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Abstract

We introduce a new concept of differentiability for fuzzy-valued mapping
and we study some of its properties. Using this concept, we give a result on
stability of the Lyapunov type for fuzzy differential inclusions.
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1 Introduction

The concept of differentiability for fuzzy valued mappings has been consid-
ered by many authors from different points of view. For instance, the concept
of H—differentiability due to Puri and Ralescu[14] has been studied and ap-
plied by several mathematicians in the context of fuzzy differential equations,
including Ding and Kandel [5], Kaleva[9, 10] and Seikkala[18]. Goetschel and
Voxman [7] have introduced the notion of a derivative for fuzzy mappings of
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one variable. Basically, they viewed fuzzy numbers in a topological vector
space and then they defined differentiation of fuzzy mappings of one variable
in ways paralleling the definition of real-valued functions. Syau [19] extends
such definition for fuzzy mappings of several variables. Others concepts of
differentiability were introduced by Diamond and Kloeden[6] and Romén-
Flores and Rojas-Medar[17], which extend to the fuzzy context, the concepts
of Fréchet differentiability (see De Blasi[4]) and Gateaux differentiability (see
Ibrahim[8]) for set-valued mappings respectively.

As we know, the main idea of the classic differential calculus consists
in local approximation of a mapping by a linear operator. In this article we
propose a new notion of differentiability for fuzzy mappings, where the role of
linear operators is played, in the fuzzy context, by fuzzy quasilinear operators.
The theory of fuzzy quasilinear spaces and fuzzy quasilinear operators have
been introduced by the authors in [3], inspired in the concept of quasilinear
spaces and quasilinear operators given by Assev in [1].

This new concept of differentiability is followed by some properties, ex-
amples and rules of calculus. As an application of our results we prove a
theorem on stability of a fuzzy differential inclusion. Zhu and Rao [20] have
introduced a notion of fuzzy differential inclusion and stated some results
on existence of solution. This work has motivated us to develop some ideas
concerning stability of fuzzy differential inclusion by using our new notion of
differentiability of fuzzy mappings.

The structure of this paper is as follows. In section 2 we give the def-
initions and previous results that will be used in this article. In section 3
we introduce the concepts of Fréchet and Gateaux differentiability for fuzzy
valued mappings and we give some properties. In section 4 we present some
rules of calculus and in the last section we give some applications on stability
of fuzzy differential inclusions.

2 Preliminaries

Let Y be a real separable Banach space with norm || - || and dual Y*. Let

K(Y) and Kc(Y) be respectively, the class of all nonempty and compact

subsets of Y and the class of all nonempty compact and convex subsets of Y.
The Hausdorff metric H on K(Y) is defined by

H(A,B)=inf{r >0: AC B+1rSi(0), BC A+rS(0)},



where S;(0) is the closed ball of radius 1 about # € Y. It is known that
(K(Y), H) is a complete and separable metric space and K¢(Y') is a closed
subspace of K(Y') [see [2], [6], [16]]. Also, the algebraic sum operation and
multiplication by a real number A € R on K(Y') is defined by

A+B={a+0b/ a€ Abec B} and \A ={\a/a € A},

forall A,B € K(Y) and A € R.
For any A € K(Y'), the support function s4 of A is defined on Y* as

sa(x*) =sup z*, Va* € Y.
acA

Given A, B € K(Y) we have that
sarp(x*) = sa(z”) + sp(a”).

A fuzzy set of Y is a function u : Y — [0,1] and, for 0 < o < 1, we
denote by L,u = {y € Y/u(y) > a} the a-level of u, and Lyu = supp(u) =
{y € Y/u(y) > 0} is called the support of .

A fuzzy set u : Y — [0,1] is called fuzzy compact set (fuzzy compact
convex set, respectively) if L,u is compact for all o € [0, 1] (if L, u is compact
convex for all a € [0, 1], respectively).

We denote by F(Y) (Fo(Y), respectively) the space of all fuzzy compact
sets u : Y — [0, 1] (the space of all fuzzy compact convex sets u : Y — [0, 1],
respectively).

Remark 1 If u € F(Y), then the family {L,u : « € [0,1]} satisfies the
following properties:

(@) Lou D Loyu D Lgu V 0 <a < f.

(b) Seay, T o= Lou={()\_, Lo, u
(i.e., the level-application is left-continuous).

(¢) u=v & Lyu= Lyv Va €0,1].

(d) Lou #0 Va €[0,1], is equivalent to u(y) = 1 for some x € Y.
If u satisfies this condition we say that u is normal.



(e) We can define a partial order C on F(Y) by setting

uCoveuly) <vly) YyeY < Lyu C Lyw Ya €0,1].

The algebraic sum operation and multiplication by a real number A € R
on F(Y) is defined by

(u+v)(x) = sup min{u(y),v(2)} and (Au)(z)= { if})@?) g; i 8’

y+z=x

With these definitions we obtain L, (u 4+ v) = Lou + Lov and Ly (Au) =
ALqu, for all u,v € F(Y), a € [0,1] and A € R[see [2], [6], [16]].
The quasinorm on F(Y') is defined by

lullz = sup || Laul] = [ Loull,
0<all

where ||Lqul| = sup,¢y ., [Jyll. Then, F(Y) and F¢(Y'), with the operation
algebraic and partial order C defined above, are normed quasilinear spaces
[see [1],[3]].

Also, we can define a metric on F(Y') as follows:

D(u,v) = sup H(Lyu, L,v),
a€0,1]

where H define the Hausdorff metric [see [1], [2], [3], [6]].
It is known that (F(Y'), D) is a complete but non-separable metric space
[see [16]].

Proposition 1 (see [2], [3], [6], [16]) If u,v,w,ui,v; € F(Y). Then
(a) D(Au, \v) = AD(u,v), for all A > 0.

() D(u+v,u; +v1) < D(u+up,v+ ).
If u,v € Fo(Y) we have

(¢) D(u+w,v+w) = D(u,v).

An application I' : X — F(Y) is called a fuzzy valued mapping.



Definition 1 A fuzzy valued mapping ' : X — F(Y') will be called a quasi-
linear operator if it satisfies the following conditions:

F(Ax) = AF(z) Vee X ,VAeER (1)
F(zy+x9) C F(21)+ F(zy) Vap,20 € X. (2)

A fuzzy valued mapping I' : X — F(Y) is said to be bounded if there
exists a number £ > 0 such that ||[I'(z)|| < k||z|| for any = € X.

Theorem 2 ([1], [3])The quasilinear operator I : X — F(Y) is bounded if
and only if it is continuous at the point 0 € X. The continuity of I at 0
implies that it is uniformly continuous on X.

Denote by L(X,F(Y)) the space of all bounded quasilinear operators
from X to F(Y). We write Iy < 'y if T'y(z) < T'y(x) for any = € X.
Multiplication by real numbers is defined on L(X,F(Y)) by the equality
(A)(z) = A'(x). Moreover, it is assumed that the operation of algebraic
sum is defined on L(X, F(Y)) by the equality (I'; +I'2)(x) = 'y (z) 4+ [y ().
The space L(X,F(Y)) is closed under these operation of algebraic sum and
multiplication by real numbers. Then L(X, F(Y)) is a quasilinear space.

The quasinorm on L(X, F(Y)) is defined by

ITflz = sup [[T'(2)]|7.

llzll=1

Then L(X,F(Y)) is a normed quasilinear space.

3 Differentiability of fuzzy mappings

In this section we extend the notion of Fréchet differentiability to the fuzzy-
valued context, by using the concept of bounded quasilinear operator.

Definition 2 A fuzzy valued mapping I' : X — F(Y)is said to be Fréchet
differentiable at xq € X if exists a bounded quasilinear operator Dfo(f‘) :
X — Fe(Y) such that

D(I'(x), T (x0) + Dgy (T) (2 — 20)) = o[l — o).

The quasilinear operator DfO(F) 15 called the Fréchet differential of I' at xy.



Theorem 3 The Fréchet differential D, (T') is unique if it exists.

Proof: Let DI (T') and DX (T') be two differentials of I' at ;. Then, by
Proposition 1, we have that

D(Dg, (L) (w — wo), DL, (T) (2 — o))

D(I' (o) 4+ DL () (2 — o), I'(zo) + DL (T') (z — z9))
D(T(x), T (w0) + Dy, (1) (2 — x0))

+D(I'(x), I'(o) + DE, (D) (z — x9))

= o([lx = wol]).

IN

Thus, D(DE (D)(x — xo), DE (D)(x — x0)) = o(||z — x||) for all z € X.
This prove que D (T') = DI (T). n

Proposition 4 A fuzzy valued application I : X — F(Y') is constant if and
only if, for every xy € X, DL ()(x) = xqp Vo € X.

Proposition 5 Let ' : X — F(Y) be a bounded quasilinear operator. Then
U is Fréchet differentiable at 0 € X and Dy (T') =T.

Theorem 6 IfI' : X — F(Y) is differentiable at xy, then I' is continuous
at xy.

Proof: Suppose that x; — xy, then

D(I(2),D(w)) < D(I(ws), D(wo) + Dy (T) (3 — 0))
+D(I(xg), (o) + DfO(F)(:ri — Tp))
= o([|lzi — oll) + IDL, (D) | #llzi — oll = 0

as ¢ — 00. The Theorem is proved.m
Let I' : X — F(Y) be a fuzzy-valued mapping. The level set-valued
mapping [, : X — F(Y), with « € [0, 1], is defined by

Lo(z) = Lo T(2).



Proposition 7 IfT' is differentiable at xy, then the level set-valued mapping
[ is differential at xy for each o € [0,1] and

Dgo (Fa) = LQD:?O (F) .

Proof.
Let « € [0, 1] be arbitrary. Then

H(L,(x), LoT(x0) + LQDQ(F)(J; — 2p))
H(LoD(x), La(T(20) + Dy, () (z — 20)))
D(T(x), ['(xo) + Dfo(f‘)(x — Zp))

= o([lz = zol|)

L,
L,

IN

Consequently, the proposition is proved. B

Example 1 Let X = [0,1] be given. Consider the fuzzy valued mapping
I':[0,1] — F([0,1]) defined by

o) = { §

ift #0, and T'(0) = X9}~ It is easily seen that L I'(t) = [at, 1] for each
a € [0,1]. Now,

18

if e <t
otherwise,

ac|0,1

= Sup H([ata 1]7 [07 1])
a€0,1]

= sup |at| =t
a€0,1]

It follows that T is Fréchet differentiable at t = 0 and Dy (T)(x) = xoy- It
can be easily checked that for each o € [0, 1] the level set valued mapping T,
is not differentiable at t # 0. Consequently, I is differentiable only at t = 0.

Definition 3 A fuzzy valued mapping I' : X — F(Y) is Gateaux differ-
entiable at vy € X if exists an bounded quasilinear operator Dfo(f‘) X —
FoY) such that, for all z € X

D(T(zo +tz),I(zo) + tDS (T)(2)) = o(t) as t — +0.

DS (T)(z) is called the Gateaux derivative of T' at xy.
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Theorem 8 The Gateaux derivative is unique if it exists.

Proof: Let DS (T') and DS (T) two derivatives of I at . Then, from
Proposition 1 follows that

D(Dy, (D)(t2), DS, (T)(t2)) D(I(x0) + D, (D) (t2), I (wo) + DG, (1) (t2))

D(T(zo + tz),T'(z0) + DS (T)(t2))

+D(T(zg + t2),I(20) + DS (T)(t2))
o(t) as t — 40

IN

Consequently,

D(DS (T)(z), DS (T)(z)) = @ as t — +0.

Therefore, DS (I')(z) = DS (') (2) for all z € X. ]

Zo

Theorem 9 Suppose that a fuzzy valued mapping I' : X — F(Y) is Fréchet
differentiability ot xo € X. Then, I is Gateaux differentiable and

G F
Proof:

D(D(wo + t2), I(2o) + Dy, (1) (2))
= D(T( + t2),T(x0) + DL (T)(t2))
= o(t||z]]) = o(t) as t = +o00. =

r
r

Definition 4 A fuzzy-valued mapping I' : X — F(Y) is De Blasi differ-
entiable at xo € X if exists an upper semicontinuous, positive homogeneous
mapping Dy, (I') : X — Fo(Y) such that

D(T(w + ), [(x0) + Dy, (0) () = o(|])).

The mapping D, (') is called the De Blasi differential of T' at x.



Definition 5 A fuzzy-valued mapping ' : X — F(Y) is Ibrahim-Gateaux
differentiable at xy € X if exists an upper semicontinuous, positive homoge-
neous mapping DS (I') : X — Fe(Y) such that, for all z € X

D(D(zo + tz),I(z0) + tDS (I)(2)) = o(t) as t — +0.
DI (T) is called the Ibrahim-Gateaus differential of T' at xy.

It is clear that if I' : X — F(Y) is Fréchet differentiable at zy (Gateaux
differential) then I' is De Blasi differentiable at xy (Ibrahim-Gateaux dif-
ferential, respectively) and DE (T)(z) = DL (T)(z) (DS (T)(x) = DS (T)(x)
respectively).

4 Rules of calculus

Theorem 10 Let I'y and 'y be two fuzzy valued mapping from X to F(Y).
If I'y and 'y are Fréchet differentiable at xy € X, then the mapping I' =
Ay 4 B0y with A\, B € R, 1s Fréchet differentiable at xy, and

DI (ALy + L) = ADL (Ty) + DL (Ty).

Proof:
D(T(x), T(2o) + (XDL(T1) + BDE (T2)) (& — o))
< D(AL1(z), A1 (zo) + ADL (I'1) (z — )
+D(ATs(z), ATa(z0) + ADL (Ta) (z — 20))
< Aoz = xol]) + |8]o([|x — zol])
= ofllz = zol])-
This prove the Theorem. [ ]

Remark 2 Theorem 12 still holds if we suppose that I'y and I'yare Gateaux
differentiable at xy.

Theorem 11 A fuzzy valued mapping U : X — Fc(Y) is Gateauz differen-
tiable at xo if and only if, the support function Spey(a, 1) is Gateaus differ-
entiable at xy and Dfo(Sp(z)) 15 a support function. Moreover, in this case

Dg) (SF(I))(aa 77/}) = SD%"O (T)(z) (Ot, 77/})



Proof: Suppose that I is differentiable at zy and z € X. Then

1

¥||5r(xo+t.z)(aa ) = St(@e) — 1-Spg (r)(2) (@, ¥)|

1
= ? ||SF($0+t.z) (Oé, ¢) - SF($0)+t.Dg0 (T)(z) (Oé, ¢) ||

< DT+ 1:2), (o) + 105 (1) (=) 0|
o(t)

= T—>0 ast—>+0.

Thus, a support function Sp) (o)) is Gateaux differentiable at xy and
Dg) (SF(:E)(a7 77/})) = SD%"O (I(z)) (CY, 77/})

Conversely, suppose that Sp) (1)) is differentiable at z and DS (St (v, 1) =
Sa(c, ). Then, for any z € X

D(T(xy +t.2),'(zo) +t.A)

- H(;I:Z%ﬁ(:l ||SF(I0+t.z)(aa ¢) - SF(m0)+t,A(Oz, 'g/))”

T et 150 (@o+t.2) (@, ) = Stag) (@, ¥) — .54 (e, D)

= o(t)

as t — 40 and the Theorem is proved. [ ]

5 Stability of Fuzzy Differential Inclusion

Let I' : X — F(X) be a fuzzy-valued mapping. Let o : X — [0,1] be a
function and J a interval in R. The problem [see [20]]: find x € C(.J, X) such
that

2 (t) € La(a@)I(z(t)) (3)

is said a fuzzy differential inclusion.
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A quasilinear differential inclusion is defined by a differential inclusion of
form
© € F(x),

where F': X — K¢(X) is a quasilinear operator.

Consider the fuzzy differential inclusion (3), assuming the condition
['(0) = Xx{py- We say that the equilibrium position z = ¢ of (3) is
Lyapunov-stable if the following conditions hold;

(a) There is a §y > 0 such that if ||z(¢y)|| < dy, then there exists a
solution x(t) such that ||z(t)|| < dp for any ¢ > .

(b) For any € > 0 there exists a 0 < 0; < Jp such that if ||x(t)]] < 01,
then ||z(t)]| < € for any t > t.

A Lyapunov-stable equilibrium position x = 6 is said to be asymp-
totically stable is there exists a positive number d; < §y such that if
|x(to)]| < 02, then lim; .« ||z (2)|| = 0.

The next result was proved in [12]

Theorem 12 Suppose that the set-valued mapping F : X — Kc(X) is
positive-homogeneous and upper semicontinuous. Assume that any so-
lution (t) of the differential inclusions v € F(x) tends to 0 ast — oc.
Let G : X — Kg(X) be an upper semicontinuous set-valued map-
ping, with ||G(z)|| = o(||z||) as ||z|| = 0. Then there exist o > 0,
k>0 and d > 0 such that any solution x(t) of the differential inclusion
x € F(z) + G(z) with |x(0)|| < § satisfies the inequality

[z < kl|z(0)[| exp(—ot)

for allt > 0.

Theorem 13 Suppose that the point 0 is an equilibrium position of the
fuzzy differential inclusion (3). Moreover, suppose that the fuzzy-valued
mapping I' : X — F(X) is differentiable at 0 and that there exists a
number 6y > 0 such that any solution x(t) of (3) exists on the whole

11



interval [0, 4+00) if [|2(0)|| < dp. If for some « € [0, 1] the equilibrium
position x = 0 of the quasilinear differential inclusion

z € L,DE(I)(z) (4)

15 asymptotically stable, then this point is an asymptotically stable equi-
librium position of the fuzzy differential inclusion (3), that is, there exist
0>0, k>0 and 0 > 0 such that any solution x(t) of (3) satisfies the
inequality

(8] < k[|x(0)] exp(—at)

for all t > 0 if ||z (0)|| < 6.

—~—

Proof: Since T is differentiable at 6, then the application DJ (') :
X — K¢(X) defined by

—_

Dy (T)(x) = LoDy (I)(2),

exists for all z € X, is homogeneous and uniformly continuous. Also,
since the equilibrium position x = € of the quasilinear differential
inclusion 4 is asymptotically stable, then any solution x(t) of 4 tends
to 0 as t — oo.

Now,

I ()| (La@I'(z),0)

(C(2), X{0})

D(I(x), Dy (I)(x)) + D(Dy (L) (), x{0))
I=[1) + D5 (D) |7l

lz]l) as [J«]| = 0.

H
D

VAN VARSI VAN

0

—~

0

Thus, due to Theorem 12, exist ¢ > 0, £ > 0 and 6 > 0 such that any
solution x(t) of (3) satisfies the inequality

[z < kl|z(0)[| exp(—ot)

for all t > 0 if |z(0)|] < 0 and the theorem is proved. M

12



References

[1] S.M.Assev, Quasilinear operators and their application in the theory of
multivalued mappings, Proceeding of the Steklov Institute of Mathe-
matics 2 (1986) 23-52.

2] Y. Chalco-Cano, M.A. Rojas-Medar and H. Roman-Flores, M-Convex
fuzzy mapping and fuzzy integral mean,Computers and Mathematics,
with Applications (2000) 1117-1126.

[3] Y. Chalco-Cano, M.A. Rojas-Medar and A. J. V. Brandao, Fuzzy Quasi-
linear Spaces 2001. Submitted to publication.

[4] F.S. De Blasi, On the differentiability of multifunctions, Pacific J. Math.
66 (1976) 67-81.

[5] Z. Ding and A. Kandel, Existence of the solutions of fuzzy differential
equations with parameters, Information Sciences 99 (1997) 205-217.

(6] P.Diamond and P. Kloeden, Metric Space of Fuzzy Sets: Theory and
Application, Singapure World Scientific, 1994.

(7] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets
and Systems 18 (1986) 31-43.

18] A-G.M. Ibrahim, On the differentiability of set-valued functions defined
on a Banach space and mean value theorem, Appl. Math. Comp. 74
(1996) 76-94.

9] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24
(1987) 301-317.

[10] O. Kaleva, The calculus of fuzzy values functions, Appl. Math. Lett. 3-2
(1990) 55-50.

[11] P.E. Kloeden, Fuzzy dynamical systems, Fuzzy Sets and Systems, 7
(1982) 272-296.

[12] A. Lasota and A. Strauss, Asymptotic behavior for differential equations
which cannot be locally linearized, J. Differential Equations, 10 (1971)
152-172.

13



[13] M.L. Puri and D. Ralescu, Differentials of fuzzy functions, Math. Anal.
Appl., 91 (1983) 552-558.

[14] M. Puri and D. Ralescu, Differentielle d’une fonction floue, C.R. Acad.
Sc. Paris, 293-1 (1981) 237-2309.

[15] M. Puri and D. Ralescu, Fuzzy radom variables, J. Math. Anal. Appl.,
114 (1986) 409-422.

[16] M. Rojas-Medar, R. C. Bassanezi and H. Romén-Flores, A generaliza-
tion of the Minkowski embedding theorem and applications, Fuzzy Set
and Systems, 102 (1999) 263-2609.

[17] H. Romén-Flores and M. Rojas-Medar, Differentiability of fuzzy-valued
mappings, Revista de Matemética e Estatistica-UNESP 16 (1998) 223-
239.

[18] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems,
24 (1987) 319-330.

[19] Yu-Ru Syau, Diferentiability and convexity of fuzzy mappings, Comput-
ers and Mathematics with Applications 41 (2001) 73-81.

[20] Y. Zhu and L. Rao, Differential inclusions for fuzzy maps, Fuzzy Sets
and Systems, 112 (2000) 257-261.

14



