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Resumo

Em [12℄, mostramos que existem muitos problemas re
entes na pesquisa apli-


ada para os quais os m�etodos quase-Newton s~ao a melhor op�
~ao para resolver

sistemas de equa�
~oes n~ao lineares. Isto se deve ao fato de possuirem baixo


usto 
omputa
ional [9℄, [6℄, [5℄.

Motivados por esse trabalho e pelo fato do ICUM ter sido 
onsiderado re-


entemente o mais e�
iente m�etodo quase-Newton para resolver sistemas n~ao

lineares de grande porte [7℄, nosso interesse atual �e resolver numeri
amente al-

guns problemas reais usando m�etodos quase-Newton, em parti
ular o ICUM.

Para isso, 
onsideramos quatro problemas que o
orrem frequentemente em

apli
a�
~oes nas areas de Geof��si
a, Biologia, Engenharia e F��si
a, respe
tiva-

mente. Duas destas apli
a�
~oes s~ao des
ritas neste trabalho e s~ao baseadas em

trabalhos re
entes [14℄, [10℄. As outras duas apli
a�
~oes foram des
ritas em [12℄

tendo 
omo base [11℄, [13℄.
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Para resolver 
ada um dos problemas, devemos solu
ionar um sistema n~ao

linear. Para isto, usamos os m�etodos quase-Newton: Broyden e ICUM. Apre-

sentamos uma an�alise 
omparativa 
uidadosa dos resultados obtidos.

Abstra
t

In [12℄, we have shown that there are many re
ent problems in ap-

plied resear
h for whi
h the quasi-Newton methods are the best option

for solving the nonlinear systems of equations that appear in the so-

lution of su
h problems. The main reason for using these methods is

be
ause they have low 
omputational 
ost [9℄, [6℄, [5℄.

Motivated by this work and by the fa
t that the ICUM, was 
on-

sidered re
ently as the most eÆ
ient quasi-Newton method for solving

large-s
ale nonlinear systems [7℄, we are now interested in implementing

it with some real problems.

For this, we 
onsider in this work four problems of 
ommon o

ur-

ren
e in appli
ations in Geophysi
s, Biology, Engineering and Physi
s,

respe
tively. Two of them are des
ribed here based in re
ent works

[14℄,[10℄. The two other appli
ations were des
ribed in [12℄ with base in

[11℄,[13℄.

For solving ea
h problem, we must solve a nonlinear system of equa-

tions. For this, we use the quasi-Newton methods: Broyden and ICUM

and present a 
areful 
omparative analysis of the results obtained.
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1 Introdu
tion

There are many problems in di�erent areas of the applied resear
h for whi
h

the quasi-Newton methods [3℄,[8℄ are the best option for solving nonlinear

systems of equations. In [12℄ we presented re
ent appli
ations in areas su
h as

Physi
s, Chemi
al Engineering, Ele
troni
 Engineering, Astrophysi
s, Ele
tri


Engineering and Me
hani
al Engineering. In general, these methods are 
hosen

be
ause of their low 
omputational 
ost.

Solving a nonlinear system of equations 
onsists on: given a nonlinear fun
tion

F : IR

n

! IR

n

; 
ontinuously di�erentiable, �nd a ve
tor x 2 IR

n

su
h that

F (x) = 0: (1)

All pra
ti
al algorithms for solving (1) are iterative. Among them we have

Newton and quasi-Newton methods.

Given an initial approximation x

0

2 IR

n

; Newton's method generate a sequen
e

fx

k

g of approximations of a solution to (1) by

x

k+1

= x

k

� J(x

k

)

�1

F (x

k

): (2)

The Newton iteration 
an be 
ostly, sin
e partial derivatives must be 
om-

puted and the linear system (2) must be solved at every iteration. This fa
t

motivated the development of quasi-Newton methods, whi
h are de�ned as

the generalization of (2) given by

x

k+1

= x

k

� B

�1

k

F (x

k

): (3)

In quasi-Newton methods, the matri
es B

k

are intended to be approximations

of J(x

k

): In many methods, the 
omputation of (3) does not involve 
omputing

derivatives at all. Moreover, in many parti
ular methods, B

�1

k+1

is obtained

from B

�1

k

using simple pro
edures thanks to whi
h the linear algebra 
ost

involved in (3) is mu
h less than the one involved in (2).

The name \quasi-Newton" was used after 1965 to des
ribe also methods of

the form (3) su
h that the equation below is satis�ed:

B

k+1

s

k

= y

k

= F (x

k+1

)� F (x

k

): (4)
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Following [2℄, most authors 
all quasi-Newton all the methods of the form (3),

whereas the 
lass of methods that satisfy (4) are 
alled \se
ant methods".

A

ordingly, (4) is 
alled \se
ant equation".

Among the se
ant methods, we have Broyden's method [1℄ and the Inverse

Column Update Method (ICUM) [9℄, [6℄. In the �rst one, the updating of the

matrix B

k

; is made by

B

k+1

= B

k

+

(y

k

�B

k

s

k

)s

T

k

s

T

k

s

k

;

and in the se
ond one, the matrix B

�1

k

is updated by

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)e

T

j

k

e

T

j

k

y

k

;

where, je

T

j

k

y

k

j = ky

k

k

1

:

In this work we use the quasi-Newton methods: Broyden and ICUM to solve

four real problems in Geophysi
s, Biology, Engineering and Physi
s, respe
-

tively. We 
hose these methods be
ause the �rst one it is the most popular

quasi-Newton method used for solving nonlinear systems and the se
ond one

be
ause of its ex
ellent performan
e in the solution of large-s
ale nonlinear

systems [7℄.

In Se
tion 2, based on the works [14℄, [10℄, we present a des
ription of two

re
ent appli
ations that were not 
onsidered in [12℄. In Se
tion 3, we present

a des
ription of the numeri
al tests, their results and an analysis of them.

Finally, in Se
tion 3, the 
on
lusions are presented.
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2 Appli
ations

In this se
tion we des
ribed two of the four appli
ations that we 
onsidered

in the numeri
al test. The �rst one is a problem of 
ommon o

urren
e in

seismologi
al appli
ations 
alled Two-point ray tra
ing problem [14℄ and the

se
ond one is a re
ent problem about the intera
tion between two viruses [10℄.

The two others appli
ations are related with target lo
ation and determination

of basin of periodi
 traje
tories of dynami
al systems, respe
tively. We pre-

sented a des
ription of them in [12℄ having as base, the re
ent works [11℄ and

[13℄. For the safe of understanding we make a brief abstra
t of ea
h problem

in the respe
tive se
tion.

We 
hose these four problems be
ause we think that they are interesting real

appli
ations in di�erent areas of the knowledge in whi
h a nonlinear system of

equation must be solved.

2.1 Two-point ray tra
ing problem (2001) [14℄ [4℄

In general form, a Two-point ray tra
ing problem 
onsists on 
onstru
ting a

ray that joins two given points in the domain.

1

In [4℄, the earth stru
ture is modelled by pie
ewise 
onstant regions of arbitrary

shape. The interfa
es between regions as well as the free surfa
e of the earth

are assumed to be smooth 
urves. Generally, the 
onvention used in this

problem is that i

0

represent the free surfa
e of the earth.

The medium between ea
h su

essive pair of interfa
es is assumed to be ho-

mogeneous, isotropi
 and perfe
tly elasti
. Thus most kinds of signals 
an be

propagate in su
h media. All the rays must be straight line segments in ea
h

region.

2

A ray is determined geometri
ally by knowing the initial or \sour
e"

1

In [14℄, they assume that the earth is represented by a two-dimensional (2D 
ase) do-

main or by a three dimensional domain with 
ylindri
al symmetry with respe
t to an axis

perpendi
ular to the plain of interest (2.5D 
ase).

2

Thus no di�erential equations need to be solved [4℄.

5



point, the �nal or \re
eiver" point and ea
h point at whi
h the ray meets an

interfa
e. At the 
onta
t points Snell's law must hold. It is this 
ondition that

permits to determine the interse
tion points and thus the ray.

Mathemati
ally, A Two-point ray tra
ing problem 
onsist on, given

� two points: X

0

, the sour
e point and X

n+1

; the re
eiver point, both

lo
ated in some �xed interfa
es,

� a velo
ity of the k�th region 
rossed, v

i

; i = 1; � � � ; n+ 1;

� a �nite sequen
e of positive integers i

1

; i

2

; � � � ; i

n

that represent the in-

di
es of the n interfa
es interse
ted by the ray path, f

i

k

;

to �nd X

k

for k = 1; 2; � � � ; n; a point lo
ated in the kth interfa
e, where the

Snell's law[14℄, [4℄ is satis�ed.

Between ea
h of these 
onse
utive points the ray 
an be des
ribed by the line

segment [X

k

;X

k�1

℄; k = 1; 2; � � � ; n + 1: Thus, the ray has n interse
tions

points with the interfa
es plus two endpoints: the sour
e and re
eiver.

Due to the fa
t that the whole problem is 
hara
terized by the interse
tion

points X

k

= (x

k

; f

i

k

(x

k

))

T

in whi
h the Snell's law must be satis�ed, then

they 
an be found solving a nonlinear system of equations. To see this, it is

ne
essary to transform the Snell's law in a ve
torial form, using the unitary

ve
tors in the dire
tion of the ray,

X

k

�X

k�1

kX

k

�X

k�1

k

2

X

k+1

�X

k

kX

k+1

�X

k

k

2

and a tangent ve
tor to the kth interfa
e at X

k

; �

k

= (1; f

0

i

k

(x

k

))

T

: Then

Snell's law, in the most general form, requires that

v

i

k+1

*

�

k

;

X

k

�X

k�1

kX

k

�X

k�1

k

2

+

= v

i

k

*

�

k

;

X

k+1

�X

k

kX

k+1

�X

k

k

2

+

: (5)

Equation (5) represents a nonlinear system of n equations in n unknowns, the

s
alars x

1

; x

2

; � � � ; x

n

; sin
e the sour
e point, X

0

= (x

0

; f

i

0

)

T

and the re
eiver
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point, X

n+1

= (x

n

; f

i

n+1

)

T

; are assumed to be known. The kth equation is

given by

�

k

v

= v

i

k+1

(x

k

� x

k�1

) + f

0

i

k

(x

k

)(f

i

k

(x

k

)� f

i

k�1

(x

k�1

))

[(x

k

� x

k�1

)

2

+ (f

i

k

(x

k

)� f

i

k�1

(x

k�1

))

2

℄

1=2

(6)

�v

i

k

(x

k+1

� x

k

) + f

0

i

k

(x

k

)(f

i

k+1

(x

k+1

)� f

i

k

(x

k

))

[(x

k+1

� x

k

)

2

+ (f

i

k+1

(x

k+1

)� f

i

k

(x

k

))

2

℄

1=2

:

If we introdu
e the ve
tors x = (x

1

; x

2

; :::; x

n

)

T

; v = (v

1

; v

2

; :::; v

n+1

)

T

; and

de�ne the fun
tion �

v

by

�

v

: IR

n

�! IR

n

x 7�! �

v

(x) =

0

B

B

�

�

1

v

(x)

.

.

.

�

n

v

(x)

1

C

C

A

;

then, solving the two point tra
ing problem is equivalent to solving the non-

linear system of equations

�

v

(x) = 0: (7)

2.2 An approa
h to estimating the transmission 
oeÆ-


ients for AIDS and for Tuber
ulosis using mathe-

mati
al models (2001) [10℄

In this paper, the authors present a mathemati
al model that des
ribes the

intera
tion between the Human Immunode�
ien
y Virus (HIV) and Tuber-


ulosis, whi
h is 
aused by a ba
illus of the type My
oba
terium tuber
ulosis

(MTB). These infe
tions are 
onsidered in a 
losed environment, like a prision

or mental institution.

Using nine working assumptions [10℄, the dynami
s of the model is formu-

lated through a 
ompartment system des
ribed by nonlinear ordinary di�er-

ential equations, whi
h represent the di�erent subpopulations. Therefore, ea
h


ompartment, in turn, represent one of the stages of the intera
tion between
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A
quired Immunode�
ien
y Syndrome (AIDS)

3

and tuber
ulosis (TB). They

assume the total population 
onstant.

4

To 
larify the biologi
al pro
ess, they introdu
e the following notation. The

state variables are:

x

1

: the healthy individuals sus
eptible to both HIV and MTB infe
tions.

x

2

: the individuals who have been infe
ted with MTB, but have no


lini
al illness and hen
e are not infe
ted.

T

b

: individuals with TB disease.

y

1

: the HIV-positive individuals without MTB infe
tion.

y

2

: the HIV-positive individuals with MTB infe
tion.

A : individuals with AIDS but without TB and MTB infe
tions.

A

tb

: individuals with AIDS and TB infe
tion.

and the parameters are:

� : transmission 
oeÆ
ient for HIV infe
tion.

� : transmission 
oeÆ
ient for MTB infe
tion.

! : the in
ubation rate for AIDS without MTB infe
tion.

� : the in
ubation rate for AIDS with MTB infe
tion.

� : the rea
tivation rate of TB disease.

� : is re
overy rate of TB.

� : is the natural mortality or remaining time in a 
losed 
ommunity.

� : the AIDS mortality rate.

� : the TB mortality rate.

The di�erential equations that govern the pro
ess are the following:

dx

1

dt

= �� �x

1

(y

1

+ y

2

)� �x

1

T

b

� �x

1

3

Syndrome 
hara
terized by the intera
tion of the HIV with other infe
tions.

4

Thus, if one inmate or patient leaves the pla
e, another repla
es him.
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dx

2

dt

= �T

b

+ �x

1

T

b

� �x

2

(y

1

+ y

2

)� (� + �)x

2

dT

b

dt

= �x

2

� �T

b

(y

1

+ y

2

)� (�+ �+ �)T

b

dy

1

dt

= �x

1

(y

1

+ y

2

)� �y

1

T

b

� (�+ !)y

1

(8)

dy

2

dt

= �x

2

(y

1

+ y

2

) + �y

1

T

b

� (� + �)y

2

dA

dt

= !y

1

� �AA

tb

� (�+ �)A

dA

tb

dt

= �y

2

+ �AA

tb

+ �T

b

(y

1

+ y

2

)� (�+ � + �)A

tb

where � = �+ �(T

b

+A

tb

) + �(A+A

tb

); a

ordingly the 
onstant population

hypothesis. Therefore, summing up these equations, one gets

dN

dt

= 0; that is,

the total population remains 
onstant in all time. Be
ause of the 
onservation

law x

1

(t) + x

2

(t) + T

b

(t) + y

1

(t) + y

2

(t) + A(t) + A

tb

(t) = N(t) = 1 for any

t 2 IR; they 
an eliminate one of the state variables, by using:

x

1

= 1� (x

2

+ T

b

+ y

1

+ y

2

+ A+ A

tb

) = 1� S: (9)

Hen
e, the seven dimensional system (8) redu
es to the following six dimen-

sional system:

dx

2

dt

= �T

b

+ �(1� S)T

b

� �x

2

(y

1

+ y

2

)� (� + �)x

2

dT

b

dt

= �x

2

� �T

b

(y

1

+ y

2

)� (� + �+ �)T

b

dy

1

dt

= �(1� S)(y

1

+ y

2

)� �y

1

T

b

� (�+ !)y

1

(10)

dy

2

dt

= �x

2

(y

1

+ y

2

) + �y

1

T

b

� (� + �)y

2

dA

dt

= !y

1

� �AA

tb

� (�+ �)A

dA

tb

dt

= �y

2

+ �AA

tb

+ �T

b

(y

1

+ y

2

)� (�+ � + �)A

tb

:
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Thus the modi�ed model is given by

_z = F (z);

where F : IR

6

! IR

6

and z = (x

2

; T

b

; y

1

; y

2

; A; A

tb

)

T

:

To begin the analysis of the model given by equations (10) and (9), they

examine its disease-free steady state to determine the threshold values for

whi
h the diseases will die out and, by biologi
al simpli�
ation, they 
al
ulate

the endemi
 equilibrium points of the model, that is, ve
tors z

�

su
h that

F (z

�

) = 0: Using a 
ontrol te
hnique proposed in their paper, they found

seven equilibrium points of the model. A
tually, an eight equilibrium point

was found but only numeri
ally [10℄.

Moreover, they present the stability analysis of equilibrium points and ob-

serve that the stability 
onditions for ea
h of these points depend on both:

the transmission 
oeÆ
ients for HIV and for MTB (� and �) whi
h must be

estimated. The other parameters haven been evaluated from the literature.
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3 Numeri
al tests

For the numeri
al tests with the problems and with the quasi-Newton Methods


hosen: Broyden and ICUM we will 
all the four problems:

P1: Two-point ray tra
ing problem.

P2: AIDS-Tuber
ulosis problem.

P3: Target lo
ation.

P4: Basin Problem.

The 
odes of the algorithms, fun
tions and Ja
obians of ea
h problem was

written in MATLAB 6.0. These experiments were run using a 
omputer AMD

Athlon-800MHz.

The initial points used were the same suggested by the authors of the ap-

pli
ations. In all tests we used the 
onvergen
e 
riterion kF (x

k

)k � 10

�6

;

ex
epting in the P3 problem, in whi
h we use a toleran
e equal to 10

�4

as it

was suggested in [11℄.

We also stopped the iterations when the number of iterations ex
eeded 300

or when kF (x

k

)k � 10

5

: In the last 
ase we will say that the method used

diverges.

3.1 P1: Two-point ray tra
ing problem

In order to do the implementation of the Two-point ray tra
ing problem we


onsider a parti
ular 
ase:

n = 13; X

0

=

 

x

0

f

i

0

(x

0

)

!

=

 

0

0

!

; X

14

=

 

x

14

f

i

14

(x

14

)

!

=

 

�

0

!

:

The values for the parameter � were 800; 840; 880; � � �1600; ea
h one of them


orresponding to in
rements in the re
eptor, in Geophysi
s terms.
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A �nite sequen
e, ff

i

1

; f

i

2

; � � � ; f

i

13

g; of the interfa
es interse
ted by the ray

path is given by

ff

i

1

; f

i

2

; � � � ; f

i

13

g = ff

1

; f

6

; f

7

; f

2

; f

3

; f

4

; f

5

; f

4

; f

3

; f

2

; f

7

; f

6

; f

1

g; (11)

where, ea
h fun
tion f

i

: IR ! IR; i = 1; 2; � � � ; 7; is de�ned, respe
tively by

f

1

(x) = 900:

f

2

(x) = 8000�

q

6000

2

+ (x� 1000)

2

:

f

3

(x) = 8500�

q

5000

2

+ (x� 2500)

2

:

f

4

(x) = 5000 + 10

�6

(x� 1000)

2

: (12)

f

5

(x) = 8000� (0:3333)x:

f

6

(x) = 1400:

f

7

(x) = 1900:

The sequen
e of velo
ities, fv

k

g; k = 1; � � � ; 14 is represented by a ve
tor:

v = 10

3

(1; 2; 3; 5; 6; 8; 10; 10; 8; 6; 5; 3; 2; 1)

T

:

Thus, we want to �nd a ve
tor x

�

= (x

�

1

; x

�

2

; � � � ; x

�

13

)

T

su
h as �

v

(x

�

) = 0;

where, � : IR

13

�! IR

13

is de�ned using (6), (11) and (12).

The author of [14℄, gives us the values of � and the initial point

5

x

0

:

x

0

= (50:852; 107:626; 193:482; 237:195; 811:580; 1197:912; 2134:884;

1540:541; 1262:964; 901:701; 883:199; 828:718; 792:517)

T

;

a
tually, this point is the solution to an nonlinear system of equations and

thus it represents a ray. Therefore, for the problem that we are 
onsidering it

is a good initial point.

Starting with this x

0

; we want to solve a nonlinear system for ea
h one of the

values of parameter �; using Broyden's method and ICUM , respe
tively.

5

This point was found in [14℄ using 
ontinuation methods.
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In Table 1, for ea
h value of �; we show the number of iteration performed

by ea
h quasi-method above mentioned. The solution ve
tor found for ea
h

value of � is shown like a 
olumn in Table 2.

We observe that the solutions found here are exa
tly the same as the ones

found in [14℄, where they used the 
ontinuation method to solve the problems.

� Broyden ICUM

800 5 4

840 6 5

880 6 5

920 6 5

960 7 5

1000 7 6

1040 7 6

1080 7 7

1120 7 6

1160 8 7

1200 8 7

1240 9 7

1280 9 8

1320 9 8

1360 10 8

1400 10 9

1440 11 9

1480 11 9

1520 11 10

1560 12 10

1600 12 10

Table 1: Iterations Number for P1.
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� 800 840 880 920 960 1000 1040

x

�

1

51.115 51.380 51.645 51.910 52.175 52.440 52.706

x

�

2

108.187 108.750 109.314 109.878 110.442 111.007 111.573

x

�

3

194.501 195.523 196.545 197.569 198.594 199.621 200.648

x

�

4

238.415 239.636 240.859 242.083 243.308 244.535 245.763

x

�

5

815.969 820.365 824.768 829.178 833.594 838.017 842.446

x

�

6

1206.559 1215.235 1223.939 1232.671 1241.432 1250.221 1259.037

x

�

7

2151.026 2167.197 2183.397 2199.626 2215.884 2232.169 2248.482

x

�

8

1566.899 1593.250 1619.595 1645.932 1672.262 1698.583 1724.895

x

�

9

1291.900 1320.912 1349.998 1379.155 1408.382 1437.677 1467.039

x

�

10

938.430 975.197 1012.000 1048.835 1085.699 1122.591 1159.508

x

�

11

920.440 957.676 994.907 1032.133 1069.353 1106.568 1143.779

x

�

12

867.185 905.649 944.109 982.566 1021.019 1059.470 1097.917

x

�

13

831.793 871.067 910.340 949.611 988.880 1028.148 1067.414

� 1080 1120 1160 1200 1240 1280 1320

x

�

1

52.972 53.239 53.505 53.772 54.038 54.305 54.572

x

�

2

112.139 112.706 113.273 113.841 114.409 114.977 115.546

x

�

3

201.677 202.706 203.737 204.769 205.801 206.834 207.868

x

�

4

246.992 248.222 249.453 250.685 251.918 253.152 254.387

x

�

5

846.881 851.321 855.767 860.219 864.676 869.138 873.605

x

�

6

1267.881 1276.752 1285.650 1294.575 1303.527 1312.505 1321.510

x

�

7

2264.823 2281.191 2297.586 2314.008 2330.455 2346.929 2363.428

x

�

8

1751.198 1777.491 1803.773 1830.045 1856.305 1882.553 1908.788

x

�

9

1496.464 1525.952 1555.500 1585.106 1614.769 1644.486 1674.255

x

�

10

1196.446 1233.404 1270.377 1307.364 1344.362 1381.368 1418.379

x

�

11

1180.984 1218.184 1255.380 1292.571 1329.757 1366.939 1404.117

x

�

12

1136.361 1174.803 1213.241 1251.676 1290.109 1328.538 1366.965

x

�

13

1106.679 1145.942 1185.203 1224.464 1263.722 1302.980 1342.236
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� 1360 1400 1440 1480 1520 1560 1600

x

�

1

54.839 55.107 55.374 55.641 55.909 56.176 56.444

x

�

2

116.115 116.684 117.254 117.823 118.393 118.963 119.533

x

�

3

208.903 209.939 210.975 212.011 213.048 214.086 215.123

x

�

4

255.622 256.858 258.095 259.332 260.569 261.807 263.045

x

�

5

878.077 882.553 887.034 891.519 896.008 900.501 904.998

x

�

6

1330.540 1339.596 1348.678 1357.785 1366.917 1376.074 1385.256

x

�

7

2379.952 2396.502 2413.076 2429.674 2446.297 2462.943 2479.612

x

�

8

1935.010 1961.219 1987.414 2013.594 2039.758 2065.908 2092.041

x

�

9

1704.075 1733.943 1763.857 1793.816 1823.816 1853.856 1883.934

x

�

10

1455.393 1492.406 1529.416 1566.420 1603.414 1640.398 1677.366

x

�

11

1441.290 1478.459 1515.625 1552.786 1589.944 1627.097 1664.248

x

�

12

1405.390 1443.812 1482.231 1520.648 1559.062 1597.475 1635.885

x

�

13

1381.491 1420.744 1459.996 1499.247 1538.497 1577.745 1616.993

Table 2: The solution ve
tor found for ea
h �:

3.2 P2: AIDS-Tuber
ulosis problem

In this se
tion, our propose is determining numeri
ally the equilibrium points

of the model (9)-(10), that is, to solve the nonlinear system F (z) = 0; using

Broyden's method and ICUM. Moreover, we want to determine if these points

are stable or not.

6

For this, we implemented these methods and ran them


onsidering, like in [10℄, the variation of the parameters � and � and the other


onstants �xed: � = 0:5; � = 0:05; � = 0:1; � = 0:05; ! = 0:1; � = 0:2; � =

0:33:

We variated the parameters � e � using di�erent values presented in Figure

1 of [10℄. That �gure shows attra
tion regions of the equilibrium points in the

spa
e of parameters � e �: We in
lude here a short biologi
al des
ription of

these regions. For a more general information, see [10℄.

6

That this, if the real part of the eigenvalues of the Ja
obian matrix in this equilibrium

points, is negative or not.
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R

�

: region where both infe
tions die out in the 
ommunity.

R

1

: the HIV infe
tion progress to AIDS disease.

R

3

: the HIV infe
tion progress to AIDS with TB disease.

R

4

: the MTB infe
tion progress to TB disease.

R

7

: HIV and MTB progress to AIDS and TB disease, respe
tively

We also 
onsider the fa
t mentioned in [10℄, that the model does not de-

pend on the initial 
onditions. Thus the only starting point used is z

0

=

(1; 1; 1; 1; 1; 1)

T

:

We present the results in Tables 3-7. The �rst 
olumn of ea
h table, shows

the values of � and � used in ea
h region mentioned above; the se
ond 
olumn

shows the 
orresponding equilibrium point to the � and � parameters.

7

The


olumns, Broyden and ICUM, show respe
tively, the number of iterations

performed by ea
h method until an equilibrium point is found and �nally, the

last 
olumn, �

max

; shows the real part of the greatest eigenvalue of the Ja
obian

matrix of F in z

�

: This information helps us in the analysis of stability of the

solutions.

In Table 3, we 
an observe that, for any values of � and � in the region R

�

;

both methods 
onverge to the trivial equilibrium point z

�

; whi
h is a stable

equilibrium point. This results 
orresponds to the theori
al analysis in [10℄.

(� ; � ) z

T

�

Broyden ICUM �

max

(0:5 ; 0:1) (0; 0; 0; 0; 0; 0) 10 9 -0.0646

(0:25 ; 0:05) (0; 0; 0; 0; 0; 0) 8 7 -0.0838

(0:7 ; 0:15) (0; 0; 0; 0; 0; 0) 11 10 -0.0500

(0:9 ; 0:01) (0; 0; 0; 0; 0; 0) 10 9 -0.0360

(1 ; 0:19) (0; 0; 0; 0; 0; 0) 17 15 -0.0100

(1 ; 0:01) (0; 0; 0; 0; 0; 0) 11 11 -0.0292

Table 3: region R

�

:

7

That is, the solution to the nonlinear system of equation.
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In Table 4, we 
an observe an interesting situation in region R

1

: for the

values � = 5 and � = 0:39 : the methods 
onverge to di�erent equilibrium

points. Aother thing is that Broyden's method �nds a stable equilibrium

point and ICUM �nds an unstable one. Observe also that Broyden's method

performs twi
e the number of iterations performed by ICUM.

(� ; � ) z

�

= (0; 0; y

1

; 0; A; 0)

T

Broyden ICUM �

max

(1 ; 0:25) (0, 0, 0.16, 0, 0.04, 0) 13 14 -0.0513

(2 ; 0:4) (0, 0, 0.41, 0, 0.09, 0) 15 15 -0.1915

(2:8 ; 0:5) (0, 0, 0.49, 0, 0.11, 0) 16 18 -0.1630

(3 ; 0:6) (0, 0, 0.54, 0, 0.13, 0) 15 8 -0.1026

(4 ; 0:45) (0, 0, 0.45, 0, 0.10, 0) 31 20 -0.0607

(5 ; 0:39) (0, 0, 0.40, 0, 0.19, 0) 64 -0.0204

(0, 0, 0.39, 0, 0.10, 0) 32 0.0204

Table 4: region R

1

:

Table 5, shows that the parti
ular situation des
ribed in the previous para-

graph is more 
ommon in region R

3

with the di�eren
e: in �ve of the six 
ases

tested, ICUM �nds a stable equilibrium point of form z

�

= (0; 0; y

1

; 0; A; A

�b

)

T

:

A

ording to the theory in [10℄ only stable equilibrium points of the form of

z

�

= (0; 0; y

1

; 0; A; A

�b

)

T

must appear in the region R

3

:

17



(� ; � ) z

�

= (0; 0; y

1

; 0; A; A

�b

)

T

Broyden ICUM �

max

(7 ; 0:58) (0, 0, 0.54, 0, 0.07, 0.05) 27 39 -0.2548

(6:4 ; 0:44) (0.71, 0.05, 0, 0, 0.08, 0.08) 32 0.4543

(0, 0, 0.44, 0, 0.08, 0.03) 27 -0.1131

(5:5 ; 0:51) (0, 0, 0.49, 0, 0.11, 0) 25 0.1508

(0, 0, 0.50, 0, 0.09, 0.03) 45 -0.1508

(8:5 ; 0:42) (0.77, 0.06, 0, 0, 0, 0 ) 29 0.1040

(0, 0, 0.43, 0, 0.06, 0.04) 53 -0.0416

(7:7 ; 0:44) (0, 0, 0 , 0, 0.06, -0.06) 229 0.4543

(0, 0, 0.45, 0, 0.06, 0.04) 38 -0.0839

(5 ; 0:49) (0, 0, 0.48, 0, 0.11, 0) 23 0.0783

(0, 0, 0.48, 0, 0.10, 0.01) 29 -0.0787

Table 5: region R

3

:

Table 6, shows that both methods 
onverge to the same equilibrium point

whi
h is stable in the �rst four 
ases and unstable in the other two 
ases. The

performan
e of ICUM is better than Broyden's method.

(� ; � ) z

�

= (x

2

; �

b

; 0; 0; 0; 0)

T

Broyden ICUM �

max

(2 ; 0:01) (0.26, 0.02, 0, 0, 0, 0) 12 11 -0.0342

(3 ; 0:1) (0.48, 0.04, 0, 0, 0, 0) 13 10 -0.0950

(4 ; 0:2) (0.59, 0.05, 0, 0, 0, 0) 16 13 -0.0847

(5 ; 0:22) (0.58, 0.04, 0, 0, 0, 0) 15 13 -0.0743

(7 ; 0:25) (0.66, 0.05, 0, 0, 0, 0) 23 16 0.4543

(8 ; 0:19) (0.73, 0.06, 0, 0, 0, 0) 25 17 0.4543

Table 6: region R

4

:
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Finally, in Table 7, we 
an observe that, in all the 
ases tested, both methods


onverge to a stable equilibrium point whi
h has all its 
omponents positive.

For these tests, the performan
e of ICUM is again better than that of Broyden's

method.

(� ; � ) z

�

= (x

2

; �

b

; y

1

; y

2

; A; A

�b

)

T

Broyden ICUM �

max

(5 ; 0:32) (0.42, 0.03, 0.04, 0.07, 0.01, 0.03) 28 21 -0.0118

(4:5 ; 0:3) (0.54, 0.04, 0.01, 0.03, 0.02, 0.01) 25 26 -0.0068

(6 ; 0:35) (0.27, 0.02, 0.10, 0.10, 0.01, 0.05) 26 20 -0.0072

(7 ; 0:36) (0.39, 0.03, 0.06, 0.11, 0.01, 0.06) 19 16 -0.0222

(8 ; 0:37) (0.43, 0.03, 0.04, 0.12, 0.01, 0.06) 19 15 -0.0311

(7 ; 0:33) (0.60, 0.04, 0.01, 0.06, 0.01, 0.03) 25 19 -0.0193

Table 7: region R

7

:

3.3 P3: Target lo
ation problem

We 
onsider the nonlinear system

F

n

(x

t

; y

t

; z

t

) = z

t

+

q

(x

t

� x

n

)

2

+ (y

t

� y

n

)

2

+ z

2

t

� r

n

= 0:

where x

t

; y

t

and z

t

are the unknown target 
o-ordinates, (x

n

; y

n

) are the known

re
eiving elements position, lo
ated in a plane and r

n

is the nth round trip

distan
e of the transmitted pulse. As before, our interest now is solving nu-

meri
ally this system using Broyden's method and ICUM. Its solution gives

the position of the target [11℄.

We 
onsider N = 5 and N = 6 re
eiving elements lo
ated in a plane. The

minimum number of re
eiving elements needed to 
al
ulate the unknown are

three, whi
h gives, respe
tively, ten and twenty possible 
ombinations for an

�ve and six elements planar array.
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For ea
h test, we used two initial points: one of them is a point (0; 0; z)

T

; where

z is an approximation

8

to r

n

=2: The other initial point is an approximation to

the solution found with the �rst initial point. The reason of this 
hoi
e is that

we want to have an idea of the performan
e of both quasi-Newton methods

using a good approximation to the solution, like it was 
onsidered in [11℄. The

authors of [11℄ used the beam-forming te
hnique to obtain good starting points

for their hybrid algorithm.

For ea
h one of ten possible 
ombinations of three elements (
ase N = 5 )

and twenty possible 
ombinations of three elements (
ase N = 6 ) we ran

the Broyden and ICUM algorithms using the two initial points mentioned

previously and kF (x)k

1

� 10

5

:

The Tables 8 and 10, show the information about re
eiving elements position

and the values of r

n

for n = 1; 2; � � � ; 5: Similarly, the Tables 12 and 14, show

the same information,but in the 
ase n = 1; 2; � � � ; 6:

The results obtained are shown in Tables 9 and 11 for N = 5; and in Tables

13 and 15 for N = 6: In the last tables, the notation NC means that the algo-

rithm did not 
onverge, be
ause it rea
hed the maximun number of iterations

allowed in the algorithm.

In the 
ase N = 5 we observe that, for initial points x

0

= (0; 0; z)

T

; z � r

n

=2;

the performan
e of Broyden's method is slightly better than ICUM. When a

initial approximation is 
lose to the solution, the performan
e of both method

is the same.

In the 
ase N = 6; the results show that for initial points x

0

= (0; 0; z)

T

; z �

r

n

=2; the performan
e of the Broyden's method is better than that of ICUM

in most of 
ases.

8

Like it was suggested by the authors in [11℄
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n 1 2 3 4 5

(x

n

; y

n

) (0, 0) (2, 0) (3, 1) (1, 1) (0, 2)

r

n

18.85 18.22 18.17 18.54 19.05

Table 8:Re
eiving elements and r

n

values for n = 5:

x

0

= (0; 0; 9) x

0

= (3:5; 0; 8:9)

Combinations

Broyden ICUM Broyden ICUM

x

1

x

2

x

3

5 6 3 3

x

1

x

2

x

4

5 6 3 3

x

1

x

2

x

5

5 6 3 3

x

1

x

3

x

4

5 5 3 3

x

1

x

3

x

5

5 6 3 3

x

1

x

4

x

5

5 6 3 3

x

2

x

3

x

4

5 5 3 3

x

2

x

3

x

5

15 17 3 5

x

2

x

4

x

5

5 5 3 3

x

3

x

4

x

5

5 5 3 3

Table 9: Number of iterations performed by the methods. x

T

= (4; 0; 9)

n 1 2 3 4 5

(x

n

; y

n

) (0, 0) (4, 6) (0, 4) (3, 0) (1, 1)

r

n

13.48 12.63 12.32 13.28 12.78

Table 10:Re
eiving elements and r

n

values for n = 5:
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x

0

= (0; 0; 6) x

0

= (1; 3; 6)

Combinations

Broyden ICUM Broyden ICUM

x

1

x

2

x

3

7 8 4 5

x

1

x

2

x

4

6 7 4 4

x

1

x

2

x

5

16 10 5 5

x

1

x

3

x

4

6 6 4 4

x

1

x

3

x

5

7 7 4 4

x

1

x

4

x

5

6 7 4 4

x

2

x

3

x

4

7 8 4 4

x

2

x

3

x

5

7 8 4 4

x

2

x

4

x

5

6 8 4 4

x

3

x

4

x

5

6 7 4 5

Table 11: Number of iterations performed by the methods. x

T

= (2; 4; 6)

Table 13 shows that there are �ve 
ombinations of three elements for whi
h

the initial point, x

0

= (0; 0; 3); is already the solution, and this solution is

di�erent from the solution found by the other 
ombinations using the same

initial point, x

T

= (3; 3; 3): When an initial approximation is 
lose to the

solution, the performan
e of both method is similar again.

n 1 2 3 4 5 6

(x

n

; y

n

) (0, 3) (3, 0) (1, 2) (1, 1) (2, 1) (2, 2)

r

n

7.24 7.24 6.74 7.12 6.74 6.32

Table 12:Re
eiving elements and r

n

values for n = 6:
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x

0

= (0; 0; 3) x

0

= (2:4; 2:7; 3:4)

Combinations

Broyden ICUM Broyden ICUM

x

1

x

2

x

3

0 0 4 6

x

1

x

2

x

4

13 10 4 4

x

1

x

2

x

5

0 0 4 6

x

1

x

2

x

6

7 NC 4 5

x

1

x

3

x

4

8 12 3 5

x

1

x

3

x

5

0 0 4 6

x

1

x

3

x

6

11 NC 4 5

x

1

x

4

x

5

8 10 4 5

x

1

x

4

x

6

8 10 4 5

x

1

x

5

x

6

8 10 4 5

x

2

x

3

x

4

8 10 4 5

x

2

x

3

x

5

0 0 4 6

x

2

x

3

x

6

8 10 4 5

x

2

x

4

x

5

7 10 4 5

x

2

x

4

x

6

8 10 4 5

x

2

x

5

x

6

11 11 4 4

x

3

x

4

x

5

7 10 4 5

x

3

x

4

x

6

8 10 4 5

x

3

x

5

x

6

9 10 4 5

x

4

x

5

x

6

8 10 4 5

Table 13: Number of iterations performed by methods. x

T

= (3; 3; 3):

Table 15 shows that there are one 
ombination of three elements for whi
h

both methods does not 
onverge for any initial points used. For the other


ombinations the performan
e of the methods is similar to that des
ribed in

Table 12.
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n 1 2 3 4 5 6

(x

n

; y

n

) (0, 0) (0, 5) (10, 0) (2, 15) (5, 5) (20, 10)

r

n

25 24.14 21.18 26.25 21.18 25

Table 14:Re
eiving elements and r

n

values for n = 6:

x

0

= (0; 0; 10) x

0

= (9; 3:5; 10)

Combinations

Broyden ICUM Broyden ICUM

x

1

x

2

x

3

8 8 3 4

x

1

x

2

x

4

NC NC NC NC

x

1

x

2

x

5

8 11 3 4

x

1

x

2

x

6

8 8 4 4

x

1

x

3

x

4

8 9 6 6

x

1

x

3

x

5

7 8 3 4

x

1

x

3

x

6

9 9 4 5

x

1

x

4

x

5

8 8 8 8

x

1

x

4

x

6

7 8 5 5

x

1

x

5

x

6

11 10 4 5

x

2

x

3

x

4

9 11 7 8

x

2

x

3

x

5

8 10 6 8

x

2

x

3

x

6

8 10 4 4

x

2

x

4

x

5

9 14 7 9

x

2

x

4

x

6

8 9 7 7

x

2

x

5

x

6

8 8 4 4

x

3

x

4

x

5

NC NC 5 5

x

3

x

4

x

6

7 9 5 5

x

3

x

5

x

6

8 11 4 4

x

4

x

5

x

6

9 15 6 8

Table 15: Number of iterations performed by methods. x

T

= (10; 5; 10)
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3.4 P4: Basin problem

Here, we are interested in using quasi-Newton methods to �nd p�period points

of the H�enon map, F : IR

2

! IR

2

; de�ned by

F

 

x

y

!

=

 

2:12� x

2

� 0:3y

x

!

:

A p�period point is a point x

�

su
h that F

p

(x

�

) = x

�

: Quasi-Newton methods


an be used to �nd the periodi
 p point of F by letting G = F

p

� I; where I

is the identity mapping, and solving the system G(x) = 0:

Following [13℄, we wish to �nd all the isolated root of G (all periodi
 p points

of F for a �xed p). For this, we sear
h for all roots of G in a spe
i�
 bounded

region (in our tests, the region is [0; 1℄� [0; 1℄), by 
hoosing a large number of

initial points x

0

; randomly generated.

We 
onsider the 
ases p = 3; p = 4 and p = 5: For ea
h value of p we generated

sixty random initial points in [0; 1℄ � [0; 1℄ and for ea
h one of them we ran

Broyden's and ICUM algorithms.

The results are presented as follows: Table 16 shows, for ea
h value of p used

in the tests, the periodi
 p points of F found by the Broyden's and ICUM algo-

rithms, and the information about the nonsingularity of the Ja
obian matrix

of F in these points. This is an important 
ondition used in [13℄ to 
on
lude

that an estimate of basin

9

of x

�

in a region with area 1 is an estimate of

the probability of sele
ting an initial point x

0

whose sequen
e generated by

Newton's method 
onverges to x

�

:

After ea
h Table 17 to 19, we present, for ea
h value of p; the number of

initial points in the basin

10

of ea
h x

�

: For this, we used the results obtained

with ICUM be
ause it 
onverges in all the 
ases tested. We 
all this basin as

ICUM-basin, in analogy to [13℄.

9

Initial points set su
h as a sequen
e generate by the Newton-type method 
onverge to

x

�

:

10

The elements of this set appear in the �rst 
olumn of ea
h table.
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p x

�

: periodi
 p point of F det(J(x

�

; p))

3 x

�

1

= (0:8529;�0:8777)

T

-18.9937

x

�

2

= (0:9445; 0:9445)

T

-0.1068

4 x

�

2

= (0:9445; 0:9445)

T

1.8988

x

�

3

= (0:3391; 1:3900)

T

6.8635

x

�

4

= (0:7955;�1:3550)

T

-128.1806

5 x

�

2

= (0:9445; 0:9445)

T

1.3431

x

�

5

= (0:9942;�0:7832)

T

69.8901

x

�

6

= (1:0551;�0:7512)

T

46.7556

x

�

7

= (0:2852; 1:2322)

T

-5.4186

x

�

8

= (�0:0458; 1:3666)

T

10.3533

Table 16: Solution ve
tors found for ea
h p = 3; 4; 5:

>From the results of Table 16, we 
an also see that x

�

2

= (0:9445; 0:9445)

T

is simultaneously two, three and �ve-period point of F:

Tables 17 to 19 show, for ea
h value of p; the number of iterations performed

by Broyden's method (k

B

) and ICUM (k

I

) in 
ase of 
onvergen
e. The symbol

NC means that the algorithm stopped be
ause it rea
hed the maximun number

of iterations permitted in the algorithm. Moreover, they have an aditional


olumn that indi
ates the point of 
onvergen
e. This is done in order to

determinate the basin of ea
h p�period point found.

The results permit us to 
on
lude that for ea
h p (3; 4; 5) and ea
h one of

the sixty random initial points, only ICUM 
onverge in all the 
ases. In the


ase where both methods 
onverge the performan
e of ICUM is better than

Broyden's one.
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x

0

k

B

k

I

x

�

1

(0:8364; 0:1453)

T

8 7 x

�

1

(0:8240; 0:1340)

T

8 7 x

�

1

(0:9636; 0:1205)

T

53 11 x

�

1

(0:4128; 0:4014)

T

9 9 x

�

1

(0:4210; 0:3770)

T

9 9 x

�

1

(0:4768; 0:4688)

T

8 8 x

�

1

(0:7486; 0:3741)

T

NC 12 x

�

1

(0:4542; 0:0386)

T

9 8 x

�

1

(0:5624; 0:3723)

T

7 8 x

�

1

(0:7928; 0:7952)

T

11 9 x

�

1

(0:3829; 0:2528)

T

9 9 x

�

1

(0:3429; 0:9678)

T

15 11 x

�

1

(0:4798; 0:3683)

T

9 8 x

�

1

(0:7646; 0:3771)

T

8 8 x

�

1

(0:9003; 0:1834)

T

NC 12 x

�

1

(0:3683; 0:9175)

T

12 10 x

�

1

(0:5159; 0:0903)

T

8 7 x

�

1

(0:7353; 0:0047)

T

8 6 x

�

1

(0:6031; 0:9569)

T

8 7 x

�

1

(0:3974; 0:7316)

T

10 9 x

�

1

(0:6846; 0:9785)

T

10 8 x

�

1

(0:5147; 0:6363)

T

8 8 x

�

1

(0:4010; 0:4866)

T

9 9 x

�

1

(0:7505; 0:1262)

T

7 7 x

�

1

(0:6933; 0:9358)

T

10 7 x

�

1

(0:4776; 0:1291)

T

9 8 x

�

1

(0:7729; 0:2973)

T

8 7 x

�

1

(0:8437; 0:8815)

T

15 17 x

�

1

(0:7000; 0:7557)

T

9 7 x

�

1

(0:8293; 0:9706)

T

16 11 x

�

1

x

0

k

B

k

I

x

�

(0:9745; 0:4022)

T

11 7 x

�

2

(0:8995; 0:1707)

T

NC 11 x

�

1

(0:9523; 0:4577)

T

11 8 x

�

2

(0:5369; 0:0665)

T

8 7 x

�

1

(0:4939; 0:4175)

T

8 8 x

�

1

(0:6854; 0:9671)

T

10 8 x

�

1

(0:7538; 0:0968)

T

7 7 x

�

1

(0:7649; 0:6579)

T

9 8 x

�

1

(0:8104; 0:3742)

T

9 8 x

�

1

(0:4928; 0:0835)

T

9 8 x

�

1

(0:7067; 0:1684)

T

9 6 x

�

1

(0:8137; 0:4662)

T

10 8 x

�

1

(0:7223; 0:9949)

T

11 7 x

�

1

(0:3625; 0:7308)

T

10 10 x

�

1

(0:6497; 0:6813)

T

8 7 x

�

1

(0:9452; 0:6133)

T

10 8 x

�

2

(0:7829; 0:0032)

T

6 7 x

�

1

(0:7970; 0:6418)

T

10 9 x

�

1

(0:4161; 0:1864)

T

9 9 x

�

1

(0:3100; 0:9441)

T

25 20 x

�

2

(0:9807; 0:5551)

T

10 9 x

�

2

(0:9885; 0:6916)

T

10 16 x

�

1

(0:4407; 0:0062)

T

9 8 x

�

1

(0:6868; 0:2972)

T

11 7 x

�

1

(0:6472; 0:4638)

T

8 7 x

�

1

(0:3001; 0:9981)

T

18 13 x

�

2

(0:6602; 0:3323)

T

7 7 x

�

1

(0:9073; 0:6702)

T

9 9 x

�

2

(0:9543; 0:8814)

T

9 9 x

�

2

(0:4110; 0:4248)

T

9 9 x

�

1

Tables 17: Case p = 3:

Observe that for p = 3; the ICUM-basin of x

�

1

has 52 points, while that in

ICUM-basin of x

�

2

has 8 points.
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x

0

k

B

k

I

x

�

3

(0:8000; 0:2894)

T

11 8 x

�

3

(0:6951; 0:2593)

T

13 9 x

�

3

(0:7132; 0:7204)

T

9 8 x

�

3

(0:7333; 0:6223)

T

10 8 x

�

3

(0:5068; 0:8841)

T

9 9 x

�

3

(0:9519; 0:1690)

T

11 9 x

�

3

(0:8267; 0:6114)

T

10 12 x

�

3

(0:8473; 0:1141)

T

12 8 x

�

3

(0:6492; 0:1148)

T

15 10 x

�

3

(0:5752; 0:4081)

T

17 11 x

�

3

(0:7133; 0:8674)

T

10 8 x

�

3

(0:9033; 0:0203)

T

11 9 x

�

3

(0:7418; 0:9948)

T

NC 10 x

�

3

(0:8667; 0:4858)

T

12 8 x

�

3

(0:6368; 0:9441)

T

10 8 x

�

3

(0:6773; 0:5862)

T

10 8 x

�

3

(0:4879; 0:8915)

T

9 7 x

�

3

(0:7623; 0:6553)

T

9 9 x

�

3

(0:3645; 0:9757)

T

10 9 x

�

3

(0:9016; 0:3242)

T

11 8 x

�

3

(0:7379; 0:1118)

T

14 9 x

�

3

(0:2457; 0:8976)

T

NC 32 x

�

3

(0:7666; 0:0454)

T

12 8 x

�

3

(0:5093; 0:6248)

T

10 9 x

�

3

(0:6255; 0:9912)

T

8 8 x

�

3

(0:6781; 0:5088)

T

12 8 x

�

3

(0:8150; 0:6896)

T

29 14 x

�

3

(0:6368; 0:7691)

T

10 7 x

�

3

(0:8460; 0:1724)

T

11 8 x

�

3

(0:5874; 0:9242)

T

11 7 x

�

3

x

0

k

B

k

I

x

�

(0:7169; 0:6433)

T

10 8 x

�

3

(0:7826; 0:4665)

T

11 8 x

�

3

(0:2323; 0:3179)

T

NC 31 x

�

3

(0:7888; 0:6344)

T

10 9 x

�

3

(0:6598; 0:5376)

T

10 8 x

�

3

(0:1360; 0:7552)

T

25 24 x

�

3

(0:2033; 0:8193)

T

NC 14 x

�

4

(0:2923; 0:0913)

T

15 18 x

�

4

(0:6156; 0:0464)

T

14 22 x

�

4

(0:5660; 0:2553)

T

NC 25 x

�

4

(0:7067; 0:1684)

T

NC 34 x

�

4

(0:0650; 0:8792)

T

NC 26 x

�

4

(0:5398; 0:9233)

T

NC 15 x

�

2

(0:3087; 0:5582)

T

19 14 x

�

4

(0:3618; 0:2314)

T

12 15 x

�

4

(0:6787; 0:9798)

T

10 8 x

�

3

(0:4497; 0:6431)

T

11 15 x

�

3

(0:3965; 0:4807)

T

14 14 x

�

4

(0:8173; 0:2346)

T

11 9 x

�

3

(0:9441; 0:9121

T

11 7 x

�

2

(0:9636; 0:0201)

T

11 9 x

�

3

(0:3838; 0:8624)

T

NC 14 x

�

2

(0:4443; 0:4232)

T

NC 21 x

�

2

(0:9288; 0:4851)

T

18 9 x

�

2

(0:8506; 0:7131)

T

17 9 x

�

2

(0:2452; 0:4680)

T

NC 21 x

�

3

(0:9962; 0:6141)

T

9 11 x

�

2

(0:9192; 0:7805)

T

NC 8 x

�

2

(0:4377; 0:5918)

T

NC 18 x

�

3

(0:6219; 0:8946)

T

9 8 x

�

3

Tables 18: Case p = 4:

In this 
ase, the ICUM-basin of x

�

2

; x

�

3

and x

�

4

have, respe
tively, 8, 43 and 9

points.
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x

0

k

B

k

I

x

�

6

(0:8447; 0:3678)

T

10 6 x

�

6

(0:6552; 0:8376)

T

16 8 x

�

6

(0:8580; 0:3358)

T

13 7 x

�

6

(0:9827; 0:8066)

T

NC 34 x

�

6

(0:5668; 0:8230)

T

16 9 x

�

6

(0:7505; 0:7400)

T

9 7 x

�

6

(0:7176; 0:6927)

T

11 9 x

�

6

(0:6992; 0:7275)

T

14 8 x

�

6

(0:7159; 0:8928)

T

11 8 x

�

6

(0:8656; 0:2324)

T

16 9 x

�

6

(0:2319; 0:2393))

T

NC 15 x

�

6

(0:9016; 0:0056)

T

17 8 x

�

6

(0:6252; 0:7334)

T

20 14 x

�

6

(0:8214; 0:4447)

T

13 8 x

�

6

(0:6154; 0:7919)

T

14 9 x

�

6

(0:8318; 0:5028)

T

28 10 x

�

6

(0:3784; 0:8600)

T

11 16 x

�

6

(0:8216; 0:6449)

T

NC 9 x

�

6

(0:8180; 0:6602)

T

NC 16 x

�

6

(0:8385; 0:5681)

T

39 9 x

�

6

(0:8939; 0:1991)

T

22 9 x

�

6

(0:5828; 0:4235)

T

NC 27 x

�

6

(0:5798; 0:7604)

T

9 9 x

�

6

(0:7942; 0:0592

T

14 7 x

�

6

(0:8392; 0:6288)

T

NC 9 x

�

6

(0:8214; 0:4447)

T

13 9 x

�

6

(0:6154; 0:7919)

T

14 9 x

�

6

(0:8318; 0:5028)

T

28 10 x

�

6

(0:8939; 0:1991)

T

22 9 x

�

6

(0:8385; 0:5681)

T

39 9 x

�

6

x

0

k

B

k

I

x

�

(0:7680; 0:9708)

T

21 16 x

�

2

(0:9901; 0:7889)

T

22 23 x

�

2

(0:9669; 0:6649)

T

14 9 x

�

2

(0:0841; 0:4544)

T

NC 29 x

�

2

(0:8049; 0:9084)

T

15 10 x

�

2

(0:2974; 0:0492)

T

NC 34 x

�

2

(0:9517; 0:6400)

T

18 9 x

�

2

(0:8699; 0:7694)

T

13 9 x

�

2

(0:8295; 0:9561)

T

13 10 x

�

2

(0:8983; 0:7546)

T

12 12 x

�

2

(0:7939; 0:9200)

T

16 10 x

�

2

(0:6085; 0:0158)

T

12 17 x

�

8

(0:5869; 0:0576)

T

18 17 x

�

8

(0:3676; 0:6315)

T

14 15 x

�

8

(0:8704; 0:0099)

T

32 9 x

�

8

(0:4103; 0:8936)

T

23 11 x

�

7

(0:2722; 0:1988)

T

NC 18 x

�

5

(0:8381; 0:0196)

T

9 7 x

�

5

(0:6813; 0:3795)

T

12 8 x

�

5

(0:7095; 0:4289)

T

11 9 x

�

5

(0:3704; 0:7027)

T

NC 19 x

�

7

(0:7271; 0:3093)

T

11 8 x

�

5

(0:8744; 0:0150)

T

20 10 x

�

5

(0:4387; 0:4983)

T

14 19 x

�

8

(0:3200; 0:9601)

T

13 11 x

�

7

(0:7266; 0:4120)

T

15 8 x

�

5

(0:7446; 0:2679)

T

9 7 x

�

5

(0:6833; 0:2126)

T

8 9 x

�

5

(0:6072; 0:6299)

T

11 8 x

�

5

(0:4514; 0:0439)

T

21 20 x

�

8

Tables 19: Case p = 5:

Here, we observe that for p = 5; ICUM-basin of x

�

2

; x

�

5

; x

�

6

; x

�

7

and x

�

8

have,

respe
tively, 11, 10, 30, 3 and 6 points..
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4 Con
lusions

The motivation to try to answer some questions about quasi-Newton methods

su
h us (i) are there problems, in the applied resear
h, for whi
h the quasi-

Newton methods are the best option? (ii) whi
h are they? (iii) why? led us

to make a rigorous bibliographi
al resear
h, whi
h we have done with great

su

ess in [12℄.

In that work we sele
ted, among 295 appli
ations that uses quasi-Newton

methods, the nine that we found more interesting, 
overing several applied

areas as Physi
s, Engineering, Biology, Astrophysi
s, et
 [12℄. Almost all of

them used, as a tool to solve the nonlinear system that appeared in their prob-

lems, Broyden's method. The authors justi�ed their 
hoi
e by the very 
heap


omputational 
ost and the very easy implementation of Broyden's method.

After the good results obtained with ICUM when applied to several problems

from the 
lassi
al literature [9℄, [5℄, and after the aÆrmation of Luk�san and

Vl�
ek [7℄ that it was the best quasi-Newton Method for large-s
ale sparse prob-

lems, we de
ided to do this work whi
h basi
aly 
ompare these two methods

for solving the nonlinear systems appearing in applied problems.

Sin
e solving nonlinear systems is only a small (but important) step in the

applied problems, it was not an easy task to obtain the equations, initial

guesses and expe
ted solution of the system to develop our proje
t.

The results obtained show that only for problem P3 [11℄, Broyden's method

has a slightly better performan
e than ICUM.

Both methods found the expe
ted solution for problem P1 [14℄, but in all the


ases ICUM performed less iterations than Broyden's method.

Problem P2 [10℄ presented the most unexpe
ted results. First of all, in one

of the regions ea
h method found a di�erent equilibrium points. In another

region, in �ve among six 
ases tested only ICUM found the expe
ted solution.

In the last problem, P4 [13℄, only ICUM 
onverged in all the 
ases and in the
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ases where both methods 
onverged, it had a better performan
e, in terms of

number of iterations performed.

As 
an be easily seen, all the problems studied here 
an not be 
onsidered

large s
ale problems: P1: (thirteen dimensional), P2: ( seven dimensional ),

P3: (three dimensional) and P4: ( two dimensional).

So, our last 
on
lusion it that, besides being among the best quasi-Newton

methods for solving large s
ale sparse nonlinear systems, ICUM is also 
om-

petitive when used to solve the systems (not ne
essarily large s
aled) that

appear in real appli
ations.
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