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Abstrat

Let K be a �nite �eld of harateristi p > 2, and letM

2

(K) be the matrix

algebra of order two over K. We desribe up to a graded isomorphism the

2-gradings of M

2

(K). It turns out there are only two nonisomorphi non-

trivial suh gradings. Furthermore we exhibit bases of the graded polynomial

identities for eah one of these two gradings. One an distinguish these two

gradings by means of the graded polynomial identities they satisfy.

Introdution

The desription of the polynomial identities satis�ed by an algebra is an important

task and it may yield a lot of information about the algebra. One distinguishes

three quite di�erent ases depending on the base �eld K. The �rst is when K is

of harateristi 0; the seond when K is in�nite, and the third when K is �nite.

The methods that work in eah one of these ases are rather di�erent. In the ase

harK = 0 one may onsider multilinear polynomial identities sine they determine

all identities of a given algebra. In this ase one applies the theory of representations

of the symmetri group and other re�nements, see, for example [3, 5, 12℄. When

�
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jKj =1 it is suÆient to onsider multihomogeneous identities. The methods one

uses in this ase are based on the invariant theory [1℄. Finally if K is �nite �eld then

neither of the above identities are suÆient. And in general, neither of the methods

desribed an funtion properly. Instead one uses the struture theory of rings [8, 9℄

and ombinatoris based on the properties of the �nite �elds.

Let M

2

(K) be the matrix algebra of order two over the �eld K. Its identities

have been extensively studied, see for example [12℄ for the ase harK = 0, [6℄

for jKj = 1, and [10℄ for �nite �elds. The graded polynomial identities play an

important role in the study of PI algebras, see for example [5℄. We �x the non-trivial

grading 
 on M

2

(K)




0

=

��

a 0

0 d

�

j a; d 2 K

�

; 


1

=

��

0 b

 0

�

j b;  2 K

�

:

When the harateristi of the �eld K equals zero, harK = 0, O. M. Di Vinenzo

[2℄ showed that the graded identities of 
 follow from two identities namely from

y

1

y

2

= y

2

y

1

and z

1

z

2

z

3

= z

3

z

2

z

1

for y

i

being even and z

i

odd variables. When K is

in�nite, the authors [7℄ proved that the result of O. M. Di Vinenzo holds. In this

paper, we prove that if K is a �nite �eld with q elements and harK = p 6= 2 that

is K = GF (q) and q = p

n

, then the graded identities of 
 are onsequenes of the

identities y

q

1

= y

1

and

(y

1

+ z

1

� (y

1

+ z

1

)

q

)(y

2

+ z

2

� (y

2

+ z

2

)

q

2

)(1� [y

1

+ z

1

; y

2

+ z

2

℄

q�1

) = 0

where [x

1

; x

2

℄ = x

1

x

2

� x

2

x

1

is the ommutator of z

1

and z

2

.

Let 0 6= � 2 K, and de�ne a nontrivial grading 


�

on M

2

(K):




�

0

=

��

a d

�d a

�

j a; d 2 K

�

; 


�

1

=

��

b 

�� �b

�

j b;  2 K

�

:

We desribe, up to a graded isomorphism, the non-trivial gradings for M

2

(K).

Namely, one grading is 


�

where � is a perfet square in K. This grading is isomor-

phi to 
. The other is 


�

where � is not a perfet square in K. In the latter ase

the basis for the graded identities onsists of the following three identities y

q

2

1

= y

1

,

z

2q�1

1

= z

1

and

(y

1

+ z

1

� (y

1

+ z

1

)

q

)(y

2

+ z

2

� (y

2

+ z

2

)

q

2

)(1� [y

1

+ z

1

; y

2

+ z

2

℄

q�1

) = 0:

Our method is similar to the one used in [10℄ to prove that the ordinary polynomial

identities ofM

2

(K), where K is �nite �eld with q elements, follow from the identities

(x

1

� x

q

1

)(x

2

� x

q

2

2

)(1� [x

1

; x

2

℄

q�1

) = 0;

(x

1

� x

q

1

) � (x

2

� x

q

2

)� ((x

1

� x

q

1

) � (x

2

� x

q

2

))

q

= 0:
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Here we denote x

1

� x

2

= x

1

x

2

+ x

2

x

1

. We also use ideas and methods from [8℄ and

[9℄.

1 Gradings for the matrix algebra of order two

A graded algebra A is an assoiative algebra that an be expressed as the diret

sum of two subspaes A

0

and A

1

suh that A

i

A

j

� A

i+j

where the sum i + j is

taken modulo 2. One de�nes naturally graded subalgebras, ideals, homomorphisms,

isomorphisms et.

Let X = fx

1

; x

2

; : : :g, Y = fy

1

; y

2

; : : :g and Z = fz

1

; z

2

; : : :g be three sets of

symbols suh that Y [Z = X and Y \Z = ;. Denote by KhXi the free assoiative

algebra that is freely generated over K by the set X. Let f be a monomial in the

algebraKhXi. We say that f is even if it ontains an even number of entries from Z,

i.e., if its degree with respet to the symbols in Z is even. Otherwise f is alled odd.

The span of all even (odd) monomials is denoted by KhXi

0

(respetively KhXi

1

).

Therefore KhXi = KhXi

0

�KhXi

1

beomes a graded algebra. If A = A

0

� A

1

is

a graded algebra and f(y

1

; : : : ; y

m

; z

1

; : : : ; z

n

) 2 KhXi then f is a graded identity

for A if f(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) = 0 for all a

1

, . . . , a

m

2 A

0

and b

1

, . . . , b

n

2 A

1

. A

graded ideal I = I

0

� I

1

of A is alled T

2

-ideal of A if it is losed under all graded

endomorphisms of A. In other words if �:A ! A is a graded homomorphism then

�(I) � I. The set T

2

(A) of all graded identities of A is a T

2

-ideal of KhXi. If

g 2 KhXi we say that g is T

2

-onsequene of f (or that g follows from f as graded

identity) if g belongs to the T

2

-ideal generated in KhXi by f .

Let K be a �nite �eld with q elements and harateristi p 6= 2, K = GF (q) and

q = p

n

. For onveniene we shall identify the �eld K with the entre of the matrix

algebra M

2

(K)

Lemma 1 Let A = A

0

� A

1

be a grading for M

2

(K). Then:

(i) There exists an invertible element u

A

in M

2

(K) suh that u

2

A

6= 0 2 K and

A

0

= fa 2 A j au

A

= u

A

ag and A

1

= fa 2 A j au

A

= �u

A

ag;

(ii) u

q

A

= u

A

or u

q

A

= �u

A

;

(iii) If B = B

0

�B

1

is a grading of M

2

(K) and there exists an invertible matrix P

inM

2

(K) suh that P

�1

u

A

P = u

B

then the map �:A! B de�ned by �(x) = P

�1

xP

is a graded isomorphism.

Proof: As M

2

(K) is a entral simple (ungraded) algebra and A is a entral simple

graded algebra, by Lemma 6 of [13℄, we know that there exists u

A

2 A suh that

0 6= u

2

A

2 K and A

0

= fa 2 A j au

A

= u

A

ag, A

1

= fa 2 A j au

A

= �u

A

ag.
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Furthermore, u

q

A

= u

A

or u

q

A

= �u

A

; for u

q

A

= (u

2

A

)

(q�1)=2

u

A

= (�I)

(q�1)=2

u

A

= �u

A

where I stands for the identity matrix.

The third assertion follows easily from the fat that B

0

= fb 2 B j b�(u

A

) =

�(u

A

)bg, and B

1

= fb 2 B j b�(u

A

) = ��(u

A

)bg. Then observe that if a 2 A

0

then

�(a)�(u

A

) = �(au

A

) = �(u

A

a) = �(u

A

)�(a) hene �(a) 2 B

0

. Similarly, if a 2 A

1

then �(a)�(u

A

) = �(au

A

) = ��(u

A

a) = ��(u

A

)�(a), therefore �(a) 2 B

1

. �

For example, for the gradings 
 and 


�

one an hoose the elements

u




=

�

1 0

0 �1

�

and u




�

=

�

0 1

� 0

�

;

respetively. For the trivial grading T , the element u

T

an be hosen as the identity

matrix.

Now we are ready to show that there exist only two non-trivial gradings for

M

2

(K). More preisely, when A = A

0

�A

1

is a grading forM

2

(K), if u

q

A

= u

A

, then

A is isomorphi to 


�

for any perfet square 0 6= � 2 K, else A is isomorphi to 


�

for any not square � 2 K. Besides, when � 6= 0 is a square in K then the gradings


 and 


�

are isomorphi. We shall prove these fats in the next lemmas.

Lemma 2 Every non-trivial grading A = A

0

� A

1

of M

2

(K) suh that u

q

A

= u

A

is

isomorphi to 
.

Proof: If u

A

=

�

a b

 d

�

then u

2

A

=

�

a

2

+ b b(a + d)

(a+ d) d

2

+ b

�

. Therefore, sine

u

2

A

2 K, we have b =  = 0 or a = �d. In the �rst ase A

0

= M

2

(K) and

A

1

= 0, whih is a ontradition. So a = �d. The harateristi polynomial of u

A

is

f(x) = x

2

� (a

2

+ b) whose roots are �� where � =

p

a

2

+ b. But u

2

A

6= 0 implies

a

2

+ b 6= 0. Hene there exists an invertible matrix P 2 M

2

(GF (q

2

)) suh that

P

�1

u

A

P =

�

� 0

0 ��

�

. Thus

�

�

q

0

0 (��)

q

�

=

�

� 0

0 ��

�

q

= (P

�1

u

A

P )

q

= P

�1

u

q

A

P = P

�1

u

A

P =

�

� 0

0 ��

�

:

Therefore � 2 GF (q), P 2M

2

(K) and the map �:A! 
 de�ned by �(x) = P

�1

xP

is a graded isomorphism. �

Remark 3 If � 6= 0 is a square in K then u

q




�

= u




�

. For instane when � = 1 we

have the grading 


1

where u




1

=

�

0 1

1 0

�

. Its eigenvalues are �1 and 1. Therefore

there exists an invertible matrix P 2 M

2

(GF (q)) suh that

P

�1

�

0 1

1 0

�

P =

�

1 0

0 �1

�

:
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Hene

P =

�

1 1

1 �1

�

; P

�1

=

�

1=2 1=2

1=2 �1=2

�

:

The graded isomorphism �: 


1

! 
 suh that �(x) = P

�1

xP is the following:

�

��

a b

 d

��

=

1

2

�

a+ b + + d a� b + � d

a+ b� � d a� b�  + d

�

:

Corollary 4 Every grading of M

2

(K) satisfying the identity y

q

1

= y

1

is isomorphi

to 
.

Lemma 5 Every non-trivial grading A = A

0

� A

1

of M

2

(K) suh that u

q

A

= �u

A

is isomorphi to 


�

, for any � 2 K that is not perfet square.

Proof: If u

A

=

�

a b

 d

�

, then u

2

A

=

�

a

2

+ b b(a + d)

(a + d) d

2

+ b

�

. Therefore, b =  = 0

or a = �d. If b =  = 0 we obtain the trivial grading, so a = �d. The harateristi

polynomial of u

A

is f(x) = x

2

� (a

2

+ b) whose roots are �� where � =

p

a

2

+ b.

Sine u 6= 0 we get that a

2

+ b 6= 0. Furthermore � =2 K, for u

q

A

6= u

A

; i.e. a

2

+ b

is not a square in K. As � and a

2

+ b are not squares in K then �(a

2

+ b) is a

square in K. Choose � 2 K suh that �

2

= �(a

2

+ b), and onsider the matrix

u

0

A

=

�

�

�

a b

 �a

�

. Its harateristi polynomial is f(x) = x

2

� � whose roots are

p

� and �

p

�, and there exists an invertible P 2M

2

(K(

p

�)) suh that

P

�1

u

0

A

P =

�

p

� 0

0 �

p

�

�

:

The harateristi polynomial of u




�

is f(x) = x

2

�� as well, and for some invertible

Q 2M

2

(K(

p

�)) we have

Q

�1

u




�

Q =

�

p

� 0

0 �

p

�

�

:

Thus (PQ

�1

)

�1

u

0

A

PQ

�1

= u




�

and the map �:A! 


�

, �(x) = P

�1

xP , is a graded

isomorphism. �

Remark 6 If � is not a square in K then u

q




�

= �u




�

. Thus for K = Z

3

and

� = �1, we obtain the grading




�1

0

=

��

a d

�d a

�

j a; d 2 K

�

; 


�1

1

=

��

b 

 �b

�

j b;  2 K

�

where u




�1

=

�

0 1

�1 0

�

, and u

3




�1

= �u




�1

, beause �1 is not a square in K.
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2 The graded identities of 


The next theorem supplies a basis for the graded identities of 
.

Theorem 7 The graded identities for 
 follow from the identities

f

1

(y

1

) = y

q

1

� y

1

;

f

2

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

1

)(X

2

�X

q

2

2

)(1� [X

1

; X

2

℄

q�1

);

where X

1

= y

1

+ z

1

, X

2

= y

2

+ z

2

.

The proof of this theorem is modelled on the paper of Maltsev and Kuzmin [10℄

for ungraded identities.

A variety of graded algebrasV is the lass of all graded algebras satisfying a given

olletion of graded polynomial identities. Clearly V is losed under the operations

of taking graded subalgebras, graded homomorphi images, and diret produts.

The variety V is generated by a lass A of graded algebras, if every graded algebra

in V an be obtained from algebras in A by a �nite number of appliations of these

operations. We write V = V arA and if A ontains only one graded algebra A we

use the notation V = V arA.

Lemma 8 If A is a �nite graded K-algebra, then there exists a lass A of subdiretly

irreduible �nite graded K-algebras suh that V arA = V arA.

Proof: For 0 6= a 2 A, let I

a

be a graded ideal of A maximal with respet to the

exlusion of a. (Aording to Zorn's Lemma suh I

a

does exist.) The projetions

�

a

:A ! A=I

a

are graded epimorphisms and \

06=a2A

ker �

a

= \

a2A

I

a

= 0. Hene A

is a subdiret produt of the algebras A=I

a

. As a + I

a

is not zero and belongs to

all nonzero ideal of A=I

a

, then A=I

a

is subdiretly irreduible. Let A be the lass of

the graded algebras A=I

a

.

Suppose that a 2 A; then obviously T

2

(A) � T

2

(A=I

a

).

If f(y

1

; : : : ; y

m

; z

1

; : : : ; z

n

) 2 T

2

(A=I

a

), then f(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) 2 ker �

a

for

all a

1

, . . . , a

m

2 A

0

and b

1

, . . . , b

n

2 A

1

, and a 2 A. Hene f 2 \

a2


T

2

(A=I

a

). �

The next lemma is analogous to the result 2.2 of [8℄.

Lemma 9 Every variety of graded algebras is generated by its �nitely generated

algebras.

The exponent of a variety of graded algebras V is the greatest lower bound of

the set of all positive integers r suh that ra = 0 for every element a belonging

to every algebra of V. The index of V is the least upper bound of the set of all

nilpotent indies of its nilpotent algebras, see [8℄, [9℄ for details. The next lemma is

analogous to [9℄, Corollary 2.9.
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Lemma 10 A variety of graded algebras having �nite index and exponent is loally

�nite.

Theorem 11 A variety V of graded algebras having �nite index and exponent is

generated by a lass of subdiretly irreduible �nite graded algebras.

Proof: Aording to the previous two lemmas, V is generated by a lass of �nite

graded algebras. Hene V is generated by a lass of subdiretly irreduible �nite

graded algebras. �

We denote by V the variety of 2-graded algebras de�ned by the identities f

1

= 0

and f

2

= 0.

Lemma 12 V ar
 � V.

Proof: Sine a

q

= a for every a 2 K then f

1

is a graded identity of 
. By [10℄, f

2

is

an identity of M

2

(K) and hene of 
. �

Lemma 13 V � V ar
.

Proof: Let N = N

0

� N

1

be a nilpotent algebra in V. Then N

0

is also a nilpotent

algebra of V. The nilpoteny index s of N

0

is 2; for if s > 2, we an take elements

a

1

, . . . , a

s�1

2 N

0

suh that a

1

: : : a

s�1

6= 0. By f

1

, we know that

0 = (a

1

: : : a

s�1

)

q

� a

1

: : : a

s�1

= a

1

: : : a

s�1

;

whih is a ontradition. Thus if a 2 N

0

then a = a

q

= 0. Therefore N

0

= 0 and

N = N

1

. Moreover, as N

1

N

1

� N

0

= 0, we have that N

2

= 0.

The variety V has �nite index and exponent. By Theorem 11, V is generated

by a lass of subdiretly irreduible �nite graded algebras. To prove the lemma, it

suÆes to show that eah of these algebras belongs to V ar
. We shall prove even

more: eah of them is isomorphially embedded in 
. Till the end of the proof, we

assume that A is a �nite subdiretly irreduible algebra in V.

If A is nilpotent then A

0

= 0, A

1

= A, A

2

= 0 and dim

K

A = 1; for if a

1

, a

2

2 A

were linearly independent, the subspaes spanned by a

1

and a

2

would have been

ideals with intersetion zero. Thus the map �:A! 
 de�ned by �(�g) = �e

12

is a

graded monomorphism, where g is a generator of A.

Suppose A is a simple ungraded algebra i.e., A = M

k

(GF (p

t

)) and p

t

� q. If

k � 3 then f

2

(a

0

; b

0

; a

1

; b

1

) = e

13

6= 0 where a

0

, b

0

2 A

0

and a

1

, b

1

2 A

1

are suh

that e

12

= a

0

+ a

1

and e

23

= b

0

+ b

1

.

Hene k � 2. Let k = 2. If a

0

, b

0

2 A

0

and a

1

, b

1

2 A

1

are suh that

�e

11

= a

0

+ a

1

and e

12

= b

0

+ b

1

, then f

2

(a

0

; b

0

; a

1

; b

1

) = (�

q

� �)e

12

= 0. Hene

�� �

q

= 0, q � p

t

, and A =M

2

(GF (q)). By Corollary 4, 
 and A are isomorphi.
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Now let us onsider k = 1, i.e., A = GF (p

t

). If 0 6= a 2 A

1

then

a

q

2

= (a

2

)

(q+1)(q�1)=2

a = (a

2

a

2

)

(q�1)=2

a = (a

2

)

q�1

a = a

2q

a

�2

a = a

2

a

�2

a = a:

If a

0

2 A

0

and a

1

2 A

1

, then (a

0

+a

1

)

q

2

= a

q

2

0

+a

q

2

1

= a

0

+a

1

. Therefore �

q

2

�� = 0

for any � 2 A, whereby q

2

� p

t

, A = GF (q) or A = GF (q

2

). If A = GF (q) then

there exists an injetive graded homomorphism from A into 
. If A = GF (q

2

) then

the unique possible grading is A

0

�

=

GF (q) and A

1

�

=

GF (q) and, by Lemma 5 of

[13℄, there exists u 2 A

1

suh that A

1

= A

0

u and u

2

= a 6= 0 belongs to GF (q).

Hene A = GF (q)1 + GF (q)u, where 1 is the multipliative unit of A. Thus the

map �:A! 
 de�ned as

�(�1+ �u) =

�

� �a

� �

�

is an injetive graded homomorphism.

Now suppose A = B�N as a diret sum of vetor spaes where B is a semisimple

ungraded subalgebra of A and N is the Jaobson radial of A. The Jaobson radial

is graded [5℄ and, sine N is nilpotent, N

2

= 0. If x 2 A

0

\N then f

1

implies that

x = x

q

= 0 thus N � A

1

. Hene A

1

= A

1

\ B �N . If x 2 A

1

\ B and u 2 N , then

ux, xu 2 A

0

\ N , i.e., ux = xu = 0. Therefore x = 0, for the ideal of A generated

by x has zero intersetion with N . Hene A

1

= N . As A=N

�

=

B and A=N

�

=

A

0

,

we have A

0

�

=

B. Thus A

0

is a semisimple ungraded subalgebra of A.

Let A

0

= B

1

�: : :�B

s

be the (ungraded) deomposition of A

0

in simple algebras.

The identity f

1

implies that B

i

= GF (q) for every i. Let e

i

be the unit of the

subalgebra B

i

. Sine A is subdiretly irreduible then AN 6= 0 or NA 6= 0. Suppose

that AN 6= 0. Sine the ideals e

i

N interset in zero, only one of them is nonzero,

say e

1

N . Sine N deomposes into a diret sum of ideals N = e

1

N � (1 � e

1

)N ,

we have (1 � e

1

)N = 0 and N = e

1

N . Similarly the ideals Ne

i

have intersetion

zero, therefore at most one of them an be di�erent from 0. There are three possible

ases.

Case 1: NA = 0. Then A

0

= B

1

= GF (q) and N is one-dimensional vetor

spae over GF (q). The map �:A!M

2

(GF (q)) de�ned as

�(�+ �u) =

�

� �

0 0

�

where �, � 2 GF (q) and 0 6= u 2 N is �xed, is an injetive graded homomorphism.

Case 2: Ne

1

6= 0, N = e

1

Ne

1

. Again A

0

= B

1

= GF (q) and we onsider

N as (GF (q); GF (q))-bimodule. Sine A is subdiretly irreduible, N annot have

8



nonzero subbimodules with intersetion zero. Therefore there exists an automor-

phism � of GF (q) suh that x� = �(�)x for all x 2 N and all � 2 GF (q) (see

[11℄, p. 315). Thus eah subspae of N is a subbimodule and therefore N is one-

dimensional vetor spae over GF (q). The map �:A!M

2

(GF (q)) de�ned as

�(� + �u) =

�

� �

0 �(�)

�

;

where �, � 2 GF (q) and 0 6= u 2 N , is an injetive graded homomorphism.

Case 3: Ne

2

6= 0, N = e

1

Ne

2

. In this ase A

0

= B

1

� B

2

= GF (q) � GF (q),

NB

1

= B

2

N = 0 and N is a (GF (q); GF (q))-bimodule. Repeating the argument

of ase 2, we know that there exists an automorphism � of GF (q) suh that x� =

�(�)x, for all x 2 N and all � 2 GF (q), and N is one-dimensional vetor spae over

GF (q). The map �:A!M

2

(GF (q)) de�ned as

�(� + � + u) =

�

� 

0 �(�)

�

;

where �,  2 B

1

, � 2 B

2

and 0 6= u 2 N is some �xed element, is an injetive

graded homomorphism. �

Remark 14 We list some other identities for 
:

f

3

(y

1

; y

2

) = y

1

y

2

� y

2

y

1

;

f

4

(z

1

; z

2

; z

3

) = z

1

z

2

z

3

� z

3

z

2

z

1

;

f

5

(y

1

; z

1

) = (y

1

� z

1

)

q

� z

q�1

1

(y

1

� z

1

);

f

6

(z

1

; z

2

) = (z

2(q�1)

1

� 1)z

1

z

2

(1� [z

1

; z

2

℄

q�1

);

f

7

(z

1

; z

2

) = (z

2(q�1)

1

� 1)z

2

z

1

(1� [z

1

; z

2

℄

q�1

);

f

8

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

2

1

)(1� [X

1

; X

2

℄

q�1

)(X

2

�X

q

2

);

f

9

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

1

) � (X

2

�X

q

2

)� ((X

1

�X

q

1

) � (X

2

�X

q

2

))

q

where X

i

= y

i

+ z

i

, i = 1, 2. The identity f

3

follows from the identity f

1

(see for

example [4℄, p. 73). The identities f

8

and f

9

are known by [10℄, and we an hange

the identity f

2

in Theorem 7 by any one of these.

3 The graded identities of 


�

for � not a square

The next theorem supplies a basis for the graded identities of 


�

.

9



Theorem 15 The graded identities for 


�

follow from the identities

g

1

(y

1

) = y

q

2

1

� y

1

;

g

2

(z

1

) = z

2q�1

1

� z

1

;

g

3

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

1

)(X

2

�X

q

2

2

)(1� [X

1

; X

2

℄

q�1

);

where X

1

= y

1

+ z

1

, X

2

= y

2

+ z

2

.

LetV be the variety of graded algebras de�ned by the identities g

1

= g

2

= g

3

= 0.

Lemma 16 V ar


�

� V.

Proof: Let y

1

=

�

a d

�d a

�

be a matrix in 


�

0

. Its harateristi polynomial is

f(x) = x

2

� (a

2

+�d

2

) with eigenvalues �� where � =

p

a

2

+ �d

2

. First we observe

that

�

q

2

= (

p

a

2

+ �d

2

)

q

2

= (a

2

+ �d

2

)

(q+1)(q�1)=2

� = (a

2

+ �d

2

)

(q�1)

� = �:

Similarly we obtain (��)

q

2

= ��. So, sine there exists an invertible matrix P 2

M

2

(GF (q

2

)) suh that

P

�1

y

1

P =

�

� 0

0 ��

�

;

we have y

q

2

1

= y

1

.

Now let

z

1

=

�

b 

�� �b

�

2 


�

1

:

Sine

z

2

1

=

�

b

2

� �

2

0

0 b

2

� �

2

�

and b

2

� �

2

6= 0 for � is not a square in K, we have (z

2

1

)

q�1

= 1. Then z

2q�1

1

= z

1

.

Finally, by [10℄, we know that g

3

is a graded identity of 


�

. �

Lemma 17 V � V ar


�

.

Proof: Let N = N

0

�N

1

be a nilpotent algebra in V. Hene N

0

is also a nilpotent

algebra in V. The nilpoteny index s of N

0

is 2; for if s > 2, we an take elements

a

1

, . . . , a

s�1

2 N

0

suh that a

1

: : : a

s�1

6= 0 and, by g

1

, we get

0 = (a

1

: : : a

s�1

)

q

2

� a

1

: : : a

s�1

= a

1

: : : a

s�1

;

10



whih is a ontradition. Thus if a 2 N

0

then a = a

q

2

= 0 and therefore N

0

= 0.

Moreover, as N

1

N

1

� N

0

= 0, we have N

2

1

= 0. If a 2 N

1

then a = a

2q�1

= 0,

N

1

= 0 and N = 0.

The variety V has �nite index and exponent. By Theorem 11, V is generated

by a lass of subdiretly irreduible �nite graded algebras. To prove the lemma it

suÆes to show that eah of these algebras belongs to V ar


�

. We shall prove even

more: eah of them is isomorphially embedded in 


�

. Till the end of the proof we

onsider A as a �nite subdiretly irreduible algebra in V.

Suppose A = B � N as a diret sum of vetor spaes where B is a semisimple

(ungraded) subalgebra of A and N is the Jaobson radial of A. Sine N is graded

ideal and it is nilpotent, N = 0. Thus onsidering A = B

1

� : : :�B

s

, the deompo-

sition of A in simple ungraded algebras, we see, due to the subdiret irreduibility

of A, that s = 1 i.e., A is a simple algebra.

Now suppose A is simple ungraded algebra i.e., A = M

k

(GF (p

t

)) and p

t

� q.

Observe that k � 2, for if k � 3 then g

3

(a

0

; b

0

; a

1

; b

1

) = e

13

6= 0 where a

0

, b

0

2 A

0

and a

1

, b

1

2 A

1

are suh that e

12

= a

0

+ a

1

and e

23

= b

0

+ b

1

.

Let us onsider k = 2. If a

0

, b

0

2 A

0

and a

1

, b

1

2 A

1

are suh that �e

11

= a

0

+a

1

and e

12

= b

0

+ b

1

then

g

3

(a

0

; b

0

; a

1

; b

1

) = (�

q

� �)e

12

= 0;

hene � � �

q

= 0, q � p

t

, A = M

2

(GF (q)). By Lemma 1 we have two possibilities:

u

q

A

= u

A

or u

q

A

= �u

A

. If u

q

A

= u

A

then A is isomorphi to 
, and it is a ontradition

beause 
 does not satisfy g

2

. Hene we have u

q

A

= �u

A

. By Lemma 5 there exists

a graded isomorphism between 


�

and A.

Now let us onsider k = 1 i.e., A = GF (p

t

). If 0 6= a 2 A

1

then

a

q

2

= (a

2

)

(q+1)(q�1)=2

a = (a

2q

a

2

)

(q�1)=2

a = (a

2

)

q�1

a = a

2q�1

= a:

If a

0

2 A

0

and a

1

2 A

1

, then

(a

0

+ a

1

)

q

2

= a

q

2

0

+ a

q

2

1

= a

0

+ a

1

:

Therefore �

q

2

� � = 0 for any � 2 A, whereby q

2

� p

t

, A = GF (q) or A = GF (q

2

).

If A = GF (q) then there exists an injetive graded homomorphism from A into




�

. If A = GF (q

2

) then the unique possible grading is A

0

�

=

K and A

1

�

=

K

and, by Lemma 5 of [13℄, there exists an element u 2 A

1

suh that A

1

= A

0

u and

0 6= u

2

= a 2 K. Hene A = Ka+Ku, and the map �:A! 


�

de�ned as

�(�a+ u) =

�

�a+ u 0

0 �a� u

�

is an injetive graded homomorphism. �

11



Remark 18 We list some other identities for 


�

:

g

4

(y

1

; y

2

) = y

1

y

2

� y

2

y

1

;

g

5

(z

1

; z

2

; z

3

) = z

1

z

2

z

3

� z

3

z

2

z

1

;

g

6

(y

1

; z

1

) = z

2q�2

1

y

1

� y

1

;

g

7

(y

1

; z

1

) = (y

1

� z

1

)

q

� z

q�1

1

(y

1

� z

1

);

g

8

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

2

1

)(1� [X

1

; X

2

℄

q�1

)(X

2

�X

q

2

);

g

9

(y

1

; y

2

; z

1

; z

2

) = (X

1

� (X

1

)

q

) � (X

2

�X

q

2

)� ((X

1

�X

q

1

) � (X

2

�X

q

2

))

q

;

where X

i

stands for y

i

+ z

i

, i = 1, 2. The identity g

4

follows from g

1

. The identities

g

8

and g

9

are known by [10℄, and we an hange the identity g

3

in Theorem 15 by

any of these.

Corollary 19 The nonisomorphi gradings of the matrix algebra of order two over

a �nite �eld are distinguished by their polynomial identities.

In fat it is suÆient to onsider the graded identity y

q

1

� y

1

. It is satis�ed if and

only if the grading is isomorphi to 
.
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