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Resumo

Em [12], mostramos que existem muitos problemas recentes na pesquisa apli-
cada para os quais os métodos quase-Newton sao a melhor opcao para resolver
sistemas de equacoes nao lineares. Isto se deve ao fato de possuirem baixo
custo computacional [9], [6], [5].

Motivados por esse trabalho e pelo fato do ICUM ter sido considerado re-
centemente o mais eficiente método quase-Newton para resolver sistemas nao
lineares de grande porte [7], nosso interesse atual é resolver numericamente al-
guns problemas reais usando métodos quase-Newton, em particular o [CUM.

Para isso, consideramos quatro problemas que ocorrem frequentemente em
aplicacoes nas areas de Geofisica, Biologia, Engenharia e Fisica, respectiva-
mente. Duas destas aplicacoes sao descritas neste trabalho e sao baseadas em
trabalhos recentes [14], [10]. As outras duas aplica¢oes foram descritas em [12]
tendo como base [11], [13].
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Para resolver cada um dos problemas, devemos solucionar um sistema nao
linear. Para isto, usamos os métodos quase-Newton: Broyden e ICUM. Apre-
sentamos uma analise comparativa cuidadosa dos resultados obtidos.

Abstract

In [12], we have shown that there are many recent problems in ap-
plied research for which the quasi-Newton methods are the best option
for solving the nonlinear systems of equations that appear in the so-
lution of such problems. The main reason for using these methods is
because they have low computational cost [9], [6], [5].

Motivated by this work and by the fact that the ICUM, was con-
sidered recently as the most efficient quasi-Newton method for solving
large-scale nonlinear systems [7], we are now interested in implementing
it with some real problems.

For this, we consider in this work four problems of common occur-
rence in applications in Geophysics, Biology, Engineering and Physics,
respectively. Two of them are described here based in recent works
[14],[10]. The two other applications were described in [12] with base in
[11],[13].

For solving each problem, we must solve a nonlinear system of equa-
tions. For this, we use the quasi-Newton methods: Broyden and ICUM
and present a careful comparative analysis of the results obtained.



1 Introduction

There are many problems in different areas of the applied research for which
the quasi-Newton methods [3],[8] are the best option for solving nonlinear
systems of equations. In [12] we presented recent applications in areas such as
Physics, Chemical Engineering, Electronic Engineering, Astrophysics, Electric
Engineering and Mechanical Engineering. In general, these methods are chosen
because of their low computational cost.

Solving a nonlinear system of equations consists on: given a nonlinear function
F : IR" — IR™, continuously differentiable, find a vector x € IR™ such that

F(z) =0. (1)
All practical algorithms for solving (1) are iterative. Among them we have

Newton and quasi-Newton methods.

Given an initial approximation xy € IR", Newton’s method generate a sequence
{z} of approximations of a solution to (1) by

Thyr = Tk — J(2p) " F (2). (2)

The Newton iteration can be costly, since partial derivatives must be com-
puted and the linear system (2) must be solved at every iteration. This fact
motivated the development of quasi-Newton methods, which are defined as
the generalization of (2) given by

Tkl = T — Blle(LL’k) (3)

In quasi-Newton methods, the matrices By, are intended to be approximations
of J(z). In many methods, the computation of (3) does not involve computing
derivatives at all. Moreover, in many particular methods, B, +11 is obtained
from B, ' using simple procedures thanks to which the linear algebra cost
involved in (3) is much less than the one involved in (2).

The name “quasi-Newton” was used after 1965 to describe also methods of
the form (3) such that the equation below is satisfied:

Biyisk = yr = F(wp1) — Fag). (4)
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Following [2], most authors call quasi-Newton all the methods of the form (3),
whereas the class of methods that satisfy (4) are called “secant methods”.
Accordingly, (4) is called “secant equation”.

Among the secant methods, we have Broyden’s method [1] and the Inverse
Column Update Method (ICUM) [9], [6]. In the first one, the updating of the
matrix By, is made by

Yk — Brsk)st
Bk+1:Bk+—( T )ka

and in the second one, the matrix Bk_1 is updated by

(Sk — B,;lyk)eﬁ

Bl =B, +
k+1 k e};yk

Y

where, |e] yk| = [|yx/loo-

In this work we use the quasi-Newton methods: Broyden and ICUM to solve
four real problems in Geophysics, Biology, Engineering and Physics, respec-
tively. We chose these methods because the first one it is the most popular
quasi-Newton method used for solving nonlinear systems and the second one
because of its excellent performance in the solution of large-scale nonlinear
systems [7].

In Section 2, based on the works [14], [10], we present a description of two
recent applications that were not considered in [12]. In Section 3, we present
a description of the numerical tests, their results and an analysis of them.
Finally, in Section 3, the conclusions are presented.



2 Applications

In this section we described two of the four applications that we considered
in the numerical test. The first one is a problem of common occurrence in
seismological applications called Two-point ray tracing problem [14] and the
second one is a recent problem about the interaction between two viruses [10].

The two others applications are related with target location and determination
of basin of periodic trajectories of dynamical systems, respectively. We pre-
sented a description of them in [12] having as base, the recent works [11] and
[13]. For the safe of understanding we make a brief abstract of each problem
in the respective section.

We chose these four problems because we think that they are interesting real
applications in different areas of the knowledge in which a nonlinear system of
equation must be solved.

2.1 Two-point ray tracing problem (2001) [14] [4]

In general form, a Two-point ray tracing problem consists on constructing a
ray that joins two given points in the domain.

In [4], the earth structure is modelled by piecewise constant regions of arbitrary
shape. The interfaces between regions as well as the free surface of the earth
are assumed to be smooth curves. Generally, the convention used in this
problem is that 7y represent the free surface of the earth.

The medium between each successive pair of interfaces is assumed to be ho-
mogeneous, isotropic and perfectly elastic. Thus most kinds of signals can be
propagate in such media. All the rays must be straight line segments in each
region.? A ray is determined geometrically by knowing the initial or “source”

'In [14], they assume that the earth is represented by a two-dimensional (2D case) do-
main or by a three dimensional domain with cylindrical symmetry with respect to an axis
perpendicular to the plain of interest (2.5D case).

2Thus no differential equations need to be solved [4].



point, the final or “receiver” point and each point at which the ray meets an
interface. At the contact points Snell’s law must hold. It is this condition that
permits to determine the intersection points and thus the ray.

Mathematically, A Two-point ray tracing problem consist on, given

e two points: Xg, the source point and X, ;, the receiver point, both
located in some fixed interfaces,

e a velocity of the k—th region crossed, v;, it =1,---,n+ 1,

e a finite sequence of positive integers iy, 19, - -, 2, that represent the in-
dices of the n interfaces intersected by the ray path, f;,,

to find Xy for £ = 1,2,---,n, a point located in the kth interface, where the
Snell’s law[14], [4] is satisfied.

Between each of these consecutive points the ray can be described by the line
segment [Xy, Xk 1], & = 1,2,---,n + 1. Thus, the ray has n intersections
points with the interfaces plus two endpoints: the source and receiver.

Due to the fact that the whole problem is characterized by the intersection
points Xy = (zg, fi,(zx))" in which the Snell’s law must be satisfied, then
they can be found solving a nonlinear system of equations. To see this, it is
necessary to transform the Snell’s law in a vectorial form, using the unitary
vectors in the direction of the ray,

Xk — Xk-1 Xkt1 — Xk
1 Xk — Xi—1]]2 1 X1 — Xilf2

and a tangent vector to the kth interface at Xy, 7 = (1, f] (2x))”. Then
Snell’s law, in the most general form, requires that

V; <Tk Xie = X >=U' <Tk Rt — X > (5)
FEEAY X = Xiaf A X1 — Xkl /

Equation (5) represents a nonlinear system of n equations in n unknowns, the
scalars xy, Ty, -, T,, since the source point, Xo = (0, f;,)? and the receiver
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point, X, = (:cn,fin+1)T, are assumed to be known. The kth equation is
given by
& = o (@r = wp—1) + [ (@) (fi (2n) = firy (26-1)) (©)
° (e = wr-1)? A+ (i (0) = foy (@r1))?] 12
o B — @) + S (00) iy (1) — fi (1))
F@rr = 20)? + (fiprs (@ra1) = fi ()22

T

If we introduce the vectors x = (zy, 22, ..., x,)", v = (v, 02, ..., vny1)?, and

define the function ®, by
o,: IR — IR"
Py (x)
x — dy(x)= : ,
¢5(x)

then, solving the two point tracing problem is equivalent to solving the non-
linear system of equations

o, (x) = 0. (7)

2.2 An approach to estimating the transmission coeffi-
cients for AIDS and for Tuberculosis using mathe-
matical models (2001) [10]

In this paper, the authors present a mathematical model that describes the
interaction between the Human Immunodeficiency Virus (HIV) and Tuber-
culosis, which is caused by a bacillus of the type Mycobacterium tuberculosis
(MTB). These infections are considered in a closed environment, like a prision
or mental institution.

Using nine working assumptions [10], the dynamics of the model is formu-
lated through a compartment system described by nonlinear ordinary differ-
ential equations, which represent the different subpopulations. Therefore, each
compartment, in turn, represent one of the stages of the interaction between
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Acquired Immunodeficiency Syndrome (AIDS)? and tuberculosis (TB). They
assume the total population constant.*

To clarify the biological process, they introduce the following notation. The
state variables are:

xTy -

T .

Ty :
Yi:
Y2 !
A:
Ap -

the healthy individuals susceptible to both HIV and MTB infections.

the individuals who have been infected with MTB, but have no
clinical illness and hence are not infected.

individuals with TB disease.

the HIV-positive individuals without MTB infection.

the HIV-positive individuals with M'TB infection.
individuals with AIDS but without TB and MTB infections.
individuals with AIDS and TB infection.

and the parameters are:

L T 9 mE >

transmission coefficient for HIV infection.

transmission coefficient for MTB infection.

the incubation rate for AIDS without MTB infection.

the incubation rate for AIDS with MTB infection.

the reactivation rate of TB disease.

is recovery rate of TB.

is the natural mortality or remaining time in a closed community.
the AIDS mortality rate.

the TB mortality rate.

The differential equations that govern the process are the following:

dl‘l

e ¢ — Brr(yr + y2) — Av Ty — pay

3Syndrome characterized by the interaction of the HIV with other infections.
4Thus, if one inmate or patient leaves the place, another replaces him.



dx
2 = oLy + ATy, — Bas(yr + y2) — (0 + p)xe

dt

d1;

—r = owa— BTy + ) — (0 + p+O)T;

dy:

pr Br1(yr +y2) — ATy — (1 + w)n (8)
dya -

o Bz (yr +1y2) + ATy — (€ + 1)y2

dA

% = WY — )\AAtb — (/L + Ot)A
dAy

dt = Cys + NAAy + BTy(y1 +y2) — (n+a+0)Ay,

where ¢ = p+60(T, + Ap) + a(A+ Ay), accordingly the constant population

N
hypothesis. Therefore, summing up these equations, one gets — = 0, that is,

the total population remains constant in all time. Because of the conservation
law 1(t) + xo(t) + Tp(t) + y1(t) + ya(t) + A(t) + Aw(t) = N(t) = Lfor any
t € IR, they can eliminate one of the state variables, by using:

t1=1—(ro+D+pn+y2+A+Ay)=1-5. (9)

Hence, the seven dimensional system (8) reduces to the following six dimen-
sional system:

dx

d—; = pLy + A1 = S)Ty — Baa(yr + y2) — (0 + p)z
dT,

d—tb = oxy — BLy(y1 +y2) — (p+ 1+ )T,

dy,

pr = 5(1 - S)(y1 + 92) — ATy — (M + w)y1 (10)
d

% = Baa(yr +y2) + ATy — (§+ p1)y2

dA

P (e MAyp — (p+a)A
dAy

dt = §y2 + )\AAtb + ﬁTb(yl + y2) - (,LL + (0% + Q)Atb-



Thus the modified model is given by
2= F(2),
where F : IRS — IR® and 2z = (29, Ty, y1, yo, A, Ap)”.

To begin the analysis of the model given by equations (10) and (9), they
examine its disease-free steady state to determine the threshold values for
which the diseases will die out and, by biological simplification, they calculate
the endemic equilibrium points of the model, that is, vectors z* such that
F(2*) = 0. Using a control technique proposed in their paper, they found
seven equilibrium points of the model. Actually, an eight equilibrium point
was found but only numerically [10].

Moreover, they present the stability analysis of equilibrium points and ob-
serve that the stability conditions for each of these points depend on both:
the transmission coefficients for HIV and for MTB (3 and A) which must be
estimated. The other parameters haven been evaluated from the literature.
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3 Numerical tests

For the numerical tests with the problems and with the quasi-Newton Methods
chosen: Broyden and ICUM we will call the four problems:

P1l: Two-point ray tracing problem.
P2: AIDS-Tuberculosis problem.
P3: Target location.

P4: Basin Problem.

The codes of the algorithms, functions and Jacobians of each problem was
written in MATLAB 6.0. These experiments were run using a computer AMD
Athlon-800MHz.

The initial points used were the same suggested by the authors of the ap-
plications. In all tests we used the convergence criterion |[|F(z*)|] < 1075,
excepting in the P3 problem, in which we use a tolerance equal to 10™* as it
was suggested in [11].

We also stopped the iterations when the number of iterations exceeded 300

or when [[F(z*)|| > 10°. In the last case we will say that the method used
diverges.

3.1 P1: Two-point ray tracing problem

In order to do the implementation of the Two-point ray tracing problem we
consider a particular case:

o ne(3)- () %o (,0)-(5)

The values for the parameter a were 800, 840, 880, - - - 1600, each one of them
corresponding to increments in the receptor, in Geophysics terms.
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A finite sequence, {f;,, fi,,- "+, fi,s}, Of the interfaces intersected by the ray
path is given by

{fipfim"':fiw} = {f17f67f77f27f37f47f57f47f37f27f77f67f1}7 (]-]-)
where, each function f; : IR — IR, 1 = 1,2,---,7, is defined, respectively by

Alz) = 900.

folz) = 8000 — /60002 + (x — 1000)2.

fs(x) = 8500 — /50002 + (x — 2500)2.
fo(x) = 5000+ 10°(z — 1000)2. (12)
fs(x) = 8000 — (0.3333)z.
fe(z) = 1400.
fr(xz) = 1900.
The sequence of velocities, {vg}, K =1,---,14 is represented by a vector:

v =10%(1,2,3,5,6,8,10,10,8,6,5,3,2,1) .

Thus, we want to find a vector x* = (21,23, --,2}3)" such as @, (x*) = 0,
where, @ : [R' — IR is defined using (6), (11) and (12).

The author of [14], gives us the values of & and the initial point® xq :

2o = (50.852, 107.626, 193.482, 237.195, 811.580, 1197.912, 2134.884,
1540.541, 1262.964, 901.701, 883.199, 828.718, 792.517)7;

actually, this point is the solution to an nonlinear system of equations and
thus it represents a ray. Therefore, for the problem that we are considering it
is a good initial point.

Starting with this zy, we want to solve a nonlinear system for each one of the
values of parameter «, using Broyden’s method and ICUM | respectively.

This point was found in [14] using continuation methods.
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In Table 1, for each value of a, we show the number of iteration performed
by each quasi-method above mentioned. The solution vector found for each
value of « is shown like a column in Table 2.

We observe that the solutions found here are exactly the same as the ones
found in [14], where they used the continuation method to solve the problems.

Q@ Broyden | ICUM

800

840

880

920

960

1000
1040
1080
1120
1160
1200
1240
1280
1320
1360
1400
1440
1480
1520
1560
1600

C ©C © 0 0NN NN oo ot

e e e
N — = = O O
0 6 © © © 00 W NN NSNS S OOt UG

—_
DN
—
)

Table 1: Iterations Number for P1.
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o' 800 840 880 920 960 1000 1040
x] 51.115 51.380 51.645 51.910 92.175 52.440 52.706
x5 108.187  108.750  109.314  109.878  110.442  111.007  111.573
T3 194.501  195.523  196.545 197.569  198.594  199.621  200.648
Ty 238415  239.636  240.859  242.083  243.308  244.535  245.763
xE 815.969  820.365  824.768  829.178  833.594  838.017  842.446
g | 1206.559 1215.235 1223.939 1232.671 1241.432 1250.221 1259.037
xy | 2151.026 2167.197 2183.397 2199.626 2215.884 2232.169 2248.482
zg | 1566.899 1593.250 1619.595 1645.932 1672.262 1698.583 1724.895
zg | 1291.900 1320.912 1349.998 1379.155 1408.382 1437.677 1467.039
o | 938.430  975.197 1012.000 1048.835 1085.699 1122.591 1159.508
z7; | 920.440  957.676  994.907 1032.133 1069.353 1106.568 1143.779
Ti, | 867.185  905.649  944.109  982.566 1021.019 1059.470 1097.917
zi; | 831.793  871.067  910.340  949.611  988.880 1028.148 1067.414
o} 1080 1120 1160 1200 1240 1280 1320
x] 52.972 93.239 93.505 53.772 54.038 54.305 54.572
x5 112,139 112,706  113.273  113.841  114.409 114977  115.546
T35 201.677  202.706  203.737  204.769  205.801  206.834  207.868
xy 246.992  248.222 249453  250.685  251.918  253.152  254.387
x5 846.881  851.321  855.767  860.219  864.676  869.138  873.605
xg | 1267.881 1276.752 1285.650 1294.575 1303.527 1312.505 1321.510
xry | 2264.823 2281.191 2297.586 2314.008 2330.455 2346.929 2363.428
xg | 1751.198 1777.491 1803.773 1830.045 1856.305 1882.553 1908.788
g | 1496.464 1525.952 1555.500 1585.106 1614.769 1644.486 1674.255
7o | 1196.446 1233.404 1270.377 1307.364 1344.362 1381.368 1418.379
7, | 1180.984 1218.184 1255.380 1292.571 1329.757 1366.939 1404.117
7, | 1136.361 1174.803 1213.241 1251.676 1290.109 1328.538 1366.965
s | 1106.679 1145.942 1185.203 1224.464 1263.722 1302.980 1342.236
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o' 1360 1400 1440 1480 1520 1560 1600

x] 54.839 95.107 95.374 95.641 95.909 56.176 56.444
x5 116.115  116.684  117.254  117.823 118393 118963  119.533
T35 208.903  209.939  210.975  212.011  213.048 214.086  215.123
xy 255.622  256.858  258.095  259.332  260.569  261.807  263.045
x5 878.077  882.553  887.034  891.519  896.008  900.501  904.998
zg | 1330.540 1339.596 1348.678 1357.785 1366.917 1376.074 1385.256
gy | 2379.952  2396.502 2413.076 2429.674 2446.297 2462.943 2479.612
zg | 1935.010 1961.219 1987.414 2013.594 2039.758 2065.908 2092.041
xg | 1704.075 1733.943 1763.857 1793.816 1823.816 1853.856 1883.934
7o | 1455.393 1492406 1529.416 1566.420 1603.414 1640.398 1677.366
7, | 1441.290 1478.459 1515.625 1552.786 1589.944 1627.097 1664.248
7, | 1405.390 1443.812 1482.231 1520.648 1559.062 1597.475 1635.885
73 | 1381.491 1420.744 1459.996 1499.247 1538.497 1577.745 1616.993

Table 2: The solution vector found for each «.

3.2 P2: AIDS-Tuberculosis problem

In this section, our propose is determining numerically the equilibrium points
of the model (9)-(10), that is, to solve the nonlinear system F'(z) = 0, using
Broyden’s method and ICUM. Moreover, we want to determine if these points
are stable or not.® For this, we implemented these methods and ran them
considering, like in [10], the variation of the parameters A and § and the other
constants fixed: p = 0.5, 0 =0.05, . =0.1,0 =0.05, w =0.1, £ = 0.2, a =
0.33.

We variated the parameters A\ e  using different values presented in Figure
1 of [10]. That figure shows attraction regions of the equilibrium points in the
space of parameters A e 3. We include here a short biological description of
these regions. For a more general information, see [10].

6That this, if the real part of the eigenvalues of the Jacobian matrix in this equilibrium
points, is negative or not.
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Ry4:  region where both infections die out in the community.

R;: the HIV infection progress to AIDS disease.

R3:  the HIV infection progress to AIDS with TB disease.

Ry:  the M'TB infection progress to TB disease.

R7:  HIV and MTB progress to AIDS and TB disease, respectively

We also consider the fact mentioned in [10], that the model does not de-

pend on the initial conditions. Thus the only starting point used is zy =
(1,1,1,1,1, 1)T.

We present the results in Tables 3-7. The first column of each table, shows
the values of A\ and 3 used in each region mentioned above; the second column
shows the corresponding equilibrium point to the A and 3 parameters.” The
columns, Broyden and ICUM, show respectively, the number of iterations
performed by each method until an equilibrium point is found and finally, the
last column, pmax, shows the real part of the greatest eigenvalue of the Jacobian
matrix of F'in z*. This information helps us in the analysis of stability of the
solutions.

In Table 3, we can observe that, for any values of A and (3 in the region Ry,
both methods converge to the trivial equilibrium point z,, which is a stable
equilibrium point. This results corresponds to the theorical analysis in [10].

(A; ) 2L Broyden | ICUM | pmax
(0.5:0.1) |(0,0,0,0,0,0)| 10 9 | -0.0646
(0.25; 0.05) | (0,0,0,0,0,0) | 8 7 |-0.0838
(0.7:0.15) | (0,0,0,0,0,0) | 11 10 | -0.0500
(0.9; 0.01) | (0,0,0,0,0,0) | 10 9 | -0.0360
(1;0.19) | (0,0,0,0,0,0) | 17 15 | -0.0100
(1;0.01) |(0,0,0,0,0,0) | 11 11| -0.0292

Table 3: region R,.

"That is, the solution to the nonlinear system of equation.
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In Table 4, we can observe an interesting situation in region R; : for the
values A = 5 and # = 0.39 : the methods converge to different equilibrium
points. Aother thing is that Broyden’s method finds a stable equilibrium
point and ICUM finds an unstable one. Observe also that Broyden’s method
performs twice the number of iterations performed by ICUM.

(X;8) | z2=1(0,0,91,0,4,0)T | Broyden | ICUM | pmax
(1;0.25) | (0,0,0.16,0,0.04,0) 13 14 |-0.0513
(2:0.4) | (0,0,0.41,0,0.09,0) 15 15 |-0.1915
(2.8:0.5) | (0,0,0.49,0,0.11,0) 16 18 | -0.1630
(3:0.6) | (0,0,0.54,0,0.13,0) 15 8 |-0.1026
(4;0.45) | (0,0,0.45,0,0.10,0) 31 20 | -0.0607
(5;0.39) | (0,0,0.40,0,0.19,0) 64 -0.0204

(0,0,0.39,0,0.10,0) 32 0.0204

Table 4: region R;.

Table 5, shows that the particular situation described in the previous para-
graph is more common in region R3 with the difference: in five of the six cases
tested, ICUM finds a stable equilibrium point of form z, = (0,0, 1,0, A, A)T.
According to the theory in [10] only stable equilibrium points of the form of
2. = (0,0,91,0, A, Ay)T must appear in the region Rs.
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(X; B) ze = (0,0,91,0, A, Ap)” | Broyden | ICUM Prmax
(7:0.58) |  (0,0,0.54,0,0.07,0.05) | 27 39 | -0.2548
(6.4; 0.44) | (0.71,0.05,0,0,0.08,0.08) | 32 0.4543
(0,0,0.44,0,0.08,0.03) 27 | -0.1131

(5.5; 0.51) (0,0,0.49,0,0.11,0) | 25 0.1508
(0,0,0.50,0,0.09,0.03) 45 -0.1508

(8.5; 0.42) (0.77,0.06,0,0,0,0 ) | 29 0.1040
(0,0,0.43,0,0.06,0.04) 53 | -0.0416

(7.7; 0.44) (0,0,0 ,0,0.06,-0.06) | 229 0.4543
(0,0,0.45,0,0.06,0.04) 38 | -0.0839

(5 0.49) (0,0,0.48,0,0.11,0) | 23 0.0783
(0,0,0.48,0,0.10,0.01) 29 -0.0787

Table 5: region R;.

Table 6, shows that both methods converge to the same equilibrium point
which is stable in the first four cases and unstable in the other two cases. The
performance of ICUM is better than Broyden’s method.

(X; B) | 2o = (29,75,0,0,0,0)" | Broyden | ICUM Prmax
(2;0.01) | (0.26,0.02,0,0,0,0) 12 11| -0.0342
(3;0.1) | (0.48,0.04,0,0,0,0) 13 10 | -0.0950
(4;02) | (0.59,0.05,0,0,0,0) 16 13| -0.0847
(5;0.22) | (0.58,0.04,0,0,0,0) 15 13 |-0.0743
(7:0.25) | (0.66,0.05,0,0,0,0) 23 16 | 0.4543
(8;0.19) | (0.73,0.06,0,0,0,0) 25 17 | 04543

Table 6: region R,.
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Finally, in Table 7, we can observe that, in all the cases tested, both methods
converge to a stable equilibrium point which has all its components positive.
For these tests, the performance of ICUM is again better than that of Broyden’s
method.

(A; 8) 2y = ($2,Tb,y1,y2,A,Arb)T Broyden | ICUM | pmax
(5;0.32) | (0.42,0.03,0.04,0.07,0.01,0.03) 28 21 -0.0118
(4.5; 0.3) | (0.54,0.04,0.01,0.03,0.02,0.01) 25 26 -0.0068
(6;0.35) | (0.27,0.02,0.10,0.10,0.01,0.05) 26 20 -0.0072
(7;0.36) | (0.39,0.03,0.06,0.11,0.01,0.06) 19 16 -0.0222
(8;0.37) | (0.43,0.03,0.04,0.12,0.01,0.06) 19 15 -0.0311
(7;0.33) | (0.60,0.04,0.01,0.06,0.01,0.03) 25 19 -0.0193

Table 7: region R;.

3.3 P3: Target location problem

We consider the nonlinear system

Fo(we, yoy 2) = Zt+\/(fft — )2+ (Yo — yn)? + 28 — 10 = 0.

where x4, y; and z; are the unknown target co-ordinates, (z,, y,) are the known
receiving elements position, located in a plane and 7, is the nth round trip
distance of the transmitted pulse. As before, our interest now is solving nu-
merically this system using Broyden’s method and ICUM. Its solution gives
the position of the target [11].

We consider N = 5 and N = 6 receiving elements located in a plane. The
minimum number of receiving elements needed to calculate the unknown are
three, which gives, respectively, ten and twenty possible combinations for an
five and six elements planar array.
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For each test, we used two initial points: one of them is a point (0, 0, 2)”, where
z is an approximation® to r,/2. The other initial point is an approximation to
the solution found with the first initial point. The reason of this choice is that
we want to have an idea of the performance of both quasi-Newton methods
using a good approximation to the solution, like it was considered in [11]. The
authors of [11] used the beam-forming technique to obtain good starting points
for their hybrid algorithm.

For each one of ten possible combinations of three elements (case N = 5 )
and twenty possible combinations of three elements (case N = 6 ) we ran
the Broyden and ICUM algorithms using the two initial points mentioned
previously and ||F(z)]| > 10°.

The Tables 8 and 10, show the information about receiving elements position
and the values of r,, for n = 1,2, -, 5. Similarly, the Tables 12 and 14, show
the same information,but in the case n =1,2,---,6.

The results obtained are shown in Tables 9 and 11 for N = 5, and in Tables
13 and 15 for N = 6. In the last tables, the notation NC means that the algo-
rithm did not converge, because it reached the maximun number of iterations
allowed in the algorithm.

In the case N = 5 we observe that, for initial points 2o = (0,0, 2)%, z ~ r,/2,
the performance of Broyden’s method is slightly better than ICUM. When a
initial approximation is close to the solution, the performance of both method
is the same.

In the case N = 6, the results show that for initial points zp = (0,0, 2)T, 2z ~
rn/2, the performance of the Broyden’s method is better than that of ICUM
in most of cases.

8Like it was suggested by the authors in [11]
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(xnayn) (070) (270) (371) (171) (072)
Tn 18.85 18.22 18.17 18.54 19.05

Table 8: Receiving elements and r, values for n =5.

xo = (0,0,9) zo = (3.5,0,8.9)

Combinations | Broyden | ICUM | Broyden | ICUM
Tl T T3 5) 6 3 3
Ty Ty Ty 5 6 3 3
T1 T Ts 5 6 3 3
T1 T3 T4 5 5 3 3
1 T3 Ts 5 6 3 3
T T4 Ts 5) 6 3 3
Ty T3 T4 5) 5 3 3
Ty T3 Ts 15 17 3 5
Ty Ty Ts 5 5 3 3
T3 T4 Ts 3 3

Table 9: Number of iterations performed by the methods. x7 = (4, 0, 9)

n 1 2 3 4 Y

(:En, yn) (07 0) (47 6) (07 4) (37 0) (17 1)
Tn 13.48 12.63 12.32 13.28 12.78

Table 10: Receiving elements and r,, values for n = 5.
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zo = (0,0,6) xo = (1,3,6)
Combinations | Broyden | ICUM | Broyden | ICUM

T To T3 7 8 4 )
L1 T2 Ty 6 7 4 4
1 Ty T 16 10 ) 5
L1 T3 T4 6 6 4 4
T1 T3 T 7 7 4 4
T1 Ty Ty 6 7 4 4
Ty T3 Ty 7 8 4 4
To T3 T 7 8 4 4
To Ty Ty 6 8 4 4
XT3 Ty T 6 7 4 )

Table 11: Number of iterations performed by the methods. xp = (2, 4, 6)

Table 13 shows that there are five combinations of three elements for which
the initial point, zy = (0,0, 3), is already the solution, and this solution is
different from the solution found by the other combinations using the same
initial point, zy = (3, 3, 3). When an initial approximation is close to the
solution, the performance of both method is similar again.

n 1 2 3 4 5 6

(@n,yn) | (0,3) (3,0) (1,2) (1,1) (2,1) (2,2)
reo | 724 724 674 T2 674 6.32

Table 12: Receiving elements and r,, values for n = 6.
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Zo=(0,0,3) | ap = (2.4,2.7,3.4)
Combinations | Broyden | ICUM | Broyden | ICUM
Tl Ty T3 0 0 4 6
Ty T2 Xq 13 10 4 4
Ty Ty Ty 0 0 4 6
T1 To Tg 7 NC 4 )
Ty T3 Tq 8 12 3 b
T1 T3 T 0 0 4 6
1 a3 T 11 NC 1 5
T, Ty Ts 8 10 4 o
T1 Ty Tg 8 10 4 o
Ty Ty Tg 8 10 4 o
Ty T3 Ty 8 10 4 o
T T3 Ts 0 0 4 6
To T3 Tg 8 10 4 o
To Ty Ty 7 10 4 o
To Ty Tg 8 10 4 o
2y 15 g 11 11 4 4
T3 Tg Ts 7 10 4 b
T3 Ty T 8 10 4 5
T3 Ty Tg 9 10 4 5
Ty Ty T 8 10 4 o

Table 13: Number of iterations performed by methods. zp = (3, 3, 3).

Table 15 shows that there are one combination of three elements for which
both methods does not converge for any initial points used. For the other
combinations the performance of the methods is similar to that described in
Table 12.
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3

5

6

(2n, Yn)
T’I’L

(0,0)
25

(0,5)
24.14

(10,0)
21.18

(2,15)
26.25

(5,9)
21.18

(20, 10)
25

Table 14: Receiving elements and r,, values for n = 6.

zo = (0,0,10) [ xy = (9,3.5,10)
Combinations | Broyden | ICUM | Broyden | ICUM
Ty T2 T3 8 8 3 4
T1 To Ty NC NC NC NC
L1 T2 Ty 8 11 3 4
Ty T2 Te 8 8 4 4
L1 T3 T4 8 9 6 6
L1 T3 Ts 7 8 3 4
1 T3 Te 9 9 4 D
L1 Ty Ty 8 8 8 8
L1 Ty T 7 8 5 b
T Ty Tg 11 10 4 5
Lo T3 Ty 9 11 7 8
T2 T3 Ty 8 10 6 8
T2 T3 Tg 8 10 4 4
T2 Ty Ty 9 14 7 J
T2 Tyg T 8 9 7 7
T2 Ts T 8 8 4 4
T3 Ty Ty NC NC 5 D
T3 Ty T 7 9 5 5
T3 Ts Le 8 11 4 4
T4 Ty Tg 9 15 6 8
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Table 15: Number of iterations performed by methods. xp = (10, 5, 10)




3.4 P4: Basin problem

Here, we are interested in using quasi-Newton methods to find p—period points
of the Hénon map, F' : IR* — IR?, defined by

_ 2 _
F<x>:<2.12 T 0.3y>.
Yy X

A p—period point is a point z, such that F?(z,) = x,. Quasi-Newton methods
can be used to find the periodic p point of F' by letting G = F? — I, where I
is the identity mapping, and solving the system G(z) = 0.

Following [13], we wish to find all the isolated root of G (all periodic p points
of F for a fixed p). For this, we search for all roots of G in a specific bounded
region (in our tests, the region is [0, 1] x [0, 1]), by choosing a large number of
initial points xy, randomly generated.

We consider the cases p = 3, p = 4 and p = 5. For each value of p we generated
sixty random initial points in [0, 1] x [0, 1] and for each one of them we ran
Broyden’s and ICUM algorithms.

The results are presented as follows: Table 16 shows, for each value of p used
in the tests, the periodic p points of F' found by the Broyden’s and ICUM algo-
rithms, and the information about the nonsingularity of the Jacobian matrix
of F in these points. This is an important condition used in [13] to conclude
that an estimate of basin® of z* in a region with area 1 is an estimate of
the probability of selecting an initial point xy, whose sequence generated by
Newton’s method converges to z*.

After each Table 17 to 19, we present, for each value of p, the number of
initial points in the basin'® of each z*. For this, we used the results obtained
with ICUM because it converges in all the cases tested. We call this basin as
ICUM-basin, in analogy to [13].

%Initial points set such as a sequence generate by the Newton-type method converge to

T*.
10The elements of this set appear in the first column of each table.
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p | * : periodic p point of F' | det(J(z*;p))
3 | 2t = (0.8529; —0.8777)T -18.9937
xh = (0.9445; 0.9445)T -0.1068
4 | 23 =(0.9445; 0.9445)7 1.8988
v} = (0.3391; 1.3900)" 6.8635
i = (0.7955; —1.3550)" ~128.1806
5 | a5 = (0.9445; 0.9445)7 1.3431
zi = (0.9942; —0.7832)T 69.8901
x5 = (1.0551; —0.7512)T 46.7556
vt = (0.2852; 1.2322)7 -5.4186
zy = (—0.0458; 1.3666)T 10.3533

Table 16: Solution vectors found for each p = 3,4, 5.

;From the results of Table 16, we can also see that 23 = (0.9445;0.9445)"
is simultaneously two, three and five-period point of F.

Tables 17 to 19 show, for each value of p, the number of iterations performed
by Broyden’s method (kg) and ICUM (k;) in case of convergence. The symbol
NC means that the algorithm stopped because it reached the maximun number
of iterations permitted in the algorithm. Moreover, they have an aditional
column that indicates the point of convergence. This is done in order to
determinate the basin of each p—period point found.

The results permit us to conclude that for each p(3,4,5) and each one of
the sixty random initial points, only ICUM converge in all the cases. In the
case where both methods converge the performance of ICUM is better than
Broyden’s one.
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o k}B k[ l’; i) kB k[ ZL"*
(0.8364;0.1453)T | 8 7 a7 (0.9745;0.4022)T | 11 7 %
0.8240;0.1340)" | 8 7 0.8995;0.1707)7 | NC 11 z*
1 1

0.9636;0.1205)” | 53 11 % 0.9523;0.4577)7 | 11 8 a3
1 2

(0.4128;0.4014)" | 9 9 2 (0.5369;0.0665) | 8 7 &%
(0.4210;0.3770)" | 9 9 (0.4939;0.4175)7 | 8 8
0.4768;0.4688)7 | 8 8 0.6854;0.9671)T | 10 8 a*
1 1

0.7486;0.3741)7 | NC 12 a 0.7538;0.0968)" | 7 7 a3}
1 1

0.4542;0.0386)" | 9 8 a7 0.7649;0.6579)" | 9 8 at
1 1

0.5624;0.3723)7 | 7 8 a¥ 0.8104;0.3742)" | 9 8 a3
1 1

0.7928;0.7952)" | 11 9 0.4928;0.0835)7 | 9 8 a*
1 1

0.3829;0.2528)7 | 9 9 I 0.7067;0.1684)" | 9 6 a*
1 1

(0.3429;0.9678)" | 15 11 a* (0.8137;0.4662) | 10 8
0.4798;0.3683)Y | 9 8 &I 0.7223;0.9949)" | 11 7 a3
1 1

(0.7646;0.3771)T | 8 8 (0.3625;0.7308)7 | 10 10 a3}
0.9003;0.1834)7 | NC 12 0.6497;0.6813)" | 8 7 a*
1 1

0.3683;0.9175)7 | 12 10 I 0.9452;0.6133)7 | 10 8 a3
1 2

0.5159;0.0903)" | 8 7 &I 0.7829;0.0032)" | 6 7 %
1 1

(0.7353;0.0047)T | 8 6 a7 (0.7970;0.6418)" | 10 9 a*
0.6031;0.9569)7 | 8 7 0.4161;0.1864)" | 9 9 a3
1 1

(0.3974;0.7316)7 | 10 9 a7 (0.3100;0.9441)” | 25 20 %
0.6846;0.9785)7 | 10 8 a7 0.9807;0.5551)" | 10 9 =}
1 2

(0.5147;0.6363)Y | 8 8 a7 (0.9885;0.6916)” | 10 16
0.4010;0.4866)" | 9 9 0.4407;0.0062)" | 9 8 ¥
1 1

0.7505;0.1262)7 | 7 7 0.6868;0.2972)7 | 11 7 z*
1 1

(0.6933;0.9358)T | 10 7 I (0.6472;0.4638)7 | 8 7 uf
(0.4776;0.1291)7 | 9 8 a* (0.3001;0.9981)" | 18 13 %
(0.7729;0.2973)T | 8 7 a7 (0.6602;0.3323)" | 7 7 af
0.8437;0.8815)7 | 15 17 0.9073;0.6702)" | 9 9 a3
1 2

(0.7000;0.7557)T | 9 7 a3 (0.9543;0.8814)T | 9 9 3
(0.8293;0.9706)” | 16 11 2% (0.4110;0.4248)" | 9 9 z*

Observe that for p = 3, the ICUM-basin of 2] has 52 points, while that in

Tables 17: Case p = 3.

ICUM-basin of z3 has 8 points.
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o k}B k[ l’§ i) kB k[ z*
(0.8000;0.2894)T | 11 8 (0.7169;0.6433)T | 10 8 3
(0.6951;0.2593)" | 13 9 % (0.7826;0.4665)" | 11 8 3
(0.7132;0.7204)T | 9 8 (0.2323;0.3179)7 | NC 31 3
(0.7333;0.6223)7 | 10 8 =% (0.7888;0.6344)" | 10 9 3
(0.5068;0.8841)T | 9 9 a% (0.6598;0.5376) | 10 8 =%

. ;U T . ;0. T

0.9519;0.1690)T | 11 9 5 0.1360;0.7552)T | 25 24 x%

(0.8267;0.6114)7 | 10 12 a3 (0.2033;0.8193)” | NC 14 %

(0.8473;0.1141)7 | 12 8 =3 (0.2923;0.0913)" | 15 18 %

(0.6492;0.1148)7 | 15 10 a3 (0.6156;0.0464)" | 14 22 %

. ;U T . ;0. T

0.5752;0.4081)7 | 17 11 a3 0.5660;0.2553)7 | NC 25 x5

. ;U T . ;0. T

0.7133;0.8674)T | 10 8 5 0.7067;0.1684)7 | NC 34 3

0.9033;0.0203)" | 11 9 & 0.0650;0.8792)" | NC 26 a3
3

0.7418;0.9948)" | NC 10 % 0.5398;0.9233)7 | NC 15 %

3 2

(0.8667;0.4858)T | 12 8 (0.3087;0.5582)T | 19 14

0.6368;0.9441)T | 10 8 a 0.3618;0.2314)T | 12 15 a*

3 4

0.6773;0.5862)T | 10 & & 0.6787:0.9798)T | 10 8

3 3

0.4879;0.8915)1 | 9 7 &t 0.4497:0.643)7 | 11 15

3 3

(0.7623;0.6553)" | 9 9 a3 (0.3965;0.4807)" | 14 14 3

0.3645;0.9757)T | 10 9 &t 0.8173;0.2346)T | 11 9

3 3

(0.9016;0.3242)" | 11 8 a3 (0.9441;0.91217 | 11 7 a3

(0.7379;0.1118)7 | 14 9 =3 (0.9636;0.0200)" | 11 9 3

0.2457;0.8976)7 | NC 32 0.3838;0.8624)7 | NC 14 3

3 2

(0.7666;0.0454) | 12 8 % (0.4443;0.4232)7 | NC 21 a3

0.5093;0.6248)T | 10 9 & 0.9288:0.4851)T | 18 9 %

3 2

0.6255;0.9912)T | &8 &8 at 0.8506;0.7131)7 | 17 9 a3

3 2

0.6781;0.5088)1 | 12 8 0.2452;0.4680)7 | NC 21

3 3

(0.8150;0.6896)" | 29 14 a3 (0.9962;0.6141)" | 9 11 %

0.6368;0.7691)T | 10 7 &t 0.9192:0.7805)7 | NC 8 %

3 2

(0.8460;0.1724)T | 11 8 a3 (0.4377;0.5918)” | NC 18 3

(0.5874;0.9242)" | 11 7 =3 (0.6219;0.8946)" | 9 8 3

Tables 18: Case p = 4.

In this case, the ICUM-basin of =3, 25 and z} have, respectively, 8,

points.
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o k}B k[ l’g Lo k}B k[ z*
(0.8447;0.3678)T | 10 6 =} (0.7680;0.9708)T | 21 16 a3
(0.6552;0.8376)" | 16 8 (0.9901;0.7889)7 | 22 23 a3
(0.8580;0.3358)" | 13 7 (0.9669;0.6649)” | 14 9 a3
(0.9827;0.8066)" | NC 34 (0.0841;0.4544)" | NC 29 3
(0.5668;0.8230)" | 16 9 (0.8049;0.9084)" | 15 10 3
(0.7505;0.7400)" | 9 7w} (0.2974;0.0492)” | NC 34 a3
(0.7176;0.6927)" | 11 9 (0.9517;0.6400)” | 18 9 a3
(0.6992;0.7275)% | 14 8 (0.8699;0.7694)" | 13 9 =}
(0.7159;0.8928)" | 11 8 (0.8295;0.9561)" | 13 10 3
(0.8656;0.2324) | 16 9 (0.8983;0.7546)T | 12 12 a3
(0.2319;0.2393))" | NC 15 a (0.7939;0.9200)” | 16 10 a3
(0.9016;0.0056)" | 17 8 (0.6085;0.0158)" | 12 17
(0.6252;0.7334)" | 20 14 (0.5869;0.0576)" | 18 17 =}
(0.8214;0.4447)T | 13 8 =} (0.3676;0.6315)T | 14 15
(0.6154;0.7919)" | 14 9 (0.8704;0.0099)7 | 32 9
(0.8318;0.5028)" | 28 10 (0.4103;0.8936)” | 23 11 %
(0.3784;0.8600)" | 11 16 (0.2722;0.1988)" | NC 18 %
(0.8216;0.6449)" | NC 9 =} (0.8381;0.0196)" | 9 7 &
(0.8180;0.6602)” | NC 16 (0.6813;0.3795)7 | 12 8 i
(0.8385;0.5681)” | 39 9 (0.7095;0.4289)" | 11 9 %
(0.8939;0.1991)% | 22 9 (0.3704;0.7027)Y | NC 19 %
(0.5828;0.4235)7 | NC 27 (0.7271;0.3093)" | 11 8 %
(0.5798;0.7604)" | 9 9 (0.8744;0.0150)7 | 20 10 %

(0.7942;0.05927 | 14 7 (0.4387;0.4983)T | 14 19
(0.8392;0.6288)" | NC 9 (0.3200;0.9601)" | 13 11
(0.8214;0.4447)7 | 13 9 (0.7266;0.4120)" | 15 8 %
(0.6154;0.7919)" | 14 9 =} (0.7446;0.2679)Y | 9 7 %
(0.8318;0.5028)" | 28 10 (0.6833;0.2126)" | 8 9 i
(0.8939;0.1991)7 | 22 9 (0.6072;0.6299)” | 11 8 %
(0.8385;0.5681)% | 39 9 (0.4514;0.0439)" | 21 20

Tables 19: Case p = 5.

Here, we observe that for p = 5, ICUM-basin of z3, xf, ¢, 2% and 2§ have,
respectively, 11, 10, 30, 3 and 6 points..
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4 Conclusions

The motivation to try to answer some questions about quasi-Newton methods
such us (i) are there problems, in the applied research, for which the quasi-
Newton methods are the best option? (ii) which are they? (iii) why? led us
to make a rigorous bibliographical research, which we have done with great
success in [12].

In that work we selected, among 295 applications that uses quasi-Newton
methods, the nine that we found more interesting, covering several applied
areas as Physics, Engineering, Biology, Astrophysics, etc [12]. Almost all of
them used, as a tool to solve the nonlinear system that appeared in their prob-
lems, Broyden’s method. The authors justified their choice by the very cheap
computational cost and the very easy implementation of Broyden’s method.

After the good results obtained with ICUM when applied to several problems
from the classical literature [9], [5], and after the affirmation of Luksan and
Vléek [7] that it was the best quasi-Newton Method for large-scale sparse prob-
lems, we decided to do this work which basicaly compare these two methods
for solving the nonlinear systems appearing in applied problems.

Since solving nonlinear systems is only a small (but important) step in the
applied problems, it was not an easy task to obtain the equations, initial
guesses and expected solution of the system to develop our project.

The results obtained show that only for problem P3 [11], Broyden’s method
has a slightly better performance than ICUM.

Both methods found the expected solution for problem P1 [14], but in all the
cases ICUM performed less iterations than Broyden’s method.

Problem P2 [10] presented the most unexpected results. First of all, in one
of the regions each method found a different equilibrium points. In another

region, in five among six cases tested only ICUM found the expected solution.

In the last problem, P4 [13], only ICUM converged in all the cases and in the
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cases where both methods converged, it had a better performance, in terms of
number of iterations performed.

As can be easily seen, all the problems studied here can not be considered
large scale problems: P1: (thirteen dimensional), P2: ( seven dimensional ),
P3: (three dimensional) and P4: ( two dimensional).

So, our last conclusion it that, besides being among the best quasi-Newton
methods for solving large scale sparse nonlinear systems, ICUM is also com-
petitive when used to solve the systems (not necessarily large scaled) that
appear in real applications.
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