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1 Introdution

The onept of di�erentiability for fuzzy valued mappings has been onsid-

ered by many authors from di�erent points of view. For instane, the onept

of H�di�erentiability due to Puri and Ralesu[14℄ has been studied and ap-

plied by several mathematiians in the ontext of fuzzy di�erential equations,

inluding Ding and Kandel [5℄, Kaleva[9, 10℄ and Seikkala[18℄. Goetshel and

Voxman [7℄ have introdued the notion of a derivative for fuzzy mappings of
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one variable. Basially, they viewed fuzzy numbers in a topologial vetor

spae and then they de�ned di�erentiation of fuzzy mappings of one variable

in ways paralleling the de�nition of real-valued funtions. Syau [19℄ extends

suh de�nition for fuzzy mappings of several variables. Others onepts of

di�erentiability were introdued by Diamond and Kloeden[6℄ and Rom�an-

Flores and Rojas-Medar[17℄, whih extend to the fuzzy ontext, the onepts

of Fr�ehet di�erentiability (see De Blasi[4℄) and Gâteaux di�erentiability (see

Ibrahim[8℄) for set-valued mappings respetively.

As we know, the main idea of the lassi di�erential alulus onsists

in loal approximation of a mapping by a linear operator. In this artile we

propose a new notion of di�erentiability for fuzzy mappings, where the role of

linear operators is played, in the fuzzy ontext, by fuzzy quasilinear operators.

The theory of fuzzy quasilinear spaes and fuzzy quasilinear operators have

been introdued by the authors in [3℄, inspired in the onept of quasilinear

spaes and quasilinear operators given by Assev in [1℄.

This new onept of di�erentiability is followed by some properties, ex-

amples and rules of alulus. As an appliation of our results we prove a

theorem on stability of a fuzzy di�erential inlusion. Zhu and Rao [20℄ have

introdued a notion of fuzzy di�erential inlusion and stated some results

on existene of solution. This work has motivated us to develop some ideas

onerning stability of fuzzy di�erential inlusion by using our new notion of

di�erentiability of fuzzy mappings.

The struture of this paper is as follows. In setion 2 we give the def-

initions and previous results that will be used in this artile. In setion 3

we introdue the onepts of Fr�ehet and Gâteaux di�erentiability for fuzzy

valued mappings and we give some properties. In setion 4 we present some

rules of alulus and in the last setion we give some appliations on stability

of fuzzy di�erential inlusions.

2 Preliminaries

Let Y be a real separable Banah spae with norm k � k and dual Y

�

. Let

K(Y ) and K

C

(Y ) be respetively, the lass of all nonempty and ompat

subsets of Y and the lass of all nonempty ompat and onvex subsets of Y .

The Hausdor� metri H on K(Y ) is de�ned by

H(A;B) = inffr � 0 : A � B + rS

1

(�); B � A+ rS

1

(�)g;
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where S

1

(�) is the losed ball of radius 1 about � 2 Y . It is known that

(K(Y ); H) is a omplete and separable metri spae and K

C

(Y ) is a losed

subspae of K(Y ) [see [2℄, [6℄, [16℄℄. Also, the algebrai sum operation and

multipliation by a real number � 2 R on K(Y ) is de�ned by

A +B = fa+ b= a 2 A; b 2 Bg and �A = f�a=a 2 Ag ;

for all A;B 2 K(Y ) and � 2 R.

For any A 2 K(Y ); the support funtion s

A

of A is de�ned on Y

�

as

s

A

(x

�

) =sup

a2A

x

�

; 8x

�

2 Y

�

:

Given A;B 2 K(Y ) we have that

s

A+B

(x

�

) = s

A

(x

�

) + s

B

(x

�

):

A fuzzy set of Y is a funtion u : Y ! [0; 1℄ and, for 0 < � � 1, we

denote by L

�

u = fy 2 Y=u(y) � �g the �-level of u, and L

0

u = supp(u) =

fy 2 Y=u(y) > 0g is alled the support of u.

A fuzzy set u : Y ! [0; 1℄ is alled fuzzy ompat set (fuzzy ompat

onvex set, respetively) if L

�

u is ompat for all � 2 [0; 1℄ (if L

�

u is ompat

onvex for all � 2 [0; 1℄, respetively).

We denote by F(Y ) (F

C

(Y ), respetively) the spae of all fuzzy ompat

sets u : Y ! [0; 1℄ (the spae of all fuzzy ompat onvex sets u : Y ! [0; 1℄,

respetively).

Remark 1 If u 2 F(Y ), then the family fL

�

u : � 2 [0; 1℄g satis�es the

following properties:

(a) L

0

u � L

�

u � L

�

u 8 0 � � � �:

(b) Se �

n

" �) L

�

u =

T

1

n=1

L

�

n

u

(i.e., the level-appliation is left-ontinuous).

() u = v , L

�

u = L

�

v 8� 2 [0; 1℄.

(d) L

�

u 6= ; 8� 2 [0; 1℄, is equivalent to u(y) = 1 for some x 2 Y .

If u satis�es this ondition we say that u is normal.
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(e) We an de�ne a partial order � on F(Y ) by setting

u � v , u(y) � v(y) 8y 2 Y , L

�

u � L

�

v 8� 2 [0; 1℄:

The algebrai sum operation and multipliation by a real number � 2 R

on F(Y ) is de�ned by

(u+ v)(x) = sup

y+z=x

minfu(y); v(z)g and (�u)(x) =

�

u(

x

�

) if � 6= 0;

�

f�g

(x) if � = 0:

With these de�nitions we obtain L

�

(u + v) = L

�

u + L

�

v and L

�

(�u) =

�L

�

u, for all u; v 2 F(Y ), � 2 [0; 1℄ and � 2 R[see [2℄, [6℄, [16℄℄.

The quasinorm on F(Y ) is de�ned by

kuk

F

= sup

05�51

kL

�

uk = kL

0

uk;

where kL

�

uk = sup

y2L

�

u

kyk. Then, F(Y ) and F

C

(Y ), with the operation

algebrai and partial order � de�ned above, are normed quasilinear spaes

[see [1℄,[3℄℄.

Also, we an de�ne a metri on F(Y ) as follows:

D(u; v) = sup

�2[0;1℄

H(L

�

u; L

�

v);

where H de�ne the Hausdor� metri [see [1℄, [2℄, [3℄, [6℄℄.

It is known that (F(Y ); D) is a omplete but non-separable metri spae

[see [16℄℄.

Proposition 1 (see [2℄, [3℄, [6℄, [16℄) If u; v; w; u

1

; v

1

2 F(Y ). Then

(a) D(�u; �v) = �D(u; v), for all � � 0.

(b) D(u+ v; u

1

+ v

1

) � D(u+ u

1

; v + v

1

).

If u; v 2 F

C

(Y ) we have

() D(u+ w; v + w) = D(u; v).

An appliation � : X ! F(Y ) is alled a fuzzy valued mapping.
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De�nition 1 A fuzzy valued mapping � : X ! F(Y ) will be alled a quasi-

linear operator if it satis�es the following onditions:

F (�x) = �F (x) 8x 2 X ; 8� 2 R (1)

F (x

1

+ x

2

) � F (x

1

) + F (x

2

) 8x

1

; x

2

2 X: (2)

A fuzzy valued mapping � : X ! F(Y ) is said to be bounded if there

exists a number k > 0 suh that k�(x)k

F

� kkxk for any x 2 X.

Theorem 2 ([1℄, [3℄)The quasilinear operator � : X ! F(Y ) is bounded if

and only if it is ontinuous at the point � 2 X. The ontinuity of � at �

implies that it is uniformly ontinuous on X.

Denote by L(X;F(Y )) the spae of all bounded quasilinear operators

from X to F(Y ). We write �

1

� �

2

if �

1

(x) � �

2

(x) for any x 2 X.

Multipliation by real numbers is de�ned on L(X;F(Y )) by the equality

(��)(x) = ��(x). Moreover, it is assumed that the operation of algebrai

sum is de�ned on L(X;F(Y )) by the equality (�

1

+�

2

)(x) = �

1

(x) + �

2

(x).

The spae L(X;F(Y )) is losed under these operation of algebrai sum and

multipliation by real numbers. Then L(X;F(Y )) is a quasilinear spae.

The quasinorm on L(X;F(Y )) is de�ned by

k�k

L

= sup

kxk=1

k�(x)k

F

:

Then L(X;F(Y )) is a normed quasilinear spae.

3 Di�erentiability of fuzzy mappings

In this setion we extend the notion of Fr�ehet di�erentiability to the fuzzy-

valued ontext, by using the onept of bounded quasilinear operator.

De�nition 2 A fuzzy valued mapping � : X ! F(Y )is said to be Fr�ehet

di�erentiable at x

0

2 X if exists a bounded quasilinear operator D

F

x

0

(�) :

X ! F

C

(Y ) suh that

D(�(x);�(x

0

) +D

F

x

0

(�)(x� x

0

)) = o(kx� x

0

k):

The quasilinear operator D

F

x

0

(�) is alled the Fr�ehet di�erential of � at x

0

.
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Theorem 3 The Fr�ehet di�erential D

F

x

0

(�) is unique if it exists.

Proof: Let D

F

x

0

(�) and D

F

x

0

(�) be two di�erentials of � at x

0

. Then, by

Proposition 1, we have that

D(D

F

x

0

(�)(x� x

0

);D

F

x

0

(�)(x� x

0

))

= D(�(x

0

) +D

F

x

0

(�)(x� x

0

);�(x

0

) +D

F

x

0

(�)(x� x

0

))

� D(�(x);�(x

0

) +D

F

x

0

(�)(x� x

0

))

+D(�(x);�(x

0

) +D

F

x

0

(�)(x� x

0

))

= o(kx� x

0

k):

Thus, D(D

F

x

0

(�)(x � x

0

);D

F

x

0

(�)(x � x

0

)) = o(kx � x

0

k) for all x 2 X.

This prove que D

F

x

0

(�) = D

F

x

0

(�).

Proposition 4 A fuzzy valued appliation � : X ! F(Y ) is onstant if and

only if, for every x

0

2 X, D

F

x

0

(�)(x) = �

f�g

8x 2 X:

Proposition 5 Let � : X ! F(Y ) be a bounded quasilinear operator. Then

� is Fr�ehet di�erentiable at � 2 X and D

F

�

(�) = �.

Theorem 6 If � : X ! F(Y ) is di�erentiable at x

0

, then � is ontinuous

at x

0

.

Proof: Suppose that x

i

! x

0

, then

D(�(x

i

);�(x

0

)) � D(�(x

i

);�(x

0

) +D

F

x

0

(�)(x

i

� x

0

))

+D(�(x

0

);�(x

0

) +D

F

x

0

(�)(x

i

� x

0

))

= o(kx

i

� x

0

k) + kD

F

x

0

(�)k

F

kx

i

� x

0

k ! 0

as i!1. The Theorem is proved.

Let � : X ! F(Y ) be a fuzzy-valued mapping. The level set-valued

mapping �

�

: X ! F(Y ), with � 2 [0; 1℄; is de�ned by

�

�

(x) = L

�

�(x):

6



Proposition 7 If � is di�erentiable at x

0

; then the level set-valued mapping

�

�

is di�erential at x

0

for eah � 2 [0; 1℄ and

D

F

x

0

(�

�

) = L

�

D

F

x

0

(�):

Proof.

Let � 2 [0; 1℄ be arbitrary. Then

H(L

�

�(x); L

�

�(x

0

) + L

�

D

F

x

0

(�)(x� x

0

))

= H(L

�

�(x); L

�

(�(x

0

) +D

F

x

0

(�)(x� x

0

)))

� D(�(x);�(x

0

) +D

F

x

0

(�)(x� x

0

))

= o(kx� x

0

k)

Consequently, the proposition is proved.

Example 1 Let X = [0; 1℄ be given. Consider the fuzzy valued mapping

� : [0; 1℄! F([0; 1℄) de�ned by

�(t)(x) =

�

x

t

if x � t

0 otherwise,

if t 6= 0, and �(0) = �

[0;1℄

. It is easily seen that L

�

�(t) = [�t; 1℄ for eah

� 2 [0; 1℄. Now,

D(�(t);�(0) + �

f0g

) = sup

�2[0;1℄

H([�t; 1℄; [0; 1℄ + f0g)

= sup

�2[0;1℄

H([�t; 1℄; [0; 1℄)

= sup

�2[0;1℄

j�tj = jtj:

It follows that � is Fr�ehet di�erentiable at t = 0 and D

F

0

(�)(x) = �

f0g

. It

an be easily heked that for eah � 2 [0; 1℄ the level set valued mapping �

�

is not di�erentiable at t 6= 0. Consequently, � is di�erentiable only at t = 0.

De�nition 3 A fuzzy valued mapping � : X ! F(Y ) is Gâteaux di�er-

entiable at x

0

2 X if exists an bounded quasilinear operator D

G

x

0

(�) : X !

F

C

(Y ) suh that, for all z 2 X

D(�(x

0

+ tz);�(x

0

) + tD

G

x

0

(�)(z)) = o(t) as t! +0:

D

G

x

0

(�)(z) is alled the Gâteaux derivative of � at x

0

.
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Theorem 8 The Gâteaux derivative is unique if it exists.

Proof: Let D

G

x

0

(�) and D

G

x

0

(�) two derivatives of � at x

0

. Then, from

Proposition 1 follows that

D(D

G

x

0

(�)(tz);D

G

x

0

(�)(tz)) = D(�(x

0

) +D

G

x

0

(�)(tz);�(x

0

) +D

G

x

0

(�)(tz))

� D(�(x

0

+ tz);�(x

0

) +D

G

x

0

(�)(tz))

+D(�(x

0

+ tz);�(x

0

) +D

G

x

0

(�)(tz))

= o(t) as t! +0

Consequently,

D(D

G

x

0

(�)(z);D

G

x

0

(�)(z)) =

o(t)

t

as t! +0:

Therefore, D

G

x

0

(�)(z) = D

G

x

0

(�)(z) for all z 2 X.

Theorem 9 Suppose that a fuzzy valued mapping � : X ! F(Y ) is Fr�ehet

di�erentiability at x

0

2 X. Then, � is Gâteaux di�erentiable and

D

G

x

0

(�) = D

F

x

0

(�):

Proof:

D(�(x

0

+ tz);�(x

0

) + tD

F

x

0

(�)(z))

= D(�(x

0

+ tz);�(x

0

) +D

F

x

0

(�)(tz))

= o(tkzk) = o(t) as t! +1:

De�nition 4 A fuzzy-valued mapping � : X ! F(Y ) is De Blasi di�er-

entiable at x

0

2 X if exists an upper semiontinuous, positive homogeneous

mapping D

F

x

0

(�) : X ! F

C

(Y ) suh that

D(�(x

0

+ x);�(x

0

) + D

F

x

0

(�)(x)) = o(kxk):

The mapping D

F

x

0

(�) is alled the De Blasi di�erential of � at x

0

.
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De�nition 5 A fuzzy-valued mapping � : X ! F(Y ) is Ibrahim-Gâteaux

di�erentiable at x

0

2 X if exists an upper semiontinuous, positive homoge-

neous mapping D

G

x

0

(�) : X ! F

C

(Y ) suh that, for all z 2 X

D(�(x

0

+ tz);�(x

0

) + tD

G

x

0

(�)(z)) = o(t) as t! +0:

D

F

x

0

(�) is alled the Ibrahim-Gâteaux di�erential of � at x

0

.

It is lear that if � : X ! F(Y ) is Fr�ehet di�erentiable at x

0

(Gâteaux

di�erential) then � is De Blasi di�erentiable at x

0

(Ibrahim-Gâteaux dif-

ferential, respetively) and D

F

x

0

(�)(x) = D

F

x

0

(�)(x) (D

G

x

0

(�)(x) = D

G

x

0

(�)(x)

respetively).

4 Rules of alulus

Theorem 10 Let �

1

and �

2

be two fuzzy valued mapping from X to F(Y ).

If �

1

and �

2

are Fr�ehet di�erentiable at x

0

2 X, then the mapping � =

��

1

+ ��

2

with �; � 2 R, is Fr�ehet di�erentiable at x

0

, and

D

F

x

0

(��

1

+ ��

2

) = �D

F

x

0

(�

1

) + �D

F

x

0

(�

2

):

Proof:

D(�(x);�(x

0

) + (�D

F

x

0

(�

1

) + �D

F

x

0

(�

2

))(x� x

0

))

� D(��

1

(x); ��

1

(x

0

) + �D

F

x

0

(�

1

)(x� x

0

))

+D(��

2

(x); ��

2

(x

0

) + �D

F

x

0

(�

2

)(x� x

0

))

� j�jo(kx� x

0

k) + j�jo(kx� x

0

k)

= o(kx� x

0

k):

This prove the Theorem.

Remark 2 Theorem 12 still holds if we suppose that �

1

and �

2

are Gâteaux

di�erentiable at x

0

.

Theorem 11 A fuzzy valued mapping � : X ! F

C

(Y ) is Gâteaux di�eren-

tiable at x

0

if and only if, the support funtion S

�(x)

(�;  ) is Gâteaux di�er-

entiable at x

0

and D

G

x

0

(S

�(x)

) is a support funtion. Moreover, in this ase

D

G

x

0

(S

�(x)

)(�;  ) = S

D

G

x

0

(�)(x)

(�;  ):
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Proof: Suppose that � is di�erentiable at x

0

and z 2 X. Then

1

t

kS

�(x

0

+t:z)

(�;  )� S

�(x

0

)

� t:S

D

G

x

0

(�)(z)

(�;  )k

=

1

t

kS

�(x

0

+t:z)

(�;  )� S

�(x

0

)+t:D

G

x

0

(�)(z)

(�;  )k

�

1

t

D(�(x

0

+ t:z);�(x

0

) + t:D

G

x

0

(�)(z))k(�;  )k

=

o(t)

t

! 0 as t! +0:

Thus, a support funtion S

�(x)

(� ) is Gâteaux di�erentiable at x

0

and

D

G

x

0

(S

�(x)

(�;  )) = S

D

G

x

0

(�(x))

(�;  ):

Conversely, suppose that S

�(x)

(� ) is di�erentiable at x

0

andD

G

x

0

(S

�(x)

)(�;  ) =

S

�

(�;  ). Then, for any z 2 X

D(�(x

0

+ t:z);�(x

0

) + t:�)

= max

k(�; )k=1

kS

�(x

0

+t:z)

(�;  )� S

�(x

0

)+t:�

(�;  )k

= max

k(�; )k=1

kS

�(x

0

+t:z)

(�;  )� S

�(x

0

)

(�;  )� t:S

�

(�;  )k

= o(t)

as t! +0 and the Theorem is proved.

5 Stability of Fuzzy Di�erential Inlusion

Let � : X ! F(X) be a fuzzy-valued mapping. Let � : X ! [0; 1℄ be a

funtion and J a interval in R. The problem [see [20℄℄: �nd x 2 C(J;X) suh

that

x

0

(t) 2 L

�(x(t))

�(x(t)) (3)

is said a fuzzy di�erential inlusion.
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A quasilinear di�erential inlusion is de�ned by a di�erential inlusion of

form

x

0

2 F (x);

where F : X ! K

C

(X) is a quasilinear operator.

Consider the fuzzy di�erential inlusion (3), assuming the ondition

�(�) = �

f�g

. We say that the equilibrium position x = � of (3) is

Lyapunov-stable if the following onditions hold;

(a) There is a Æ

0

> 0 suh that if kx(t

0

)k < Æ

0

, then there exists a

solution x(t) suh that kx(t)k < Æ

0

for any t � t

0

.

(b) For any � > 0 there exists a 0 < Æ

1

� Æ

0

suh that if kx(t

0

)k < Æ

1

,

then kx(t)k < � for any t � t

0

.

A Lyapunov-stable equilibrium position x = � is said to be asymp-

totially stable is there exists a positive number Æ

2

� Æ

0

suh that if

kx(t

0

)k < Æ

2

, then lim

t!1

kx(t)k = 0.

The next result was proved in [12℄

Theorem 12 Suppose that the set-valued mapping F : X ! K

C

(X) is

positive-homogeneous and upper semiontinuous. Assume that any so-

lution x(t) of the di�erential inlusions x

0

2 F (x) tends to � as t!1.

Let G : X ! K

C

(X) be an upper semiontinuous set-valued map-

ping, with kG(x)k = o(kxk) as kxk ! 0. Then there exist � > 0,

k > 0 and Æ > 0 suh that any solution x(t) of the di�erential inlusion

x

0

2 F (x) +G(x) with kx(0)k < Æ satis�es the inequality

kx(t)k � kkx(0)k exp(��t)

for all t � 0.

Theorem 13 Suppose that the point � is an equilibrium position of the

fuzzy di�erential inlusion (3). Moreover, suppose that the fuzzy-valued

mapping � : X ! F(X) is di�erentiable at � and that there exists a

number Æ

0

> 0 suh that any solution x(t) of (3) exists on the whole

11



interval [0;+1) if kx(0)k � Æ

0

. If for some � 2 [0; 1℄ the equilibrium

position x = � of the quasilinear di�erential inlusion

x

0

2 L

�

D

F

�

(�)(x) (4)

is asymptotially stable, then this point is an asymptotially stable equi-

librium position of the fuzzy di�erential inlusion (3), that is, there exist

� > 0, k > 0 and Æ > 0 suh that any solution x(t) of (3) satis�es the

inequality

kx(t)k � kkx(0)k exp(��t)

for all t � 0 if kx(0)k < Æ.

Proof: Sine � is di�erentiable at �, then the appliation

^

D

F

�

(�) :

X ! K

C

(X) de�ned by

^

D

F

�

(�)(x) = L

�

D

F

�

(�)(x);

exists for all x 2 X, is homogeneous and uniformly ontinuous. Also,

sine the equilibrium position x = � of the quasilinear di�erential

inlusion 4 is asymptotially stable, then any solution x(t) of 4 tends

to � as t!1.

Now,

k

�

�(x)k = H(L

�(x)

�(x); �)

� D(�(x); �

f0g

)

� D(�(x);D

F

�

(�)(x)) +D(D

F

�

(�)(x); �

f0g

)

� o(kxk) + kD

F

�

(�)k

F

kxk

= o(kxk) as kxk ! 0:

Thus, due to Theorem 12, exist � > 0, k > 0 and Æ > 0 suh that any

solution x(t) of (3) satis�es the inequality

kx(t)k � kkx(0)k exp(��t)

for all t � 0 if kx(0)k < Æ and the theorem is proved.

12



Referenes

[1℄ S.M.Assev, Quasilinear operators and their appliation in the theory of

multivalued mappings, Proeeding of the Steklov Institute of Mathe-

matis 2 (1986) 23-52.

[2℄ Y. Chalo-Cano, M.A. Rojas-Medar and H. Rom�an-Flores, M-Convex

fuzzy mapping and fuzzy integral mean,Computers and Mathematis,

with Appliations (2000) 1117-1126.

[3℄ Y. Chalo-Cano, M.A. Rojas-Medar and A. J. V. Brand~ao, Fuzzy Quasi-

linear Spaes 2001. Submitted to publiation.

[4℄ F.S. De Blasi, On the di�erentiability of multifuntions, Pai� J. Math.

66 (1976) 67-81.

[5℄ Z. Ding and A. Kandel, Existene of the solutions of fuzzy di�erential

equations with parameters, Information Sienes 99 (1997) 205-217.

[6℄ P.Diamond and P. Kloeden, Metri Spae of Fuzzy Sets: Theory and

Appliation, Singapure World Sienti�, 1994.

[7℄ R. Goetshel and W. Voxman, Elementary fuzzy alulus, Fuzzy Sets

and Systems 18 (1986) 31-43.

[8℄ A-G.M. Ibrahim, On the di�erentiability of set-valued funtions de�ned

on a Banah spae and mean value theorem, Appl. Math. Comp. 74

(1996) 76-94.

[9℄ O. Kaleva, Fuzzy di�erential equations, Fuzzy Sets and Systems, 24

(1987) 301-317.

[10℄ O. Kaleva, The alulus of fuzzy values funtions, Appl. Math. Lett. 3-2

(1990) 55-59.

[11℄ P.E. Kloeden, Fuzzy dynamial systems, Fuzzy Sets and Systems, 7

(1982) 272-296.

[12℄ A. Lasota and A. Strauss, Asymptoti behavior for di�erential equations

whih annot be loally linearized, J. Di�erential Equations, 10 (1971)

152-172.

13



[13℄ M.L. Puri and D. Ralesu, Di�erentials of fuzzy funtions, Math. Anal.

Appl., 91 (1983) 552-558.

[14℄ M. Puri and D. Ralesu, Di�erentielle d

^

'une fontion oue, C.R. Aad.

S. Paris, 293-I (1981) 237-239.

[15℄ M. Puri and D. Ralesu, Fuzzy radom variables, J. Math. Anal. Appl.,

114 (1986) 409-422.

[16℄ M. Rojas-Medar, R. C. Bassanezi and H. Rom�an-Flores, A generaliza-

tion of the Minkowski embedding theorem and appliations, Fuzzy Set

and Systems, 102 (1999) 263-269.

[17℄ H. Rom�an-Flores and M. Rojas-Medar, Di�erentiability of fuzzy-valued

mappings, Revista de Matem�atia e Estat

�

istia-UNESP 16 (1998) 223-

239.

[18℄ S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems,

24 (1987) 319-330.

[19℄ Yu-Ru Syau, Diferentiability and onvexity of fuzzy mappings, Comput-

ers and Mathematis with Appliations 41 (2001) 73-81.

[20℄ Y. Zhu and L. Rao, Di�erential inlusions for fuzzy maps, Fuzzy Sets

and Systems, 112 (2000) 257-261.

14


