
A STREAMLINE DIFFUSION METHOD

FOR A NONLINEAR EQUATION

GOVERNING THE SPREADING OF OIL

SPILLS

M�ario Rodolfo Fernandes

fernands�mtm.ufs.br

Universidade Federal de Santa Catarina, Departamento de Matem�atia - CFM

CEP 88040-900 - Florian�opolis, SC, Brazil

Petronio Pulino

pulino�ime.uniamp.br

Jos�e Luiz Boldrini

boldrini�ime.uniamp.br

Universidade Estadual de Campinas, IMECC

C.P. 6065 - 13083-970 - Campinas, SP, Brazil

Abstrat

The paper desribes a �nite element method that uses a version

of the spae-time streamline di�usion tehnique and inludes the on-

trol of total mass applied to a nonlinear onvetion{di�usion equation

that governs the spreading of oil spills on moving water surfaes. The

use of suh equation for numerial preditions of the evolution of suh

spills, although highly desirable to help to lessen their onsequenes,

brings several diÆulties. In fat, from the theoretial point of view,

the equation presents either paraboli or hyperboli (in the sense of

transport equations) harater depending on the solution itself. This

is due to the nonlinearity of the di�usion term that an pass from

stritly positive to zero and vie-versa depending on the value of the



solution. In suh a priori unknown regions, fast transitions may o-

ur, bringing spurious osillations that may deteriorate the numerial

solutions obtained with ordinary algorithms. The performane of the

proposed method is ompared in ontroled situations with the or-

responding performanes of more traditional methods. The results

shows lear advantages in its use.

Keywords: Oil spills, Finite elements, Streamline di�usion, Mass ontrol.

1 INTRODUCTION

In this work we are interested in desribing a numerial method that ombines

streamline di�usion and disontinuous Galerkin tehniques, and it will be

applied to an equation governing the spreading of oil spills on moving water

surfaes (see Benqu�e, Hauguel & Viollet [1℄):

�u(x; t)

�t

� �(u

3

(x; t)) +

~

�(x; t) � ru(x; t) = f(x) ; 
� I (1)

u(x; t) = g(x; t) ; x 2 �


�

; t 2 I (2)

�u(x; t)

�~�

= 0 ; x 2 �


+

; t 2 I (3)

u(x; 0) = u

0

(x) ; x 2 
: (4)

Here, 
 denotes the region of interest, whih is assumed to be a bounded

domain in IR

2

with Lipshtz boundary denoted by �
; the unitary external

normal at x 2 �
 is denoted ~�(x); I = (0; T ℄ � IR, with T > 0 being the �nal

time of interest; u denotes the (normalized) height of the spill measured from

the water surfae;

~

� is the driving veloity �eld, whih aording to [1℄ is a

ombination of the water and wind veloities, and for simpliity we assume

to be a priori known divergene free �eld (in realisti situations, this �eld

should be previously omputed using another numerial sheme for Navier-

Stokes equations, for instane);  > 0 is a positive oeÆient assoiated to

the nonlinear di�usion and depending on the physial properties involved; f

denotes the aggregated e�ets of several other fators like possible external

soures/sinks of oil; u

0

(�) denotes the initial distribution of the spill.

The boundary �
 will be onsidered to be omposed of tree disjoint parts:

the physial walls, denoted by �


0

, where the veloity �eld

~

� is usually null,
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and the outlet and inlet parts, given respetively by

�


+

(t) = f x 2 �
� �


0

: ~�(x) �

~

�(x; t) � 0 g;

�


�

(t) = f x 2 �
 � �


0

: ~�(x) �

~

�(x; t) < 0 g:

Here, \�" is the usual inner produt in IR

2

. g(�; �) is the possible ux of oil

oming from �


�

.

Mathematial properties of the previous equation, like the onservation

of ompat support of solutions, an be found for instane in Bertsh [2℄.

We should stress that, sine oil spills are nowadays important environ-

mental hazards, aurate and reliable preditions about their behavior are in

muh need, bringing the neessity of using improved mathematial models

for their spreading. The previous nonlinear equation models the important

physial mehanisms involved in the spreading of suh spills in a muh bet-

ter way than the usual linear models, and therefore results derived from it

should be useful.

However, the use of (1) for numerial preditions, although highly de-

sirable, brings new diÆulties. In fat, from the theoretial point of view,

equation (1) has harateristis that may be either paraboli or hyperboli

(in the sense of transport equations), and whih is not a priori known. In

fat, due to the nonlinear harater of the di�usion term, it depends on the

solution itself, passing from stritly positive to zero depending on the value

of u. Fast transitions an our in u, bringing spurious osillations that may

deteriorate the numerial solutions obtained by usual tehnique. This brings

the neessity of using numerial methods with inreased stability.

Another important aspet to onsider is that usually oil spills our in

regions with irregular boundaries (like most oastal lines). Suh geometrial

diÆulties make harder to use �nite di�erenes shemes to numerially solve

the problem. For this reason, in this paper we onsider numerial meth-

ods based on a �nite elements, whih are naturally adapted to suh varied

geometries.

The last two remarks suggest the use of �nite elements methods with

inreased stability. However, it will be neessary that not to muh arti�ial

dissipation be introdued as an exhange for stability. There are several

reasonable ways to try to obtain that. For instane, one ould disretize the

time variable using a bakward Euler sheme, and then use �nite elements

to disretize the spatial variables, with the help of the streamline di�usion

tehnique or the use of bubble funtions to stabilize the resulting sheme
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(see Setion 2 for details). As we will show later on, these proedures an

redue the numerial diÆulties assoiated to spurious osillations, although

not yet in a totally satisfatory way. We will see that a better way is to use

streamline di�usion in spae and time, working with two levels of time at

eah step. However, these three methods do not behave well with respet to

the important property of balane (onservation) of total mass that equation

(1) has to satisfy. Therefore, in this paper we propose a version of the last

method inluding a method to ontrol of total mass.

We should stress that the purpose of this paper is not to show realisti and

omplex simulations of oil spills; this will be the subjet of future work. Our

objetive here is to introdue the method and ompare it with more standard

ones. For this, it is neessary to experiment in rather simple and ontroled

situations, where objetive omparations riteria an be used. This is done

in Setion 4, where three numerial experiments are desribed (one of them

is a situation having an exat solution.) The results show that the proposed

method is rather satisfatory as ompared to the usual ones.

2 FINITE ELEMENTMETHODSWITH IN-

CREASED STABILITY

There are several possible ombinations between linearization proedures and

disretization applied to Problem (1){(4). Here, we briey desribe some

simple, frequently used possibilities.

We start by disretizing the time variable using �nite di�erenes (bak-

ward Euler) and the spatial variable using usual �nite elements. The lin-

earization an then be done simply by taking pro�t of the disretization of

the time variable by suitable delaying of the oeÆients. In some details, let

� : 0 = t

0

< t

1

< � � � < t

N

= T be a �xed partition of I = [0; T ℄; denote

I

n

= (t

n�1

; t

n

) and the loal time step by k

n

= t

n

� t

n�1

. The nonlinear term

�(u

3

(x; t)) an be rewritten as

�(u

3

(x; t)) = div (ru

3

(x; t)) = div (3u

2

(x; t)ru(x; t)): (5)

Now, being u

n

(x) an approximation of u(x; t

n

), n = 1; 2; � � � ; N , at eah

time t

n

we an approximate (5) by omputing u

2

(x; t) at the previous time

step. Thus, we have to solve a linear problem at eah time step: we have to
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�nd u

n

(x), n = 1; 2; � � � ; N , x 2 
 satisfying

u

n

� u

n�1

k

n

� div (3(u

n�1

)

2

ru

n

) +

~

�(x; t) � ru

n

= f(x); (6)

u

0

(x) = u

0

(x): (7)

The orresponding variational formulation of problem (6), (7) with bound-

ary ondition (2), (3) an be obtained as follows. De�ne, respetively, the

funtional spae of the test-funtions and the funtional spae of approxima-

tions, that is the spae where the solution must be loated:

H

1

0

= fv 2 H

1

(
) = v j

�


�

= 0g;

H

1

g

= f v 2 H

1

(
) = v j

�


�

= g g;

then multiply (6) by v 2 H

1

0

and integrate the result on 
; use Green's

theorem to get the following variational problem

(V

g

) �nd u

n

2 H

1

g

; n = 1; 2; � � � ; N , suh that

hu

n

; vi+ k

n

a(u

n

; v) = b(v); 8 v 2 H

1

0

; (8)

u

0

(x) = u

0

(x); (9)

where

a(u

n

; v) =

Z




3(u

n�1

(x))

2

ru

n

(x) � rv(x)dx+

Z




~

�(x; t) � ru

n

(x)v(x)dx;

b(v) = hk

n

f + u

n�1

; vi =

Z




k

n

f(x)v(x)dx+

Z




u

n�1

(x)v(x)dx;

hu

n

; vi =

Z




u

n

(x)v(x)dx:

The traditional �nite elements formulation is derived from the above by

onsidering a small parameter h > 0 assoiated to the size of used mesh, and

a suitable poligonal domain 


h

approximating 
. Then, one onsiders, for

instane, the �nite dimensional funtional spae V

h

� H

1

0

given by

V

h

= f v 2 H

1

0

= v j

K

2 P

r

(K); 8 K 2 T

h

g;

and V

g

h

� H

1

g

de�ned by

V

g

h

= f v 2 H

1

g

= v j

K

2 P

r

(K); 8 K 2 T

h

g;
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where T

h

= fKg is a triangularization of 


h

, with triangles of size of order h,

and P

r

(K) is the spae of polynomials of degree less than or equal to r 2 N ,

de�ned on K.

The �nite elements formulation of the above problem then beomes

(V

h

) Find u

n

h

2 V

g

h

; n = 1; 2; � � � N , suh that

hu

n

h

; vi+ k

n

a(u

n

h

; v) = b(v); 8 v 2 V

h

; (10)

hu

0

h

; vi = hu

0

; vi; 8 v 2 V

h

: (11)

Being f	

1

;	

2

; � � � ;	

M

g a basis for V

h

, for eah n we an write u

n

h

(x) =

P

M

j=1



n

j

	

j

(x), and thus the last problem is equivalent to the following linear

system of M equations and M variables 

n

1

; 

n

2

; � � � ; 

n

M

A(

n�1

)

n

= B

n�1

+ d

n�1

: (12)

We remark that at eah step of time, the matrix depends on the solution

omputed at the previous time, as it is shown above by the indiation of its

dependene on the oeÆients 

n�1

.

One usually expets to obtain ontrol of the L

2

-norms of the approximate

solution and of its �rst derivatives. In the above problem, however, when the

di�usion term 3(u

n�1

)

2

beomes small, the ontrol over L

2

-norm of ru

n

h

is

lost. This happens in partiular when u

n

h

has ompat support, and there

are regions where the di�usion oeÆient dereases to zero. In suh regions

the problem beomes purely hyperboli and the above tradiional formula-

tion does not work due to the appearane of osilations in the approximate

solution. In the following, we desribe two ways to redue these diÆulties.

One way to do this is to hange the funtional spae of test-funtions

(suh tehniques reeive the general name of Petrov-Galerkin methods.) The

streamline di�usion method is one of them and is based in taking test-

funtions of form v + Æ

~

� � rv ; v 2 V

h

in plae of just v in (10), (11).

In an extended form this furnishes the following proedure, whih we all

Euler-Streamline Di�usion Method, or E-SD for short:

h

u

n

h

� u

n�1

h

k

n

; v + Æ

~

� � rvi+ h3(u

n�1

)

2

ru

n

h

;rvi

� h div (3(u

n�1

)

2

ru

n

h

); Æ

~

� � rvi+ h

~

� � ru

n

h

; v + Æ

~

� � rvi

= hf; v + Æ

~

� � rvi; 8 v 2 V

h

; n = 1; 2; � � � ; N:

hu

0

h

; v + Æ

~

� � rvi = hu

0

; v + Æ

~

� � rvi; 8 v 2 V

h

:

(13)
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Here, Æ = h, with  > 0 suÆiently small, when 3(u

n�1

)

2

< h; Æ = 0 when

3(u

n�1

)

2

� h.

We observe that the term Æh

~

� � ru

n

h

;

~

� � rvi may be interpreted as a

di�usive transport in the diretion of the ow

~

�; it works as a stabilization

fator for the numerial sheme beause inreases the amount of di�usivity

in the ow diretion without violating onsisteny.

Further details onerning this method an be found for instane in John-

son iteJohnson1987.

A seond idea to improve stabilization is to work with a larger approxi-

mation spae V

h

by the inlusion of the so alled bubble funtions, whih are

basially funtions with support in eah element; see for instane Frana &

Farhat [4℄. As an example of suh larger approximation spae, we ould take

it onsisting the spae generated by the linear ombinations of polynomial

by parts funtions (degree 1, for instane) and ubi bubbles:

V

b

h

= f v 2 H

1

0

= v j

K

2 P

r

(K)� B(K); 8K 2 T

h

g;

where B(K) is the spae of bubble funtions de�ned on eah element K 2 T

h

.

Proeeding as before, we arrive at the following proedure, whih we all

Euler-Galerkin with Bubble Funtions, or E-GBF for short: we have

to �nd u

h

2 V

b

h

suh that for all v 2 V

b

h

h

u

n

h

� u

n�1

h

k

n

; vi+ h3(u

n�1

)

2

ru

n

h

;rvi+ h

~

� � ru

n

h

; vi = hf; vi;

hu

0

h

; vi = hu

0

; vi:

(14)

As we show later on, the last two methods are have enough stability to

ontrol the wild osillations presented by the standard method. However,

they still present too muh arti�ial di�usivity for the problem at hand, and

lead to exessive spreading and deaying of solution.

3 SPACE-TIME STREAMLINE DIFFUSION

METHOD AND CONTROL OF MASS

A di�erent form of disretizing (1){(4) is the following. We still use the

same sort of linearization proedure, but, instead of using �nite di�erenes

in the time variable and then some sort of Galekin proedure for the spatial

variables, we will use the Galekin proedure simultaneously in spae and

7



time. That is, we use �nite elements and interpolation funtions depending

on time and spae. Spae-time streamline-di�usion an be used to improve

stabilization; however, used without are, this would lead to a very large

linear system to be solved. The reason for this is that in this tehnique the

use of ontinuous (in time) test-funtions ouple all levels of time. One way to

avoid this diÆulty, and derease the size of the orresponding linear system,

is to work in strips of spae-time, with the help of interpolation funtions that

will be ontinuous in the spatial variables, but will be desontinuous in the

time variables at the ommon frontier of every two strips. In the following,

we give some details.

Adapting ideas of Johnson [5℄ to our nonlinear problem, we take as before

a partition � : 0 = t

0

< t

1

< � � � < t

N

= T of I = [0; T ℄, and for eah

n = 1; 2; � � � ; N we will work in strips of spae-time S

n

given by

S

n

= f(x; t) : x 2 
; t

n�1

< t < t

n

g:

Let V

n

h

be a �xed �nite element subspae in H

1

(S

n

), where h is a parameter

as before, and let

V

0n

h

= fv 2 V

n

h

= v(x; t) = 0; x 2 �


�

g:

In this version of streamline di�usion, we work in spae-time, using test-

funtions of form

v + Æ(

�v

�t

+

~

� � rv); (15)

where

Æ = h; (16)

and  > 0 is a positive onstante.

Multiplying the equation by the above test-funtion and integranting su-

essively on eah strip S

n

, with the help of integration by parts, and weakly

imposing as initial ondition for t = t

n�1

the value of u

n�1

omputed at the

previous strip and strongly imposing the boundary onditions, we obtain a

proedure that we all Spae-Time Streamline Di�usion, or S-T-SD for

short:

(V

h

) Find u

n

h

2 V

0n

h

; n = 1; 2; � � � N , suh that for all V

0n

h

there holds

h

�u

n

h

�t

+

~

� � ru

n

h

; v + Æ(

�v

�t

+

~

� � rv)i

n

+ h3(u

n�1

�

)

2

ru

n

h

;rvi

n

� h div (3(u

n�1

�

)

2

ru

n

h

); Æ(

�v

�t

+

~

� � rv)i

n

+ hhu

n

h+

; v

+

ii

n�1

= hf; v + Æ(

�v

�t

+

~

� � rv)i

n

+ hhu

n�1

h�

; v

+

ii

n�1

:

(17)
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Here, for simpliity of exposition, we took g � 0 in (2); as before, Æ = h when

3(u

n�1

�

)

2

< h, where  > 0 suÆiently small; Æ = 0 when 3(u

n�1

�

)

2

� h.

Moreover, we take u

0

�

= u

0

and use the following notations

hw; vi

n

=

Z

S

n

w(x; t)v(x; t)dxdt;

hhw; vii

n

=

Z




w(x; t

n

)v(x; t

n

)dxdt;

v

+

(x; t) = lim

s!0

+

v(x; t + s);

v

�

(x; t) = lim

s!0

�

v(x; t+ s):

To desribe the spae-time basis of �nite elements that will be onsidered,

let f	

1

;	

2

; � � � ;	

M

g be the following basis for V

h

:

V

h

= f v 2 H

1

0

= v j

K

2 P

r

(K); 8 K 2 T

h

g:

Take f�

1

; �

2

g as the basis for the spae of polynomial funtions of degree at

most one and de�ned on the interval (t

n�1

; t

n

):

�

1

(t) =

t

n

� t

t

n

� t

n�1

; �

2

(t) =

t� t

n�1

t

n

� t

n�1

:

We an onstrut f�

1

;�

2

; � � � ;�

2M

g para V

0n

h

as:

�

1

(x; t) = �

1

(t)	

1

(x); �

2

(x; t) = �

1

(t)	

2

(x); � � � ;�

M

(x; t) = �

1

(t)	

M

(x);

�

M+1

(x; t) = �

2

(t)	

1

(x); �

M+2

(x; t) = �

2

(t)	

2

(x); � � � ;�

2M

(x; t) = �

2

(t)	

M

(x):

Therefore, being the approximate solution on S

n

given by u

n

h

(x; t) =

2M

X

j=1



n

j

�

j

(x; t), (17) is equivalent to the following system of order 2M for the

oeÆients 

n

j

:

2M

X

j=1



n

j

"

h

��

j

�t

+

~

� � r�

j

;�

i

+ Æ(

��

i

�t

+

~

� � r�

i

)i

n

+ h3(

X

l



n�1

l

�

l

)

2

r�

j

;r�

i

i

n

#

+

2M

X

j=1



n

j

"

� h div (3(

X

l



n�1

l

�

l

)

2

r�

j

); Æ(

��

i

�t

+

~

� � r�

i

)i

n

+ hh�

j+

;�

i+

ii

n�1

#

=

2M

X

j=1



n�1

j

h

hh�

j�

;�

i+

ii

n�1

i

+ hf;�

i

+ Æ(

��

i

�t

+

~

� � r�

i

)i

n

; i = 1; 2; � � � 2M:

9



One this system is solved, we take as the approximation for u(x; t

n

), for

n = 1; � � � ; N , the following expression

u

n

(x) = u

n

h

(x; t

n

) =

2M

X

j=M



n

j

	

j

(x):

As we will see, as E-SD and E-GBF methods, the last method ontrols

the osillations and has less arti�ial di�usivity, leading to improved solutions

in terms of spreading and deaying.

However, Problem (1){(4) has the speial physially important property

of balane of total mass. As we will see when we desribe numerial simula-

tions, none of the methods E-SD, E-GBF, S-T-SD is good at preserving

suh property. The next subsetion explains suh property and a method to

improve the performane of the last proedure in this respet.

3.1 MASS CONTROL

For simpliity of exposition we take g � 0 in (2); the general ase an be

similarly treated. Observe that integrating (1) on 
, using the divergene

theorem and the boundary informations, we get

�

�t

Z




udx+

Z

�


+

u

~

� � ~�ds =

Z




fdx; (18)

whih means that the total mass of the exat solution umust satisfy the above

balane equation. In partiular, while the support of u does not touhes the

outlet part of the boundary, �


+

, we must have

�

�t

Z

~




u(x; t)dx =

Z




fdx,

and, when f � 0, the total mass must be onserved.

To improve the performane of the previous method with respet to the

balane of mass, we proeed as follows. We will introdue an additional

term to the right-hand side of (17) that will fore the approximate solution

obey a disretized version of (18). There are several ways to do that, but

for simpliity we show a rude one that already improves signi�antly the

balane of mass.

By allingM

n

the total mass (M

n

=

R




u(x; t

n

)dx) arried by the solution

at time t

n

and using �nite di�erenes in (18), we obtain the following relation

to predit the total mass that we should at eah time step:

M

n

= M

n�1

+ k

n

Z

�


u(x; t

n

)

~

�(x) �

~

�(x)ds+ k

n

Z




f(x; t

n

)dx: (19)
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On the other hand, the atual mass assoiated to approximate solution

to be omputed using �nite elements is

~

M

n

=

Z




u

n

(x)dx: (20)

Thus, to fore the approximate solution to follow the values of total mass

that it should have, we introdue at the right-hand side of the equation the

following term:

��(

~

M

n

�M

n

)maxfu

n�1

(x); 0g; (21)

for x 2 
, and where � is a stritly positive onstant and M

n

and

~

M

n

are

omputed respetively by (19) and (20). Thus, this term works either as a

sink of mass when

~

M

n

> M

n

or a soure when

~

M

n

< M

n

. When

~

M

n

= M

n

,

the above term does not a�et the solution. By doing this, and working as in

the previous subsetion, we obtain the following problem for the approximate

solution:

(V

h

) Find u

n

h

2 V

0n

h

; n = 1; 2; � � � N , suh that for all V

0n

h

there holds

h

�u

n

h

�t

+

~

� � ru

n

h

; v + Æ(

�v

�t

+

~

� � rv)i

n

+ h3(u

n�1

�

)

2

ru

n

h

;rvi

n

� h div (3(u

n�1

�

)

2

ru

n

h

); Æ(

�v

�t

+

~

� � rv)i

n

+ hhu

n

+

; v

+

ii

n�1

= hf � �(

~

M

n

�M

n

)maxfu

n�1

�

; 0g; v + Æ(

�v

�t

+

~

� � rv)i

n

+ hhu

n�1

�

; v

+

ii

n�1

:

As before, the parameter Æ is given by (16)

As we will see in the next setion, this adaptation, whih we all Spae-

Time Streamline Di�usion withMass Control, or simply S-T-SD-MC

for short, signi�antly improves the performane of method (S-T-SD).

4 NUMERICAL EXPERIMENTS

To show the performane of the previously desribe methods, in this setion

we onsider numerial simulations of problem (1){(4) in very simple situa-

tions. The idea here is to make expliit the behavior of the methods, and to

show the superiority of S-T-SD-MC.

Situation 1:

We onsider a ase in whih an exat solution is known, and thus we have

absolute ontrol of the situation and an ompare the performane of the

methods in an objetive way.

11



For this, onsider the veloity �eld

~

� = (1; 0) in a open hannel of length

7 and width 2 (see Figure 1), and for the numerial simulation we use the

data showed in Table 1.

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 1: Open hannel in Situation 1 with �nite elements mesh

In this ase, using results of Bertsh iteBertsh, it an be seen that an

exat solution of problem (1){(4) is given by

u(x; t) = v(x�

~

�t; t);

where

v(x; t) = (t+ 1)

�

1

3

�

maxfa

2

�

1

18

(x

2

+ y

2

)(t + 1)

�

1

3

; 0g

�

1

2

:

Here the parameter a > 0 has to be hosen suh that the support of u does

not touh the lateral boundaries of the hannel.

The performed numerial experiments showed that the E-SD and E-

GBF methods have enough stability to ontrol the osillations presented

in the standard method. However, this was obtained at expense of having

exessive numerial dissipation, as it an be seen by the results presented in

12



Table 1: Data and parameters for the open hannel problem orresponding

to Situation 1

Parameters Values

 1.0

~

�(x; t) (1; 0)

f 0:0

g 0:0

k (time stepsize) 5� 10

�2

u

0

(x; y)

h

maxfa

2

�

1

18

(x

2

+ y

2

); 0g

i

1

2

a 0.25


 [�3:5; 3:5℄� [�1; 1℄

No. of elements (�rst order) 5888

No. of nodes 3057

h 0.069

 0.5

� (mass ontrol) 5� 10

�3

Table 2, where it is lear an exessive deay of the approximate solutions,

that beome worse with time, obtained by those methods. S-T-SD-MC has

good agreement with the exat values.

Table 2: Maximum values for the solutions

Method t = 0.5 t = 1 t = 1.5 t = 2 t = 2.5 t = 3

Exat 0:2184 0:1984 0:1842 0:1733 0:1646 0:1574

E-SD 0:2064 0:1748 0:1554 0:1492 0:1289 0:1135

E-GBF 0:2064 0:1748 0:1554 0:1492 0:1289 0:1135

S-T-SD 0:2163 0:1945 0:1835 0:1744 0:1623 0:1558

S-T-SD-MC 0:2181 0:1988 0:1839 0:1739 0:1641 0:1570

We remark that it is no oinidene that the values given by the E-SD

and E-GBF are very similar; the other tables and simulations show similar

results. In fat, these two methods have lose relation, and in Frana, Brezzi,

13



Bristeau, Mallet & Roge [3℄, a proof of their equivalene an be found. Thus,

one ould say that what ould determine the possible hoie between these

two methods is their respetive omputational load. If one uses the same

interpolation spae for both methods, the �rst of them has more terms in

its bilinear form, whih leads to a greater number of integrations that have

to be performed; the seond method results in a larger linear system to be

solved. In spei� situations, one that intends to use one of these methods

should take these aspets in onsideration to make his hoie.

Figures 2, 3 and 4 on next page show respetively the supports of the exat

and the omputed solutions, with E-SD and S-T-SD-MC. The support

omputed using E-SD is exessively spread; that omputed using S-T-SD-

MC has a good agreement with the exat one.

Now we pay attention to the performane of the methods with respet

to the property of balane of mass. Sine in the onditions of the present

simulation the total mass should be preserved, a measure of the deviation of

suh property an obtained by the quoient between the initial total mass

(im) and the total mass (tm) omputed at the time of larger deviation from

the initial mass. The result of this proedure applied to eah of the methods

is depited in Table 3.

Table 3: Balane of mass for eah method

Method tm/im

E-SD 1:09384

E-GBF 1:09362

S-T-SD 1:06232

S-T-SD-MC 1:00057

We observe that the perfomanes of E-SD and E-GBF are similar, as

they should be aording to our previous remarks, and poorer than that of

S-T-SD, on�rming the fat that this last method presents less numerial

di�usion than the �rst two. However, S-T-SD-MC performs better by two

orders of magnitude than the other methods.

We should also stress that S-T-SD-MC is better than the other methods

in the important aspet of the ontrol of the spurious osillations, whose

amplitude are muh less than the ones presented by the other methods.

The following tables furnish an idea of the dependene of S-T-SD-MC

14
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Figure 2: Exat support at t = 2 in the open hannel problem
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Figure 3: Support omputed with (E-SD) at t = 2 in the open hannel

problem
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Figure 4: Support omputed with (S-T-SD-MC) at t = 2 in the open

hannel problem
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on the parameter  > 0 appearing in the de�nition of Æ given in (16). As we

see from Table 4, the value of  is related the amount of numerial di�usion

of the method: preserving all the other data and parameters, by inreasing

the value of , the amount of di�usion inreases.

Table 4: Maximum values of the exat solution ompared with the orre-

sponding values of the approximate solutions

- t = 0.5 t = 1 t = 1.5 t = 2 t = 2.5 t = 3

Exat 0:2184 0:1984 0:1842 0:1733 0:1646 0:1574

 = 0:5 0:2181 0:1988 0:1839 0:1739 0:1641 0:1570

 = 1:0 0:2172 0:1963 0:1831 0:1728 0:1639 0:1564

On the other hand, the maximum absolute value of the error between the

exat solution and the approximation is, in this ase, rather insensitive to .

This an be seen in Table 5.

Table 5: Absolute error between the exat and approximate solutions

- t = 0.5 t = 1 t = 1.5 t = 2 t = 2.5 t = 3

 = 0:5 0:00266 0:00278 0:00282 0:00287 0:00349 0:00445

 = 1:0 0:00266 0:00278 0:00282 0:00287 0:00349 0:00445

Situation 2:

For the next numerial experiment, we onsider a situation without exat

solution but still very simple. The objetive is to estimate how the methods

behave under the inueny of non onstant veloity �elds. We still onsider

the previous open hannel, but now the usual paraboli pro�le veloity �eld.

The data and parameters for this numerial experiment is given in Table 6.

Figure 5 furnishes the supports of the orresponding approximate solu-

tions omputed at time t = 6 by using methods E-SD and E-GBF. Figure

6 gives the orresponding data for methods S-T-SD and S-T-SD-MC.

As we an see, the interplay between variations in the veloity �eld and

the de�ienies of methods E-SD and E-GBF distore signi�antively the
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Table 6: Data and parameters for the open hannel problem orresponding

to Situation 2

Parameters Values

 1� 10

�3

~

�(x; t) (1� y

2

; 0)

f 0:0

g 0:0

k (time stepsize) 5� 10

�2

u

0

(x; y) 0:1exp(�16((x+ 2:5)

2

+ y

2

))


 [�3:5; 3:5℄� [�1; 1℄

No. of elements (�rst order) 5888

No. of nodes 3057

h 0.069

 0.5

� (mass ontrol) 5� 10

�3

support of the solution, again due to their exessive numerial di�usion. S-

T-SD-MC behaves better, but still has exessive di�usion. S-T-SD-MC

furnishes a reliable support in the same situation.
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0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 5: Support omputed using E-SD (left) and E-GBF (right) in Situ-

ation 2
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Figure 6: Support omputed using S-T-SD (left) and S-T-SD-MC (right)

in Situation 2

Situation 3:

The next situation onsiders an oil spill touhing an island as it is on-

veted by the ow. We onsider the very simple ase where the same hannel

as before ontains a irular island (in this ase the veloity �eld an also

be obtained in losed form.) The orresponding domain and �nite elements

mesh are shown in Figure 7.

The data and parameter used in this numerial experiment are the ones

in Table 7.

The performane of eah of the previous methods in interation with

interior boundaries an then be evaluated by omputing their behavior with

respet to the onservation of total mass.

In Figs. 8, 9 and 10 we showed the behavior of the total mass along the

time as omputed using respetively E-SD, S-T-SD and S-T-SD-MC. The

behavior of E-GBF is similar to that of E-SD. As we an learly see, when

the spill interats with the boundaries of the island, onservation of mass is

signi�atively violated for methods E-SD and S-T-SD (and also E-GBF).

Method S-T-SD-MC neatly preserves the total mass in suh interations.

The �nal deay of mass is due to the fat that at those times the spill is

leaving the omputational domain.
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Figure 7: Domain and �nite elements mesh for Situation 3

Table 7: Data and parameters for the hannel with an island (Situation 3)

Parameters Values

 1� 10

�3

~

�(x; t)

�

1�

2x

2

r

2

(x

2

+y

2

)

2

+

r

2

(x

2

+y

2

)

; �

2xyr

2

(x

2

+y

2

)

2

�

f 0:0

g 0:0

k (time stepsize) 5� 10

�2

u

0

(x; y) 0:1exp(�16((x+ 2:5)

2

+ y

2

))


 [�3:5; 3:5℄� [�1; 1℄

No. of elements (�rst order) 3520

No. of nodes 1840

h 0.088

 0.5

� (mass ontrol) 5� 10

�3
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Figure 8: Total mass along the time omputed using E-SD in Situation 3
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Figure 9: Total mass along the time omputed using S-T-SD in Situation 3
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Figure 10: Total mass along the time omputed using S-T-SD-MC in Sit-

uation 3

5 CONCLUSIONS

All the numerial experiments showed that for the problem at hand the

performane of the S-T-SD-MC-method is better than that of the other

methods in terms of quality of approximations. In partiular, this is learly

so with respet to balane of mass. This method ould be quikly adapted to

other situations, like those that inlude frational evaporation, for instane,

in whih the e�etive rate of evaporation depends on the area assoiated to

the spill, and thus should be orretly omputed. Also, by taking pro�t of

the property of perservation of ompat support of solutions, it is possible to

devise a loalization tehnique that applied to S-T-SD-MC an signi�a-

tively redue the size of the linear systems to be solved and, onsequently,

also redue the omputational time. Our onlusion is that S-T-SD-MC is

a reliable method to be used in realisti simulations of spreading of oil spills,

one it is oupled with suitable ow simulators. All these aspets will be

subjets of forthoming papers.
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