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Abstract

For any given regular {p,q} tessellation in the hyperbolic plane, we compute the number of vertices
and tiles to be found as we distance from a given point, enabling a complete characterization of the
asymptotic behavior.

1 Introduction

In the designs of communications systems the choice of signal constellation to be used play a fundamental
role, mainly because the performance of the system is dependent of such signal constellation. In order to
became a real system, is necessary to have strong instruments to manipulate the signals, generally a suitable
algebraic structure. Forney [1] introduced the possibility of considering uniform geometric codes, build up
from lattices A in R™ that become a finite set of signal points, a constellation, just after taking a convenient
quotient by a sublattice A’ C A. Many other possibilities for constellations and associated codes arise if we
realize that the same kind of construction may be done in other ambient metric spaces X ([2]) taking the
care to consider a properly discontinuous group of isometries I" and a normal subgroup I C T.

One of the most important such possibilities is to consider constellations of points in the hyperbolic plane
([3], [4], [5]). The main potential for coding in the hyperbolic plane is the infinitude of essentially distinct
tessellations, in contrast with the Euclidean case. Not only we can find infinite constellations, we also can
find infinitely many properly discontinuous groups of isometries, not isomorphic (as abstract subgroups) one
to the other. Moreover, rigidity (in the sense of Mostow) does not hold in the (2-dimensional) hyperbolic
plane, so, for each co-compact properly discontinuous group of isometries I', there are uncountable many
subgroups isomorphic to I' but not conjugated to it. In other words, to every such subgroup there is a
situation similar to the, essentially unique, situation found in R™.

Suppose we have such a signal constellation in the hyperbolic plane and let z be a point in the constellation.
If there is random hyperbolic perturbation of this point, a noise, we get a point w that distance, let us say
r from the original point. Since any practical approach to signal constellations faces the need of making
efficient algorithms, the question of finding out how many maximum-likelyhood regions may be found at a
distance r from z becomes a relevant one. This what we do in this work, where we compute this quantity
for every regular ({p,q}) tessellation and essentially to every distance r.



2 Counting Tiles and Vertex

Let X be either the Euclidean plane E?, the hyperbolic plane H? or the sphere S2. A polygon in X is a closed
set D, with non empty interior, bounded by a finite number of geodesic arcs. Each of such arc is called an
edge of D and a point in the intersection of two edges a verter. A polygon is said regular if all its edges, as
well as the angles between the edges at any vertex are congruent. A p,q reqular tessellation of X is a family
D;;cn of isometric regular polygons (called tiles of the tessellation) with p edges such that:

l) Uien = X
i) int (D;) Nint (D;) = if ¢ # j.
i) If D; N D; # then it is either a common edge or a common vertex.

w) If z is a vertex of D;,, then it is a vertex of exactly ¢ polygons D;,,---, D;,.

It is a well known result that a p, ¢ tessellation occurs in S? if 0 < (p — 2)(¢ — 2) < 4 (corresponding to the
five Platonic solids), in R? if (p—2)(¢—2) =4 or in H? if 4 < (p—2)(¢—2). Those possibilities are mutually
excluding. These multiplicity of tessellations represent the opportunities offered by the hyperbolic case.
We assume here that {D;},y is a regular {p, ¢} tessellation of the hyperbolic plane. Let py be the barycentre
of the tile Dy, which has p vertices and denote by Cy the family consisting {Dg} containing only this tile.
In our first level, we consider a ball By, centered at py, that contains Dy but no other tile. We denote by
C1 the collection of all tiles that intersect B;y. This is the family of all tiles which has either an edge or a
vertex in common with Dy. We choose now a ball Bs, centered at pp, containing every tile in C; but no
other tile. We denote by C> the family of all tiles that intersects B. In this way, given C;, we choose a ball
Bji1 centered at pp ant containing all tiles of C; but no other and define Cj;; to be the family of all tiles
that intersects Bjy1. In this way we get a family {C}},., such that C; & Cj;1 and H? = UjenCj. The set
of tiles added in the passage from one level to the next one is denoted by Lj;1 := Cj11\Cj.

Our goal is to give an explicit formula for P; = card (C;). We will also consider the number V; of vertices
of polygons contained in C;. Note that V; is not just a multiple of P;, since there are vertices joined by
different number of polygons. The amount of new polygons and edges added at the level j will be denoted
by NP; = P; — Pj_1 and NV; = V; — V;_; respectively. Note that all the quantities depend on p and gq.
Note that

jt1 jt1
VjHZZNVi Pj+1:ZNPi
=0 =0

Similar counting could be performed if we had started with a ball centered not at the barycentre of a polygon
Dy but at one of its vertices, asking for the quantities P; and V; defined in an analogous way. We do not
need to perform explicit computations in this case since, by a standard duality argument, we find that
Pj (p,q) = Vj (¢,p) and V; (p,q) = P; (¢, p)-

We denote by vj 1,v;2,...,v5,; the vertices that belongs to L; but not to L;_;. A vertex v;; is said to be of
type t (v;,;) = k if it is a vertex of k edges in L;. Note that 2 <t (v;;) < ¢. Whenever we are counting either
vertices v;; or edges e/? with the index 0 < i < m, we consider the indices modulo m + 1, that is, the pair
Vji,Vj,i+1 1S the pair v; i, v 0 when i = m. Generally, m will be understood from the context.

The counting process will be done in three different cases, namely, when p,q > 4, p = 3 and g = 3. The first
case will be done in greater details, since it illustrate the type of argument used in the next two cases. To
make it easier for the reader, intermediate steps in the counting process are typed using bold fonts: they are
all gathered in the proposition that follows.

2.1 First Case: p>4and ¢ > 4

We start counting the number of vertices in the level L;.
In the level Cy there are p vertices, each one of type 2. When considered as vertices of the next level, C1,
each one of those vertices become a vertex of type ¢. So when constructing the next level, we must add ¢ — 2



edges to each of this vertices, summing up p (¢ — 2) edges. We may count them in an clockwise order and
denote by €, €3’ ..., eng (i =1,...,p), the edges added to the vertex v ;. Each of this edge contribute with
one vertex in the L; level, so, by now, we counted p (q — 2) vertices in L;. Each pair of consecutive edges
e?”, e(;il are edges of the same polygon in L; so, this polygon has p — 3 more vertices that must be counted
at the level L;. Since there are p (¢ — 3) pairs of such edges, we counted p(q — 3)(p — 3) more vertices in
level L. To conclude the counting of this level, we note that eq 2 e(l) 1 and the edge joining vg ; to vo,it1
are three edges of a polygon in L not counted yet. They determine 4 vertices of this polygon, consequently

we must add p — 4 more edges, a total amount of p(p —4). We sum all this edges and conclude that
NVi=pa—-2)+pp-3)(a—-3)+p(p—4).

We note that all these vertices are of type 2, except the p (p — 2) vertices of the edges e , that are all of
type 3, since we are considering p > 4.

We can calculate now NV5. In level Ly, there are NVi3 = p(g—2) vertices of type 3 and NV1 2 =
p[(p—3) (¢ — 3) + (p — 4)] vertices of type 2. As we did before, we add ¢ — 2 edges e;’ ‘ ey L q ', to each
one of the vertices v{ 1,07 o, ..., v} yy, , Of type 2 and g — 3 edges to each of the vertices v} ;, v ,, ... vf,NVmof
type 3 and they give rise to (q 2) NVl 2 + (q — 8) NV 3 new vertices, all them of type 3. Let v ; be a

vertex of type 2 of Ly and e® > +1 be two consecutive edges added to vy ;: each of this pair give rise to a
new polygon, with p — 3 vertices not yet counted. Since there are ¢ — 3 pairs of such edges at each of the
NVi 5 vertices of Ly, they sum up (p — 3) (q — 3) NV 2 new vertices. The same happens to the vertices

vii of type 3 of Ly, but now, to each NV; 3 of them, we can find ¢ — 4 pairs of consecutive edges, and they
sum (p — 3) (q — 4)NV, 5 new vertices. Finally, the edges ezf%ef 1*1 and the edge of Ly joining V2, tO
v2,i+1 determine another polygon in L, and p — 4 new vertices, all of type 2and we added (p — 4)NV1’2

new vertices of type 2. We can now sum up all of them and get:

NVig = (q—=2)NVip+(¢—3)NVis
NVipg = [p=-49)+W@-3)(@—3)]NVip+(p-3)(g—4)NVi3.

The following levels work in the same way and we get the recursive formula:

Proposition 1 Given a regular {p,q} tessellation, with p,q > 3, the number of vertices in the level j is
given by the recursive formula:

NVip = pllp=3)(¢=3)+(-4], NViz=plg-2)
NVigiz = [(p=49)+(@-3)(¢=3)]NVj2+(p-3)(¢-4NVjs
NVijtis = (@=2)NVip+(¢—3)NVig
Now we compute the number NPy, of polygons at the level Lj. As before, level Cy has only type 2 ver-
tices and to each vertex vo,l we add g — 2 edges, e(l) - ,eg ’2 Each pair of consecutive edges e? ,egil

(i=1,.,p;i=1,....,q—3) corresponds to a polygon in Ly, so for the moment we have p(q — 3) new poly-
gons. But each of the edges joining vj ; and vg ;, , together with edges eq , and ey’ %71 Jetermines another
polygon (a total of p) and we find

NP, :p+p(q—3).

The inductive step is again given by the determination of NP,. As we did before, we add g — 2 edges to

each type-2 vertices of Ly and ¢ — 3 to type-3 vertices. If U1 ; is a type-2 vertex and e1 - ,e; ’2 are the new

edges attached to it, each pair of the ¢ — 3 consecutive edges el y ,e;ﬁl corresponds to a new polygon in L.
The same happens at the type-3 vertices, but now, at each one we added q— 4 polygons. By the moment, we
added (q — 3)NV, 2-I-(q 4)NV, 3 Polygons. But the edges e ", and eo i+l together with the one joining
v1,; t0 U1 541 determines another polygon in L, resuming in NV1 more polygons. This can be sumarised in

the following;:



Proposition 2 Given a regular {p,q} tessellation with p,q > 3, the number of polygons in the level j is
given by the recursive formula:

NPy, = 1, NP =p+p(qg—3)
NP1 = (q—=3)NVio+(q—4)NVizs + NV =(q—2)NVi2 + (¢ —3) NVi3

2.2 Case2: p=3and g>6

In this case our fundamental domains are triangle. We begin with a triangle, with vertices vg 1, vo,2 and vy 3.
To each of these vertices, all of type 2, we add g — 2 edges, determining p (¢ — 2) = 3 (¢ — 2) new vertices. If

0 * and e 1 are consecutive edges added to vertex vp i, they determine a new triangle in L1, to which we

must add another edge, but not a new, yet uncounted vertex. In a similar way, the edges eq , and e0 i+l

must determine a triangle in Ly, so they have a common vertex, counted twice in the previous calculatlon,
so that at level L1 we wave 3 (¢ —2) — 3 = 3 (¢ — 3) vertices. The vertices corresponding to the edges e;“,
for j = 2,...,q — 3 are all vertices of type 3 each one is joined to a vertex in the previous level, Cp, and to

vertlces of the previous and next edge, e] . and e +1 respectively. But, since the vertices corresponding to

%iF1 eoincide, they are type-4 vertices: they are joined to two vertices in the Cy (determined by

the edges € 4o and e(l)’iH) just like the vertices determined by edges e ", and ey i

of vertices in L; is given by

2ande

. So, the total amount

NV1 =NV173—|—NV174 :p(q—4)—|—p

To compute the number of vertices in the next level, we add ¢ — 3 new edges e}”, . e;f3 to each of the
NV, 3 type-3 vertices of L;. Each pair of consecutive edges, excluding the extreme ones, gives rise to a new
triangle to which an edge must be added, so, the q — 5 edges e;’, - e;f4 added to the N'V g vertices of
type 3 of Ly contribute with a type-3 vertex in Ly. The same happens with the NV 4 type-4 vertices of

Ly, but now, excluding the extreme edges e}’i and e;f4, there are only ¢ — 6 edges, hence q — 6 type-3 new

the last edge added to each of the NV vertex vy ; (¢ may be 3 of 4,
1,i+1

vertices in L. As we did before, eq7’5,
according to the type of the vertex to vy ;), and e; , the first edge added to vertex v; ;41 join a common
vertex, a type-4 vertex in L. The passage from level Ly to level Ly gives us the inductive step and we

conclude:

Proposition 3 Given a reqular {p,q} tessellation with p = 3,q > 6, the number of vertices in the level j
is given by the recursive formula:

Voo = p, NVig=p(g—4), NVig=p=3
NVitiz = (@=5)NVj3+(q—6)Njs NVjy14=NVj3+NVjy =NV

We compute now the number N P; of new polygons at level L;. At the first level, at each of the 3 vertices of
Cy, we introduced a q — 2 edges, each palr of consecutive ones gives rise to a new triangle, a total of 3(q — 3)
new triangles. Beside those, the edges e *, and 2! determine anew one and we find NP, =343 (q — 3).

To each vertex vy ; of type 3 in L; we must add ¢ — 3 edges e . ,eq 3. Bach pair of consecutive of this
edges determine a new triangle, a total of ¢ — 4 for each one of those vertices. The same happens to type-4
vertices, but now we introduce only ¢ — 4 edges, resulting in ¢ — 5 pairs of consecutive edges an hence ¢ — 5
new triangles. By the moment we have computed (¢ —4) NV} 3+ (¢ — 5) NV; 4 new polygons. It remains to
consider the pairs of edges eq . and e} added to vertex vy ; (¢ = t (v1;), which determines a new triangle
for each ¢ = 1, ..., NP;. This is the inductive step and we get the following:

Proposition 4 Given a regular {p,q} tessellation with p = 3,q < 6, the number of polygons in the level j
is given by the recursive formula:

NPy, = 1, NP =p+p(qg—3)
N P41 Vi+(@—4)NVys+(q—5)NViu=(q—3)NVi3+(q—5) NVia



2.3 Case 3: p>6,g=3

Let us consider a {p,q} tessellation {D;}, .. We start from a p-polygon and, to each one of this vertices
we must add one single edge, each one contributing to a type-3 vertex in Ly. If vy ; is a vertex of Cy with
added edge €%, then €% %! and the edge joined v ; to vg ;41 are edges of the same polygon, that are
determined by p — 4 vertices, they are all of type 2. So, NVq 2= p (p — 4) and NV 3= p. The type-2 and
type-3 vertices of L; are uniformly distributed, in a way, there are p — 4 consecutive type-2 vertices between
each pair of type-3 vertices.

To each type-2 vertex of L; we must add one single edge that, as before, will be of type 3 in L. If v; ; and
vi41 are consecutive type-2 vertices of Ly, the edges e™? and e'"*! are edges of one polygon, that has p — 4
yet uncounted vertices, all of type-2. Since there are p = N'V1 3 sequences of p—4 consecutive such vertices,
we get p (p — 5) such polygons, contributing with (p —4) (p — 5) NV 3 type-2 vertices in L,. There are
also p type-3 vertices. If vy ; is such a vertices, it belongs to a same polygon as v; ;—1 and vy 41, just like
the edges e™*~! and e'"*!. We have already counted 5 of the vertices of this polygon, so there are more
(p — 5) for each of the type-2 vertices of L; associated to this vertex, a total amount of (p — 5) NV 3. This
is the inductive step and we found the following:

Proposition 5 Given a regular {p,q} tessellation with p > 6,q = 3, the number of vertices in the level j
is given by the recursive formula:

NVy = p, NV1,2:p(p—4), NViz=p
NVipip = (p=4) (-5 NVig+(p—-5)NVizg, NVjii3=NVjs
NViyi = NVjpip+NVigis

We count now the polygons added at each level. Obviously, NPy = 1 and NP, = p. To compute the next
level, that allows us to make the inductive step, we notice that we added one edge for each type-2 vertex
of L. Two consecutive such edges contribute with a new polygon, so we find that there are NV4 2 new
polygons. We generalize to obtain:

Proposition 6 Given a reqular {p,q} tessellation with p > 6,q = 3, the number of polygons in the level j
is given by the recursive formula:

NPy, = 1, NPi=p, NPy =NVpps.

3 Asymptotic Behavior

It is a well known fact that the fundamental group I' of compact surface of negative curvature has exponential
growth, in the sense that, given any finite set of generators of I' = (71, ..., vn), the number By, of elements of

I that can be represented as words of length at most & in the generators 7y, ..., ¥, is an exponential function
Ak

on k, that is, there are constants ¢, A > 0,b > 1 such that lim_, CJI_:TC =1

In all the cases where a {p, q} tessellation is associated with a discrete group of isometries of the hyperbolic
plane - all {4g,4g} and {4g + 2,29 + 1} tessellations are so ([2]) - we can describe By, in a similar way we
described Pj,. We start with one single polygon and, at each step, instead of adding every polygon that has
either an edge or an vertex contained in the previous one, we add only the polygons with a face contained in
the previous stage. So, we find that for such tessellations, By < P, < V} and it will not be surprising that
P, and Vj, behave exponentially in all the cases. This is indeed what we find. Moreover, we find explicitly
the coefficients ¢, A and b, depending on the pair {p, ¢}.

For each pair (p,q) the functions V41 (p,q) and Pyi1 (p,q) are attained as a linear combination of the
previous NV ; (p, ¢), the number of vertices of type i (either 2,3 or 4, depending on the case) added in the
previous level, with coefficients being polynomials in p and g. Since we are concerned with the asymptotic
behavior, we look only at the higher degree at each level k. Looking at the recursive formulas found in



propositions 1 — 6, it is easy to see that the higher exponents of p and ¢ in the relevant cases are as given in

the table bellow:

p>4,9>24|p=39>6 | p>6,g=3
Higher coefficient in Vj (p,q) | p*T1¢* pq* p3F
Higher coefficient in P, (p,q) | p*q¢" " pPk=1)

With this table in mind, it is immediate to verify that the asymptotic behavior of the functions is the same
. . PV
as exponential functions ¢ (b)"" with ¢,b and X as follows:

p>4,q9>4 p=3,4>6 p>6,g=3
Vk(p7Q)N C:pab:pQ7/\:1 C:p,b:q,)\:]. C:]-ab:pa)‘:
Pk(paq)N czlab:pquzl c:pab:qa/\zl c:p%ab:paA:E;
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