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1 Introdution

In [1℄ Assev has presented an abstrat approah to the study of spaes of

subsets and funtion spaes of multivalued mappings, by weakening the re-

quirement of linearity in the onstrutions of linear funtional analysis. Assev

introdued the onepts of quasilinear spaes and quasilinear operators

whih enable us to onsider both linear spae and nonlinear spaes of subsets

and multivalued mappings from a single point of view. He stated properties

and theorems whih are \quasilinear" ounterparts of some results in linear

funtional analysis and di�erential alulus in Banah spaes. His work has

motivated us to extend the notion of quasilinear spaes to the fuzzy ontext.

The purpose of this paper is to present the onept of fuzzy quasilinear

spaes and to introdue a theory of fuzzy quasilinear operators. Motivated
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by the ideas introdued by Assev we give some properties about fuzzy quasi-

linear spaes and we state some propositions and theorems onerning a

fuzzy \quasilinear" operator theory. For instane, we state a fuzzy version of

the Banah-Steinhauss theorem and we introdue a duality theory for fuzzy

quasilinear operators. We also present some results related to fuzzy di�er-

ential inlusions. Others appliations of this new theory in the diretion of

a fuzzy di�erential alulus have been develop in [4℄. We believe that suh

results will play a important role in a onstrution of a onsistene fuzzy

analysis.

2 Preliminaries

A set X is alled a quasilinear spae if a partial order relation 6,

an algebrai sum operation +, and an operation of multipliation by real

numbers �, are de�ned in it and the following properties hold for any elements

x; y; z; v 2 X and any real numbers �; � 2 R:

x 6 x; (1)

x 6 y ; y 6 z ) x 6 z; (2)

x 6 y ; y 6 x ) x = y; (3)

x + y = y + x; (4)

x+ (y + z) = (x+ y) + z; (5)

there exist an element � 2 X, alled neutral element, suh that

x + � = x; (6)

�� (�� x) = (�� �)� x; (7)

�� (x+ y) = �� x+ �� y; (8)

1� x = x; (9)

0� x = �; (10)

(� + �)� x 6 �� x+ �� x; (11)

x 6 y e z 6 v ) x+ z 6 y + v; (12)

x 6 y ) �� x 6 �� y: (13)

An element x

0

2 X is alled an inverse of x 2 X, if x + x

0

= �. If an

element x

0

exist, then it is unique. If any element x in the quasilinear spae
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X has an inverse element x

0

2 X then the partial order on X is determined

by equality and onsequently X is a linear spae with salars in R.

Let X be a quasilinear spae. A real funtion k� k

X

: X ! R is alled a

norm if the following onditions hold:

if x 6= � ) kxk

X

> 0; (14)

kx+ yk

X

5 kxk

X

+ kyk

X

; (15)

k�� xk

X

= j�j kxk

X

; (16)

if x 6 y ) kxk

X

5 kyk

X

; (17)

if for any � > 0, exists an element x

�

2 X suh that

x 6 y + x

�

and kx

�

k 5 �) x 6 y:

Lemma 1 A sum operation +, the multipliation by real numbers and the

norm k:k

X

are ontinuous with respet to the Hausdor� metri H

X

.

A quasilinear spae X with a norm de�ned on it is alled a normed

quasilinear spae. If any x 2 X has an inverse element x

0

2 X, then the

onept of a normed quasilinear spae oinides with the onept of a real

normed linear spae.

Let X be a normed quasilinear spae. The Hausdor� metri on X is

de�ned by

H

X

(x; y) = inffr � 0= x 6 y + a

r

1

; y 6 x + a

r

2

; ka

r

i

k

X

� rg:

Sine that x 6 y + (x� y) and y 6 x+ (y � x), the quantity H

X

(x; y) is

de�ned for any elements x; y 2 X, and H

X

(x; y) � kx � yk

X

. It is easy to

see that the funtion H

X

(x; y) satis�es all the axioms of a metri.

Let X be a real normed linear spae. Denote by K(X) the spae of

nonempty losed and bounded subsets of X,i.e.,

K(X) = fA � X= A is nonempty losed and boundedg

and denote by K

C

(X) its subspae of onvex subsets of X:

K

C

(X) = fA 2 K(X)= A is onvexg:

The algebrai sum operation in K(X) and multipliation by a real number

� 2 R are de�ned by the expressions

A+B = fa + b= a 2 A; b 2 Bg; ��A = f�� a= a 2 Ag:
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The spae K(X), with the partial order given by the inlusion, satis�es

the onditions (1)-(13). A norm in K(X) is given by kAk

K

= sup

a2A

kak.

Consequently K(X) and K

C

(X) are normed quasilinear spaes. In this ase

the Hausdor� metri is de�ned as usual:

H(A;B) = inffr � 0= A � B + rS

1

(0); B � A+ rS

1

(0)g;

where S

1

(0) is the losed ball of radius r about 0 2 X.

De�nition 1 Let X and Y be two quasilinear spaes. A appliation � : X !

Y is alled quasilinear operator if it satis�es the following onditions:

�(�x) = ��(x) 8� 2 R (18)

�(x+ y) 6 �(x) + �(y) 8x; y 2 X (19)

if x 6 y ) �(x) 6 �(y) (20)

A quasilinear operator � : X ! Y is alled bounded if exists k > 0 suh

that

k�(x)k

Y

� kkxk

X

8x 2 X:

We denote by L(X; Y ) the spae of all bounded quasilinear operator from

X to Y . We write �

1

6 �

2

if �

1

(x) 6 �

2

(x) 8x 2 X. Multipliation by real

numbers is de�ned on L(X; Y ) by the equality (��)(x) = ��(x). Moreover,

the algebrai sum on L(X; Y ) is de�ned by the equality (�

1

+ �

2

)(x) =

�

1

(x) + �

2

(x). Then L(X; Y ) is a quasilinear spae.

A norm on L(X; Y ) is de�ned by

k�k

L

= sup

kxk

X

=1

k�(x)k

Y

:

Consequently, L(X; Y ) is a normed quasilinear spae.

3 Fuzzy Quasilinear Spae

Let X be a Banah spae. A fuzzy set on X is a funtion u : X ! [0; 1℄.

For 0 < � � 1, we denote by L

�

u = fx 2 X=u(x) � �g the �-level of u, and

L

0

u = supp(u) = fx 2 X=u(x) > 0g is alled the support of u.

A fuzzy set u : X ! [0; 1℄ is alled fuzzy ompat set (fuzzy ompat

onvex set, respetively) if L

�

u is ompat for all � 2 [0; 1℄ (if L

�

u is ompat

onvex for all � 2 [0; 1℄, respetively).
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We denote by F(X) (F

C

(X), respetively) the spae of all fuzzy ompat

sets u : X ! [0; 1℄ (the spae of all fuzzy ompat onvex sets u : X ! [0; 1℄,

respetively).

Proposition 2 If u 2 F(X), then the family fL

�

u= � 2 [0; 1℄g satis�es the

following properties:

(a) L

0

u � L

�

u � L

�

u 8 0 � � � �:

(b) Se �

n

" �) L

�

u =

T

1

n=1

L

�

n

u

(i.e., the level-appliation is left-ontinuous),

() u = v , L

�

u = L

�

v 8� 2 [0; 1℄.

(d) L

�

u 6= ; 8� 2 [0; 1℄, is equivalent to u(x) = 1 for some x 2 X.

If u satis�es this ondition we say that u is normal.

(e) We an to de�ne a partial order � on F(X) by setting

u � v , u(x) � v(x) 8x 2 X , L

�

u � L

�

v 8� 2 [0; 1℄:

The algebrai sum operation and multipliation by a real number � 2 R

on F(X) is de�ned by the expression

(u+ v)(x) = sup

y2Y

minfu(y); v(x� y)g and (�u)(x) =

�

u(

x

�

) if � 6= 0

�

f0g

(x) if � = 0

With these de�nitions we obtain L

�

(u + v) = L

�

u + L

�

v and L

�

(�u) =

�L

�

u, for all u; v 2 F(X), � 2 [0; 1℄ and � 2 R.

The spae F(X) with the sum, multipliation by real numbers and the

partial order, above de�ned, is a quasilinear spae with neutral element �

f0g

.

In F(X) we an de�ne the norms

kuk

1

= sup

0���1

kL

�

uk

K

:

and

kuk

2

=

Z

1

0

kL

�

uk

K

d�:
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In the �rst ase the Hausdor� metri is de�ned by

D

1

(u; v) = inffr � 0= u � v + w

r

1

; v � u+ w

r

2

; kw

r

i

k

1

� rg;

or equivalently

D

1

(u; v) = inffr � 0= u � v + r!; v � u+ r!g;

where ! 2 F(X) is the fuzzy-ompat set de�ned by

!(x) =

�

1 if x 2 S

1

(0)

0 if x =2 S

1

(0)

Other form equivalent of write D

1

, using the �-level, is given by

D

1

(u; v) = sup

�2[0;1℄

H(L

�

u; L

�

v):

In the seond ase, the Hausdor� metri is de�ned by

D

2

(u; v) = inffr � 0= u � v + w

r

1

; v � u+ w

r

2

; kw

r

i

k

2

� rg:

By using the �-level, D

2

is equivalent to

D

2

(u; v) =

Z

1

0

H(L

�

u; L

�

v)d�:

The spae F(X) extends K(X) in the sense of, for eah A 2 K(X), its

harateristi funtions �

A

belongs to F(X). Clearly if A;B 2 K(X), then

D

1

(�

A

; �

B

) = D

2

(�

A

; �

B

) = H(A;B):

It is well known that (F(X); D

1

) is a omplete metri spae, but is not

separable and (F(X); D

2

) is a omplete separable metri spae [see [5℄,[6℄℄.

Hereafter, the spae F(X), with normed k:k

F

, will be alled fuzzy normed

quasilinear spae. The Hausdor� metri deriving from k:k

F

will be denote

by D(:; :).

Lemma 3 (a) Suppose that u

n

! u

0

and v

n

! v

0

, and that u

n

� v

n

for

any positive integer n. Then, u

0

� v

0

.

(b) Suppose that u

n

! u

0

and z

n

! u

0

. If u

n

� v

n

� z

n

for all n, then

v

n

! u

0

.
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() Suppose that u

n

+ v

n

! u

0

and v

n

! �

f0g

, then u

n

! u

0

.

Proof. (a) If u

n

! u

0

and v

n

! v

0

, then for any � > 0 there exists N suh

that for any n � N there exist elements a

�

n

; b

�

n

2 F(X) for whih

u

0

� u

n

+ a

�

n

; ka

�

n

k

F

� �

and

v

n

� v

0

+ b

�

n

; kb

�

n

k

F

� �:

Thus,

u

0

� v

0

+ a

�

n

+ b

�

n

for n � N . Sine ka

�

n

+ b

�

n

k

F

� ka

�

n

k

F

+ kb

�

n

k

F

� 2�, follows from (18) that

u

0

� v

0

. The proofs of (b) and () are analogous.

Lemma 4 Let X, Y be two Banah spae. If 	 : F(X) ! F(Y ) is a

quasilinear operator, then 	(�

f0g

) = �

f0g

.

Proof. The proof is easy.

Lemma 5 A quasilinear operator 	 : F(X)! F(Y ) is bounded if and only

if, is ontinuous at �

f0g

2 F(X).

Proof. Suppose that the operator 	 is bounded. Then exist k > 0 suh

that

k	(u)k

F

� kkuk

F

8u 2 F(X):

So, given � > 0 exists Æ =

�

k

suh that, if

D(u; �

f0g

) = kuk

F

< Æ;

then

D(	(u);	(�

f0g

)) = k	(u)k

F

� kkuk

F

< kÆ = �:

Thus, 	 is ontinuous at �

f0g

. Now suppose that 	 is a quasilinear operator

ontinuous in �

f0g

2 F(X). Then, for any � > 0, exists Æ > 0 suh that

D(u; �

f0g

) = kuk

F

< Æ, implies

D(	(u);	(�

f0g

)) < � or k	(u)k

F

< �:

So, for any u 2 F(X)

k	(

Æu

2kuk

F

)k

F

< � or k	(u)k

F

<

2�

Æ

kuk

F

:
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Lemma 6 Let 	 : F(X)! F(Y ) be a quasilinear operator. If 	 is ontin-

uous at �

f0g

2 F(X), then 	 is uniformly ontinuous on F(X).

Proof. Suppose that 	 is ontinuous at �

f0g

. Then, for any � > 0, exists

Æ > 0 suh that

k	(u)k

F

< � if kuk

F

< Æ:

Let u

0

2 F(X) be given. If D(u; u

0

) < Æ, then there exist w

1

; w

2

suh that

kw

i

k

F

� Æ and u � u

0

+ w

1

; u

0

� u+ w

2

:

Sine 	 is a quasilinear operator, it follows that

	(u) � 	(u

0

) + 	(w

1

) and 	(u

0

) � 	(u) + 	(w

2

):

Sine kw

i

k

F

< Æ, then

k	(w

i

)k

F

< �:

Consequently, D(	(u);	(u

0

)) < �. This ompletes the proof.

Example 1 If f : X ! Y is a funtion, its Zadeh extension [see [5℄℄,

�

f :

F(X)! F(Y ), is de�ned by

�

f(u)(x) =

8

<

:

sup

y2f

�1

(x)

u(y) if f

�1

(x) 6= �;

0 if f

�1

(x) = �

If f is ontinuous, Then

�

f is a well de�ned funtion [see [5℄℄ and

L

�

�

f(u) = f(L

�

u); 8� 2 [0; 1℄ 8u 2 F(X):

Now, suppose that f is linear. Then,

�

f is a quasilinear operator, and from

the ontinuity of f follows that

�

f is bounded. Consequently,

�

f is uniformly

ontinuous.

The spae L(F(X);F(Y )), of all the bounded quasilinear operator from

F(X) to F(Y ), is a normed quasilinear spae, with norm de�ned by

k	k

L

= sup

kuk

F

=1

k	(u)k

F

:
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Lemma 7 Suppose that the sequene f	

n

g 2 L(F(X);F(Y )) onverges at

eah point u 2 F(X). Then the operator

	(u) = lim

n!+1

	

n

(u)

is quasilinear.

Proof. It follows from limit properties.

We de�ne the funtion '

!

: [0;+1) ! F(X) by '

!

(t) = t!. It satis�es

the following onditions:

u � '

!

(kuk

F

) (21)

if t � s ) '

!

(t) � '

!

(s) (22)

'

!

(t+ s) = '

!

(t) + '

!

(s): (23)

Lemma 8 The operator ' : F(X)! F(Y ), de�ned by

'(u) = '

!

(kuk

F

)

belongs to L(F(X);F(Y )).

Proof. Let u; v 2 F(X) be and suppose that u � v, then kuk

F

� kvk

F

.

Consequently, kuk

F

! � kvk

F

!, so '

!

(kuk

F

) � '

!

(kvk

F

). Moreover,

'

!

(ku+ vk

F

) � '

!

(kuk

F

) + '

!

(kvk

F

):

Now, '

!

(k�uk

F

) = j�j'

!

(kuk

F

). Sine, ! = �! = (�1)!, it follows that

'

!

(k�uk

F

) = �'

!

(kuk

F

):

Consequently, '(u) is a quasilinear operator from F(X) to F(Y ). Sine,

k'(u)k

F

= k'

!

(kuk

F

)k

F

= k kuk

F

!k

F

= kuk

F

k!k

F

;

we onlude that ' 2 L(F(X);F(Y )).

Remark 1 (a) k'k

L

= 1.

(b) If k	k

L

� k'k

L

, then 	 6 '.

() 	 6 k	k

L

'.
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The Hausdor� metri on L(F(X);F(Y )) is given by

H

L

(	

1

;	

2

) = inffr > 0= 	

1

6 	

2

+	

r

1

; 	

2

6 	

1

+	

r

2

k	

r

i

k

L

5 rg;

or equivalently,

H

L

(	

1

;	

2

) = inffr > 0 : 	

1

6 	

2

+ r' ; 	

2

6 	

1

+ r'g:

Theorem 9 Suppose that (F(X); D) is a omplete metri spae. Then the

normed quasilinear spae (L(F(X);F(Y )); H

L

) is a omplete metri spae.

Proof. Let f	

n

g be a sequene of Cauhy on L(F(X);F(Y )). Then, for

any � > 0, exists a N suh that for all n;m = N there exist 	

n;m

�

;	

m;n

�

satisfying the onditions:

	

n

6 	

m

+	

n;m

�

; 	

m

6 	

n

+	

m;n

�

; k	

n;m

�

k

L

� �:

Consequently, D(	

n

(u);	

m

(u)) � �kuk

F

for any u 2 F(X). So, the se-

quene f	

n

(u)g is Cauhy on F(Y ). Sine F(Y ) is omplete, there exists an

element 	(u) 2 F(Y ) suh that

	(u) = lim

n!1

	

n

(u):

Follows from Lema 7 that 	 is a quasilinear operator from F(X) to F(Y ).

Furthermore,

k	

n

(u)k

F

� k	

m

(u)k

F

+ k	

n;m

�

(u)k

F

� (k	

m

k

L

+ �)kuk

F

;

for any n;m � N . Fixing m � N and taking the limit as n ! 1 we get

that

k	(u)k

F

� (k	

m

k

L

+ �)kuk

F

:

Therefore, 	 2 L(F(X);F(Y )). We now prove that f	

n

g onverges to 	 in

the quasilinear spae L(F(X);F(Y )). Sine

D(	

n

(u);	(u)) � D(	

n

(u);	

m

(u)) +D(	

m

(u);	(u))

� �kuk

F

+D(	

m

(u);	(u))

for n;m = N , taking the limit as m!1 we obtain that

D(	

n

(u);	(u)) � �kuk

F

8n � N:
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So, it follows that

	

n

6 	+ �'; 	 6 	

n

+ �' 8n = N:

The next result is an analogous to the Banah-Steinhaus theorem.

Theorem 10 Suppose that (F(X); D) is a omplete spae metri. Let f	

i

g

be a family of elements in L(F(X);F(Y )) suh that

sup

i2I

k	

i

(u)k

F

<1 8u 2 F(X):

Then,

sup

i2I

k	

i

k

L

<1:

Equivalently, exists  > 0 suh that

k	

i

(u)k

F

� kuk

F

8u 2 F(X); 8i 2 I:

Proof. For eah n � 1, we de�ned the sets

Z

n

= fu 2 F(X)= 8n; k	

i

(u)k

F

� ng:

Sine 	 is uniformly ontinuous, then Z

n

is losed in F(X) for eah n 2 N ,

and

S

1

n=1

Z

n

= X. Consequently, using the Lema of Baire, intZ

n

0

6= ; for

some n

0

� 1. So, there exist u

0

and r > 0 suh that S

r

(u

0

) � Z

n

0

. Then,

k	

i

(v)k

F

� n

0

8v 2 S

r

(u

0

):

Now, If kuk

F

� r, then

u

0

� (u

0

+ u)� u ; (u

0

+ u) � u

0

+ u:

Consequently, u

0

+ u 2 S

r

(u

0

). Sine u � (u

0

+ u)� u

0

, it follows that

	

i

(u) � 	

i

(u

0

+ u)� 	

i

(u

0

):

Thus

k	

i

(u)k

F

� k	

i

(u

0

+ u)k

F

+ k	

i

(u

0

)k

F

� 2n

0

:

Now, for any u 2 F(X),

k

ru

kuk

F

k

F

= r

Therefore,

k	

i

(u)k

F

�

2n

0

r

kuk

F

;

and the proof is omplete.
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Lemma 11 Let f�

i

g

i2I

, �

i

: F(X) ! K(Y ) be a family of bounded quasi-

linear operators suh that the family f�

i

(u)g

i2I

is bounded in Y for eah

u 2 F(X). Then, the appliation R : F(X)! K(Y ) de�ned by

R(u) = [

i2I

�

i

(u);

is a bounded quasilinear operator.

Proof. Suppose that u � v, u; v 2 F(X). Then,

R(u) = [

i2I

�

i

(u) � [

i2I

�

i

(v) = R(v):

Further, given u; v 2 F(X);

R(u+ v) = [

i2I

�

i

(u+ v)

� [

i2I

(�

i

(u) + �

i

(v))

� [

i2I

�

i

(u) + [

i2I

�

i

(v)

= R(u) +R(v):

Moreover,

R(�u) = [

i2I

�

i

(�u) = [

i2I

��

i

(u) = �[

i2I

�

i

(u) = �R(u);

for any u 2 F(X) and any � 2 R. Consequently, R : F(X) ! K(Y ) is

a quasilinear operator. Now, we shall prove that R is bounded. We de�ne

	

i

: F(X) ! F(Y ) by 	

i

(u) = �

f�

i

(u)g

. Sine �

i

is bounded quasilinear

operator for eah i 2 I, it follows that 	

i

is a quasilinear operator for eah

i 2 I. Now,

sup

i2I

k	

i

(u)k

F

= sup

i2I

k�

�

i

(u)

k

F

= sup

i2I

k�

i

(u)k

K

<1:

Then, by the Theorem 10, exists  > 0 suh that

k�

i

(u)k

K

= k	

i

(u)k

F

� kuk

F

8u 2 F(X); 8i 2 I:

So,

kR(u)k

K

= k[

i2I

�

i

(u)k

K

� kuk

F

8u 2 F(X):

Consequently, R is bounded.

12



Lemma 12 (a) An element 	 2 L(F(X);F(Y )) satis�es the ondition of

Lipshitz with onstant k	k

L

.

(b) If 	

1

2 L(F(X);F(Y )) and 	

2

2 L(F(Y );F(Z)). Then, the operator

	 = 	

2

Æ	

1

is in the spae L(F(X);F(Z)).

Proof.

Denote by F(X)

N

the spae L(F(X); K(R)), and by oF(X)

N

the spae

L(F(X); K

C

(R)). A quasilinear operator � fromF(X) toK(R) will be alled

quasilinear funtional.

Let 	 2 L(F(X);F(Y )). Then, for eah � 2 F(Y )

N

we an assoiate

an element � 2 F(X)

N

in aording to the rule �(u) = (�o	)(u). Conse-

quently, the operator 	

N

: F(Y )

N

! F(X)

N

given by 	

N

(�) = �o	 is

well de�ned.

Proposition 13 Let 	 2 L(F(X);F(Y )) be any. Then,

(a) 	

N

2 L(F(Y )

N

;F(X)

N

).

(b) k	

N

k

L

= k	k

L

:

Proof. (a) Let �

1

;�

2

2 F(Y )

N

and let � 2 R be given. Then,

	

N

(�

1

+ �

2

)(u) = (�

1

+ �

2

)(	(u))

= �

1

(	(u)) + �

2

(	(u))

= (	

N

(�

1

) + 	

N

(�

2

))(u):

Consequently,

	

N

(�

1

+ �

2

) � 	

N

(�

1

) + 	

N

(�

2

):

Moreover,

	

N

(��)(u) = ��(	(u)) = �	

N

(�)(u):

Then, 	

N

(��) = �	

N

(�). Now, suppose that �

1

6 �

2

. Then,

	

N

(�

1

)(u) = �

1

(	(u)) 6 �

2

(	(u)) = 	

N

(�

2

)(u):

So, 	

N

(�

1

) 6 	

N

(�

2

). Consequently, the operator 	

N

: F(X)

N

! F(Y )

N

is quasilinear. Sine

k	

N

(�)k

L

= sup

kuk

F

=1

k�(	(u))k

F

� k�k

L

k	k

L

;

13



the quasilinear operator 	

N

is bounded, and k	

N

k

L

� k	k

L

.

(b) We shall prove that k	

N

k

L

� k	k

L

. The element �

0

(u) = [�kuk

F

; kuk

F

℄

is in the spae F(Y )

N

, and k�

0

k

L

= 1. Then,

k	

N

k

L

= sup

k�k

L

=1

k	

N

(�)k

L

� k	

N

(�

0

)k

L

= sup

kuk

F

=1

k�

0

(	(u))k

F

= sup

kuk

F

=1

k	(u)k

F

= k	k

L

:

Therefore, k	

N

k

L

> k	k

L

.

4 Fuzzy quasilinear operator

The spae L(X; Y ) onsisting of all bounded linear operators from X to

Y is also a normed linear spae. Consequently, the normed quasilinear

spae K(L(X; Y )) is well de�ned (See Example 1). Eah element T 2

K(L(X; Y )) de�nes a bounded set-valued quasilinear mapping �(x) = Tx =

fAx : A 2 Tg from X to K(Y ):

De�nition 2 We say that an element � 2 L(X;K(Y )) has a linear rep-

resentation if exist an element T 2 K(L(X; Y )) suh that

�(x) = Tx = fAx ; A 2 Tg:

The next result is important and neessary to de�ne the adjoint of a

quasilinear operator (see [1℄).

Theorem 14 Suppose that � 2 L(X

�

; K

C

(R)). Then there exists a unique

losed bounded onvex subset F � X suh that for any x

�

2 X

�

�(x

�

) = hF; x

�

i = fhf; x

�

i ; f 2 Fg:

Corollary 15 If X is a omplete reexive normed linear spae, then any

bounded quasilinear operator � : X ! K

C

(R) has a linear representation.
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Let X, Y be two normed linear spaes, and let � : X ! K(Y ) be a

bounded quasilinear operator. Then there exists a unique bounded quasilin-

ear operator �




: Y

�

! K

C

(X

�

) suh that h�(x); y

�

i = hx;�




(y

�

)i, for all

x 2 X and y

�

2 Y

�

[see [1℄℄. The operator �




2 L(Y

�

; K(X

�

)) is alled the

adjoint of the operator � 2 L(X;K(Y )).

An appliation � : X ! F(Y ) is alled fuzzy quasilinear operator if

� satis�es the onditions (19), (20), i.e.,

�(�x) = ��(x) 8x 2 X ; 8� 2 R; �(x

1

+x

2

) � �(x

1

)+�(x

2

) 8x

1

; x

2

2 X:

The ondition (21) is automatially satis�ed.

Let � : X ! F(Y ) be a bounded fuzzy quasilinear operator. Then, for

any � 2 [0; 1℄, the appliation of level �

�

: X ! K(Y ), de�ned by

�

�

(x) = L

�

�(x);

is a bounded quasilinear operator.

De�nition 3 A fuzzy valued mapping � : X ! F(Y ) has a linear rep-

resentation if, for eah � 2 [0; 1℄, the appliation of level �

�

has a linear

representation.

Proposition 16 Let X be a omplete reexive normed linear spae. Then

eah bounded fuzzy quasilinear operator � : X ! F

C

(R) has a linear repre-

sentation.

Proof. Follows from orollary 15.

Given a bounded fuzzy quasilinear operator � : X ! F(Y ), for eah

� 2 [0; 1℄ there exists a operator �




�

: Y

�

! K(X

�

), the adjoint of �

�

, suh

that h�

�

(x); y

�

i = hx;�




�

(y

�

)i for any x 2 X and y

�

2 Y

�

.

Consider the family f�




�

(y

�

)g

�2[0;1℄

. Suh family satis�es the onditions

of the theorem of representation due to Negoita and Ralesu [see [7℄℄. In fat,

i) By de�nition, it follows that �




�

(y

�

) 2 K(X

�

) for all � 2 [0; 1℄.

ii) Let � � � be, we shall prove that �




�

(y

�

) � �




�

(y

�

), or equivalently

hx;�




�

(y

�

)i � hx;�




�

(y

�

)i for all x 2 X. Let x 2 X be given. Then

hx;�




�

(y

�

)i = h�

�

(x); y

�

i � h�

�

(x); y

�

i = hx;�




�

(y

�

)i:

iii) Consider the sequene �

1

� �

2

� �

3

� :::, suh that lim

i!1

�

i

= �.

Then,

\

i�1

�

�

i

(x) = �

�

(x):
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Consequently,

hx;\

i�1

�




�

i

(y

�

)i = hx; (\

i�1

�

�

i

)




(y

�

)i

= h\

i�1

�

�

i

(x); y

�

i

= h�

�

(x); y

�

i

= hx;�




�

(y

�

)i:

Follows from theorem of representation that there exists a unique fuzzy set

�




(y

�

) : X

�

! [0; 1℄ suh that

L

�

�




(y

�

) = �




�

(y

�

):

This result generalizes the onept of adjoint of a operator � 2 L(X;F(Y )).

De�nition 4 Let � : X ! F(Y ) be a bounded fuzzy quasilinear operator.

The adjoint of � is the operator �




2 L(Y

�

;F(X

�

) suh that

L

�

�




(y

�

) = �




�

(y

�

):

for all � 2 [0; 1℄ and y

�

2 Y

�

.

5 Fuzzy Di�erential Inlusions

The following de�nition of fuzzy di�erential inlusion was introdued by Zhu

and Rao [see [8℄℄, where they obtained some results onerning existene of

solution.

De�nition 5 Let � : X ! F(X) be a fuzzy valued mappings. Let � : X !

[0; 1℄ be a funtion and let J be an interval in R. We all fuzzy di�erential

inlusion the following problem: to �nd x 2 C(J;X) suh that

_x(t) 2 L

�(x(t))

�(x(t)): (24)

If � : X ! F(X) is a fuzzy quasilinear operator, then the problem (24)

is alled a fuzzy quasilinear di�erential inlusion.

Suppose that the bounded fuzzy quasilinear operator � : R

n

! F(R

n

)

has linear representation, i.e., for eah � 2 [0; 1℄, there exists a ompat set

T

�

in the spae of n� n matries suh that �

�

(x) = T

�

x = fAx ; A 2 T

�

g.

Thus there exists a bounded fuzzy quasilinear operator �




: R

n

! F(R

n

),
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the adjoint of �, and �




�

has linear representation T

�


= fA ; A

�

2 T

�

g for

eah � 2 [0; 1℄.

Let � : R

n

! F(R

n

) be a fuzzy quasilinear operator, and let �




: R

n

!

F(R

n

) be the adjoint of �. The fuzzy di�erential inlusion

_x(t) 2 �L

�(x(t))

�




(x(t))

is alled the adjoint of the fuzzy di�erential inlusions (24).

Proposition 17 Suppose that the fuzzy quasilinear operator � : R

n

! F(R

n

)

has a linear representation. Then � is ontinuous.

Proof. The proof is easy.

We denote by F

C

(X) [see [7℄℄ the subspae ofF(X) for whih the elements

u are suh that the mapping � ! L

�

u is H-ontinuous on [0; 1℄, i.e., given

� > 0, there exists a Æ > 0 suh that j� � �j < Æ implies H(L

�

u; L

�

u) < �:

Sine [0; 1℄ is a ompat metri spae, the appliation � ! L

�

u is, in fat,

uniformly ontinuous.

Proposition 18 Let � : R

n

! F

C

(R

n

) be a fuzzy quasilinear operator with

a linear representation. Suppose that � : X ! [0; 1℄ is ontinuous. Then the

mapping � : X ! F

C

(X), de�ned by �(x) = L

�(x)

�(x), is ontinuous.

Proof. Suppose that x

n

! x in R

n

. Then

H(�(x

n

);�(x)) = H(L

�(x

n

)

�(x

n

); L

�(x)

�(x))

� H(L

�(x

n

)

�(x

n

); L

�(x

n

)

�(x)) +H(L

�(x

n

)

�(x); L

�(x)

�(x))

� D(�(x

n

);�(x)) +H(L

�(x

n

)

�(x); L

�(x)

�(x))! 0:

Theorem 19 Suppose that the fuzzy quasilinear operator � : R

n

! F

C

(R

n

)

has a linear representation and � : R

n

! [0; 1℄ is ontinuous. Moreover, let

x(t) be a solution of the fuzzy di�erential inlusions (24). Then, there exists

a measurable matrix-valued funtion A : J !

S

t2J

T

�(x(t))

suh that x(t) is

an absolutely ontinuous solution of the ordinary linear di�erential equation

_x = A(t)x. Here J is the interval on whih x(t) is de�ned.
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Proof. We de�ne the set valued mapping

�

� : R

n

! K(R

n

) by

�

�(x) = L

�(x)

F (x):

Denote by G = f(x; y) 2 R

n

� R

n

: y 2

�

F (x)g the graph of the set valued

mapping

�

F . Then G is a losed set (Proposition 25). We de�ne the set

valued mapping P : G! K(L(R

n

;R

n

)) by

P (x; y) = fA 2 [

t2J

T

�(x(t))

= Ax = yg:

We shall prove that P has losed graph. Suppose that (x

n

; y

n

) ! (x; y) in

G, A

n

! A in L(R

n

;R

n

) with A

n

x

n

= y

n

. Taking the limit as n ! +1

we have that Ax = y. Furthermore, P (x; y) is bounded. Consequently

P is upper semiontinuous. Let H be the set valued mapping given by

H(t) = P (x(t); _x(t)). H is measurable, sine for any open set U 2 L(R

n

;R

n

),

from the upper semiontinuous of P follows that f(x; y) : P (x; y) � Ug is

an open set. Consequently, ft 2 J ; H(t) � Ug is measurable. Therefore,

it has a measurable single-valued branh A : J ! [

t2J

T

�(x(t))

, A(t) 2 H(t),

suh that _x(t) = A(t)x(t) for a.e. t 2 J .
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