )AL 0V (95 +/0 /95 k(fo(0%) — 8)|v°[Pdzdt < Cy,
16° || 20 0.7 22 )2 0,11 (9) < N0 poo0,7:0205) ) r2 0, 05y < Chy (96)
1’| oo iz @2 s ) < 1€ |z iz @oynz2 o @)y < Cre (97)
Proof: It follows from the inequality (85). ]

Lemma 4 There exists a constant Cy such that, for any § € (0,5(Q2))

||Cf||L2(0,T;Hg(Q)') < (98)
10| s oy < Chy (99)
< Cp, forany2<gq<2(N+2)/N. (100)

16 ]lw241 )
Proof: Using that 0 < ¢® < 1 in @, we infer from (22) that,

111y < Cr (Ve 120 + 10 |z20) + V6 120 -
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Then, (98) follows from Lemma 3.
Now, we take the scalar product of (21) with n € H!(Q), using Holder’s
inequality and (H3) we find

Collo sy < Ci (V0 17200y + 10 |y 10"l oy + 16411220 -

Then, (99) follows from Lemma 3.
Now, from a result of Hoffman and Jiang ([14] Thm 2.1), we conclude
that ¢ satisfies the following inequality, for any 2 < ¢ < oo,

16 2 gy < O (1071 zag@s) + 1"l agory + I8 llwaoeas) + C1) - (101)

Then, (100) holds due to [|c’[|;egsy and by interpolation [|6°|| Lacv-+2)/n (qs)
are bounded independent of 4. [

Lemma 5 There exist a constant Cy and oy € (0,0(2)) such that, for any
0 < 50,
||Uf||L4/3(t1,t2;V(Uy) <Ci (102)

where 0 < t; < to < T, U C Qu(t1) and such that [ti,t3] x U C Quy U
Qi (0) U Q0 (T).

Proof: Let 0 < t; < to < T,U C Quu(t;) be such that [t;,ty] x U C
QiU (0)UQ,,(T). Tt is verified by means of (20) that for a.e. t € (t1,t5),

(v, u) = —U/UVUJ - Vudx — /Uv5 - Voludr — /Uk(ff(qﬁ‘;) — 0)v'udx
+/ F(E, 0 udz foru € V(U).
U

In order to estimate ||vf ||y 17y, we observe that the sequence (¢°) is bounded
in W2H(Q), for 2 < ¢ < 2(N + 2)/N, in particular, for ¢ > (N + 2)/2
we have that W2'(Q) C H™/*(Q) where 7 = 2 — (N + 2)/q ([15] p.
80). Due to theorem of Arzela-Ascoli, there exist ¢ and a subsequence of
(#°) (which we still denote by ¢° ), such that ¢’ converges uniformly to ¢
in Q. Recall that Q,;y = {(z,1) € Q : 0 < fo(d(x,t)) < 1} and Q,y(t) =
{z €Q:0< fy(o(z,t)) < 1}. Note that there is 7 € (0, 1) such that for any

(x,t) € [t1,t2] X U, we have
fs(op(z,t)) <1 —7.
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Due to the uniform convergence of f’ towards f, on any compact subset,
there is an dy such that for all § € (0, dy) and for all (z,t) € [t1,ts] x U,

£ (w,1) < 1—7/2.
By assumption (H1) we infer that

k(fo(0(x,t) —6) < k(1 —7/2) for (x,t) € [ty,ts] x U and § < d.

i@y < Cl(||v(s||v + 10140y + 1Flle2@) + 1€ 2g) + 10 [l 20
+ k(2B (2, )) — 5)||L°°(U)||UJ||L2(Q))-

Hence, (102) follows from Lemma 3. ]

;From (95), we conclude that the sequence (v°) is also uniformly bounded
in L?(ty,to; H'(U)). Then, by the compact embedding ([23] Cor. 4) , there
exist v and a subsequence of (v°) (which we still denote by v?), such that

v’ — v strongly in L2((ty,ty) x U).

Observe that (),,; is an open set and can be covered by a countable number
of open sets (t;,t;11) x U; such that U; C Q,(%;), then by means of a diagonal
argument, we obtain

v’ — v strongly in L2 (Qmi U Qi (0) U Qi (T)). (103)

Moreover, from (95) and the fact that v° € L2(0,T;V(£2%)) we have that
ve L*0,T; V)N L®(0,T; H) and

v® — v weakly in L2(0,T; H(Q)),

v? v weakly star in L>®(0,T; L*(2)). (104)

Now, from Lemma 3 and Lemma 4, by using compact embedding ([23] Cor.4),
we infer that there exist

¢ € W2HQ) for 2 < q < 2(N +2)/N,
§ c IL20,T; H(Q)) N L>2(0,T; L*()),
c € L*0,T;H' () N L>(0,T; L*(Q)),
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and a subsequence of (¢°, 0, ¢’) (which we still denote by (¢?,8°,¢°) ) such
that, as 6 — 0,

#° — ¢ uniformly in Q,
¢ — ¢ strongly in LI(0,T;W?274(Q)), 0 <7 < 1/2,
¢~ ¢, weakly in L9(Q),
0° — 6 strongly in L*(Q) N C([0,T); H:(Q)"), (105)
0° — § weaklyin L%(0,T; H'(Q)),
& — ¢ stronglyin L?(Q) NC([0,T]; HX(Q)),
¢ — ¢ weakly in L?(0,T; H'(Q)).

It now remains to pass to the limit as 0 decreases to zero in (19)-(24).

It follows from (105) that we may pass to the limit in (19), and find that
(12) holds almost everywhere.

Now, we take u = n(t) in (20) where € L*(0, T; V (Qpu (t)
support contained in @Q,,; U Q,,(0) U 2,,,(T) and 1, € L*(0
after integration over (0,t), we find

)) with compact
TV (Qui(1));

/Ot ((v,‘f, n) + (Vo' Vn) + (0° - Vo', n) + (k(f2(4°) — )0, n)) ds
= /Ut(]:(c‘s,ﬁé),n)ds.

Since supp 7 C QU Qi (0) U Qi (T') we have that supp n(t) C Quu(t) a.e.
t € [0,T]. Moreover, we observe that

(106)

t t
[ whimds = = [ 0 m0,u0ds + (00000 = 010D,

Because of uniform convergence of f° to f, on compact subsets, as well
as the assumption (H1), it follows that k(f’(¢?) — &) converges to k(f,(¢))
uniformly on compact subsets of U, (0)UQ (T). These facts, together
with (103)-(105), ensure that we may pass to the limit in (106) and get (14).

To check that v =0 a.e. in é)s, take a compact set K gé}s . Then there
is an 0x € (0,1) such that

(@ (x,t) =1 in K for § < 0k,

hence, k(f2(¢°(x,t) — ) = k(1 — ) in K for § < . From (95) we infer
that
k(1= 0)[0° |72y < C1 for 6 < 6k
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where C is independent of 4. As ¢ tends to 0, by assumption (H1), k(1 —0)
blows up and consequently ||v°||z2(x) converges to 0. Therefore v = 0 a.e. in

K. Since K is an arbitrary subset, we conclude that v = 0 a.e. in 625 .

In order to pass to the limit in (21), we notice that given £ € L*(0,T; H'(Q))
with & € L?(0,T; L?*(Q2)) satisfying £(T') = 0, we can consider an extension
of & such that €& € L(0,T; H'(Q%)) with & € L?(0,T; L*(Q°%)) satisfying
&(T) = 0. Now, we take the scalar product of (21) with £,

—c, / 03¢ (0)dz — O, / / O eidrdt — C, / / ps(v0)8° - VE ddt

+ / / Ki(ps(6°) V0 - VE dudt = / / 17 (69 ddt.

(107)
Observe that, since K is a bounded Lipschitz continuous function, K (ps(¢°))
converges to K(¢) in LP(Q) for p € [1,00). We notice that since p;(v°) con-
verges weakly to vin L2(0,T; H'(2)) and §° — 6 strongly in C'([0, T]; HL(2)")
we have that ps(v°)@° converges to v in D'(Q). Observe also that fo — f/
in LI(IR) for 2 < ¢ < oo, then from (105) we infer that f%'(¢°)¢¢ converges
weakly to f!(¢)¢, in L9/%(Q). Moreover, from Lemma 3 the integrals over
Q°\Q are bounded independent of § and since [Q2°\Q| — 0 as § — 0, we have
that these integrals tend to zero as § — 0. Therefore, we may pass to the
limit in (107) and obtain

—c, / Bo€ (0)dzz — C, / / o€, dudt — C, / / 00 - VE drdt
v / / K ($)V0 - VE dwdt — / / FH(S) i dvdt
for all £ € L*(0,T; H'(2)) with &€ € L?(0,T; L?(2)) and &(T) =
It remains to pass to the limit in (22). For that purpose, we proceed in

similar ways as before, taking the scalar product of it with ¢ € L?(0,T; H*(Q°))
with ¢¢ € L?(0,T; L*(Q°)) and ¢°(T) =0,

_ / / S¢S dwdt — / / ps(00) - VP dadt + Ky / / Ve V(P dudt
+K2M/ / (1—¢")Vps(9?) - VC‘dedt:/m b ¢ (0)d.

Then, from (104),(105), and using the fact that sequence (c?) is bounded in
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L*>(Q), we may pass to the limit as 6 — 0 to obtain

—/OT/chtdxdt—/OTTAWvgdxdt+K2/0T/ch-vgdxdt
+K2M/O /Qc(l — OV VC dedt = /Qcog(o)dx,

which holds for any ¢ € L?(0,T; H'(Q2)) with ¢ € L*(0,T; L*(Q2)) satisfying
¢(T) = 0. Observe that since 0 < ¢® < 1 and ¢’ converges to ¢ in L?(Q) we
have that 0 < ¢ <1 a.e. in Q.

0¢

Finally, it follows from (105) that Pl 0, ¢(0) = ¢, 6(0) = 6y and
c(0) = ¢p. Furthermore, v(0) = vy in ©,,;(0) because v°(0) — v(0) in V'(U)
for any U such that U C ,,;(0). The proof of Theorem 1 is then complete.
"
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