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Abstract

The paper describes a finite element method that uses a version
of the space-time streamline diffusion technique and includes the con-
trol of total mass applied to a nonlinear convection—diffusion equation
that governs the spreading of oil spills on moving water surfaces. The
use of such equation for numerical predictions of the evolution of such
spills, although highly desirable to help to lessen their consequences,
brings several difficulties. In fact, from the theoretical point of view,
the equation presents either parabolic or hyperbolic (in the sense of
transport equations) character depending on the solution itself. This
is due to the nonlinearity of the diffusion term that can pass from
strictly positive to zero and vice-versa depending on the value of the



solution. In such a priori unknown regions, fast transitions may oc-
cur, bringing spurious oscillations that may deteriorate the numerical
solutions obtained with ordinary algorithms. The performance of the
proposed method is compared in controled situations with the cor-
responding performances of more traditional methods. The results
shows clear advantages in its use.

Keywords: Oil spills, Finite elements, Streamline diffusion, Mass control.

1 INTRODUCTION

In this work we are interested in describing a numerical method that combines
streamline diffusion and discontinuous Galerkin techniques, and it will be
applied to an equation governing the spreading of oil spills on moving water
surfaces (see Benqué, Hauguel & Viollet [1]):

% — AW (2, 1) + Bla,t) - Vu(z, t) = f(z) , Qx1T (1)
u(z,t) =g(x,t), v € 00_, tel (2)

Ou(w,t)
Tﬁ—(),xe o, , tel (3)
u(z,0) = ug(x) , x € Q. (4)

Here, €2 denotes the region of interest, which is assumed to be a bounded
domain in IR? with Lipschtz boundary denoted by 0€2; the unitary external
normal at z € 082 is denoted 7j(z); I = (0,7] C IR, with T > 0 being the final
time of interest; u denotes the (normalized) height of the spill measured from
the water surface; 7 is the driving velocity field, which according to 1] is a
combination of the water and wind velocities, and for simplicity we assume
to be a priori known divergence free field (in realistic situations, this field
should be previously computed using another numerical scheme for Navier-
Stokes equations, for instance); ¢ > 0 is a positive coefficient associated to
the nonlinear diffusion and depending on the physical properties involved; f
denotes the aggregated effects of several other factors like possible external
sources/sinks of oil; ug(-) denotes the initial distribution of the spill.

The boundary 02 will be considered to be composed of tree disjoint parts:
the physical walls, denoted by 0€2y, where the velocity field 5 is usually null,



and the outlet and inlet parts, given respectively by

00 (t) ={x € 02— 0 : if(x) flz,t) >0},

OON_(t) = {2z e€dQ—0 : i) Blx,t) <0}
Here, is the usual inner product in R?. g(-,-
coming from 0€)_.

Mathematical properties of the previous equation, like the conservation
of compact support of solutions, can be found for instance in Bertsch [2].

We should stress that, since oil spills are nowadays important environ-
mental hazards, accurate and reliable predictions about their behavior are in
much need, bringing the necessity of using improved mathematical models
for their spreading. The previous nonlinear equation models the important
physical mechanisms involved in the spreading of such spills in a much bet-
ter way than the usual linear models, and therefore results derived from it
should be useful.

However, the use of (1) for numerical predictions, although highly de-
sirable, brings new difficulties. In fact, from the theoretical point of view,
equation (1) has characteristics that may be either parabolic or hyperbolic
(in the sense of transport equations), and which is not a priori known. In
fact, due to the nonlinear character of the diffusion term, it depends on the
solution itself, passing from strictly positive to zero depending on the value
of u. Fast transitions can occur in u, bringing spurious oscillations that may
deteriorate the numerical solutions obtained by usual technique. This brings
the necessity of using numerical methods with increased stability.

Another important aspect to consider is that usually oil spills occur in
regions with irregular boundaries (like most coastal lines). Such geometrical
difficulties make harder to use finite differences schemes to numerically solve
the problem. For this reason, in this paper we consider numerical meth-
ods based on a finite elements, which are naturally adapted to such varied
geometries.

The last two remarks suggest the use of finite elements methods with
increased stability. However, it will be necessary that not to much artificial
dissipation be introduced as an exchange for stability. There are several
reasonable ways to try to obtain that. For instance, one could discretize the
time variable using a backward Euler scheme, and then use finite elements
to discretize the spatial variables, with the help of the streamline diffusion
technique or the use of bubble functions to stabilize the resulting scheme

W

is the possible flux of oil



(see Section 2 for details). As we will show later on, these procedures can
reduce the numerical difficulties associated to spurious oscillations, although
not yet in a totally satisfactory way. We will see that a better way is to use
streamline diffusion in space and time, working with two levels of time at
each step. However, these three methods do not behave well with respect to
the important property of balance (conservation) of total mass that equation
(1) has to satisfy. Therefore, in this paper we propose a version of the last
method including a method to control of total mass.

We should stress that the purpose of this paper is not to show realistic and
complex simulations of oil spills; this will be the subject of future work. Our
objetive here is to introduce the method and compare it with more standard
ones. For this, it is necessary to experiment in rather simple and controled
situations, where objective comparations criteria can be used. This is done
in Section 4, where three numerical experiments are described (one of them
is a situation having an exact solution.) The results show that the proposed
method is rather satisfactory as compared to the usual ones.

2 FINITE ELEMENT METHODS WITH IN
CREASED STABILITY

There are several possible combinations between linearization procedures and
discretization applied to Problem (1)—(4). Here, we briefly describe some
simple, frequently used possibilities.

We start by discretizing the time variable using finite differences (back-
ward Euler) and the spatial variable using usual finite elements. The lin-
earization can then be done simply by taking profit of the discretization of
the time variable by suitable delaying of the coefficients. In some details, let
I[I: 0=ty <t; <---<ty =T be a fixed partition of I = [0,7T]; denote
I, = (tn_1,t,) and the local time step by k, = t, —t,,_1. The nonlinear term
A(u?(z,t)) can be rewritten as

A(W?(z,t)) = div (Vu?(x,t)) = div (3u®(2,t)Vu(z,t)). (5)

Now, being u"(x) an approximation of u(z,t,), n =1,2,---, N, at each
time ¢, we can approximate (5) by computing u?(z,t) at the previous time
step. Thus, we have to solve a linear problem at each time step: we have to



find u"(z), n=1,2,---, N, x € Q satisfying
n n—1

— U

kn

u

— div (3c(u™ )?2Vu") + Bz, t) - Vu" = f(z), (6)

u’(w) = ug(2). (7)

The corresponding variational formulation of problem (6), (7) with bound-

ary condition (2), (3) can be obtained as follows. Define, respectively, the

functional space of the test-functions and the functional space of approxima-
tions, that is the space where the solution must be located:

Hy ={veH (Q) /v |ogq_ = 0};

Hg1 ={veH Q) /vl =g}

then multiply (6) by v € H} and integrate the result on ; use Green’s
theorem to get the following variational problem
(Vy) findu® € Hy, n=1,2,---, N, such that

(u",v) + kpa(u™,v) = b(v),V v € Hy, (8)

u’(@) = uo(), (9)

where

a(u",v) = /(23c(u"’1(x))2Vu"(x) -Vou(z)dr + /Qg(a;,t) -Vu"(z)v(z)de,

b(v) = (knf +u""" v) = /anf(a;)v(a;)da: +/Qu”_1(x)v(x)dx,
(u", v) :/Qu”(x)v(x)dx.

The traditional finite elements formulation is derived from the above by
considering a small parameter h > 0 associated to the size of used mesh, and
a suitable poligonal domain €2, approximating 2. Then, one considers, for
instance, the finite dimensional functional space V}, C Hj given by

Vi={veH;/v|keP(K),YKEeT,},
and V! C H, defined by

V,f:{vEHgl/v|K€73T(K),VK€Th},
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where T}, = {K} is a triangularization of €,, with triangles of size of order h,
and P, (K) is the space of polynomials of degree less than or equal to r € N,
defined on K.
The finite elements formulation of the above problem then becomes
(Vn) Find u € V!, n=1,2,--- N, such that

(up,v) + kpa(up,v) =b(v), Yv eV, (10)

(u), vy = (ug,v), Vv € V. (11)

Being {¥, ¥y, -, ¥y} a basis for V}, for each n we can write u}}(z) =

M, ¢W;(z), and thus the last problem is equivalent to the following linear
system of M equations and M variables ¢!, ch,---, c};

A(c" 1" =Be™ 4 d™ L (12)

We remark that at each step of time, the matrix depends on the solution
computed at the previous time, as it is shown above by the indication of its
dependence on the coefficients ¢®1.

One usually expects to obtain control of the L?-norms of the approximate
solution and of its first derivatives. In the above problem, however, when the
diffusion term 3c(u™ )% becomes small, the control over Lo-norm of Vu is
lost. This happens in particular when u} has compact support, and there
are regions where the diffusion coefficient decreases to zero. In such regions
the problem becomes purely hyperbolic and the above tradicional formula-
tion does not work due to the appearance of oscilations in the approximate
solution. In the following, we describe two ways to reduce these difficulties.

One way to do this is to change the functional space of test-functions
(such techniques receive the general name of Petrov-Galerkin methods.) The
streamline diffusion method is one of them and is based in taking test-
functions of form v 4+ 63 - Vo , v € Vj in place of just v in (10), (11).
In an extended form this furnishes the following procedure, which we call
Euler-Streamline Diffusion Method, or E-SD for short:

n_ ,n—1 .
(%, v+ 66 V) + (3c(u™ ) V), Vo)
— (div (3c(u™)2Vul), 66 - Vo) + (B - Vul, v+ 603 - Vo) (13)
= (f,v+06-Vv), VveV, n=1,2,--- N.
(Wl v+ 63 - Vv) = (ug, v+ 66 - Vo), Vv e V.



Here, § = ¢h, with ¢ > 0 sufficiently small, when 3c(u"')? < h; § = 0 when
3c(u™ 1?2 > h.

We observe that the term 6(5 Vuﬁ,g- Vv) may be interpreted as a
diffusive transport in the direction of the flow 5; it works as a stabilization
factor for the numerical scheme because increases the amount of diffusivity
in the flow direction without violating consistency.

Further details concerning this method can be found for instance in John-
son citeJohnson1987.

A second idea to improve stabilization is to work with a larger approxi-
mation space V}, by the inclusion of the so called bubble functions, which are
basically functions with support in each element; see for instance Franca &
Farhat [4]. As an example of such larger approximation space, we could take
it consisting the space generated by the linear combinations of polynomial
by parts functions (degree 1, for instance) and cubic bubbles:

Vi={veH /v|geP(K)®B(K), VK € Tj, },

where B(K) is the space of bubble functions defined on each element K € T},.

Proceeding as before, we arrive at the following procedure, which we call
Euler-Galerkin with Bubble Functions, or E-GBF for short: we have
to find uy, € V) such that for all v € V}?

n n—1
Up — Up

(T, v) + (3e(u" 1) Vul, Vo) + <5 Vuy, vy = (f,v),
0 n

<uh7 ’U> = <u07 ’U>.

(14)

As we show later on, the last two methods are have enough stability to
control the wild oscillations presented by the standard method. However,
they still present too much artificial diffusivity for the problem at hand, and
lead to excessive spreading and decaying of solution.

3 SPACE-TIME STREAMLINE DIFFUSION
METHOD AND CONTROL OF MASS

A different form of discretizing (1)—(4) is the following. We still use the
same sort of linearization procedure, but, instead of using finite differences
in the time variable and then some sort of Galekin procedure for the spatial
variables, we will use the Galekin procedure simultaneously in space and
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time. That is, we use finite elements and interpolation functions depending
on time and space. Space-time streamline-diffusion can be used to improve
stabilization; however, used without care, this would lead to a very large
linear system to be solved. The reason for this is that in this technique the
use of continuous (in time) test-functions couple all levels of time. One way to
avoid this difficulty, and decrease the size of the corresponding linear system,
is to work in strips of space-time, with the help of interpolation functions that
will be continuous in the spatial variables, but will be descontinuous in the
time variables at the common frontier of every two strips. In the following,
we give some details.

Adapting ideas of Johnson [5] to our nonlinear problem, we take as before
apartition IT : 0 =1t <t < --- <ty =T of I = 10,7, and for each
n=1,2,---,N we will work in strips of space-time S,, given by

Sp={(x,t) 1 2 €Q, t, 1 <t <ty}.

Let V" be a fixed finite element subspace in H!(S,,), where h is a parameter
as before, and let

Vi ={ve V" /v(x,t) =0,z €9 }.

In this version of streamline diffusion, we work in space-time, using test-
functions of form

v+5(%+5-Vu), (15)
where
d = ¢h, (16)

and ¢ > 0 is a positive constante.

Multiplying the equation by the above test-function and integranting suc-
cessively on each strip S, with the help of integration by parts, and weakly
imposing as initial condition for ¢ = ¢,_; the value of u"~! computed at the
previous strip and strongly imposing the boundary conditions, we obtain a
procedure that we call Space-Time Streamline Diffusion, or S-T-SD for
short:

(V) Findu? € VP n=1,2,--- N, such that for all V0" there holds

(8512 + 5 Vup, v+ 6(% + 5 Vo))" + (Be(u™ H)2Vul, Vo))"

— (div (3c(u" 1) Vul), 5(% + B Vo + ((ul,, vy ) (17)
0 .

= (oot 8(G + B o) + (™ vp)"



Here, for simplicity of exposition, we took g = 0in (2); as before, § = €h when
3c(u"1)? < h, where ¢ > 0 sufficiently small; § = 0 when 3c(u™"1)? > h.
Moreover, we take u’ = ugy and use the following notations

(w,v)" = /n w(zx, t)v(x,t)dxdt,
((w, v))" :/Qw(a;,tn)v(a;,tn)da;dt,

vy(z,t) = lim v(z,t + s),

s—0+

v_(z,t) = lim v(z,t+ s).

s—0~

To describe the space-time basis of finite elements that will be considered,
let {Uy, Wy, -, Uy} be the following basis for V:

Vi={veH;/v|ke€P(K),YKET,}

Take {\1, Ao} as the basis for the space of polynomial functions of degree at
most one and defined on the interval (¢,_1,t,):

tn —t t— tnfl
1(t) t —tn 1 2(1) tn — ta
We can construct {®;, @y, - -+, Pypr} para V2" as

q)l(l',t) = )\1(1&)‘1’1([1)), (I)Q(Jf,t) = )\1(1&)‘1’2(.’17), . ,q)M(.’L‘,t) = )\l(t)\IfM(.’L‘),

Pari1(w, 1) = Ma(t) V1 (2), Paria(w,t) = Aa(t)Wa(2), -+, Pons(@, 1) = Ao (t) Uns ().
Therefore, being the approximate solution on S, given by wuj(x,t) =

> @ (x,t), (17) is equivalent to the following system of order 2)M for the

coeflicients c?:

oD, ob; - _
ZC l( Bt] + -V, ®; + 4 5 VO + 3D 1<1>l)2vq>j,vq>i>n]
]=1 l

+ Zc [ ( div (3¢( ch 192V, i) 5(?+5'V®i)>n+ <<‘I)j+aq’i+>>n_1]

t

D), i=1,2,--- 2M.

n—1 n—1 8(I>l
:jz:lcj [<<(I)j—;q)i+>> ] +(f, @i+ 0 ot



Once this system is solved, we take as the approximation for u(z,t,), for
n=1,---, N, the following expression

u(x) = up(x, t,) = Z iV ().

As we will see, as E-SD and E-GBF methods, the last method controls
the oscillations and has less artificial diffusivity, leading to improved solutions
in terms of spreading and decaying.

However, Problem (1)-(4) has the special physically important property
of balance of total mass. As we will see when we describe numerical simula-
tions, none of the methods E-SD, E-GBF, S-T-SD is good at preserving
such property. The next subsection explains such property and a method to
improve the performance of the last procedure in this respect.

3.1 MASS CONTROL

For simplicity of exposition we take g = 0 in (2); the general case can be
similarly treated. Observe that integrating (1) on 2, using the divergence
theorem and the boundary informations, we get

0 >
a/ﬂudij - uﬂ-ndSZ/ngda;, (18)
+

which means that the total mass of the exact solution v must satisfy the above
balance equation. In particular, while the support of u does not touches the

outlet part of the boundary, 0€2,, we must have %/u(w,t)dx = / fdx,
Q Q

and, when f =0, the total mass must be conserved.

To improve the performance of the previous method with respect to the
balance of mass, we proceed as follows. We will introduce an additional
term to the right-hand side of (17) that will force the approximate solution
obey a discretized version of (18). There are several ways to do that, but
for simplicity we show a crude one that already improves significantly the
balance of mass.

By calling M,, the total mass (M,, = [, u(z,t,)dz) carried by the solution
at time ¢, and using finite differences in (18), we obtain the following relation
to predict the total mass that we should at each time step:

M, = My 1 + kn /m (e, )3 (@) - (@) ds + kn /Q flo t)de.  (19)
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On the other hand, the actual mass associated to approximate solution
to be computed using finite elements is

M, = /Q u(x)da. (20)

Thus, to force the approximate solution to follow the values of total mass
that it should have, we introduce at the right-hand side of the equation the
following term:

—e(M, — M,) max{u""*(x), 0}, (21)

for x € ), and where € is a strictly positive constant and M, and M, are
computed respectively by (19) and (20). Thus, this term works either as a
sink of mass when M, > M,, or a source when M, < M,. When M, = M,
the above term does not affect the solution. By doing this, and working as in
the previous subsection, we obtain the following problem for the approximate
solution:

(V) Findu} € V", n=1,2,--- N, such that for all V)" there holds

oup = " ov

— (div (3c(u"1)?Vul), §(

+ 5 V) + Belu )V, Vo)
o+ T (o)t

o ;
~ v -
= (f —e(M, — M,) max{u™ ', 0},v + 5(a + B Vo)) + ((u™ v )yt
As before, the parameter ¢ is given by (16)

As we will see in the next section, this adaptation, which we call Space-
Time Streamline Diffusion with Mass Control, or simply S-T-SD-MC
for short, significantly improves the performance of method (S-T-SD).

4 NUMERICAL EXPERIMENTS

To show the performance of the previously describe methods, in this section
we consider numerical simulations of problem (1)—(4) in very simple situa-
tions. The idea here is to make explicit the behavior of the methods, and to
show the superiority of S-T-SD-MC.

Situation 1:

We consider a case in which an exact solution is known, and thus we have
absolute control of the situation and can compare the performance of the
methods in an objective way.

11



For this, consider the velocity field f = (1,0) in a open channel of length
7 and width 2 (see Figure 1), and for the numerical simulation we use the
data showed in Table 1.

2.5F b

Figure 1: Open channel in Situation 1 with finite elements mesh

In this case, using results of Bertsch citeBertsch, it can be seen that an
exact solution of problem (1)—(4) is given by

u(z,t) = v(z — Bt 1),

where

1 1 1 3
v(x,t) = (t+1)7% |{max{a® — 1—8(x2 +y*)(t+1)75,0} .
Here the parameter a > 0 has to be chosen such that the support of u does
not touch the lateral boundaries of the channel.

The performed numerical experiments showed that the E-SD and E-
GBF methods have enough stability to control the oscillations presented
in the standard method. However, this was obtained at expense of having
excessive numerical dissipation, as it can be seen by the results presented in

12



Table 1: Data and parameters for the open channel problem corresponding
to Situation 1

| Parameters | Values |
c 1.0
bz, t) (1,0)
f 0.0
g 0.0
k (time stepsize) 5x 1072
uo(z, y) [max{a® - & (a? +4?),0}]’
a 0.25
Q [—3.5,3.5] x [—1,1]
No. of elements (first order) 5888
No. of nodes 3057
h 0.069
[ 0.5
¢ (mass control) 5x 1073

Table 2, where it is clear an excessive decay of the approximate solutions,
that become worse with time, obtained by those methods. S-T-SD-MC has
good agreement with the exact values.

Table 2: Maximum values for the solutions

| Method [t=05|t=1[t=15]|t=2|t=25]t=3]|
Exact 0.2184 [0.1984 | 0.1842 [0.1733 | 0.1646 | 0.1574
E-SD 0.2064 [ 0.1748 | 0.1554 | 0.1492| 0.1289 | 0.1135
E-GBF 0.2064 [ 0.1748 | 0.1554 [ 0.1492 | 0.1289 | 0.1135
S-T-SD | 0.2163 | 0.1945 | 0.1835 | 0.1744 | 0.1623 [ 0.1558
S-T-SD-MC | 0.2181 [0.1988 | 0.1839 [ 0.1739 | 0.1641 | 0.1570

We remark that it is no coincidence that the values given by the E-SD
and E-GBF are very similar; the other tables and simulations show similar
results. In fact, these two methods have close relation, and in Franca, Brezzi,
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Bristeau, Mallet & Roge [3], a proof of their equivalence can be found. Thus,
one could say that what could determine the possible choice between these
two methods is their respective computational load. If one uses the same
interpolation space for both methods, the first of them has more terms in
its bilinear form, which leads to a greater number of integrations that have
to be performed; the second method results in a larger linear system to be
solved. In specific situations, one that intends to use one of these methods
should take these aspects in consideration to make his choice.

Figures 2, 3 and 4 on next page show respectively the supports of the exact
and the computed solutions, with E-SD and S-T-SD-MC. The support
computed using E-SD is excessively spread; that computed using S-T-SD-
MC has a good agreement with the exact one.

Now we pay attention to the performance of the methods with respect
to the property of balance of mass. Since in the conditions of the present
simulation the total mass should be preserved, a measure of the deviation of
such property can obtained by the quocient between the initial total mass
(im) and the total mass (tm) computed at the time of larger deviation from
the initial mass. The result of this procedure applied to each of the methods
is depicted in Table 3.

Table 3: Balance of mass for each method
| Method | tm/im |

E-SD 1.09384

E-GBF 1.09362

S-T-SD 1.06232
S-T-SD-MC | 1.00057

We observe that the perfomances of E-SD and E-GBF are similar, as
they should be according to our previous remarks, and poorer than that of
S-T-SD, confirming the fact that this last method presents less numerical
diffusion than the first two. However, S-T-SD-MC performs better by two
orders of magnitude than the other methods.

We should also stress that S-T-SD-MC is better than the other methods
in the important aspect of the control of the spurious oscillations, whose

amplitude are much less than the ones presented by the other methods.
The following tables furnish an idea of the dependence of S-T-SD-MC

14
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Figure 3: Support computed with (E-SD) at ¢ = 2 in the open channel

problem

Figure 4: Support
channel problem
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15F

0.5
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-15F
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computed with (S-T-SD-MC) at ¢ = 2 in the open
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on the parameter ¢ > 0 appearing in the definition of ¢ given in (16). As we
see from Table 4, the value of ¢ is related the amount of numerical diffusion
of the method: preserving all the other data and parameters, by increasing
the value of ¢, the amount of diffusion increases.

Table 4: Maximum values of the exact solution compared with the corre-
sponding values of the approximate solutions

[t=05[t=1|t=15[t=2]t=25]|t=3]

Exact | 0.2184 | 0.1984 | 0.1842 | 0.1733 | 0.1646 | 0.1574
c=05] 0.2181 | 0.1988 | 0.1839 | 0.1739 | 0.1641 | 0.1570
c=101] 0.2172 |0.1963 | 0.1831 | 0.1728 | 0.1639 | 0.1564

On the other hand, the maximum absolute value of the error between the
exact solution and the approximation is, in this case, rather insensitive to €.
This can be seen in Table 5.

Table 5: Absolute error between the exact and approximate solutions

[t=05]t=1|t=15]t=2 [t=25]t=3 |
5] 0.00266 | 0.00278 | 0.00282 | 0.00287 | 0.00349 | 0.00445
0 [ 0.00266 | 0.00278 | 0.00282 | 0.00287 | 0.00349 | 0.00445

0.
1.

Qlf ol

Situation 2:

For the next numerical experiment, we consider a situation without exact
solution but still very simple. The objective is to estimate how the methods
behave under the influency of non constant velocity fields. We still consider
the previous open channel, but now the usual parabolic profile velocity field.
The data and parameters for this numerical experiment is given in Table 6.

Figure 5 furnishes the supports of the corresponding approximate solu-
tions computed at time ¢ = 6 by using methods E-SD and E-GBF. Figure
6 gives the corresponding data for methods S-T-SD and S-T-SD-MC.

As we can see, the interplay between variations in the velocity field and
the deficiencies of methods E-SD and E-GBF distorce significantively the
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Table 6: Data and parameters for the open channel problem corresponding
to Situation 2

| Parameters | Values |
c 1x1073
g(xat) (1_y290)
7 0.0
g 0.0
k (time stepsize) 5x 1072
uo(, y) 0.1exp(—16((z + 2.5)% + ¢?))
Q [—35,3.5] x [-1, 1]
No. of elements (first order) 5888
No. of nodes 3057
h 0.069
[ 0.5
¢ (mass control) 5x 1073

support of the solution, again due to their excessive numerical diffusion. S-
T-SD-MC behaves better, but still has excessive diffusion. S-T-SD-MC
furnishes a reliable support in the same situation.

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 5: Support computed using E-SD (left) and E-GBF (right) in Situ-
ation 2
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Figure 6: Support computed using S-T-SD (left) and S-T-SD-MC (right)
in Situation 2

Situation 3:

The next situation considers an oil spill touching an island as it is con-
vected by the flow. We consider the very simple case where the same channel
as before contains a circular island (in this case the velocity field can also
be obtained in closed form.) The corresponding domain and finite elements
mesh are shown in Figure 7.

The data and parameter used in this numerical experiment are the ones
in Table 7.

The performance of each of the previous methods in interaction with
interior boundaries can then be evaluated by computing their behavior with
respect to the conservation of total mass.

In Figs. 8, 9 and 10 we showed the behavior of the total mass along the
time as computed using respectively E-SD, S-T-SD and S-T-SD-MC. The
behavior of E-GBF is similar to that of E-SD. As we can clearly see, when
the spill interacts with the boundaries of the island, conservation of mass is
significatively violated for methods E-SD and S-T-SD (and also E-GBF).
Method S-T-SD-MC neatly preserves the total mass in such interactions.
The final decay of mass is due to the fact that at those times the spill is
leaving the computational domain.
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k (time stepsize)
€

Figure 7: Domain and finite elements mesh for Situation 3

No. of elements (first order)

_2_5 L

Table 7: Data and parameters for the channel with an island (Situation 3)
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Figure 8: Total mass along the time computed using E-SD in Situation 3
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Figure 9: Total mass along the time computed using S-T-SD in Situation 3
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Figure 10: Total mass along the time computed using S-T-SD-MC in Sit-
uation 3

5 CONCLUSIONS

All the numerical experiments showed that for the problem at hand the
performance of the S-T-SD-MC-method is better than that of the other
methods in terms of quality of approximations. In particular, this is clearly
so with respect to balance of mass. This method could be quickly adapted to
other situations, like those that include fractional evaporation, for instance,
in which the effective rate of evaporation depends on the area associated to
the spill, and thus should be correctly computed. Also, by taking profit of
the property of perservation of compact support of solutions, it is possible to
devise a localization technique that applied to S-T-SD-MC can significa-
tively reduce the size of the linear systems to be solved and, consequently,
also reduce the computational time. Our conclusion is that S-T-SD-MC is
a reliable method to be used in realistic simulations of spreading of oil spills,
once it is coupled with suitable flow simulators. All these aspects will be
subjets of forthcoming papers.
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