
On the di�erentiability of fuzzy-valued

mappings and the stability of a fuzzy

di�erential in
lusion

Yurilev Chal
o-Cano

1;2

, Marko A. Rojas-Medar

3;4

IMECC-UNICAMP, CP 6065, 13081-970, Campinas-SP, Brazil

and

Adilson J. V. Brand~ao

5

DEMAT-ICEB-UFOP, Ouro Preto-MG, Brazil

Abstra
t

We introdu
e a new 
on
ept of di�erentiability for fuzzy-valued mapping

and we study some of its properties. Using this 
on
ept, we give a result on

stability of the Lyapunov type for fuzzy di�erential in
lusions.

Keywords

Fuzzy sets, di�erentiability, fuzzy-valued mappings, stability of fuzzy di�er-

ential in
lusions.

1 Introdu
tion

The 
on
ept of di�erentiability for fuzzy valued mappings has been 
onsid-

ered by many authors from di�erent points of view. For instan
e, the 
on
ept

of H�di�erentiability due to Puri and Rales
u[14℄ has been studied and ap-

plied by several mathemati
ians in the 
ontext of fuzzy di�erential equations,

in
luding Ding and Kandel [5℄, Kaleva[9, 10℄ and Seikkala[18℄. Goets
hel and

Voxman [7℄ have introdu
ed the notion of a derivative for fuzzy mappings of
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one variable. Basi
ally, they viewed fuzzy numbers in a topologi
al ve
tor

spa
e and then they de�ned di�erentiation of fuzzy mappings of one variable

in ways paralleling the de�nition of real-valued fun
tions. Syau [19℄ extends

su
h de�nition for fuzzy mappings of several variables. Others 
on
epts of

di�erentiability were introdu
ed by Diamond and Kloeden[6℄ and Rom�an-

Flores and Rojas-Medar[17℄, whi
h extend to the fuzzy 
ontext, the 
on
epts

of Fr�e
het di�erentiability (see De Blasi[4℄) and Gâteaux di�erentiability (see

Ibrahim[8℄) for set-valued mappings respe
tively.

As we know, the main idea of the 
lassi
 di�erential 
al
ulus 
onsists

in lo
al approximation of a mapping by a linear operator. In this arti
le we

propose a new notion of di�erentiability for fuzzy mappings, where the role of

linear operators is played, in the fuzzy 
ontext, by fuzzy quasilinear operators.

The theory of fuzzy quasilinear spa
es and fuzzy quasilinear operators have

been introdu
ed by the authors in [3℄, inspired in the 
on
ept of quasilinear

spa
es and quasilinear operators given by Assev in [1℄.

This new 
on
ept of di�erentiability is followed by some properties, ex-

amples and rules of 
al
ulus. As an appli
ation of our results we prove a

theorem on stability of a fuzzy di�erential in
lusion. Zhu and Rao [20℄ have

introdu
ed a notion of fuzzy di�erential in
lusion and stated some results

on existen
e of solution. This work has motivated us to develop some ideas


on
erning stability of fuzzy di�erential in
lusion by using our new notion of

di�erentiability of fuzzy mappings.

The stru
ture of this paper is as follows. In se
tion 2 we give the def-

initions and previous results that will be used in this arti
le. In se
tion 3

we introdu
e the 
on
epts of Fr�e
het and Gâteaux di�erentiability for fuzzy

valued mappings and we give some properties. In se
tion 4 we present some

rules of 
al
ulus and in the last se
tion we give some appli
ations on stability

of fuzzy di�erential in
lusions.

2 Preliminaries

Let Y be a real separable Bana
h spa
e with norm k � k and dual Y

�

. Let

K(Y ) and K

C

(Y ) be respe
tively, the 
lass of all nonempty and 
ompa
t

subsets of Y and the 
lass of all nonempty 
ompa
t and 
onvex subsets of Y .

The Hausdor� metri
 H on K(Y ) is de�ned by

H(A;B) = inffr � 0 : A � B + rS

1

(�); B � A+ rS

1

(�)g;
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where S

1

(�) is the 
losed ball of radius 1 about � 2 Y . It is known that

(K(Y ); H) is a 
omplete and separable metri
 spa
e and K

C

(Y ) is a 
losed

subspa
e of K(Y ) [see [2℄, [6℄, [16℄℄. Also, the algebrai
 sum operation and

multipli
ation by a real number � 2 R on K(Y ) is de�ned by

A +B = fa+ b= a 2 A; b 2 Bg and �A = f�a=a 2 Ag ;

for all A;B 2 K(Y ) and � 2 R.

For any A 2 K(Y ); the support fun
tion s

A

of A is de�ned on Y

�

as

s

A

(x

�

) =sup

a2A

x

�

; 8x

�

2 Y

�

:

Given A;B 2 K(Y ) we have that

s

A+B

(x

�

) = s

A

(x

�

) + s

B

(x

�

):

A fuzzy set of Y is a fun
tion u : Y ! [0; 1℄ and, for 0 < � � 1, we

denote by L

�

u = fy 2 Y=u(y) � �g the �-level of u, and L

0

u = supp(u) =

fy 2 Y=u(y) > 0g is 
alled the support of u.

A fuzzy set u : Y ! [0; 1℄ is 
alled fuzzy 
ompa
t set (fuzzy 
ompa
t


onvex set, respe
tively) if L

�

u is 
ompa
t for all � 2 [0; 1℄ (if L

�

u is 
ompa
t


onvex for all � 2 [0; 1℄, respe
tively).

We denote by F(Y ) (F

C

(Y ), respe
tively) the spa
e of all fuzzy 
ompa
t

sets u : Y ! [0; 1℄ (the spa
e of all fuzzy 
ompa
t 
onvex sets u : Y ! [0; 1℄,

respe
tively).

Remark 1 If u 2 F(Y ), then the family fL

�

u : � 2 [0; 1℄g satis�es the

following properties:

(a) L

0

u � L

�

u � L

�

u 8 0 � � � �:

(b) Se �

n

" �) L

�

u =

T

1

n=1

L

�

n

u

(i.e., the level-appli
ation is left-
ontinuous).

(
) u = v , L

�

u = L

�

v 8� 2 [0; 1℄.

(d) L

�

u 6= ; 8� 2 [0; 1℄, is equivalent to u(y) = 1 for some x 2 Y .

If u satis�es this 
ondition we say that u is normal.
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(e) We 
an de�ne a partial order � on F(Y ) by setting

u � v , u(y) � v(y) 8y 2 Y , L

�

u � L

�

v 8� 2 [0; 1℄:

The algebrai
 sum operation and multipli
ation by a real number � 2 R

on F(Y ) is de�ned by

(u+ v)(x) = sup

y+z=x

minfu(y); v(z)g and (�u)(x) =

�

u(

x

�

) if � 6= 0;

�

f�g

(x) if � = 0:

With these de�nitions we obtain L

�

(u + v) = L

�

u + L

�

v and L

�

(�u) =

�L

�

u, for all u; v 2 F(Y ), � 2 [0; 1℄ and � 2 R[see [2℄, [6℄, [16℄℄.

The quasinorm on F(Y ) is de�ned by

kuk

F

= sup

05�51

kL

�

uk = kL

0

uk;

where kL

�

uk = sup

y2L

�

u

kyk. Then, F(Y ) and F

C

(Y ), with the operation

algebrai
 and partial order � de�ned above, are normed quasilinear spa
es

[see [1℄,[3℄℄.

Also, we 
an de�ne a metri
 on F(Y ) as follows:

D(u; v) = sup

�2[0;1℄

H(L

�

u; L

�

v);

where H de�ne the Hausdor� metri
 [see [1℄, [2℄, [3℄, [6℄℄.

It is known that (F(Y ); D) is a 
omplete but non-separable metri
 spa
e

[see [16℄℄.

Proposition 1 (see [2℄, [3℄, [6℄, [16℄) If u; v; w; u

1

; v

1

2 F(Y ). Then

(a) D(�u; �v) = �D(u; v), for all � � 0.

(b) D(u+ v; u

1

+ v

1

) � D(u+ u

1

; v + v

1

).

If u; v 2 F

C

(Y ) we have

(
) D(u+ w; v + w) = D(u; v).

An appli
ation � : X ! F(Y ) is 
alled a fuzzy valued mapping.
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De�nition 1 A fuzzy valued mapping � : X ! F(Y ) will be 
alled a quasi-

linear operator if it satis�es the following 
onditions:

F (�x) = �F (x) 8x 2 X ; 8� 2 R (1)

F (x

1

+ x

2

) � F (x

1

) + F (x

2

) 8x

1

; x

2

2 X: (2)

A fuzzy valued mapping � : X ! F(Y ) is said to be bounded if there

exists a number k > 0 su
h that k�(x)k

F

� kkxk for any x 2 X.

Theorem 2 ([1℄, [3℄)The quasilinear operator � : X ! F(Y ) is bounded if

and only if it is 
ontinuous at the point � 2 X. The 
ontinuity of � at �

implies that it is uniformly 
ontinuous on X.

Denote by L(X;F(Y )) the spa
e of all bounded quasilinear operators

from X to F(Y ). We write �

1

� �

2

if �

1

(x) � �

2

(x) for any x 2 X.

Multipli
ation by real numbers is de�ned on L(X;F(Y )) by the equality

(��)(x) = ��(x). Moreover, it is assumed that the operation of algebrai


sum is de�ned on L(X;F(Y )) by the equality (�

1

+�

2

)(x) = �

1

(x) + �

2

(x).

The spa
e L(X;F(Y )) is 
losed under these operation of algebrai
 sum and

multipli
ation by real numbers. Then L(X;F(Y )) is a quasilinear spa
e.

The quasinorm on L(X;F(Y )) is de�ned by

k�k

L

= sup

kxk=1

k�(x)k

F

:

Then L(X;F(Y )) is a normed quasilinear spa
e.

3 Di�erentiability of fuzzy mappings

In this se
tion we extend the notion of Fr�e
het di�erentiability to the fuzzy-

valued 
ontext, by using the 
on
ept of bounded quasilinear operator.

De�nition 2 A fuzzy valued mapping � : X ! F(Y )is said to be Fr�e
het

di�erentiable at x

0

2 X if exists a bounded quasilinear operator D

F

x

0

(�) :

X ! F

C

(Y ) su
h that

D(�(x);�(x

0

) +D

F

x

0

(�)(x� x

0

)) = o(kx� x

0

k):

The quasilinear operator D

F

x

0

(�) is 
alled the Fr�e
het di�erential of � at x

0

.

5



Theorem 3 The Fr�e
het di�erential D

F

x

0

(�) is unique if it exists.

Proof: Let D

F

x

0

(�) and D

F

x

0

(�) be two di�erentials of � at x

0

. Then, by

Proposition 1, we have that

D(D

F

x

0

(�)(x� x

0

);D

F

x

0

(�)(x� x

0

))

= D(�(x

0

) +D

F

x

0

(�)(x� x

0

);�(x

0

) +D

F

x

0

(�)(x� x

0

))

� D(�(x);�(x

0

) +D

F

x

0

(�)(x� x

0

))

+D(�(x);�(x

0

) +D

F

x

0

(�)(x� x

0

))

= o(kx� x

0

k):

Thus, D(D

F

x

0

(�)(x � x

0

);D

F

x

0

(�)(x � x

0

)) = o(kx � x

0

k) for all x 2 X.

This prove que D

F

x

0

(�) = D

F

x

0

(�).

Proposition 4 A fuzzy valued appli
ation � : X ! F(Y ) is 
onstant if and

only if, for every x

0

2 X, D

F

x

0

(�)(x) = �

f�g

8x 2 X:

Proposition 5 Let � : X ! F(Y ) be a bounded quasilinear operator. Then

� is Fr�e
het di�erentiable at � 2 X and D

F

�

(�) = �.

Theorem 6 If � : X ! F(Y ) is di�erentiable at x

0

, then � is 
ontinuous

at x

0

.

Proof: Suppose that x

i

! x

0

, then

D(�(x

i

);�(x

0

)) � D(�(x

i

);�(x

0

) +D

F

x

0

(�)(x

i

� x

0

))

+D(�(x

0

);�(x

0

) +D

F

x

0

(�)(x

i

� x

0

))

= o(kx

i

� x

0

k) + kD

F

x

0

(�)k

F

kx

i

� x

0

k ! 0

as i!1. The Theorem is proved.

Let � : X ! F(Y ) be a fuzzy-valued mapping. The level set-valued

mapping �

�

: X ! F(Y ), with � 2 [0; 1℄; is de�ned by

�

�

(x) = L

�

�(x):
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Proposition 7 If � is di�erentiable at x

0

; then the level set-valued mapping

�

�

is di�erential at x

0

for ea
h � 2 [0; 1℄ and

D

F

x

0

(�

�

) = L

�

D

F

x

0

(�):

Proof.

Let � 2 [0; 1℄ be arbitrary. Then

H(L

�

�(x); L

�

�(x

0

) + L

�

D

F

x

0

(�)(x� x

0

))

= H(L

�

�(x); L

�

(�(x

0

) +D

F

x

0

(�)(x� x

0

)))

� D(�(x);�(x

0

) +D

F

x

0

(�)(x� x

0

))

= o(kx� x

0

k)

Consequently, the proposition is proved.

Example 1 Let X = [0; 1℄ be given. Consider the fuzzy valued mapping

� : [0; 1℄! F([0; 1℄) de�ned by

�(t)(x) =

�

x

t

if x � t

0 otherwise,

if t 6= 0, and �(0) = �

[0;1℄

. It is easily seen that L

�

�(t) = [�t; 1℄ for ea
h

� 2 [0; 1℄. Now,

D(�(t);�(0) + �

f0g

) = sup

�2[0;1℄

H([�t; 1℄; [0; 1℄ + f0g)

= sup

�2[0;1℄

H([�t; 1℄; [0; 1℄)

= sup

�2[0;1℄

j�tj = jtj:

It follows that � is Fr�e
het di�erentiable at t = 0 and D

F

0

(�)(x) = �

f0g

. It


an be easily 
he
ked that for ea
h � 2 [0; 1℄ the level set valued mapping �

�

is not di�erentiable at t 6= 0. Consequently, � is di�erentiable only at t = 0.

De�nition 3 A fuzzy valued mapping � : X ! F(Y ) is Gâteaux di�er-

entiable at x

0

2 X if exists an bounded quasilinear operator D

G

x

0

(�) : X !

F

C

(Y ) su
h that, for all z 2 X

D(�(x

0

+ tz);�(x

0

) + tD

G

x

0

(�)(z)) = o(t) as t! +0:

D

G

x

0

(�)(z) is 
alled the Gâteaux derivative of � at x

0

.
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Theorem 8 The Gâteaux derivative is unique if it exists.

Proof: Let D

G

x

0

(�) and D

G

x

0

(�) two derivatives of � at x

0

. Then, from

Proposition 1 follows that

D(D

G

x

0

(�)(tz);D

G

x

0

(�)(tz)) = D(�(x

0

) +D

G

x

0

(�)(tz);�(x

0

) +D

G

x

0

(�)(tz))

� D(�(x

0

+ tz);�(x

0

) +D

G

x

0

(�)(tz))

+D(�(x

0

+ tz);�(x

0

) +D

G

x

0

(�)(tz))

= o(t) as t! +0

Consequently,

D(D

G

x

0

(�)(z);D

G

x

0

(�)(z)) =

o(t)

t

as t! +0:

Therefore, D

G

x

0

(�)(z) = D

G

x

0

(�)(z) for all z 2 X.

Theorem 9 Suppose that a fuzzy valued mapping � : X ! F(Y ) is Fr�e
het

di�erentiability at x

0

2 X. Then, � is Gâteaux di�erentiable and

D

G

x

0

(�) = D

F

x

0

(�):

Proof:

D(�(x

0

+ tz);�(x

0

) + tD

F

x

0

(�)(z))

= D(�(x

0

+ tz);�(x

0

) +D

F

x

0

(�)(tz))

= o(tkzk) = o(t) as t! +1:

De�nition 4 A fuzzy-valued mapping � : X ! F(Y ) is De Blasi di�er-

entiable at x

0

2 X if exists an upper semi
ontinuous, positive homogeneous

mapping D

F

x

0

(�) : X ! F

C

(Y ) su
h that

D(�(x

0

+ x);�(x

0

) + D

F

x

0

(�)(x)) = o(kxk):

The mapping D

F

x

0

(�) is 
alled the De Blasi di�erential of � at x

0

.
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De�nition 5 A fuzzy-valued mapping � : X ! F(Y ) is Ibrahim-Gâteaux

di�erentiable at x

0

2 X if exists an upper semi
ontinuous, positive homoge-

neous mapping D

G

x

0

(�) : X ! F

C

(Y ) su
h that, for all z 2 X

D(�(x

0

+ tz);�(x

0

) + tD

G

x

0

(�)(z)) = o(t) as t! +0:

D

F

x

0

(�) is 
alled the Ibrahim-Gâteaux di�erential of � at x

0

.

It is 
lear that if � : X ! F(Y ) is Fr�e
het di�erentiable at x

0

(Gâteaux

di�erential) then � is De Blasi di�erentiable at x

0

(Ibrahim-Gâteaux dif-

ferential, respe
tively) and D

F

x

0

(�)(x) = D

F

x

0

(�)(x) (D

G

x

0

(�)(x) = D

G

x

0

(�)(x)

respe
tively).

4 Rules of 
al
ulus

Theorem 10 Let �

1

and �

2

be two fuzzy valued mapping from X to F(Y ).

If �

1

and �

2

are Fr�e
het di�erentiable at x

0

2 X, then the mapping � =

��

1

+ ��

2

with �; � 2 R, is Fr�e
het di�erentiable at x

0

, and

D

F

x

0

(��

1

+ ��

2

) = �D

F

x

0

(�

1

) + �D

F

x

0

(�

2

):

Proof:

D(�(x);�(x

0

) + (�D

F

x

0

(�

1

) + �D

F

x

0

(�

2

))(x� x

0

))

� D(��

1

(x); ��

1

(x

0

) + �D

F

x

0

(�

1

)(x� x

0

))

+D(��

2

(x); ��

2

(x

0

) + �D

F

x

0

(�

2

)(x� x

0

))

� j�jo(kx� x

0

k) + j�jo(kx� x

0

k)

= o(kx� x

0

k):

This prove the Theorem.

Remark 2 Theorem 12 still holds if we suppose that �

1

and �

2

are Gâteaux

di�erentiable at x

0

.

Theorem 11 A fuzzy valued mapping � : X ! F

C

(Y ) is Gâteaux di�eren-

tiable at x

0

if and only if, the support fun
tion S

�(x)

(�;  ) is Gâteaux di�er-

entiable at x

0

and D

G

x

0

(S

�(x)

) is a support fun
tion. Moreover, in this 
ase

D

G

x

0

(S

�(x)

)(�;  ) = S

D

G

x

0

(�)(x)

(�;  ):
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Proof: Suppose that � is di�erentiable at x

0

and z 2 X. Then

1

t

kS

�(x

0

+t:z)

(�;  )� S

�(x

0

)

� t:S

D

G

x

0

(�)(z)

(�;  )k

=

1

t

kS

�(x

0

+t:z)

(�;  )� S

�(x

0

)+t:D

G

x

0

(�)(z)

(�;  )k

�

1

t

D(�(x

0

+ t:z);�(x

0

) + t:D

G

x

0

(�)(z))k(�;  )k

=

o(t)

t

! 0 as t! +0:

Thus, a support fun
tion S

�(x)

(� ) is Gâteaux di�erentiable at x

0

and

D

G

x

0

(S

�(x)

(�;  )) = S

D

G

x

0

(�(x))

(�;  ):

Conversely, suppose that S

�(x)

(� ) is di�erentiable at x

0

andD

G

x

0

(S

�(x)

)(�;  ) =

S

�

(�;  ). Then, for any z 2 X

D(�(x

0

+ t:z);�(x

0

) + t:�)

= max

k(�; )k=1

kS

�(x

0

+t:z)

(�;  )� S

�(x

0

)+t:�

(�;  )k

= max

k(�; )k=1

kS

�(x

0

+t:z)

(�;  )� S

�(x

0

)

(�;  )� t:S

�

(�;  )k

= o(t)

as t! +0 and the Theorem is proved.

5 Stability of Fuzzy Di�erential In
lusion

Let � : X ! F(X) be a fuzzy-valued mapping. Let � : X ! [0; 1℄ be a

fun
tion and J a interval in R. The problem [see [20℄℄: �nd x 2 C(J;X) su
h

that

x

0

(t) 2 L

�(x(t))

�(x(t)) (3)

is said a fuzzy di�erential in
lusion.

10



A quasilinear di�erential in
lusion is de�ned by a di�erential in
lusion of

form

x

0

2 F (x);

where F : X ! K

C

(X) is a quasilinear operator.

Consider the fuzzy di�erential in
lusion (3), assuming the 
ondition

�(�) = �

f�g

. We say that the equilibrium position x = � of (3) is

Lyapunov-stable if the following 
onditions hold;

(a) There is a Æ

0

> 0 su
h that if kx(t

0

)k < Æ

0

, then there exists a

solution x(t) su
h that kx(t)k < Æ

0

for any t � t

0

.

(b) For any � > 0 there exists a 0 < Æ

1

� Æ

0

su
h that if kx(t

0

)k < Æ

1

,

then kx(t)k < � for any t � t

0

.

A Lyapunov-stable equilibrium position x = � is said to be asymp-

toti
ally stable is there exists a positive number Æ

2

� Æ

0

su
h that if

kx(t

0

)k < Æ

2

, then lim

t!1

kx(t)k = 0.

The next result was proved in [12℄

Theorem 12 Suppose that the set-valued mapping F : X ! K

C

(X) is

positive-homogeneous and upper semi
ontinuous. Assume that any so-

lution x(t) of the di�erential in
lusions x

0

2 F (x) tends to � as t!1.

Let G : X ! K

C

(X) be an upper semi
ontinuous set-valued map-

ping, with kG(x)k = o(kxk) as kxk ! 0. Then there exist � > 0,

k > 0 and Æ > 0 su
h that any solution x(t) of the di�erential in
lusion

x

0

2 F (x) +G(x) with kx(0)k < Æ satis�es the inequality

kx(t)k � kkx(0)k exp(��t)

for all t � 0.

Theorem 13 Suppose that the point � is an equilibrium position of the

fuzzy di�erential in
lusion (3). Moreover, suppose that the fuzzy-valued

mapping � : X ! F(X) is di�erentiable at � and that there exists a

number Æ

0

> 0 su
h that any solution x(t) of (3) exists on the whole

11



interval [0;+1) if kx(0)k � Æ

0

. If for some � 2 [0; 1℄ the equilibrium

position x = � of the quasilinear di�erential in
lusion

x

0

2 L

�

D

F

�

(�)(x) (4)

is asymptoti
ally stable, then this point is an asymptoti
ally stable equi-

librium position of the fuzzy di�erential in
lusion (3), that is, there exist

� > 0, k > 0 and Æ > 0 su
h that any solution x(t) of (3) satis�es the

inequality

kx(t)k � kkx(0)k exp(��t)

for all t � 0 if kx(0)k < Æ.

Proof: Sin
e � is di�erentiable at �, then the appli
ation

^

D

F

�

(�) :

X ! K

C

(X) de�ned by

^

D

F

�

(�)(x) = L

�

D

F

�

(�)(x);

exists for all x 2 X, is homogeneous and uniformly 
ontinuous. Also,

sin
e the equilibrium position x = � of the quasilinear di�erential

in
lusion 4 is asymptoti
ally stable, then any solution x(t) of 4 tends

to � as t!1.

Now,

k

�

�(x)k = H(L

�(x)

�(x); �)

� D(�(x); �

f0g

)

� D(�(x);D

F

�

(�)(x)) +D(D

F

�

(�)(x); �

f0g

)

� o(kxk) + kD

F

�

(�)k

F

kxk

= o(kxk) as kxk ! 0:

Thus, due to Theorem 12, exist � > 0, k > 0 and Æ > 0 su
h that any

solution x(t) of (3) satis�es the inequality

kx(t)k � kkx(0)k exp(��t)

for all t � 0 if kx(0)k < Æ and the theorem is proved.

12
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