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Abstra
t

In re
ent years, the phase-�eld methodology has a
hieved 
onsiderable im-

portan
e in modeling and numeri
ally simulating a range of phase transitions

and 
omplex growth stru
tures that o

ur during solidi�
ation pro
esses. In

attempt to understand the mathemati
al aspe
ts of su
h methodology, in

this arti
le we 
onsider a simpli�ed model of this sort for a nonstationary

pro
ess of solidi�
ation/melting of a binary alloy with thermal properties.

The model in
ludes the possibility of o

urren
e of natural 
onve
tion in

non-solidi�ed regions and, therefore, leads to a free-boundary value prob-

lem for a highly non-linear system of partial di�erential equations 
onsisting

of a phase-�eld equation, a heat equation, a 
on
entration equation and a

modi�ed Navier-Stokes equations by a penalization term of Carman-Kozeny

type, whi
h a

ounts for the mushy e�e
ts, and Boussinesq terms to take in


onsideration the e�e
ts of variations of temperature and 
on
entration in

the 
ow.

A proof of existen
e of weak solutions for the system is given. The prob-

lem is �rstly approximated and a sequen
e of approximate solutions is ob-

tained by Leray-S
hauder's �xed point theorem. A solution of the original

problem is then found by using 
ompa
tness arguments.
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1 Introdu
tion

In re
ent years, the phase-�eld methodology, whi
h is an alternative formu-

lation both to the sharp-interfa
e methodology (Stefan type approa
h) or to

the enthalpy methodology, has a
hieved 
onsiderable importan
e in modeling

and numeri
ally simulating a range of phase transitions and 
omplex growth

stru
tures that o

ur during solidi�
ation. This has spurred many arti
les

using this approa
h and proposing several mathemati
al models 
onsisting

of highly nonlinear systems of partial di�erential equations.

Rigorous mathemati
al analysis is in general diÆ
ult, but for pure ma-

terials undergoing phase 
hange, several authors have undertaking the task.

Examples of this sort of analysis are [4, 14, 16, 20℄, where existen
e and

uniqueness results are investigated for various types of non-linearities.

Several phase-�eld models have also been developed for binary alloys.

One of the �rst works in this dire
tion was due to Wheeler et al. [30℄ and

was 
on
erned with isothermal solidi�
ation. Warren and Boettinger [29℄

extended this model, while re
ently Rappaz and S
heid [22℄ investigated the

well-posedness under suitable assumptions for the non-linearities. Caginalp

et al. [6, 5℄ extended this kind of model by in
luding temperatures 
hanges.

For su
h model, the governing equations for the phase-�eld and the 
on
en-

tration are derived from a free energy fun
tional; then an appropriate balan
e

equation for the temperature, a

ounting for the liberation of latent heat by

addition of a term proportional to the time derivative of the phase-�eld, is

added to 
omplete the model. The existen
e of weak solutions for this model

was re
ently studied in [3℄.

The previously mentioned phase-�eld models do not 
onsider the possi-

bility of 
ow of the non-solidi�ed material. However, there are many 
ases

where su
h 
ows do o

ur and are signi�
ant, having important e�e
ts on the

out
ome of the solidi�
ation pro
ess. From the mathemati
al point of view,

the in
lusion of su
h e�e
ts in the model brings another order of diÆ
ulty

to the analysis, whatever the approa
h used for modeling phase 
hange. For

instan
e [7, 8, 9, 10, 21, 24℄ 
onsider several mathemati
al aspe
ts of the

interplay between 
uid motion and phase 
hange for pure material; the �rst

four of these papers used the Stefan approa
h, while the last two used the

enthalpy approa
h.

Voller et al. [26, 27℄ proposed models using the enthalpy te
hnique for

a 
onve
tion/di�usion phase 
hange pro
ess by in
luding in the model a

modi�
ation of the Navier-Stokes equations by the in
lusion of a 
ertain term
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that takes in 
onsideration the 
ow in mushy regions. Parti
ular expressions

for this term may be obtained by modeling the mushy region as porous

medium. Another model of this type was proposed by Voss and Tsai [28℄. In

Blan
 et al. [1℄ performed a rigorous mathemati
al analysis of a stationary

model for the solidi�
ation pro
ess with 
onve
tion of a binary alloy. The

model in [1℄ used an enthalpy approa
h and, as suggested in Voller et al.

[27℄, a Carman-Kozeny penalization term was added to the Navier-Stokes

equations to model the 
ow in mushy regions. Other authors have proposed

models using the phase-�eld method for solidi�
ation pro
ess of binary alloys

in presen
e of 
onve
tion. For instan
e, Be
kermann et al. [2℄ and Diepers

et al. [11℄ proposed models of this sort using arguments of mixture theory.

They also presented numeri
al simulations to validate their models.

In this paper we are interested in the rigorous mathemati
al analysis of a

phase-�eld type model for a non-stationary solidi�
ation pro
ess of a binary

alloy, with the possibility of 
ow of the non-solid phase. Di�erently of models

in [2℄ and [11℄, the model we 
onsider here 
ombines ideas of Voller et al. [27℄

and of Blan
 et al. [1℄ to model the possibility of 
ow with those of Caginalp

et al. [6℄ for the phase-�eld and the thermal properties of the alloy. Our

system of equations will des
ribed in detail in the next se
tion; here we just

observe that our system in
ludes the Navier-Stokes equations with a Carman-

Kozeny type term as des
ribed above, and also a Boussinesq type term to take

in 
onsideration buoyan
y for
es due to thermal and 
on
entration e�e
ts.

Sin
e these equations for the 
ow only hold in an a priori unknown non-solid

region, the model 
orresponds to a free boundary value problem. Moreover,

sin
e the Carman-Kozeny term is dependent on the lo
al solid fra
tion, this

is assumed to be fun
tionally related to the the phase-�eld.

Our obje
tive is to present a result on existen
e of weak solutions for this

mathemati
al model. The proof will be based on a regularization te
hnique

that 
ombines ideas already used in [1℄ and [3℄: an auxiliary positive param-

eter will be introdu
ed in the equations in su
h way that the original free

boundary value problem will be transformed in a more standard (penalized)

problem. We say that this transformed problem is the regularized problem.

By solving it, one hopes to re
over a solution of the original problem as

the parameter approa
hes zero. To a

omplish su
h program, we will �rstly

solve the regularized problem by using the Faedo-Galerkin method, just in

the modi�ed Navier-Stokes equations, and the Leray-S
hauder �xed point

theorem. Then, by taking a sequen
e of values of the parameter approa
h-

ing zero, we will have a sequen
e of approximate solutions. By obtaining
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suitable estimates for this sequen
e, we will then be able to take the limit

along a subsequen
e and, by 
ompa
tness arguments, to show that we have

a solution of the original problem.

The paper is organized as follows. In Se
tion 2 we des
ribe the mathemat-

i
al model and its variables; we �x the notation and des
ribe the fun
tional

spa
es to be used; we also state our te
hni
al hypotheses and main result.

In Se
tion 3 we introdu
e and analyze the regularized problem. Se
tion 4 is

dedi
ated to the proof of the existen
e of weak solutions of the original free

boundary value problem.

2 The model and main result

Let 0 < T < +1 and 
 be an open bounded domain in IR

N

, N = 2 or 3,

with smooth boundary �
 (of 
lass C

3

will be enough for our purposes).

Being Q = 
� (0; T ), we will 
onsider the following system of equations:

��

2

�

t

� �

2

�� =

1

2

(�� �

3

) + � (� � 
�

A

� (1� 
)�

B

) in Q; (1)

v

t

� ��v +rp+ v � rv + k(f

s

(�))v = F(
; �) in Q

ml

; (2)

div v = 0 in Q

ml

; (3)

v = 0 in Q

s

; (4)

C

v

�

t

+ C

v

v � r� = r � [K

1

(�)r�℄ +

l

2

f

s

(�)

t

in Q; (5)




t

+ v:r
 = K

2

(�
 +Mr � [
(1� 
)r�℄) in Q; (6)

��

�n

=

��

�n

=

�


�n

= 0 on �
� (0; T ); v = 0 on �Q

ml

; (7)

�(0) = �

0

; �(0) = �

0

; 
(0) = 


0

in 
; v(0) = v

0

in 


ml

(0); (8)

Here, � is the phase-�eld variable (sometimes 
alled order parameter), whi
h

is the state variable 
hara
terizing the di�erent phases; v is the velo
ity �eld;

p is the asso
iated hydrostati
 pressure; f

s

2 [0; 1℄ is the solid fra
tion; � is

the temperature; 
 2 [0; 1℄ is the 
on
entration of the solute (i.e., the fra
tion

of one of the two materials in the mixture).

We re
all that the phase-�eld methodology in its simplest approa
h as-

sumes the existen
e of two real numbers �

s

< �

l

and a order parameter

(phase-�eld) �(x; t), depending on the spatial variable x and time t, su
h
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that if �(x; t) � �

s

then the material at point x at time t is in solid

state; if �

l

� �(x; t) the material at point x at time t is in liquid state;

if �

s

< �(x; t) < �

l

then, at time t the point x is in the mushy region (a

region of mi
ros
opi
 mixture of solid and liquid). This setting must be

physi
ally 
oherent with the 
on
ept of solid fra
tion, whi
h we assume to be

fun
tionally dependent on the phase-�eld. This requires that f

s

(z) be a fun
-

tion su
h that f

s

(z) = 1 for z � �

s

, f

s

(z) = 0 for z � �

l

, and 0 < f

s

(z) < 1

for �

s

< z < �

l

. The required regularity assumptions on f

s

will be des
ribed

later on.

In the �rst of the previous equations (the phase-�eld equation), � >

0 is the relaxation s
aling; � = �[s℄=3� where � > 0 is a measure of the

interfa
e width; � the surfa
e tension, and [s℄ is the entropy density di�eren
e

between phases. �

A

and �

B

are the melting temperatures of the two materials


omposing the binary alloy.

In the se
ond of the previous equations, � > 0 is the vis
osity, assumed to

be 
onstant. The penalization term k(f

s

) a

ounts for the mushy e�e
t in the


ow. The original Carman-Kozeny expression for it is k(x) = C

0

x

2

=(1� x)

3

;

however, we will 
onsider more general expressions for this term. The term

F(
; �) is the buoyan
y for
e, whi
h by using Boussinesq approximation 
an

be expressed as F(
; �) = �g (


1

(� � �

r

) + 


2

(
� 


r

)) + F , where � is the

mean value of the density (whi
h for simpli
ity we will assume to be a positive


onstant); g is the a

eleration of gravity (for simpli
ity also assumed to be


onstant); 


1

and 


2

are two 
onstants; �

r

, 


r

are respe
tively the referen
e

temperature and 
on
entration (again for simpli
ity of exposition, both will

be assumed to be zero), and F is an external for
e �eld.

In the equation for the temperature, C

v

> 0 is the spe
i�
 heat (
onstant);

l is a positive 
onstant asso
iated to the latent heat. We also observe that

this equation 
omes from the balan
e of the internal energy that in this 
ase

has the form e = C

v

� +

l

2

(1 � f

s

), where 1 � f

s

is the liquid fra
tion. The

thermal 
ondu
tivity K

1

> 0 is assumed to depend on the phase-�eld.

In the last equation, K

2

> 0 is the solute di�usivity and M is a 
onstant

related to the slopes of solidus and liquidus lines.

The domain Q is 
omposed of three regions, Q

s

, Q

m

and Q

l

. The �rst

one 
orresponds to the fully solid region; the se
ond one 
orresponds to the
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mushy region, while the third is fully liquid region. They are de�ned by

Q

s

= f(x; t) 2 Q : f

s

(�(x; t)) = 1g;

Q

m

= f(x; t) 2 Q : 0 < f

s

(�(x; t)) < 1g;

Q

l

= f(x; t) 2 Q : f

s

(�(x; t)) = 0g:

(9)

Q

ml

will refer to the non-solid region, i.e.,

Q

ml

= Q

m

[Q

l

= f(x; t) 2 Q : 0 � f

s

(�(x; t)) < 1g: (10)

We also de�ne the subsets of 
 asso
iated respe
tively to the solid and non-

solid regions at time t 2 (0; T ℄




s

(t) = fx 2 
 : f

s

(�(x; t)) = 1g ;




ml

(t) = fx 2 
 : 0 � f

s

(�(x; t)) < 1g :

(11)

Observe that as we said above, all these previously des
ribed regions are a

priori unknown, the model 
orresponds to a free boundary value problem.

Throughout this paper we will assume the following assumptions:

(H1) k is nonde
reasing fun
tion of 
lass C

1

[0; 1) satisfying k(0) = 0 and

lim

x!1

�

k(x) = +1;

(H2) f

s

depends only on the phase �eld and is a Lips
hitz 
ontinuous

fun
tion de�ned on IR and satisfying 0 � f

s

(r) � 1 for r 2 IR with f

0

s

measurable,

(H3) K

1

depends only on the phase-�eld and is a Lips
hitz 
ontinuous

fun
tion de�ned on IR; moreover, there exist a > 0 and b > 0 su
h that

0 < a � K

1

(r) � b for all r 2 IR;

(H4) F is a given fun
tion in L

2

(Q):

We remark that the 
on
entration equation as it is written in [6℄ (up to

addition of a proper 
onve
tion term) is the following:




t

+ v:r
 = K

2

r �

�


(1� 
)r

�

M�+ ln




1� 


��

in Q:

This form of the equation for
es 
 2 (0; 1) and is equivalent to equation (6)

in this 
ase. Thus, (6) is more general than this last form sin
e it allows 
 to

assume the values 0 and 1, whi
h are asso
iated to regions of pure materials.
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We use standard notation in this paper. We just brie
y re
all the follow-

ing fun
tional spa
es asso
iated to the Navier-Stokes equations. Let G � IR

N

be a non-void bounded open set; for T > 0, 
onsider also Q

G

= G � (0; T )

Then,

V(G) =

n

w 2 (C

1

0

(G))

N

; div w = 0

o

;

H(G) = 
losure of V(G) in (L

2

(G))

N

;

V (G) = 
losure of V(G) in (H

1

0

(G))

N

;

H

�;�=2

(Q

G

) = H�older 
ontinuous fun
tions of exponent � in x

and exponent �=2 in t;

W

2;1

q

(Q

G

) = fw 2 L

q

(Q

G

)=D

x

w;D

2

x

w 2 L

q

(Q

G

); w

t

2 L

q

(Q

G

)g :

When G = 
, we denote H = H(
), V = V (
). Properties of these fun
-

tional spa
es 
an be found for instan
e in [15, 25℄. We denote by h�; �i the

duality pairing between H

1

(
) and H

1

(
)

0

: We also put (�; �) = (�; �)




the

inner produ
t of (L

2

(
))

N

:

The main result of this paper is the following.

Theorem 1 Let be given T > 0, 
 � IR

N

, N = 2, or 3, a bounded open

domain of 
lass C

3

, and assume that (H1)-(H4) hold. Let also be given

(N + 2)=2 < q � 2(N + 2)=N , �

0

2 W

2�2=q;q

(
) \ H

1+


(
); 1=2 < 
 � 1;

satisfying the 
ompatibility 
ondition

��

�n

= 0 on �
, v

0

2 H(


ml

(0)), �

0

2

L

2

(
), and 


0

2 L

2

(
) satisfying 0 � 


0

� 1 a.e. in 
. Then, there exist

fun
tions (�; v; �; 
; J) satisfying:

(i) � 2 W

2;1

q

(Q), �(0) = �

0

,

(ii) v 2 L

2

(0; T ;V ) \ L

1

(0; T ;H), v = 0 a.e. in

o

Q

s

, v(0) = v

0

in 


ml

(0),

where Q

s

is de�ned by (9) and 


ml

(0) by (11),

(iii) � 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)), �(0) = �

0

,

(iv) 
 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)), 
(0) = 


0

, 0 � 
 � 1 a.e. in Q

Moreover, they satisfy

��

2

�

t

� �

2

�� =

1

2

(�� �

3

) + � (� + (�

B

� �

A

)
� �

B

) a.e. in Q; (12)

��

�n

= 0 a.e. on �
� (0; T ); (13)
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(v(t); �(t))




ml

(t)

�

Z

t

0

(v; �

t

)




ml

(s)

ds+ �

Z

t

0

(rv;r�)




ml

(s)

ds

+

Z

t

0

(v � rv; �)




ml

(s)

ds+

Z

t

0

(k(f

s

(�))v; �)




ml

(s)

ds

=

Z

t

0

(F(
; �); �)




ml

(s)

ds+ (v

0

; �(0))




ml

(0)

;

(14)

for t 2 (0; T ℄ and any � 2 L

2

(0; T ;V (


ml

(t))) with 
ompa
t support 
ontained

in Q

ml

[


ml

(0)[


ml

(T ) and �

t

2 L

2

(0; T ;V (


ml

(t))

0

) where Q

ml

is de�ned

by (10) and 


ml

(t) by (11),

�C

v

Z




�

0

�(0)dx� C

v

Z

T

0

Z




��

t

dxdt� C

v

Z

T

0

Z




v� � r� dxdt

+

Z

T

0

Z




K

1

(�)r� � r� dxdt =

l

2

Z

T

0

Z




f

s

(�)

t

� dxdt

(15)

for any � 2 L

4

(0; T ;H

1

(
)) with �

t

2 L

2

(Q) and �(T ) = 0 in 
;

�

Z

T

0

Z





�

t

dxdt�

Z

T

0

Z




v
 � r� dxdt+K

2

Z

T

0

Z




r
 � r� dxdt

+K

2

M

Z

T

0

Z





(1� 
)r� � r� dxdt =

Z







0

�(0)dx;

(16)

for any � 2 L

2

(0; T ;H

1

(
)) with �

t

2 L

2

(Q) and �(T ) = 0 in 
:

Remarks:

1. The restri
tion q > N + 2=2 ensures the 
ontinuity of phase-�eld;

in fa
t, in this 
ase W

2;1

q

(Q) � H

�;�=2

(

�

Q), for � = 2 � (N + 2)=q ([15℄ p.

80). Therefore, the set Q

ml

is open, and we have a suitable interpretation

for the equations of velo
ity �eld. The restri
tion q � 2(N + 2)=N is 
on-

sequen
e of the obtained regularity of the temperature. (iii) implies that

� 2 L

2(N+2)=N

(Q), and then, from the existen
e theorem for the phase-�eld

equation given in ([14℄ Thm 2.1), we know that � 2 W

2;1

2(N+2)=N

(Q).

2. We observe that the phase-�eld models without 
onve
tion studied in

[3℄ or [16℄ allow the thermal 
ondu
tivity K

1

to vanish. In the presen
e of


onve
tion, we were not able to prove the existen
e of global weak solutions in

this degenerate 
ase; thus, we had to assume the more restri
tive assumption

(H3). It is possible, however, to prove the existen
e of a slightly di�erent

lo
al weak solution of (1)-(8) in the degenerate 
ase. This will be done

elsewhere.
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3 A regularized problem

In this se
tion we introdu
e an auxiliary regularized problem by performing

suitable modi�
ations of the original equations. The �rst obje
tive of these

modi�
ations is to introdu
e 
oeÆ
ients ensuring enough regularity for the

arguments to be used. The se
ond obje
tive, as in Blan
 [1℄, is to 
hange

the modi�ed Navier-Stokes equations in su
h way that it holds in the whole

domain instead of holding just in an a priori unknown region.

The proof of existen
e of solutions for su
h regularized problem will be

done by using Faedo-Galerkin method, with the help of the Leray-S
hauder

Fixed Point Theorem as stated in ([12℄, p. 189):

Theorem (Leray-S
hauder): Consider a transformation y = T

�

(x) where

x; y belong to a Bana
h spa
e B and � is a real parameter whi
h varies in a

bounded interval, say 0 � � � 1: Assume:

(a) T

�

(x) is de�ned for all x 2 B; 0 � � � 1;

(b) for any �xed �; T

�

(x) is 
ontinuous in B;

(
) for x in bounded sets of B; T

�

(x) is uniformly 
ontinuous in �;

(d) for any �xed �; T

�

(x) is a 
ompa
t transformation,

(e) there exists a (�nite) 
onstant M su
h that every possible solution x

of T

�

(x) = x satis�es: kxk

B

�M;

(f) the equation T

0

(x) = x has a unique solution in B:

Under the assumptions (a)-(f), there exists a solution of the equation x �

T

1

(x) = 0:

Now, we re
all 
ertain results that will be helpful in the introdu
tion of

su
h regularized problem.

Re
all that there is an extension operator Ext(�) taking any fun
tion w

in the spa
e W

2;1

2

(Q) and extending it to a fun
tion Ext(w) 2 W

2;1

2

(IR

N+1

)

with 
ompa
t support satisfying

kExt(w)k

W

2;1

2

(IR

N+1

)

� C kwk

W

2;1

2

(Q)

;

with C independent of w (see [19℄ p. 157).

For Æ 2 (0; 1), let �

Æ

2 C

1

0

(IR

N+1

) be a family of symmetri
 positive mol-

li�er fun
tions with 
ompa
t support 
onverging to the Dira
 delta fun
tion

(we 
an take the support of �

Æ


ontained in the ball of radius Æ), and denote

by � the 
onvolution operation. Then, given a fun
tion w 2 W

2;1

2

(Q), we

10



de�ne a regularization �

Æ

(w) 2 C

1

0

(IR

N+1

) of w by

�

Æ

(w) = �

Æ

� Ext(w):

This sort of regularization will be used with the phase-�eld variable. We

will also need a regularization for the velo
ity, and for it we pro
eed as follows.

Given v 2 L

2

(0; T ;V ), �rst we extend it as zero in IR

N+1

nQ. Then, as in

[19℄ p. 157, by using re
e
tion and 
utting-o�, we extend the resulting fun
-

tion to another one de�ned on IR

N+1

and with 
ompa
t support. Without

the danger of 
onfusion, we again denote su
h extension operator by Ext(v).

Then, being Æ > 0, �

Æ

and � as above, operating on ea
h 
omponent, we 
an

again de�ne a regularization �

Æ

(v) 2 C

1

0

(IR

N+1

) of v by

�

Æ

(v) = �

Æ

� Ext(v):

Besides having properties of 
ontrol of Sobolev norms in terms of the 
orre-

sponding norms of the original fun
tion (exa
tly as above), su
h extension

has the property des
ribed below.

For 0 < Æ � 1, de�ne �rstly the following family of uniformly bounded

open sets




Æ

= fx 2 IR

N

: d(x;
) < Æg: (17)

We also de�ne the asso
iated spa
e-time 
ylinder

Q

Æ

= 


Æ

� (0; T ): (18)

Obviously, for any 0 < Æ

1

< Æ

2

, we have 
 � 


Æ

1

� 


Æ

2

, Q � Q

Æ

1

� Q

Æ

2

.

Also, by using properties of 
onvolution, we 
on
lude that �

Æ

(v)j

�


Æ
= 0.

In parti
ular, for v 2 L

1

(0; T ;H) \ L

2

(0; T ;V ), we 
on
lude that �

Æ

(v) 2

L

1

(0; T ;H(


Æ

)) \ L

2

(0; T ;V (


Æ

)).

Moreover, sin
e 
 is of 
lass C

3

, there exists Æ(
) > 0 su
h that for

0 < Æ � Æ(
), we 
on
lude that 


Æ

is of 
lass C

2

and su
h that the C

2

norms

of the maps de�ning �


Æ

are uniformly estimated with respe
t to Æ in terms

of the C

3

norms of the maps de�ning �
.

Sin
e we will be working with the sets 


Æ

, the main obje
tive of this last

remark is to ensure that the 
onstants asso
iated to Sobolev immersions and

interpolations inequalities, involving just up to se
ond order derivatives and

used with 


Æ

, are uniformly bounded for 0 < Æ � Æ(
). This will be very

important to guarantee that 
ertain estimates will be independent of Æ.

Finally, let f

Æ

s

be any regularization of f

s

.
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Now, we are in position to de�ne the regularized problem. Let Æ(
) be

as des
ribed after (17); for ea
h Æ 2 (0; Æ(
)℄, we 
onsider the system

��

2

�

Æ

t

� �

2

��

Æ

�

1

2

(�

Æ

� (�

Æ

)

3

) = �

�

�

Æ

+ (�

B

� �

A

)


Æ

� �

B

�

in Q

Æ

; (19)

d

dt

(v

Æ

; u) + �(rv

Æ

;ru) + (v

Æ

� rv

Æ

; u) + (k(f

Æ

s

(�

Æ

)� Æ)v

Æ

; u)

= (F(


Æ

; �

Æ

); u) for all u 2 V (


Æ

); t 2 (0; T );

(20)

C

v

�

Æ

t

+ C

v

�

Æ

(v

Æ

) � r�

Æ

= r �

�

K

1

(�

Æ

(�

Æ

))r�

Æ

�

+

l

2

f

Æ

s

(�

Æ

)

t

in Q

Æ

; (21)




Æ

t

�K

2

�


Æ

+ �

Æ

(v

Æ

) � r


Æ

= K

2

Mr �

�




Æ

(1� 


Æ

)r�

Æ

(�

Æ

)

�

in Q

Æ

; (22)

��

Æ

�n

= 0;

��

Æ

�n

= 0;

�


Æ

�n

= 0 on �


Æ

� (0; T ); (23)

�

Æ

(0) = �

Æ

0

; v

Æ

(0) = v

Æ

0

; �

Æ

(0) = �

Æ

0

; 


Æ

(0) = 


Æ

0

in 


Æ

: (24)

Con
erning this system we will prove the following existen
e result.

Proposition 1 Let T > 0, Æ(
) > 0 be as des
ribed following (17), and

1=2 < 
 � 1. For ea
h Æ 2 (0; Æ(
)℄, 
onsider �

Æ

0

2 H

1+


(


Æ

), v

Æ

0

2 H(


Æ

),

�

Æ

0

2 H

1+


(


Æ

) and 


Æ

0

2 C

1

(


Æ

) satisfying the 
ompatibility 
onditions

��

Æ

0

�n

=

��

Æ

0

�n

=

�


Æ

0

�n

= 0 on �


Æ

and 0 � 


Æ

0

� 1 in 


Æ

. Assume also that (H1)-(H4)

hold. Then, there exist a solution (�

Æ

; v

Æ

; �

Æ

; 


Æ

) of (19)-(24) satisfying

i) �

Æ

2 L

2

(0; T ;H

2

(


Æ

)), �

Æ

t

2 L

2

(Q

Æ

),

ii) v

Æ

2 L

2

(0; T ;V (


Æ

)) \ L

1

(0; T ;H(


Æ

)), v

Æ

t

2 L

2

(0; T ;V (


Æ

)

0

),

iii) �

Æ

2 L

2

(0; T ;H

2

(


Æ

)), �

Æ

t

2 L

2

(Q

Æ

),

iv) 


Æ

2 C

2;1

(Q

Æ

); 0 � 


Æ

� 1:

The proof of this proposition will depend on an another existen
e result

for other approximate problem, obtained from (19)-(24) by dis
retizing just

the modi�ed Navier-Stokes equations using Faedo-Galekin method. By solv-

ing this approximate problem, we will re
over the solution of the regularized

problem as the dis
retization dimension m in
reases to +1.
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For this purpose, �rst we introdu
e the spa
es V

s

(


Æ

),

V

s

(


Æ

) = the 
losure of V(


Æ

) in (H

s

(


Æ

))

N

; s � 1;

endowed with the usual Hilbert s
alar produ
t

((u; v))

s

=

N

X

i=1

(u

i

; v

i

)

H

s

(


Æ

)

:

We also 
onsider the spe
tral problem:

((u; v))

s

= �(u; v) for all v 2 V

s

(


Æ

) and s =

N

2

;

whi
h admits a sequen
e of solutions w

j


orresponding to the sequen
e of

eigenvalues �

j

> 0.

With the help of these eigenfun
tions, we de�ne the following approximate

problem of order m: �nd (�

Æ

m

; v

Æ

m

; �

Æ

m

; 


Æ

m

), with

v

Æ

m

(t) =

m

X

j=1

g

Æ

jm

(t)w

j

2 V

m

= spanfw

1

; : : : ; w

m

g;

su
h that

��

2

�

Æ

m

t

� �

2

��

Æ

m

�

1

2

(�

Æ

m

� (�

Æ

m

3

) = �

�

�

Æ

m

+ (�

B

� �

A

)


Æ

m

� �

B

�

in Q

Æ

; (25)

d

dt

(v

Æ

m

; w

j

) + �(rv

Æ

m

;rw

j

) + (v

Æ

m

� rv

Æ

m

; w

j

) + (k(f

Æ

s

(�

Æ

m

)� Æ)v

Æ

m

; w

j

)

= (F(


Æ

m

; �

Æ

m

); w

j

) 1 � j � m; t 2 (0; T ); (26)

C

v

�

Æ

m

t

+ C

v

�

Æ

(v

Æ

m

) � r�

Æ

m

= r �

�

K

1

(�

Æ

(�

Æ

m

))r�

Æ

m

�

+

l

2

f

Æ

s

(�

Æ

m

)

t

in Q

Æ

; (27)




Æ

m

t

�K

2

�


Æ

m

+�

Æ

(v

Æ

m

) �r


Æ

m

= K

2

Mr�

�




Æ

m

(1� 


Æ

m

)r�

Æ

(�

Æ

m

)

�

in Q

Æ

; (28)

��

Æ

m

�n

= 0;

��

Æ

m

�n

= 0;

�


Æ

m

�n

= 0 on �


Æ

� (0; T ); (29)

�

Æ

m

(0) = �

Æ

0m

; v

Æ

m

(0) = v

Æ

0m

; �

Æ

m

(0) = �

Æ

0m

; 


Æ

m

(0) = 


Æ

0m

in 


Æ

: (30)

We then have the following existen
e result.
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Proposition 2 Let T > 0, Æ(
) be as des
ribed after (17), and 1=2 < 
 �

1. Fix Æ 2 (0; Æ(
)℄ and m 2 IN ; let �

Æ

0m

2 H

1+


(


Æ

), v

Æ

0m

2 H(


Æ

),

�

Æ

0m

2 H

1+


(


Æ

) and 


Æ

0m

2 C

1

(


Æ

) satisfying the 
ompatibility 
onditions

��

Æ

0m

�n

=

��

Æ

0m

�n

=

�


Æ

0m

�n

= 0 on �


Æ

and 0 < 


Æ

0m

< 1 in 


Æ

: Assume also

that (H1)-(H4) hold. Then, there exist a solution (�

Æ

m

; v

Æ

m

; �

Æ

m

; 


Æ

m

) satisfying

(25)-(30) and

i) �

Æ

m

2 L

2

(0; T ;H

2

(


Æ

)), �

Æ

m

t

2 L

2

(Q

Æ

),

ii) v

Æ

m

2 C

1

([0; T ℄;V

m

),

iii) �

Æ

m

2 L

2

(0; T ;H

2

(


Æ

)), �

Æ

m

t

2 L

2

(Q

Æ

),

iv) 


Æ

m

2 C

2;1

(Q

Æ

), 0 < 


Æ

m

< 1.

Proof: For simpli
ity of notation, in this proof we shall omit the index

Æ used in �

Æ

m

, v

Æ

m

, �

Æ

m

, 


Æ

m

.

We 
onsider the family of operators, for 0 � � � 1;

T

�

: B ! B;

where B is the Bana
h spa
e

B = L

2

(Q

Æ

)� L

2

(0; T ;H(


Æ

))� L

2

(Q

Æ

)� L

2

(Q

Æ

);

whi
h maps (

^

�

m

; v̂

m

;

^

�

m

; 
̂

m

) 2 B into (�

m

; v

m

; �

m

; 


m

), with

v

m

(t) =

m

X

j=1

g

jm

(t)w

j

2 V

m

, obtained by solving the problem

��

2

�

m

t

� �

2

��

m

�

1

2

(�

m

� �

3

m

) = ��

�

^

�

m

+ (�

B

� �

A

)
̂

m

� �

B

�

in Q

Æ

; (31)

d

dt

(v

m

; w

j

) + �(rv

m

;rw

j

) + (v

m

� rv

m

; w

j

) + (k(f

Æ

s

(�

m

)� Æ)v

m

; w

j

)

= �(F(
̂

m

;

^

�

m

); w

j

) 1 � j � m; t 2 (0; T ); (32)

C

v

�

m

t

+ C

v

�

Æ

(v

m

) � r�

m

= r � (K

1

(�

Æ

(�

m

))r�

m

) +

l

2

f

Æ

s

(�

m

)

t

in Q

Æ

; (33)




m

t

�K

2

�


m

+�

Æ

(v

m

) �r


m

= K

2

Mr� (


m

(1� 


m

)r�

Æ

(�

m

)) in Q

Æ

; (34)
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��

m

�n

=

��

m

�n

=

�


m

�n

= 0 on �


Æ

� (0; T ); (35)

�

m

(0) = �

Æ

0m

; v

m

(0) = v

Æ

0m

; �

m

(0) = �

Æ

0m

; 


m

(0) = 


Æ

0m

in 


Æ

: (36)

Clearly (�

m

; v

m

; �

m

; 


m

) is a solution of (25)-(30) if and only if it is a �xed

point of the operator T

1

: In the following, we prove that T

1

has at least one

�xed point using the Leray-S
hauder Fixed Point Theorem.

To begin with, observe that sin
e

^

�

m

; 
̂

m

2 L

2

(Q

Æ

) we infer from The-

orem 2.1 [14℄ that there is a unique solution �

m

of equation (31) with

�

m

2 W

2;1

2

(Q

Æ

):

Now, (32) is a nonlinear system of ordinary di�erential equations for the

fun
tions g

1m

; : : : ; g

mm

. This problem has an unique maximal solution de-

�ned on same interval [0; t

m

) and v

m

2 C

1

([0; t

m

);V

m

). The a priori estimates

we shall prove later will show in parti
ular that t

m

= T .

Observe that sin
e K

1

is a bounded Lips
hitz 
ontinuous fun
tion and

�

Æ

(�

m

) 2 C

1

(IR

N+1

), we have that K

1

(�

Æ

(�

m

)) 2 W

1;1

r

(Q

Æ

), 1 � r � 1, and

sin
e �

Æ

(v

m

) 2 L

N+2

(Q

Æ

) and f

Æ

s

(�

m

)

t

= f

Æ

s

0

(�

m

)�

m

t

2 L

2

(Q

Æ

), we infer from

L

p

-theory of paraboli
 equations ([15℄, Thm. 9.1 in Chapter IV, p. 341 and

the remark at the end of Se
tion 9 of the same 
hapter, p. 351) that there is

a unique solution �

m

of equation (33) with �

m

2 W

2;1

2

(Q

Æ

).

We observe that equation (34) is a semi-linear paraboli
 equation with

smooth 
oeÆ
ients and growth 
onditions on the nonlinear for
ing terms as

the ones required for a semigroup result on global existen
e result given in

[13℄, p. 75. Thus, there is a unique 
lassi
al global solution 


m

. In addition,

note that equation (34) does not admit 
onstant solutions, ex
ept 
 � 0

and 
 � 1. Thus, by using Maximum Prin
iple together with the 
onditions

0 < 


Æ

0m

< 1 and




m

�n

= 0 on �


Æ

, we 
an dedu
e that

0 < 


m

(x; t) < 1; 8 (x; t) 2 Q

Æ

: (37)

Therefore, the mapping T

�

is well de�ned from B into B:

To prove the 
ontinuity of T

�

, let (

^

�

k

m

; v̂

k

m

;

^

�

k

m

; 
̂

k

m

), k 2 IN be a se-

quen
e in B strongly 
onverging to (

^

�

m

; v̂

m

;

^

�

m

; 
̂

m

) 2 B and for ea
h k,

let (�

k

m

; v

k

m

; �

k

m

; 


k

m

), the solution of the problem:

��

2

�

k

m

t

��

2

��

k

m

�

1

2

(�

k

m

�(�

k

m

)

3

) = ��

�

^

�

k

m

+ (�

B

� �

A

)
̂

k

m

� �

B

�

in Q

Æ

; (38)
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v

k

m

(t) =

m

X

j=1

g

k

jm

(t)w

j

2 V

m

;

d

dt

(v

k

m

; w

j

) + �(rv

k

m

;rw

j

) + (v

k

m

� rv

k

m

; w

j

) + (k(f

Æ

s

(�

k

m

)� Æ)v

k

m

; w

j

)

= �(F(
̂

k

m

;

^

�

k

m

); w

j

); 1 � j � m; t 2 (0; T ); (39)

C

v

�

k

m

t

+ C

v

�

Æ

(v

k

m

) � r�

k

m

= r �

�

K

1

(�

Æ

(�

k

m

))r�

k

m

�

+

l

2

f

Æ

s

(�

k

m

)

t

in Q

Æ

; (40)




k

m

t

�K

2

�


k

m

+ �

Æ

(v

k

m

) � r


k

m

= K

2

Mr �

�




k

m

(1� 


k

m

)r�

Æ

(�

k

m

)

�

in Q

Æ

; (41)

��

k

m

�n

=

��

k

m

�n

=

�


k

m

�n

= 0 on �


Æ

� (0; T ); (42)

�

k

m

(0) = �

Æ

0m

; v

k

m

(0) = v

Æ

0m

; �

k

m

(0) = �

Æ

0m

; 


k

m

(0) = 


Æ

0m

in 


Æ

: (43)

We show that the sequen
e (�

k

m

; v

k

m

; �

k

m

; 


k

m

) 
onverges strongly in B to

(�

m

; v

m

; �

m

; 


m

) = T

�

(

^

�

m

; v̂

m

^

�

m

; 
̂

m

): For that purpose, we will obtain esti-

mates to (�

k

m

; v

k

m

; �

k

m

; 


k

m

) independent of k. As usual, we will denote by C

i

,

with a proper indexes i, positive 
onstants independent of k.

We multiply (38) by �

k

m

; �

k

m

t

and ���

k

m

; we integrate over 


Æ

� (0; t)

and by parts, and we use the H�older's and Young's inequalities to obtain the

following three estimates:

��

2

2

Z




Æ

j�

k

m

j

2

dx+

Z

t

0

Z




Æ

�

�

2

jr�

k

m

j

2

+

1

4

(�

k

m

)

4

�

dxdt

� C

1

+ C

2

Z

t

0

Z




Æ

�

j

^

�

k

m

j

2

+ j
̂

k

m

j

2

+ j�

k

m

j

2

�

dxdt; (44)

��

2

2

Z

t

0

Z




Æ

j�

k

m

t

j

2

dxdt+

Z




Æ

 

�

2

jr�

k

m

j

2

+

(�

k

m

)

4

8

�

(�

k

m

)

2

4

!

dx

� C

1

+ C

2

Z

t

0

Z




Æ

�

j

^

�

k

m

j

2

+ j
̂

k

m

j

2

�

dxdt; (45)

��

2

2

Z




Æ

jr�

k

m

j

2

dx+

�

2

2

Z

t

0

Z




Æ

j��

k

m

j

2

dxdt

� C

1

+ C

2

Z

t

0

Z




Æ

�

jr�

k

m

j

2

+ j

^

�

k

m

j

2

+ j
̂

k

m

j

2

�

dxdt: (46)

Multiplying (45) by ��

2

and adding the result to (44), we �nd

Z




Æ

j�

k

m

j

2

+ jr�

k

m

j

2

+ (�

k

m

)

4

dx

� C

1

+ C

2

Z

t

0

Z




Æ

�

j

^

�

k

m

j

2

+ j
̂

k

m

j

2

+ j�

k

m

j

2

�

dxdt: (47)
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Sin
e k

^

�

k

m

k

L

2

(Q

Æ

)

and k
̂

k

m

k

L

2

(Q

Æ

)

are bounded independent of k, we infer from

(47) and Gronwall's inequality that

k�

k

m

k

L

1

(0;T ;H

1

(


Æ

))

� C

1

: (48)

Then, thanks to (44)-(46) we have

k�

k

m

k

L

2

(0;T ;H

2

(


Æ

))

+ k�

k

m

t

k

L

2

(Q

Æ

)

� C

1

: (49)

We multiply (39) by g

k

jm

(t) and add these equations for j = 1; : : : ; m: Using

that (u � rv; v) = 0; u 2 V (


Æ

); v 2 (H

1

(


Æ

))

N

we get

d

dt

Z




Æ

jv

k

m

j

2

dx +

Z




Æ

�

�jrv

k

m

j

2

+ k(f

Æ

s

(�

k

m

)� Æ)jv

k

m

j

2

�

dx

� C

1

Z




Æ

�

jF j

2

+ j

^

�

k

m

j

2

+ j
̂

k

m

j

2

+ jv

k

m

j

2

�

dx:

By using Gronwall's inequality, we obtain

kv

k

m

k

L

1

(0;T ;H(


Æ

))\L

2

(0;T ;V (


Æ

))

� C

1

: (50)

Let now P

m

be the proje
tor of H(


Æ

) on the spa
e V

m

. Note that P

m

is a V

s

(


Æ

)-orthogonal proje
tor on V

m

and thus kP

m

k

L(V

s

(


Æ

);V

s

(


Æ

))

� 1.

Therefore, from equation (39), we infer that

kv

k

m

t

k

V

s

(


Æ

)

0 � C

1

�

kv

k

m

k

V (


Æ

)

+ kv

k

m

k

2

L

2N

N�1

(


Æ

)

+ kFk

L

2

(


Æ

)

+ k

^

�

k

m

k

L

2

(


Æ

)

+ k
̂

k

m

k

L

2

(


Æ

)

�

:

Then, by using (50) and interpolation ([17℄ p.73), we obtain

kv

k

m

t

k

L

2

(0;T ;V

s

(


Æ

)

0

)

� C

1

: (51)

Now, by multiplying (40) by �

k

m

, one obtains similarly that

Z




Æ

j�

k

m

j

2

dx+

Z

t

0

Z




Æ

jr�

k

m

j

2

dxdt � C

1

+C

2

Z

t

0

Z




Æ

�

j�

k

m

t

j

2

+ j�

k

m

j

2

�

dxdt; (52)

and we infer from (49) and Gronwall's inequality that

k�

k

m

k

L

1

(0;T ;L

2

(


Æ

))

� C

1

: (53)
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Hen
e, it follows from (52) that

k�

k

m

k

L

2

(0;T ;H

1

(


Æ

))

� C

1

: (54)

Now we take the s
alar produ
t of (40) with � 2 H

1

(


Æ

) and integrate by

parts using H�older's and Young's inequalities to obtain

k�

k

m

t

k

H

1

(


Æ

)

0
� C

1

�

kr�

k

m

k

L

2

(


Æ

)

+ kv

k

m

k

L

4

(


Æ

)

k�

k

m

k

L

4

(


Æ

)

+ k�

k

m

t

k

L

2

(


Æ

)

�

and we infer from (49),(50) and (54) that

k�

k

m

t

k

L

4=3

(0;T ;H

1

(


Æ

)

0

)

� C

1

: (55)

Next, multiplying (41) by 


k

m

and reasoning as before with the help of (37),

we 
on
lude that

Z




Æ

j


k

m

j

2

dx+

Z

t

0

Z




Æ

jr


k

m

j

2

dxdt � C

1

+ C

2

Z

t

0

Z




Æ

jr�

k

m

j

2

dxdt:

Hen
e, from (49), we obtain

k


k

m

k

L

2

(0;T ;H

1

(


Æ

))\L

1

(0;T ;L

2

(


Æ

))

� C

1

: (56)

In order to get an estimate for (


k

m

t

) in L

2

(0; T ;H

1

(


Æ

)

0

), we go ba
k to

equation (41) and pro
eed similarly as before to obtain

k


k

m

t

k

L

2

(0;T ;H

1

(


Æ

)

0

)

� C

1

: (57)

We now infer from (48)-(57) that the sequen
e (�

k

m

) is uniformly bounded

with respe
t to k in

W

1

=

n

w 2 L

2

(0; T ;H

2

(


Æ

)); w

t

2 L

2

(0; T ;L

2

(


Æ

))

o

and in

W

2

=

n

w 2 L

1

(0; T ;H

1

(


Æ

)); w

t

2 L

2

(0; T ;L

2

(


Æ

))

o

;

the sequen
e (v

k

m

) is bounded in

W

3

=

n

w 2 L

2

(0; T ;V (


Æ

)); w

t

2 L

2

(0; T ;V

s

(


Æ

)

0

)

o

and in

W

4

=

n

w 2 L

1

(0; T ;H(


Æ

)); w

t

2 L

2

(0; T ;V

s

(


Æ

)

0

)

o

;
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the sequen
e (�

k

m

) is bounded in

W

5

=

n

w 2 L

2

(0; T ;H

1

(


Æ

)); w

t

2 L

4=3

(0; T ;H

1

(


Æ

)

0

)

o

and in

W

6

=

n

w 2 L

1

(0; T ;L

2

(


Æ

)); w

t

2 L

4=3

(0; T ;H

1

(


Æ

)

0

)

o

;

and the sequen
e (


k

m

) is bounded in

W

7

=

n

w 2 L

2

(0; T ;H

1

(


Æ

)); w

t

2 L

2

(0; T ;H

1

(


Æ

)

0

)

o

and in

W

8

=

n

w 2 L

1

(0; T ;L

2

(


Æ

)); w

t

2 L

2

(0; T ;H

1

(


Æ

)

0

)

o

:

Now we observe that W

1

is 
ompa
tly embedded into L

2

(0; T ;H

1

(


Æ

)), and

the same holds forW

2

into C([0; T ℄;L

2

(


Æ

)); forW

3

,W

5

andW

7

into L

2

(Q

Æ

);

with W

4

into C([0; T ℄;V

s

(


Æ

)

0

), and with W

6

and W

8

into C([0; T ℄;H

1

(


Æ

)

0

)

([23℄ Cor.4).

It follows that there exist (�

m

, v

m

, �

m

, 


m

) satisfying:

�

m

2 L

2

(0; T ;H

2

(


Æ

)) \ L

1

(0; T ;H

1

(


Æ

)); with �

m

t

2 L

2

(Q

Æ

);

v

m

2 L

2

(0; T ;V (


Æ

)) \ L

1

(0; T ;H(


Æ

)); with v

m

t

2 L

2

(0; T ;V

s

(


Æ

)

0

);

�

m

2 L

2

(0; T ;H

1

(


Æ

)) \ L

1

(0; T ;L

2

(


Æ

)); with �

m

t

2 L

4=3

(0; T ;H

1

(


Æ

)

0

);




m

2 L

2

(0; T ;H

1

(


Æ

)) \ L

1

(0; T ;L

2

(


Æ

)); with 


m

t

2 L

2

(0; T ;H

1

(


Æ

)

0

);

and a subsequen
e of (�

k

m

; v

k

m

; �

k

m

; 


k

m

), whi
h for simpli
ity of notation we

keep denoting (�

k

m

; v

k

m

; �

k

m

; 


k

m

) , su
h that as k ! +1 we have

�

k

m

! �

m

strongly in L

2

(0; T ;H

1

(


Æ

)) \ C([0; T ℄;L

2

(


Æ

));

�

k

m

* �

m

weakly in L

2

(0; T ;H

2

(


Æ

));

v

k

m

! v

m

strongly in L

2

(Q

Æ

) \ C([0; T ℄;V

s

(


Æ

)

0

);

v

k

m

* v

m

weakly in L

2

(0; T ;V (


Æ

));

�

k

m

! �

m

strongly in L

2

(Q

Æ

) \ C([0; T ℄;H

1

(


Æ

)

0

);

�

k

m

* �

m

weakly in L

2

(0; T ;H

1

(


Æ

));




k

m

! 


m

strongly in L

2

(Q

Æ

) \ C([0; T ℄;H

1

(


Æ

)

0

);




k

m

* 


m

weakly in L

2

(0; T ;H

1

(


Æ

)):

(58)

It now remains to pass to the limit as k tends to +1 in (38)-(43).
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Sin
e the embedding of W

2;1

2

(Q

Æ

) into L

9

(Q

Æ

) is 
ompa
t ([18℄ p.15), and

(�

k

m

) is bounded in W

2;1

2

(Q

Æ

), we infer that (�

k

m

)

3


onverges to �

3

m

in L

2

(Q

Æ

).

We then pass to the limit as k tends to +1 in (38) and get

��

2

�

m

t

� �

2

��

m

�

1

2

(�

m

� �

3

m

) = ��

�

^

�

m

+ (�

B

� �

A

)
̂

m

� �

B

�

a.e. in Q

Æ

:

Now we observe that for �xed Æ > 0, k(f

Æ

s

(�)� Æ) is a bounded Lips
hitz


ontinuous fun
tion from IR in IR; therefore, k(f

Æ

s

(�

k

m

) � Æ) 
onverges to

k(f

Æ

s

(�

m

)� Æ) in L

p

(Q

Æ

) for any 1 � p < +1: Sin
e the passing to the limit

of the other terms of (39) 
an be done in standard ways, we get

d

dt

(v

m

; w

j

) + �(rv

m

;rw

j

) +(v

m

� rv

m

; w

j

) + (k(f

Æ

s

(�

m

)� Æ)v

m

; w

j

)

= �(F(
̂

m

;

^

�

m

); w

j

) 1 � j � m; t 2 (0; T ):

Also, sin
e V

m

is a 
losed subspa
e, we have that v

m

(t) =

m

X

j=1

g

jm

(t)w

j

2 V

m

.

Sin
e K

1

(�

Æ

) and f

Æ

s

0

are bounded Lips
hitz 
ontinuous fun
tions and �

k

m


onverges to �

m

in L

2

(Q

Æ

), we have thatK

1

(�

Æ

(�

k

m

)) 
onverges toK

1

(�

Æ

(�

m

))

and f

Æ

s

0

(�

k

m

) 
onverges to f

Æ

s

0

(�

m

) in L

p

(Q

Æ

) for any p 2 [1;1). These fa
ts

and (58) yield the weak 
onvergen
e of K

1

(�

Æ

(�

k

m

))r�

k

m

to K

1

(�

Æ

(�

m

))r�

m

and f

Æ

s

0

(�

k

m

)�

k

m

t

to f

Æ

s

0

(�

m

)�

m

t

in L

3=2

(Q

Æ

). Now, multiplying (40) by � 2

D(Q

Æ

), integrating over 


Æ

� (0; T ) and by parts, we obtain

Z

T

0

Z




Æ

C

v

�

�

k

m

t

+ �

Æ

(v

k

m

) � r�

k

m

�

� + K

1

(�

Æ

(�

k

m

))r�

k

m

� r� dxdt

=

Z

T

0

Z




Æ

l

2

f

Æ

s

0

(�

k

m

)�

k

m

t

� dxdt:

Then, we may pass to the limit and �nd that

C

v

�

m

t

+ C

v

�

Æ

(v

m

) � r�

m

= r � (K

1

(�

Æ

(�

m

))r�

m

) +

l

2

f

Æ

s

0

(�

m

)�

m

t

in D

0

(Q

Æ

):

(59)

Now, by using the L

p

-theory of paraboli
 equations, we 
on
lude that (59)

holds almost everywhere in Q

Æ

.

It remains to pass to the limit in (41). We infer from (58) that r�

Æ

(�

k

m

)


onverges tor�

Æ

(�

m

) in L

2

(Q

Æ

). Also, sin
e k


k

m

k

L

1

(Q

Æ

)

is bounded, it follows

that 


k

m

(1� 


k

m

) 
onverges to 


m

(1� 


m

) in L

p

(Q

Æ

) for any p 2 [1;1). Thus,

we may pass to the limit in (41) to obtain




m

t

�K

2

�


m

+ �

Æ

(v

m

) � r


m

= K

2

Mr � (


m

(1� 


m

)r�

Æ

(�

m

)) in Q

Æ

:
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Therefore, T

�

is 
ontinuous for ea
h 0 � � � 1.

At the same time, T

�

is bounded inW

1

�W

3

�W

5

�W

7

, and the embedding

of this spa
e in B is 
ompa
t. We 
on
lude that T

�

is a 
ompa
t operator.

To prove that for (

^

�

m

; v̂

m

;

^

�

m

; 
̂

m

) in a bounded set of B, T

�

is uniformly


ontinuous with respe
t to �, let 0 � �

1

; �

2

� 1 and (�

m

i

; v

m

i

; �

m

i

; 


m

i

); (i =

1; 2) the 
orresponding solutions of (31)-(36). We observe that �

m

= �

m

1

�

�

m

2

, v

m

= v

m

1

� v

m

2

(v

m

(t) =

m

X

j=1

g

jm

(t)w

j

2 V

m

), �

m

= �

m

1

� �

m

2

and




m

= 


m

1

� 


m

2

satisfy the following problem:

��

2

�

m

t

� �

2

��

m

=

1

2

�

m

�

1� (�

m

2

1

+ �

m

1

�

m

2

+ �

m

2

2

)

�

+(�

1

� �

2

)�

�

^

�

m

+ (�

B

� �

A

)
̂

m

� �

B

�

in Q

Æ

;

(60)

d

dt

(v

m

; w

j

) + �(rv

m

;rw

j

) + (v

m

� rv

m

1

; w

j

)� (v

m

2

� rv

m

; w

j

)

+(k(f

Æ

s

(�

m

1

)� Æ)v

m

; w

j

) +

�h

k(f

Æ

s

(�

m

1

)� Æ)� k(f

Æ

s

(�

m

2

)� Æ)

i

v

m

2

; w

j

�

= (�

1

� �

2

)(F(
̂

m

;

^

�

m

); w

j

); 1 � j � m;

(61)

C

v

�

m

t

�r � (K

1

(�

Æ

(�

m

1

))r�

m

)�r � [K

1

(�

Æ

(�

m

1

))�K

1

(�

Æ

(�

m

2

))℄r�

m

2

+ C

v

�

Æ

(v

m

) � r�

m

1

+ C

v

�

Æ

(v

m

2

) � r�

m

=

l

2

f

Æ

s

0

(�

m

1

)�

m

t

+

l

2

h

f

Æ

s

0

(�

m

1

)� f

Æ

s

0

(�

m

2

)

i

�

m

2

t

in Q

Æ

; (62)




m

t

�K

2

�


m

= K

2

Mr � (


m

1

(1� 


m

1

) [r�

Æ

(�

m

1

)�r�

Æ

(�

m

2

)℄)

+ �

Æ

(v

m

) � r


m

1

+ �

Æ

(v

m

2

) � r


m

+ K

2

Mr � (


m

(1� (


m

1

+ 


m

2

))r�

Æ

(�

m

2

)) in Q

Æ

; (63)

��

m

�n

=

��

m

�n

=

�


m

�n

= 0 on �
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� (0; T ); (64)

�

m

(0) = 0; v

m

(0) = 0; �

m

(0) = 0; 


m

(0) = 0 in 


Æ

: (65)

We remark that d := �
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=2 � 0. Now, by multiplying equation (60) by �

m

, integrating

by parts and using H�older's and Young's inequalities, we obtain
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Applying Gronwall's inequality, we get
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Æ
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Now, by multiplying (60) by �

m

t

and using H�older's inequality, we 
on-


lude
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Sin
e W

2;1

2

(Q

Æ

) ,! L

10
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Æ

), the following interpolation inequality holds
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for all � > 0;

and sin
e kdk
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m
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)
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m

2

k
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Æ

)

, rear-

ranging the di�erent terms, we obtain
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Multiplying (60) by ���

m

, and pro
eeding similarly as before, we infer that
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Taking � > 0 small enough and 
onsidering (66), we 
on
lude from (67) and

(68) that
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Multiplying (61) by g

jm

(t) and adding these equations for j = 1; � � � ; m, we

obtain
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By integrating this last inequality with respe
t to t and using our previous

estimates and Gronwall's inequality, we obtain
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Multiplying (62) by �

m

; integrating over 


Æ

using H�older's inequality and

that K

1

and f

Æ

s

0

are bounded Lips
hitz 
ontinuous fun
tions, we have
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Integration with respe
t to t and the use of Gronwall's Lemma and (69)-(70)

lead to the estimate
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We multiply (63) by 


m

, integrate over 


Æ

� (0; t) and by parts, and we use
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H�older's and Young's inequalities and (37) to obtain
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Applying Gronwall's inequality and using (69)-(70) we arrive at
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Therefore, it follows from (69)-(72) that T

�

is uniformly 
ontinuous with

respe
t to � on bounded sets of B.

To estimate the set of all �xed points of T

�

, let (�

m

; v

m

; �

m

; 


m

) 2 B be

su
h any given �xed point, i.e., it is a solution of the problem
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Multiplying the �rst equation (73) by �

m

; �

m

t

and ���

m

; respe
tively, in-

tegrating over 


Æ

and by parts, using H�older's and Young's inequalities, we

obtain
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Now, for ea
h j = 1; : : : ; m, we multiply (74) by g

jm

(t) and add the resulting

equations to obtain
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By multiplying (75) by �

m

and (76) by 


m

and pro
eeding similarly as above

lead us to the following inequalities
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where we used (37) to obtain the last inequality.

Now, by multiplying (80) by ��

2

and adding the result to (79),(81)-(84),

we obtain
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(85)

where C

1

is independent of �; m and Æ:
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Hen
e, integrating (85) with respe
t t and using Gronwall's inequality,

we obtain
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where C

1

is independent of �: Therefore, we have a bound for all �xed points

of T

�

in B independent of �:

Finally, pro
eeding exa
tly as we did to prove that T

�

is well de�ned, we


on
lude that for � = 0, problem (31)-(36) has a unique solution.

Thus, we 
an apply Leray-S
hauder theorem and 
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lude that there is
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This is a solution of problem (25)-(30), and the proof of Proposition 2 is


omplete.

We now pro
eed with the

Proof of Proposition 1: We 
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m
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Æ
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) satisfying the

system (25)-(30). We will derive bounds, independent of m, for this solution

and then pass to the limit in the approximate problem as m tends to +1

by using 
ompa
tness arguments.
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Proof: It follows from the inequality (85).

Lemma 2 There exists a 
onstant C
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independent of m 2 IN su
h that
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Proof: From the equation (26), we infer that

kv

Æ

m

t

k

V

s

(


Æ

)

0
� C

1

�

kv

Æ

m

k

V (


Æ

)

+ kv

Æ

m

k

2

L

2N

N�1

(


Æ

)

+kFk

L

2

(


Æ

)

+ k�

Æ

m

k

L

2

(


Æ

)

+ k


Æ

m

k

L

2

(


Æ

)

�

:

Then, by using (87)-(89) and interpolation ([17℄ p.73), we obtain (90). By

taking the s
alar produ
t of (27) with � 2 H

1

(
) and using H�older's inequal-

ity, we �nd

k�

Æ

m

t

k

H

1

(


Æ

)

0 � C

1

�

kr�

Æ

m

k

L

2

(


Æ

)

+ k�

Æ

m

t

k

L

2

(


Æ

)

+ kv

Æ

m

k

L

4

(


Æ

)

k�

Æ

m

k

L

4

(


Æ

)

�

:

Then, (91) follows from (86)-(88). (92) 
an be obtained similarly by using

Lemma 1.

We infer from Lemma 1 and 2 using the 
ompa
t embedding ([23℄ Cor.4)

that there exist

�

Æ

2 L

2

(0; T ;H

2

(


Æ

)) \ L

1

(0; T ;H

1

(


Æ

)) with �

Æ

t

2 L

2

(Q);

v

Æ

2 L

2

(0; T ;V (


Æ

)) \ L

1

(0; T ;H(


Æ

)) with v

Æ

t

2 L

2

(0; T ;V

s

(


Æ

)

0

);

�

Æ

2 L

2

(0; T ;H

1

(


Æ

)) \ L

1

(0; T ;L

2

(


Æ

)) with �

Æ

t

2 L

4=3

(0; T ;H

1

(


Æ

)

0

);




Æ

2 L

2

(0; T ;H

1

(


Æ

)) \ L

1

(0; T ;L

2

(


Æ

)) with 


Æ

t

2 L

2

(0; T ;H

1

(


Æ

)

0

);

and a subsequen
e of (�

Æ

m

; v

Æ

m

; �

Æ

m

; 


Æ

m

), whi
h we keep 
alling (�

Æ

m

; v

Æ

m

; �

Æ

m

; 


Æ

m

)

to ease the notation, su
h that, as m! +1,

�

Æ

m

! �

Æ

strongly in L

2

(0; T ;H

2�


(


Æ

)) \ C([0; T ℄;L

2

(


Æ

));

0 < 
 � 1=2

�

Æ

m

t

* �

Æ

t

weakly in L

2

(Q

Æ

);

v

Æ

m

! v

Æ

stronly in L

2

(Q

Æ

) \ C([0; T ℄;V

s

(


Æ

)

0

);

v

Æ

m

t

* v

Æ

t

weakly in L

2

(0; T ;V

s

(


Æ

)

0

);

�

Æ

m

! �

Æ

strongly in L

2

(Q

Æ

) \ C([0; T ℄;H

1

(


Æ

)

0

);

�

Æ

m

* �

Æ

weakly in L

2

(0; T ;H

1

(


Æ

));




Æ

m

! 


Æ

strongly in L

2

(Q

Æ

) \ C([0; T ℄;H

1

(


Æ

)

0

);




Æ

m

* 


Æ

weakly in L

2

(0; T ;H

1

(


Æ

)):

(93)

Thus, letting m! +1 in (25), we get

��

2

�

Æ

t

� �

2

��

Æ

�

1

2

(�

Æ

� (�

Æ

)

3

) = �

�

�

Æ

+ (�

B

� �

A

)


Æ

� �

B

�

a.e. in Q

Æ

:
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Sin
e k(f

Æ

s

(�) � Æ) is a bounded Lips
hitz 
ontinuous fun
tion we have

that k(f

Æ

s

(�

Æ

m

)� Æ) 
onverges to k(f

Æ

s

(�

Æ

)� Æ) in L

p

(Q

Æ

), for p 2 [1;1); then

k(f

Æ

s

(�

Æ

m

)� Æ)v

Æ

m


onverges to k(f

Æ

s

(�

Æ

)� Æ)v

Æ

in L

3=2

(Q

Æ

) as m tends to +1.

As usual ([17℄ p.76) we may pass to the limit in the other terms in (26) and

get

d

dt

(v

Æ

; w

j

) + �(rv

Æ

;rw

j

) +(v

Æ

� rv

Æ

; w

j

) + (k(f

Æ

s

(�

Æ

)� Æ)v

Æ

; w

j

)

= (F(


Æ

; �

Æ

); w

j

) for all j 2 IN:

We 
on
lude that

d

dt

(v

Æ

; u) + �(rv

Æ

;ru) + (v

Æ

� rv

Æ

; u) + (k(f

Æ

s

(�

Æ

)� Æ)v

Æ

; u) = (F(


Æ

; �

Æ

); u);

for all u 2 V

s

(


Æ

), and then for all u 2 V (


Æ

).

Sin
e K

1

(�

Æ

) and f

Æ

s

0

are bounded Lips
hitz 
ontinuous fun
tions we have

that K

1

(�

Æ

(�

Æ

m

)) 
onverges to K

1

(�

Æ

(�

Æ

)) and f

Æ

s

0

(�

Æ

m

) to f

Æ

s

0

(�

Æ

) in L

p

(Q

Æ

)

for any p 2 [1;1) as m tends to +1. Using these fa
ts and (93) we pass to

the limit in (27) and obtain

C

v

�

Æ

t

+ C

v

�

Æ

(v

Æ

) � r�

Æ

= r �

�

K

1

(�

Æ

(�

Æ

))r�

Æ

�

+

l

2

f

Æ

s

0

(�

Æ

)�

Æ

t

in D

0

(Q

Æ

):

Applying L

p

-theory of paraboli
 equations, we have that �

Æ

2 W

2;1

2

(Q

Æ

).

Similarly we pass to the limit in (28) and obtain




Æ

t

�K

2

�


Æ

+ �

Æ

(v

Æ

) � r


Æ

= K

2

Mr �

�




Æ

(1� 


Æ

)r�

Æ

(�

Æ

)

�

in Q

Æ

:

Observe that 


Æ

is a 
lassi
al solution and satis�es 0 � 


Æ

� 1: Finally, it

follows from (93) that

��

Æ

�n

=

��

Æ

�n

=

�


Æ

�n

= 0, �

Æ

(0) = �

Æ

0

, v

Æ

(0) = v

Æ

0

,

�

Æ

(0) = �

Æ

0

and 


Æ

(0) = 


Æ

0

. Therefore, the proof of Proposition 1 is 
omplete.

4 Proof of Theorem 1

In this se
tion we prove the existen
e Theorem 1. For 0 < Æ � Æ(
) as

in the statement of Theorem 1, we 
hoose �

Æ

0

2 W

2�2=q;q

(


Æ

) \ H

1+


(


Æ

),

v

Æ

0

2 H(


Æ

), �

Æ

0

2 H

1+


(
), 1=2 < 
 � 1, 


Æ

0

2 C

1

(


Æ

), satisfying

��

Æ

0

�n

=
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��

Æ

0

�n

=

�


Æ

0

�n

= 0 on �


Æ

; k�

Æ

0

k

L

2

(


Æ

)

� C; and 0 � 


Æ

0

� 1 in 


Æ

; and su
h that

the restri
tions of these fun
tions to 
 (re
all that 
 � 


Æ

) satisfy as Æ ! 0+

the following: �

Æ

0

! �

0

in the norm of W

2�2=q;q

(
) \ H

1+


(
), v

Æ

0

! v

0

in

the norm of H(


ml

(0)), �

Æ

0

! �

0

in the norm of L

2

(
), 


Æ

0

! 


0

in the norm

of L

2

(
).

We then infer from Proposition 1 that there exists (�

Æ

; v

Æ

; �

Æ

; 


Æ

) solution

the regularized problem (19)-(24). We will derive bounds, independent of

Æ, for this solution and then use 
ompa
tness arguments and passage to the

limit pro
edure for Æ tends to 0 to establish the desired existen
e result. They

are stated in following in a sequen
e of lemmas; however, most of them are

ease 
onsequen
e of the previous estimates (those that are independent of Æ)

and the fa
t that 
 � 


Æ

. We begin with the following:

Lemma 3 There exists a 
onstant C

1

su
h that, for any Æ 2 (0; Æ(
))

k�

Æ

k

L

1

(0;T ;H

1

(
))\L

2

(0;T ;H

2

(
))

+ k�

Æ

t

k

L

2

(Q)

� k�

Æ

k

L

1

(0;T ;H

1

(


Æ

))\L

2

(0;T ;H

2

(


Æ

))

+ k�

Æ

t

k

L

2

(Q

Æ

)

� C

1

; (94)

kv

Æ

k

L

1

(0;T ;L

2

(
))\L

2

(0;T ;H

1

(
))

+

Z

T

0

Z




k(f

Æ

s

(�

Æ

)� Æ)jv

Æ

j

2

dxdt (95)

� kv

Æ

k

L

1

(0;T ;H(


Æ

))\L

2

(0;T ;V (


Æ

))

+

Z

T

0

Z




Æ

k(f

Æ

s

(�

Æ

)� Æ)jv

Æ

j

2

dxdt � C

1

;

k�

Æ

k

L

1

(0;T ;L

2

(
))\L

2

(0;T ;H

1

(
))

� k�

Æ

k

L

1

(0;T ;L

2

(


Æ

))\L

2

(0;T ;H

1

(


Æ

))

� C

1

; (96)

k


Æ

k

L

1

(0;T ;L

2

(
))\L

2

(0;T ;H

1

(
))

� k


Æ

k

L

1

(0;T ;L

2

(


Æ

))\L

2

(0;T ;H

1

(


Æ

))

� C

1

: (97)

Proof: It follows from the inequality (85).

Lemma 4 There exists a 
onstant C

1

su
h that, for any Æ 2 (0; Æ(
))

k


Æ

t

k

L

2

(0;T ;H

1

o

(
)

0

)

� C

1

; (98)

k�

Æ

t

k

L

4=3

(0;T ;H

1

o

(
)

0

)

� C

1

; (99)

k�

Æ

k

W

2;1

q

(Q)

� C

1

; for any 2 � q � 2(N + 2)=N: (100)

Proof: Using that 0 � 


Æ

� 1 in Q; we infer from (22) that,

k


Æ

t

k

H

1

o

(
)

0

� C

1

�

kr


Æ

k

L

2

(
)

+ kv

Æ

k

L

2

(
)

+ kr�

Æ

k

L

2

(
)

�

:
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Then, (98) follows from Lemma 3.

Now, we take the s
alar produ
t of (21) with � 2 H

1

o

(
); using H�older's

inequality and (H3) we �nd

C

v

k�

Æ

t

k

H

1

o

(
)

0

� C

1

�

kr�

Æ

k

2

L

2

(
)

+ k�

Æ

k

L

4

(
)

kv

Æ

k

L

4

(
)

+ k�

Æ

t

k

L

2

(
)

�

:

Then, (99) follows from Lemma 3.

Now, from a result of Ho�man and Jiang ([14℄ Thm 2.1), we 
on
lude

that �

Æ

satis�es the following inequality, for any 2 � q <1,

k�

Æ

k

W

2;1

q

(Q

Æ

)

� C

1

�

k�

Æ

k

L

q

(Q

Æ

)

+ k


Æ

k

L

q

(Q

Æ

)

+ k�

Æ

0

k

W

2;1

(


Æ

)

+ C

1

�

: (101)

Then, (100) holds due to k


Æ

k

L

1

(Q

Æ

)

and by interpolation k�

Æ

k

L

2(N+2)=N

(


Æ

)

are bounded independent of Æ.

Lemma 5 There exist a 
onstant C

1

and Æ

0

2 (0; Æ(
)) su
h that, for any

Æ < Æ

0

;

kv

Æ

t

k

L

4=3

(t

1

;t

2

;V (U)

0

)

� C

1

(102)

where 0 � t

1

< t

2

� T; U � 


ml

(t

1

) and su
h that [t

1

; t

2

℄ �

�

U � Q

ml

[




ml

(0) [ 


ml

(T ):

Proof: Let 0 � t

1

< t

2

� T; U � 


ml

(t

1

) be su
h that [t

1

; t

2

℄ �

�

U �

Q

ml

[


ml

(0)[


ml

(T ). It is veri�ed by means of (20) that for a.e. t 2 (t

1

; t

2

),

(v

Æ

t

; u) = ��

Z

U

rv

Æ

� rudx�

Z

U

v

Æ

� rv

Æ

udx�

Z

U

k(f

Æ

s

(�

Æ

)� Æ)v

Æ

udx

+

Z

U

F(


Æ

; �

Æ

)udx for u 2 V (U):

In order to estimate kv

Æ

t

k

V (U)

0

, we observe that the sequen
e (�

Æ

) is bounded

in W

2;1

q

(Q); for 2 � q � 2(N + 2)=N , in parti
ular, for q > (N + 2)=2

we have that W

2;1

q

(Q) � H

�;�=2

(

�

Q) where � = 2 � (N + 2)=q ([15℄ p.

80). Due to theorem of Arzela-As
oli, there exist � and a subsequen
e of

(�

Æ

) (whi
h we still denote by �

Æ

), su
h that �

Æ


onverges uniformly to �

in

�

Q. Re
all that Q

ml

= f(x; t) 2 Q : 0 � f

s

(�(x; t)) < 1g and 


ml

(t) =

fx 2 
 : 0 � f

s

(�(x; t)) < 1g. Note that there is 
 2 (0; 1) su
h that for any

(x; t) 2 [t

1

; t

2

℄�

�

U , we have

f

s

(�(x; t)) < 1� 
:

30



Due to the uniform 
onvergen
e of f

Æ

s

towards f

s

on any 
ompa
t subset,

there is an Æ

0

su
h that for all Æ 2 (0; Æ

0

) and for all (x; t) 2 [t

1

; t

2

℄�

�

U;

f

Æ

s

(�

Æ

(x; t)) < 1� 
=2:

By assumption (H1) we infer that

k(f

Æ

s

(�

Æ

(x; t))� Æ) < k(1� 
=2) for (x; t) 2 [t

1

; t

2

℄�

�

U and Æ < Æ

0

:

Thus,

kv

Æ

t

k

V (U)

0

� C

1

�

kv

Æ

k

V

+ kv

Æ

k

2

L

4

(
)

+ kFk

L

2

(
)

+ k


Æ

k

L

2

(
)

+ k�

Æ

k

L

2

(
)

+ kk(f

Æ

s

(�

Æ

(x; t))� Æ)k

L

1

(U)

kv

Æ

k

L

2

(
)

�

:

Hen
e, (102) follows from Lemma 3.

>From (95), we 
on
lude that the sequen
e (v

Æ

) is also uniformly bounded

in L

2

(t

1

; t

2

;H

1

(U)). Then, by the 
ompa
t embedding ([23℄ Cor. 4) , there

exist v and a subsequen
e of (v

Æ

) (whi
h we still denote by v

Æ

), su
h that

v

Æ

! v strongly in L

2

((t

1

; t

2

)� U):

Observe that Q

ml

is an open set and 
an be 
overed by a 
ountable number

of open sets (t

i

; t

i+1

)�U

i

su
h that U

i

� 


ml

(t

i

); then by means of a diagonal

argument, we obtain

v

Æ

! v strongly in L

2

lo


(Q

ml

[ 


ml

(0) [ 


ml

(T )): (103)

Moreover, from (95) and the fa
t that v

Æ

2 L

2

(0; T ;V (


Æ

)) we have that

v 2 L

2

(0; T ;V ) \ L

1

(0; T ;H) and

v

Æ

* v weakly in L

2

(0; T ;H

1

(
));

v

Æ

�

* v weakly star in L

1

(0; T ;L

2

(
)):

(104)

Now, from Lemma 3 and Lemma 4, by using 
ompa
t embedding ([23℄ Cor.4),

we infer that there exist

� 2 W

2;1

q

(Q) for 2 � q � 2(N + 2)=N;

� 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
));


 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
));
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and a subsequen
e of (�

Æ

; �

Æ

; 


Æ

) (whi
h we still denote by (�

Æ

; �

Æ

; 


Æ

) ) su
h

that, as Æ ! 0;

�

Æ

! � uniformly in Q;

�

Æ

! � strongly in L

q

(0; T ;W

2�
;q

(
)); 0 < 
 < 1=2;

�

Æ

t

* �

t

weakly in L

q

(Q);

�

Æ

! � strongly in L

2

(Q) \ C([0; T ℄;H

1

o

(
)

0

);

�

Æ

* � weakly in L

2

(0; T ;H

1

(
));




Æ

! 
 strongly in L

2

(Q) \ C([0; T ℄;H

1

o

(
)

0

);




Æ

* 
 weakly in L

2

(0; T ;H

1

(
)):

(105)

It now remains to pass to the limit as Æ de
reases to zero in (19)-(24).

It follows from (105) that we may pass to the limit in (19), and �nd that

(12) holds almost everywhere.

Now, we take u = �(t) in (20) where � 2 L

2

(0; T ;V (


ml

(t))) with 
ompa
t

support 
ontained in Q

ml

[ 


ml

(0) [ 


ml

(T ) and �

t

2 L

2

(0; T ;V (


ml

(t))

0

);

after integration over (0; t); we �nd

Z

t

0

�

(v

Æ

t

; �) + (rv

Æ

;r�) + (v

Æ

� rv

Æ

; �) + (k(f

Æ

s

(�

Æ

)� Æ)v

Æ

; �)

�

ds

=

Z

t

0

(F(


Æ

; �

Æ

); �)ds:

(106)

Sin
e supp � � Q

ml

[ 


ml

(0) [ 


ml

(T ) we have that supp �(t) � 


ml

(t) a.e.

t 2 [0; T ℄: Moreover, we observe that

Z

t

0

(v

Æ

t

; �)ds = �

Z

t

0

(v

Æ

; �

t

)




ml

(s)

ds+ (v

Æ

(t); �(t))




ml

(t)

� (v

Æ

0

; �(0))




ml

(0)

:

Be
ause of uniform 
onvergen
e of f

Æ

s

to f

s

on 
ompa
t subsets, as well

as the assumption (H1), it follows that k(f

Æ

s

(�

Æ

)� Æ) 
onverges to k(f

s

(�))

uniformly on 
ompa
t subsets of Q

ml

[


ml

(0)[


ml

(T ). These fa
ts, together

with (103)-(105), ensure that we may pass to the limit in (106) and get (14).

To 
he
k that v = 0 a.e. in

o

Q

s

; take a 
ompa
t set K �

o

Q

s

: Then there

is an Æ

K

2 (0; 1) su
h that

f

Æ

s

(�

Æ

(x; t)) = 1 in K for Æ < Æ

K

;

hen
e, k(f

Æ

s

(�

Æ

(x; t) � Æ) = k(1 � Æ) in K for Æ < Æ

K

: From (95) we infer

that

k(1� Æ)kv

Æ

k

2

L

2

(K)

� C

1

for Æ < Æ

K
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where C

1

is independent of Æ: As Æ tends to 0; by assumption (H1), k(1� Æ)

blows up and 
onsequently kv

Æ

k

L

2

(K)


onverges to 0: Therefore v = 0 a.e. in

K: Sin
e K is an arbitrary subset, we 
on
lude that v = 0 a.e. in

o

Q

s

:

In order to pass to the limit in (21), we noti
e that given � 2 L

4

(0; T ;H

1

(
))

with �

t

2 L

2

(0; T ;L

2

(
)) satisfying �(T ) = 0; we 
an 
onsider an extension

of � su
h that �

Æ

2 L

4

(0; T ;H

1

(


Æ

)) with �

Æ

t

2 L

2

(0; T ;L

2

(


Æ

)) satisfying

�

Æ

(T ) = 0: Now, we take the s
alar produ
t of (21) with �

Æ

;

�C

v

Z




Æ

�

Æ

0

�

Æ

(0)dx� C

v

Z

T

0

Z




Æ

�

Æ

�

Æ

t

dxdt� C

v

Z

T

0

Z




Æ

�

Æ

(v

Æ

)�

Æ

� r�

Æ

dxdt

+

Z

T

0

Z




Æ

K

1

(�

Æ

(�

Æ

))r�

Æ

� r�

Æ

dxdt =

l

2

Z

T

0

Z




Æ

f

Æ

s

0

(�

Æ

)�

Æ

t

�

Æ

dxdt:

(107)

Observe that, sin
eK

1

is a bounded Lips
hitz 
ontinuous fun
tion,K

1

(�

Æ

(�

Æ

))


onverges to K

1

(�) in L

p

(Q) for p 2 [1;1): We noti
e that sin
e �

Æ

(v

Æ

) 
on-

verges weakly to v in L

2

(0; T ;H

1

(
)) and �

Æ

! � strongly in C([0; T ℄;H

1

o

(
)

0

)

we have that �

Æ

(v

Æ

)�

Æ


onverges to v� in D

0

(Q): Observe also that f

Æ

s

0

! f

0

s

in L

q

(IR) for 2 � q < 1; then from (105) we infer that f

Æ

s

0

(�

Æ

)�

Æ

t


onverges

weakly to f

0

s

(�)�

t

in L

q=2

(Q): Moreover, from Lemma 3 the integrals over




Æ

n
 are bounded independent of Æ and sin
e j


Æ

n
j ! 0 as Æ ! 0; we have

that these integrals tend to zero as Æ ! 0: Therefore, we may pass to the

limit in (107) and obtain

�C

v

Z




�

0

�(0)dx� C

v

Z

T

0

Z




��

t

dxdt� C

v

Z

T

0

Z




v � � r� dxdt

+

Z

T

0

Z




K

1

(�)r� � r� dxdt =

l

2

Z

T

0

Z




f

0

s

(�)�

t

� dxdt

for all � 2 L

4

(0; T ;H

1

(
)) with � 2 L

2

(0; T ;L

2

(
)) and �(T ) = 0:

It remains to pass to the limit in (22). For that purpose, we pro
eed in

similar ways as before, taking the s
alar produ
t of it with �

Æ

2 L

2

(0; T ;H

1

(


Æ

))

with �

Æ

t

2 L

2

(0; T ;L

2

(


Æ

)) and �

Æ

(T ) = 0;

�

Z

T

0

Z




Æ




Æ

�

Æ

t

dxdt�

Z

T

0

Z




Æ

�

Æ

(v

Æ

)


Æ

� r�

Æ

dxdt+K

2

Z

T

0

Z




Æ

r


Æ

� r�

Æ

dxdt

+K

2

M

Z

T

0

Z




Æ




Æ

(1� 


Æ

)r�

Æ

(�

Æ

) � r�

Æ

dxdt =

Z




Æ




Æ

0

�

Æ

(0)dx:

Then, from (104),(105), and using the fa
t that sequen
e (


Æ

) is bounded in
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L

1

(Q), we may pass to the limit as Æ ! 0 to obtain

�

Z

T

0

Z





�

t

dxdt�

Z

T

0

Z




v
 � r� dxdt+K

2

Z

T

0

Z




r
 � r� dxdt

+K

2

M

Z

T

0

Z





(1� 
)r� � r� dxdt =

Z







0

�(0)dx;

whi
h holds for any � 2 L

2

(0; T ;H

1

(
)) with � 2 L

2

(0; T ;L

2

(
)) satisfying

�(T ) = 0: Observe that sin
e 0 � 


Æ

� 1 and 


Æ


onverges to 
 in L

2

(Q) we

have that 0 � 
 � 1 a.e. in Q:

Finally, it follows from (105) that

��

�n

= 0, �(0) = �

0

, �(0) = �

0

and


(0) = 


0

. Furthermore, v(0) = v

0

in 


ml

(0) be
ause v

Æ

(0) ! v(0) in V

0

(U)

for any U su
h that

�

U � 


ml

(0): The proof of Theorem 1 is then 
omplete.

Referen
es

[1℄ Blan
, Ph., Gasser, L., Rappaz,J., `Existen
e for a stationary model of

binary alloy solidi�
ation', Math. Mod. and Num. Anal. 29(6),687-699

(1995).

[2℄ Be
kerman, C., Diepers, H.-J., Steinba
h, I., Karma, A., Tong, X.,

`Modeling melt 
onve
tion in phase-�eld simulations of solidi�
ation',

Journal of Computational Physi
s 154, 468-496 (1999).

[3℄ Boldrini, J.L., Planas, G., `Weak solutions to a phase �eld model for an

alloy with thermal properties', to be published in Mathemati
al Methods

in Applied S
ien
e.

[4℄ Caginalp, G., `An analysis of a phase �eld model of a free boundary',

Ar
h. Rat. Me
h. Anal., 92, 205-245 (1986).

[5℄ Caginalp, G. and Jones, J., `A derivation and analysis of phase-�eld

models of thermal alloys', Annals of Phy., 237, 66-107 (1995).

[6℄ Caginalp, G. and Xie, W., `Phase-�eld and sharp-interfase alloys mod-

els', Phys. Rev. E, 48(3), 1897-1909 (1993).

[7℄ Cannon, J.R., DiBenedetto,E., Knightly, G.H., `The steady state Stefan

Problem with 
onve
tion', Ar
h. Rat. Me
h. Anal. 73, 79-97 (1980).

34



[8℄ Cannon, J.R., DiBenedetto,E., Knightly,G.H.,`The bidimensional Stefan

Problem with 
onve
tion: the time dependent 
ase', Comm. in Part.

Di�. Eq. 14, 1549-1604 (1983).

[9℄ DiBenedetto, E., Friedman, A. `Condu
tion-Conve
tion Problems with

Change of Phase', J. of Di�. Eq. 62, 129-185 (1986).

[10℄ DiBenedetto, E., O'Leary, M. `Three-Dimensional Condu
tion-

Conve
tion Problems with Change of Phase', Ar
h. Rat. Me
h. Anal.

123, 99-116 (1993).

[11℄ Diepers, H.-J., Be
kermann, C., Steinba
h, I., `Simulation of 
onve
tion

and ripening in a binary alloy mush using the the phase-�eld method',

A
ta mater. 47 (13), 3663-3678 (1999).

[12℄ Friedman, A., Partial Di�erential Equation of Paraboli
 Type, Prenti
e-

Hall, 1964.

[13℄ Henry, D., Geometri
 Theory of Semilinear Paraboli
 Equations, Le
ture

Notes in Math, Vol 840, Springer-Verlag, 1981.

[14℄ Ho�man, K-H. and Jiang, L., `Optimal 
ontrol of a phase �eld model

for solidi�
ation', Numer. Fun
t. Anal. and Optim., 13, 11-27 (1992).

[15℄ Ladyzenskaja, O.A., Solonnikov, V.A. and Ural'
eva, N.N., Linear and

Quasilinear Equations of Paraboli
 Type, Ameri
an Mathemati
al So
i-

ety, Providen
e, 1968.

[16℄ Lauren�
ot, Ph., `Weak solutions to a phase-�eld model with non-


onstant thermal 
ondu
tivity', Quart. Appl. Math., 15(4), 739-760

(1997).

[17℄ Lions, J.L., Quelques m�ethodes de resolution des probl�emes aux limites

non lin�eaires, Dunod, Gauthier-Villars, 1969.

[18℄ Lions, J.L., Control of Distributed Singular Systems, Gauthier-Villars,

1985.

[19℄ Mikhailov, V.P., Partial Di�erential Equations, Mir, 1978.

[20℄ Moro�sanu, C. and Motreanu, D., `A generalized phase-�eld system', J.

Math. Anal. Appl., 237, 515-540 (1999).

35



[21℄ O'Leary, M., `Analysis of the mushy region in 
ondu
tion-
onve
tion

problems with 
hange of phase' , Ele
t. J. Di�. Eqs. 1997(4), 1-14

(1997).

[22℄ Rappaz, J. and S
heid, J.F., `Existen
e of solutions to a Phase-�eld

model for the isothermal solidi�
ation pro
ess of a binary alloy', Math.

Meth. Appl. S
i., 23, 491-512 (2000).

[23℄ Simon, J., `Compa
ts sets in the spa
e L

p

(0; T; B)', Ann. Mat. Pura

Appl., 146, 65-96 (1987).

[24℄ Soto Segura, H.P., `An�alise de um Modelo Matem�ati
o de Condu�
~ao-

Conve�
~ao do Tipo Entalpia para Solidi�
a�
~ao', Ph.D. Thesis, IMECC-

UNICAMP, Brazil (2000).

[25℄ Temam, R., Navier-Stokes Equations, AMS Chelsea Publishing, 2001.

[26℄ Voller,V.R., Cross,M., Markatos,N.C., `An enthalpy method for 
on-

ve
tion/di�usion phase 
hange', Int. J. for Numer. Meth. in Eng. 24,

271-284 (1987).

[27℄ Voller, V.R., Prakash, C., `A �xed grid numeri
al modeling methodology

for 
onve
tion-di�usion mushy region phase-
hange problems', Int. J.

Heat Mass Trans., 30 (8), 1709-1719 (1987).

[28℄ Voss, M.J., Tsai, H.L., `E�e
ts of the rate of latente heat release on


uid 
ow and solidi�
ation patterns during alloy solidi�
ation', Int. J.

Engng. S
i., 34 (6), 715-737 (1996).

[29℄ Warren, J.A. and Boettinger, W.J., `Predi
tion of dendriti
 growth

and mi
rosegregation patterns in a binary alloy using the phase-�eld

method', A
ta Metall. Mater., 43(2), 689-703 (1995).

[30℄ Wheeler, A.A., Boettinger, W.J. and M
Fadden, G.B., `Phase-�eld

model for isothermal phase transitions in binary alloys', Phys. Rev. A,

45, 7424-7439 (1992).

36


