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Abstrat

For any given regular fp; qg tessellation in the hyperboli plane, we ompute the number of verties

and tiles to be found as we distane from a given point, enabling a omplete haraterization of the

asymptoti behavior.

1 Introdution

In the designs of ommuniations systems the hoie of signal onstellation to be used play a fundamental

role, mainly beause the performane of the system is dependent of suh signal onstellation. In order to

beame a real system, is neessary to have strong instruments to manipulate the signals, generally a suitable

algebrai struture. Forney [1℄ introdued the possibility of onsidering uniform geometri odes, build up

from latties � in R

n

that beome a �nite set of signal points, a onstellation, just after taking a onvenient

quotient by a sublattie �

0

� �. Many other possibilities for onstellations and assoiated odes arise if we

realize that the same kind of onstrution may be done in other ambient metri spaes X ([2℄) taking the

are to onsider a properly disontinuous group of isometries � and a normal subgroup �

0

� �.

One of the most important suh possibilities is to onsider onstellations of points in the hyperboli plane

([3℄, [4℄, [5℄). The main potential for oding in the hyperboli plane is the in�nitude of essentially distint

tessellations, in ontrast with the Eulidean ase. Not only we an �nd in�nite onstellations, we also an

�nd in�nitely many properly disontinuous groups of isometries, not isomorphi (as abstrat subgroups) one

to the other. Moreover, rigidity (in the sense of Mostow) does not hold in the (2-dimensional) hyperboli

plane, so, for eah o-ompat properly disontinuous group of isometries �, there are unountable many

subgroups isomorphi to � but not onjugated to it. In other words, to every suh subgroup there is a

situation similar to the, essentially unique, situation found in R

n

.

Suppose we have suh a signal onstellation in the hyperboli plane and let z be a point in the onstellation.

If there is random hyperboli perturbation of this point, a noise, we get a point w that distane, let us say

r from the original point. Sine any pratial approah to signal onstellations faes the need of making

eÆient algorithms, the question of �nding out how many maximum-likelyhood regions may be found at a

distane r from z beomes a relevant one. This what we do in this work, where we ompute this quantity

for every regular (fp; qg) tessellation and essentially to every distane r.
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2 Counting Tiles and Vertex

Let X be either the Eulidean plane E

2

, the hyperboli plane H

2

or the sphere S

2

. A polygon in X is a losed

set D, with non empty interior, bounded by a �nite number of geodesi ars. Eah of suh ar is alled an

edge of D and a point in the intersetion of two edges a vertex. A polygon is said regular if all its edges, as

well as the angles between the edges at any vertex are ongruent. A p; q regular tessellation of X is a family

D

i

i2N

of isometri regular polygons (alled tiles of the tessellation) with p edges suh that:

i) [

i2N

= X.

ii) int (D

i

) \ int (D

j

) = if i 6= j.

iii) If D

i

\D

j

6= then it is either a ommon edge or a ommon vertex.

iv) If z is a vertex of D

i

1

, then it is a vertex of exatly q polygons D

i

1

; � � � ; D

i

q

.

It is a well known result that a p; q tessellation ours in S

2

if 0 < (p� 2)(q � 2) < 4 (orresponding to the

�ve Platoni solids), in R

2

if (p�2)(q�2) = 4 or in H

2

if 4 < (p�2)(q�2). Those possibilities are mutually

exluding. These multipliity of tessellations represent the opportunities o�ered by the hyperboli ase.

We assume here that fD

i

g

i2N

is a regular fp; qg tessellation of the hyperboli plane. Let p

0

be the baryentre

of the tile D

0

, whih has p verties and denote by C

0

the family onsisting fD

0

g ontaining only this tile.

In our �rst level, we onsider a ball B

1

, entered at p

0

, that ontains D

0

but no other tile. We denote by

C

1

the olletion of all tiles that interset B

1

. This is the family of all tiles whih has either an edge or a

vertex in ommon with D

0

. We hoose now a ball B

2

, entered at p

0

, ontaining every tile in C

1

but no

other tile. We denote by C

2

the family of all tiles that intersets B

2

. In this way, given C

j

, we hoose a ball

B

j+1

entered at p

0

ant ontaining all tiles of C

j

but no other and de�ne C

j+1

to be the family of all tiles

that intersets B

j+1

. In this way we get a family fC

j

g

j2Z

suh that C

j

 C

j+1

and H

2

= [

j2N

C

j

. The set

of tiles added in the passage from one level to the next one is denoted by L

j+1

:= C

j+1

nC

j

.

Our goal is to give an expliit formula for P

j

= ard (C

j

). We will also onsider the number V

j

of verties

of polygons ontained in C

j

. Note that V

j

is not just a multiple of P

j

, sine there are verties joined by

di�erent number of polygons. The amount of new polygons and edges added at the level j will be denoted

by NP

j

= P

j

� P

j�1

and NV

j

= V

j

� V

j�1

respetively. Note that all the quantities depend on p and q.

Note that

V

j+1

=

j+1

X

i=0

NV

i

P

j+1

=

j+1

X

i=0

NP

i

Similar ounting ould be performed if we had started with a ball entered not at the baryentre of a polygon

D

0

but at one of its verties, asking for the quantities

e

P

j

and

e

V

j

de�ned in an analogous way. We do not

need to perform expliit omputations in this ase sine, by a standard duality argument, we �nd that

e

P

j

(p; q) = V

j

(q; p) and

e

V

j

(p; q) = P

j

(q; p).

We denote by v

j;1

; v

j;2

; :::; v

j;l

the verties that belongs to L

j

but not to L

j�1

. A vertex v

j;i

is said to be of

type t (v

j;i

) = k if it is a vertex of k edges in L

j

. Note that 2 � t (v

j;i

) � q. Whenever we are ounting either

verties v

j;i

or edges e

j;i

with the index 0 � i � m, we onsider the indies modulo m+ 1, that is, the pair

v

j;i

; v

j;i+1

is the pair v

j;k

; v

j;0

when i = m. Generally, m will be understood from the ontext.

The ounting proess will be done in three di�erent ases, namely, when p; q � 4, p = 3 and q = 3. The �rst

ase will be done in greater details, sine it illustrate the type of argument used in the next two ases. To

make it easier for the reader, intermediate steps in the ounting proess are typed using bold fonts: they are

all gathered in the proposition that follows.

2.1 First Case: p � 4 and q � 4

We start ounting the number of verties in the level L

j

.

In the level C

0

there are p verties, eah one of type 2. When onsidered as verties of the next level, C

1

,

eah one of those verties beome a vertex of type q. So when onstruting the next level, we must add q�2
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edges to eah of this verties, summing up p (q � 2) edges. We may ount them in an lokwise order and

denote by e

0;i

1

; e

0;i

2

; :::; e

0;i

q�2

(i = 1; :::; p), the edges added to the vertex v

0;i

. Eah of this edge ontribute with

one vertex in the L

1

level, so, by now, we ounted p (q� 2) verties in L

1

. Eah pair of onseutive edges

e

0;i

j

; e

0;i

j+1

are edges of the same polygon in L

1

so, this polygon has p� 3 more verties that must be ounted

at the level L

1

. Sine there are p (q � 3) pairs of suh edges, we ounted p(q� 3)(p� 3) more verties in

level L

1

. To onlude the ounting of this level, we note that e

0;i

q�2

; e

0;i+1

1

and the edge joining v

0;i

to v

0;i+1

are three edges of a polygon in L

1

not ounted yet. They determine 4 verties of this polygon, onsequently

we must add p� 4 more edges, a total amount of p(p� 4). We sum all this edges and onlude that

NV

1

= p (q � 2) + p (p� 3) (q � 3) + p (p� 4) :

We note that all these verties are of type 2, exept the p (p� 2) verties of the edges e

0;i

j

, that are all of

type 3, sine we are onsidering p � 4.

We an alulate now NV

2

. In level L

1

, there are NV

1;3

= p (q � 2) verties of type 3 and NV

1;2

=

p [(p� 3) (q � 3) + (p� 4)℄ verties of type 2. As we did before, we add q� 2 edges e

1;i

1

; e

1;i

2

; :::; e

1;i

q�2

to eah

one of the verties v

2

1;1

; v

2

1;2

; :::; v

3

1;NV

1;2

of type 2 and q�3 edges to eah of the verties v

3

1;1

; v

3

1;2

; :::; v

3

1;NV

1;3

of

type 3 and they give rise to (q� 2)NV

1;2

+ (q� 3)NV

1;2

new verties, all them of type 3. Let v

2

1;i

be a

vertex of type 2 of L

1

and e

1;i

j

; e

1;i

j+1

be two onseutive edges added to v

1;i

: eah of this pair give rise to a

new polygon, with p � 3 verties not yet ounted. Sine there are q � 3 pairs of suh edges at eah of the

NV

1;2

verties of L

1

, they sum up (p� 3) (q� 3)NV

1;2

new verties. The same happens to the verties

v

3

1;i

of type 3 of L

1

, but now, to eah NV

1;3

of them, we an �nd q � 4 pairs of onseutive edges, and they

sum (p� 3) (q� 4)NV

1;3

new verties. Finally, the edges e

2;i

q�2

; e

2;1+1

1

and the edge of L

1

joining v

2;i

to

v

2;i+1

determine another polygon in L

2

and p � 4 new verties, all of type 2and we added (p� 4)NV

1;2

new verties of type 2. We an now sum up all of them and get:

NV

1;3

= (q � 2)NV

1;2

+ (q � 3)NV

1;3

NV

1;2

= [(p� 4) + (p� 3) (q � 3)℄NV

1;2

+ (p� 3) (q � 4)NV

1;3

:

The following levels work in the same way and we get the reursive formula:

Proposition 1 Given a regular fp; qg tessellation, with p; q > 3, the number of verties in the level j is

given by the reursive formula:

NV

1;2

= p [(p� 3) (q � 3) + (p� 4)℄ ; NV

1;3

= p (q � 2)

NV

j+1;2

= [(p� 4) + (p� 3) (q � 3)℄NV

j;2

+ (p� 3) (q � 4)NV

j;3

NV

j+1;3

= (q � 2)NV

1;2

+ (q � 3)NV

1;3

Now we ompute the number NP

k

of polygons at the level L

k

. As before, level C

0

has only type 2 ver-

ties and to eah vertex v

2

0;i

we add q � 2 edges, e

0;i

1

; :::; e

0;i

q�2

. Eah pair of onseutive edges e

0;i

j

; e

0;i

j+1

(i = 1; :::; p; j = 1; :::; q � 3) orresponds to a polygon in L

1

, so for the moment we have p (q� 3) new poly-

gons. But eah of the edges joining v

2

0;i

and v

2

0;i+1

, together with edges e

0;i

q�2

and e

0;i+1

1

determines another

polygon (a total of p) and we �nd

NP

1

= p+ p (q � 3) :

The indutive step is again given by the determination of NP

2

. As we did before, we add q � 2 edges to

eah type-2 verties of L

1

and q� 3 to type-3 verties. If v

2

1;i

is a type-2 vertex and e

1;i

1

; :::; e

1;i

q�2

are the new

edges attahed to it, eah pair of the q � 3 onseutive edges e

1;i

j

; e

1;i

j+1

orresponds to a new polygon in L

2

.

The same happens at the type-3 verties, but now, at eah one we added q�4 polygons. By the moment, we

added (q� 3)NV

1;2

+(q� 4)NV

1;3

polygons. But the edges e

0;i

q�2

and e

0;i+1

1

together with the one joining

v

1;i

to v

1;i+1

determines another polygon in L

1

, resuming in NV

1

more polygons. This an be sumarised in

the following:
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Proposition 2 Given a regular fp; qg tessellation with p; q > 3, the number of polygons in the level j is

given by the reursive formula:

NP

0

= 1; NP

1

= p+ p (q � 3)

NP

k+1

= (q � 3)NV

k;2

+ (q � 4)NV

k;3

+NV

k

= (q � 2)NV

k;2

+ (q � 3)NV

k;3

2.2 Case 2: p = 3 and q � 6

In this ase our fundamental domains are triangle. We begin with a triangle, with verties v

0;1

; v

0;2

and v

0;3

.

To eah of these verties, all of type 2, we add q� 2 edges, determining p (q � 2) = 3 (q � 2) new verties. If

e

0;i

j

and e

0;i

j+1

are onseutive edges added to vertex v

0;i

, they determine a new triangle in L

1

, to whih we

must add another edge, but not a new, yet unounted vertex. In a similar way, the edges e

0;i

q�2

and e

0;i+1

1

must determine a triangle in L

1

, so they have a ommon vertex, ounted twie in the previous alulation,

so that at level L

1

we wave 3 (q � 2) � 3 = 3 (q � 3) verties. The verties orresponding to the edges e

0;i

j

,

for j = 2; :::; q � 3 are all verties of type 3: eah one is joined to a vertex in the previous level, C

0

, and to

verties of the previous and next edge, e

0;i

j�1

and e

0;i

j+1

respetively. But, sine the verties orresponding to

e

0;i

q�2

and e

0;i+1

1

oinide, they are type-4 verties: they are joined to two verties in the C

0

(determined by

the edges e

0;i

q�2

and e

0;i+1

1

), just like the verties determined by edges e

0;i

q�3

and e

0;i+1

2

. So, the total amount

of verties in L

1

is given by

NV

1

= NV

1;3

+NV

1;4

= p (q � 4) + p:

To ompute the number of verties in the next level, we add q � 3 new edges e

1;i

1

; :::; e

1;i

q�3

to eah of the

NV

1;3

type-3 verties of L

1

. Eah pair of onseutive edges, exluding the extreme ones, gives rise to a new

triangle to whih an edge must be added, so, the q� 5 edges e

1;i

2

; :::; e

1;i

q�4

added to the NV

1;3

verties of

type 3 of L

1

ontribute with a type-3 vertex in L

2

. The same happens with the NV

1;4

type-4 verties of

L

1

, but now, exluding the extreme edges e

1;i

1

and e

1;i

q�4

, there are only q � 6 edges, hene q� 6 type-3 new

verties in L

2

. As we did before, e

1;i

q�"

, the last edge added to eah of the NV

1

vertex v

1;i

(" may be 3 of 4,

aording to the type of the vertex to v

1;i

), and e

1;i+1

1

, the �rst edge added to vertex v

1;i+1

join a ommon

vertex, a type-4 vertex in L

2

. The passage from level L

1

to level L

2

gives us the indutive step and we

onlude:

Proposition 3 Given a regular fp; qg tessellation with p = 3; q � 6, the number of verties in the level j

is given by the reursive formula:

V

0

= p; NV

1;3

= p (q � 4) ; NV

1;4

= p = 3

NV

j+1;3

= (q � 5)NV

j;3

+ (q � 6)N

j;4

NV

j+1;4

= NV

j;3

+NV

j;4

= NV

j

We ompute now the number NP

j

of new polygons at level L

j

. At the �rst level, at eah of the 3 verties of

C

0

, we introdued a q�2 edges, eah pair of onseutive ones gives rise to a new triangle, a total of 3(q� 3)

new triangles. Beside those, the edges e

0;i

q�2

and e

0;i+1

1

determine a new one and we �nd NP

1

= 3+3 (q � 3).

To eah vertex v

1;i

of type 3 in L

1

we must add q � 3 edges e

1;i

1

; :::; e

1;i

q�3

. Eah pair of onseutive of this

edges determine a new triangle, a total of q � 4 for eah one of those verties. The same happens to type-4

verties, but now we introdue only q � 4 edges, resulting in q � 5 pairs of onseutive edges an hene q � 5

new triangles. By the moment, we have omputed (q � 4)NV

1;3

+(q � 5)NV

1;4

new polygons. It remains to

onsider the pairs of edges e

1;i

q�"

and e

1;i+1

1

added to vertex v

1;i

(" = t (v

1;i

), whih determines a new triangle

for eah i = 1; :::; NP

1

. This is the indutive step and we get the following:

Proposition 4 Given a regular fp; qg tessellation with p = 3; q � 6, the number of polygons in the level j

is given by the reursive formula:

NP

0

= 1; NP

1

= p+ p (q � 3)

NP

k+1

= V

k

+ (q � 4)NV

k;3

+ (q � 5)NV

k;4

= (q � 3)NV

k;3

+ (q � 5)NV

k;4
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2.3 Case 3: p � 6; q = 3

Let us onsider a fp; qg tessellation fD

i

g

i2N

. We start from a p-polygon and, to eah one of this verties

we must add one single edge, eah one ontributing to a type-3 vertex in L

1

. If v

0;i

is a vertex of C

0

with

added edge e

0;i

, then e

0;i

; e

0;i+1

and the edge joined v

0;i

to v

0;i+1

are edges of the same polygon, that are

determined by p� 4 verties, they are all of type 2. So, NV

1;2

= p (p� 4) and NV

1;3

= p. The type-2 and

type-3 verties of L

1

are uniformly distributed, in a way, there are p� 4 onseutive type-2 verties between

eah pair of type-3 verties.

To eah type-2 vertex of L

1

we must add one single edge that, as before, will be of type 3 in L

2

. If v

1;i

and

v

i+1

are onseutive type-2 verties of L

1

, the edges e

1;i

and e

1;i+1

are edges of one polygon, that has p� 4

yet unounted verties, all of type-2. Sine there are p =NV

1;3

sequenes of p�4 onseutive suh verties,

we get p (p� 5) suh polygons, ontributing with (p� 4) (p� 5)NV

1;3

type-2 verties in L

2

. There are

also p type-3 verties. If v

1;i

is suh a verties, it belongs to a same polygon as v

1;i�1

and v

1;i+1

, just like

the edges e

1;i�1

and e

1;i+1

. We have already ounted 5 of the verties of this polygon, so there are more

(p� 5) for eah of the type-2 verties of L

1

assoiated to this vertex, a total amount of (p� 5)NV

1;3

. This

is the indutive step and we found the following:

Proposition 5 Given a regular fp; qg tessellation with p � 6; q = 3, the number of verties in the level j

is given by the reursive formula:

NV

0

= p; NV

1;2

= p (p� 4) ; NV

1;3

= p

NV

j+1;2

= (p� 4) (p� 5)NV

1;3

+ (p� 5)NV

1;3

; NV

j+1;3

= NV

j;2

NV

j+1

= NV

j+1;2

+NV

j+1;3

We ount now the polygons added at eah level. Obviously, NP

0

= 1 and NP

1

= p. To ompute the next

level, that allows us to make the indutive step, we notie that we added one edge for eah type-2 vertex

of L

1

. Two onseutive suh edges ontribute with a new polygon, so we �nd that there are NV

1;2

new

polygons. We generalize to obtain:

Proposition 6 Given a regular fp; qg tessellation with p � 6; q = 3, the number of polygons in the level j

is given by the reursive formula:

NP

0

= 1; NP

1

= p; NP

k+1

= NV

k;2

:

3 Asymptoti Behavior

It is a well known fat that the fundamental group � of ompat surfae of negative urvature has exponential

growth, in the sense that, given any �nite set of generators of � = h

1

; :::; 

n

i, the number B

k

of elements of

� that an be represented as words of length at most k in the generators 

1

; :::; 

n

is an exponential funtion

on k, that is, there are onstants ; � > 0; b > 1 suh that lim

k!1

b

�k

B

k

= 1.

In all the ases where a fp; qg tessellation is assoiated with a disrete group of isometries of the hyperboli

plane - all f4g; 4gg and f4g + 2; 2g + 1g tessellations are so ([2℄) - we an desribe B

k

in a similar way we

desribed P

k

. We start with one single polygon and, at eah step, instead of adding every polygon that has

either an edge or an vertex ontained in the previous one, we add only the polygons with a fae ontained in

the previous stage. So, we �nd that for suh tessellations, B

k

< P

k

< V

k

and it will not be surprising that

P

k

and V

k

behave exponentially in all the ases. This is indeed what we �nd. Moreover, we �nd expliitly

the oeÆients ; � and b, depending on the pair fp; qg.

For eah pair (p; q) the funtions V

k+1

(p; q) and P

k+1

(p; q) are attained as a linear ombination of the

previous NV

k;i

(p; q), the number of verties of type i (either 2; 3 or 4, depending on the ase) added in the

previous level, with oeÆients being polynomials in p and q. Sine we are onerned with the asymptoti

behavior, we look only at the higher degree at eah level k. Looking at the reursive formulas found in
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propositions 1 { 6, it is easy to see that the higher exponents of p and q in the relevant ases are as given in

the table bellow:

p � 4; q � 4 p = 3; q � 6 p � 6; q = 3

Higher oeÆient in V

k

(p; q) p

k+1

q

k

pq

k

p

3k

Higher oeÆient in P

k

(p; q) p

k

q

k

pq

k

p

3(k�1)

:

With this table in mind, it is immediate to verify that the asymptoti behavior of the funtions is the same

as exponential funtions  (b)

�k

with ; b and � as follows:

p � 4; q � 4 p = 3; q � 6 p � 6; q = 3

V

k

(p; q) �  = p; b = pq; � = 1  = p; b = q; � = 1  = 1; b = p; � = 3

P

k

(p; q) �  = 1; b = pq; � = 1  = p; b = q; � = 1  =

1

p

3

; b = p; � = 3

:
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