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Abstract

We introduce the concept of fuzzy quasilinear space and fuzzy quasilinear
operator. Moreover we state some properties and give results which extend
to the fuzzy context some results of linear functional analysis.
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1 Introduction

In [1] Assev has presented an abstract approach to the study of spaces of
subsets and function spaces of multivalued mappings, by weakening the re-
quirement of linearity in the constructions of linear functional analysis. Assev
introduced the concepts of quasilinear spaces and quasilinear operators
which enable us to consider both linear space and nonlinear spaces of subsets
and multivalued mappings from a single point of view. He stated properties
and theorems which are “quasilinear” counterparts of some results in linear
functional analysis and differential calculus in Banach spaces. His work has
motivated us to extend the notion of quasilinear spaces to the fuzzy context.

The purpose of this paper is to present the concept of fuzzy quasilinear
spaces and to introduce a theory of fuzzy quasilinear operators. Motivated
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by the ideas introduced by Assev we give some properties about fuzzy quasi-
linear spaces and we state some propositions and theorems concerning a
fuzzy “quasilinear” operator theory. For instance, we state a fuzzy version of
the Banach-Steinhauss theorem and we introduce a duality theory for fuzzy
quasilinear operators. We also present some results related to fuzzy differ-
ential inclusions. Others applications of this new theory in the direction of
a fuzzy differential calculus have been develop in [4]. We believe that such
results will play a important role in a construction of a consistence fuzzy
analysis.

2 Preliminaries

A set X is called a quasilinear space if a partial order relation <,
an algebraic sum operation 4, and an operation of multiplication by real
numbers -, are defined in it and the following properties hold for any elements
x,1y,z,v € X and any real numbers o, § € R:

r <z, (1)
r<y,y<z = <z (2)
<y, y<s = =y, (3)

r+y = y+tu, (4)
v+ y+z) = (x+y)+z (5)

there exist an element 6 € X, called neutral element, such that

r+60 = u, (6)

a(f-z) = (af)z, (7)

a (x+y) a-z+ay, (8)

l.x = «x, 9)

0z = 6, (10)

(a+p)z < az+f (11)
r<yez2<v = v+2<y+v, (12)
r<y = ar<ay. (13)

An element z € X is called an

inverse of z € X, ifz+2 =6. If an
element z exist, then it is unique. If any element z in the quasilinear space



X has an inverse element # € X then the partial order on X is determined
by equality and consequently X is a linear space with scalars in R.

Let X be a quasilinear space. A real function ||-||x : X — R is called a
norm if the following conditions hold:

if ©#0 = |z||x >0,

le+yllx = llzllx + [yl
lo-zllx = laf [lz]lx,

if v<y = llellx = lylx,
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if for any € > 0, exists an element x. € X such that
r<y+z and ||z Se=2x<y.

Lemma 1 A sum operation +, the multiplication by real numbers and the
norm ||.||x are continuous with respect to the Hausdorff metric Hy.

A quasilinear space X with a norm defined on it is called a normed
quasilinear space. If any € X has an inverse element ' € X, then the
concept of a normed quasilinear space coincides with the concept of a real
normed linear space.

Let X be a normed quasilinear space. The Hausdorff metric on X is
defined by

Hx(z,y) =inf{r >0/ 2 <y+a], y<z+a,, [affx <r}.

Since that z < y+ (r — y) and y < z + (y — x), the quantity Hx(z,y) is
defined for any elements z,y € X, and Hx(z,y) < ||z — y||x. It is easy to
see that the function Hy(x,y) satisfies all the axioms of a metric.

Let X be a real normed linear space. Denote by K(X) the space of
nonempty closed and bounded subsets of X i.e.,

K(X)={A C X/ Ais nonempty closed and bounded}
and denote by K¢ (X) its subspace of convex subsets of X:
Ko(X)={A € K(X)/ Ais convex}.

The algebraic sum operation in K (X) and multiplication by a real number
a € R are defined by the expressions

A+B={a+b/ac A be B}, a-A={aa/ac A}
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The space K(X), with the partial order given by the inclusion, satisfies
the conditions (1)-(13). A norm in K (X) is given by ||A||x = supgca ||a||-
Consequently K (X) and K (X) are normed quasilinear spaces. In this case
the Hausdorff metric is defined as usual:

H(A,B) =inf{r >0/ AC B+1r5(0), BC A+rS(0)},
where S1(0) is the closed ball of radius r about 0 € X.

Definition 1 Let X andY be two quasilinear spaces. A application’ : X —
Y is called quasilinear operator if it satisfies the following conditions:

F'(Az) = A[(z) VAeR (18)
IF'z+y) < I'(z)+T(y) Ve,ye X (19)
if <y = I(z)<I(y) (20)

A quasilinear operator I' : X — Y s called bounded if exists k > 0 such
that
I0(@)lly < klle]lx Vo € X

We denote by L(X,Y") the space of all bounded quasilinear operator from
X toY. We write I'} < Ty if I'y(2) < T'o(z) Vo € X. Multiplication by real
numbers is defined on L(X,Y") by the equality (AI')(z) = AI'(z). Moreover,
the algebraic sum on L(X,Y) is defined by the equality (I'; + I'z)(z) =
I'y(z) + I'y(z). Then L(X,Y) is a quasilinear space.

A norm on L(X,Y) is defined by

Iz = sup |IT(z)[]y-

llz|lx=1

Consequently, L(X,Y") is a normed quasilinear space.

3 Fuzzy Quasilinear Space

Let X be a Banach space. A fuzzy set on X is a function u : X — [0, 1].
For 0 < a < 1, we denote by L,u = {z € X/u(x) > a} the a-level of u, and
Lou = supp(u) = {z € X/u(x) > 0} is called the support of .

A fuzzy set u : X — [0,1] is called fuzzy compact set (fuzzy compact
convex set, respectively) if L,u is compact for all & € [0, 1] (if L,u is compact
convex for all a € [0, 1], respectively).
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We denote by F(X) (Fe(X), respectively) the space of all fuzzy compact
sets u : X — [0, 1] (the space of all fuzzy compact convex sets u : X — [0, 1],
respectively).

Proposition 2 If u € F(X), then the family {Lou/ « € [0,1]} satisfies the
following properties:

(@) Lou D Loyu D Lgu V 0 <a < f.

(b) Seay, Ta= Lou={()\", Lo, u
(i.e., the level-application is left-continuous),

(¢) u=v < Lyu=Lyv Va €10,1].

(d) Lou #0 Va €[0,1], is equivalent to u(x) =1 for some x € X.
If u satisfies this condition we say that u is normal.

(e) We can to define a partial order C on F(X) by setting

uCveu(r) <v) Ve € X & LyuC Lyv Ya€0,1].

The algebraic sum operation and multiplication by a real number A € R
on F(X) is defined by the expression

u(s) it A#0

(u+v)(z) =supmin{u(y),v(zx —y)} and (Au)(x)= { Yooy () EA=0

yey

With these definitions we obtain L,(u 4+ v) = Lou 4+ Loav and L, (Au) =
ALyu, for all u,v € F(X), a € 0,1] and A € R.

The space F(X) with the sum, multiplication by real numbers and the
partial order, above defined, is a quasilinear space with neutral element x ;.

In F(X) we can define the norms

[ully = sup [|Loul[x-
0<a<l

and

1
Jullz = [ N2t xde:
0



In the first case the Hausdorff metric is defined by
Di(u,v) =inf{r >0/ v Cv+w], v Cu+wy, ||w|i<r},
or equivalently
Di(u,v) =inf{r >0/ u Cv+rw, v Cu+rw},
where w € F(X) is the fuzzy-compact set defined by

w(z) = { 0 itz ¢ S (0)

Other form equivalent of write Dy, using the a-level, is given by

D;(u,v) = sup H(Lgqu, Lav).

a€g0,1]
In the second case, the Hausdorff metric is defined by
Dy(u,v) =inf{r >0/ u Cv+w], v Cu+w;, |w]|s<r}.

By using the a-level, D5 is equivalent to
1
Dy(u,v) = / H(Lyu, Lyv)dao.
0

The space F(X) extends K(X) in the sense of, for each A € K(X), its
characteristic functions y 4 belongs to F(X). Clearly if A, B € K(X), then

Dl(XA)XB) = DQ(XA:XB) = H(A7B)

It is well known that (F(X), D;) is a complete metric space, but is not
separable and (F(X), Dy) is a complete separable metric space [see [5],[6]].

Hereafter, the space F(X), with normed ||.|| 7, will be called fuzzy normed
quasilinear space. The Hausdorff metric deriving from ||.||z will be denote
by D(.,.).

Lemma 3 (a) Suppose that u, — ug and v, — vy, and that u, C v, for
any positive integer n. Then, ug C vp.

(b) Suppose that u, — ug and z, — wy. If u, C v, C z, for all n, then
Uy — Ug.



(¢) Suppose that u,, + v, = uy and v, — X{oy, then u, — ug.

Proof. (a) If u,, = ug and v,, — vy, then for any € > 0 there exists N such
that for any n > N there exist elements af, b$ € F(X) for which

to €t + 5, 15 < €
and

vp Cop 05, |||l s < e
Thus,

uy C vy + a;, + by,

for n > N. Since ||a& + b5 |7 < ||a |l + ||| 7 < 2¢, follows from (18) that
up C vg. The proofs of (b) and (c¢) are analogous. H

Lemma 4 Let X, Y be two Banach space. If ¥ : F(X) — F() is a
quasilinear operator, then W(x(01) = X{o}-

Proof. The proof is easy. R

Lemma 5 A quasilinear operator ¥V : F(X) — F(Y) is bounded if and only
if, is continuous at Xy € F(X).

Proof. Suppose that the operator ¥ is bounded. Then exist £ > 0 such
that
¥ (u)llF < kllull7 Vu € F(X).

So, given € > ( exists 6 = ¢ such that, if

D(u, x10) = lJull <0,

then
D(¥(u), ¥(xqy) = 1V ()|l z < kllullz < ké =e.

Thus, ¥ is continuous at xo,. Now suppose that ¥ is a quasilinear operator
continuous in xyo € F(X). Then, for any € > 0, exists 6 > 0 such that
D(u, x(0y) = [lul|7 < 0, implies

D(\If(u),\lf(x{o})) <e or ||[¥(u)|lr<e.
So, for any u € F(X)

ou 2¢
U(—— < N < — .
| (2||u||f)”f e or ||[¥(u)||F 6||u||f



Lemma 6 Let ¥ : F(X) — F(Y) be a quasilinear operator. If U is contin-
wous at Xyoy € F(X), then W is uniformly continuous on F(X).

Proof. Suppose that W is continuous at xg. Then, for any ¢ > 0, exists
0 > 0 such that
W (u)]|7 < €if [Jul|z < 6.

Let ug € F(X) be given. If D(u,ug) < 6, then there exist w;, wy such that
|lwil|7 <6 and u Cug+wy, uy Cu+ ws.
Since V¥ is a quasilinear operator, it follows that
U(u) C ¥(ug) + ¥(wy) and ¥(ug) C ¥(u) + U(ws).

Since ||w;||F < 0, then
[0 (wi) |7 < e

Consequently, D(V(u), ¥(up)) < €. This completes the proof. B

Example 1 If f : X — Y is a function, its Zadeh extension [see [5]], f
F(X) = F(Y), is defined by

SUpyc ;1 u(y) i f7H(x) # ¢,
0 if 1) =6

If f is continuous, Then f is a well defined function [see [5]] and

fu)(z) =

Lof(u) = f(Lau), Yo €0,1] Vu € F(X).

Now, suppose that [ is linear. Then, f is a quasilinear operator, and from
the continuity of f follows that f is bounded. Consequently, f is uniformly
continuous.

The space L(F(X),F(Y)), of all the bounded quasilinear operator from
F(X) to F(Y), is a normed quasilinear space, with norm defined by

W[ = sup [[¥(u)]

llull7=1



Lemma 7 Suppose that the sequence {V,} € L(F(X),F(Y)) converges at
each point u € F(X). Then the operator

U(u) = lim ¥, (u)

n—-+o0o
18 quasilinear.
Proof. It follows from limit properties. B

We define the function ¢, : [0, +00) = F(X) by ¢, (t) = tw. It satisfies
the following conditions:

u S ,(l|lullF) (21)
if t<s = @,t)Cp,ls) (22)
Pu(t+s) = p,(t)+p,(s) (23)

Lemma 8 The operator ¢ : F(X) — F(Y), defined by
p(u) = @, ([lullx)
belongs to L(F(X), F(Y)).

Proof. Let u,v € F(X) be and suppose that u C v, then ||ul|z < ||v]|#.
Consequently, [|ullr w € [lv]|lF w, so ¢, (|lull) € ¢, (lv]|l7). Moreover,

v (llu+oll7) < eu(llull) + e, (7).
Now, ¢, ([[A\u||=) = [Ae,(]|ul|£). Since, w = —w = (—1)w, it follows that
vu(l[Aull) = Ap, (lull#)-
Consequently, ¢(u) is a quasilinear operator from F(X) to F(Y'). Since,
le()llz = lley, (lull )7 = [ lullz wliz = [Jull#llwllz,
we conclude that ¢ € L(F(X),F(Y)). &
Remark 1 (a) ||¢||, = 1.
() I (1]l < l@lle, then ¥ < .
(€) U< [¥]ze.



The Hausdorff metric on L(F(X),F(Y)) is given by
Hp (¥, W) =inf{r >0/ ¥, < Wy + V], Uy <V + W5 ||U7|, =7},
or equivalently,
Hp(Uy, W) =inf{r >0: U, < Uy +7rp, Uy <V, +rp}.

Theorem 9 Suppose that (F(X), D) is a complete metric space. Then the
normed quasilinear space (L(F(X), F(Y)), Hy) is a complete metric space.

Proof. Let {V¥,} be a sequence of Cauchy on L(F(X),F(Y)). Then, for
any € > 0, exists a N such that for all n,m = N there exist W™ g™
satisfying the conditions:

\Ijn g \Ijm + \Ijg,m7 \Ijm g \Ijn + \IIZMZ? ||\Ijg’m||L S €.

Consequently, D(¥,(u), ¥,,(u)) < €llul|F for any v € F(X). So, the se-
quence {¥,(u)} is Cauchy on F(Y). Since F(Y) is complete, there exists an
element U(u) € F(Y) such that

U(u) = lim U, (u).

n—0o0

Follows from Lema 7 that ¥ is a quasilinear operator from F(X) to F(Y).
Furthermore,

W ()]l 7 < [V (w) ]|z + [V (W) 7 < (1¥mlle + €)llullF,

for any n,m > N. Fixing m > N and taking the limit as n — oo we get
that
V()7 < (1¥mllz + )llullF.

Therefore, ¥ € L(F(X),F(Y)). We now prove that {¥,} converges to ¥ in
the quasilinear space L(F(X), F(Y)). Since

D(Wy (), W (u)) + D(Wn(u), ¥(u))

ellullz + D(Wm(u), ¥(u))

D(Wy(u), ¥(u)) <
<

for n,m = N, taking the limit as m — oo we obtain that

DV, (u),¥(u)) < €l|ul|z ¥Yn > N.
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So, it follows that
U, <U+tep, VU, +ep Vn=N.

|
The next result is an analogous to the Banach-Steinhaus theorem.

Theorem 10 Suppose that (F(X), D) is a complete space metric. Let {V;}
be a family of elements in L(F(X), F(Y)) such that

sup [|¥;(u)||F < 0o Vu € F(X).
icl

Then,

sup ||¥;]|L < oo.
icl

Equivalently, exists ¢ > 0 such that

1 (u)]| 7 < cl|ullF Vue F(X), Viel.
Proof. For each n > 1, we defined the sets

Zn=A{ue F(X)/Vn, ||[¥;(u)]|r<n}.

Since ¥ is uniformly continuous, then 7, is closed in F(X) for each n € N,
and |J)", Z, = X. Consequently, using the Lema of Baire, intZ,, # 0 for
some ny > 1. So, there exist uy and r > 0 such that S, (uy) C Z,,. Then,

[¥;(v)|| 7 < ng Yo € S, (ug).
Now, If ||u||# < r, then
up C (ug+u) —u, (ug+u)Cug+u.
Consequently, uy +u € S,(ug). Since u C (ug + u) — uyg, it follows that
VU, (u) C U, (up+u) — Yy(uy).

Thus
Wi (w)[|7 < [[Wiluo + w)||z + [[¥;(uo) || 7 < 2no.
Now, for any u € F(X),
|l =7
[[ull 7
Therefore,
2”0
()l < —=llull#,

and the proof is complete. W
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Lemma 11 Let {I';}icr, I 0 F(X) — K(Y) be a family of bounded quasi-
linear operators such that the family {T';(u)}icr is bounded in Y for each
u € F(X). Then, the application R : F(X) — K(Y') defined by

R(u) = Ui/l (u),

18 a bounded quasilinear operator.

Proof. Suppose that u C v, u,v € F(X). Then,

R(U) = UzeIFz(u) g UieIFi(v) = R(U)

Further, given u,v € F(X),

R(U + U) Uie[Fi(U + U)
Uier (Ti(u) + Ti(v))
Uierli(u) + Uierli(v)

R(u) + R(v).

N 1N

Moreover,

for any v € F(X) and any A € R. Consequently, R : F(X) — K(Y) is
a quasilinear operator. Now, we shall prove that R is bounded. We define
V; : F(X) — F(Y) by ¥;(u) = Xyr,@)y- Since I'; is bounded quasilinear
operator for each ¢ € I, it follows that ¥; is a quasilinear operator for each
1 € I. Now,

sup [|Wi(u)|| 7 = sup [[xr,w)ll7 = sup [[Ti(w)||x < oo.
i€l ' i€l

el

Then, by the Theorem 10, exists ¢ > 0 such that
ITs(u) | = 1Wi(u)ll7 < cllullz Vu e FX), Viel

So,
[R(w)][x = [[VierLi(uw) ||k < cllull7 Yu e F(X).

Consequently, R is bounded. W
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Lemma 12 (a) An element U € L(F(X),F(Y)) satisfies the condition of
Lipschitz with constant ||V||r.

(b) If ¥y € L(F(X),F(Y)) and ¥y € L(F(Y),F(Z)). Then, the operator
U =W,y 0V, is in the space L(F(X),F(Z)).

Proof. m

Denote by F(X)® the space L(F(X), K(R)), and by coF(X)® the space
L(F(X), Kc(R)). A quasilinear operator I' from F(X) to K (R) will be called
quasilinear functional.

Let U € L(F(X),F(Y)). Then, for each T € F(Y)® we can associate
an element ® € F(X)® in according to the rule ®(u) = (F'o¥)(u). Conse-
quently, the operator ¥® : F(Y)® — F(X)® given by ¥V®(I') = ['oV is
well defined.

Proposition 13 Let ¥ € L(F(X),F(Y)) be any. Then,
(a) ¥® € L(F(Y)®, F(X)®).
®) (19| = [1¥]z-

Proof. (a) Let I';,T', € F(Y)® and let a € R be given. Then,

= i(¥(u)) +Ia(¥(u))
= (UB(I) + ¥B(Ls))(u).
Consequently,
UQ(Ty +Ty) < () + UR(Ty).
Moreover,

U®(al')(u) = al'(¥(u)) = a¥U®(T)(u).
Then, U®(al') = a¥®(T"). Now, suppose that 'y < T's. Then,
UO(I')(u) = ' (¥(u)) < D2(¥(u)) = ¥B(I'2)(u).

So, U®(I';) < ¥®(I'y). Consequently, the operator ¥® : F(X)® — F(Y)®
is quasilinear. Since

WMz = sup [[T(¥(u)llz < [Tlcl¥],

llull7=1
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the quasilinear operator ¥® is bounded, and ||[¥®||, < |[¥||L.
(b) We shall prove that || U®||L > ||¥]|z. The element I'g(u) = [—||u||#, ||u||#]
is in the space F(Y)®, and ||I'y||, = 1. Then,

W@, = sup [[YSD)]L
I =1

> [ (Lo)|l.
= sup ||Do(¥(u))|r

llull7=1

= sup [[¥(u)|F

llull7=1

= ¥l

Therefore, [|[U®]|, > [|V]|,. W

4 Fuzzy quasilinear operator

The space L£(X,Y) consisting of all bounded linear operators from X to
Y is also a normed linear space. Consequently, the normed quasilinear
space K(L(X,Y)) is well defined (See Example 1). Each element T €
K(L(X,Y)) defines a bounded set-valued quasilinear mapping I'(z) = Tz =
{Az: AeT} from X to K(Y).

Definition 2 We say that an element I' € L(X, K(Y)) has a linear rep-
resentation if exist an element T' € K(L(X,Y)) such that

[(x) =Tz ={Az; AecT}.

The next result is important and necessary to define the adjoint of a
quasilinear operator (see [1]).

Theorem 14 Suppose that T' € L(X*, Ko(R)). Then there ezists a unique
closed bounded convex subset F' C X such that for any z* € X*

P(a®) = (Fa") = {(f,#%); f € F}.

Corollary 15 If X is a complete reflexive normed linear space, then any
bounded quasilinear operator I' : X — Kc(R) has a linear representation.
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Let X, Y be two normed linear spaces, and let I' : X — K(Y) be a
bounded quasilinear operator. Then there exists a unique bounded quasilin-
ear operator I'¥ : Y* — K¢ (X*) such that (I'(z),y*) = (z,I'®(y*)), for all
x € X and y* € Y*[see [1]]. The operator I'® € L(Y*, K(X*)) is called the
adjoint of the operator I' € L(X, K(Y)).

An application I' : X — F(Y) is called fuzzy quasilinear operator if
I" satisfies the conditions (19), (20), i.e.,

I(Az) =Al(z) Ve e X ,VAeR, T'(ri+xe) CL(x)+(xg) Va0 € X.

The condition (21) is automatically satisfied.
Let I' : X — F(Y) be a bounded fuzzy quasilinear operator. Then, for
any « € [0, 1], the application of level I'y, : X — K(Y), defined by

[Lo(z) = Lo I(2),
is a bounded quasilinear operator.

Definition 3 A fuzzy valued mapping I' : X — F(Y) has a linear rep-
resentation if, for each o € [0,1], the application of level Ty, has a linear
representation.

Proposition 16 Let X be a complete reflexive normed linear space. Then
each bounded fuzzy quasilinear operator I' : X — Fc(R) has a linear repre-
sentation.

Proof. Follows from corollary 15. W

Given a bounded fuzzy quasilinear operator I' : X — F(Y), for each
« € [0,1] there exists a operator I'? : Y* — K(X*), the adjoint of T, such
that (' (2),y*) = (z,T2(y*)) for any z € X and y* € Y.

Consider the family {I'S () }acp,1- Such family satisfies the conditions
of the theorem of representation due to Negoita and Ralescu [see [7]]. In fact,

i) By definition, it follows that I'? (y*) € K(X*) for all « € [0, 1].

it) Let a < (3 be, we shall prove that F?(y*) C I'(y*), or equivalently
(2,05 (y*)) € (2,T5(y")) for all v € X. Let v € X be given. Then

(2,05 (")) = (Ts(2),y") € (Lalz),y") = (2, T3 (y")).

i17) Consider the sequence oy < s < ag < ..., such that lim; ,,, a; = .
Then,
ﬂizlf‘ai (l‘) = Fa(.%').
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Consequently,

(z, N1 T8 (y") =

(

(
=

(
Follows from theorem of representation that there exists a unique fuzzy set
I'®(y*) : X* — [0,1] such that

LI®(y") = T3 (y").
This result generalizes the concept of adjoint of a operator I' € L(X, F(Y)).

Definition 4 Let I' : X — F(Y) be a bounded fuzzy quasilinear operator.
The adjoint of T is the operator T'® € L(Y™*, F(X*) such that

L T®(y*) =T5(y").

for all « € [0,1] and y* € Y*.

5 Fuzzy Differential Inclusions

The following definition of fuzzy differential inclusion was introduced by Zhu
and Rao [see [8]], where they obtained some results concerning existence of
solution.

Definition 5 Let ' : X — F(X) be a fuzzy valued mappings. Let o : X —
[0, 1] be a function and let J be an interval in R. We call fuzzy differential
inclusion the following problem: to find x € C(J, X) such that

:r(t) € La(x(t))F(x(t)). (24)

IfI': X — F(X) is a fuzzy quasilinear operator, then the problem (24)
is called a fuzzy quasilinear differential inclusion.

Suppose that the bounded fuzzy quasilinear operator I' : R* — F(R")
has linear representation, i.e., for each a € [0, 1], there exists a compact set
T in the space of n x n matrices such that I'y(z) = T% = {Az; A € T°}.
Thus there exists a bounded fuzzy quasilinear operator I'® : R* — F(R"),
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the adjoint of I', and I'? has linear representation 7*® = {A; A* € T} for
each a € [0, 1].

Let ' : R* — F(R") be a fuzzy quasilinear operator, and let I' : R* —
F(R™) be the adjoint of I'. The fuzzy differential inclusion

() € =La(a I (z(t))
is called the adjoint of the fuzzy differential inclusions (24).

Proposition 17 Suppose that the fuzzy quasilinear operator T’ : R* — F(R™)
has a linear representation. Then I' is continuous.

Proof. The proof is easy.

We denote by F¢(X) [see [7]] the subspace of F(X) for which the elements
u are such that the mapping o — L,u is H-continuous on [0, 1], i.e., given
€ > 0, there exists a 0 > 0 such that | — 3| < 0 implies H(Lyu, Lgu) < €.
Since [0, 1] is a compact metric space, the application & — Lyu is, in fact,
uniformly continuous.

Proposition 18 Let I': R* — FCY(R") be a fuzzy quasilinear operator with
a linear representation. Suppose that a : X — [0, 1] is continuous. Then the
mapping I' : X — FC(X), defined by I'(x) = Lo@)I'(x), is continuous.

Proof. Suppose that x, — x in R*. Then

H (L (2), I(x))

INIA I

Theorem 19 Suppose that the fuzzy quasilinear operator T' : R* — FC(R")
has a linear representation and o : R* — [0,1] is continuous. Moreover, let
x(t) be a solution of the fuzzy differential inclusions (24). Then, there exists
a measurable matriz-valued function A : J — J,o, T*W) such that x(t) is
an absolutely continuous solution of the ordinary linear differential equation
& = A(t)x. Here J is the interval on which x(t) is defined.
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Proof. We define the set valued mapping [ : R* — K (R") by

F(x) = La(w)F(:L‘).

Denote by G' = {(z,y) e R* xR" : y € F(z)} the graph of the set valued
mapping F. Then G is a closed set (Proposition 25). We define the set
valued mapping P : G — K(L(R",R")) by

P(z,y) = {A € Uy, T**) | Az =y},

We shall prove that P has closed graph. Suppose that (z,,y,) — (z,y) in
G, A, - Ain L(R",R") with A,z, = y,. Taking the limit as n — +oo
we have that Ax = y. Furthermore, P(z,y) is bounded. Consequently
P is upper semicontinuous. Let H be the set valued mapping given by
H(t) = P(x(t),&(t)). H is measurable, since for any open set U € L(R", R"),
from the upper semicontinuous of P follows that {(z,y) : P(z,y) C U} is
an open set. Consequently, {t € J; H(t) C U} is measurable. Therefore,
it has a measurable single-valued branch A : J — U, Towqy), A(t) € H(1),
such that ©(t) = A(t)x(t) forae. t€J. B
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