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Abstract

Let K be a finite field of characteristic p > 2, and let Ms(K) be the matrix
algebra of order two over K. We describe up to a graded isomorphism the
2-gradings of My(K). It turns out there are only two nonisomorphic non-
trivial such gradings. Furthermore we exhibit bases of the graded polynomial
identities for each one of these two gradings. One can distinguish these two
gradings by means of the graded polynomial identities they satisfy.

Introduction

The description of the polynomial identities satisfied by an algebra is an important
task and it may yield a lot of information about the algebra. One distinguishes
three quite different cases depending on the base field K. The first is when K is
of characteristic 0; the second when K is infinite, and the third when K is finite.
The methods that work in each one of these cases are rather different. In the case
char K’ = 0 one may consider multilinear polynomial identities since they determine
all identities of a given algebra. In this case one applies the theory of representations
of the symmetric group and other refinements, see, for example [3, 5, 12]. When
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| K| = oo it is sufficient to consider multihomogeneous identities. The methods one
uses in this case are based on the invariant theory [1]. Finally if K is finite field then
neither of the above identities are sufficient. And in general, neither of the methods
described can function properly. Instead one uses the structure theory of rings [8, 9]
and combinatorics based on the properties of the finite fields.

Let M,(K) be the matrix algebra of order two over the field K. Its identities
have been extensively studied, see for example [12] for the case char K = 0, [6]
for |K| = oo, and [10] for finite fields. The graded polynomial identities play an
important role in the study of PI algebras, see for example [5]. We fix the non-trivial
grading Q on Ms(K)

QO={<8 2>|a,dez<}, le{<2 8>|b,ceK}.

When the characteristic of the field K equals zero, char K = 0, O. M. Di Vincenzo
[2] showed that the graded identities of €2 follow from two identities namely from
Y1y = Youyy and 212923 = 2322 for y; being even and z; odd variables. When K is
infinite, the authors [7] proved that the result of O. M. Di Vincenzo holds. In this
paper, we prove that if K is a finite field with ¢ elements and char K = p # 2 that
is K = GF(q) and ¢ = p", then the graded identities of 2 are consequences of the
identities y{ = y; and

(1 +21— (W1 +20)) (Y2 + 22 — (Yo + 22)q2)(1 — [+ 2,2+ 27 =0

where [z, 29] = 2129 — 292 is the commutator of z; and z,.
Let 0 # « € K, and define a nontrivial grading Q on M, (K):

a a d a b c
= {( 8 Yiwackl m={( 2 Yineex)

We describe, up to a graded isomorphism, the non-trivial gradings for My(K).
Namely, one grading is Q¢ where « is a perfect square in K. This grading is isomor-
phic to €2. The other is 2* where « is not a perfect square in K. In the latter case
tl21e li)asis for the graded identities consists of the following three identities y‘112 = Y1,
277 =2z and

(1 +21— (W1 +20)) (Y2 + 22 — (Y2 + 22)q2)(1 — [y + 2,02+ 22)7 1) = 0.

Our method is similar to the one used in [10] to prove that the ordinary polynomial
identities of My(K), where K is finite field with ¢ elements, follow from the identities

(w1 — ad)(wo — 2 )(1 — [21,22]97Y) = 0,

(w1 — 1) (w9 — 2d) — (21 — 27) - (22 — 2))? =
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Here we denote x; - x5 = 129 + xox;. We also use ideas and methods from [8] and

[9]-

1 Gradings for the matrix algebra of order two

A graded algebra A is an associative algebra that can be expressed as the direct
sum of two subspaces Ay and A; such that A;A4; C A;;; where the sum 7 + j is
taken modulo 2. One defines naturally graded subalgebras, ideals, homomorphisms,
isomorphisms etc.

Let X = {xy,29,...}, Y = {y1,y2,...} and Z = {21, 29,...} be three sets of
symbols such that YU Z = X and YN Z = (). Denote by K(X) the free associative
algebra that is freely generated over K by the set X. Let f be a monomial in the
algebra K (X). We say that f is even if it contains an even number of entries from Z,
i.e., if its degree with respect to the symbols in Z is even. Otherwise f is called odd.
The span of all even (odd) monomials is denoted by K(X)y (respectively K(X);).
Therefore K(X) = K(X)o @ K(X); becomes a graded algebra. If A = Ay ® A, is
a graded algebra and f(y1,...,Ym,21,...,2,) € K(X) then f is a graded identity
for Aif f(ar,...,am,b1,...,0,) =0 forall ay, ..., a, € Ag and by, ..., b, € A;. A
graded ideal I = Iy @ I; of A is called T5-ideal of A if it is closed under all graded
endomorphisms of A. In other words if ¢: A — A is a graded homomorphism then
¢(I) C I. The set TH(A) of all graded identities of A is a Ty-ideal of K(X). If
g € K(X) we say that g is Ty-consequence of f (or that g follows from f as graded
identity) if g belongs to the Ts-ideal generated in K(X) by f.

Let K be a finite field with ¢ elements and characteristic p # 2, K = GF(q) and
q = p". For convenience we shall identify the field K with the centre of the matrix
algebra My (K)

Lemma 1 Let A= Ay ® A be a grading for My(K). Then:

(i) There exists an invertible element uy in My(K) such that v’ # 0 € K and
Ag={a€ Alauy =uqa} and Ay ={a € A | aup = —uqa};

(ii) uly = ua or uly = —ua;

(iii) If B = By@® B, is a grading of My(K) and there exists an invertible matriz P
in My(K) such that P~ 'usP = ug then the map ¢: A — B defined by ¢(x) = P~'xP
1 a graded tsomorphism.

Proof: As M,(K) is a central simple (ungraded) algebra and A is a central simple
graded algebra, by Lemma 6 of [13], we know that there exists uq € A such that
0#u4 € Kand Ay = {a € A | aua = uaa}, A1 = {a € A | aun = —uaal.



Furthermore, u, = u or u% = —uy; for v, = (u4) 4V 2uy = (al) D2y, = tuy

where [ stands for the identity matrix.

The third assertion follows easily from the fact that By = {b € B | bo(ua) =
d(ua)b}, and By = {b € B | bp(us) = —¢(ua)b}. Then observe that if a € Ay then
d(a)p(ua) = plauy) = d(uaa) = Pp(ua)p(a) hence ¢p(a) € By. Similarly, if a € Ay
then 0(@)0(ua) = B(at) = —$(usa) = —$(ur)g(a), therefore p(a) € B,. W

For example, for the gradings 2 and 2% one can choose the elements

(1 0 d (0 1
=1\ _1 and uge ={ o >

respectively. For the trivial grading 7', the element u; can be chosen as the identity
matrix.

Now we are ready to show that there exist only two non-trivial gradings for
M,(K'). More precisely, when A = Ay @ A, is a grading for My(K), if u’, = u4, then
A is isomorphic to Q% for any perfect square 0 # o € K, else A is isomorphic to Q¢
for any not square ov € K. Besides, when « # 0 is a square in K then the gradings
2 and Q¢ are isomorphic. We shall prove these facts in the next lemmas.

Lemma 2 Every non-trivial grading A = Ay ® Ay of My(K) such that u’y = uy is
tsomorphic to €.

. _(a b s [ a*+be bla+d) :
Proof: If uy = < . d) then vy = ( cat+d) E+be ) Therefore, since

uy € K, we have b = ¢ = 0 or a = —d. In the first case 4y = My(K) and
A; = 0, which is a contradiction. So a = —d. The characteristic polynomial of u 4 is
f(x) = 2® — (a*® + be) whose roots are £\ where A = v/a? + be. But u% # 0 implies
a’? + be # 0. Hence there exists an invertible matrix P € My(GF(¢?)) such that

P lu,P = < ())\ _0)\ ) Thus

AT 0 (A 0N ¢ _ p-1,4p_ p-1 (A0
<0 (—)\)q>_<0 —A) = (P uaP)? = PTuiP = P~ luaP = N

Therefore A € GF(q), P € My(K) and the map ¢: A —  defined by ¢(z) = P~'aP
is a graded isomorphism. [ |

Remark 3 If a # 0 is a square in K then ud. = uqa. For instance when o =1 we
0

10
there exists an invertible matriz P € My(GF(q)) such that

e (0300

4

have the grading Q' where ugr = . Its eigenvalues are —1 and 1. Therefore



Hence

(1 1 ([ 1/2 1)2
P_<1 —1)’ P _<1/2 —1/2)'
The graded isomorphism ¢: Q' — Q such that ¢(x) = P~aP is the following:
p a b _lfa+btc+d a-b+c—d
c d 2\ a+b—c—d a—b—c+d )’

Corollary 4 Every grading of Ms(K) satisfying the identity yi = y, is isomorphic
to €.

Lemma 5 Every non-trivial grading A = Ay ® Ay of My(K) such that u’y = —uy
15 tsomorphic to Q%, for any o € K that is not perfect square.

2
Proof: If uy = < CCL Z ), then u? = < CCEG:ZC) bé;‘:gc) ) Therefore, b = ¢ =0
or a = —d. If b = ¢ = 0 we obtain the trivial grading, so a = —d. The characteristic
polynomial of ua is f(z) = 22 — (a* + bc) whose roots are £\ where A = va? + be.
Since u # 0 we get that a? + be # 0. Furthermore A ¢ K, for u%, # ua; i.e. a® + be
is not a square in K. As « and a® + bc are not squares in K then a(a® + be) is a
square in K. Choose 3 € K such that 5% = «a(a® + bc), and consider the matrix

u'y = % < Ccl _ba ) Its characteristic polynomial is f(z) = 2% — @ whose roots are
va and —y/a, and there exists an invertible P € M,(K (y/a)) such that

PP = ( Ve N )

2

The characteristic polynomial of uga is f(x) = 2* —« as well, and for some invertible

Q € My(K(/@)) we have
- (55

Thus (PQ™Y) '/, PQ™" = uga and the map ¢: A — Q% ¢(x) = P~z P, is a graded

isomorphism. [ |
Remark 6 If « is not a square in K then ud, = —uqe. Thus for K = Zs and
a = —1, we obtain the grading
1 a d 1 b ¢
= {( % Y twaex), o= {(0 ) neex)
0 1 3 . .
where ug-1 = 10 ) and ug_, = —uqg-1, because —1 is not a square in K.



2 The graded identities of ¢

The next theorem supplies a basis for the graded identities of 2.
Theorem 7 The graded identities for €2 follow from the identities

filyr) = ylll_yla .
f2(y1;y2721, 22) = (Xl - Xf)(X2 - ng)(l - [X17X2]q71)a

where X1 = y1 + 21, Xo = ys + 2o.

The proof of this theorem is modelled on the paper of Maltsev and Kuzmin [10]
for ungraded identities.

A variety of graded algebras 2 is the class of all graded algebras satisfying a given
collection of graded polynomial identities. Clearly U is closed under the operations
of taking graded subalgebras, graded homomorphic images, and direct products.
The variety U is generated by a class 2 of graded algebras, if every graded algebra
in ¥ can be obtained from algebras in 2 by a finite number of applications of these
operations. We write U = Var2l and if 2 contains only one graded algebra A we
use the notation U = VarA.

Lemma 8 If A is a finite graded K -algebra, then there exists a class A of subdirectly
wrreducible finite graded K -algebras such that VarA = Var2l.

Proof: For 0 # a € A, let I, be a graded ideal of A maximal with respect to the
exclusion of a. (According to Zorn’s Lemma such I, does exist.) The projections
m: A — A/I, are graded epimorphisms and NMyzeea kermy = Nyeal, = 0. Hence A
is a subdirect product of the algebras A/I,. As a + I, is not zero and belongs to
all nonzero ideal of A/I,, then A/I, is subdirectly irreducible. Let 2 be the class of
the graded algebras A/I,.

Suppose that a € A; then obviously T5(A) C T5(A/1,).

If flyr, - s Yms 21, - -+, 2n) € To(A/L,), then f(ay,...,amn,by,...,0,) € kerm, for
all ai, ..., a, € Apand by, ..., b, € A}, and a € A. Hence f € NyeaTh(A/L,). N

The next lemma is analogous to the result 2.2 of [8].

Lemma 9 FEvery variety of graded algebras is generated by its finitely generated
algebras.

The exponent of a variety of graded algebras U is the greatest lower bound of
the set of all positive integers r such that ra = 0 for every element a belonging
to every algebra of . The index of U is the least upper bound of the set of all
nilpotent indices of its nilpotent algebras, see [8], [9] for details. The next lemma is
analogous to [9], Corollary 2.9.



Lemma 10 A variety of graded algebras having finite index and exponent is locally
finite.

Theorem 11 A variety U of graded algebras having finite index and exponent is
generated by a class of subdirectly irreducible finite graded algebras.

Proof: According to the previous two lemmas, U is generated by a class of finite
graded algebras. Hence U is generated by a class of subdirectly irreducible finite
graded algebras. [

We denote by U the variety of 2-graded algebras defined by the identities f; =0
and f2 =0.

Lemma 12 Var(2 C 0.

Proof: Since a? = a for every a € K then f; is a graded identity of Q. By [10], fs is
an identity of My(K') and hence of €. |

Lemma 13 U C Var(l.

Proof: Let N = Ny @& N; be a nilpotent algebra in 2. Then N, is also a nilpotent
algebra of Y. The nilpotency index s of Ny is 2; for if s > 2, we can take elements
ai, ..., as_1 € Ny such that ay...a,_1 # 0. By fi, we know that

— q —
0= (al...as_l) —day...0_1 = 0a1...05_1,

which is a contradiction. Thus if a € Ny then a = a? = 0. Therefore Ny = 0 and
N = N;. Moreover, as N;N; C Ny = 0, we have that N? = 0.

The variety U has finite index and exponent. By Theorem 11, U is generated
by a class of subdirectly irreducible finite graded algebras. To prove the lemma, it
suffices to show that each of these algebras belongs to Var{2. We shall prove even
more: each of them is isomorphically embedded in €2. Till the end of the proof, we
assume that A is a finite subdirectly irreducible algebra in 0.

If A is nilpotent then Ay =0, A; = A, A2 =0and dimx A =1;forifa;,a, € A
were linearly independent, the subspaces spanned by a; and as would have been
ideals with intersection zero. Thus the map ¢: A — Q defined by ¢(ag) = aey is a
graded monomorphism, where g is a generator of A.

Suppose A is a simple ungraded algebra i.e., A = My (GF(p')) and p' > ¢. If
k > 3 then fy(ag, by, a1,b;) = e;3 # 0 where ag, by € Ay and aq, by € A; are such
that e;p = ag + a1 and eg3 = by + b;.

Hence £ < 2. Let kK = 2. If ap, by € Ay and a;, by € A; are such that
ae;y = ag + a; and ey = by + by, then fy(ap, by, a1,01) = (a? — a)e;; = 0. Hence
a—a?=0,qg>p", and A= My(GF(q)). By Corollary 4, Q and A are isomorphic.
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Now let us consider k =1, i.e., A= GF(p"). If 0 # a € A; then
a? = (a?)@DED2g = (262 D2 = (4®) ' = ¢®%a"%a = d®a %0 = a.

If ap € Ag and a; € Ay, then (ag+a)?” = af +af = ag+ay. Therefore o’ —a = 0
for any o € A, whereby ¢? > p', A = GF(q) or A = GF(¢%). If A = GF(q) then
there exists an injective graded homomorphism from A into Q. If A = GF(¢?) then
the unique possible grading is Ay = GF(q) and A; = GF(q) and, by Lemma 5 of
[13], there exists u € A; such that A; = Agu and u? = a # 0 belongs to GF(q).
Hence A = GF(q)1 + GF(q)u, where 1 is the multiplicative unit of A. Thus the
map ¢: A — ) defined as

¢muww=(§%ﬂ

is an injective graded homomorphism.

Now suppose A = BN as a direct sum of vector spaces where B is a semisimple
ungraded subalgebra of A and NV is the Jacobson radical of A. The Jacobson radical
is graded [5] and, since N is nilpotent, N> = 0. If z € Ay N N then f, implies that
r=29=0thus N C A;. Hence Ay =A NB®N. Ifr € A;N B and u € N, then
ux, xu € Ag N N, i.e., ux = xu = 0. Therefore x = 0, for the ideal of A generated
by x has zero intersection with N. Hence A; = N. As A/N = B and A/N = A,,
we have Ag = B. Thus Ay is a semisimple ungraded subalgebra of A.

Let Ay = B1@...® B; be the (ungraded) decomposition of Ay in simple algebras.
The identity f; implies that B; = GF(q) for every i. Let e; be the unit of the
subalgebra B;. Since A is subdirectly irreducible then AN # 0 or NA # 0. Suppose
that AN # 0. Since the ideals ¢; /N intersect in zero, only one of them is nonzero,
say e;N. Since N decomposes into a direct sum of ideals N = ey N & (1 — e1)N,
we have (1 —e;)N = 0 and N = e;N. Similarly the ideals Ne; have intersection
zero, therefore at most one of them can be different from 0. There are three possible
cases.

Case 1: NA = 0. Then Ay = B, = GF(q) and N is one-dimensional vector
space over GF(q). The map ¢: A — My(GF(q)) defined as

oot =5 o)

where «, f € GF(q) and 0 # u € N is fixed, is an injective graded homomorphism.
Case 2: Ne; # 0, N = e;Ne;. Again Ay = B; = GF(q) and we consider
N as (GF(q),GF(q))-bimodule. Since A is subdirectly irreducible, N cannot have



nonzero subbimodules with intersection zero. Therefore there exists an automor-
phism o of GF(q) such that za = o(a)z for all z € N and all « € GF(q) (see
[11], p. 315). Thus each subspace of N is a subbimodule and therefore N is one-
dimensional vector space over GF'(g). The map ¢: A — My(GF(q)) defined as

st s =( 5 ooy )

where «, f € GF(q) and 0 # u € N, is an injective graded homomorphism.

Case 3: Ney # 0, N = e;Ney. In this case Ay = B; @ By = GF(q) ® GF(q),
NB;, = BoN =0 and N is a (GF(q), GF(q))-bimodule. Repeating the argument
of case 2, we know that there exists an automorphism o of GF(q) such that za =

o(a)z, forall z € N and all « € GF(q), and N is one-dimensional vector space over
GF(q). The map ¢: A — My(GF(q)) defined as

Ma+ﬂ+wnz<g g%),

where o, v € By, 3 € By and 0 # u € N is some fixed element, is an injective
graded homomorphism. [

Remark 14 We list some other identities for €2:

f3(?Jl, yz) = Y1Y2 — Y21,

(21, 22, % 3) — Z1R223 — R3%2%1,

Fslyr, 1) =y 20)7 = 217 (g1 - 21),

fo(21,22) = (Zf(qil) — Dzze(1 = [21, 2] 1),

frlen,z) = (7Y = Dapa(1 - [a1, 22070,
Fs(ynya 21, 22) = (X1 = XT)(1 = [X1, X]0 1) (X, — X9),
folyr, yo, 21, 22) = (X1 — X{) - (Xo — XJ) — (X1 — X]) - (X — X7))¢

where X; = y; + z;, i = 1, 2. The identity f5 follows from the identity f, (see for
example [4], p. 78). The identities fs and fy are known by [10], and we can change
the identity fo in Theorem 7 by any one of these.

3 The graded identities of (2* for a not a square

The next theorem supplies a basis for the graded identities of Q¢.



Theorem 15 The graded identities for Q% follow from the identities

91(v1) :?Jg :yla
92(z1) =57 =2, ,
93(y1, Y2, 21, 22) = (X1 — XT)(Xo — X3 )(1 = [X;, Xo]” ),
where X1 =y, + 21, Xo =y + 29.
Let *U be the variety of graded algebras defined by the identities g; = go = g3 = 0.

Lemma 16 VarQ® C 9.

Proof: Let y, = <c3d Z

f(x) = 2* — (a* + ad?) with eigenvalues £\ where A\ = v/a? + ad?. First we observe
that

) be a matrix in €f. Its characteristic polynomial is

A = (Va2 + ad?)? = (0 + ad?) D2\ = (@2 + ad?) DN = ).

Similarly we obtain (—A)¢° = —\. So, since there exists an invertible matrix P €

M(GF(g*) such that
Lo (A0
P ylP - ( 0 —\ )

we have yf2 = 1.
Now let

b c o
Zl_(—OZC _b>€QI.

9 b — ac? 0
T 0 b? — ac?

and b* — o # 0 for a is not a square in K, we have (22)7 ' = 1. Then 227" = 2.
Finally, by [10], we know that g3 is a graded identity of Q. [ |

Since

Lemma 17 U C VarQ®.

Proof: Let N = Ny & N; be a nilpotent algebra in U. Hence Ny is also a nilpotent
algebra in . The nilpotency index s of Ny is 2; for if s > 2, we can take elements
ay, ..., as_1 € Ny such that ay...a, 1 # 0 and, by g;, we get

2
Oz(al...as_l)q —ay...04_1 =041 ...05_1,

10



which is a contradiction. Thus if a € Ny then a = a?” = 0 and therefore Ny = 0.
Moreover, as NyN; C Ny = 0, we have N7 = 0. If ¢ € N; then a = a?~' = 0,
N1 =0and N =0.

The variety U has finite index and exponent. By Theorem 11, U is generated
by a class of subdirectly irreducible finite graded algebras. To prove the lemma it
suffices to show that each of these algebras belongs to VarQ®. We shall prove even
more: each of them is isomorphically embedded in 2%. Till the end of the proof we
consider A as a finite subdirectly irreducible algebra in Q.

Suppose A = B ® N as a direct sum of vector spaces where B is a semisimple
(ungraded) subalgebra of A and N is the Jacobson radical of A. Since N is graded
ideal and it is nilpotent, N = 0. Thus considering A = B; & ...® B, the decompo-
sition of A in simple ungraded algebras, we see, due to the subdirect irreducibility
of A, that s =1 i.e., A is a simple algebra.

Now suppose A is simple ungraded algebra i.e., A = M (GF(p')) and p' > g.
Observe that k& < 2, for if £ > 3 then gs(ag, by, a1,b1) = e13 # 0 where ag, by € Ay
and a1, by € A; are such that e;9s = ap + a1 and eg3 = by + b;.

Let us consider k = 2. If ag, by € Ap and a1, by € A; are such that aey; = ag+ay
and e;p = by + by then

g3(a07b07 ay, bl) - (aq - 01)612 - 07

hence a — a? =0, ¢ > p', A = My(GF(q)). By Lemma 1 we have two possibilities:
uly =uqoruy = —uy. Ifuf) = uy then Aisisomorphic to €2, and it is a contradiction
because €2 does not satisfy g,. Hence we have vy = —u,4. By Lemma 5 there exists
a graded isomorphism between 2% and A.

Now let us consider k =1 ie., A =GF(p'). If 0 # a € A; then

a® = (a?)@HD@=0/2g — (g2162)=V/2q = (¢?)7 1 = ®7! = q.
If ag € Ag and a; € Ay, then
(ap + al)q2 = agz + a'fz =ag+ a.

Therefore 04" — a = 0 for any a € A, whereby ¢2 > p', A= GF(q) or A = GF(¢?).
If A = GF(q) then there exists an injective graded homomorphism from A into
Q. If A = GF(q¢?) then the unique possible grading is 4y = K and A} & K
and, by Lemma 5 of [13], there exists an element u € A; such that A; = Agu and
0#u?=a€ K. Hence A = Ka + Ku, and the map ¢: A — Q¢ defined as

opat =57 5,0

is an injective graded homomorphism. [ |
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Remark 18 We list some other identities for Q°:

94(y1,y2) = Y1y2 — Y2U1,
95(21, R22,23) = Z§Z2»223 — 2322721,
g6(y1,21) =217 "y — yn,

= (y1-21)? N Zil_l(yl - 21),
= (X) = XT)(1 = [Xy, Xp]17 1) (X2 — XJ),
= (X1 — (X)) - (X2 — X3) = (X1 — X]) - (Xo = X)),

97(y17 21
g8(y17 Y2, 21, 22
99(91, Y2, 21, %2

— o N N N e

where X; stands for y; + z;, 1 = 1, 2. The identity g4 follows from ¢g,. The identities
gs and gy are known by [10], and we can change the identity gs in Theorem 15 by
any of these.

Corollary 19 The nonisomorphic gradings of the matriz algebra of order two over
a finite field are distinguished by their polynomial identities.

In fact it is sufficient to consider the graded identity y7 —y;. It is satisfied if and
only if the grading is isomorphic to €.
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