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Resumo

Em [12℄, mostramos que existem muitos problemas reentes na pesquisa apli-

ada para os quais os m�etodos quase-Newton s~ao a melhor op�~ao para resolver

sistemas de equa�~oes n~ao lineares. Isto se deve ao fato de possuirem baixo

usto omputaional [9℄, [6℄, [5℄.

Motivados por esse trabalho e pelo fato do ICUM ter sido onsiderado re-

entemente o mais e�iente m�etodo quase-Newton para resolver sistemas n~ao

lineares de grande porte [7℄, nosso interesse atual �e resolver numeriamente al-

guns problemas reais usando m�etodos quase-Newton, em partiular o ICUM.

Para isso, onsideramos quatro problemas que oorrem frequentemente em

aplia�~oes nas areas de Geof��sia, Biologia, Engenharia e F��sia, respetiva-

mente. Duas destas aplia�~oes s~ao desritas neste trabalho e s~ao baseadas em

trabalhos reentes [14℄, [10℄. As outras duas aplia�~oes foram desritas em [12℄

tendo omo base [11℄, [13℄.
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Para resolver ada um dos problemas, devemos soluionar um sistema n~ao

linear. Para isto, usamos os m�etodos quase-Newton: Broyden e ICUM. Apre-

sentamos uma an�alise omparativa uidadosa dos resultados obtidos.

Abstrat

In [12℄, we have shown that there are many reent problems in ap-

plied researh for whih the quasi-Newton methods are the best option

for solving the nonlinear systems of equations that appear in the so-

lution of suh problems. The main reason for using these methods is

beause they have low omputational ost [9℄, [6℄, [5℄.

Motivated by this work and by the fat that the ICUM, was on-

sidered reently as the most eÆient quasi-Newton method for solving

large-sale nonlinear systems [7℄, we are now interested in implementing

it with some real problems.

For this, we onsider in this work four problems of ommon our-

rene in appliations in Geophysis, Biology, Engineering and Physis,

respetively. Two of them are desribed here based in reent works

[14℄,[10℄. The two other appliations were desribed in [12℄ with base in

[11℄,[13℄.

For solving eah problem, we must solve a nonlinear system of equa-

tions. For this, we use the quasi-Newton methods: Broyden and ICUM

and present a areful omparative analysis of the results obtained.
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1 Introdution

There are many problems in di�erent areas of the applied researh for whih

the quasi-Newton methods [3℄,[8℄ are the best option for solving nonlinear

systems of equations. In [12℄ we presented reent appliations in areas suh as

Physis, Chemial Engineering, Eletroni Engineering, Astrophysis, Eletri

Engineering and Mehanial Engineering. In general, these methods are hosen

beause of their low omputational ost.

Solving a nonlinear system of equations onsists on: given a nonlinear funtion

F : IR

n

! IR

n

; ontinuously di�erentiable, �nd a vetor x 2 IR

n

suh that

F (x) = 0: (1)

All pratial algorithms for solving (1) are iterative. Among them we have

Newton and quasi-Newton methods.

Given an initial approximation x

0

2 IR

n

; Newton's method generate a sequene

fx

k

g of approximations of a solution to (1) by

x

k+1

= x

k

� J(x

k

)

�1

F (x

k

): (2)

The Newton iteration an be ostly, sine partial derivatives must be om-

puted and the linear system (2) must be solved at every iteration. This fat

motivated the development of quasi-Newton methods, whih are de�ned as

the generalization of (2) given by

x

k+1

= x

k

� B

�1

k

F (x

k

): (3)

In quasi-Newton methods, the matries B

k

are intended to be approximations

of J(x

k

): In many methods, the omputation of (3) does not involve omputing

derivatives at all. Moreover, in many partiular methods, B

�1

k+1

is obtained

from B

�1

k

using simple proedures thanks to whih the linear algebra ost

involved in (3) is muh less than the one involved in (2).

The name \quasi-Newton" was used after 1965 to desribe also methods of

the form (3) suh that the equation below is satis�ed:

B

k+1

s

k

= y

k

= F (x

k+1

)� F (x

k

): (4)

3



Following [2℄, most authors all quasi-Newton all the methods of the form (3),

whereas the lass of methods that satisfy (4) are alled \seant methods".

Aordingly, (4) is alled \seant equation".

Among the seant methods, we have Broyden's method [1℄ and the Inverse

Column Update Method (ICUM) [9℄, [6℄. In the �rst one, the updating of the

matrix B

k

; is made by

B

k+1

= B

k

+

(y

k

�B

k

s

k

)s

T

k

s

T

k

s

k

;

and in the seond one, the matrix B

�1

k

is updated by

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)e

T

j

k

e

T

j

k

y

k

;

where, je

T

j

k

y

k

j = ky

k

k

1

:

In this work we use the quasi-Newton methods: Broyden and ICUM to solve

four real problems in Geophysis, Biology, Engineering and Physis, respe-

tively. We hose these methods beause the �rst one it is the most popular

quasi-Newton method used for solving nonlinear systems and the seond one

beause of its exellent performane in the solution of large-sale nonlinear

systems [7℄.

In Setion 2, based on the works [14℄, [10℄, we present a desription of two

reent appliations that were not onsidered in [12℄. In Setion 3, we present

a desription of the numerial tests, their results and an analysis of them.

Finally, in Setion 3, the onlusions are presented.
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2 Appliations

In this setion we desribed two of the four appliations that we onsidered

in the numerial test. The �rst one is a problem of ommon ourrene in

seismologial appliations alled Two-point ray traing problem [14℄ and the

seond one is a reent problem about the interation between two viruses [10℄.

The two others appliations are related with target loation and determination

of basin of periodi trajetories of dynamial systems, respetively. We pre-

sented a desription of them in [12℄ having as base, the reent works [11℄ and

[13℄. For the safe of understanding we make a brief abstrat of eah problem

in the respetive setion.

We hose these four problems beause we think that they are interesting real

appliations in di�erent areas of the knowledge in whih a nonlinear system of

equation must be solved.

2.1 Two-point ray traing problem (2001) [14℄ [4℄

In general form, a Two-point ray traing problem onsists on onstruting a

ray that joins two given points in the domain.

1

In [4℄, the earth struture is modelled by pieewise onstant regions of arbitrary

shape. The interfaes between regions as well as the free surfae of the earth

are assumed to be smooth urves. Generally, the onvention used in this

problem is that i

0

represent the free surfae of the earth.

The medium between eah suessive pair of interfaes is assumed to be ho-

mogeneous, isotropi and perfetly elasti. Thus most kinds of signals an be

propagate in suh media. All the rays must be straight line segments in eah

region.

2

A ray is determined geometrially by knowing the initial or \soure"

1

In [14℄, they assume that the earth is represented by a two-dimensional (2D ase) do-

main or by a three dimensional domain with ylindrial symmetry with respet to an axis

perpendiular to the plain of interest (2.5D ase).

2

Thus no di�erential equations need to be solved [4℄.

5



point, the �nal or \reeiver" point and eah point at whih the ray meets an

interfae. At the ontat points Snell's law must hold. It is this ondition that

permits to determine the intersetion points and thus the ray.

Mathematially, A Two-point ray traing problem onsist on, given

� two points: X

0

, the soure point and X

n+1

; the reeiver point, both

loated in some �xed interfaes,

� a veloity of the k�th region rossed, v

i

; i = 1; � � � ; n+ 1;

� a �nite sequene of positive integers i

1

; i

2

; � � � ; i

n

that represent the in-

dies of the n interfaes interseted by the ray path, f

i

k

;

to �nd X

k

for k = 1; 2; � � � ; n; a point loated in the kth interfae, where the

Snell's law[14℄, [4℄ is satis�ed.

Between eah of these onseutive points the ray an be desribed by the line

segment [X

k

;X

k�1

℄; k = 1; 2; � � � ; n + 1: Thus, the ray has n intersetions

points with the interfaes plus two endpoints: the soure and reeiver.

Due to the fat that the whole problem is haraterized by the intersetion

points X

k

= (x

k

; f

i

k

(x

k

))

T

in whih the Snell's law must be satis�ed, then

they an be found solving a nonlinear system of equations. To see this, it is

neessary to transform the Snell's law in a vetorial form, using the unitary

vetors in the diretion of the ray,

X

k

�X

k�1

kX

k

�X

k�1

k

2

X

k+1

�X

k

kX

k+1

�X

k

k

2

and a tangent vetor to the kth interfae at X

k

; �

k

= (1; f

0

i

k

(x

k

))

T

: Then

Snell's law, in the most general form, requires that

v

i

k+1

*

�

k

;

X

k

�X

k�1

kX

k

�X

k�1

k

2

+

= v

i

k

*

�

k

;

X

k+1

�X

k

kX

k+1

�X

k

k

2

+

: (5)

Equation (5) represents a nonlinear system of n equations in n unknowns, the

salars x

1

; x

2

; � � � ; x

n

; sine the soure point, X

0

= (x

0

; f

i

0

)

T

and the reeiver
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point, X

n+1

= (x

n

; f

i

n+1

)

T

; are assumed to be known. The kth equation is

given by

�

k

v

= v

i

k+1

(x

k

� x

k�1

) + f

0

i

k

(x

k

)(f

i

k

(x

k

)� f

i

k�1

(x

k�1

))

[(x

k

� x

k�1

)

2

+ (f

i

k

(x

k

)� f

i

k�1

(x

k�1

))

2

℄

1=2

(6)

�v

i

k

(x

k+1

� x

k

) + f

0

i

k

(x

k

)(f

i

k+1

(x

k+1

)� f

i

k

(x

k

))

[(x

k+1

� x

k

)

2

+ (f

i

k+1

(x

k+1

)� f

i

k

(x

k

))

2

℄

1=2

:

If we introdue the vetors x = (x

1

; x

2

; :::; x

n

)

T

; v = (v

1

; v

2

; :::; v

n+1

)

T

; and

de�ne the funtion �

v

by

�

v

: IR

n

�! IR

n

x 7�! �

v

(x) =

0

B

B

�

�

1

v

(x)

.

.

.

�

n

v

(x)

1

C

C

A

;

then, solving the two point traing problem is equivalent to solving the non-

linear system of equations

�

v

(x) = 0: (7)

2.2 An approah to estimating the transmission oeÆ-

ients for AIDS and for Tuberulosis using mathe-

matial models (2001) [10℄

In this paper, the authors present a mathematial model that desribes the

interation between the Human Immunode�ieny Virus (HIV) and Tuber-

ulosis, whih is aused by a baillus of the type Myobaterium tuberulosis

(MTB). These infetions are onsidered in a losed environment, like a prision

or mental institution.

Using nine working assumptions [10℄, the dynamis of the model is formu-

lated through a ompartment system desribed by nonlinear ordinary di�er-

ential equations, whih represent the di�erent subpopulations. Therefore, eah

ompartment, in turn, represent one of the stages of the interation between
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Aquired Immunode�ieny Syndrome (AIDS)

3

and tuberulosis (TB). They

assume the total population onstant.

4

To larify the biologial proess, they introdue the following notation. The

state variables are:

x

1

: the healthy individuals suseptible to both HIV and MTB infetions.

x

2

: the individuals who have been infeted with MTB, but have no

linial illness and hene are not infeted.

T

b

: individuals with TB disease.

y

1

: the HIV-positive individuals without MTB infetion.

y

2

: the HIV-positive individuals with MTB infetion.

A : individuals with AIDS but without TB and MTB infetions.

A

tb

: individuals with AIDS and TB infetion.

and the parameters are:

� : transmission oeÆient for HIV infetion.

� : transmission oeÆient for MTB infetion.

! : the inubation rate for AIDS without MTB infetion.

� : the inubation rate for AIDS with MTB infetion.

� : the reativation rate of TB disease.

� : is reovery rate of TB.

� : is the natural mortality or remaining time in a losed ommunity.

� : the AIDS mortality rate.

� : the TB mortality rate.

The di�erential equations that govern the proess are the following:

dx

1

dt

= �� �x

1

(y

1

+ y

2

)� �x

1

T

b

� �x

1

3

Syndrome haraterized by the interation of the HIV with other infetions.

4

Thus, if one inmate or patient leaves the plae, another replaes him.
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dx

2

dt

= �T

b

+ �x

1

T

b

� �x

2

(y

1

+ y

2

)� (� + �)x

2

dT

b

dt

= �x

2

� �T

b

(y

1

+ y

2

)� (�+ �+ �)T

b

dy

1

dt

= �x

1

(y

1

+ y

2

)� �y

1

T

b

� (�+ !)y

1

(8)

dy

2

dt

= �x

2

(y

1

+ y

2

) + �y

1

T

b

� (� + �)y

2

dA

dt

= !y

1

� �AA

tb

� (�+ �)A

dA

tb

dt

= �y

2

+ �AA

tb

+ �T

b

(y

1

+ y

2

)� (�+ � + �)A

tb

where � = �+ �(T

b

+A

tb

) + �(A+A

tb

); aordingly the onstant population

hypothesis. Therefore, summing up these equations, one gets

dN

dt

= 0; that is,

the total population remains onstant in all time. Beause of the onservation

law x

1

(t) + x

2

(t) + T

b

(t) + y

1

(t) + y

2

(t) + A(t) + A

tb

(t) = N(t) = 1 for any

t 2 IR; they an eliminate one of the state variables, by using:

x

1

= 1� (x

2

+ T

b

+ y

1

+ y

2

+ A+ A

tb

) = 1� S: (9)

Hene, the seven dimensional system (8) redues to the following six dimen-

sional system:

dx

2

dt

= �T

b

+ �(1� S)T

b

� �x

2

(y

1

+ y

2

)� (� + �)x

2

dT

b

dt

= �x

2

� �T

b

(y

1

+ y

2

)� (� + �+ �)T

b

dy

1

dt

= �(1� S)(y

1

+ y

2

)� �y

1

T

b

� (�+ !)y

1

(10)

dy

2

dt

= �x

2

(y

1

+ y

2

) + �y

1

T

b

� (� + �)y

2

dA

dt

= !y

1

� �AA

tb

� (�+ �)A

dA

tb

dt

= �y

2

+ �AA

tb

+ �T

b

(y

1

+ y

2

)� (�+ � + �)A

tb

:
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Thus the modi�ed model is given by

_z = F (z);

where F : IR

6

! IR

6

and z = (x

2

; T

b

; y

1

; y

2

; A; A

tb

)

T

:

To begin the analysis of the model given by equations (10) and (9), they

examine its disease-free steady state to determine the threshold values for

whih the diseases will die out and, by biologial simpli�ation, they alulate

the endemi equilibrium points of the model, that is, vetors z

�

suh that

F (z

�

) = 0: Using a ontrol tehnique proposed in their paper, they found

seven equilibrium points of the model. Atually, an eight equilibrium point

was found but only numerially [10℄.

Moreover, they present the stability analysis of equilibrium points and ob-

serve that the stability onditions for eah of these points depend on both:

the transmission oeÆients for HIV and for MTB (� and �) whih must be

estimated. The other parameters haven been evaluated from the literature.
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3 Numerial tests

For the numerial tests with the problems and with the quasi-Newton Methods

hosen: Broyden and ICUM we will all the four problems:

P1: Two-point ray traing problem.

P2: AIDS-Tuberulosis problem.

P3: Target loation.

P4: Basin Problem.

The odes of the algorithms, funtions and Jaobians of eah problem was

written in MATLAB 6.0. These experiments were run using a omputer AMD

Athlon-800MHz.

The initial points used were the same suggested by the authors of the ap-

pliations. In all tests we used the onvergene riterion kF (x

k

)k � 10

�6

;

exepting in the P3 problem, in whih we use a tolerane equal to 10

�4

as it

was suggested in [11℄.

We also stopped the iterations when the number of iterations exeeded 300

or when kF (x

k

)k � 10

5

: In the last ase we will say that the method used

diverges.

3.1 P1: Two-point ray traing problem

In order to do the implementation of the Two-point ray traing problem we

onsider a partiular ase:

n = 13; X

0

=

 

x

0

f

i

0

(x

0

)

!

=

 

0

0

!

; X

14

=

 

x

14

f

i

14

(x

14

)

!

=

 

�

0

!

:

The values for the parameter � were 800; 840; 880; � � �1600; eah one of them

orresponding to inrements in the reeptor, in Geophysis terms.
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A �nite sequene, ff

i

1

; f

i

2

; � � � ; f

i

13

g; of the interfaes interseted by the ray

path is given by

ff

i

1

; f

i

2

; � � � ; f

i

13

g = ff

1

; f

6

; f

7

; f

2

; f

3

; f

4

; f

5

; f

4

; f

3

; f

2

; f

7

; f

6

; f

1

g; (11)

where, eah funtion f

i

: IR ! IR; i = 1; 2; � � � ; 7; is de�ned, respetively by

f

1

(x) = 900:

f

2

(x) = 8000�

q

6000

2

+ (x� 1000)

2

:

f

3

(x) = 8500�

q

5000

2

+ (x� 2500)

2

:

f

4

(x) = 5000 + 10

�6

(x� 1000)

2

: (12)

f

5

(x) = 8000� (0:3333)x:

f

6

(x) = 1400:

f

7

(x) = 1900:

The sequene of veloities, fv

k

g; k = 1; � � � ; 14 is represented by a vetor:

v = 10

3

(1; 2; 3; 5; 6; 8; 10; 10; 8; 6; 5; 3; 2; 1)

T

:

Thus, we want to �nd a vetor x

�

= (x

�

1

; x

�

2

; � � � ; x

�

13

)

T

suh as �

v

(x

�

) = 0;

where, � : IR

13

�! IR

13

is de�ned using (6), (11) and (12).

The author of [14℄, gives us the values of � and the initial point

5

x

0

:

x

0

= (50:852; 107:626; 193:482; 237:195; 811:580; 1197:912; 2134:884;

1540:541; 1262:964; 901:701; 883:199; 828:718; 792:517)

T

;

atually, this point is the solution to an nonlinear system of equations and

thus it represents a ray. Therefore, for the problem that we are onsidering it

is a good initial point.

Starting with this x

0

; we want to solve a nonlinear system for eah one of the

values of parameter �; using Broyden's method and ICUM , respetively.

5

This point was found in [14℄ using ontinuation methods.
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In Table 1, for eah value of �; we show the number of iteration performed

by eah quasi-method above mentioned. The solution vetor found for eah

value of � is shown like a olumn in Table 2.

We observe that the solutions found here are exatly the same as the ones

found in [14℄, where they used the ontinuation method to solve the problems.

� Broyden ICUM

800 5 4

840 6 5

880 6 5

920 6 5

960 7 5

1000 7 6

1040 7 6

1080 7 7

1120 7 6

1160 8 7

1200 8 7

1240 9 7

1280 9 8

1320 9 8

1360 10 8

1400 10 9

1440 11 9

1480 11 9

1520 11 10

1560 12 10

1600 12 10

Table 1: Iterations Number for P1.
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� 800 840 880 920 960 1000 1040

x

�

1

51.115 51.380 51.645 51.910 52.175 52.440 52.706

x

�

2

108.187 108.750 109.314 109.878 110.442 111.007 111.573

x

�

3

194.501 195.523 196.545 197.569 198.594 199.621 200.648

x

�

4

238.415 239.636 240.859 242.083 243.308 244.535 245.763

x

�

5

815.969 820.365 824.768 829.178 833.594 838.017 842.446

x

�

6

1206.559 1215.235 1223.939 1232.671 1241.432 1250.221 1259.037

x

�

7

2151.026 2167.197 2183.397 2199.626 2215.884 2232.169 2248.482

x

�

8

1566.899 1593.250 1619.595 1645.932 1672.262 1698.583 1724.895

x

�

9

1291.900 1320.912 1349.998 1379.155 1408.382 1437.677 1467.039

x

�

10

938.430 975.197 1012.000 1048.835 1085.699 1122.591 1159.508

x

�

11

920.440 957.676 994.907 1032.133 1069.353 1106.568 1143.779

x

�

12

867.185 905.649 944.109 982.566 1021.019 1059.470 1097.917

x

�

13

831.793 871.067 910.340 949.611 988.880 1028.148 1067.414

� 1080 1120 1160 1200 1240 1280 1320

x

�

1

52.972 53.239 53.505 53.772 54.038 54.305 54.572

x

�

2

112.139 112.706 113.273 113.841 114.409 114.977 115.546

x

�

3

201.677 202.706 203.737 204.769 205.801 206.834 207.868

x

�

4

246.992 248.222 249.453 250.685 251.918 253.152 254.387

x

�

5

846.881 851.321 855.767 860.219 864.676 869.138 873.605

x

�

6

1267.881 1276.752 1285.650 1294.575 1303.527 1312.505 1321.510

x

�

7

2264.823 2281.191 2297.586 2314.008 2330.455 2346.929 2363.428

x

�

8

1751.198 1777.491 1803.773 1830.045 1856.305 1882.553 1908.788

x

�

9

1496.464 1525.952 1555.500 1585.106 1614.769 1644.486 1674.255

x

�

10

1196.446 1233.404 1270.377 1307.364 1344.362 1381.368 1418.379

x

�

11

1180.984 1218.184 1255.380 1292.571 1329.757 1366.939 1404.117

x

�

12

1136.361 1174.803 1213.241 1251.676 1290.109 1328.538 1366.965

x

�

13

1106.679 1145.942 1185.203 1224.464 1263.722 1302.980 1342.236
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� 1360 1400 1440 1480 1520 1560 1600

x

�

1

54.839 55.107 55.374 55.641 55.909 56.176 56.444

x

�

2

116.115 116.684 117.254 117.823 118.393 118.963 119.533

x

�

3

208.903 209.939 210.975 212.011 213.048 214.086 215.123

x

�

4

255.622 256.858 258.095 259.332 260.569 261.807 263.045

x

�

5

878.077 882.553 887.034 891.519 896.008 900.501 904.998

x

�

6

1330.540 1339.596 1348.678 1357.785 1366.917 1376.074 1385.256

x

�

7

2379.952 2396.502 2413.076 2429.674 2446.297 2462.943 2479.612

x

�

8

1935.010 1961.219 1987.414 2013.594 2039.758 2065.908 2092.041

x

�

9

1704.075 1733.943 1763.857 1793.816 1823.816 1853.856 1883.934

x

�

10

1455.393 1492.406 1529.416 1566.420 1603.414 1640.398 1677.366

x

�

11

1441.290 1478.459 1515.625 1552.786 1589.944 1627.097 1664.248

x

�

12

1405.390 1443.812 1482.231 1520.648 1559.062 1597.475 1635.885

x

�

13

1381.491 1420.744 1459.996 1499.247 1538.497 1577.745 1616.993

Table 2: The solution vetor found for eah �:

3.2 P2: AIDS-Tuberulosis problem

In this setion, our propose is determining numerially the equilibrium points

of the model (9)-(10), that is, to solve the nonlinear system F (z) = 0; using

Broyden's method and ICUM. Moreover, we want to determine if these points

are stable or not.

6

For this, we implemented these methods and ran them

onsidering, like in [10℄, the variation of the parameters � and � and the other

onstants �xed: � = 0:5; � = 0:05; � = 0:1; � = 0:05; ! = 0:1; � = 0:2; � =

0:33:

We variated the parameters � e � using di�erent values presented in Figure

1 of [10℄. That �gure shows attration regions of the equilibrium points in the

spae of parameters � e �: We inlude here a short biologial desription of

these regions. For a more general information, see [10℄.

6

That this, if the real part of the eigenvalues of the Jaobian matrix in this equilibrium

points, is negative or not.
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R

�

: region where both infetions die out in the ommunity.

R

1

: the HIV infetion progress to AIDS disease.

R

3

: the HIV infetion progress to AIDS with TB disease.

R

4

: the MTB infetion progress to TB disease.

R

7

: HIV and MTB progress to AIDS and TB disease, respetively

We also onsider the fat mentioned in [10℄, that the model does not de-

pend on the initial onditions. Thus the only starting point used is z

0

=

(1; 1; 1; 1; 1; 1)

T

:

We present the results in Tables 3-7. The �rst olumn of eah table, shows

the values of � and � used in eah region mentioned above; the seond olumn

shows the orresponding equilibrium point to the � and � parameters.

7

The

olumns, Broyden and ICUM, show respetively, the number of iterations

performed by eah method until an equilibrium point is found and �nally, the

last olumn, �

max

; shows the real part of the greatest eigenvalue of the Jaobian

matrix of F in z

�

: This information helps us in the analysis of stability of the

solutions.

In Table 3, we an observe that, for any values of � and � in the region R

�

;

both methods onverge to the trivial equilibrium point z

�

; whih is a stable

equilibrium point. This results orresponds to the theorial analysis in [10℄.

(� ; � ) z

T

�

Broyden ICUM �

max

(0:5 ; 0:1) (0; 0; 0; 0; 0; 0) 10 9 -0.0646

(0:25 ; 0:05) (0; 0; 0; 0; 0; 0) 8 7 -0.0838

(0:7 ; 0:15) (0; 0; 0; 0; 0; 0) 11 10 -0.0500

(0:9 ; 0:01) (0; 0; 0; 0; 0; 0) 10 9 -0.0360

(1 ; 0:19) (0; 0; 0; 0; 0; 0) 17 15 -0.0100

(1 ; 0:01) (0; 0; 0; 0; 0; 0) 11 11 -0.0292

Table 3: region R

�

:

7

That is, the solution to the nonlinear system of equation.
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In Table 4, we an observe an interesting situation in region R

1

: for the

values � = 5 and � = 0:39 : the methods onverge to di�erent equilibrium

points. Aother thing is that Broyden's method �nds a stable equilibrium

point and ICUM �nds an unstable one. Observe also that Broyden's method

performs twie the number of iterations performed by ICUM.

(� ; � ) z

�

= (0; 0; y

1

; 0; A; 0)

T

Broyden ICUM �

max

(1 ; 0:25) (0, 0, 0.16, 0, 0.04, 0) 13 14 -0.0513

(2 ; 0:4) (0, 0, 0.41, 0, 0.09, 0) 15 15 -0.1915

(2:8 ; 0:5) (0, 0, 0.49, 0, 0.11, 0) 16 18 -0.1630

(3 ; 0:6) (0, 0, 0.54, 0, 0.13, 0) 15 8 -0.1026

(4 ; 0:45) (0, 0, 0.45, 0, 0.10, 0) 31 20 -0.0607

(5 ; 0:39) (0, 0, 0.40, 0, 0.19, 0) 64 -0.0204

(0, 0, 0.39, 0, 0.10, 0) 32 0.0204

Table 4: region R

1

:

Table 5, shows that the partiular situation desribed in the previous para-

graph is more ommon in region R

3

with the di�erene: in �ve of the six ases

tested, ICUM �nds a stable equilibrium point of form z

�

= (0; 0; y

1

; 0; A; A

�b

)

T

:

Aording to the theory in [10℄ only stable equilibrium points of the form of

z

�

= (0; 0; y

1

; 0; A; A

�b

)

T

must appear in the region R

3

:

17



(� ; � ) z

�

= (0; 0; y

1

; 0; A; A

�b

)

T

Broyden ICUM �

max

(7 ; 0:58) (0, 0, 0.54, 0, 0.07, 0.05) 27 39 -0.2548

(6:4 ; 0:44) (0.71, 0.05, 0, 0, 0.08, 0.08) 32 0.4543

(0, 0, 0.44, 0, 0.08, 0.03) 27 -0.1131

(5:5 ; 0:51) (0, 0, 0.49, 0, 0.11, 0) 25 0.1508

(0, 0, 0.50, 0, 0.09, 0.03) 45 -0.1508

(8:5 ; 0:42) (0.77, 0.06, 0, 0, 0, 0 ) 29 0.1040

(0, 0, 0.43, 0, 0.06, 0.04) 53 -0.0416

(7:7 ; 0:44) (0, 0, 0 , 0, 0.06, -0.06) 229 0.4543

(0, 0, 0.45, 0, 0.06, 0.04) 38 -0.0839

(5 ; 0:49) (0, 0, 0.48, 0, 0.11, 0) 23 0.0783

(0, 0, 0.48, 0, 0.10, 0.01) 29 -0.0787

Table 5: region R

3

:

Table 6, shows that both methods onverge to the same equilibrium point

whih is stable in the �rst four ases and unstable in the other two ases. The

performane of ICUM is better than Broyden's method.

(� ; � ) z

�

= (x

2

; �

b

; 0; 0; 0; 0)

T

Broyden ICUM �

max

(2 ; 0:01) (0.26, 0.02, 0, 0, 0, 0) 12 11 -0.0342

(3 ; 0:1) (0.48, 0.04, 0, 0, 0, 0) 13 10 -0.0950

(4 ; 0:2) (0.59, 0.05, 0, 0, 0, 0) 16 13 -0.0847

(5 ; 0:22) (0.58, 0.04, 0, 0, 0, 0) 15 13 -0.0743

(7 ; 0:25) (0.66, 0.05, 0, 0, 0, 0) 23 16 0.4543

(8 ; 0:19) (0.73, 0.06, 0, 0, 0, 0) 25 17 0.4543

Table 6: region R

4

:
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Finally, in Table 7, we an observe that, in all the ases tested, both methods

onverge to a stable equilibrium point whih has all its omponents positive.

For these tests, the performane of ICUM is again better than that of Broyden's

method.

(� ; � ) z

�

= (x

2

; �

b

; y

1

; y

2

; A; A

�b

)

T

Broyden ICUM �

max

(5 ; 0:32) (0.42, 0.03, 0.04, 0.07, 0.01, 0.03) 28 21 -0.0118

(4:5 ; 0:3) (0.54, 0.04, 0.01, 0.03, 0.02, 0.01) 25 26 -0.0068

(6 ; 0:35) (0.27, 0.02, 0.10, 0.10, 0.01, 0.05) 26 20 -0.0072

(7 ; 0:36) (0.39, 0.03, 0.06, 0.11, 0.01, 0.06) 19 16 -0.0222

(8 ; 0:37) (0.43, 0.03, 0.04, 0.12, 0.01, 0.06) 19 15 -0.0311

(7 ; 0:33) (0.60, 0.04, 0.01, 0.06, 0.01, 0.03) 25 19 -0.0193

Table 7: region R

7

:

3.3 P3: Target loation problem

We onsider the nonlinear system

F

n

(x

t

; y

t

; z

t

) = z

t

+

q

(x

t

� x

n

)

2

+ (y

t

� y

n

)

2

+ z

2

t

� r

n

= 0:

where x

t

; y

t

and z

t

are the unknown target o-ordinates, (x

n

; y

n

) are the known

reeiving elements position, loated in a plane and r

n

is the nth round trip

distane of the transmitted pulse. As before, our interest now is solving nu-

merially this system using Broyden's method and ICUM. Its solution gives

the position of the target [11℄.

We onsider N = 5 and N = 6 reeiving elements loated in a plane. The

minimum number of reeiving elements needed to alulate the unknown are

three, whih gives, respetively, ten and twenty possible ombinations for an

�ve and six elements planar array.
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For eah test, we used two initial points: one of them is a point (0; 0; z)

T

; where

z is an approximation

8

to r

n

=2: The other initial point is an approximation to

the solution found with the �rst initial point. The reason of this hoie is that

we want to have an idea of the performane of both quasi-Newton methods

using a good approximation to the solution, like it was onsidered in [11℄. The

authors of [11℄ used the beam-forming tehnique to obtain good starting points

for their hybrid algorithm.

For eah one of ten possible ombinations of three elements (ase N = 5 )

and twenty possible ombinations of three elements (ase N = 6 ) we ran

the Broyden and ICUM algorithms using the two initial points mentioned

previously and kF (x)k

1

� 10

5

:

The Tables 8 and 10, show the information about reeiving elements position

and the values of r

n

for n = 1; 2; � � � ; 5: Similarly, the Tables 12 and 14, show

the same information,but in the ase n = 1; 2; � � � ; 6:

The results obtained are shown in Tables 9 and 11 for N = 5; and in Tables

13 and 15 for N = 6: In the last tables, the notation NC means that the algo-

rithm did not onverge, beause it reahed the maximun number of iterations

allowed in the algorithm.

In the ase N = 5 we observe that, for initial points x

0

= (0; 0; z)

T

; z � r

n

=2;

the performane of Broyden's method is slightly better than ICUM. When a

initial approximation is lose to the solution, the performane of both method

is the same.

In the ase N = 6; the results show that for initial points x

0

= (0; 0; z)

T

; z �

r

n

=2; the performane of the Broyden's method is better than that of ICUM

in most of ases.

8

Like it was suggested by the authors in [11℄
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n 1 2 3 4 5

(x

n

; y

n

) (0, 0) (2, 0) (3, 1) (1, 1) (0, 2)

r

n

18.85 18.22 18.17 18.54 19.05

Table 8:Reeiving elements and r

n

values for n = 5:

x

0

= (0; 0; 9) x

0

= (3:5; 0; 8:9)

Combinations

Broyden ICUM Broyden ICUM

x

1

x

2

x

3

5 6 3 3

x

1

x

2

x

4

5 6 3 3

x

1

x

2

x

5

5 6 3 3

x

1

x

3

x

4

5 5 3 3

x

1

x

3

x

5

5 6 3 3

x

1

x

4

x

5

5 6 3 3

x

2

x

3

x

4

5 5 3 3

x

2

x

3

x

5

15 17 3 5

x

2

x

4

x

5

5 5 3 3

x

3

x

4

x

5

5 5 3 3

Table 9: Number of iterations performed by the methods. x

T

= (4; 0; 9)

n 1 2 3 4 5

(x

n

; y

n

) (0, 0) (4, 6) (0, 4) (3, 0) (1, 1)

r

n

13.48 12.63 12.32 13.28 12.78

Table 10:Reeiving elements and r

n

values for n = 5:

21



x

0

= (0; 0; 6) x

0

= (1; 3; 6)

Combinations

Broyden ICUM Broyden ICUM

x

1

x

2

x

3

7 8 4 5

x

1

x

2

x

4

6 7 4 4

x

1

x

2

x

5

16 10 5 5

x

1

x

3

x

4

6 6 4 4

x

1

x

3

x

5

7 7 4 4

x

1

x

4

x

5

6 7 4 4

x

2

x

3

x

4

7 8 4 4

x

2

x

3

x

5

7 8 4 4

x

2

x

4

x

5

6 8 4 4

x

3

x

4

x

5

6 7 4 5

Table 11: Number of iterations performed by the methods. x

T

= (2; 4; 6)

Table 13 shows that there are �ve ombinations of three elements for whih

the initial point, x

0

= (0; 0; 3); is already the solution, and this solution is

di�erent from the solution found by the other ombinations using the same

initial point, x

T

= (3; 3; 3): When an initial approximation is lose to the

solution, the performane of both method is similar again.

n 1 2 3 4 5 6

(x

n

; y

n

) (0, 3) (3, 0) (1, 2) (1, 1) (2, 1) (2, 2)

r

n

7.24 7.24 6.74 7.12 6.74 6.32

Table 12:Reeiving elements and r

n

values for n = 6:

22



x

0

= (0; 0; 3) x

0

= (2:4; 2:7; 3:4)

Combinations

Broyden ICUM Broyden ICUM

x

1

x

2

x

3

0 0 4 6

x

1

x

2

x

4

13 10 4 4

x

1

x

2

x

5

0 0 4 6

x

1

x

2

x

6

7 NC 4 5

x

1

x

3

x

4

8 12 3 5

x

1

x

3

x

5

0 0 4 6

x

1

x

3

x

6

11 NC 4 5

x

1

x

4

x

5

8 10 4 5

x

1

x

4

x

6

8 10 4 5

x

1

x

5

x

6

8 10 4 5

x

2

x

3

x

4

8 10 4 5

x

2

x

3

x

5

0 0 4 6

x

2

x

3

x

6

8 10 4 5

x

2

x

4

x

5

7 10 4 5

x

2

x

4

x

6

8 10 4 5

x

2

x

5

x

6

11 11 4 4

x

3

x

4

x

5

7 10 4 5

x

3

x

4

x

6

8 10 4 5

x

3

x

5

x

6

9 10 4 5

x

4

x

5

x

6

8 10 4 5

Table 13: Number of iterations performed by methods. x

T

= (3; 3; 3):

Table 15 shows that there are one ombination of three elements for whih

both methods does not onverge for any initial points used. For the other

ombinations the performane of the methods is similar to that desribed in

Table 12.
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n 1 2 3 4 5 6

(x

n

; y

n

) (0, 0) (0, 5) (10, 0) (2, 15) (5, 5) (20, 10)

r

n

25 24.14 21.18 26.25 21.18 25

Table 14:Reeiving elements and r

n

values for n = 6:

x

0

= (0; 0; 10) x

0

= (9; 3:5; 10)

Combinations

Broyden ICUM Broyden ICUM

x

1

x

2

x

3

8 8 3 4

x

1

x

2

x

4

NC NC NC NC

x

1

x

2

x

5

8 11 3 4

x

1

x

2

x

6

8 8 4 4

x

1

x

3

x

4

8 9 6 6

x

1

x

3

x

5

7 8 3 4

x

1

x

3

x

6

9 9 4 5

x

1

x

4

x

5

8 8 8 8

x

1

x

4

x

6

7 8 5 5

x

1

x

5

x

6

11 10 4 5

x

2

x

3

x

4

9 11 7 8

x

2

x

3

x

5

8 10 6 8

x

2

x

3

x

6

8 10 4 4

x

2

x

4

x

5

9 14 7 9

x

2

x

4

x

6

8 9 7 7

x

2

x

5

x

6

8 8 4 4

x

3

x

4

x

5

NC NC 5 5

x

3

x

4

x

6

7 9 5 5

x

3

x

5

x

6

8 11 4 4

x

4

x

5

x

6

9 15 6 8

Table 15: Number of iterations performed by methods. x

T

= (10; 5; 10)
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3.4 P4: Basin problem

Here, we are interested in using quasi-Newton methods to �nd p�period points

of the H�enon map, F : IR

2

! IR

2

; de�ned by

F

 

x

y

!

=

 

2:12� x

2

� 0:3y

x

!

:

A p�period point is a point x

�

suh that F

p

(x

�

) = x

�

: Quasi-Newton methods

an be used to �nd the periodi p point of F by letting G = F

p

� I; where I

is the identity mapping, and solving the system G(x) = 0:

Following [13℄, we wish to �nd all the isolated root of G (all periodi p points

of F for a �xed p). For this, we searh for all roots of G in a spei� bounded

region (in our tests, the region is [0; 1℄� [0; 1℄), by hoosing a large number of

initial points x

0

; randomly generated.

We onsider the ases p = 3; p = 4 and p = 5: For eah value of p we generated

sixty random initial points in [0; 1℄ � [0; 1℄ and for eah one of them we ran

Broyden's and ICUM algorithms.

The results are presented as follows: Table 16 shows, for eah value of p used

in the tests, the periodi p points of F found by the Broyden's and ICUM algo-

rithms, and the information about the nonsingularity of the Jaobian matrix

of F in these points. This is an important ondition used in [13℄ to onlude

that an estimate of basin

9

of x

�

in a region with area 1 is an estimate of

the probability of seleting an initial point x

0

whose sequene generated by

Newton's method onverges to x

�

:

After eah Table 17 to 19, we present, for eah value of p; the number of

initial points in the basin

10

of eah x

�

: For this, we used the results obtained

with ICUM beause it onverges in all the ases tested. We all this basin as

ICUM-basin, in analogy to [13℄.

9

Initial points set suh as a sequene generate by the Newton-type method onverge to

x

�

:

10

The elements of this set appear in the �rst olumn of eah table.
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p x

�

: periodi p point of F det(J(x

�

; p))

3 x

�

1

= (0:8529;�0:8777)

T

-18.9937

x

�

2

= (0:9445; 0:9445)

T

-0.1068

4 x

�

2

= (0:9445; 0:9445)

T

1.8988

x

�

3

= (0:3391; 1:3900)

T

6.8635

x

�

4

= (0:7955;�1:3550)

T

-128.1806

5 x

�

2

= (0:9445; 0:9445)

T

1.3431

x

�

5

= (0:9942;�0:7832)

T

69.8901

x

�

6

= (1:0551;�0:7512)

T

46.7556

x

�

7

= (0:2852; 1:2322)

T

-5.4186

x

�

8

= (�0:0458; 1:3666)

T

10.3533

Table 16: Solution vetors found for eah p = 3; 4; 5:

>From the results of Table 16, we an also see that x

�

2

= (0:9445; 0:9445)

T

is simultaneously two, three and �ve-period point of F:

Tables 17 to 19 show, for eah value of p; the number of iterations performed

by Broyden's method (k

B

) and ICUM (k

I

) in ase of onvergene. The symbol

NC means that the algorithm stopped beause it reahed the maximun number

of iterations permitted in the algorithm. Moreover, they have an aditional

olumn that indiates the point of onvergene. This is done in order to

determinate the basin of eah p�period point found.

The results permit us to onlude that for eah p (3; 4; 5) and eah one of

the sixty random initial points, only ICUM onverge in all the ases. In the

ase where both methods onverge the performane of ICUM is better than

Broyden's one.

26



x

0

k

B

k

I

x

�

1

(0:8364; 0:1453)

T

8 7 x

�

1

(0:8240; 0:1340)

T

8 7 x

�

1

(0:9636; 0:1205)

T

53 11 x

�

1

(0:4128; 0:4014)

T

9 9 x

�

1

(0:4210; 0:3770)

T

9 9 x

�

1

(0:4768; 0:4688)

T

8 8 x

�

1

(0:7486; 0:3741)

T

NC 12 x

�

1

(0:4542; 0:0386)

T

9 8 x

�

1

(0:5624; 0:3723)

T

7 8 x

�

1

(0:7928; 0:7952)

T

11 9 x

�

1

(0:3829; 0:2528)

T

9 9 x

�

1

(0:3429; 0:9678)

T

15 11 x

�

1

(0:4798; 0:3683)

T

9 8 x

�

1

(0:7646; 0:3771)

T

8 8 x

�

1

(0:9003; 0:1834)

T

NC 12 x

�

1

(0:3683; 0:9175)

T

12 10 x

�

1

(0:5159; 0:0903)

T

8 7 x

�

1

(0:7353; 0:0047)

T

8 6 x

�

1

(0:6031; 0:9569)

T

8 7 x

�

1

(0:3974; 0:7316)

T

10 9 x

�

1

(0:6846; 0:9785)

T

10 8 x

�

1

(0:5147; 0:6363)

T

8 8 x

�

1

(0:4010; 0:4866)

T

9 9 x

�

1

(0:7505; 0:1262)

T

7 7 x

�

1

(0:6933; 0:9358)

T

10 7 x

�

1

(0:4776; 0:1291)

T

9 8 x

�

1

(0:7729; 0:2973)

T

8 7 x

�

1

(0:8437; 0:8815)

T

15 17 x

�

1

(0:7000; 0:7557)

T

9 7 x

�

1

(0:8293; 0:9706)

T

16 11 x

�

1

x

0

k

B

k

I

x

�

(0:9745; 0:4022)

T

11 7 x

�

2

(0:8995; 0:1707)

T

NC 11 x

�

1

(0:9523; 0:4577)

T

11 8 x

�

2

(0:5369; 0:0665)

T

8 7 x

�

1

(0:4939; 0:4175)

T

8 8 x

�

1

(0:6854; 0:9671)

T

10 8 x

�

1

(0:7538; 0:0968)

T

7 7 x

�

1

(0:7649; 0:6579)

T

9 8 x

�

1

(0:8104; 0:3742)

T

9 8 x

�

1

(0:4928; 0:0835)

T

9 8 x

�

1

(0:7067; 0:1684)

T

9 6 x

�

1

(0:8137; 0:4662)

T

10 8 x

�

1

(0:7223; 0:9949)

T

11 7 x

�

1

(0:3625; 0:7308)

T

10 10 x

�

1

(0:6497; 0:6813)

T

8 7 x

�

1

(0:9452; 0:6133)

T

10 8 x

�

2

(0:7829; 0:0032)

T

6 7 x

�

1

(0:7970; 0:6418)

T

10 9 x

�

1

(0:4161; 0:1864)

T

9 9 x

�

1

(0:3100; 0:9441)

T

25 20 x

�

2

(0:9807; 0:5551)

T

10 9 x

�

2

(0:9885; 0:6916)

T

10 16 x

�

1

(0:4407; 0:0062)

T

9 8 x

�

1

(0:6868; 0:2972)

T

11 7 x

�

1

(0:6472; 0:4638)

T

8 7 x

�

1

(0:3001; 0:9981)

T

18 13 x

�

2

(0:6602; 0:3323)

T

7 7 x

�

1

(0:9073; 0:6702)

T

9 9 x

�

2

(0:9543; 0:8814)

T

9 9 x

�

2

(0:4110; 0:4248)

T

9 9 x

�

1

Tables 17: Case p = 3:

Observe that for p = 3; the ICUM-basin of x

�

1

has 52 points, while that in

ICUM-basin of x

�

2

has 8 points.
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x

0

k

B

k

I

x

�

3

(0:8000; 0:2894)

T

11 8 x

�

3

(0:6951; 0:2593)

T

13 9 x

�

3

(0:7132; 0:7204)

T

9 8 x

�

3

(0:7333; 0:6223)

T

10 8 x

�

3

(0:5068; 0:8841)

T

9 9 x

�

3

(0:9519; 0:1690)

T

11 9 x

�

3

(0:8267; 0:6114)

T

10 12 x

�

3

(0:8473; 0:1141)

T

12 8 x

�

3

(0:6492; 0:1148)

T

15 10 x

�

3

(0:5752; 0:4081)

T

17 11 x

�

3

(0:7133; 0:8674)

T

10 8 x

�

3

(0:9033; 0:0203)

T

11 9 x

�

3

(0:7418; 0:9948)

T

NC 10 x

�

3

(0:8667; 0:4858)

T

12 8 x

�

3

(0:6368; 0:9441)

T

10 8 x

�

3

(0:6773; 0:5862)

T

10 8 x

�

3

(0:4879; 0:8915)

T

9 7 x

�

3

(0:7623; 0:6553)

T

9 9 x

�

3

(0:3645; 0:9757)

T

10 9 x

�

3

(0:9016; 0:3242)

T

11 8 x

�

3

(0:7379; 0:1118)

T

14 9 x

�

3

(0:2457; 0:8976)

T

NC 32 x

�

3

(0:7666; 0:0454)

T

12 8 x

�

3

(0:5093; 0:6248)

T

10 9 x

�

3

(0:6255; 0:9912)

T

8 8 x

�

3

(0:6781; 0:5088)

T

12 8 x

�

3

(0:8150; 0:6896)

T

29 14 x

�

3

(0:6368; 0:7691)

T

10 7 x

�

3

(0:8460; 0:1724)

T

11 8 x

�

3

(0:5874; 0:9242)

T

11 7 x

�

3

x

0

k

B

k

I

x

�

(0:7169; 0:6433)

T

10 8 x

�

3

(0:7826; 0:4665)

T

11 8 x

�

3

(0:2323; 0:3179)

T

NC 31 x

�

3

(0:7888; 0:6344)

T

10 9 x

�

3

(0:6598; 0:5376)

T

10 8 x

�

3

(0:1360; 0:7552)

T

25 24 x

�

3

(0:2033; 0:8193)

T

NC 14 x

�

4

(0:2923; 0:0913)

T

15 18 x

�

4

(0:6156; 0:0464)

T

14 22 x

�

4

(0:5660; 0:2553)

T

NC 25 x

�

4

(0:7067; 0:1684)

T

NC 34 x

�

4

(0:0650; 0:8792)

T

NC 26 x

�

4

(0:5398; 0:9233)

T

NC 15 x

�

2

(0:3087; 0:5582)

T

19 14 x

�

4

(0:3618; 0:2314)

T

12 15 x

�

4

(0:6787; 0:9798)

T

10 8 x

�

3

(0:4497; 0:6431)

T

11 15 x

�

3

(0:3965; 0:4807)

T

14 14 x

�

4

(0:8173; 0:2346)

T

11 9 x

�

3

(0:9441; 0:9121

T

11 7 x

�

2

(0:9636; 0:0201)

T

11 9 x

�

3

(0:3838; 0:8624)

T

NC 14 x

�

2

(0:4443; 0:4232)

T

NC 21 x

�

2

(0:9288; 0:4851)

T

18 9 x

�

2

(0:8506; 0:7131)

T

17 9 x

�

2

(0:2452; 0:4680)

T

NC 21 x

�

3

(0:9962; 0:6141)

T

9 11 x

�

2

(0:9192; 0:7805)

T

NC 8 x

�

2

(0:4377; 0:5918)

T

NC 18 x

�

3

(0:6219; 0:8946)

T

9 8 x

�

3

Tables 18: Case p = 4:

In this ase, the ICUM-basin of x

�

2

; x

�

3

and x

�

4

have, respetively, 8, 43 and 9

points.
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x

0

k

B

k

I

x

�

6

(0:8447; 0:3678)

T

10 6 x

�

6

(0:6552; 0:8376)

T

16 8 x

�

6

(0:8580; 0:3358)

T

13 7 x

�

6

(0:9827; 0:8066)

T

NC 34 x

�

6

(0:5668; 0:8230)

T

16 9 x

�

6

(0:7505; 0:7400)

T

9 7 x

�

6

(0:7176; 0:6927)

T

11 9 x

�

6

(0:6992; 0:7275)

T

14 8 x

�

6

(0:7159; 0:8928)

T

11 8 x

�

6

(0:8656; 0:2324)

T

16 9 x

�

6

(0:2319; 0:2393))

T

NC 15 x

�

6

(0:9016; 0:0056)

T

17 8 x

�

6

(0:6252; 0:7334)

T

20 14 x

�

6

(0:8214; 0:4447)

T

13 8 x

�

6

(0:6154; 0:7919)

T

14 9 x

�

6

(0:8318; 0:5028)

T

28 10 x

�

6

(0:3784; 0:8600)

T

11 16 x

�

6

(0:8216; 0:6449)

T

NC 9 x

�

6

(0:8180; 0:6602)

T

NC 16 x

�

6

(0:8385; 0:5681)

T

39 9 x

�

6

(0:8939; 0:1991)

T

22 9 x

�

6

(0:5828; 0:4235)

T

NC 27 x

�

6

(0:5798; 0:7604)

T

9 9 x

�

6

(0:7942; 0:0592

T

14 7 x

�

6

(0:8392; 0:6288)

T

NC 9 x

�

6

(0:8214; 0:4447)

T

13 9 x

�

6

(0:6154; 0:7919)

T

14 9 x

�

6

(0:8318; 0:5028)

T

28 10 x

�

6

(0:8939; 0:1991)

T

22 9 x

�

6

(0:8385; 0:5681)

T

39 9 x

�

6

x

0

k

B

k

I

x

�

(0:7680; 0:9708)

T

21 16 x

�

2

(0:9901; 0:7889)

T

22 23 x

�

2

(0:9669; 0:6649)

T

14 9 x

�

2

(0:0841; 0:4544)

T

NC 29 x

�

2

(0:8049; 0:9084)

T

15 10 x

�

2

(0:2974; 0:0492)

T

NC 34 x

�

2

(0:9517; 0:6400)

T

18 9 x

�

2

(0:8699; 0:7694)

T

13 9 x

�

2

(0:8295; 0:9561)

T

13 10 x

�

2

(0:8983; 0:7546)

T

12 12 x

�

2

(0:7939; 0:9200)

T

16 10 x

�

2

(0:6085; 0:0158)

T

12 17 x

�

8

(0:5869; 0:0576)

T

18 17 x

�

8

(0:3676; 0:6315)

T

14 15 x

�

8

(0:8704; 0:0099)

T

32 9 x

�

8

(0:4103; 0:8936)

T

23 11 x

�

7

(0:2722; 0:1988)

T

NC 18 x

�

5

(0:8381; 0:0196)

T

9 7 x

�

5

(0:6813; 0:3795)

T

12 8 x

�

5

(0:7095; 0:4289)

T

11 9 x

�

5

(0:3704; 0:7027)

T

NC 19 x

�

7

(0:7271; 0:3093)

T

11 8 x

�

5

(0:8744; 0:0150)

T

20 10 x

�

5

(0:4387; 0:4983)

T

14 19 x

�

8

(0:3200; 0:9601)

T

13 11 x

�

7

(0:7266; 0:4120)

T

15 8 x

�

5

(0:7446; 0:2679)

T

9 7 x

�

5

(0:6833; 0:2126)

T

8 9 x

�

5

(0:6072; 0:6299)

T

11 8 x

�

5

(0:4514; 0:0439)

T

21 20 x

�

8

Tables 19: Case p = 5:

Here, we observe that for p = 5; ICUM-basin of x

�

2

; x

�

5

; x

�

6

; x

�

7

and x

�

8

have,

respetively, 11, 10, 30, 3 and 6 points..
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4 Conlusions

The motivation to try to answer some questions about quasi-Newton methods

suh us (i) are there problems, in the applied researh, for whih the quasi-

Newton methods are the best option? (ii) whih are they? (iii) why? led us

to make a rigorous bibliographial researh, whih we have done with great

suess in [12℄.

In that work we seleted, among 295 appliations that uses quasi-Newton

methods, the nine that we found more interesting, overing several applied

areas as Physis, Engineering, Biology, Astrophysis, et [12℄. Almost all of

them used, as a tool to solve the nonlinear system that appeared in their prob-

lems, Broyden's method. The authors justi�ed their hoie by the very heap

omputational ost and the very easy implementation of Broyden's method.

After the good results obtained with ICUM when applied to several problems

from the lassial literature [9℄, [5℄, and after the aÆrmation of Luk�san and

Vl�ek [7℄ that it was the best quasi-Newton Method for large-sale sparse prob-

lems, we deided to do this work whih basialy ompare these two methods

for solving the nonlinear systems appearing in applied problems.

Sine solving nonlinear systems is only a small (but important) step in the

applied problems, it was not an easy task to obtain the equations, initial

guesses and expeted solution of the system to develop our projet.

The results obtained show that only for problem P3 [11℄, Broyden's method

has a slightly better performane than ICUM.

Both methods found the expeted solution for problem P1 [14℄, but in all the

ases ICUM performed less iterations than Broyden's method.

Problem P2 [10℄ presented the most unexpeted results. First of all, in one

of the regions eah method found a di�erent equilibrium points. In another

region, in �ve among six ases tested only ICUM found the expeted solution.

In the last problem, P4 [13℄, only ICUM onverged in all the ases and in the
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ases where both methods onverged, it had a better performane, in terms of

number of iterations performed.

As an be easily seen, all the problems studied here an not be onsidered

large sale problems: P1: (thirteen dimensional), P2: ( seven dimensional ),

P3: (three dimensional) and P4: ( two dimensional).

So, our last onlusion it that, besides being among the best quasi-Newton

methods for solving large sale sparse nonlinear systems, ICUM is also om-

petitive when used to solve the systems (not neessarily large saled) that

appear in real appliations.
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