
Counting Domains in fp; qg Tessellations

Eduardo Brandani Silva

Departamento de Matem�ati
a

Universidade Estadual de Maring�a 87020-900 - Maring�a - PR, Brazil

Mar
elo Firer

Universidade Estadual de Campinas

Instituto de Matem�ati
a, IMECC, 13083-970 - Campinas - SP, Brazil

Reginaldo Palazzo Jr.

Universidade Estadual de Campinas

Fa
uldade de Engenharia El�etri
a, FEECC, 13083-970 - Campinas - SP, Brazil

Abstra
t

For any given regular fp; qg tessellation in the hyperboli
 plane, we 
ompute the number of verti
es

and tiles to be found as we distan
e from a given point, enabling a 
omplete 
hara
terization of the

asymptoti
 behavior.

1 Introdu
tion

In the designs of 
ommuni
ations systems the 
hoi
e of signal 
onstellation to be used play a fundamental

role, mainly be
ause the performan
e of the system is dependent of su
h signal 
onstellation. In order to

be
ame a real system, is ne
essary to have strong instruments to manipulate the signals, generally a suitable

algebrai
 stru
ture. Forney [1℄ introdu
ed the possibility of 
onsidering uniform geometri
 
odes, build up

from latti
es � in R

n

that be
ome a �nite set of signal points, a 
onstellation, just after taking a 
onvenient

quotient by a sublatti
e �

0

� �. Many other possibilities for 
onstellations and asso
iated 
odes arise if we

realize that the same kind of 
onstru
tion may be done in other ambient metri
 spa
es X ([2℄) taking the


are to 
onsider a properly dis
ontinuous group of isometries � and a normal subgroup �

0

� �.

One of the most important su
h possibilities is to 
onsider 
onstellations of points in the hyperboli
 plane

([3℄, [4℄, [5℄). The main potential for 
oding in the hyperboli
 plane is the in�nitude of essentially distin
t

tessellations, in 
ontrast with the Eu
lidean 
ase. Not only we 
an �nd in�nite 
onstellations, we also 
an

�nd in�nitely many properly dis
ontinuous groups of isometries, not isomorphi
 (as abstra
t subgroups) one

to the other. Moreover, rigidity (in the sense of Mostow) does not hold in the (2-dimensional) hyperboli


plane, so, for ea
h 
o-
ompa
t properly dis
ontinuous group of isometries �, there are un
ountable many

subgroups isomorphi
 to � but not 
onjugated to it. In other words, to every su
h subgroup there is a

situation similar to the, essentially unique, situation found in R

n

.

Suppose we have su
h a signal 
onstellation in the hyperboli
 plane and let z be a point in the 
onstellation.

If there is random hyperboli
 perturbation of this point, a noise, we get a point w that distan
e, let us say

r from the original point. Sin
e any pra
ti
al approa
h to signal 
onstellations fa
es the need of making

eÆ
ient algorithms, the question of �nding out how many maximum-likelyhood regions may be found at a

distan
e r from z be
omes a relevant one. This what we do in this work, where we 
ompute this quantity

for every regular (fp; qg) tessellation and essentially to every distan
e r.
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2 Counting Tiles and Vertex

Let X be either the Eu
lidean plane E

2

, the hyperboli
 plane H

2

or the sphere S

2

. A polygon in X is a 
losed

set D, with non empty interior, bounded by a �nite number of geodesi
 ar
s. Ea
h of su
h ar
 is 
alled an

edge of D and a point in the interse
tion of two edges a vertex. A polygon is said regular if all its edges, as

well as the angles between the edges at any vertex are 
ongruent. A p; q regular tessellation of X is a family

D

i

i2N

of isometri
 regular polygons (
alled tiles of the tessellation) with p edges su
h that:

i) [

i2N

= X.

ii) int (D

i

) \ int (D

j

) = if i 6= j.

iii) If D

i

\D

j

6= then it is either a 
ommon edge or a 
ommon vertex.

iv) If z is a vertex of D

i

1

, then it is a vertex of exa
tly q polygons D

i

1

; � � � ; D

i

q

.

It is a well known result that a p; q tessellation o

urs in S

2

if 0 < (p� 2)(q � 2) < 4 (
orresponding to the

�ve Platoni
 solids), in R

2

if (p�2)(q�2) = 4 or in H

2

if 4 < (p�2)(q�2). Those possibilities are mutually

ex
luding. These multipli
ity of tessellations represent the opportunities o�ered by the hyperboli
 
ase.

We assume here that fD

i

g

i2N

is a regular fp; qg tessellation of the hyperboli
 plane. Let p

0

be the bary
entre

of the tile D

0

, whi
h has p verti
es and denote by C

0

the family 
onsisting fD

0

g 
ontaining only this tile.

In our �rst level, we 
onsider a ball B

1

, 
entered at p

0

, that 
ontains D

0

but no other tile. We denote by

C

1

the 
olle
tion of all tiles that interse
t B

1

. This is the family of all tiles whi
h has either an edge or a

vertex in 
ommon with D

0

. We 
hoose now a ball B

2

, 
entered at p

0

, 
ontaining every tile in C

1

but no

other tile. We denote by C

2

the family of all tiles that interse
ts B

2

. In this way, given C

j

, we 
hoose a ball

B

j+1


entered at p

0

ant 
ontaining all tiles of C

j

but no other and de�ne C

j+1

to be the family of all tiles

that interse
ts B

j+1

. In this way we get a family fC

j

g

j2Z

su
h that C

j

 C

j+1

and H

2

= [

j2N

C

j

. The set

of tiles added in the passage from one level to the next one is denoted by L

j+1

:= C

j+1

nC

j

.

Our goal is to give an expli
it formula for P

j

= 
ard (C

j

). We will also 
onsider the number V

j

of verti
es

of polygons 
ontained in C

j

. Note that V

j

is not just a multiple of P

j

, sin
e there are verti
es joined by

di�erent number of polygons. The amount of new polygons and edges added at the level j will be denoted

by NP

j

= P

j

� P

j�1

and NV

j

= V

j

� V

j�1

respe
tively. Note that all the quantities depend on p and q.

Note that

V

j+1

=

j+1

X

i=0

NV

i

P

j+1

=

j+1

X

i=0

NP

i

Similar 
ounting 
ould be performed if we had started with a ball 
entered not at the bary
entre of a polygon

D

0

but at one of its verti
es, asking for the quantities

e

P

j

and

e

V

j

de�ned in an analogous way. We do not

need to perform expli
it 
omputations in this 
ase sin
e, by a standard duality argument, we �nd that

e

P

j

(p; q) = V

j

(q; p) and

e

V

j

(p; q) = P

j

(q; p).

We denote by v

j;1

; v

j;2

; :::; v

j;l

the verti
es that belongs to L

j

but not to L

j�1

. A vertex v

j;i

is said to be of

type t (v

j;i

) = k if it is a vertex of k edges in L

j

. Note that 2 � t (v

j;i

) � q. Whenever we are 
ounting either

verti
es v

j;i

or edges e

j;i

with the index 0 � i � m, we 
onsider the indi
es modulo m+ 1, that is, the pair

v

j;i

; v

j;i+1

is the pair v

j;k

; v

j;0

when i = m. Generally, m will be understood from the 
ontext.

The 
ounting pro
ess will be done in three di�erent 
ases, namely, when p; q � 4, p = 3 and q = 3. The �rst


ase will be done in greater details, sin
e it illustrate the type of argument used in the next two 
ases. To

make it easier for the reader, intermediate steps in the 
ounting pro
ess are typed using bold fonts: they are

all gathered in the proposition that follows.

2.1 First Case: p � 4 and q � 4

We start 
ounting the number of verti
es in the level L

j

.

In the level C

0

there are p verti
es, ea
h one of type 2. When 
onsidered as verti
es of the next level, C

1

,

ea
h one of those verti
es be
ome a vertex of type q. So when 
onstru
ting the next level, we must add q�2
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edges to ea
h of this verti
es, summing up p (q � 2) edges. We may 
ount them in an 
lo
kwise order and

denote by e

0;i

1

; e

0;i

2

; :::; e

0;i

q�2

(i = 1; :::; p), the edges added to the vertex v

0;i

. Ea
h of this edge 
ontribute with

one vertex in the L

1

level, so, by now, we 
ounted p (q� 2) verti
es in L

1

. Ea
h pair of 
onse
utive edges

e

0;i

j

; e

0;i

j+1

are edges of the same polygon in L

1

so, this polygon has p� 3 more verti
es that must be 
ounted

at the level L

1

. Sin
e there are p (q � 3) pairs of su
h edges, we 
ounted p(q� 3)(p� 3) more verti
es in

level L

1

. To 
on
lude the 
ounting of this level, we note that e

0;i

q�2

; e

0;i+1

1

and the edge joining v

0;i

to v

0;i+1

are three edges of a polygon in L

1

not 
ounted yet. They determine 4 verti
es of this polygon, 
onsequently

we must add p� 4 more edges, a total amount of p(p� 4). We sum all this edges and 
on
lude that

NV

1

= p (q � 2) + p (p� 3) (q � 3) + p (p� 4) :

We note that all these verti
es are of type 2, ex
ept the p (p� 2) verti
es of the edges e

0;i

j

, that are all of

type 3, sin
e we are 
onsidering p � 4.

We 
an 
al
ulate now NV

2

. In level L

1

, there are NV

1;3

= p (q � 2) verti
es of type 3 and NV

1;2

=

p [(p� 3) (q � 3) + (p� 4)℄ verti
es of type 2. As we did before, we add q� 2 edges e

1;i

1

; e

1;i

2

; :::; e

1;i

q�2

to ea
h

one of the verti
es v

2

1;1

; v

2

1;2

; :::; v

3

1;NV

1;2

of type 2 and q�3 edges to ea
h of the verti
es v

3

1;1

; v

3

1;2

; :::; v

3

1;NV

1;3

of

type 3 and they give rise to (q� 2)NV

1;2

+ (q� 3)NV

1;2

new verti
es, all them of type 3. Let v

2

1;i

be a

vertex of type 2 of L

1

and e

1;i

j

; e

1;i

j+1

be two 
onse
utive edges added to v

1;i

: ea
h of this pair give rise to a

new polygon, with p � 3 verti
es not yet 
ounted. Sin
e there are q � 3 pairs of su
h edges at ea
h of the

NV

1;2

verti
es of L

1

, they sum up (p� 3) (q� 3)NV

1;2

new verti
es. The same happens to the verti
es

v

3

1;i

of type 3 of L

1

, but now, to ea
h NV

1;3

of them, we 
an �nd q � 4 pairs of 
onse
utive edges, and they

sum (p� 3) (q� 4)NV

1;3

new verti
es. Finally, the edges e

2;i

q�2

; e

2;1+1

1

and the edge of L

1

joining v

2;i

to

v

2;i+1

determine another polygon in L

2

and p � 4 new verti
es, all of type 2and we added (p� 4)NV

1;2

new verti
es of type 2. We 
an now sum up all of them and get:

NV

1;3

= (q � 2)NV

1;2

+ (q � 3)NV

1;3

NV

1;2

= [(p� 4) + (p� 3) (q � 3)℄NV

1;2

+ (p� 3) (q � 4)NV

1;3

:

The following levels work in the same way and we get the re
ursive formula:

Proposition 1 Given a regular fp; qg tessellation, with p; q > 3, the number of verti
es in the level j is

given by the re
ursive formula:

NV

1;2

= p [(p� 3) (q � 3) + (p� 4)℄ ; NV

1;3

= p (q � 2)

NV

j+1;2

= [(p� 4) + (p� 3) (q � 3)℄NV

j;2

+ (p� 3) (q � 4)NV

j;3

NV

j+1;3

= (q � 2)NV

1;2

+ (q � 3)NV

1;3

Now we 
ompute the number NP

k

of polygons at the level L

k

. As before, level C

0

has only type 2 ver-

ti
es and to ea
h vertex v

2

0;i

we add q � 2 edges, e

0;i

1

; :::; e

0;i

q�2

. Ea
h pair of 
onse
utive edges e

0;i

j

; e

0;i

j+1

(i = 1; :::; p; j = 1; :::; q � 3) 
orresponds to a polygon in L

1

, so for the moment we have p (q� 3) new poly-

gons. But ea
h of the edges joining v

2

0;i

and v

2

0;i+1

, together with edges e

0;i

q�2

and e

0;i+1

1

determines another

polygon (a total of p) and we �nd

NP

1

= p+ p (q � 3) :

The indu
tive step is again given by the determination of NP

2

. As we did before, we add q � 2 edges to

ea
h type-2 verti
es of L

1

and q� 3 to type-3 verti
es. If v

2

1;i

is a type-2 vertex and e

1;i

1

; :::; e

1;i

q�2

are the new

edges atta
hed to it, ea
h pair of the q � 3 
onse
utive edges e

1;i

j

; e

1;i

j+1


orresponds to a new polygon in L

2

.

The same happens at the type-3 verti
es, but now, at ea
h one we added q�4 polygons. By the moment, we

added (q� 3)NV

1;2

+(q� 4)NV

1;3

polygons. But the edges e

0;i

q�2

and e

0;i+1

1

together with the one joining

v

1;i

to v

1;i+1

determines another polygon in L

1

, resuming in NV

1

more polygons. This 
an be sumarised in

the following:
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Proposition 2 Given a regular fp; qg tessellation with p; q > 3, the number of polygons in the level j is

given by the re
ursive formula:

NP

0

= 1; NP

1

= p+ p (q � 3)

NP

k+1

= (q � 3)NV

k;2

+ (q � 4)NV

k;3

+NV

k

= (q � 2)NV

k;2

+ (q � 3)NV

k;3

2.2 Case 2: p = 3 and q � 6

In this 
ase our fundamental domains are triangle. We begin with a triangle, with verti
es v

0;1

; v

0;2

and v

0;3

.

To ea
h of these verti
es, all of type 2, we add q� 2 edges, determining p (q � 2) = 3 (q � 2) new verti
es. If

e

0;i

j

and e

0;i

j+1

are 
onse
utive edges added to vertex v

0;i

, they determine a new triangle in L

1

, to whi
h we

must add another edge, but not a new, yet un
ounted vertex. In a similar way, the edges e

0;i

q�2

and e

0;i+1

1

must determine a triangle in L

1

, so they have a 
ommon vertex, 
ounted twi
e in the previous 
al
ulation,

so that at level L

1

we wave 3 (q � 2) � 3 = 3 (q � 3) verti
es. The verti
es 
orresponding to the edges e

0;i

j

,

for j = 2; :::; q � 3 are all verti
es of type 3: ea
h one is joined to a vertex in the previous level, C

0

, and to

verti
es of the previous and next edge, e

0;i

j�1

and e

0;i

j+1

respe
tively. But, sin
e the verti
es 
orresponding to

e

0;i

q�2

and e

0;i+1

1


oin
ide, they are type-4 verti
es: they are joined to two verti
es in the C

0

(determined by

the edges e

0;i

q�2

and e

0;i+1

1

), just like the verti
es determined by edges e

0;i

q�3

and e

0;i+1

2

. So, the total amount

of verti
es in L

1

is given by

NV

1

= NV

1;3

+NV

1;4

= p (q � 4) + p:

To 
ompute the number of verti
es in the next level, we add q � 3 new edges e

1;i

1

; :::; e

1;i

q�3

to ea
h of the

NV

1;3

type-3 verti
es of L

1

. Ea
h pair of 
onse
utive edges, ex
luding the extreme ones, gives rise to a new

triangle to whi
h an edge must be added, so, the q� 5 edges e

1;i

2

; :::; e

1;i

q�4

added to the NV

1;3

verti
es of

type 3 of L

1


ontribute with a type-3 vertex in L

2

. The same happens with the NV

1;4

type-4 verti
es of

L

1

, but now, ex
luding the extreme edges e

1;i

1

and e

1;i

q�4

, there are only q � 6 edges, hen
e q� 6 type-3 new

verti
es in L

2

. As we did before, e

1;i

q�"

, the last edge added to ea
h of the NV

1

vertex v

1;i

(" may be 3 of 4,

a

ording to the type of the vertex to v

1;i

), and e

1;i+1

1

, the �rst edge added to vertex v

1;i+1

join a 
ommon

vertex, a type-4 vertex in L

2

. The passage from level L

1

to level L

2

gives us the indu
tive step and we


on
lude:

Proposition 3 Given a regular fp; qg tessellation with p = 3; q � 6, the number of verti
es in the level j

is given by the re
ursive formula:

V

0

= p; NV

1;3

= p (q � 4) ; NV

1;4

= p = 3

NV

j+1;3

= (q � 5)NV

j;3

+ (q � 6)N

j;4

NV

j+1;4

= NV

j;3

+NV

j;4

= NV

j

We 
ompute now the number NP

j

of new polygons at level L

j

. At the �rst level, at ea
h of the 3 verti
es of

C

0

, we introdu
ed a q�2 edges, ea
h pair of 
onse
utive ones gives rise to a new triangle, a total of 3(q� 3)

new triangles. Beside those, the edges e

0;i

q�2

and e

0;i+1

1

determine a new one and we �nd NP

1

= 3+3 (q � 3).

To ea
h vertex v

1;i

of type 3 in L

1

we must add q � 3 edges e

1;i

1

; :::; e

1;i

q�3

. Ea
h pair of 
onse
utive of this

edges determine a new triangle, a total of q � 4 for ea
h one of those verti
es. The same happens to type-4

verti
es, but now we introdu
e only q � 4 edges, resulting in q � 5 pairs of 
onse
utive edges an hen
e q � 5

new triangles. By the moment, we have 
omputed (q � 4)NV

1;3

+(q � 5)NV

1;4

new polygons. It remains to


onsider the pairs of edges e

1;i

q�"

and e

1;i+1

1

added to vertex v

1;i

(" = t (v

1;i

), whi
h determines a new triangle

for ea
h i = 1; :::; NP

1

. This is the indu
tive step and we get the following:

Proposition 4 Given a regular fp; qg tessellation with p = 3; q � 6, the number of polygons in the level j

is given by the re
ursive formula:

NP

0

= 1; NP

1

= p+ p (q � 3)

NP

k+1

= V

k

+ (q � 4)NV

k;3

+ (q � 5)NV

k;4

= (q � 3)NV

k;3

+ (q � 5)NV

k;4

4



2.3 Case 3: p � 6; q = 3

Let us 
onsider a fp; qg tessellation fD

i

g

i2N

. We start from a p-polygon and, to ea
h one of this verti
es

we must add one single edge, ea
h one 
ontributing to a type-3 vertex in L

1

. If v

0;i

is a vertex of C

0

with

added edge e

0;i

, then e

0;i

; e

0;i+1

and the edge joined v

0;i

to v

0;i+1

are edges of the same polygon, that are

determined by p� 4 verti
es, they are all of type 2. So, NV

1;2

= p (p� 4) and NV

1;3

= p. The type-2 and

type-3 verti
es of L

1

are uniformly distributed, in a way, there are p� 4 
onse
utive type-2 verti
es between

ea
h pair of type-3 verti
es.

To ea
h type-2 vertex of L

1

we must add one single edge that, as before, will be of type 3 in L

2

. If v

1;i

and

v

i+1

are 
onse
utive type-2 verti
es of L

1

, the edges e

1;i

and e

1;i+1

are edges of one polygon, that has p� 4

yet un
ounted verti
es, all of type-2. Sin
e there are p =NV

1;3

sequen
es of p�4 
onse
utive su
h verti
es,

we get p (p� 5) su
h polygons, 
ontributing with (p� 4) (p� 5)NV

1;3

type-2 verti
es in L

2

. There are

also p type-3 verti
es. If v

1;i

is su
h a verti
es, it belongs to a same polygon as v

1;i�1

and v

1;i+1

, just like

the edges e

1;i�1

and e

1;i+1

. We have already 
ounted 5 of the verti
es of this polygon, so there are more

(p� 5) for ea
h of the type-2 verti
es of L

1

asso
iated to this vertex, a total amount of (p� 5)NV

1;3

. This

is the indu
tive step and we found the following:

Proposition 5 Given a regular fp; qg tessellation with p � 6; q = 3, the number of verti
es in the level j

is given by the re
ursive formula:

NV

0

= p; NV

1;2

= p (p� 4) ; NV

1;3

= p

NV

j+1;2

= (p� 4) (p� 5)NV

1;3

+ (p� 5)NV

1;3

; NV

j+1;3

= NV

j;2

NV

j+1

= NV

j+1;2

+NV

j+1;3

We 
ount now the polygons added at ea
h level. Obviously, NP

0

= 1 and NP

1

= p. To 
ompute the next

level, that allows us to make the indu
tive step, we noti
e that we added one edge for ea
h type-2 vertex

of L

1

. Two 
onse
utive su
h edges 
ontribute with a new polygon, so we �nd that there are NV

1;2

new

polygons. We generalize to obtain:

Proposition 6 Given a regular fp; qg tessellation with p � 6; q = 3, the number of polygons in the level j

is given by the re
ursive formula:

NP

0

= 1; NP

1

= p; NP

k+1

= NV

k;2

:

3 Asymptoti
 Behavior

It is a well known fa
t that the fundamental group � of 
ompa
t surfa
e of negative 
urvature has exponential

growth, in the sense that, given any �nite set of generators of � = h


1

; :::; 


n

i, the number B

k

of elements of

� that 
an be represented as words of length at most k in the generators 


1

; :::; 


n

is an exponential fun
tion

on k, that is, there are 
onstants 
; � > 0; b > 1 su
h that lim

k!1


b

�k

B

k

= 1.

In all the 
ases where a fp; qg tessellation is asso
iated with a dis
rete group of isometries of the hyperboli


plane - all f4g; 4gg and f4g + 2; 2g + 1g tessellations are so ([2℄) - we 
an des
ribe B

k

in a similar way we

des
ribed P

k

. We start with one single polygon and, at ea
h step, instead of adding every polygon that has

either an edge or an vertex 
ontained in the previous one, we add only the polygons with a fa
e 
ontained in

the previous stage. So, we �nd that for su
h tessellations, B

k

< P

k

< V

k

and it will not be surprising that

P

k

and V

k

behave exponentially in all the 
ases. This is indeed what we �nd. Moreover, we �nd expli
itly

the 
oeÆ
ients 
; � and b, depending on the pair fp; qg.

For ea
h pair (p; q) the fun
tions V

k+1

(p; q) and P

k+1

(p; q) are attained as a linear 
ombination of the

previous NV

k;i

(p; q), the number of verti
es of type i (either 2; 3 or 4, depending on the 
ase) added in the

previous level, with 
oeÆ
ients being polynomials in p and q. Sin
e we are 
on
erned with the asymptoti


behavior, we look only at the higher degree at ea
h level k. Looking at the re
ursive formulas found in

5



propositions 1 { 6, it is easy to see that the higher exponents of p and q in the relevant 
ases are as given in

the table bellow:

p � 4; q � 4 p = 3; q � 6 p � 6; q = 3

Higher 
oeÆ
ient in V

k

(p; q) p

k+1

q

k

pq

k

p

3k

Higher 
oeÆ
ient in P

k

(p; q) p

k

q

k

pq

k

p

3(k�1)

:

With this table in mind, it is immediate to verify that the asymptoti
 behavior of the fun
tions is the same

as exponential fun
tions 
 (b)

�k

with 
; b and � as follows:

p � 4; q � 4 p = 3; q � 6 p � 6; q = 3

V

k

(p; q) � 
 = p; b = pq; � = 1 
 = p; b = q; � = 1 
 = 1; b = p; � = 3

P

k

(p; q) � 
 = 1; b = pq; � = 1 
 = p; b = q; � = 1 
 =

1

p

3

; b = p; � = 3

:
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