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Abstra
t

Let K be a �nite �eld of 
hara
teristi
 p > 2, and letM

2

(K) be the matrix

algebra of order two over K. We des
ribe up to a graded isomorphism the

2-gradings of M

2

(K). It turns out there are only two nonisomorphi
 non-

trivial su
h gradings. Furthermore we exhibit bases of the graded polynomial

identities for ea
h one of these two gradings. One 
an distinguish these two

gradings by means of the graded polynomial identities they satisfy.

Introdu
tion

The des
ription of the polynomial identities satis�ed by an algebra is an important

task and it may yield a lot of information about the algebra. One distinguishes

three quite di�erent 
ases depending on the base �eld K. The �rst is when K is

of 
hara
teristi
 0; the se
ond when K is in�nite, and the third when K is �nite.

The methods that work in ea
h one of these 
ases are rather di�erent. In the 
ase


harK = 0 one may 
onsider multilinear polynomial identities sin
e they determine

all identities of a given algebra. In this 
ase one applies the theory of representations

of the symmetri
 group and other re�nements, see, for example [3, 5, 12℄. When

�
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jKj =1 it is suÆ
ient to 
onsider multihomogeneous identities. The methods one

uses in this 
ase are based on the invariant theory [1℄. Finally if K is �nite �eld then

neither of the above identities are suÆ
ient. And in general, neither of the methods

des
ribed 
an fun
tion properly. Instead one uses the stru
ture theory of rings [8, 9℄

and 
ombinatori
s based on the properties of the �nite �elds.

Let M

2

(K) be the matrix algebra of order two over the �eld K. Its identities

have been extensively studied, see for example [12℄ for the 
ase 
harK = 0, [6℄

for jKj = 1, and [10℄ for �nite �elds. The graded polynomial identities play an

important role in the study of PI algebras, see for example [5℄. We �x the non-trivial

grading 
 on M

2

(K)




0

=

��

a 0

0 d

�

j a; d 2 K

�

; 


1

=

��

0 b


 0

�

j b; 
 2 K

�

:

When the 
hara
teristi
 of the �eld K equals zero, 
harK = 0, O. M. Di Vin
enzo

[2℄ showed that the graded identities of 
 follow from two identities namely from

y

1

y

2

= y

2

y

1

and z

1

z

2

z

3

= z

3

z

2

z

1

for y

i

being even and z

i

odd variables. When K is

in�nite, the authors [7℄ proved that the result of O. M. Di Vin
enzo holds. In this

paper, we prove that if K is a �nite �eld with q elements and 
harK = p 6= 2 that

is K = GF (q) and q = p

n

, then the graded identities of 
 are 
onsequen
es of the

identities y

q

1

= y

1

and

(y

1

+ z

1

� (y

1

+ z

1

)

q

)(y

2

+ z

2

� (y

2

+ z

2

)

q

2

)(1� [y

1

+ z

1

; y

2

+ z

2

℄

q�1

) = 0

where [x

1

; x

2

℄ = x

1

x

2

� x

2

x

1

is the 
ommutator of z

1

and z

2

.

Let 0 6= � 2 K, and de�ne a nontrivial grading 


�

on M

2

(K):




�

0

=

��

a d

�d a

�

j a; d 2 K

�

; 


�

1

=

��

b 


��
 �b

�

j b; 
 2 K

�

:

We des
ribe, up to a graded isomorphism, the non-trivial gradings for M

2

(K).

Namely, one grading is 


�

where � is a perfe
t square in K. This grading is isomor-

phi
 to 
. The other is 


�

where � is not a perfe
t square in K. In the latter 
ase

the basis for the graded identities 
onsists of the following three identities y

q

2

1

= y

1

,

z

2q�1

1

= z

1

and

(y

1

+ z

1

� (y

1

+ z

1

)

q

)(y

2

+ z

2

� (y

2

+ z

2

)

q

2

)(1� [y

1

+ z

1

; y

2

+ z

2

℄

q�1

) = 0:

Our method is similar to the one used in [10℄ to prove that the ordinary polynomial

identities ofM

2

(K), where K is �nite �eld with q elements, follow from the identities

(x

1

� x

q

1

)(x

2

� x

q

2

2

)(1� [x

1

; x

2

℄

q�1

) = 0;

(x

1

� x

q

1

) � (x

2

� x

q

2

)� ((x

1

� x

q

1

) � (x

2

� x

q

2

))

q

= 0:
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Here we denote x

1

� x

2

= x

1

x

2

+ x

2

x

1

. We also use ideas and methods from [8℄ and

[9℄.

1 Gradings for the matrix algebra of order two

A graded algebra A is an asso
iative algebra that 
an be expressed as the dire
t

sum of two subspa
es A

0

and A

1

su
h that A

i

A

j

� A

i+j

where the sum i + j is

taken modulo 2. One de�nes naturally graded subalgebras, ideals, homomorphisms,

isomorphisms et
.

Let X = fx

1

; x

2

; : : :g, Y = fy

1

; y

2

; : : :g and Z = fz

1

; z

2

; : : :g be three sets of

symbols su
h that Y [Z = X and Y \Z = ;. Denote by KhXi the free asso
iative

algebra that is freely generated over K by the set X. Let f be a monomial in the

algebraKhXi. We say that f is even if it 
ontains an even number of entries from Z,

i.e., if its degree with respe
t to the symbols in Z is even. Otherwise f is 
alled odd.

The span of all even (odd) monomials is denoted by KhXi

0

(respe
tively KhXi

1

).

Therefore KhXi = KhXi

0

�KhXi

1

be
omes a graded algebra. If A = A

0

� A

1

is

a graded algebra and f(y

1

; : : : ; y

m

; z

1

; : : : ; z

n

) 2 KhXi then f is a graded identity

for A if f(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) = 0 for all a

1

, . . . , a

m

2 A

0

and b

1

, . . . , b

n

2 A

1

. A

graded ideal I = I

0

� I

1

of A is 
alled T

2

-ideal of A if it is 
losed under all graded

endomorphisms of A. In other words if �:A ! A is a graded homomorphism then

�(I) � I. The set T

2

(A) of all graded identities of A is a T

2

-ideal of KhXi. If

g 2 KhXi we say that g is T

2

-
onsequen
e of f (or that g follows from f as graded

identity) if g belongs to the T

2

-ideal generated in KhXi by f .

Let K be a �nite �eld with q elements and 
hara
teristi
 p 6= 2, K = GF (q) and

q = p

n

. For 
onvenien
e we shall identify the �eld K with the 
entre of the matrix

algebra M

2

(K)

Lemma 1 Let A = A

0

� A

1

be a grading for M

2

(K). Then:

(i) There exists an invertible element u

A

in M

2

(K) su
h that u

2

A

6= 0 2 K and

A

0

= fa 2 A j au

A

= u

A

ag and A

1

= fa 2 A j au

A

= �u

A

ag;

(ii) u

q

A

= u

A

or u

q

A

= �u

A

;

(iii) If B = B

0

�B

1

is a grading of M

2

(K) and there exists an invertible matrix P

inM

2

(K) su
h that P

�1

u

A

P = u

B

then the map �:A! B de�ned by �(x) = P

�1

xP

is a graded isomorphism.

Proof: As M

2

(K) is a 
entral simple (ungraded) algebra and A is a 
entral simple

graded algebra, by Lemma 6 of [13℄, we know that there exists u

A

2 A su
h that

0 6= u

2

A

2 K and A

0

= fa 2 A j au

A

= u

A

ag, A

1

= fa 2 A j au

A

= �u

A

ag.
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Furthermore, u

q

A

= u

A

or u

q

A

= �u

A

; for u

q

A

= (u

2

A

)

(q�1)=2

u

A

= (�I)

(q�1)=2

u

A

= �u

A

where I stands for the identity matrix.

The third assertion follows easily from the fa
t that B

0

= fb 2 B j b�(u

A

) =

�(u

A

)bg, and B

1

= fb 2 B j b�(u

A

) = ��(u

A

)bg. Then observe that if a 2 A

0

then

�(a)�(u

A

) = �(au

A

) = �(u

A

a) = �(u

A

)�(a) hen
e �(a) 2 B

0

. Similarly, if a 2 A

1

then �(a)�(u

A

) = �(au

A

) = ��(u

A

a) = ��(u

A

)�(a), therefore �(a) 2 B

1

. �

For example, for the gradings 
 and 


�

one 
an 
hoose the elements

u




=

�

1 0

0 �1

�

and u




�

=

�

0 1

� 0

�

;

respe
tively. For the trivial grading T , the element u

T


an be 
hosen as the identity

matrix.

Now we are ready to show that there exist only two non-trivial gradings for

M

2

(K). More pre
isely, when A = A

0

�A

1

is a grading forM

2

(K), if u

q

A

= u

A

, then

A is isomorphi
 to 


�

for any perfe
t square 0 6= � 2 K, else A is isomorphi
 to 


�

for any not square � 2 K. Besides, when � 6= 0 is a square in K then the gradings


 and 


�

are isomorphi
. We shall prove these fa
ts in the next lemmas.

Lemma 2 Every non-trivial grading A = A

0

� A

1

of M

2

(K) su
h that u

q

A

= u

A

is

isomorphi
 to 
.

Proof: If u

A

=

�

a b


 d

�

then u

2

A

=

�

a

2

+ b
 b(a + d)


(a+ d) d

2

+ b


�

. Therefore, sin
e

u

2

A

2 K, we have b = 
 = 0 or a = �d. In the �rst 
ase A

0

= M

2

(K) and

A

1

= 0, whi
h is a 
ontradi
tion. So a = �d. The 
hara
teristi
 polynomial of u

A

is

f(x) = x

2

� (a

2

+ b
) whose roots are �� where � =

p

a

2

+ b
. But u

2

A

6= 0 implies

a

2

+ b
 6= 0. Hen
e there exists an invertible matrix P 2 M

2

(GF (q

2

)) su
h that

P

�1

u

A

P =

�

� 0

0 ��

�

. Thus

�

�

q

0

0 (��)

q

�

=

�

� 0

0 ��

�

q

= (P

�1

u

A

P )

q

= P

�1

u

q

A

P = P

�1

u

A

P =

�

� 0

0 ��

�

:

Therefore � 2 GF (q), P 2M

2

(K) and the map �:A! 
 de�ned by �(x) = P

�1

xP

is a graded isomorphism. �

Remark 3 If � 6= 0 is a square in K then u

q




�

= u




�

. For instan
e when � = 1 we

have the grading 


1

where u




1

=

�

0 1

1 0

�

. Its eigenvalues are �1 and 1. Therefore

there exists an invertible matrix P 2 M

2

(GF (q)) su
h that

P

�1

�

0 1

1 0

�

P =

�

1 0

0 �1

�

:
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Hen
e

P =

�

1 1

1 �1

�

; P

�1

=

�

1=2 1=2

1=2 �1=2

�

:

The graded isomorphism �: 


1

! 
 su
h that �(x) = P

�1

xP is the following:

�

��

a b


 d

��

=

1

2

�

a+ b + 
+ d a� b + 
� d

a+ b� 
� d a� b� 
 + d

�

:

Corollary 4 Every grading of M

2

(K) satisfying the identity y

q

1

= y

1

is isomorphi


to 
.

Lemma 5 Every non-trivial grading A = A

0

� A

1

of M

2

(K) su
h that u

q

A

= �u

A

is isomorphi
 to 


�

, for any � 2 K that is not perfe
t square.

Proof: If u

A

=

�

a b


 d

�

, then u

2

A

=

�

a

2

+ b
 b(a + d)


(a + d) d

2

+ b


�

. Therefore, b = 
 = 0

or a = �d. If b = 
 = 0 we obtain the trivial grading, so a = �d. The 
hara
teristi


polynomial of u

A

is f(x) = x

2

� (a

2

+ b
) whose roots are �� where � =

p

a

2

+ b
.

Sin
e u 6= 0 we get that a

2

+ b
 6= 0. Furthermore � =2 K, for u

q

A

6= u

A

; i.e. a

2

+ b


is not a square in K. As � and a

2

+ b
 are not squares in K then �(a

2

+ b
) is a

square in K. Choose � 2 K su
h that �

2

= �(a

2

+ b
), and 
onsider the matrix

u

0

A

=

�

�

�

a b


 �a

�

. Its 
hara
teristi
 polynomial is f(x) = x

2

� � whose roots are

p

� and �

p

�, and there exists an invertible P 2M

2

(K(

p

�)) su
h that

P

�1

u

0

A

P =

�

p

� 0

0 �

p

�

�

:

The 
hara
teristi
 polynomial of u




�

is f(x) = x

2

�� as well, and for some invertible

Q 2M

2

(K(

p

�)) we have

Q

�1

u




�

Q =

�

p

� 0

0 �

p

�

�

:

Thus (PQ

�1

)

�1

u

0

A

PQ

�1

= u




�

and the map �:A! 


�

, �(x) = P

�1

xP , is a graded

isomorphism. �

Remark 6 If � is not a square in K then u

q




�

= �u




�

. Thus for K = Z

3

and

� = �1, we obtain the grading




�1

0

=

��

a d

�d a

�

j a; d 2 K

�

; 


�1

1

=

��

b 



 �b

�

j b; 
 2 K

�

where u




�1

=

�

0 1

�1 0

�

, and u

3




�1

= �u




�1

, be
ause �1 is not a square in K.
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2 The graded identities of 


The next theorem supplies a basis for the graded identities of 
.

Theorem 7 The graded identities for 
 follow from the identities

f

1

(y

1

) = y

q

1

� y

1

;

f

2

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

1

)(X

2

�X

q

2

2

)(1� [X

1

; X

2

℄

q�1

);

where X

1

= y

1

+ z

1

, X

2

= y

2

+ z

2

.

The proof of this theorem is modelled on the paper of Maltsev and Kuzmin [10℄

for ungraded identities.

A variety of graded algebrasV is the 
lass of all graded algebras satisfying a given


olle
tion of graded polynomial identities. Clearly V is 
losed under the operations

of taking graded subalgebras, graded homomorphi
 images, and dire
t produ
ts.

The variety V is generated by a 
lass A of graded algebras, if every graded algebra

in V 
an be obtained from algebras in A by a �nite number of appli
ations of these

operations. We write V = V arA and if A 
ontains only one graded algebra A we

use the notation V = V arA.

Lemma 8 If A is a �nite graded K-algebra, then there exists a 
lass A of subdire
tly

irredu
ible �nite graded K-algebras su
h that V arA = V arA.

Proof: For 0 6= a 2 A, let I

a

be a graded ideal of A maximal with respe
t to the

ex
lusion of a. (A

ording to Zorn's Lemma su
h I

a

does exist.) The proje
tions

�

a

:A ! A=I

a

are graded epimorphisms and \

06=a2A

ker �

a

= \

a2A

I

a

= 0. Hen
e A

is a subdire
t produ
t of the algebras A=I

a

. As a + I

a

is not zero and belongs to

all nonzero ideal of A=I

a

, then A=I

a

is subdire
tly irredu
ible. Let A be the 
lass of

the graded algebras A=I

a

.

Suppose that a 2 A; then obviously T

2

(A) � T

2

(A=I

a

).

If f(y

1

; : : : ; y

m

; z

1

; : : : ; z

n

) 2 T

2

(A=I

a

), then f(a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) 2 ker �

a

for

all a

1

, . . . , a

m

2 A

0

and b

1

, . . . , b

n

2 A

1

, and a 2 A. Hen
e f 2 \

a2


T

2

(A=I

a

). �

The next lemma is analogous to the result 2.2 of [8℄.

Lemma 9 Every variety of graded algebras is generated by its �nitely generated

algebras.

The exponent of a variety of graded algebras V is the greatest lower bound of

the set of all positive integers r su
h that ra = 0 for every element a belonging

to every algebra of V. The index of V is the least upper bound of the set of all

nilpotent indi
es of its nilpotent algebras, see [8℄, [9℄ for details. The next lemma is

analogous to [9℄, Corollary 2.9.
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Lemma 10 A variety of graded algebras having �nite index and exponent is lo
ally

�nite.

Theorem 11 A variety V of graded algebras having �nite index and exponent is

generated by a 
lass of subdire
tly irredu
ible �nite graded algebras.

Proof: A

ording to the previous two lemmas, V is generated by a 
lass of �nite

graded algebras. Hen
e V is generated by a 
lass of subdire
tly irredu
ible �nite

graded algebras. �

We denote by V the variety of 2-graded algebras de�ned by the identities f

1

= 0

and f

2

= 0.

Lemma 12 V ar
 � V.

Proof: Sin
e a

q

= a for every a 2 K then f

1

is a graded identity of 
. By [10℄, f

2

is

an identity of M

2

(K) and hen
e of 
. �

Lemma 13 V � V ar
.

Proof: Let N = N

0

� N

1

be a nilpotent algebra in V. Then N

0

is also a nilpotent

algebra of V. The nilpoten
y index s of N

0

is 2; for if s > 2, we 
an take elements

a

1

, . . . , a

s�1

2 N

0

su
h that a

1

: : : a

s�1

6= 0. By f

1

, we know that

0 = (a

1

: : : a

s�1

)

q

� a

1

: : : a

s�1

= a

1

: : : a

s�1

;

whi
h is a 
ontradi
tion. Thus if a 2 N

0

then a = a

q

= 0. Therefore N

0

= 0 and

N = N

1

. Moreover, as N

1

N

1

� N

0

= 0, we have that N

2

= 0.

The variety V has �nite index and exponent. By Theorem 11, V is generated

by a 
lass of subdire
tly irredu
ible �nite graded algebras. To prove the lemma, it

suÆ
es to show that ea
h of these algebras belongs to V ar
. We shall prove even

more: ea
h of them is isomorphi
ally embedded in 
. Till the end of the proof, we

assume that A is a �nite subdire
tly irredu
ible algebra in V.

If A is nilpotent then A

0

= 0, A

1

= A, A

2

= 0 and dim

K

A = 1; for if a

1

, a

2

2 A

were linearly independent, the subspa
es spanned by a

1

and a

2

would have been

ideals with interse
tion zero. Thus the map �:A! 
 de�ned by �(�g) = �e

12

is a

graded monomorphism, where g is a generator of A.

Suppose A is a simple ungraded algebra i.e., A = M

k

(GF (p

t

)) and p

t

� q. If

k � 3 then f

2

(a

0

; b

0

; a

1

; b

1

) = e

13

6= 0 where a

0

, b

0

2 A

0

and a

1

, b

1

2 A

1

are su
h

that e

12

= a

0

+ a

1

and e

23

= b

0

+ b

1

.

Hen
e k � 2. Let k = 2. If a

0

, b

0

2 A

0

and a

1

, b

1

2 A

1

are su
h that

�e

11

= a

0

+ a

1

and e

12

= b

0

+ b

1

, then f

2

(a

0

; b

0

; a

1

; b

1

) = (�

q

� �)e

12

= 0. Hen
e

�� �

q

= 0, q � p

t

, and A =M

2

(GF (q)). By Corollary 4, 
 and A are isomorphi
.

7



Now let us 
onsider k = 1, i.e., A = GF (p

t

). If 0 6= a 2 A

1

then

a

q

2

= (a

2

)

(q+1)(q�1)=2

a = (a

2

a

2

)

(q�1)=2

a = (a

2

)

q�1

a = a

2q

a

�2

a = a

2

a

�2

a = a:

If a

0

2 A

0

and a

1

2 A

1

, then (a

0

+a

1

)

q

2

= a

q

2

0

+a

q

2

1

= a

0

+a

1

. Therefore �

q

2

�� = 0

for any � 2 A, whereby q

2

� p

t

, A = GF (q) or A = GF (q

2

). If A = GF (q) then

there exists an inje
tive graded homomorphism from A into 
. If A = GF (q

2

) then

the unique possible grading is A

0

�

=

GF (q) and A

1

�

=

GF (q) and, by Lemma 5 of

[13℄, there exists u 2 A

1

su
h that A

1

= A

0

u and u

2

= a 6= 0 belongs to GF (q).

Hen
e A = GF (q)1 + GF (q)u, where 1 is the multipli
ative unit of A. Thus the

map �:A! 
 de�ned as

�(�1+ �u) =

�

� �a

� �

�

is an inje
tive graded homomorphism.

Now suppose A = B�N as a dire
t sum of ve
tor spa
es where B is a semisimple

ungraded subalgebra of A and N is the Ja
obson radi
al of A. The Ja
obson radi
al

is graded [5℄ and, sin
e N is nilpotent, N

2

= 0. If x 2 A

0

\N then f

1

implies that

x = x

q

= 0 thus N � A

1

. Hen
e A

1

= A

1

\ B �N . If x 2 A

1

\ B and u 2 N , then

ux, xu 2 A

0

\ N , i.e., ux = xu = 0. Therefore x = 0, for the ideal of A generated

by x has zero interse
tion with N . Hen
e A

1

= N . As A=N

�

=

B and A=N

�

=

A

0

,

we have A

0

�

=

B. Thus A

0

is a semisimple ungraded subalgebra of A.

Let A

0

= B

1

�: : :�B

s

be the (ungraded) de
omposition of A

0

in simple algebras.

The identity f

1

implies that B

i

= GF (q) for every i. Let e

i

be the unit of the

subalgebra B

i

. Sin
e A is subdire
tly irredu
ible then AN 6= 0 or NA 6= 0. Suppose

that AN 6= 0. Sin
e the ideals e

i

N interse
t in zero, only one of them is nonzero,

say e

1

N . Sin
e N de
omposes into a dire
t sum of ideals N = e

1

N � (1 � e

1

)N ,

we have (1 � e

1

)N = 0 and N = e

1

N . Similarly the ideals Ne

i

have interse
tion

zero, therefore at most one of them 
an be di�erent from 0. There are three possible


ases.

Case 1: NA = 0. Then A

0

= B

1

= GF (q) and N is one-dimensional ve
tor

spa
e over GF (q). The map �:A!M

2

(GF (q)) de�ned as

�(�+ �u) =

�

� �

0 0

�

where �, � 2 GF (q) and 0 6= u 2 N is �xed, is an inje
tive graded homomorphism.

Case 2: Ne

1

6= 0, N = e

1

Ne

1

. Again A

0

= B

1

= GF (q) and we 
onsider

N as (GF (q); GF (q))-bimodule. Sin
e A is subdire
tly irredu
ible, N 
annot have

8



nonzero subbimodules with interse
tion zero. Therefore there exists an automor-

phism � of GF (q) su
h that x� = �(�)x for all x 2 N and all � 2 GF (q) (see

[11℄, p. 315). Thus ea
h subspa
e of N is a subbimodule and therefore N is one-

dimensional ve
tor spa
e over GF (q). The map �:A!M

2

(GF (q)) de�ned as

�(� + �u) =

�

� �

0 �(�)

�

;

where �, � 2 GF (q) and 0 6= u 2 N , is an inje
tive graded homomorphism.

Case 3: Ne

2

6= 0, N = e

1

Ne

2

. In this 
ase A

0

= B

1

� B

2

= GF (q) � GF (q),

NB

1

= B

2

N = 0 and N is a (GF (q); GF (q))-bimodule. Repeating the argument

of 
ase 2, we know that there exists an automorphism � of GF (q) su
h that x� =

�(�)x, for all x 2 N and all � 2 GF (q), and N is one-dimensional ve
tor spa
e over

GF (q). The map �:A!M

2

(GF (q)) de�ned as

�(� + � + 
u) =

�

� 


0 �(�)

�

;

where �, 
 2 B

1

, � 2 B

2

and 0 6= u 2 N is some �xed element, is an inje
tive

graded homomorphism. �

Remark 14 We list some other identities for 
:

f

3

(y

1

; y

2

) = y

1

y

2

� y

2

y

1

;

f

4

(z

1

; z

2

; z

3

) = z

1

z

2

z

3

� z

3

z

2

z

1

;

f

5

(y

1

; z

1

) = (y

1

� z

1

)

q

� z

q�1

1

(y

1

� z

1

);

f

6

(z

1

; z

2

) = (z

2(q�1)

1

� 1)z

1

z

2

(1� [z

1

; z

2

℄

q�1

);

f

7

(z

1

; z

2

) = (z

2(q�1)

1

� 1)z

2

z

1

(1� [z

1

; z

2

℄

q�1

);

f

8

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

2

1

)(1� [X

1

; X

2

℄

q�1

)(X

2

�X

q

2

);

f

9

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

1

) � (X

2

�X

q

2

)� ((X

1

�X

q

1

) � (X

2

�X

q

2

))

q

where X

i

= y

i

+ z

i

, i = 1, 2. The identity f

3

follows from the identity f

1

(see for

example [4℄, p. 73). The identities f

8

and f

9

are known by [10℄, and we 
an 
hange

the identity f

2

in Theorem 7 by any one of these.

3 The graded identities of 


�

for � not a square

The next theorem supplies a basis for the graded identities of 


�

.

9



Theorem 15 The graded identities for 


�

follow from the identities

g

1

(y

1

) = y

q

2

1

� y

1

;

g

2

(z

1

) = z

2q�1

1

� z

1

;

g

3

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

1

)(X

2

�X

q

2

2

)(1� [X

1

; X

2

℄

q�1

);

where X

1

= y

1

+ z

1

, X

2

= y

2

+ z

2

.

LetV be the variety of graded algebras de�ned by the identities g

1

= g

2

= g

3

= 0.

Lemma 16 V ar


�

� V.

Proof: Let y

1

=

�

a d

�d a

�

be a matrix in 


�

0

. Its 
hara
teristi
 polynomial is

f(x) = x

2

� (a

2

+�d

2

) with eigenvalues �� where � =

p

a

2

+ �d

2

. First we observe

that

�

q

2

= (

p

a

2

+ �d

2

)

q

2

= (a

2

+ �d

2

)

(q+1)(q�1)=2

� = (a

2

+ �d

2

)

(q�1)

� = �:

Similarly we obtain (��)

q

2

= ��. So, sin
e there exists an invertible matrix P 2

M

2

(GF (q

2

)) su
h that

P

�1

y

1

P =

�

� 0

0 ��

�

;

we have y

q

2

1

= y

1

.

Now let

z

1

=

�

b 


��
 �b

�

2 


�

1

:

Sin
e

z

2

1

=

�

b

2

� �


2

0

0 b

2

� �


2

�

and b

2

� �


2

6= 0 for � is not a square in K, we have (z

2

1

)

q�1

= 1. Then z

2q�1

1

= z

1

.

Finally, by [10℄, we know that g

3

is a graded identity of 


�

. �

Lemma 17 V � V ar


�

.

Proof: Let N = N

0

�N

1

be a nilpotent algebra in V. Hen
e N

0

is also a nilpotent

algebra in V. The nilpoten
y index s of N

0

is 2; for if s > 2, we 
an take elements

a

1

, . . . , a

s�1

2 N

0

su
h that a

1

: : : a

s�1

6= 0 and, by g

1

, we get

0 = (a

1

: : : a

s�1

)

q

2

� a

1

: : : a

s�1

= a

1

: : : a

s�1

;

10



whi
h is a 
ontradi
tion. Thus if a 2 N

0

then a = a

q

2

= 0 and therefore N

0

= 0.

Moreover, as N

1

N

1

� N

0

= 0, we have N

2

1

= 0. If a 2 N

1

then a = a

2q�1

= 0,

N

1

= 0 and N = 0.

The variety V has �nite index and exponent. By Theorem 11, V is generated

by a 
lass of subdire
tly irredu
ible �nite graded algebras. To prove the lemma it

suÆ
es to show that ea
h of these algebras belongs to V ar


�

. We shall prove even

more: ea
h of them is isomorphi
ally embedded in 


�

. Till the end of the proof we


onsider A as a �nite subdire
tly irredu
ible algebra in V.

Suppose A = B � N as a dire
t sum of ve
tor spa
es where B is a semisimple

(ungraded) subalgebra of A and N is the Ja
obson radi
al of A. Sin
e N is graded

ideal and it is nilpotent, N = 0. Thus 
onsidering A = B

1

� : : :�B

s

, the de
ompo-

sition of A in simple ungraded algebras, we see, due to the subdire
t irredu
ibility

of A, that s = 1 i.e., A is a simple algebra.

Now suppose A is simple ungraded algebra i.e., A = M

k

(GF (p

t

)) and p

t

� q.

Observe that k � 2, for if k � 3 then g

3

(a

0

; b

0

; a

1

; b

1

) = e

13

6= 0 where a

0

, b

0

2 A

0

and a

1

, b

1

2 A

1

are su
h that e

12

= a

0

+ a

1

and e

23

= b

0

+ b

1

.

Let us 
onsider k = 2. If a

0

, b

0

2 A

0

and a

1

, b

1

2 A

1

are su
h that �e

11

= a

0

+a

1

and e

12

= b

0

+ b

1

then

g

3

(a

0

; b

0

; a

1

; b

1

) = (�

q

� �)e

12

= 0;

hen
e � � �

q

= 0, q � p

t

, A = M

2

(GF (q)). By Lemma 1 we have two possibilities:

u

q

A

= u

A

or u

q

A

= �u

A

. If u

q

A

= u

A

then A is isomorphi
 to 
, and it is a 
ontradi
tion

be
ause 
 does not satisfy g

2

. Hen
e we have u

q

A

= �u

A

. By Lemma 5 there exists

a graded isomorphism between 


�

and A.

Now let us 
onsider k = 1 i.e., A = GF (p

t

). If 0 6= a 2 A

1

then

a

q

2

= (a

2

)

(q+1)(q�1)=2

a = (a

2q

a

2

)

(q�1)=2

a = (a

2

)

q�1

a = a

2q�1

= a:

If a

0

2 A

0

and a

1

2 A

1

, then

(a

0

+ a

1

)

q

2

= a

q

2

0

+ a

q

2

1

= a

0

+ a

1

:

Therefore �

q

2

� � = 0 for any � 2 A, whereby q

2

� p

t

, A = GF (q) or A = GF (q

2

).

If A = GF (q) then there exists an inje
tive graded homomorphism from A into




�

. If A = GF (q

2

) then the unique possible grading is A

0

�

=

K and A

1

�

=

K

and, by Lemma 5 of [13℄, there exists an element u 2 A

1

su
h that A

1

= A

0

u and

0 6= u

2

= a 2 K. Hen
e A = Ka+Ku, and the map �:A! 


�

de�ned as

�(�a+ 
u) =

�

�a+ 
u 0

0 �a� 
u

�

is an inje
tive graded homomorphism. �

11



Remark 18 We list some other identities for 


�

:

g

4

(y

1

; y

2

) = y

1

y

2

� y

2

y

1

;

g

5

(z

1

; z

2

; z

3

) = z

1

z

2

z

3

� z

3

z

2

z

1

;

g

6

(y

1

; z

1

) = z

2q�2

1

y

1

� y

1

;

g

7

(y

1

; z

1

) = (y

1

� z

1

)

q

� z

q�1

1

(y

1

� z

1

);

g

8

(y

1

; y

2

; z

1

; z

2

) = (X

1

�X

q

2

1

)(1� [X

1

; X

2

℄

q�1

)(X

2

�X

q

2

);

g

9

(y

1

; y

2

; z

1

; z

2

) = (X

1

� (X

1

)

q

) � (X

2

�X

q

2

)� ((X

1

�X

q

1

) � (X

2

�X

q

2

))

q

;

where X

i

stands for y

i

+ z

i

, i = 1, 2. The identity g

4

follows from g

1

. The identities

g

8

and g

9

are known by [10℄, and we 
an 
hange the identity g

3

in Theorem 15 by

any of these.

Corollary 19 The nonisomorphi
 gradings of the matrix algebra of order two over

a �nite �eld are distinguished by their polynomial identities.

In fa
t it is suÆ
ient to 
onsider the graded identity y

q

1

� y

1

. It is satis�ed if and

only if the grading is isomorphi
 to 
.
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