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Abstra
t

We introdu
e the 
on
ept of fuzzy quasilinear spa
e and fuzzy quasilinear

operator. Moreover we state some properties and give results whi
h extend

to the fuzzy 
ontext some results of linear fun
tional analysis.
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1 Introdu
tion

In [1℄ Assev has presented an abstra
t approa
h to the study of spa
es of

subsets and fun
tion spa
es of multivalued mappings, by weakening the re-

quirement of linearity in the 
onstru
tions of linear fun
tional analysis. Assev

introdu
ed the 
on
epts of quasilinear spa
es and quasilinear operators

whi
h enable us to 
onsider both linear spa
e and nonlinear spa
es of subsets

and multivalued mappings from a single point of view. He stated properties

and theorems whi
h are \quasilinear" 
ounterparts of some results in linear

fun
tional analysis and di�erential 
al
ulus in Bana
h spa
es. His work has

motivated us to extend the notion of quasilinear spa
es to the fuzzy 
ontext.

The purpose of this paper is to present the 
on
ept of fuzzy quasilinear

spa
es and to introdu
e a theory of fuzzy quasilinear operators. Motivated
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by the ideas introdu
ed by Assev we give some properties about fuzzy quasi-

linear spa
es and we state some propositions and theorems 
on
erning a

fuzzy \quasilinear" operator theory. For instan
e, we state a fuzzy version of

the Bana
h-Steinhauss theorem and we introdu
e a duality theory for fuzzy

quasilinear operators. We also present some results related to fuzzy di�er-

ential in
lusions. Others appli
ations of this new theory in the dire
tion of

a fuzzy di�erential 
al
ulus have been develop in [4℄. We believe that su
h

results will play a important role in a 
onstru
tion of a 
onsisten
e fuzzy

analysis.

2 Preliminaries

A set X is 
alled a quasilinear spa
e if a partial order relation 6,

an algebrai
 sum operation +, and an operation of multipli
ation by real

numbers �, are de�ned in it and the following properties hold for any elements

x; y; z; v 2 X and any real numbers �; � 2 R:

x 6 x; (1)

x 6 y ; y 6 z ) x 6 z; (2)

x 6 y ; y 6 x ) x = y; (3)

x + y = y + x; (4)

x+ (y + z) = (x+ y) + z; (5)

there exist an element � 2 X, 
alled neutral element, su
h that

x + � = x; (6)

�� (�� x) = (�� �)� x; (7)

�� (x+ y) = �� x+ �� y; (8)

1� x = x; (9)

0� x = �; (10)

(� + �)� x 6 �� x+ �� x; (11)

x 6 y e z 6 v ) x+ z 6 y + v; (12)

x 6 y ) �� x 6 �� y: (13)

An element x

0

2 X is 
alled an inverse of x 2 X, if x + x

0

= �. If an

element x

0

exist, then it is unique. If any element x in the quasilinear spa
e
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X has an inverse element x

0

2 X then the partial order on X is determined

by equality and 
onsequently X is a linear spa
e with s
alars in R.

Let X be a quasilinear spa
e. A real fun
tion k� k

X

: X ! R is 
alled a

norm if the following 
onditions hold:

if x 6= � ) kxk

X

> 0; (14)

kx+ yk

X

5 kxk

X

+ kyk

X

; (15)

k�� xk

X

= j�j kxk

X

; (16)

if x 6 y ) kxk

X

5 kyk

X

; (17)

if for any � > 0, exists an element x

�

2 X su
h that

x 6 y + x

�

and kx

�

k 5 �) x 6 y:

Lemma 1 A sum operation +, the multipli
ation by real numbers and the

norm k:k

X

are 
ontinuous with respe
t to the Hausdor� metri
 H

X

.

A quasilinear spa
e X with a norm de�ned on it is 
alled a normed

quasilinear spa
e. If any x 2 X has an inverse element x

0

2 X, then the


on
ept of a normed quasilinear spa
e 
oin
ides with the 
on
ept of a real

normed linear spa
e.

Let X be a normed quasilinear spa
e. The Hausdor� metri
 on X is

de�ned by

H

X

(x; y) = inffr � 0= x 6 y + a

r

1

; y 6 x + a

r

2

; ka

r

i

k

X

� rg:

Sin
e that x 6 y + (x� y) and y 6 x+ (y � x), the quantity H

X

(x; y) is

de�ned for any elements x; y 2 X, and H

X

(x; y) � kx � yk

X

. It is easy to

see that the fun
tion H

X

(x; y) satis�es all the axioms of a metri
.

Let X be a real normed linear spa
e. Denote by K(X) the spa
e of

nonempty 
losed and bounded subsets of X,i.e.,

K(X) = fA � X= A is nonempty 
losed and boundedg

and denote by K

C

(X) its subspa
e of 
onvex subsets of X:

K

C

(X) = fA 2 K(X)= A is 
onvexg:

The algebrai
 sum operation in K(X) and multipli
ation by a real number

� 2 R are de�ned by the expressions

A+B = fa + b= a 2 A; b 2 Bg; ��A = f�� a= a 2 Ag:
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The spa
e K(X), with the partial order given by the in
lusion, satis�es

the 
onditions (1)-(13). A norm in K(X) is given by kAk

K

= sup

a2A

kak.

Consequently K(X) and K

C

(X) are normed quasilinear spa
es. In this 
ase

the Hausdor� metri
 is de�ned as usual:

H(A;B) = inffr � 0= A � B + rS

1

(0); B � A+ rS

1

(0)g;

where S

1

(0) is the 
losed ball of radius r about 0 2 X.

De�nition 1 Let X and Y be two quasilinear spa
es. A appli
ation � : X !

Y is 
alled quasilinear operator if it satis�es the following 
onditions:

�(�x) = ��(x) 8� 2 R (18)

�(x+ y) 6 �(x) + �(y) 8x; y 2 X (19)

if x 6 y ) �(x) 6 �(y) (20)

A quasilinear operator � : X ! Y is 
alled bounded if exists k > 0 su
h

that

k�(x)k

Y

� kkxk

X

8x 2 X:

We denote by L(X; Y ) the spa
e of all bounded quasilinear operator from

X to Y . We write �

1

6 �

2

if �

1

(x) 6 �

2

(x) 8x 2 X. Multipli
ation by real

numbers is de�ned on L(X; Y ) by the equality (��)(x) = ��(x). Moreover,

the algebrai
 sum on L(X; Y ) is de�ned by the equality (�

1

+ �

2

)(x) =

�

1

(x) + �

2

(x). Then L(X; Y ) is a quasilinear spa
e.

A norm on L(X; Y ) is de�ned by

k�k

L

= sup

kxk

X

=1

k�(x)k

Y

:

Consequently, L(X; Y ) is a normed quasilinear spa
e.

3 Fuzzy Quasilinear Spa
e

Let X be a Bana
h spa
e. A fuzzy set on X is a fun
tion u : X ! [0; 1℄.

For 0 < � � 1, we denote by L

�

u = fx 2 X=u(x) � �g the �-level of u, and

L

0

u = supp(u) = fx 2 X=u(x) > 0g is 
alled the support of u.

A fuzzy set u : X ! [0; 1℄ is 
alled fuzzy 
ompa
t set (fuzzy 
ompa
t


onvex set, respe
tively) if L

�

u is 
ompa
t for all � 2 [0; 1℄ (if L

�

u is 
ompa
t


onvex for all � 2 [0; 1℄, respe
tively).
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We denote by F(X) (F

C

(X), respe
tively) the spa
e of all fuzzy 
ompa
t

sets u : X ! [0; 1℄ (the spa
e of all fuzzy 
ompa
t 
onvex sets u : X ! [0; 1℄,

respe
tively).

Proposition 2 If u 2 F(X), then the family fL

�

u= � 2 [0; 1℄g satis�es the

following properties:

(a) L

0

u � L

�

u � L

�

u 8 0 � � � �:

(b) Se �

n

" �) L

�

u =

T

1

n=1

L

�

n

u

(i.e., the level-appli
ation is left-
ontinuous),

(
) u = v , L

�

u = L

�

v 8� 2 [0; 1℄.

(d) L

�

u 6= ; 8� 2 [0; 1℄, is equivalent to u(x) = 1 for some x 2 X.

If u satis�es this 
ondition we say that u is normal.

(e) We 
an to de�ne a partial order � on F(X) by setting

u � v , u(x) � v(x) 8x 2 X , L

�

u � L

�

v 8� 2 [0; 1℄:

The algebrai
 sum operation and multipli
ation by a real number � 2 R

on F(X) is de�ned by the expression

(u+ v)(x) = sup

y2Y

minfu(y); v(x� y)g and (�u)(x) =

�

u(

x

�

) if � 6= 0

�

f0g

(x) if � = 0

With these de�nitions we obtain L

�

(u + v) = L

�

u + L

�

v and L

�

(�u) =

�L

�

u, for all u; v 2 F(X), � 2 [0; 1℄ and � 2 R.

The spa
e F(X) with the sum, multipli
ation by real numbers and the

partial order, above de�ned, is a quasilinear spa
e with neutral element �

f0g

.

In F(X) we 
an de�ne the norms

kuk

1

= sup

0���1

kL

�

uk

K

:

and

kuk

2

=

Z

1

0

kL

�

uk

K

d�:
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In the �rst 
ase the Hausdor� metri
 is de�ned by

D

1

(u; v) = inffr � 0= u � v + w

r

1

; v � u+ w

r

2

; kw

r

i

k

1

� rg;

or equivalently

D

1

(u; v) = inffr � 0= u � v + r!; v � u+ r!g;

where ! 2 F(X) is the fuzzy-
ompa
t set de�ned by

!(x) =

�

1 if x 2 S

1

(0)

0 if x =2 S

1

(0)

Other form equivalent of write D

1

, using the �-level, is given by

D

1

(u; v) = sup

�2[0;1℄

H(L

�

u; L

�

v):

In the se
ond 
ase, the Hausdor� metri
 is de�ned by

D

2

(u; v) = inffr � 0= u � v + w

r

1

; v � u+ w

r

2

; kw

r

i

k

2

� rg:

By using the �-level, D

2

is equivalent to

D

2

(u; v) =

Z

1

0

H(L

�

u; L

�

v)d�:

The spa
e F(X) extends K(X) in the sense of, for ea
h A 2 K(X), its


hara
teristi
 fun
tions �

A

belongs to F(X). Clearly if A;B 2 K(X), then

D

1

(�

A

; �

B

) = D

2

(�

A

; �

B

) = H(A;B):

It is well known that (F(X); D

1

) is a 
omplete metri
 spa
e, but is not

separable and (F(X); D

2

) is a 
omplete separable metri
 spa
e [see [5℄,[6℄℄.

Hereafter, the spa
e F(X), with normed k:k

F

, will be 
alled fuzzy normed

quasilinear spa
e. The Hausdor� metri
 deriving from k:k

F

will be denote

by D(:; :).

Lemma 3 (a) Suppose that u

n

! u

0

and v

n

! v

0

, and that u

n

� v

n

for

any positive integer n. Then, u

0

� v

0

.

(b) Suppose that u

n

! u

0

and z

n

! u

0

. If u

n

� v

n

� z

n

for all n, then

v

n

! u

0

.
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(
) Suppose that u

n

+ v

n

! u

0

and v

n

! �

f0g

, then u

n

! u

0

.

Proof. (a) If u

n

! u

0

and v

n

! v

0

, then for any � > 0 there exists N su
h

that for any n � N there exist elements a

�

n

; b

�

n

2 F(X) for whi
h

u

0

� u

n

+ a

�

n

; ka

�

n

k

F

� �

and

v

n

� v

0

+ b

�

n

; kb

�

n

k

F

� �:

Thus,

u

0

� v

0

+ a

�

n

+ b

�

n

for n � N . Sin
e ka

�

n

+ b

�

n

k

F

� ka

�

n

k

F

+ kb

�

n

k

F

� 2�, follows from (18) that

u

0

� v

0

. The proofs of (b) and (
) are analogous.

Lemma 4 Let X, Y be two Bana
h spa
e. If 	 : F(X) ! F(Y ) is a

quasilinear operator, then 	(�

f0g

) = �

f0g

.

Proof. The proof is easy.

Lemma 5 A quasilinear operator 	 : F(X)! F(Y ) is bounded if and only

if, is 
ontinuous at �

f0g

2 F(X).

Proof. Suppose that the operator 	 is bounded. Then exist k > 0 su
h

that

k	(u)k

F

� kkuk

F

8u 2 F(X):

So, given � > 0 exists Æ =

�

k

su
h that, if

D(u; �

f0g

) = kuk

F

< Æ;

then

D(	(u);	(�

f0g

)) = k	(u)k

F

� kkuk

F

< kÆ = �:

Thus, 	 is 
ontinuous at �

f0g

. Now suppose that 	 is a quasilinear operator


ontinuous in �

f0g

2 F(X). Then, for any � > 0, exists Æ > 0 su
h that

D(u; �

f0g

) = kuk

F

< Æ, implies

D(	(u);	(�

f0g

)) < � or k	(u)k

F

< �:

So, for any u 2 F(X)

k	(

Æu

2kuk

F

)k

F

< � or k	(u)k

F

<

2�

Æ

kuk

F

:
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Lemma 6 Let 	 : F(X)! F(Y ) be a quasilinear operator. If 	 is 
ontin-

uous at �

f0g

2 F(X), then 	 is uniformly 
ontinuous on F(X).

Proof. Suppose that 	 is 
ontinuous at �

f0g

. Then, for any � > 0, exists

Æ > 0 su
h that

k	(u)k

F

< � if kuk

F

< Æ:

Let u

0

2 F(X) be given. If D(u; u

0

) < Æ, then there exist w

1

; w

2

su
h that

kw

i

k

F

� Æ and u � u

0

+ w

1

; u

0

� u+ w

2

:

Sin
e 	 is a quasilinear operator, it follows that

	(u) � 	(u

0

) + 	(w

1

) and 	(u

0

) � 	(u) + 	(w

2

):

Sin
e kw

i

k

F

< Æ, then

k	(w

i

)k

F

< �:

Consequently, D(	(u);	(u

0

)) < �. This 
ompletes the proof.

Example 1 If f : X ! Y is a fun
tion, its Zadeh extension [see [5℄℄,

�

f :

F(X)! F(Y ), is de�ned by

�

f(u)(x) =

8

<

:

sup

y2f

�1

(x)

u(y) if f

�1

(x) 6= �;

0 if f

�1

(x) = �

If f is 
ontinuous, Then

�

f is a well de�ned fun
tion [see [5℄℄ and

L

�

�

f(u) = f(L

�

u); 8� 2 [0; 1℄ 8u 2 F(X):

Now, suppose that f is linear. Then,

�

f is a quasilinear operator, and from

the 
ontinuity of f follows that

�

f is bounded. Consequently,

�

f is uniformly


ontinuous.

The spa
e L(F(X);F(Y )), of all the bounded quasilinear operator from

F(X) to F(Y ), is a normed quasilinear spa
e, with norm de�ned by

k	k

L

= sup

kuk

F

=1

k	(u)k

F

:
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Lemma 7 Suppose that the sequen
e f	

n

g 2 L(F(X);F(Y )) 
onverges at

ea
h point u 2 F(X). Then the operator

	(u) = lim

n!+1

	

n

(u)

is quasilinear.

Proof. It follows from limit properties.

We de�ne the fun
tion '

!

: [0;+1) ! F(X) by '

!

(t) = t!. It satis�es

the following 
onditions:

u � '

!

(kuk

F

) (21)

if t � s ) '

!

(t) � '

!

(s) (22)

'

!

(t+ s) = '

!

(t) + '

!

(s): (23)

Lemma 8 The operator ' : F(X)! F(Y ), de�ned by

'(u) = '

!

(kuk

F

)

belongs to L(F(X);F(Y )).

Proof. Let u; v 2 F(X) be and suppose that u � v, then kuk

F

� kvk

F

.

Consequently, kuk

F

! � kvk

F

!, so '

!

(kuk

F

) � '

!

(kvk

F

). Moreover,

'

!

(ku+ vk

F

) � '

!

(kuk

F

) + '

!

(kvk

F

):

Now, '

!

(k�uk

F

) = j�j'

!

(kuk

F

). Sin
e, ! = �! = (�1)!, it follows that

'

!

(k�uk

F

) = �'

!

(kuk

F

):

Consequently, '(u) is a quasilinear operator from F(X) to F(Y ). Sin
e,

k'(u)k

F

= k'

!

(kuk

F

)k

F

= k kuk

F

!k

F

= kuk

F

k!k

F

;

we 
on
lude that ' 2 L(F(X);F(Y )).

Remark 1 (a) k'k

L

= 1.

(b) If k	k

L

� k'k

L

, then 	 6 '.

(
) 	 6 k	k

L

'.
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The Hausdor� metri
 on L(F(X);F(Y )) is given by

H

L

(	

1

;	

2

) = inffr > 0= 	

1

6 	

2

+	

r

1

; 	

2

6 	

1

+	

r

2

k	

r

i

k

L

5 rg;

or equivalently,

H

L

(	

1

;	

2

) = inffr > 0 : 	

1

6 	

2

+ r' ; 	

2

6 	

1

+ r'g:

Theorem 9 Suppose that (F(X); D) is a 
omplete metri
 spa
e. Then the

normed quasilinear spa
e (L(F(X);F(Y )); H

L

) is a 
omplete metri
 spa
e.

Proof. Let f	

n

g be a sequen
e of Cau
hy on L(F(X);F(Y )). Then, for

any � > 0, exists a N su
h that for all n;m = N there exist 	

n;m

�

;	

m;n

�

satisfying the 
onditions:

	

n

6 	

m

+	

n;m

�

; 	

m

6 	

n

+	

m;n

�

; k	

n;m

�

k

L

� �:

Consequently, D(	

n

(u);	

m

(u)) � �kuk

F

for any u 2 F(X). So, the se-

quen
e f	

n

(u)g is Cau
hy on F(Y ). Sin
e F(Y ) is 
omplete, there exists an

element 	(u) 2 F(Y ) su
h that

	(u) = lim

n!1

	

n

(u):

Follows from Lema 7 that 	 is a quasilinear operator from F(X) to F(Y ).

Furthermore,

k	

n

(u)k

F

� k	

m

(u)k

F

+ k	

n;m

�

(u)k

F

� (k	

m

k

L

+ �)kuk

F

;

for any n;m � N . Fixing m � N and taking the limit as n ! 1 we get

that

k	(u)k

F

� (k	

m

k

L

+ �)kuk

F

:

Therefore, 	 2 L(F(X);F(Y )). We now prove that f	

n

g 
onverges to 	 in

the quasilinear spa
e L(F(X);F(Y )). Sin
e

D(	

n

(u);	(u)) � D(	

n

(u);	

m

(u)) +D(	

m

(u);	(u))

� �kuk

F

+D(	

m

(u);	(u))

for n;m = N , taking the limit as m!1 we obtain that

D(	

n

(u);	(u)) � �kuk

F

8n � N:
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So, it follows that

	

n

6 	+ �'; 	 6 	

n

+ �' 8n = N:

The next result is an analogous to the Bana
h-Steinhaus theorem.

Theorem 10 Suppose that (F(X); D) is a 
omplete spa
e metri
. Let f	

i

g

be a family of elements in L(F(X);F(Y )) su
h that

sup

i2I

k	

i

(u)k

F

<1 8u 2 F(X):

Then,

sup

i2I

k	

i

k

L

<1:

Equivalently, exists 
 > 0 su
h that

k	

i

(u)k

F

� 
kuk

F

8u 2 F(X); 8i 2 I:

Proof. For ea
h n � 1, we de�ned the sets

Z

n

= fu 2 F(X)= 8n; k	

i

(u)k

F

� ng:

Sin
e 	 is uniformly 
ontinuous, then Z

n

is 
losed in F(X) for ea
h n 2 N ,

and

S

1

n=1

Z

n

= X. Consequently, using the Lema of Baire, intZ

n

0

6= ; for

some n

0

� 1. So, there exist u

0

and r > 0 su
h that S

r

(u

0

) � Z

n

0

. Then,

k	

i

(v)k

F

� n

0

8v 2 S

r

(u

0

):

Now, If kuk

F

� r, then

u

0

� (u

0

+ u)� u ; (u

0

+ u) � u

0

+ u:

Consequently, u

0

+ u 2 S

r

(u

0

). Sin
e u � (u

0

+ u)� u

0

, it follows that

	

i

(u) � 	

i

(u

0

+ u)� 	

i

(u

0

):

Thus

k	

i

(u)k

F

� k	

i

(u

0

+ u)k

F

+ k	

i

(u

0

)k

F

� 2n

0

:

Now, for any u 2 F(X),

k

ru

kuk

F

k

F

= r

Therefore,

k	

i

(u)k

F

�

2n

0

r

kuk

F

;

and the proof is 
omplete.
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Lemma 11 Let f�

i

g

i2I

, �

i

: F(X) ! K(Y ) be a family of bounded quasi-

linear operators su
h that the family f�

i

(u)g

i2I

is bounded in Y for ea
h

u 2 F(X). Then, the appli
ation R : F(X)! K(Y ) de�ned by

R(u) = [

i2I

�

i

(u);

is a bounded quasilinear operator.

Proof. Suppose that u � v, u; v 2 F(X). Then,

R(u) = [

i2I

�

i

(u) � [

i2I

�

i

(v) = R(v):

Further, given u; v 2 F(X);

R(u+ v) = [

i2I

�

i

(u+ v)

� [

i2I

(�

i

(u) + �

i

(v))

� [

i2I

�

i

(u) + [

i2I

�

i

(v)

= R(u) +R(v):

Moreover,

R(�u) = [

i2I

�

i

(�u) = [

i2I

��

i

(u) = �[

i2I

�

i

(u) = �R(u);

for any u 2 F(X) and any � 2 R. Consequently, R : F(X) ! K(Y ) is

a quasilinear operator. Now, we shall prove that R is bounded. We de�ne

	

i

: F(X) ! F(Y ) by 	

i

(u) = �

f�

i

(u)g

. Sin
e �

i

is bounded quasilinear

operator for ea
h i 2 I, it follows that 	

i

is a quasilinear operator for ea
h

i 2 I. Now,

sup

i2I

k	

i

(u)k

F

= sup

i2I

k�

�

i

(u)

k

F

= sup

i2I

k�

i

(u)k

K

<1:

Then, by the Theorem 10, exists 
 > 0 su
h that

k�

i

(u)k

K

= k	

i

(u)k

F

� 
kuk

F

8u 2 F(X); 8i 2 I:

So,

kR(u)k

K

= k[

i2I

�

i

(u)k

K

� 
kuk

F

8u 2 F(X):

Consequently, R is bounded.

12



Lemma 12 (a) An element 	 2 L(F(X);F(Y )) satis�es the 
ondition of

Lips
hitz with 
onstant k	k

L

.

(b) If 	

1

2 L(F(X);F(Y )) and 	

2

2 L(F(Y );F(Z)). Then, the operator

	 = 	

2

Æ	

1

is in the spa
e L(F(X);F(Z)).

Proof.

Denote by F(X)

N

the spa
e L(F(X); K(R)), and by 
oF(X)

N

the spa
e

L(F(X); K

C

(R)). A quasilinear operator � fromF(X) toK(R) will be 
alled

quasilinear fun
tional.

Let 	 2 L(F(X);F(Y )). Then, for ea
h � 2 F(Y )

N

we 
an asso
iate

an element � 2 F(X)

N

in a

ording to the rule �(u) = (�o	)(u). Conse-

quently, the operator 	

N

: F(Y )

N

! F(X)

N

given by 	

N

(�) = �o	 is

well de�ned.

Proposition 13 Let 	 2 L(F(X);F(Y )) be any. Then,

(a) 	

N

2 L(F(Y )

N

;F(X)

N

).

(b) k	

N

k

L

= k	k

L

:

Proof. (a) Let �

1

;�

2

2 F(Y )

N

and let � 2 R be given. Then,

	

N

(�

1

+ �

2

)(u) = (�

1

+ �

2

)(	(u))

= �

1

(	(u)) + �

2

(	(u))

= (	

N

(�

1

) + 	

N

(�

2

))(u):

Consequently,

	

N

(�

1

+ �

2

) � 	

N

(�

1

) + 	

N

(�

2

):

Moreover,

	

N

(��)(u) = ��(	(u)) = �	

N

(�)(u):

Then, 	

N

(��) = �	

N

(�). Now, suppose that �

1

6 �

2

. Then,

	

N

(�

1

)(u) = �

1

(	(u)) 6 �

2

(	(u)) = 	

N

(�

2

)(u):

So, 	

N

(�

1

) 6 	

N

(�

2

). Consequently, the operator 	

N

: F(X)

N

! F(Y )

N

is quasilinear. Sin
e

k	

N

(�)k

L

= sup

kuk

F

=1

k�(	(u))k

F

� k�k

L

k	k

L

;

13



the quasilinear operator 	

N

is bounded, and k	

N

k

L

� k	k

L

.

(b) We shall prove that k	

N

k

L

� k	k

L

. The element �

0

(u) = [�kuk

F

; kuk

F

℄

is in the spa
e F(Y )

N

, and k�

0

k

L

= 1. Then,

k	

N

k

L

= sup

k�k

L

=1

k	

N

(�)k

L

� k	

N

(�

0

)k

L

= sup

kuk

F

=1

k�

0

(	(u))k

F

= sup

kuk

F

=1

k	(u)k

F

= k	k

L

:

Therefore, k	

N

k

L

> k	k

L

.

4 Fuzzy quasilinear operator

The spa
e L(X; Y ) 
onsisting of all bounded linear operators from X to

Y is also a normed linear spa
e. Consequently, the normed quasilinear

spa
e K(L(X; Y )) is well de�ned (See Example 1). Ea
h element T 2

K(L(X; Y )) de�nes a bounded set-valued quasilinear mapping �(x) = Tx =

fAx : A 2 Tg from X to K(Y ):

De�nition 2 We say that an element � 2 L(X;K(Y )) has a linear rep-

resentation if exist an element T 2 K(L(X; Y )) su
h that

�(x) = Tx = fAx ; A 2 Tg:

The next result is important and ne
essary to de�ne the adjoint of a

quasilinear operator (see [1℄).

Theorem 14 Suppose that � 2 L(X

�

; K

C

(R)). Then there exists a unique


losed bounded 
onvex subset F � X su
h that for any x

�

2 X

�

�(x

�

) = hF; x

�

i = fhf; x

�

i ; f 2 Fg:

Corollary 15 If X is a 
omplete re
exive normed linear spa
e, then any

bounded quasilinear operator � : X ! K

C

(R) has a linear representation.

14



Let X, Y be two normed linear spa
es, and let � : X ! K(Y ) be a

bounded quasilinear operator. Then there exists a unique bounded quasilin-

ear operator �




: Y

�

! K

C

(X

�

) su
h that h�(x); y

�

i = hx;�




(y

�

)i, for all

x 2 X and y

�

2 Y

�

[see [1℄℄. The operator �




2 L(Y

�

; K(X

�

)) is 
alled the

adjoint of the operator � 2 L(X;K(Y )).

An appli
ation � : X ! F(Y ) is 
alled fuzzy quasilinear operator if

� satis�es the 
onditions (19), (20), i.e.,

�(�x) = ��(x) 8x 2 X ; 8� 2 R; �(x

1

+x

2

) � �(x

1

)+�(x

2

) 8x

1

; x

2

2 X:

The 
ondition (21) is automati
ally satis�ed.

Let � : X ! F(Y ) be a bounded fuzzy quasilinear operator. Then, for

any � 2 [0; 1℄, the appli
ation of level �

�

: X ! K(Y ), de�ned by

�

�

(x) = L

�

�(x);

is a bounded quasilinear operator.

De�nition 3 A fuzzy valued mapping � : X ! F(Y ) has a linear rep-

resentation if, for ea
h � 2 [0; 1℄, the appli
ation of level �

�

has a linear

representation.

Proposition 16 Let X be a 
omplete re
exive normed linear spa
e. Then

ea
h bounded fuzzy quasilinear operator � : X ! F

C

(R) has a linear repre-

sentation.

Proof. Follows from 
orollary 15.

Given a bounded fuzzy quasilinear operator � : X ! F(Y ), for ea
h

� 2 [0; 1℄ there exists a operator �




�

: Y

�

! K(X

�

), the adjoint of �

�

, su
h

that h�

�

(x); y

�

i = hx;�




�

(y

�

)i for any x 2 X and y

�

2 Y

�

.

Consider the family f�




�

(y

�

)g

�2[0;1℄

. Su
h family satis�es the 
onditions

of the theorem of representation due to Negoita and Rales
u [see [7℄℄. In fa
t,

i) By de�nition, it follows that �




�

(y

�

) 2 K(X

�

) for all � 2 [0; 1℄.

ii) Let � � � be, we shall prove that �




�

(y

�

) � �




�

(y

�

), or equivalently

hx;�




�

(y

�

)i � hx;�




�

(y

�

)i for all x 2 X. Let x 2 X be given. Then

hx;�




�

(y

�

)i = h�

�

(x); y

�

i � h�

�

(x); y

�

i = hx;�




�

(y

�

)i:

iii) Consider the sequen
e �

1

� �

2

� �

3

� :::, su
h that lim

i!1

�

i

= �.

Then,

\

i�1

�

�

i

(x) = �

�

(x):
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Consequently,

hx;\

i�1

�




�

i

(y

�

)i = hx; (\

i�1

�

�

i

)




(y

�

)i

= h\

i�1

�

�

i

(x); y

�

i

= h�

�

(x); y

�

i

= hx;�




�

(y

�

)i:

Follows from theorem of representation that there exists a unique fuzzy set

�




(y

�

) : X

�

! [0; 1℄ su
h that

L

�

�




(y

�

) = �




�

(y

�

):

This result generalizes the 
on
ept of adjoint of a operator � 2 L(X;F(Y )).

De�nition 4 Let � : X ! F(Y ) be a bounded fuzzy quasilinear operator.

The adjoint of � is the operator �




2 L(Y

�

;F(X

�

) su
h that

L

�

�




(y

�

) = �




�

(y

�

):

for all � 2 [0; 1℄ and y

�

2 Y

�

.

5 Fuzzy Di�erential In
lusions

The following de�nition of fuzzy di�erential in
lusion was introdu
ed by Zhu

and Rao [see [8℄℄, where they obtained some results 
on
erning existen
e of

solution.

De�nition 5 Let � : X ! F(X) be a fuzzy valued mappings. Let � : X !

[0; 1℄ be a fun
tion and let J be an interval in R. We 
all fuzzy di�erential

in
lusion the following problem: to �nd x 2 C(J;X) su
h that

_x(t) 2 L

�(x(t))

�(x(t)): (24)

If � : X ! F(X) is a fuzzy quasilinear operator, then the problem (24)

is 
alled a fuzzy quasilinear di�erential in
lusion.

Suppose that the bounded fuzzy quasilinear operator � : R

n

! F(R

n

)

has linear representation, i.e., for ea
h � 2 [0; 1℄, there exists a 
ompa
t set

T

�

in the spa
e of n� n matri
es su
h that �

�

(x) = T

�

x = fAx ; A 2 T

�

g.

Thus there exists a bounded fuzzy quasilinear operator �




: R

n

! F(R

n

),
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the adjoint of �, and �




�

has linear representation T

�


= fA ; A

�

2 T

�

g for

ea
h � 2 [0; 1℄.

Let � : R

n

! F(R

n

) be a fuzzy quasilinear operator, and let �




: R

n

!

F(R

n

) be the adjoint of �. The fuzzy di�erential in
lusion

_x(t) 2 �L

�(x(t))

�




(x(t))

is 
alled the adjoint of the fuzzy di�erential in
lusions (24).

Proposition 17 Suppose that the fuzzy quasilinear operator � : R

n

! F(R

n

)

has a linear representation. Then � is 
ontinuous.

Proof. The proof is easy.

We denote by F

C

(X) [see [7℄℄ the subspa
e ofF(X) for whi
h the elements

u are su
h that the mapping � ! L

�

u is H-
ontinuous on [0; 1℄, i.e., given

� > 0, there exists a Æ > 0 su
h that j� � �j < Æ implies H(L

�

u; L

�

u) < �:

Sin
e [0; 1℄ is a 
ompa
t metri
 spa
e, the appli
ation � ! L

�

u is, in fa
t,

uniformly 
ontinuous.

Proposition 18 Let � : R

n

! F

C

(R

n

) be a fuzzy quasilinear operator with

a linear representation. Suppose that � : X ! [0; 1℄ is 
ontinuous. Then the

mapping � : X ! F

C

(X), de�ned by �(x) = L

�(x)

�(x), is 
ontinuous.

Proof. Suppose that x

n

! x in R

n

. Then

H(�(x

n

);�(x)) = H(L

�(x

n

)

�(x

n

); L

�(x)

�(x))

� H(L

�(x

n

)

�(x

n

); L

�(x

n

)

�(x)) +H(L

�(x

n

)

�(x); L

�(x)

�(x))

� D(�(x

n

);�(x)) +H(L

�(x

n

)

�(x); L

�(x)

�(x))! 0:

Theorem 19 Suppose that the fuzzy quasilinear operator � : R

n

! F

C

(R

n

)

has a linear representation and � : R

n

! [0; 1℄ is 
ontinuous. Moreover, let

x(t) be a solution of the fuzzy di�erential in
lusions (24). Then, there exists

a measurable matrix-valued fun
tion A : J !

S

t2J

T

�(x(t))

su
h that x(t) is

an absolutely 
ontinuous solution of the ordinary linear di�erential equation

_x = A(t)x. Here J is the interval on whi
h x(t) is de�ned.
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Proof. We de�ne the set valued mapping

�

� : R

n

! K(R

n

) by

�

�(x) = L

�(x)

F (x):

Denote by G = f(x; y) 2 R

n

� R

n

: y 2

�

F (x)g the graph of the set valued

mapping

�

F . Then G is a 
losed set (Proposition 25). We de�ne the set

valued mapping P : G! K(L(R

n

;R

n

)) by

P (x; y) = fA 2 [

t2J

T

�(x(t))

= Ax = yg:

We shall prove that P has 
losed graph. Suppose that (x

n

; y

n

) ! (x; y) in

G, A

n

! A in L(R

n

;R

n

) with A

n

x

n

= y

n

. Taking the limit as n ! +1

we have that Ax = y. Furthermore, P (x; y) is bounded. Consequently

P is upper semi
ontinuous. Let H be the set valued mapping given by

H(t) = P (x(t); _x(t)). H is measurable, sin
e for any open set U 2 L(R

n

;R

n

),

from the upper semi
ontinuous of P follows that f(x; y) : P (x; y) � Ug is

an open set. Consequently, ft 2 J ; H(t) � Ug is measurable. Therefore,

it has a measurable single-valued bran
h A : J ! [

t2J

T

�(x(t))

, A(t) 2 H(t),

su
h that _x(t) = A(t)x(t) for a.e. t 2 J .
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