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Abstra
t

The paper des
ribes a �nite element method that uses a version

of the spa
e-time streamline di�usion te
hnique and in
ludes the 
on-

trol of total mass applied to a nonlinear 
onve
tion{di�usion equation

that governs the spreading of oil spills on moving water surfa
es. The

use of su
h equation for numeri
al predi
tions of the evolution of su
h

spills, although highly desirable to help to lessen their 
onsequen
es,

brings several diÆ
ulties. In fa
t, from the theoreti
al point of view,

the equation presents either paraboli
 or hyperboli
 (in the sense of

transport equations) 
hara
ter depending on the solution itself. This

is due to the nonlinearity of the di�usion term that 
an pass from

stri
tly positive to zero and vi
e-versa depending on the value of the



solution. In su
h a priori unknown regions, fast transitions may o
-


ur, bringing spurious os
illations that may deteriorate the numeri
al

solutions obtained with ordinary algorithms. The performan
e of the

proposed method is 
ompared in 
ontroled situations with the 
or-

responding performan
es of more traditional methods. The results

shows 
lear advantages in its use.

Keywords: Oil spills, Finite elements, Streamline di�usion, Mass 
ontrol.

1 INTRODUCTION

In this work we are interested in des
ribing a numeri
al method that 
ombines

streamline di�usion and dis
ontinuous Galerkin te
hniques, and it will be

applied to an equation governing the spreading of oil spills on moving water

surfa
es (see Benqu�e, Hauguel & Viollet [1℄):

�u(x; t)

�t

� 
�(u

3

(x; t)) +

~

�(x; t) � ru(x; t) = f(x) ; 
� I (1)

u(x; t) = g(x; t) ; x 2 �


�

; t 2 I (2)

�u(x; t)

�~�

= 0 ; x 2 �


+

; t 2 I (3)

u(x; 0) = u

0

(x) ; x 2 
: (4)

Here, 
 denotes the region of interest, whi
h is assumed to be a bounded

domain in IR

2

with Lips
htz boundary denoted by �
; the unitary external

normal at x 2 �
 is denoted ~�(x); I = (0; T ℄ � IR, with T > 0 being the �nal

time of interest; u denotes the (normalized) height of the spill measured from

the water surfa
e;

~

� is the driving velo
ity �eld, whi
h a

ording to [1℄ is a


ombination of the water and wind velo
ities, and for simpli
ity we assume

to be a priori known divergen
e free �eld (in realisti
 situations, this �eld

should be previously 
omputed using another numeri
al s
heme for Navier-

Stokes equations, for instan
e); 
 > 0 is a positive 
oeÆ
ient asso
iated to

the nonlinear di�usion and depending on the physi
al properties involved; f

denotes the aggregated e�e
ts of several other fa
tors like possible external

sour
es/sinks of oil; u

0

(�) denotes the initial distribution of the spill.

The boundary �
 will be 
onsidered to be 
omposed of tree disjoint parts:

the physi
al walls, denoted by �


0

, where the velo
ity �eld

~

� is usually null,
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and the outlet and inlet parts, given respe
tively by

�


+

(t) = f x 2 �
� �


0

: ~�(x) �

~

�(x; t) � 0 g;

�


�

(t) = f x 2 �
 � �


0

: ~�(x) �

~

�(x; t) < 0 g:

Here, \�" is the usual inner produ
t in IR

2

. g(�; �) is the possible 
ux of oil


oming from �


�

.

Mathemati
al properties of the previous equation, like the 
onservation

of 
ompa
t support of solutions, 
an be found for instan
e in Berts
h [2℄.

We should stress that, sin
e oil spills are nowadays important environ-

mental hazards, a

urate and reliable predi
tions about their behavior are in

mu
h need, bringing the ne
essity of using improved mathemati
al models

for their spreading. The previous nonlinear equation models the important

physi
al me
hanisms involved in the spreading of su
h spills in a mu
h bet-

ter way than the usual linear models, and therefore results derived from it

should be useful.

However, the use of (1) for numeri
al predi
tions, although highly de-

sirable, brings new diÆ
ulties. In fa
t, from the theoreti
al point of view,

equation (1) has 
hara
teristi
s that may be either paraboli
 or hyperboli


(in the sense of transport equations), and whi
h is not a priori known. In

fa
t, due to the nonlinear 
hara
ter of the di�usion term, it depends on the

solution itself, passing from stri
tly positive to zero depending on the value

of u. Fast transitions 
an o

ur in u, bringing spurious os
illations that may

deteriorate the numeri
al solutions obtained by usual te
hnique. This brings

the ne
essity of using numeri
al methods with in
reased stability.

Another important aspe
t to 
onsider is that usually oil spills o

ur in

regions with irregular boundaries (like most 
oastal lines). Su
h geometri
al

diÆ
ulties make harder to use �nite di�eren
es s
hemes to numeri
ally solve

the problem. For this reason, in this paper we 
onsider numeri
al meth-

ods based on a �nite elements, whi
h are naturally adapted to su
h varied

geometries.

The last two remarks suggest the use of �nite elements methods with

in
reased stability. However, it will be ne
essary that not to mu
h arti�
ial

dissipation be introdu
ed as an ex
hange for stability. There are several

reasonable ways to try to obtain that. For instan
e, one 
ould dis
retize the

time variable using a ba
kward Euler s
heme, and then use �nite elements

to dis
retize the spatial variables, with the help of the streamline di�usion

te
hnique or the use of bubble fun
tions to stabilize the resulting s
heme
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(see Se
tion 2 for details). As we will show later on, these pro
edures 
an

redu
e the numeri
al diÆ
ulties asso
iated to spurious os
illations, although

not yet in a totally satisfa
tory way. We will see that a better way is to use

streamline di�usion in spa
e and time, working with two levels of time at

ea
h step. However, these three methods do not behave well with respe
t to

the important property of balan
e (
onservation) of total mass that equation

(1) has to satisfy. Therefore, in this paper we propose a version of the last

method in
luding a method to 
ontrol of total mass.

We should stress that the purpose of this paper is not to show realisti
 and


omplex simulations of oil spills; this will be the subje
t of future work. Our

objetive here is to introdu
e the method and 
ompare it with more standard

ones. For this, it is ne
essary to experiment in rather simple and 
ontroled

situations, where obje
tive 
omparations 
riteria 
an be used. This is done

in Se
tion 4, where three numeri
al experiments are des
ribed (one of them

is a situation having an exa
t solution.) The results show that the proposed

method is rather satisfa
tory as 
ompared to the usual ones.

2 FINITE ELEMENTMETHODSWITH IN-

CREASED STABILITY

There are several possible 
ombinations between linearization pro
edures and

dis
retization applied to Problem (1){(4). Here, we brie
y des
ribe some

simple, frequently used possibilities.

We start by dis
retizing the time variable using �nite di�eren
es (ba
k-

ward Euler) and the spatial variable using usual �nite elements. The lin-

earization 
an then be done simply by taking pro�t of the dis
retization of

the time variable by suitable delaying of the 
oeÆ
ients. In some details, let

� : 0 = t

0

< t

1

< � � � < t

N

= T be a �xed partition of I = [0; T ℄; denote

I

n

= (t

n�1

; t

n

) and the lo
al time step by k

n

= t

n

� t

n�1

. The nonlinear term

�(u

3

(x; t)) 
an be rewritten as

�(u

3

(x; t)) = div (ru

3

(x; t)) = div (3u

2

(x; t)ru(x; t)): (5)

Now, being u

n

(x) an approximation of u(x; t

n

), n = 1; 2; � � � ; N , at ea
h

time t

n

we 
an approximate (5) by 
omputing u

2

(x; t) at the previous time

step. Thus, we have to solve a linear problem at ea
h time step: we have to

4



�nd u

n

(x), n = 1; 2; � � � ; N , x 2 
 satisfying

u

n

� u

n�1

k

n

� div (3
(u

n�1

)

2

ru

n

) +

~

�(x; t) � ru

n

= f(x); (6)

u

0

(x) = u

0

(x): (7)

The 
orresponding variational formulation of problem (6), (7) with bound-

ary 
ondition (2), (3) 
an be obtained as follows. De�ne, respe
tively, the

fun
tional spa
e of the test-fun
tions and the fun
tional spa
e of approxima-

tions, that is the spa
e where the solution must be lo
ated:

H

1

0

= fv 2 H

1

(
) = v j

�


�

= 0g;

H

1

g

= f v 2 H

1

(
) = v j

�


�

= g g;

then multiply (6) by v 2 H

1

0

and integrate the result on 
; use Green's

theorem to get the following variational problem

(V

g

) �nd u

n

2 H

1

g

; n = 1; 2; � � � ; N , su
h that

hu

n

; vi+ k

n

a(u

n

; v) = b(v); 8 v 2 H

1

0

; (8)

u

0

(x) = u

0

(x); (9)

where

a(u

n

; v) =

Z




3
(u

n�1

(x))

2

ru

n

(x) � rv(x)dx+

Z




~

�(x; t) � ru

n

(x)v(x)dx;

b(v) = hk

n

f + u

n�1

; vi =

Z




k

n

f(x)v(x)dx+

Z




u

n�1

(x)v(x)dx;

hu

n

; vi =

Z




u

n

(x)v(x)dx:

The traditional �nite elements formulation is derived from the above by


onsidering a small parameter h > 0 asso
iated to the size of used mesh, and

a suitable poligonal domain 


h

approximating 
. Then, one 
onsiders, for

instan
e, the �nite dimensional fun
tional spa
e V

h

� H

1

0

given by

V

h

= f v 2 H

1

0

= v j

K

2 P

r

(K); 8 K 2 T

h

g;

and V

g

h

� H

1

g

de�ned by

V

g

h

= f v 2 H

1

g

= v j

K

2 P

r

(K); 8 K 2 T

h

g;
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where T

h

= fKg is a triangularization of 


h

, with triangles of size of order h,

and P

r

(K) is the spa
e of polynomials of degree less than or equal to r 2 N ,

de�ned on K.

The �nite elements formulation of the above problem then be
omes

(V

h

) Find u

n

h

2 V

g

h

; n = 1; 2; � � � N , su
h that

hu

n

h

; vi+ k

n

a(u

n

h

; v) = b(v); 8 v 2 V

h

; (10)

hu

0

h

; vi = hu

0

; vi; 8 v 2 V

h

: (11)

Being f	

1

;	

2

; � � � ;	

M

g a basis for V

h

, for ea
h n we 
an write u

n

h

(x) =

P

M

j=1




n

j

	

j

(x), and thus the last problem is equivalent to the following linear

system of M equations and M variables 


n

1

; 


n

2

; � � � ; 


n

M

A(


n�1

)


n

= B


n�1

+ d

n�1

: (12)

We remark that at ea
h step of time, the matrix depends on the solution


omputed at the previous time, as it is shown above by the indi
ation of its

dependen
e on the 
oeÆ
ients 


n�1

.

One usually expe
ts to obtain 
ontrol of the L

2

-norms of the approximate

solution and of its �rst derivatives. In the above problem, however, when the

di�usion term 3
(u

n�1

)

2

be
omes small, the 
ontrol over L

2

-norm of ru

n

h

is

lost. This happens in parti
ular when u

n

h

has 
ompa
t support, and there

are regions where the di�usion 
oeÆ
ient de
reases to zero. In su
h regions

the problem be
omes purely hyperboli
 and the above tradi
ional formula-

tion does not work due to the appearan
e of os
ilations in the approximate

solution. In the following, we des
ribe two ways to redu
e these diÆ
ulties.

One way to do this is to 
hange the fun
tional spa
e of test-fun
tions

(su
h te
hniques re
eive the general name of Petrov-Galerkin methods.) The

streamline di�usion method is one of them and is based in taking test-

fun
tions of form v + Æ

~

� � rv ; v 2 V

h

in pla
e of just v in (10), (11).

In an extended form this furnishes the following pro
edure, whi
h we 
all

Euler-Streamline Di�usion Method, or E-SD for short:

h

u

n

h

� u

n�1

h

k

n

; v + Æ

~

� � rvi+ h3
(u

n�1

)

2

ru

n

h

;rvi

� h div (3
(u

n�1

)

2

ru

n

h

); Æ

~

� � rvi+ h

~

� � ru

n

h

; v + Æ

~

� � rvi

= hf; v + Æ

~

� � rvi; 8 v 2 V

h

; n = 1; 2; � � � ; N:

hu

0

h

; v + Æ

~

� � rvi = hu

0

; v + Æ

~

� � rvi; 8 v 2 V

h

:

(13)
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Here, Æ = 
h, with 
 > 0 suÆ
iently small, when 3
(u

n�1

)

2

< h; Æ = 0 when

3
(u

n�1

)

2

� h.

We observe that the term Æh

~

� � ru

n

h

;

~

� � rvi may be interpreted as a

di�usive transport in the dire
tion of the 
ow

~

�; it works as a stabilization

fa
tor for the numeri
al s
heme be
ause in
reases the amount of di�usivity

in the 
ow dire
tion without violating 
onsisten
y.

Further details 
on
erning this method 
an be found for instan
e in John-

son 
iteJohnson1987.

A se
ond idea to improve stabilization is to work with a larger approxi-

mation spa
e V

h

by the in
lusion of the so 
alled bubble fun
tions, whi
h are

basi
ally fun
tions with support in ea
h element; see for instan
e Fran
a &

Farhat [4℄. As an example of su
h larger approximation spa
e, we 
ould take

it 
onsisting the spa
e generated by the linear 
ombinations of polynomial

by parts fun
tions (degree 1, for instan
e) and 
ubi
 bubbles:

V

b

h

= f v 2 H

1

0

= v j

K

2 P

r

(K)� B(K); 8K 2 T

h

g;

where B(K) is the spa
e of bubble fun
tions de�ned on ea
h element K 2 T

h

.

Pro
eeding as before, we arrive at the following pro
edure, whi
h we 
all

Euler-Galerkin with Bubble Fun
tions, or E-GBF for short: we have

to �nd u

h

2 V

b

h

su
h that for all v 2 V

b

h

h

u

n

h

� u

n�1

h

k

n

; vi+ h3
(u

n�1

)

2

ru

n

h

;rvi+ h

~

� � ru

n

h

; vi = hf; vi;

hu

0

h

; vi = hu

0

; vi:

(14)

As we show later on, the last two methods are have enough stability to


ontrol the wild os
illations presented by the standard method. However,

they still present too mu
h arti�
ial di�usivity for the problem at hand, and

lead to ex
essive spreading and de
aying of solution.

3 SPACE-TIME STREAMLINE DIFFUSION

METHOD AND CONTROL OF MASS

A di�erent form of dis
retizing (1){(4) is the following. We still use the

same sort of linearization pro
edure, but, instead of using �nite di�eren
es

in the time variable and then some sort of Galekin pro
edure for the spatial

variables, we will use the Galekin pro
edure simultaneously in spa
e and

7



time. That is, we use �nite elements and interpolation fun
tions depending

on time and spa
e. Spa
e-time streamline-di�usion 
an be used to improve

stabilization; however, used without 
are, this would lead to a very large

linear system to be solved. The reason for this is that in this te
hnique the

use of 
ontinuous (in time) test-fun
tions 
ouple all levels of time. One way to

avoid this diÆ
ulty, and de
rease the size of the 
orresponding linear system,

is to work in strips of spa
e-time, with the help of interpolation fun
tions that

will be 
ontinuous in the spatial variables, but will be des
ontinuous in the

time variables at the 
ommon frontier of every two strips. In the following,

we give some details.

Adapting ideas of Johnson [5℄ to our nonlinear problem, we take as before

a partition � : 0 = t

0

< t

1

< � � � < t

N

= T of I = [0; T ℄, and for ea
h

n = 1; 2; � � � ; N we will work in strips of spa
e-time S

n

given by

S

n

= f(x; t) : x 2 
; t

n�1

< t < t

n

g:

Let V

n

h

be a �xed �nite element subspa
e in H

1

(S

n

), where h is a parameter

as before, and let

V

0n

h

= fv 2 V

n

h

= v(x; t) = 0; x 2 �


�

g:

In this version of streamline di�usion, we work in spa
e-time, using test-

fun
tions of form

v + Æ(

�v

�t

+

~

� � rv); (15)

where

Æ = 
h; (16)

and 
 > 0 is a positive 
onstante.

Multiplying the equation by the above test-fun
tion and integranting su
-


essively on ea
h strip S

n

, with the help of integration by parts, and weakly

imposing as initial 
ondition for t = t

n�1

the value of u

n�1


omputed at the

previous strip and strongly imposing the boundary 
onditions, we obtain a

pro
edure that we 
all Spa
e-Time Streamline Di�usion, or S-T-SD for

short:

(V

h

) Find u

n

h

2 V

0n

h

; n = 1; 2; � � � N , su
h that for all V

0n

h

there holds

h

�u

n

h

�t

+

~

� � ru

n

h

; v + Æ(

�v

�t

+

~

� � rv)i

n

+ h3
(u

n�1

�

)

2

ru

n

h

;rvi

n

� h div (3
(u

n�1

�

)

2

ru

n

h

); Æ(

�v

�t

+

~

� � rv)i

n

+ hhu

n

h+

; v

+

ii

n�1

= hf; v + Æ(

�v

�t

+

~

� � rv)i

n

+ hhu

n�1

h�

; v

+

ii

n�1

:

(17)
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Here, for simpli
ity of exposition, we took g � 0 in (2); as before, Æ = 
h when

3
(u

n�1

�

)

2

< h, where 
 > 0 suÆ
iently small; Æ = 0 when 3
(u

n�1

�

)

2

� h.

Moreover, we take u

0

�

= u

0

and use the following notations

hw; vi

n

=

Z

S

n

w(x; t)v(x; t)dxdt;

hhw; vii

n

=

Z




w(x; t

n

)v(x; t

n

)dxdt;

v

+

(x; t) = lim

s!0

+

v(x; t + s);

v

�

(x; t) = lim

s!0

�

v(x; t+ s):

To des
ribe the spa
e-time basis of �nite elements that will be 
onsidered,

let f	

1

;	

2

; � � � ;	

M

g be the following basis for V

h

:

V

h

= f v 2 H

1

0

= v j

K

2 P

r

(K); 8 K 2 T

h

g:

Take f�

1

; �

2

g as the basis for the spa
e of polynomial fun
tions of degree at

most one and de�ned on the interval (t

n�1

; t

n

):

�

1

(t) =

t

n

� t

t

n

� t

n�1

; �

2

(t) =

t� t

n�1

t

n

� t

n�1

:

We 
an 
onstru
t f�

1

;�

2

; � � � ;�

2M

g para V

0n

h

as:

�

1

(x; t) = �

1

(t)	

1

(x); �

2

(x; t) = �

1

(t)	

2

(x); � � � ;�

M

(x; t) = �

1

(t)	

M

(x);

�

M+1

(x; t) = �

2

(t)	

1

(x); �

M+2

(x; t) = �

2

(t)	

2

(x); � � � ;�

2M

(x; t) = �

2

(t)	

M

(x):

Therefore, being the approximate solution on S

n

given by u

n

h

(x; t) =

2M

X

j=1




n

j

�

j

(x; t), (17) is equivalent to the following system of order 2M for the


oeÆ
ients 


n

j

:

2M

X

j=1




n

j

"

h

��

j

�t

+

~

� � r�

j

;�

i

+ Æ(

��

i

�t

+

~

� � r�

i

)i

n

+ h3
(

X

l




n�1

l

�

l

)

2

r�

j

;r�

i

i

n

#

+

2M

X

j=1




n

j

"

� h div (3
(

X

l




n�1

l

�

l

)

2

r�

j

); Æ(

��

i

�t

+

~

� � r�

i

)i

n

+ hh�

j+

;�

i+

ii

n�1

#

=

2M

X

j=1




n�1

j

h

hh�

j�

;�

i+

ii

n�1

i

+ hf;�

i

+ Æ(

��

i

�t

+

~

� � r�

i

)i

n

; i = 1; 2; � � � 2M:

9



On
e this system is solved, we take as the approximation for u(x; t

n

), for

n = 1; � � � ; N , the following expression

u

n

(x) = u

n

h

(x; t

n

) =

2M

X

j=M




n

j

	

j

(x):

As we will see, as E-SD and E-GBF methods, the last method 
ontrols

the os
illations and has less arti�
ial di�usivity, leading to improved solutions

in terms of spreading and de
aying.

However, Problem (1){(4) has the spe
ial physi
ally important property

of balan
e of total mass. As we will see when we des
ribe numeri
al simula-

tions, none of the methods E-SD, E-GBF, S-T-SD is good at preserving

su
h property. The next subse
tion explains su
h property and a method to

improve the performan
e of the last pro
edure in this respe
t.

3.1 MASS CONTROL

For simpli
ity of exposition we take g � 0 in (2); the general 
ase 
an be

similarly treated. Observe that integrating (1) on 
, using the divergen
e

theorem and the boundary informations, we get

�

�t

Z




udx+

Z

�


+

u

~

� � ~�ds =

Z




fdx; (18)

whi
h means that the total mass of the exa
t solution umust satisfy the above

balan
e equation. In parti
ular, while the support of u does not tou
hes the

outlet part of the boundary, �


+

, we must have

�

�t

Z

~




u(x; t)dx =

Z




fdx,

and, when f � 0, the total mass must be 
onserved.

To improve the performan
e of the previous method with respe
t to the

balan
e of mass, we pro
eed as follows. We will introdu
e an additional

term to the right-hand side of (17) that will for
e the approximate solution

obey a dis
retized version of (18). There are several ways to do that, but

for simpli
ity we show a 
rude one that already improves signi�
antly the

balan
e of mass.

By 
allingM

n

the total mass (M

n

=

R




u(x; t

n

)dx) 
arried by the solution

at time t

n

and using �nite di�eren
es in (18), we obtain the following relation

to predi
t the total mass that we should at ea
h time step:

M

n

= M

n�1

+ k

n

Z

�


u(x; t

n

)

~

�(x) �

~

�(x)ds+ k

n

Z




f(x; t

n

)dx: (19)
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On the other hand, the a
tual mass asso
iated to approximate solution

to be 
omputed using �nite elements is

~

M

n

=

Z




u

n

(x)dx: (20)

Thus, to for
e the approximate solution to follow the values of total mass

that it should have, we introdu
e at the right-hand side of the equation the

following term:

��(

~

M

n

�M

n

)maxfu

n�1

(x); 0g; (21)

for x 2 
, and where � is a stri
tly positive 
onstant and M

n

and

~

M

n

are


omputed respe
tively by (19) and (20). Thus, this term works either as a

sink of mass when

~

M

n

> M

n

or a sour
e when

~

M

n

< M

n

. When

~

M

n

= M

n

,

the above term does not a�e
t the solution. By doing this, and working as in

the previous subse
tion, we obtain the following problem for the approximate

solution:

(V

h

) Find u

n

h

2 V

0n

h

; n = 1; 2; � � � N , su
h that for all V

0n

h

there holds

h

�u

n

h

�t

+

~

� � ru

n

h

; v + Æ(

�v

�t

+

~

� � rv)i

n

+ h3
(u

n�1

�

)

2

ru

n

h

;rvi

n

� h div (3
(u

n�1

�

)

2

ru

n

h

); Æ(

�v

�t

+

~

� � rv)i

n

+ hhu

n

+

; v

+

ii

n�1

= hf � �(

~

M

n

�M

n

)maxfu

n�1

�

; 0g; v + Æ(

�v

�t

+

~

� � rv)i

n

+ hhu

n�1

�

; v

+

ii

n�1

:

As before, the parameter Æ is given by (16)

As we will see in the next se
tion, this adaptation, whi
h we 
all Spa
e-

Time Streamline Di�usion withMass Control, or simply S-T-SD-MC

for short, signi�
antly improves the performan
e of method (S-T-SD).

4 NUMERICAL EXPERIMENTS

To show the performan
e of the previously des
ribe methods, in this se
tion

we 
onsider numeri
al simulations of problem (1){(4) in very simple situa-

tions. The idea here is to make expli
it the behavior of the methods, and to

show the superiority of S-T-SD-MC.

Situation 1:

We 
onsider a 
ase in whi
h an exa
t solution is known, and thus we have

absolute 
ontrol of the situation and 
an 
ompare the performan
e of the

methods in an obje
tive way.
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For this, 
onsider the velo
ity �eld

~

� = (1; 0) in a open 
hannel of length

7 and width 2 (see Figure 1), and for the numeri
al simulation we use the

data showed in Table 1.

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 1: Open 
hannel in Situation 1 with �nite elements mesh

In this 
ase, using results of Berts
h 
iteBerts
h, it 
an be seen that an

exa
t solution of problem (1){(4) is given by

u(x; t) = v(x�

~

�t; t);

where

v(x; t) = (t+ 1)

�

1

3

�

maxfa

2

�

1

18

(x

2

+ y

2

)(t + 1)

�

1

3

; 0g

�

1

2

:

Here the parameter a > 0 has to be 
hosen su
h that the support of u does

not tou
h the lateral boundaries of the 
hannel.

The performed numeri
al experiments showed that the E-SD and E-

GBF methods have enough stability to 
ontrol the os
illations presented

in the standard method. However, this was obtained at expense of having

ex
essive numeri
al dissipation, as it 
an be seen by the results presented in

12



Table 1: Data and parameters for the open 
hannel problem 
orresponding

to Situation 1

Parameters Values


 1.0

~

�(x; t) (1; 0)

f 0:0

g 0:0

k (time stepsize) 5� 10

�2

u

0

(x; y)

h

maxfa

2

�

1

18

(x

2

+ y

2

); 0g

i

1

2

a 0.25


 [�3:5; 3:5℄� [�1; 1℄

No. of elements (�rst order) 5888

No. of nodes 3057

h 0.069


 0.5

� (mass 
ontrol) 5� 10

�3

Table 2, where it is 
lear an ex
essive de
ay of the approximate solutions,

that be
ome worse with time, obtained by those methods. S-T-SD-MC has

good agreement with the exa
t values.

Table 2: Maximum values for the solutions

Method t = 0.5 t = 1 t = 1.5 t = 2 t = 2.5 t = 3

Exa
t 0:2184 0:1984 0:1842 0:1733 0:1646 0:1574

E-SD 0:2064 0:1748 0:1554 0:1492 0:1289 0:1135

E-GBF 0:2064 0:1748 0:1554 0:1492 0:1289 0:1135

S-T-SD 0:2163 0:1945 0:1835 0:1744 0:1623 0:1558

S-T-SD-MC 0:2181 0:1988 0:1839 0:1739 0:1641 0:1570

We remark that it is no 
oin
iden
e that the values given by the E-SD

and E-GBF are very similar; the other tables and simulations show similar

results. In fa
t, these two methods have 
lose relation, and in Fran
a, Brezzi,
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Bristeau, Mallet & Roge [3℄, a proof of their equivalen
e 
an be found. Thus,

one 
ould say that what 
ould determine the possible 
hoi
e between these

two methods is their respe
tive 
omputational load. If one uses the same

interpolation spa
e for both methods, the �rst of them has more terms in

its bilinear form, whi
h leads to a greater number of integrations that have

to be performed; the se
ond method results in a larger linear system to be

solved. In spe
i�
 situations, one that intends to use one of these methods

should take these aspe
ts in 
onsideration to make his 
hoi
e.

Figures 2, 3 and 4 on next page show respe
tively the supports of the exa
t

and the 
omputed solutions, with E-SD and S-T-SD-MC. The support


omputed using E-SD is ex
essively spread; that 
omputed using S-T-SD-

MC has a good agreement with the exa
t one.

Now we pay attention to the performan
e of the methods with respe
t

to the property of balan
e of mass. Sin
e in the 
onditions of the present

simulation the total mass should be preserved, a measure of the deviation of

su
h property 
an obtained by the quo
ient between the initial total mass

(im) and the total mass (tm) 
omputed at the time of larger deviation from

the initial mass. The result of this pro
edure applied to ea
h of the methods

is depi
ted in Table 3.

Table 3: Balan
e of mass for ea
h method

Method tm/im

E-SD 1:09384

E-GBF 1:09362

S-T-SD 1:06232

S-T-SD-MC 1:00057

We observe that the perfoman
es of E-SD and E-GBF are similar, as

they should be a

ording to our previous remarks, and poorer than that of

S-T-SD, 
on�rming the fa
t that this last method presents less numeri
al

di�usion than the �rst two. However, S-T-SD-MC performs better by two

orders of magnitude than the other methods.

We should also stress that S-T-SD-MC is better than the other methods

in the important aspe
t of the 
ontrol of the spurious os
illations, whose

amplitude are mu
h less than the ones presented by the other methods.

The following tables furnish an idea of the dependen
e of S-T-SD-MC
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Figure 2: Exa
t support at t = 2 in the open 
hannel problem
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Figure 3: Support 
omputed with (E-SD) at t = 2 in the open 
hannel

problem
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Figure 4: Support 
omputed with (S-T-SD-MC) at t = 2 in the open


hannel problem
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on the parameter 
 > 0 appearing in the de�nition of Æ given in (16). As we

see from Table 4, the value of 
 is related the amount of numeri
al di�usion

of the method: preserving all the other data and parameters, by in
reasing

the value of 
, the amount of di�usion in
reases.

Table 4: Maximum values of the exa
t solution 
ompared with the 
orre-

sponding values of the approximate solutions

- t = 0.5 t = 1 t = 1.5 t = 2 t = 2.5 t = 3

Exa
t 0:2184 0:1984 0:1842 0:1733 0:1646 0:1574


 = 0:5 0:2181 0:1988 0:1839 0:1739 0:1641 0:1570


 = 1:0 0:2172 0:1963 0:1831 0:1728 0:1639 0:1564

On the other hand, the maximum absolute value of the error between the

exa
t solution and the approximation is, in this 
ase, rather insensitive to 
.

This 
an be seen in Table 5.

Table 5: Absolute error between the exa
t and approximate solutions

- t = 0.5 t = 1 t = 1.5 t = 2 t = 2.5 t = 3


 = 0:5 0:00266 0:00278 0:00282 0:00287 0:00349 0:00445


 = 1:0 0:00266 0:00278 0:00282 0:00287 0:00349 0:00445

Situation 2:

For the next numeri
al experiment, we 
onsider a situation without exa
t

solution but still very simple. The obje
tive is to estimate how the methods

behave under the in
uen
y of non 
onstant velo
ity �elds. We still 
onsider

the previous open 
hannel, but now the usual paraboli
 pro�le velo
ity �eld.

The data and parameters for this numeri
al experiment is given in Table 6.

Figure 5 furnishes the supports of the 
orresponding approximate solu-

tions 
omputed at time t = 6 by using methods E-SD and E-GBF. Figure

6 gives the 
orresponding data for methods S-T-SD and S-T-SD-MC.

As we 
an see, the interplay between variations in the velo
ity �eld and

the de�
ien
ies of methods E-SD and E-GBF distor
e signi�
antively the
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Table 6: Data and parameters for the open 
hannel problem 
orresponding

to Situation 2

Parameters Values


 1� 10

�3

~

�(x; t) (1� y

2

; 0)

f 0:0

g 0:0

k (time stepsize) 5� 10

�2

u

0

(x; y) 0:1exp(�16((x+ 2:5)

2

+ y

2

))


 [�3:5; 3:5℄� [�1; 1℄

No. of elements (�rst order) 5888

No. of nodes 3057

h 0.069


 0.5

� (mass 
ontrol) 5� 10

�3

support of the solution, again due to their ex
essive numeri
al di�usion. S-

T-SD-MC behaves better, but still has ex
essive di�usion. S-T-SD-MC

furnishes a reliable support in the same situation.

−3 −2 −1 0 1 2 3

−2.5
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−1.5

−1

−0.5

0

0.5
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1.5

2

2.5
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−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 5: Support 
omputed using E-SD (left) and E-GBF (right) in Situ-

ation 2
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Figure 6: Support 
omputed using S-T-SD (left) and S-T-SD-MC (right)

in Situation 2

Situation 3:

The next situation 
onsiders an oil spill tou
hing an island as it is 
on-

ve
ted by the 
ow. We 
onsider the very simple 
ase where the same 
hannel

as before 
ontains a 
ir
ular island (in this 
ase the velo
ity �eld 
an also

be obtained in 
losed form.) The 
orresponding domain and �nite elements

mesh are shown in Figure 7.

The data and parameter used in this numeri
al experiment are the ones

in Table 7.

The performan
e of ea
h of the previous methods in intera
tion with

interior boundaries 
an then be evaluated by 
omputing their behavior with

respe
t to the 
onservation of total mass.

In Figs. 8, 9 and 10 we showed the behavior of the total mass along the

time as 
omputed using respe
tively E-SD, S-T-SD and S-T-SD-MC. The

behavior of E-GBF is similar to that of E-SD. As we 
an 
learly see, when

the spill intera
ts with the boundaries of the island, 
onservation of mass is

signi�
atively violated for methods E-SD and S-T-SD (and also E-GBF).

Method S-T-SD-MC neatly preserves the total mass in su
h intera
tions.

The �nal de
ay of mass is due to the fa
t that at those times the spill is

leaving the 
omputational domain.
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Figure 7: Domain and �nite elements mesh for Situation 3

Table 7: Data and parameters for the 
hannel with an island (Situation 3)

Parameters Values


 1� 10

�3

~

�(x; t)

�

1�

2x

2

r

2

(x

2

+y

2

)

2

+

r

2

(x

2

+y

2

)

; �

2xyr

2

(x

2

+y

2

)

2

�

f 0:0

g 0:0

k (time stepsize) 5� 10

�2

u

0

(x; y) 0:1exp(�16((x+ 2:5)

2

+ y

2

))


 [�3:5; 3:5℄� [�1; 1℄

No. of elements (�rst order) 3520

No. of nodes 1840

h 0.088


 0.5

� (mass 
ontrol) 5� 10

�3
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Figure 8: Total mass along the time 
omputed using E-SD in Situation 3
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Figure 9: Total mass along the time 
omputed using S-T-SD in Situation 3
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Figure 10: Total mass along the time 
omputed using S-T-SD-MC in Sit-

uation 3

5 CONCLUSIONS

All the numeri
al experiments showed that for the problem at hand the

performan
e of the S-T-SD-MC-method is better than that of the other

methods in terms of quality of approximations. In parti
ular, this is 
learly

so with respe
t to balan
e of mass. This method 
ould be qui
kly adapted to

other situations, like those that in
lude fra
tional evaporation, for instan
e,

in whi
h the e�e
tive rate of evaporation depends on the area asso
iated to

the spill, and thus should be 
orre
tly 
omputed. Also, by taking pro�t of

the property of perservation of 
ompa
t support of solutions, it is possible to

devise a lo
alization te
hnique that applied to S-T-SD-MC 
an signi�
a-

tively redu
e the size of the linear systems to be solved and, 
onsequently,

also redu
e the 
omputational time. Our 
on
lusion is that S-T-SD-MC is

a reliable method to be used in realisti
 simulations of spreading of oil spills,

on
e it is 
oupled with suitable 
ow simulators. All these aspe
ts will be

subjets of forth
oming papers.
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