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Abstrat

This paper onsiders invariant (1; 2)-sympleti almost Hermitian

strutures on the maximal ag manifod assoiated to a omplex semi-

simple Lie group G. The onept of one-free invariant almost om-

plex struture is introdued. It involves the rank-three subgroups of

G, and generalizes the one-free property for tournaments related to

Sl (n; C ) ase. It is proved that the one-free property is neessary

for an invariant almost-omplex struture to take part in an invariant
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(1; 2)-sympleti almost Hermitian struture. It is also suÆient if the

Lie group is not B

l

, l � 3, G

2

or F

4

. For B

l

and F

4

a lose ondition

turns out to be suÆient.

1 Introdution

The subjet matter of this paper is the invariant almost Hermitian strutures

on the generalized ag manifolds assoiated to semi-simple omplex Lie al-

gebras and groups. Let G be a omplex semi-simple Lie group and denote

by F = G=P the maximal ag manifold of G, where P is a Borel (minimal

paraboli) subgroup of G. Alternatively, F = U=T where U is a ompat real

form of G and T = P \ U a maximal torus.

The U -invariant almost Hermitian strutures on F have been studied

reently in [2℄ and [10℄ with di�erent methods. First, in [2℄ the group G is

speialized to be Sl (n; C ), so that U = SU (n) and F is identi�ed with the

manifold of omplete ags of subspaes of C

n

. In this ase there exists a

natural bijetion between the set of U -invariant almost omplex strutures

on F and n-player tournaments. Taking advantage of this bijetion in [2℄

the invariant strutures were studied with the aid of the ombinatoris of

tournaments (see also [3℄).

On the other hand, [10℄ adopts the general set up, and studies invari-

ant strutures on the ag manifold assoiated to an arbitrary semi-simple

omplex group G. The methods of [10℄ are intrinsi in the sense that the

ombinatorial questions are resolved within the framework of root systems

and Weyl groups.

In both papers the basi issue is the desription of the (1; 2)-sympleti

Hermitian strutures. One of the main results is the derivation of a stan-

dard form for the orresponding invariant almost-omplex strutures. In [2℄

the standard form is given in terms of stair-shaped inidene matries of

tournaments, while in the general setting of [10℄ it is proved that the (1; 2)-

sympleti Hermitian strutures an be put in orrespondene to the abelian

ideals of a Borel subalgebra. Although the results of [10℄ extend those of [2℄

the proofs are ompletely independent. In partiular, the notion of one-free

tournament { whih plays a entral role in [2℄ as a neessary and suÆient

ondition { does not appear in [10℄, leaving a gap in the development of the

theory.

The purpose of this paper is to �ll this gap, by extending the one-free
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onept to the ontext of semi-simple Lie algebras, and analyzing its relation

to the (1; 2)-sympleti strutures. The one-free property for the A

l

series

an be translated into a ondition involving quadruples of roots, and thus

makes sense in general (see De�nition 3.1). We maintain the name of one-

free for the property stated in terms of roots. It is related to the (1; 2)-

sympleti strutures as follows: An invariant Hermitian struture is a pair

(J;�) with J a U -invariant almost omplex struture and � an invariant

Riemannian metri. The one-free property refers to the invariant almost

omplex strutures. Suh a struture is said to be (1; 2)-admissible if there

exists � suh that (J;�) is (1; 2)-sympleti. We prove in Theorem 3.3 that

the one-free property is neessary for J to be (1; 2)-admissible. It is also

suÆient if the semi-simple Lie algebra does not ontain omponents of the

types B

l

, l � 3, G

2

or F

4

. The point is that for the Lie algebras with rank

� 3, the one-free property onerns the restrition of J to the rank-three

subalgebras, and is equivalent to (1; 2)-admissibility in A

3

and C

3

but not

in B

3

. For this reason the orret ondition for the Lie algebras B

l

and F

4

(whih are the only ones whih ontain B

3

) is that the restrition of J to any

rank-three subalgebra is (1; 2)-admissible.

We regard our approah here as an appliation of the aÆne Weyl group

haraterization of the (1; 2)-sympleti strutures, proved in [10℄. Indeed

we hek that a ertain J is (1; 2)-admissible by showing that it belongs to

the lass of aÆne invariant almost omplex strutures, whih are de�ned

by means of aloves of the aÆne Weyl group (see De�nition 6.3 below). It

was proved in [10℄ that aÆne strutures are (1; 2)-admissible and onversely.

Through the aÆne strutures we have aess to the algebra of integer al-

ove oordinates developed by Shi [11℄. This algebra is used to solve the

ombinatorial problems arising in the study of invariant strutures.

The relation of one-free tournaments with (1; 2)-sympleti strutures on

the lassial ag manifolds is disussed in Mo and Negreiros [7℄ and Paredes

[9℄. The neessity of the one-free property for (1; 2)-admissibility was �rst

stated and proved in [7℄, with the aid of the moving frame method, while

evidene for suÆieny was provided in [9℄, by heking small-sized tourna-

ments. A general proof of suÆieny for tournaments of arbitrary size was

given in [2℄.

Our attempt to understand the (1; 2)-sympleti strutures was moti-

vated by the study of harmoni maps into ag manifolds. However, after

studying them in [10℄ it beame lear that among the invariant almost Her-

mitian strutures on the ag manifolds the (1; 2)-sympleti ones form an
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outstanding lass, allowing the lassi�ation of the invariant strutures given

in [10℄.

2 Preliminaries

Let g and h be a simple omplex Lie algebra and a Cartan subalgebra. Denote

by � the set of roots of the pair (g; h), and let

g

�

= fX 2 g : 8H 2 h; [H;X℄ = � (H)Xg

be the one-dimensional root spae orresponding to � 2 �. Given � 2 h

�

we

let H

�

be de�ned by � (�) = hH

�

; �i, where h�; �i stands for the Cartan-Killing

form of g and de�ne h

R

to be the subspae spanned over R by H

�

, � 2 �. We

�x one and for all aWeyl basis of g whih amounts to hoosing for eah � 2 �

an elementX

�

2 g

�

suh that hX

�

; X

��

i = 1, and [X

�

; X

�

℄ = m

�;�

X

�+�

with

m

�;�

2 R, m

��;��

= �m

�;�

and m

�;�

= 0 if �+� is not a root (see Helgason

[4℄, Chapter IX).

Given a hoie of positive roots �

+

� �, denote by � the orresponding

simple system of roots and let p = h �

P

�2�

+

g

�

be the Borel subalgebra

generated by �

+

. Let F = G=P be the assoiated maximal ag manifold,

where G is any onneted omplex Lie group with Lie algebra g and P is the

normalizer of p in G. Let u be the ompat real form of g spanned by ih

R

and A

�

, iS

�

, � 2 �, where A

�

= X

�

�X

��

and S

�

= X

�

+X

��

. Denote by

U the orresponding ompat real form of G. By the transitive ation of U

on F we an write F = U=T where T = P \ U is a maximal torus of U .

If b

0

stands for the origin of F, the tangent spae at b

0

identi�es naturally

with the subspae q � u spanned by A

�

, iS

�

, � 2 �. Analogously, the

omplex tangent spae of F is identi�ed with q

C

= g 	 h � u, spanned by

the root spaes g

�

, � 2 �. Clearly, the adjoint ation of T on g leaves q

invariant.

2.1 Invariant metris

A U -invariant Riemannian metri on F is ompletely determined by its value

at b

0

, that is, by an inner produt (�; �) in q, whih is invariant under the ad-

joint ation of T . Suh an inner produt has the form (X; Y )

�

= �h� (X) ; Y i

with � : q! q positive-de�nite with respet to the Cartan-Killing form. The

inner produt (�; �)

�

admits a natural extension to a symmetri bilinear form
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on the omplexi�ation q

C

of q. These omplexi�ed objets are denoted the

same way as the real ones. The T -invariane of (�; �)

�

amounts to the elements

of the standard basis A

�

, iS

�

, � 2 �, being eigenvetors of �, for the same

eigenvalue. Thus, in the omplex tangent spae we have � (X

�

) = �

�

X

�

with �

�

= �

��

> 0. We denote by ds

2

�

the invariant metri assoiated with

�. In the sequel we allow abuse of notation and write simply � instead of

ds

2

�

.

2.2 Invariant almost omplex strutures

In the sequel we use the abbreviation ias for U -invariant almost omplex

struture on F. An ias is ompletely determined by its value J : q! q in the

tangent spae at the origin. The map J satis�es J

2

= �1 and ommutes with

the adjoint ation of T on q. We denote by the same letter the real valued

struture J and its omplexi�ation to q

C

. The invariane of J entails that

J (g

�

) = g

�

for all � 2 �. The eigenvalues of J are �i and the eigenvetors

in q

C

are X

�

, � 2 �. Hene J (X

�

) = i"

�

X

�

with "

�

= �1 satisfying

"

�

= �"

��

. As usual the eigenvetors assoiated to +i are said to be of

type (1; 0) while �i-eigenvetors are of type (0; 1). Thus the (1; 0) vetors

are linear ombinations of X

�

, "

�

= +1, and the (0; 1) vetors are spanned

by X

�

, "

�

= �1.

An ias on F is ompletely presribed by a set of signs f"

�

g

�2�

with

"

��

= �"

��

. In the sequel we allow some abuse of notation and identify the

invariant struture on F with J = f"

�

g.

Sine F is a homogeneous spae of a omplex Lie group it has a natural

struture of a omplex manifold. The assoiated integrable ias J



is given

by "

�

= +1 if � < 0. The onjugate struture �J



is also integrable. These

are alled the standard ias.

2.3 K�ahler form

It is easy to see that any invariant metri ds

2

�

is almost Hermitian with

respet to any ias J , that is, ds

2

�

(JX; JY ) = ds

2

�

(X; Y ) (f. [13℄, Setion

8). Let 
 = 


J;�

stand for the orresponding K�ahler form


 (X; Y ) = ds

2

�

(X; JY ) = �h�X; JY i:

This form extends naturally to a U -invariant 2-form de�ned on the omplex-

i�ation q

C

of q, whih we also denote by 
. Its values on the basi vetors
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are:


 (X

�

; X

�

) = �i�

�

"

�

hX

�

; X

�

i:

Sine hX

�

; X

�

i = 0 unless � = ��, 
 is not zero only on the pairs (X

�

; X

��

),

at whih 
 takes the value i�

�

"

�

.

The following formula is well known (see [6℄).

Lemma 2.1 Let ! be an invariant k-di�erential form on the homogeneous

spae L=H. Then

d! (X

1

; : : : ; X

k+1

) = (k + 1)

X

i<j

(�1)

i+j

!

�

[X

i

; X

j

℄; X

1

; : : : ;

b

X

i

; : : :

b

X

j

; : : : ; X

k+1

�

:

for X

1

; : : : ; X

k+1

in the Lie algebra l of L.

Speializing this lemma to the form 
 we get

�

1

3

d
 (X; Y; Z) = �
 ([X; Y ℄; Z) + 
 ([X;Z℄; Y )� 
 ([Y; Z℄; X) (1)

From (1) an easy omputation yields that d
 (X

�

; X

�

; X



) is zero unless

� + � +  = 0. In this ase

d
 (X

�

; X

�

; X



) = �i3m

�;�

("

�

�

�

+ "

�

�

�

+ "



�



) (2)

with m

�;�

as in Setion 2 (f. [10℄, Proposition 2.1).

Taking into aount (2) we make the following distintion between two

types of roots triples.

De�nition 2.2 Let J = f"

�

g be an ias. A triple of roots �; �;  with � +

� +  = 0 is said to be a f0; 3g-triple if "

�

= "

�

= "



, and a f1; 2g-triple

otherwise.

Reall that an almost Hermitian manifold is said to be (1; 2)-sympleti

(or quasi-K�ahler) if

d
 (X; Y; Z) = 0

when one of the vetors X; Y; Z is of type (1; 0) and the other two are of

type (0; 1).The struture is (2; 1)-sympleti if the roles of (1; 0) and (0; 1)

are interhanged. Aordingly, the struture is (i; j)-sympleti if the (i; j)

omponent d


(i;j)

of d
 is zero.

In our invariant setting we have the following riterion for an invariant

pair (J;�) to be (1; 2)-sympleti, whih follows immediately from formula

(2), and the fat that X

�

has type (1; 0) if "

�

= +1 and (0; 1) if "

�

= �1 (see

[10℄, Proposition 2.3 and [13℄, Theorem 9.15).
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Proposition 2.3 The invariant pair (J = f"

�

g;� = f�

�

g) is (1; 2)-sympleti

if and only if

"

�

�

�

+ "

�

�

�

+ "



�



= 0

for every f1; 2g-triple f�; �; g.

In the sequel J is said to be (1; 2)-admissible if there exists � suh that

the pair (J;�) is invariant and (1; 2)-sympleti.

3 The one-free property

Given a set of four roots q = f�; �; ; Æg with � + � +  + Æ = 0 we say

that a triple of roots f(u+ v) ; w

1

; w

2

g is extrated from q by u and v if

fu; v; w

1

; w

2

g = f�; �; ; Æg. Of ourse, any suh triple satis�es (u+ v) +

w

1

+ w

2

= 0. The one-free ondition is stated in terms of suh triples.

De�nition 3.1 Let J = f"

�

g be an ias. We say that J is one-free if the

following ondition is satis�ed:

� If q = f�; �; ; Æg ontains no pairs of opposite roots and �+�++Æ =

0 then the number of f0; 3g-triples extrated from q is di�erent from 1.

In this de�nition the hypothesis that the quadruples do not have opposite

roots is redundant and is inluded only for emphasis sake. Indeed, suppose,

for instane, that � = ��. Then Æ = �, and the possible triples extrated

from the quadruple are (� + ;��;�), (�� ;��; ), (�� + ; �;�) and

(��� ; �; ). It is easy to see that in this set f0; 3g-triples appear in pairs,

independently of J .

Exept when the root system is G

2

the one-free property is a ondition

on the rank-three subsystems of the root system. In fat, sine there are no

opposite roots in f�; �; ; Æg the subspae V spanned by these roots is either

two or three dimensional. However, it is easy to see that in the rank-two root

systems A

1

� A

1

, A

2

and B

2

, whih are di�erent from G

2

, there are no suh

sets of roots. Hene, the intersetion of � \ V is a rank-three root system if

we are not in G

2

(see Setion 5 below for a disussion of G

2

).

The explanation for the term one in the above de�nition omes from the

relation between ias in the ag manifolds of the A

l

series (the Lie algebras

sl (n; C ), n = l+1) and tournaments. Reall that an n-player tournament is
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a omplete direted graph T = (N;E) where N is an ordered set, jN j = n,

and E stands for the arrows of T . With eah tournament T there is assigned

its inidene matrix " = "

T

, whih is a real skew-symmetri matrix with all

o�-diagonal entries �1. If (a; b) 2 E we say that a wins against b and set

"

ab

= 1 and "

ba

= �1.

On the other hand, in the standard realization, the roots of A

l

are �

jk

,

1 � j 6= k � l + 1, with �

kj

= ��

jk

. Thus an ias on the orresponding ag

manifold is given by the signs "

jk

= "

�

jk

= �1, j 6= k. These numbers are

assembled to form the inidene matrix " of some tournament, establishing

a one-to-one orrespondene between the ias on the maximal ag manifold

of A

l

and n-players tournaments.

A 3-yle in a tournament is a 3-players subtournament fi; j; kg whih

forms the loop i! j ! k ! i. When T is the tournament assoiated to the

ias J , a 3-yle fi; j; kg orresponds to the f0; 3g-triple f�

ij

; �

jk

; �

ki

g (see

[2℄).

Now, up to isomorphism, there are four distint 4-player tournaments.

The two of them whih ontain a single 3-yle are alled ones. Eah of

them ontains a yle and a winner or a loser. The other equivalene lasses

of 4-player tournaments ontain an even number of yles (zero or two).

Proposition 3.2 In the maximal ag manifold assoiated to A

n�1

= sl (n; C ),

an ias is one-free in the sense of De�nition 3.1 if and only if no 4-player

subtournament of the assoiated tournament is a one.

Proof: Assume �rst that an ias J with orresponding tournament T is

one-free in the sense of De�nition 3.1. Let fi; j; k; lg be a 4-player subtour-

nament, and onsider the orresponding set of four roots f�

ij

; �

jk

; �

kl

; �

li

g

whih satis�es

�

ij

+ �

jk

+ �

kl

+ �

li

= 0:

From this set we extrat the four triples f�

ik

; �

kl

; �

li

g, f�

jl

; �

li

; �

ij

g, f�

ki

; �

ij

; �

jk

g

and f�

lj

; �

jk

; �

kl

g. Eah one of these triples orresponds to a 3-player sub-

tournament (e.g. f�

ik

; �

kl

; �

li

g is assoiated to fi; k; lg), in suh a way that

f0; 3g-triples orrespond to 3-yles. Hene, by our generalized one-free

ondition fi; j; k; lg is not a one.

For the onverse, note that a set of four roots f�; �; ; Æg with �+�++

Æ = 0 whih do not ontain opposite roots spans a rank-three root subsys-

tem, and hene the set has the form f�

ij

; �

jk

; �

kl

; �

li

g for 1 � i; j; k; l � n.

Repeating the above argument we get the generalized one-free ondition if
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the tournament has no ones.

We proeed now to prove that the one-free ondition is neessary for an

ias to be (1; 2)-admissible. Write d


f0;3g

= d


(0;3)

+ d


(3;0)

and d


f1;2g

=

d


(1;2)

+ d


(2;1)

, so that

d
 = d


f0;3g

+ d


f1;2g

:

We get a neessary ondition for d


f1;2g

= 0 by exploiting the fat that

d

2

= 0, omputing formally d

2


 (X

�

; X

�

; X



; X

Æ

). Analogous to the ase of

d
 the only quadruples f�; �; ; Æg of interest are those satisfying � + � +

 + Æ = 0. Using the exterior derivative formula of Lemma 2.1, we get for

these quadruples, that d

2


 is the sum of the following six terms:

1. +m

�;�

m

;Æ

("

�+�

�

�+�

+ "



�



+ "

Æ

�

Æ

)

2. �m

�;

m

�;Æ

("

�+

�

�+

+ "

�

�

�

+ "

Æ

�

Æ

)

3. +m

�;Æ

m

�;

("

�+Æ

�

�+Æ

+ "

�

�

�

+ "



�



)

4. +m

�;

m

�;Æ

("

�+

�

�+

+ "

�

�

�

+ "

Æ

�

Æ

)

5. �m

�;Æ

m

�;

("

�+Æ

�

�+Æ

+ "

�

�

�

+ "



�



)

6. +m

;Æ

m

�;�

("

+Æ

�

+Æ

+ "

�

�

�

+ "

�

�

�

)

These terms anel mutually (e.g. the oeÆient of "

�

�

�

is m

�;�

m

;Æ

+

m

�;

m

�;Æ

+ m

;�

m

�;Æ

whih is known to be zero, see [4℄, Lemma III 5.3).

In order to look at them loser let us take, for instane, the �rst one. The

oeÆient m

�;�

is not zero if and only if � + � is a root. But � + � =

� ( + Æ), so that both oeÆients m

�;�

and m

;Æ

are simultaneously zero or

not. The same remark is true for the other terms. Next, in eah term the

sum appearing in braes has the form d
 (X

�

; X

�

; X

�

) with (�; �; �) a triple

extrated from f�; �; ; Æg if the oeÆients m

�;�

are not zero.

These omments yield an alternative proof of the following result of [7℄.

Theorem 3.3 A neessary ondition for (J;�) to be (1; 2)-sympleti is that

J is one-free in the sense of De�nition 3.1.
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Proof: Let q = f�; �; ; Æg be a root quadruple suh that �+ �+ + Æ = 0.

Among the six terms above, those orresponding to f1; 2g-triples extrated

from q are zero if d


f1;2g

= 0. On the other hand a term orresponding to an

extrated f0; 3g-triple is not zero. Hene, for d

2


 to be zero it is not possible

to extrat just one f0; 3g-triple.

4 Rank-three Lie algebras

The one-free ondition involves sets of four roots whose sum is zero in suh

a way that no two roots are opposite to eah other. This has the onsequene

that the subspae spanned by the roots is three dimensional if the root system

is not G

2

. Hene, exluding G

2

the one-free ondition refers to the rank-

three subsystems of roots. The purpose of this preparatory setion is to look

at those rank-three root systems (mainly the irreduible ones A

3

, B

3

and C

3

)

required to study the one-free ondition in general root systems.

Note �rst that the rank-three reduible root systems are A

1

� A

1

� A

1

,

A

1

�A

2

and A

1

�B

2

. It is easy to hek that any ias in these root systems

are (1; 2)-admissible, and thus satisfy the one-free ondition.

Conerning A

3

= sl (4; C ), an ias J on the maximal ag manifold or-

responds to a 4-tournament T . By Proposition 3.2, J satis�es our one-free

ondition if and only if T does not ontain a one. We know that suh ias

are (1; 2)-admissible (see [2℄, [3℄). Atually, the set of one-free ias has two

equivalene lasses, whih are represented by the inidene matries

0

B

B

�

0 1 1 1

�1 0 1 1

�1 �1 0 1

�1 �1 �1 0

1

C

C

A

0

B

B

�

0 1 1 �1

�1 0 1 1

�1 �1 0 1

1 �1 �1 0

1

C

C

A

: (3)

The lass represented by the �rst matrix onsists of the standard ias.

Now, we look at the more deliate B

3

. In its standard realization the

positive root system is L [ S where L = fe

i

� e

j

: 1 � i < j � 3g and

S = fe

i

: 1 � i � 3g are the sets of long and short roots, respetively.

The set L is isomorphi to the positive root system L

3

= f�

ij

: 1 � i <

j � 3g of A

3

via the bijetion:

� Simple roots: �

12

$ e

2

� e

3

; �

23

$ e

1

� e

2

; �

34

$ e

2

+ e

3

.

10



� Height 2: �

13

$ e

1

� e

3

; �

34

$ e

1

+ e

3

.

� Height 3: �

14

$ e

1

+ e

2

.

Now, let J = f"

�

g be a one-free ias in B

3

. Its restrition J

l

to L is

also one-free so that we an assume that it is represented by one of the two

matries in (3). It remains to see what happens at the short roots e

1

, e

2

and

e

3

. Regarding e

3

, we an assume without loss of generality that "

e

3

= +1. In

fat, the reetion r

3

with respet to e

3

leaves L

3

invariant �xes the highest

root e

1

+ e

2

. Hene, we an replae J by r

3

� J without a�eting its values in

L

3

if J

l

is represented by one of the matries in (3). As to e

1

and e

2

we have

Lemma 4.1 "

e

1

= "

e

2

.

Proof: Consider the quadruple (�e

1

) + (e

1

� e

2

) + (e

2

� e

3

) + e

3

= 0. The

triples extrated from it are f�e

2

; e

2

� e

3

; e

3

g, f�e

1

+ e

3

; e

1

� e

2

; e

2

� e

3

g,

fe

2

;�e

1

; e

1

� e

2

g and fe

1

� e

3

;�e

1

; e

3

g.

Note that f�e

1

+ e

3

; e

1

� e

2

; e

2

� e

3

g is a f1; 2g-triple. Suppose that

"

e

2

= �1. Then f�e

2

; e

2

� e

3

; e

3

g is a f0; 3g-triple, and fe

2

;�e

1

; e

1

� e

2

g is

a f1; 2g-triple, foring the last triple to be f0; 3g, whih implies "

e

1

= �1.

The root e

1

+ e

2

does not appear in the extrated triples, ensuring that our

arguments are independent of the hoie of J

l

.

On the other hand from the quadruple (e

1

� e

2

) + (e

2

+ e

3

) + (�e

1

) +

(�e

3

) = 0, the only extrated triple whih is not automatially of type f0; 3g

is fe

2

; e

1

� e

2

;�e

1

g. Hene, this set must be a f1; 2g-triple, so that "

e

2

= +1

implies "

e

1

= +1. Again the extrated triples do not involve e

1

+ e

2

, hene

it is immaterial whih of the J

l

's we onsider.

We arrive at the following desription of the one-free ias on B

3

.

Proposition 4.2 Denote by M (J) the set of positive roots � of B

3

suh that

"

�

= �1. Fixing the hoies of J

l

given by (3) and "

e

3

= +1, the possible

ias satisfying the one-free ondition are:

1. M (J

1

) = ;.

2. M (J

2

) = fe

1

+ e

2

g.

3. M (J

3

) = fe

1

; e

2

g.

11



4. M (J

4

) = fe

1

; e

2

; e

1

+ e

2

g.

Among them the only (1; 2)-admissible ias are J

1

and J

2

.

Proof: The (1; 2)-admissibility of J

1

and J

2

is a onsequene of the abelian

ideal shape of [10℄. On the other hand, J

3

and J

4

are not (1; 2)-admissible.

To see this onsider the triples fe

1

; e

1

+ e

3

;�e

3

g and fe

1

; e

3

;�e

1

� e

3

g. They

are f1; 2g-triples for both J

3

and J

4

. Now, assume that � = f�

�

g is (1; 2)-

sympleti with respet to J

3

or J

4

. Then �

e

1

+e

3

= �

e

1

+ �

e

3

and �

e

3

=

�

e

1

+ �

e

1

+e

3

, foring �

e

1

= 0, a ontradition.

Finally, it is straighforward but umbersome to verify that J

3

and J

4

in-

deed satisfy the one-free ondition. One must write down the quadruples of

roots of B

3

summing up zero, and their extrated triples, and hek that the

f0; 3g-triples do not appear isolated.

The disussion of C

3

follows the same pattern as that of B

3

. In the

standard realization of C

3

, its short roots oinide with the long roots of B

3

,

whereas the long roots are given by �2e

i

, i = 1; 2; 3. Again we an assume

that the restrition J

s

of a one-free ias J to the short roots has one of the

inidene matries (3). Also, after applying the reetion with respet to e

3

we an assume that "

2e

3

= +1. With the aid of these hoies we an hek

the quadruples of C

3

and prove the

Proposition 4.3 Denote, as before, by M (J) the set of positive roots � of

C

3

suh that "

�

= �1. Fixing the above hoies of J

s

and "

e

3

= +1, the

possible ias satisfying the one-free ondition are:

1. M (J

1

) = ;.

2. M (J

2

) = fe

1

+ e

2

; 2e

1

g.

3. M (J

3

) = f2e

2

; e

1

+ e

2

; 2e

1

g.

Eah M (J

i

), i = 1; 2; 3, is an abelian ideal of the set of positive roots, so

that the one-free ias are (1; 2)-admissible.

Proof: The proposition is a onsequene of the following impliations:

"

e

1

+e

2

= +1) "

2e

2

= "

2e

1

= +1; "

e

1

+e

2

= �1) "

2e

1

= �1:

12



whih are easy onsequenes of the one-free property applied to the quadru-

ples fe

1

� e

2

; 2e

2

;�e

2

+ e

3

;�e

1

� e

3

g, fe

1

� e

2

; e

1

� e

3

; e

2

+ e

3

;�2e

1

g and

fe

1

� e

2

; e

2

� e

3

; e

1

+ e

3

;�2e

1

g, respetively.

5 G

2

As mentioned above, G

2

is the only rank-two root system where the one-free

ondition is not vauous. For the sake of ompleteness we analyze here the

ias on G

2

whih satisfy this ondition. We write the positive roots as

�

1

�

2

�

1

+ �

2

�

1

+ 2�

2

�

1

+ 3�

2

2�

1

+ 3�

2

:

The set of short roots f��

2

;� (�

1

+ �

2

) ;� (�

1

+ 2�

2

)g is an A

2

-root system.

Let J be an ias on G

2

and denote by J

s

its restrition to the set of short

roots. In A

2

there are two equivalene lasses of ias, so that we an assume

without loss of generality that J

s

is one of the following two ias:

1. J

s

1

= f"

�

2

= +1; "

�

1

+�

2

= +1; "

�

1

+2�

2

= +1g.

2. J

s

2

= f"

�

2

= +1; "

�

1

+�

2

= +1; "

�

1

+2�

2

= �1g.

Denote by r the reetion with respet to �

1

. It satis�es r�

2

= �

1

+ �

2

and r (�

1

+ 2�

2

) = �

1

+2�

2

. This implies that r leaves J

s

invariant. Hene,

we may assume that "

�

1

= +1.

Now, assuming that J satis�es the one-free ondition, it remains to de-

termine the values of "

�

1

+3�

2

and "

2�

1

+3�

2

. Up to hange of signs there are

the following three zero-sum root quadruples:

1. q

1

: (�

1

) + (�

2

) + (�

1

+ 2�

2

) + (�2�

1

� 3�

2

) = 0.

2. q

2

: (�

2

) + (�

1

+ �

2

) + (�

1

+ �

2

) + (�2�

1

� 3�

2

) = 0.

3. q

3

: (�

1

) + (�

1

+ 3�

2

) + (��

1

� �

2

) + (��

1

� 2�

2

) = 0.

First suppose that J

s

= J

s

1

. Writing down the triples extrated from q

3

,

it is straighforward to hek that "

�

1

+3"

2

= �1 implies that "

2�

1

+3"

2

= �1.

Hene, the possible one-free ias are

+

+

++++,

+

+

+++� and

+

+

++��.
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By the abelian ideal property stated in [10℄, these ias are (1; 2)-admissible,

and hene they are indeed one-free.

Suppose now that J

s

= J

s

2

. Looking at the triples extrated from q

1

it

is easy to see that "

�

1

+3�

2

= +1 implies "

2�

1

+3�

2

= +1. Sine there are no

other restritions, the one-free ias are

+

+

+ � + +,

+

+

+ � � + and

+

+

+ � � �. The last one is (1; 2)-admissible, whereas, similar to the B

3

ase, one an hek that the �rst two are not (1; 2)-admissible. (We remark

that in heking the one-free property the quadruple q

2

is irrelevant, sine

in it eah extrated triple appears twie.)

6 The aÆne Weyl group

In this setion we reall the de�nition of the aÆne ias introdued in [10℄.

These strutures are onstruted by ounting hyperplanes separating a given

alove and the basi one. We refer to Humphreys [5℄ as a basi soure for

the aÆne Weyl group. Consider the subspae h

R

introdued in Setion 2. To

onform with the usual notation we often identify h

R

with its dual h

�

R

and

write hx; �i instead of � (x), x 2 h

R

, � 2 h

�

R

. Given � 2 � and k 2 Z de�ne

the aÆne hyperplane

H (�; k) = fx 2 h

R

: hx; �i = kg:

The omplement A of the set of hyperplanes H (�; k), � 2 �, k 2 Z,

is the disjoint union of onneted open simplees alled aloves. Given an

alove A and a root �, by de�nition there exists an integer k

�

= k

�

(A) suh

that

k

�

< hx; �i < k

�

+ 1 x 2 A:

Of ourse, k

�

= [� (x)℄ for any x 2 A where [a℄ denotes the integer part

of the real number a. Aording to Shi [11℄, the integers k

�

(A) are alled

the oordinates of the alove A. An alove is ompletely determined by its

oordinates. A neessary and suÆient ondition for k

�

, � 2 �, to be the

oordinates of an alove are given by the inequalities below. In writing down

these inequalities we must look � as the set of o-roots of another root system

e

�:

� = f�

_

=

2�

h�; �i

: � 2

e

�g:
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The root system is normalized so that j�j = 1 if � is a short root.

Proposition 6.1 A set of integers k

�

, � 2

e

�

+

, form the oordinates of an

alove if and only if for every pair of roots �; � 2

e

� suh that �+� 2

e

�, the

following inequalities hold:

j�j

2

k

�

+ j�j

2

k

�

+ 1 � j� + �j

2

(k

�+�

+ 1)

� j�j

2

k

�

+ j�j

2

k

�

+ j�j

2

+ j�j

2

+ j� + �j

2

� 1:

(4)

Proof: See [11℄, Lemma 1.2 and Proposition 5.1.

Remark: It is easy to see that the inequalities in this proposition are equiv-

alent to

j�j

2

k

�

+ j�j

2

k

�

+ jj

2

k



� 1:

For later referene we note also the following easy neessary ondition.

Lemma 6.2 A neessary ondition for the integers k

�

2 Z, � 2 �, to be the

oordinates of an alove is that k

�+�

is either k

�

+k

�

or k

�

+k

�

+1 whenever

�, � and � + � are roots.

Proof: We have, for all x 2 A, k

�

< hx; �i < k

�

+1 and k

�

< hx; �i < k

�

+1,

so that

k

�

+ k

�

< hx; �+ �i < k

�

+ k

�

+ 2:

Hene, the integer part of hx; � + �i is either k

�+�

= k

�

+ k

�

or k

�+�

=

k

�

+ k

�

+ 1.

De�nition 6.3 Given an alove A with oordinates fk

�

: � 2 �g, the ias

J (A) = f"

�

(A)g is de�ned by "

�

(A) = (�1)

k

�

. We say that J is an aÆne

ias if it has the form J = J (A) for some alove A.

Note that J (A) is indeed an ias, sine k

��

= �k

�

�1, so that "

��

(A) =

�"

�

(A). The following theorem is one of the main results in [10℄. It provides

the riterion whih will be used in the sequel for ensuring that ias are (1; 2)-

admissible.

Theorem 6.4 An ias J is (1; 2)-admissible if and only if it is aÆne.
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7 Simply-laed root systems

In this setion we prove that the one-free ondition is suÆient for an ias to

be (1; 2)-admissible, in ase the algebra g has a simply-laed Dynkin diagram,

i.e. � = A

l

, D

l

, E

6

, E

7

or E

8

. The doubly-laed ase will be treated in

Setion 8. We use the equivalene between the aÆne and (1; 2)-admissible

ias, as stated in Theorem 6.4, and onstrut an alove A suh that J = J (A)

if J satis�es the one-free ondition. Thus the purpose of this setion is to

prove the following statement.

Theorem 7.1 Let � be a simply-laed root system, and suppose that J =

f"

�

g is a one-free ias on F. Then J is aÆne.

The proof will onsist of several steps. By de�nition of aÆne ias we

must �nd a set of integers fk

�

: � 2 �g satisfying the inequalities of Shi (4)

suh that "

�

= (�1)

k

�

, � 2 �. In a simply-laed root system the roots have

the same length, simplifying these inequalities. In fat, we have the following

equivalent ondition for a set k

�

to be the oordinates of an alove.

Lemma 7.2 Let � be simply-laed. Then the integers k

�

2 Z, � 2 �,

form the oordinates of an alove if and only if either k

�+�

= k

�

+ k

�

or

k

�+�

= k

�

+ k

�

+ 1 when �, � and � + � are roots.

Proof: The ondition is neessary by Lemma 6.2. Conversely, if � is simply-

laed, the j�j

2

appearing in inequalities (4) are equal to 1, hene they redue

to

k

�

+ k

�

� k

�+�

� k

�

+ k

�

+ 1:

Therefore, these inequalities are satis�ed by k

�

, � 2 �, if they are under the

onditions of the statement.

Before proeeding we prove some lemmas.

Lemma 7.3 Let �

�

� � be a root subsystem of �. Then �

+

�

= �

�

\ �

+

is

a hoie of positive roots in �

�

.

Proof: There exists  2 h

�

R

suh that

�

+

= f� 2 � : h�; i > 0g:
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Of ourse, h�; i 6= 0 for all � 2 �. Let 

1

be the orthogonal projetion of 

onto the subspae of h

�

R

spanned by �

�

. For � 2 �

�

we have h�; i = h�; 

1

i,

so that h�; 

1

i 6= 0 for all � 2 �

�

. Hene, 

1

is regular for �

�

, implying that

�

+

�

= f� 2 �

�

: h�; 

1

i > 0g

is a hoie of positive roots in �

�

. Using again h�; i = h�; 

1

i, � 2 �

�

, it

follows that �

+

�

= �

�

\ �

+

, proving the lemma.

Lemma 7.4 Fix a simple system of roots �, and let J = f"

�

g be an aÆne

ias. Suppose that a set of integers m

�

2 Z, � 2 �, satis�es "

�

= (�1)

m

�

.

Then there exists an alove A suh that J = J (A) and k

�

(A) = m

�

, � 2 �.

Proof: Put � = f�

1

; : : : ; �

l

g and de�ne f!

1

; : : : ; !

l

g by h�

i

; !

j

i = Æ

ij

. Also,

let A

1

be an alove suh that J = J (A

1

), that is, "

�

= (�1)

k

�(

A

1

)

. Sine

"

�

= (�1)

m

�

, the integers m

�

i

� k

�

i

(A

1

) are even. Now, a translation t

�

with � spanned over Z by !

i

, i = 1; : : : ; l, maps aloves into aloves, and the

oordinates are hanged aording to

k

�

(t

�

A) = h�; �i+ k

�

(A) : (5)

Take � = d

�

1

!

1

+� � �+d

�

l

!

l

, with d

�

i

= m

�

i

�k

�

i

(A

1

). Then the oordinates

of A = t

�

A

1

are k

�

(A) = h�; �i + k

�

(A

1

), and sine h�; �i is even for all

�, we onlude that J = J (A). Furthermore, for a simple roots �

i

we have

k

�

i

(A) = d

�

1

+ k

�

(A

1

) = m

�

i

, proving the lemma.

Now, for proving Theorem 7.1 we onstrut k

�

, � 2 �, by indution on

the height of �. Thus let us �x one and for all a simple system of roots �

with �

+

the orresponding set of positive roots. Then given J = f"

�

g de�ne:

1. Let � 2 �. Then k

�

= (1� "

�

) =2.

2. Let �; �;  2 �

+

be suh that � = � + . Then

k

�

= k

�

+ k



+

1� (�1)

k

�

+k



"

�

2

: (6)

3. Let � 2 ��

+

. Then k

�

= �k

��

� 1.
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A ase by ase analysis shows easily that the oordinates fk

�

g so de�ned

satisfy "

�

= (�1)

k

�

. Also, the ondition of Lemma 7.2 is readily satis�ed.

The point is to show that k

�

is independent of the deomposition � = � + 

used in (6). We prove this by indution on the height h (�) of � 2 �

+

. If

h (�) = 1, the root is simple, and no deomposition � = � + , �;  2 �

+

exists, hene k

�

is well de�ned.

Now take � 2 �

+

suh that � = �

1

+ 

1

= �

2

+ 

2

, �

i

, i = 1; 2, positive

roots, and hene having height smaller than h (�). By the indutive hypothe-

sis k

�

i

, k



i

, i = 1; 2 are well de�ned. We must show that k

�

1

+k



1

= k

�

2

+k



2

.

Denote by V � h

�

R

the subspae spanned by �

1

, 

1

, �

2

and 

2

. We have

dimV = 2 or 3.

In ase dimV = 2, the subset V \ � is a rank-two system of roots,

ontaining two roots (�

1

and 

1

) whose sum is a root. Hene V \ � is

irreduible, and sine our original root system is simply-laed, it follows that

V \ � is an A

2

system. Now, in A

2

a root is written uniquely as a sum of

two roots, hene there is nothing to prove.

Suppose then that dimV = 3, and let �

�

= V \ � be the orresponding

rank-three system. Sine the roots in � have the same length, either �

�

=

A

1

� A

2

or �

�

= A

3

. Again, there is nothing to prove in the A

1

� A

2

ase.

Assuming that �

�

= A

3

, let J

�

be the restrition of J to �

�

. Then J

�

is

(1; 2)-admissible and hene aÆne.

Now, by Lemma 7.3, �

+

�

= �

�

\�

+

is a positive root system. Let �

�

� �

+

the orresponding set of simple roots.

Lemma 7.5 � is the highest root in �

+

�

.

Proof: Write the positive roots of A

3

as �

ij

, 1 � i < j � 4, so that � is one

of these roots. It is not a simple root, sine � = �

1

+ 

1

with �

1

; 

1

2 �

+

�

.

Also, a root of height 2 in A

3

is written uniquely as a sum of two posi-

tive roots. Hene the height of � in �

+

�

is not 2, sine dimV = 3 and

� = �

1

+ 

1

= �

2

+ 

2

. Therefore, the height of � in �

+

�

is three, that is, �

is the highest root.

By this lemma and the equality �

+

�

= �

�

\ �

+

we onlude that the

height of � in �

+

is bigger than the height (in �

+

) of any  2 �

�

. Hene,

the indutive hypothesis ensures that k



is well de�ned for  2 �

�

.

Now, by the one-free assumption, there exists an alove A

�

in the aÆne

system of �

�

suh that J

�

= J (A

�

). By Lemma 7.4 we an hoose A

�

so
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that k



(A

�

) = k



for all  2 �

�

. The integers k

Æ

(A

�

), Æ 2 �

�

, satisfy the

onditions of Lemma 7.2. Also, J

�

= J (A

�

) is the restrition of J to �

�

.

Hene starting with k



(A

�

) = k



,  2 �

�

, the values of k

Æ

(A

�

), Æ 2 �

+

�

, are

determined aording to the rules used to de�ne k

�

. This means that within

�

+

�

, k

�

is well de�ned. However, the deompositions � = �

1

+ 

1

= �

2

+ 

2

are inside �

+

�

, so that the value of k

�

does not depend upon one of these

deompositions, onluding the proof of Theorem 7.1.

Corollary 7.6 In a simply-laed situation let A

1

and A

2

be aloves suh that

J (A

1

) = J (A

2

). Then there exists � with h�; �i 2 2Z for every root � suh

that A

2

= t

�

A

1

.

Proof: As in the proof of Lemma 7.4 let f�

1

; : : : ; �

l

g be a simple system of

roots and f!

1

; : : : ; !

l

g its dual basis, and put

� = d

�

1

!

1

+ � � �+ d

�

l

!

l

with d

�

i

= k

�

i

(A

2

) � k

�

i

(A

1

). The assumption J (A

1

) = J (A

2

) implies

that d

�

i

, i = 1; : : : ; l, are even integers, so that h�; �i 2 2Z for all � 2 �.

Aording to the hange of oordinates formula (5), to see that A

2

= t

�

A

1

we must hek that k

�

(A

2

) = h�; �i+k

�

(A

1

) for every positive root �. This

is done by indution on the height of �: If � is simple, the equality holds

by de�nition of �. On the other hand if � = � +  with �;  2 �

+

, we

assume by indution that the equality is true for � and . In partiular,

k

�

(A

1

) + k



(A

1

) � k

�

(A

2

) + k



(A

2

)mod2. Now, from the onstrution

performed in the proof of Theorem 7.1, it follows that formula (6) holds for

both sets of integers k

Æ

(A

1

) and k

Æ

(A

2

), Æ 2 �, with the same "

�

. Therefore,

k

�

(A

i

) � k

�

(A

i

) � k



(A

i

) is independent of i = 1; 2. Thus applying the

indutive hypothesis we get

k

�

�

A

2

�

= k

�

�

A

1

�

+ h�; �i+ h�; i = k

�

�

A

1

�

+ h�; �i;

onluding the proof.

Remark: It is worth mentioning that with Theorem 7.1 we get an indi-

ret proof of a result in tournament theory, namely Theorem 3.5 of [2℄ whih

asserts that the verties of a tournament T an be rearranged so that its ini-

dene matrix beomes stair-shaped in ase T has no ones. In fat, this result

follows by pieing together Proposition 3.2, Theorem 7.1 and the results of

[10℄ on invariant almost omplex strutures (see [10℄, Theorem 4.12).
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8 Doubly-laed root systems

In this setion we look at the one-free property for the doubly-laed diagrams

(B

l

, C

l

and F

4

). The �nal result for C

l

di�ers from B

l

and F

4

.

Theorem 8.1 Let � be a root system and J an ias on the orresponding

maximal ag manifold.

1. Suppose that � is C

l

. Then J is aÆne (and hene (1; 2)-admissible) if

and only if J satis�es the one-free property.

2. Suppose that � is B

l

or F

4

, and that the restrition of J to any rank-

three subsystem is aÆne. Then J is aÆne, and hene (1; 2)-admissible.

Remark: The rank-three ondition for B

l

and F

4

is equivalent to J being

one-free together with the additional assumption that the restrition of J to

any B

3

-subsystem is aÆne. This assumption is not required for C

l

beause

it does not ontain B

3

-subsystems.

The proof of Theorem 8.1 uses the orresponding result for simply-laed

diagrams (Theorem 7.1), applied to the set of short roots of �. Let �

s

and

�

l

denote the sets of short roots and long roots, respetively. We have the

disjoint union � = �

s

[�

l

. Both sets �

s

and �

l

are simply-laed root systems

(for example, in � = B

l

, �

l

is a D

l

while �

s

is reduible with l orthogonal

omponents).

Let J

s

stand for the restrition of J to �

s

. Clearly, under the onditions

of Theorem 8.1, J

s

satis�es the one-free assumption of Theorem 7.1, so that

J

s

is aÆne in �

s

. Thus there are integers k

�

, � 2 �

s

, with "

�

= (�1)

k

�

suh

that k

�

form the oordinates of an alove in �

s

. We shall prove Theorem 8.1

by extending these oordinates to �

l

.

For the doubly-laed root systems, we have the following haraterization

of the oordinates of aloves, whih is obtained from the inequalities of Shi

after a ase-by-ase analysis.

Proposition 8.2 In a doubly-laed root system a set of integers k

�

, � 2 Z,

are the oordinates of an alove if and only if the following inequalities are

satis�ed. Eah inequality is satis�ed by a triple of roots as indiated, where

s means short root and l long root.

1. (�; �; �+ �) = (l; l; l): k

�

+ k

�

� k

�+�

� k

�

+ k

�

+ 1
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2. (�; �; �+ �) = (s; s; s): 2k

�

+ 2k

�

+ 1 � 2k

�+�

+ 2 � 2k

�

+ 2k

�

+ 5

3. (�; �; �+ 2�) = (l; s; l): k

�

+ 2k

�

� k

�+2�

� k

�

+ 2k

�

+ 2

4. (�; �; (� + �) =2) = (l; l; s): k

�

+ k

�

� 2k

(�+�)=2

+ 1 � k

�

+ k

�

+ 2

Proof: See [10℄, Proposition 5.4.

Lemma 8.3 Suppose the doubly-laed root system � is irreduible, and let

� be a long root. Then there exists a short root � suh that h�; �i 6= 0.

Proof: There are a long root �

1

and a short root �

1

suh that h�

1

; �

1

i 6= 0

(look e.g. at the Dynkin diagram). The Weyl groupW leaves invariant both

�

l

and �

s

, and sine � is irreduible, these subsets are orbits of W. Hene,

for a long root � there exists w 2 W with � = w�

1

. Thus, h�;w�

1

i 6= 0.

Lemma 8.4 Let � be a long root. Then there are short roots � and  suh

that

� = � + :

Proof: By the previous lemma there exists a short root � with h�; �i 6= 0.

Let �

2

be the intersetion of � with the subspae spanned by � and �. It has

rank-two and ontains two roots � and � of di�erent length with h�; �i 6= 0.

Hene �

2

is a B

2

. The lemma follows then by looking at the roots of B

2

.

Now, we write down the onditions for a set of integers to be the oordi-

nates of an alove in terms of the short and long roots.

Lemma 8.5 In a doubly-laed root system � the following onditions are

neessary and suÆient for a set of integers k

�

, � 2 �, to be the oordinates

of an alove:

1. The integers k

�

, � 2 �

l

, are the oordinates of an alove in the root

system of the long roots.

2. The integers k

�

, � 2 �

s

, are the oordinates of an alove in the root

system of the short roots.
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3. Take a long root � = � +  with � and  short roots. Then either

k

�

= k

�

+ k



or k

�

= k

�

+ k



+ 1.

Proof: Suppose �rst that k

�

, � 2 �, are the oordinates of an alove. Then

the �rst and seond sets of inequalities in Proposition 8.2 together with the

orresponding inequalities in the simply-laed ase show that the restrition

of k

�

to the long roots as well as to the short roots are oordinates of aloves.

Furthermore, the last ondition is neessary by Lemma 6.2.

We prove suÆieny by showing that the three onditions of the lemma

imply the inequalities of Proposition 8.2. The �rst two sets of those inequal-

ities are equivalent to our onditions on the sets of long and short roots,

respetively. For the other two we make a ase by ase analysis. As before l

means long root and s short root.

� (�; �; �+ 2�) = (l; s; l): k

�

+ 2k

�

� k

�+2�

� k

�

+ 2k

�

+ 2. Put

 = � + � and Æ = � + 2�. Note that  is a short root (look at

the roots of B

2

) Æ is a long root, and Æ = � + . Hene by the third

ondition either k

Æ

= k

�

+ k



or k

Æ

= k

�

+ k



+ 1. On the other hand,

� = �� +  is a sum of short roots giving rise to a long root. So

that either k

�

= �k

�

+ k



� 1 or k

�

= �k

�

+ k



. Now, we plug these

possibilities into 2k

�

� k

Æ

�k

�

� 2k

�

+2. We list below the inequalities

that arise:

k

Æ

� k

�

= (k

�

+ k



)� (�k

�

+ k



� 1) 2k

�

� 2k

�

+ 1 � 2k

�

+ 2

k

Æ

� k

�

= (k

�

+ k



)� (�k

�

+ k



) 2k

�

� 2k

�

� 2k

�

+ 2

k

Æ

� k

�

= (k

�

+ k



+ 1)� (�k

�

+ k



� 1) 2k

�

� 2k

�

+ 2 � 2k

�

+ 2

k

Æ

� k

�

= (k

�

+ k



+ 1)� (�k

�

+ k



) 2k

�

� 2k

�

+ 1 � 2k

�

+ 2

Hene the third set of inequalities of Proposition 8.2 holds under the

onditions of the lemma.

� (�; �; (� + �) =2) = (l; l; s): k

�

+ k

�

� 2k

(�+�)=2

+1 � k

�

+ k

�

+2. Put

 = (� + �) =2 and Æ = (� � �) =2. Both  and Æ are short roots (again

look at B

2

). We have � =  + Æ and � = � Æ, so that k

�

= k



+ k

Æ

or

k

�

= k



+ k

Æ

+ 1 and k

�

= k



� k

Æ

� 1 or k

�

= k



� k

Æ

. Plugging these

hoies into k

�

+ k

�

� 2k



+ 1 � k

�

+ k

�

+ 2 we get:

k

�

+ k

�

= (k



� k

Æ

� 1) + (k



+ k

Æ

) 2k



� 1 � 2k



+ 1 � 2k



+ 1

k

�

+ k

�

= (k



� k

Æ

� 1) + (k



+ k

Æ

+ 1) 2k



� 2k



+ 1 � 2k



+ 2

k

�

+ k

�

= (k



� k

Æ

) + (k



+ k

Æ

) 2k



� 2k



+ 1 � 2k



+ 2

k

�

+ k

�

= (k



� k

Æ

) + (k



+ k

Æ

+ 1) 2k



+ 1 � 2k



+ 1 � 2k



+ 3
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Conluding the proof of the lemma.

We return now to Theorem 8.1. Let J = f"

�

g be an ias in the doubly-

laed root system �, whih satis�es the one-free property. Then the restri-

tion J

s

of J to the short roots �

s

is one-free. Hene, by Theorem 7.1, J

s

is

aÆne, so that there are integers k

�

, � 2 �

s

, forming the oordinates of an

alove in �

s

, suh that "

�

= (�1)

k

�

for all � 2 �

s

.

Maintaining this hoie of alove in �

s

we intend to extend the integers

k

�

to the long roots. Taking into aount the third ondition of Lemma

8.5, we must de�ne k

�

, � 2 �

l

, by the expression (6) already used in the

simply-laed ase, but now with � a long root and � and  short roots, suh

that � = � + . Again, the very expression for k

�

ensures that "

�

= (�1)

k

�

.

Hene, in order to proeed we must prove that the integers k

�

, � 2 �

l

, are

well de�ned, and form the oordinates of an alove.

Lemma 8.6 Let k

�

, � 2 �

s

, be the oordinates of an alove in �

s

, repre-

senting J

s

. Let � > 0 be a long root with � = � + , � and  short roots,

and put

k

�

= k

�

+ k



+

1� (�1)

k

�

+k



"

�

2

: (7)

Then k

�

is independent of the short roots � and .

Proof: Let � = �

1

+ 

1

be another sum with �

1

and 

1

short roots. Denote

by V the subspae spanned by the roots �, , �

1

and 

1

, and let �

�

= V \�

be the orresponding subsystem. The possible dimensions of V are 2 or 3. If

dimV = 2, �

�

is a B

2

system, so that the omponents in the two sums are

equal. Similarly, in B

3

there is only one way of writing a long root as a sum

of two short roots. Hene we an assume that �

�

is C

3

.

By Proposition 4.3 any one-free ias in C

3

is aÆne. Of ourse, the

restrition J

�

of J to �

�

is one-free. Hene, there are integers, say m

Æ

,

Æ 2 �

�

, whih are the oordinates of an alove in C

3

, suh that "

Æ

= (�1)

Æ

for

all Æ 2 �

�

. In partiular k

Æ

� m

Æ

mod2 for every short root Æ 2 �

�

. The set

of short roots in C

3

forms an A

3

-root system, so that we an apply Corollary

7.6, to get � suh that for every short root Æ 2 �

�

we have k

Æ

= m

Æ

+ h�; Æi

and h�; Æi 2 2Z. Sine the long roots in C

3

are linear ombinations of short

roots with integer oeÆients, it follows that h�; Æi 2 2Z for the long roots

in �

�

as well. Therefore, m

Æ

+ h�; Æi, Æ 2 �

�

, are the oordinates of an alove

A

�

suh that J

�

= J (A

�

).
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Now, let � = � +  be as in the statement. By the third ondition in

Lemma 8.5 we have

m

�

+ h�; �i = k

�

+ k



+

1� (�1)

k

�

+k



"

�

2

:

Sine the left hand side is independent of the way � is written as a sum of

short roots, the lemma follows.

It remains to prove that the extension of k

�

to the long roots given by

(7) form the oordinates of an alove. For this we use Lemma 8.5, and verify

that the three onditions of that lemma are satis�ed. Firstly, the integers k

�

were hosen so that they form the oordinates of an alove on the short roots.

Also, the ompatibility ondition (3) follows immediately from the de�nition

of k

�

in (7). Hene, the point is to show that the integers k

�

are oordinates

of an alove on the long roots. At this point we onsider C

l

separately. In

fat, the set �

l

of long roots of C

l

is a deomposable root system with l

orthogonal positive roots. In suh a root system there are no restritions

on the integers to be the oordinates of an alove. In partiular, for C

l

the ondition of Lemma 8.5 regarding the long roots is vauous. Therefore,

Theorem 8.1 is true in the C

l

ase.

To onsider B

l

and F

4

we prove �rst the following easy lemma.

Lemma 8.7 Let J = f"

�

g be an aÆne ias in the root system

B

l

= f� (e

i

� e

j

) : 1 � i < j � lg [ f�e

i

: 1 � i � lg:

Suppose we are given integers k

i

, i = 1; : : : ; l suh that "

e

i

= (�1)

k

i

. Then

there exists an alove A with oordinates k

�

(A) satisfying k

e

i

= k

i

, i =

1; : : : ; l and suh that J = J (A).

Proof: Is similar to the proof of Lemma 7.4, after taking into aount that

the short roots e

i

, i = 1; : : : ; l, span B

l

over Z.

Finally, we an onlude the proof of Theorem 8.1 for B

l

and F

4

, by

showing that the extension de�ned in Lemma 8.6 are indeed the oordinates

of an alove on the set of long roots.

Lemma 8.8 Given k

�

, � 2 �

s

, de�ne k

�

, � 2 �

l

as in Lemma 8.6. Then

fk

�

g are the oordinates of an alove in �

l

.
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Proof: By Lemma 7.2 we must show that if �, � and � + � are long roots

then either k

�+�

= k

�

+ k

�

or k

�+�

= k

�

+ k

�

+ 1.

Write � = 

1

+ 

2

as a sum of short roots and denote by V the subspae

spanned by f�; 

1

; 

2

g. Let �

�

be the root system V \�. We laim that �

�

is a B

3

-subsystem. In fat, dimV > 1 beause � 6= �� and we annot have

dimV = 2, sine this would imply that �

�

is a B

2

-system, beause it ontains

short and long roots and a pair of roots (

1

and 

2

) whose sum is a root. But

in B

2

the sum of two long roots is not a root. Hene, dimV = 3. Analogous

arguments show that �

�

is irreduible. Now, �

�

has roots of di�erent length,

so that either �

�

= B

3

or C

3

. However, in C

3

no sum of two long roots is a

root. Therefore, �

�

= B

3

, as laimed.

By looking at the roots of B

3

we an ensure that, sine � + � is a root,

one of the roots in the deomposition of �, say 

1

, is suh that there exists

a short root Æ with � = �

1

+ Æ. Hene, � + � = 

2

+ Æ, and we have

� k

�+�

= k



2

+ k

Æ

+

�

1� (�1)

k



2

+k

Æ

"

�+�

�

,

� k

�

= �k



1

� 1 + k

Æ

+

�

1 + (�1)

k



1

+k

Æ

"

�

�

, and

� k

�

= k



1

+ k



2

+

�

1� (�1)

k



1

+k



2

"

�

�

.

These formulae imply that the dependene of k

�+�

�(k

�

+ k

�

) on the integers

k



,  2 �, is only mod2.

Now, we use the one-free ondition to get an alove A

�

in V suh that

J

�

= J (A

�

), where J

�

is the restrition of J to �

�

. For a root  2 �

�

,

"



= (�1)

k



(A

�

)

= (�1)

k



, so that k



(A

�

) � k



(mod2). The formulae above

are true with k



(A

�

),  2 �, in plae of k



. But we know that for the oor-

dinates of an alove either k

�+�

(A

�

)� (k

�

(A

�

) + k

�

(A

�

)) = 0 or 1. Hene,

either k

�+�

� (k

�

+ k

�

) = 0 or 1, onluding the proof of the lemma.
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