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Abstract

This paper considers invariant (1,2)-symplectic almost Hermitian
structures on the maximal flag manifod associated to a complex semi-
simple Lie group G. The concept of cone-free invariant almost com-
plex structure is introduced. Tt involves the rank-three subgroups of
G, and generalizes the cone-free property for tournaments related to
SI(n,C) case. It is proved that the cone-free property is necessary
for an invariant almost-complex structure to take part in an invariant
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(1, 2)-symplectic almost Hermitian structure. It is also sufficient if the
Lie group is not By, [ > 3, G4 or Fy. For B; and Fy a close condition
turns out to be sufficient.

1 Introduction

The subject matter of this paper is the invariant almost Hermitian structures
on the generalized flag manifolds associated to semi-simple complex Lie al-
gebras and groups. Let GG be a complex semi-simple Lie group and denote
by F = G/P the maximal flag manifold of G, where P is a Borel (minimal
parabolic) subgroup of G. Alternatively, F = U/T where U is a compact real
form of G and T'= P N U a maximal torus.

The U-invariant almost Hermitian structures on F have been studied
recently in [2] and [10] with different methods. First, in [2] the group G is
specialized to be Sl(n,C), so that U = SU (n) and F is identified with the
manifold of complete flags of subspaces of C*. In this case there exists a
natural bijection between the set of U-invariant almost complex structures
on F and n-player tournaments. Taking advantage of this bijection in [2]
the invariant structures were studied with the aid of the combinatorics of
tournaments (see also [3]).

On the other hand, [10] adopts the general set up, and studies invari-
ant structures on the flag manifold associated to an arbitrary semi-simple
complex group G. The methods of [10] are intrinsic in the sense that the
combinatorial questions are resolved within the framework of root systems
and Weyl groups.

In both papers the basic issue is the description of the (1,2)-symplectic
Hermitian structures. One of the main results is the derivation of a stan-
dard form for the corresponding invariant almost-complex structures. In [2]
the standard form is given in terms of stair-shaped incidence matrices of
tournaments, while in the general setting of [10] it is proved that the (1,2)-
symplectic Hermitian structures can be put in correspondence to the abelian
ideals of a Borel subalgebra. Although the results of [10] extend those of [2]
the proofs are completely independent. In particular, the notion of cone-free
tournament — which plays a central role in [2] as a necessary and sufficient
condition — does not appear in [10], leaving a gap in the development of the
theory.

The purpose of this paper is to fill this gap, by extending the cone-free



concept to the context of semi-simple Lie algebras, and analyzing its relation
to the (1,2)-symplectic structures. The cone-free property for the A; series
can be translated into a condition involving quadruples of roots, and thus
makes sense in general (see Definition 3.1). We maintain the name of cone-
free for the property stated in terms of roots. It is related to the (1,2)-
symplectic structures as follows: An invariant Hermitian structure is a pair
(J,A) with J a U-invariant almost complex structure and A an invariant
Riemannian metric. The cone-free property refers to the invariant almost
complex structures. Such a structure is said to be (1,2)-admissible if there
exists A such that (J,A) is (1, 2)-symplectic. We prove in Theorem 3.3 that
the cone-free property is necessary for J to be (1,2)-admissible. It is also
sufficient if the semi-simple Lie algebra does not contain components of the
types B;, [ > 3, G5 or Fy. The point is that for the Lie algebras with rank
> 3, the cone-free property concerns the restriction of .J to the rank-three
subalgebras, and is equivalent to (1,2)-admissibility in A3 and C3 but not
in B3. For this reason the correct condition for the Lie algebras B, and F}
(which are the only ones which contain Bs) is that the restriction of .J to any
rank-three subalgebra is (1, 2)-admissible.

We regard our approach here as an application of the affine Weyl group
characterization of the (1,2)-symplectic structures, proved in [10]. Indeed
we check that a certain J is (1,2)-admissible by showing that it belongs to
the class of affine invariant almost complex structures, which are defined
by means of alcoves of the affine Weyl group (see Definition 6.3 below). Tt
was proved in [10] that affine structures are (1, 2)-admissible and conversely.
Through the affine structures we have access to the algebra of integer al-
cove coordinates developed by Shi [11]. This algebra is used to solve the
combinatorial problems arising in the study of invariant structures.

The relation of cone-free tournaments with (1, 2)-symplectic structures on
the classical flag manifolds is discussed in Mo and Negreiros [7] and Paredes
[9]. The necessity of the cone-free property for (1,2)-admissibility was first
stated and proved in [7], with the aid of the moving frame method, while
evidence for sufficiency was provided in [9], by checking small-sized tourna-
ments. A general proof of sufficiency for tournaments of arbitrary size was
given in [2].

Our attempt to understand the (1,2)-symplectic structures was moti-
vated by the study of harmonic maps into flag manifolds. However, after
studying them in [10] it became clear that among the invariant almost Her-
mitian structures on the flag manifolds the (1,2)-symplectic ones form an
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outstanding class, allowing the classification of the invariant structures given
in [10].

2 Preliminaries

Let g and b be a simple complex Lie algebra and a Cartan subalgebra. Denote
by II the set of roots of the pair (g, h), and let

go={X€g:VHEeh [H X]=a(H)X}

be the one-dimensional root space corresponding to e € II. Given o € h* we
let H, be defined by « (-) = (Hy, -), where (-, ) stands for the Cartan-Killing
form of g and define hr to be the subspace spanned over R by H,, a € TI. We
fix once and for all a Weyl basis of g which amounts to choosing for each o € Tl
an element X, € g, such that (X, X_,) = 1, and [X,, X3] = mq sXaip with
M € R, m_q_p = —mgp and myz = 0if o+ is not a root (see Helgason
[4], Chapter IX).

Given a choice of positive roots TIT C TI, denote by ¥ the corresponding
simple system of roots and let p = h @ > .+ go be the Borel subalgebra
generated by TT*. Let F = G/P be the associated maximal flag manifold,
where G is any connected complex Lie group with Lie algebra g and P is the
normalizer of p in G. Let u be the compact real form of g spanned by ihg
and A,, iS,, a € II, where A, = X, — X_, and S, = X, + X_,. Denote by
U the corresponding compact real form of G. By the transitive action of U
on F we can write F = U/T where T = PN U is a maximal torus of U.

If by stands for the origin of IF, the tangent space at by identifies naturally
with the subspace q C u spanned by A,, iS,, @ € II. Analogously, the
complex tangent space of I is identified with qc = g © h C u, spanned by
the root spaces g,, a € II. Clearly, the adjoint action of T on g leaves g
invariant.

2.1 Invariant metrics

A U-invariant Riemannian metric on F is completely determined by its value
at bg, that is, by an inner product (+,-) in q, which is invariant under the ad-
joint action of 7. Such an inner product has the form (X,Y), = —(A(X),Y)
with A : ¢ — q positive-definite with respect to the Cartan-Killing form. The
inner product (-,-), admits a natural extension to a symmetric bilinear form
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on the complexification q¢ of q. These complexified objects are denoted the
same way as the real ones. The T-invariance of (-, -), amounts to the elements
of the standard basis A,, iS,, a € II, being eigenvectors of A, for the same
eigenvalue. Thus, in the complex tangent space we have A (X,) = A\, X,
with A\, = A_, > 0. We denote by ds% the invariant metric associated with
A. In the sequel we allow abuse of notation and write simply A instead of

2
dsy.

2.2 Invariant almost complex structures

In the sequel we use the abbreviation iacs for U-invariant almost complex
structure on F. An zacs is completely determined by its value .J : ¢ — q in the
tangent space at the origin. The map J satisfies J?> = —1 and commutes with
the adjoint action of 7" on q. We denote by the same letter the real valued
structure J and its complexification to qc. The invariance of J entails that
J (8a) = ga for all a € TI. The eigenvalues of J are i and the eigenvectors
in qc are X,, a € II. Hence J(X,) = ic, X, with g, = +1 satisfying
€q = —€_o. As usual the eigenvectors associated to +i are said to be of
type (1,0) while —i-eigenvectors are of type (0,1). Thus the (1,0) vectors
are linear combinations of X, £, = +1, and the (0,1) vectors are spanned
by X,, o = —1.

An iacs on F is completely prescribed by a set of signs {£,}aen with
£_q = —€_q. In the sequel we allow some abuse of notation and identify the
invariant structure on F with J = {g,}.

Since F is a homogeneous space of a complex Lie group it has a natural
structure of a complex manifold. The associated integrable iacs J. is given
by e, = +1 if @ < 0. The conjugate structure —.J. is also integrable. These
are called the standard iacs.

2.3 Kahler form

It is easy to see that any invariant metric ds3} is almost Hermitian with
respect to any iacs J, that is, ds3 (JX,JY) = ds3 (X,Y) (cf. [13], Section
8). Let 2 = Q5 stand for the corresponding Kéahler form

Q(X,Y) =ds; (X,JY) = —(AX,JY).

This form extends naturally to a U-invariant 2-form defined on the complex-
ification qc¢ of q, which we also denote by €2. Its values on the basic vectors



are:
Q (Xa, Xﬁ) = —i)\a85<Xa, X5>
Since (X,, Xg) = 0 unless § = —a, 2 is not zero only on the pairs (X,, X_,),
at which Q takes the value 1\,2,.
The following formula is well known (see [6]).

Lemma 2.1 Let w be an invariant k-differential form on the homogeneous
space L/H. Then

dw (Xla SR 7Xk+1) = (k + 1) Z (_1)i+jw <[X17XJ]JX17 SR 7552'; s "?ja s 7Xk+1) .
i<j

for Xq,..., Xy11 in the Lie algebra [ of L.

Specializing this lemma to the form 2 we get
1

From (1) an easy computation yields that d2 (X,, Xg, X,) is zero unless
a+ [+ v =0. In this case

dQ (Xa, X5, X)) = —i3mas (Eada + €505 + E4Ay) (2)

with m, s as in Section 2 (cf. [10], Proposition 2.1).
Taking into account (2) we make the following distinction between two
types of roots triples.

Definition 2.2 Let J = {e,} be an iacs. A triple of roots «, 5,y with a +
B+~ =0 is said to be a {0,3}-triple if eo = cg = €4, and a {1,2}-triple
otherwise.

Recall that an almost Hermitian manifold is said to be (1, 2)-symplectic
(or quasi-Kéhler) if
dQ(X,Y,Z) =0

when one of the vectors X,Y, Z is of type (1,0) and the other two are of
type (0,1).The structure is (2, 1)-symplectic if the roles of (1,0) and (0, 1)
are interchanged. Accordingly, the structure is (7, j)-symplectic if the (i, j)
component dQ7) of dQ is zero.

In our invariant setting we have the following criterion for an invariant
pair (J,A) to be (1,2)-symplectic, which follows immediately from formula
(2), and the fact that X, has type (1,0) ife, = +1 and (0,1) ife, = —1 (see
[10], Proposition 2.3 and [13], Theorem 9.15).
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Proposition 2.3 The invariant pair (J = {e,}, A = {\.}) is (1, 2)-symplectic
if and only if
Eala +EAg + 4N, =0

for every {1,2}-triple {c, 5,~}.

In the sequel J is said to be (1,2)-admissible if there exists A such that
the pair (J, A) is invariant and (1, 2)-symplectic.

3 The cone-free property

Given a set of four roots ¢ = {a, 3,7,0} with a+ 3+ v+ 0 = 0 we say
that a triple of roots {(u+v),w;,ws} is extracted from ¢ by w and v if
{u,v,wi,we} = {a, B,7v,0}. Of course, any such triple satisfies (u+v) +
wy + wo = 0. The cone-free condition is stated in terms of such triples.

Definition 3.1 Let J = {e,} be an iacs. We say that J is cone-free if the
following condition is satisfied:

e Ifq={«a,B,7,d} contains no pairs of opposite roots and a+ +vy+0 =
0 then the number of {0,3}-triples extracted from q is different from 1.

In this definition the hypothesis that the quadruples do not have opposite
roots is redundant and is included only for emphasis sake. Indeed, suppose,
for instance, that § = —a. Then § = —~, and the possible triples extracted
from the quadruple are (o + v, —a, —7), (o — v, —, ), (—a + 7, @, —7) and
(—a— 7y, a,v). Tt is easy to see that in this set {0, 3}-triples appear in pairs,
independently of .J.

Except when the root system is G5 the cone-free property is a condition
on the rank-three subsystems of the root system. In fact, since there are no
opposite roots in {«, 3,7, d} the subspace V' spanned by these roots is either
two or three dimensional. However, it is easy to see that in the rank-two root
systems A; @ Aq, Ay and By, which are different from G5, there are no such
sets of roots. Hence, the intersection of IINV is a rank-three root system if
we are not in Gy (see Section 5 below for a discussion of G).

The explanation for the term cone in the above definition comes from the
relation between iacs in the flag manifolds of the A; series (the Lie algebras
sl(n,C), n = [+ 1) and tournaments. Recall that an n-player tournament is



a complete directed graph T'= (N, E) where N is an ordered set, |[N| = n,
and F stands for the arrows of 7. With each tournament 7T there is assigned
its incidence matrix ¢ = ep, which is a real skew-symmetric matrix with all
off-diagonal entries +1. If (a,b) € F we say that a wins against b and set
Eab — 1 and Eba — —1.

On the other hand, in the standard realization, the roots of A; are oy,
1 <j#k<I[l+1, with ag; = —a;. Thus an iacs on the corresponding flag
manifold is given by the signs e, = 4, = *1, j # k. These numbers are
assembled to form the incidence matrix € of some tournament, establishing
a one-to-one correspondence between the iacs on the maximal flag manifold
of A; and n-players tournaments.

A 3-cycle in a tournament is a 3-players subtournament {i, j, k} which
forms the loop ¢ — 7 — k£ — 7. When T is the tournament associated to the
iacs J, a 3-cycle {i,j,k} corresponds to the {0, 3}-triple {c;, ok, i} (see
[2]).

Now, up to isomorphism, there are four distinct 4-player tournaments.
The two of them which contain a single 3-cycle are called cones. Each of
them contains a cycle and a winner or a loser. The other equivalence classes
of 4-player tournaments contain an even number of cycles (zero or two).

Proposition 3.2 In the mazimal flag manifold associated to A,_1 = sl (n,C),
an iacs is cone-free in the sense of Definition 3.1 if and only if no 4-player
subtournament of the associated tournament is a cone.

Proof: Assume first that an iacs J with corresponding tournament T is
cone-free in the sense of Definition 3.1. Let {4, j, k, [} be a 4-player subtour-
nament, and consider the corresponding set of four roots {e;, o, v, i }
which satisfies

Q5 + O + o + o = 0.

From this set we extract the four triples {ax, agr, i}, {0, aus, ij by { o, g, i}
and {ay;, g, g }. Each one of these triples corresponds to a 3-player sub-
tournament (e.g. {aux, ag, oy} is associated to {4, k,[}), in such a way that
{0, 3}-triples correspond to 3-cycles. Hence, by our generalized cone-free
condition {i, 7, k,[} is not a cone.

For the converse, note that a set of four roots {«, 3,7v,d} with a+ 5+~ +
0 = 0 which do not contain opposite roots spans a rank-three root subsys-
tem, and hence the set has the form {w;;, o, o, cui} for 1 < 4,5, k1 < n.
Repeating the above argument we get the generalized cone-free condition if



the tournament has no cones. ]

We proceed now to prove that the cone-free condition is necessary for an
iacs to be (1,2)-admissible. Write dQ{%3 = dQ(®3) 4+ dQGO and dQi1? =
dQ02) 4+ dQ>Y | so that

dQ = d103 + gt

We get a necessary condition for dQ{"?} = 0 by exploiting the fact that
d? = 0, computing formally d*Q (X,, X35, X,, X;). Analogous to the case of
dQ) the only quadruples {«, ,7,0} of interest are those satisfying o + 3 +
v+ 6 = 0. Using the exterior derivative formula of Lemma 2.1, we get for
these quadruples, that d?Q is the sum of the following six terms:

1. +Mg By 5 8a+5)\a+5 + 87)\ + 85)\5

2. —MaMB.§ 8a+7 aty T 85)\5 + g5
5a+6)\a+6 + 65)\5 + 67
4. +mpg M s 85+7)\,3+7 + Eqla + E5As

5. —Mg,sMa,y 85+5)\5+5+8a)\ +57

5 ( )
( )
o ( )
( )
( 7)
( )

6. +m., sMaz 674_5)\74_5 + £ala +€5)\5

These terms cancel mutually (e.g. the coefficient of £, is mq gm. 5 +
Mg Mas + Myamgs which is known to be zero, see [4], Lemma IIT 5.3).
In order to look at them closer let us take, for instance, the first one. The
coefficient m, g is not zero if and only if oo + 3 is a root. But oo + 3 =
— (v 4+ 0), so that both coefficients m, g and m. s are simultaneously zero or
not. The same remark is true for the other terms. Next, in each term the
sum appearing in braces has the form d2 (X¢, X, Xy) with (£,7,0) a triple
extracted from {a, 3,7, d} if the coefficients m, . are not zero.

These comments yield an alternative proof of the following result of [7].

Theorem 3.3 A necessary condition for (J, A) to be (1,2)-symplectic is that
J s cone-free in the sense of Definition 3.1.



Proof: Let ¢ = {a, 3,7, 0} be a root quadruple such that a4+ f+~v+d = 0.
Among the six terms above, those corresponding to {1,2}-triples extracted
from ¢ are zero if dQ1"% = 0. On the other hand a term corresponding to an
extracted {0, 3}-triple is not zero. Hence, for d?€) to be zero it is not possible
to extract just one {0, 3}-triple. O

4 Rank-three Lie algebras

The cone-free condition involves sets of four roots whose sum is zero in such
a way that no two roots are opposite to each other. This has the consequence
that the subspace spanned by the roots is three dimensional if the root system
is not GG5. Hence, excluding G5 the cone-free condition refers to the rank-
three subsystems of roots. The purpose of this preparatory section is to look
at those rank-three root systems (mainly the irreducible ones Az, B; and Cj)
required to study the cone-free condition in general root systems.

Note first that the rank-three reducible root systems are A; & A, & Ay,
A1 Ay and A; @ B,. 1t is easy to check that any iacs in these root systems
are (1,2)-admissible, and thus satisfy the cone-free condition.

Concerning A3 = sl(4,C), an dacs J on the maximal flag manifold cor-
responds to a 4-tournament 7. By Proposition 3.2, J satisfies our cone-free
condition if and only if 7" does not contain a cone. We know that such iacs
are (1,2)-admissible (see [2], [3]). Actually, the set of cone-free iacs has two
equivalence classes, which are represented by the incidence matrices

0 1 1 1 o 1 1 -1
-1 0 1 1 -1 0 1 1
-1 -1 0 1 -1 -1 0 1 ’ (3)
-1 -1 -1 0 1 -1 -1 0

The class represented by the first matrix consists of the standard acs.
Now, we look at the more delicate B3. In its standard realization the
positive root system is L U S where L = {e; +¢; : 1 < i < j < 3} and
S ={e; : 1 <i < 3} are the sets of long and short roots, respectively.
The set L is isomorphic to the positive root system Lz = {a;; : 1 <i <
J < 3} of A3z via the bijection:

o Slrnple roots: g > €5 — €3; Qag <> €1 — €3] (i34 < €9 + €3.
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) Helght 2: a3 &> ep — €3; (i34 <> €1 + e3.

° Helght 3: g &> e+ eq.

Now, let .J = {e,} be a cone-free iacs in Bs. Its restriction J' to L is
also cone-free so that we can assume that it is represented by one of the two
matrices in (3). It remains to see what happens at the short roots e;, e5 and
es. Regarding e3, we can assume without loss of generality that ., = +1. In
fact, the reflection r3 with respect to e3 leaves L3 invariant fixes the highest
root e; + e5. Hence, we can replace J by r3 - J without affecting its values in
Ls if J! is represented by one of the matrices in (3). As to e; and ey we have

Lemma 4.1 ¢, =¢,,.

Proof: Consider the quadruple (—e;) + (e1 — e3) + (e2 — e3) + e3 = 0. The
triples extracted from it are {—es, e — €3,€3}, {—e1 + €3,€1 — 9,69 — €3},
{es, —e1,e1 — ez} and {e; — e3, —eq, e3}.

Note that {—e; + e3,e; — es,e9 — €3} is a {1,2}-triple. Suppose that
£e, = —1. Then {—ey, €9 — e3,€3} is a {0, 3}-triple, and {ey, —ey, €1 — €3} is
a {1, 2}-triple, forcing the last triple to be {0,3}, which implies £,, = —1.
The root e; + e; does not appear in the extracted triples, ensuring that our
arguments are independent of the choice of J!.

On the other hand from the quadruple (e; — e3) + (e2 +e3) + (—e1) +
(—e3) = 0, the only extracted triple which is not automatically of type {0, 3}
is {ey, €1 — €9, —e1 }. Hence, this set must be a {1, 2}-triple, so that ., = +1
implies €., = +1. Again the extracted triples do not involve e; + e3, hence
it is immaterial which of the J"’s we consider. (]

We arrive at the following description of the cone-free iacs on Bj.

Proposition 4.2 Denote by M (J) the set of positive roots o of Bs such that
€o = —1. Fizing the choices of J' given by (3) and ., = +1, the possible
iacs satisfying the cone-free condition are:

2. M (J2) ={e1 + e}
3 M (Jg) = {61,62}.
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4. M (J4) = {61,62,61 + 62}.
Among them the only (1,2)-admissible iacs are J; and J,.

Proof: The (1,2)-admissibility of J; and Js is a consequence of the abelian
ideal shape of [10]. On the other hand, J; and J; are not (1,2)-admissible.
To see this consider the triples {e, e; +e3, —es} and {ey, e3, —e; —e3}. They
are {1,2}-triples for both J3 and .J;. Now, assume that A = {\,} is (1, 2)-
symplectic with respect to J; or Jy. Then M. i, = Aoy + Ay and A, =
Ae; + Aeytey, forcing A, = 0, a contradiction.

Finally, it is straighforward but cumbersome to verify that J; and J; in-
deed satisfy the cone-free condition. One must write down the quadruples of
roots of B3 summing up zero, and their extracted triples, and check that the
{0, 3}-triples do not appear isolated. ]

The discussion of C3 follows the same pattern as that of Bz. In the
standard realization of ('3, its short roots coincide with the long roots of Bj,
whereas the long roots are given by +2e¢;, « = 1,2,3. Again we can assume
that the restriction J* of a cone-free sacs J to the short roots has one of the
incidence matrices (3). Also, after applying the reflection with respect to e3
we can assume that 9., = +1. With the aid of these choices we can check
the quadruples of C3 and prove the

Proposition 4.3 Denote, as before, by M (J) the set of positive roots o of
Cs such that e, = —1. Fizing the above choices of J° and ., = +1, the
possible iacs satisfying the cone-free condition are:

2. M (JQ) == {61 + €9, 261}.
3 M (Jg) = {262, e+ €2, 261}.

Fach M (J;), i =1,2,3, is an abelian ideal of the set of positive roots, so
that the cone-free iacs are (1,2)-admissible.

Proof: The proposition is a consequence of the following implications:

Eeiter — +]- = €2y = €2¢; = +]-7 €ejtes — 1= €2¢; = —L
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which are easy consequences of the cone-free property applied to the quadru-
ples {€1 — e9,2ey, —€s + €3, —€1 — €3}, {€1 — ea,€1 — €3,e5 + €3, —2€;} and
{e; — e, €9 — €3,€1 + €3, —2e1 }, respectively. ]

5 G

As mentioned above, (G5 is the only rank-two root system where the cone-free
condition is not vacuous. For the sake of completeness we analyze here the
tacs on G which satisfy this condition. We write the positive roots as
31 a1+ oy o + 20&2 a1 + 3042 20&1 + 30&2.

2
The set of short roots {+am, + (a1 + a2) , + (a1 + 2a5)} is an As-root system.
Let .J be an iacs on (G and denote by .J° its restriction to the set of short
roots. In A, there are two equivalence classes of iacs, so that we can assume
without loss of generality that J*® is one of the following two iacs:

1' Jf = {8062 = +178a1+a2 = +]‘78041+2a2 — —|—1}
2. JQS - {60‘2 =+1, 84140, = +1,€01420, = —1}.

Denote by r the reflection with respect to ay. It satisfies ras = oy + a»
and r (a1 + 2a) = a3 + 2ay. This implies that r leaves .J® invariant. Hence,
we may assume that e,, = +1.

Now, assuming that J satisfies the cone-free condition, it remains to de-
termine the values of 4,134, and €24, 134,. Up to change of signs there are
the following three zero-sum root quadruples:

Logi: (aq) + (a2) + (a1 + 2a2) + (=21 — 3az) = 0.
2. qo: (a2) + (Oél + 042) —+ (Oél —+ 042) —+ (—2041 — 30(2) =0.
3. q3: (1) + (ag +3az) + (—a; — o) + (—a; — 2a) = 0.

First suppose that J° = .J;. Writing down the triples extracted from g,

it is straighforward to check that ¢,,13., = —1 implies that €94, 43., = —1.
Hence, the possible cone-free iacs are i ++++, i ++4+—and i ++——.
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By the abelian ideal property stated in [10], these iacs are (1,2)-admissible,
and hence they are indeed cone-free.

Suppose now that J° = .J;. Looking at the triples extracted from ¢, it
is easy to see that 4,134, = +1 implies €24, 134, = +1. Since there are no

other restrictions, the cone-free iacs are i + -+ +, i + — —+ and
i + — — —. The last one is (1,2)-admissible, whereas, similar to the Bj

case, one can check that the first two are not (1,2)-admissible. (We remark
that in checking the cone-free property the quadruple ¢, is irrelevant, since
in it each extracted triple appears twice.)

6 The affine Weyl group

In this section we recall the definition of the affine iacs introduced in [10].
These structures are constructed by counting hyperplanes separating a given
alcove and the basic one. We refer to Humphreys [5] as a basic source for
the affine Weyl group. Consider the subspace hg introduced in Section 2. To
conform with the usual notation we often identify bgr with its dual b and
write (z, «) instead of « (), x € br, a € hi. Given a € IT and k € Z define
the affine hyperplane

H(a,k)={z € br: (z,a) = k}.

The complement A of the set of hyperplanes H (o, k), a € 11, k € Z,
is the disjoint union of connected open simpleces called alcoves. Given an
alcove A and a root «, by definition there exists an integer k, = k, (A4) such
that

ko < {x,0) < ko+1 r € A

Of course, k, = [a(z)] for any x € A where [a] denotes the integer part
of the real number a. According to Shi [11], the integers k, (A) are called
the coordinates of the alcove A. An alcove is completely determined by its
coordinates. A necessary and sufficient condition for k., a € II, to be the
coordinates of an alcove are given by the inequalities below. In writing down
these inequalities we must look IT as the set of co-roots of another root system
I1:
2ce

1= {« :m:aeﬂ}.
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The root system is normalized so that || =1 if v is a short root.

Proposition 6.1 A set of integers k,, o € ﬁ+, form the coordinates of an
alcove if and only if for every pair of roots o, B € Il such that o+ 5 € 11, the
following inequalities hold:

ko + |61k +1 < o+ B (kats +1) (1)
< ko + |BPks + a2+ |82+ |a + B2 - 1.

Proof: See [11], Lemma 1.2 and Proposition 5.1. O

Remark: [t is easy to see that the inequalities in this proposition are equiv-
alent to
ol ko 18 ks + P hy < 1.

For later reference we note also the following easy necessary condition.

Lemma 6.2 A necessary condition for the integers ko, € 7, a € 11, to be the
coordinates of an alcove is that ko p is either ko +kg or ko + ks +1 whenever
a, B and o+ 3 are roots.

Proof: We have, forallz € A, k, < (z,a) < ko+1and kg < (z,5) < kg+1,
so that
ko +ks < (r,a+ ) < ko+ksg+2.

Hence, the integer part of (xz,a + () is either koip = ko + kg oOr korp =
ko + kﬁ + 1. U]

Definition 6.3 Given an alcove A with coordinates {k, : o € I1}, the iacs
J(A) = {ea (A)} is defined by eq (A) = (—=1)™. We say that J is an affine
iacs if it has the form J = J (A) for some alcove A.

Note that J (A) is indeed an iacs, since k_, = —kq —1, so that e_, (A) =
—£4 (A). The following theorem is one of the main results in [10]. It provides
the criterion which will be used in the sequel for ensuring that iacs are (1, 2)-
admissible.

Theorem 6.4 An iacs J is (1,2)-admissible if and only if it is affine.
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7 Simply-laced root systems

In this section we prove that the cone-free condition is sufficient for an iacs to
be (1, 2)-admissible, in case the algebra g has a simply-laced Dynkin diagram,
ie. Il = A, D,, Eg, E; or Eg. The doubly-laced case will be treated in
Section 8. We use the equivalence between the affine and (1,2)-admissible
iacs, as stated in Theorem 6.4, and construct an alcove A such that J = J (A)
if J satisfies the cone-free condition. Thus the purpose of this section is to
prove the following statement.

Theorem 7.1 Let II be a simply-laced root system, and suppose that J =
{ea} is a cone-free iacs on F. Then J is affine.

The proof will consist of several steps. By definition of affine iacs we
must find a set of integers {k, : @ € II} satisfying the inequalities of Shi (4)
such that e, = (—1)*, a € II. In a simply-laced root system the roots have
the same length, simplifying these inequalities. In fact, we have the following
equivalent condition for a set k, to be the coordinates of an alcove.

Lemma 7.2 Let IT be simply-laced. Then the integers k, € 7Z, a € 1I,
form the coordinates of an alcove if and only if either korp = ko + kg or
ka+p = ko + kg +1 when o,  and o + B are roots.

Proof: The condition is necessary by Lemma 6.2. Conversely, if II is simply-
laced, the ||2 appearing in inequalities (4) are equal to 1, hence they reduce
to

ko + kg < koyp < ko + kg + 1.

Therefore, these inequalities are satisfied by k,, a € II, if they are under the
conditions of the statement. (]

Before proceeding we prove some lemmas.

Lemma 7.3 Let II, C II be a root subsystem of II. Then II} =TI, NTI" is
a choice of positive roots in 1l,.

Proof: There exists v € by such that

It ={aell: {a,~) >0}
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Of course, (o, v) # 0 for all & € TI. Let ; be the orthogonal projection of v
onto the subspace of hi spanned by Il,. For g € II, we have (3,v) = (8, 11),
so that (3,7) # 0 for all 8 € TI,. Hence, 7, is regular for II,, implying that

] = {8 €L : (B,7) > 0}

is a choice of positive roots in II,. Using again (5,v) = (B,71), B € I, it
follows that IT} =TT, N TI*, proving the lemma. ]

Lemma 7.4 Fiz a simple system of roots ¥, and let J = {e,} be an affine
iacs. Suppose that a set of integers my € Z, a € X, satisfies e, = (—1)™.
Then there exists an alcove A such that J = J (A) and ko (A) = m,, a € X.

Proof: Put ¥ = {o,..., o} and define {wy,...,w} by (a;,w;) = d;;. Also,

let A' be an alcove such that J = J(A'), that is, &, = (—1)k°‘(A1). Since
€a = (—=1)™*, the integers m,. — ko, (A') are even. Now, a translation ¢,
with A spanned over Z by w;, i = 1,...,[, maps alcoves into alcoves, and the
coordinates are changed according to

kao (tAA) = <av )‘> + ka (A) . (5)

Take A = do,w;+- - -+ dp,wi, With do, = mg, —ka, (A'). Then the coordinates
of A = ty\A" are k, (A) = (a, \) + ko (AY), and since (@, \) is even for all
«, we conclude that J = J (A). Furthermore, for a simple roots a; we have
ko, (A) = dy, + ko (AY) = m,,, proving the lemma. [l

Now, for proving Theorem 7.1 we construct k., a € II, by induction on
the height of a. Thus let us fix once and for all a simple system of roots ¥
with ITT the corresponding set of positive roots. Then given .J = {g,} define:

1. Let @« € X. Then k, = (1 —¢,) /2.
2. Let «, 3, € I be such that & = 3 + . Then

1—(—1)fethr g,

ko = ks + ky +

3. Let « € —II". Then k, = —k_, — 1.
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A case by case analysis shows easily that the coordinates {k,} so defined
satisfy £o = (—1)". Also, the condition of Lemma 7.2 is readily satisfied.
The point is to show that k, is independent of the decomposition o = 5+
used in (6). We prove this by induction on the height h («) of « € ITT. If
h (o)) = 1, the root is simple, and no decomposition o = § + v, f,v € II"
exists, hence k, is well defined.

Now take o € TI™ such that a = 8 + v = 2 + Ve, (i, @ = 1,2, positive
roots, and hence having height smaller than h («). By the inductive hypothe-
sis kg;, kv;, 1 = 1,2 are well defined. We must show that kg, +Fk,, = kg, +k,,.

Denote by V' C b the subspace spanned by i, 71, B2 and v,. We have
dimV =2 or 3.

In case dimV = 2, the subset V' N1II is a rank-two system of roots,
containing two roots (3; and 7;) whose sum is a root. Hence V NI is
irreducible, and since our original root system is simply-laced, it follows that
V' NIIis an Ay system. Now, in Ay a root is written uniquely as a sum of
two roots, hence there is nothing to prove.

Suppose then that dimV = 3, and let II, = V N 1II be the corresponding
rank-three system. Since the roots in II have the same length, either II, =
A; @ Ay or II, = A;. Again, there is nothing to prove in the A; & A, case.

Assuming that II, = Ajs, let J, be the restriction of J to II,. Then .J, is
(1, 2)-admissible and hence affine.

Now, by Lemma 7.3, IT} = IT,NIT" is a positive root system. Let ¥, C IT™
the corresponding set of simple roots.

Lemma 7.5 « is the highest root in II}.

Proof: Write the positive roots of A3 as a;j, 1 <1 < j <4, so that « is one
of these roots. It is not a simple root, since o = 31 + v, with £y, € II}.
Also, a root of height 2 in A3 is written uniquely as a sum of two posi-
tive roots. Hence the height of « in II} is not 2, since dimV = 3 and
a = 1 + 71 = B2 + 2. Therefore, the height of « in TI is three, that is, «
is the highest root. L]

By this lemma and the equality II} = II, N II"™ we conclude that the
height of « in TI* is bigger than the height (in II™) of any v € X,. Hence,
the inductive hypothesis ensures that k. is well defined for v € X,.

Now, by the cone-free assumption, there exists an alcove A* in the affine
system of TI, such that J, = J(A*). By Lemma 7.4 we can choose A* so
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that k, (4*) = k, for all v € ¥,. The integers ks (A*), 6 € II,, satisfy the
conditions of Lemma 7.2. Also, J, = J(A*) is the restriction of J to II,.
Hence starting with k., (A*) = k,, v € X,, the values of ks (A*), 0 € I}, are
determined according to the rules used to define k,. This means that within
IT}, ko is well defined. However, the decompositions o = 31 + v = B2 + 7o
are inside IT}, so that the value of k, does not depend upon one of these
decompositions, concluding the proof of Theorem 7.1.

Corollary 7.6 In a simply-laced situation let A* and A? be alcoves such that
J (AY) = J (A?%). Then there exists X with (\,a) € 27Z for every root o such
that A* = tyA'.

Proof: As in the proof of Lemma 7.4 let {a4,...,q;} be a simple system of
roots and {wy,...,w;} its dual basis, and put

A =dp,wi + -+ do,w

with do, = ka, (A?) — ko, (A'). The assumption J(A') = J(A?) implies
that d,,, i = 1,...,[, are even integers, so that (\,«) € 2Z for all o € IIL.
According to the change of coordinates formula (5), to see that A% = ¢, Al
we must check that k, (4%) = (\, @) +k, (A') for every positive root a. This
is done by induction on the height of a: If a is simple, the equality holds
by definition of A. On the other hand if & = 3 + v with 8,y € TI", we
assume by induction that the equality is true for § and . In particular,
kg (A') + ky (AY) = kg (A?) + k., (A?) mod2. Now, from the construction
performed in the proof of Theorem 7.1, it follows that formula (6) holds for
both sets of integers ks (A') and ks (A?), § € TI, with the same &,. Therefore,
ko (AY) — kg (A") — k, (A") is independent of ¢ = 1,2. Thus applying the
inductive hypothesis we get

ko (A7) = ka (A") + (A, B) + (X, 7) = ka (A7) + (X, ),
concluding the proof. []

Remark: It is worth mentioning that with Theorem 7.1 we get an indi-
rect proof of a result in tournament theory, namely Theorem 3.5 of [2] which
asserts that the vertices of a tournament 7" can be rearranged so that its inci-
dence matrix becomes stair-shaped in case 1" has no cones. In fact, this result
follows by piecing together Proposition 3.2, Theorem 7.1 and the results of
[10] on invariant almost complex structures (see [10], Theorem 4.12).
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8 Doubly-laced root systems

In this section we look at the cone-free property for the doubly-laced diagrams
(By, C; and Fy). The final result for C; differs from B; and F}.

Theorem 8.1 Let II be a root system and J an iacs on the corresponding
mazimal flag manifold.

1. Suppose that I1 is C;. Then J is affine (and hence (1,2)-admissible) if
and only if J satisfies the cone-free property.

2. Suppose that 11 is B; or Fy, and that the restriction of .J to any rank-
three subsystem is affine. Then J is affine, and hence (1,2)-admissible.

Remark: The rank-three condition for B;and F} is equivalent to .J being
cone-free together with the additional assumption that the restriction of .J to
any Bs-subsystem is affine. This assumption is not required for C} because
it does not contain Bj-subsystems.

The proof of Theorem 8.1 uses the corresponding result for simply-laced
diagrams (Theorem 7.1), applied to the set of short roots of II. Let II* and
1! denote the sets of short roots and long roots, respectively. We have the
disjoint union IT = TT*UTT'. Both sets IT* and IT* are simply-laced root systems
(for example, in IT = By, T is a D; while TI° is reducible with [ orthogonal
components).

Let J? stand for the restriction of J to II°. Clearly, under the conditions
of Theorem 8.1, .J* satisfies the cone-free assumption of Theorem 7.1, so that
J* is affine in TI*. Thus there are integers ko, o € IT%, with £, = (—1)** such
that k, form the coordinates of an alcove in TI*. We shall prove Theorem 8.1
by extending these coordinates to IT'.

For the doubly-laced root systems, we have the following characterization
of the coordinates of alcoves, which is obtained from the inequalities of Shi
after a case-by-case analysis.

Proposition 8.2 In a doubly-laced root system a set of integers ko, o € 7,
are the coordinates of an alcove if and only if the following inequalities are
satisfied. Fach inequality is satisfied by a triple of roots as indicated, where
s means short root and | long root.

1. (o, B,a+B) = (L,4L1D): ka+ ks <kays <ka+ks+1
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2. (o, B,a+B) = (8,8,8): 2kq + 2k + 1 < 2kqip+2 < 2k + 2ks +5
3. (e, Bya+20) = (1,8,1): ko +2kp < korop < ko + 2ks + 2
4. (o, B, (a+B)/2) = (I,1,5): ka + kg < 2k(aspy2 +1 < ka+ksg+2

Proof: See [10], Proposition 5.4. O

Lemma 8.3 Suppose the doubly-laced root system 11 is irreducible, and let
« be a long root. Then there exists a short root B such that («, 8) # 0.

Proof: There are a long root «; and a short root 31 such that {(ay, ) # 0
(look e.g. at the Dynkin diagram). The Weyl group W leaves invariant both
IT" and TI*%, and since I1 is irreducible, these subsets are orbits of W. Hence,
for a long root « there exists w € W with o« = wayy. Thus, (o, wf) # 0. O

Lemma 8.4 Let a be a long root. Then there are short roots 3 and v such
that

a=[p+7.

Proof: By the previous lemma there exists a short root § with («, 3) # 0.
Let I, be the intersection of IT with the subspace spanned by « and . It has
rank-two and contains two roots « and 3 of different length with (a, 8) # 0.
Hence II, is a By. The lemma follows then by looking at the roots of By. [

Now, we write down the conditions for a set of integers to be the coordi-
nates of an alcove in terms of the short and long roots.

Lemma 8.5 In a doubly-laced root system II the following conditions are
necessary and sufficient for a set of integers k., o € 11, to be the coordinates
of an alcove:

1. The integers ko, o € TI', are the coordinates of an alcove in the root
system of the long roots.

2. The integers ko, o € 11°, are the coordinates of an alcove in the root
system of the short roots.
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3. Take a long root « = [ + v with  and ~ short roots. Then either
ko = kg +ky or ko = kg + ky + 1.

Proof: Suppose first that k,, o € I1, are the coordinates of an alcove. Then
the first and second sets of inequalities in Proposition 8.2 together with the
corresponding inequalities in the simply-laced case show that the restriction
of k, to the long roots as well as to the short roots are coordinates of alcoves.
Furthermore, the last condition is necessary by Lemma 6.2.

We prove sufficiency by showing that the three conditions of the lemma
imply the inequalities of Proposition 8.2. The first two sets of those inequal-
ities are equivalent to our conditions on the sets of long and short roots,
respectively. For the other two we make a case by case analysis. As before [
means long root and s short root.

o (a,B,a+28) = (I,s,1): ko +2kg < koiop < ko + 2ks + 2. Put
v =a+ f and § = o+ 25. Note that + is a short root (look at
the roots of By) ¢ is a long root, and § = 3 + . Hence by the third
condition either ks = kg + k or ks = kg + k, + 1. On the other hand,
a = —f + v is a sum of short roots giving rise to a long root. So
that either k, = —kg +k, — 1 or k, = —ks + k,. Now, we plug these
possibilities into 2kg < ks—k, < 2kg+2. We list below the inequalities

that arise:

— ko = (kg +ky) — (kg +k,—1) 2ks < 2kg+1 < 2kg+2
(kg-i-k) ( kﬁ‘i‘k) 2k5§2k5§2k5+2
= (kg+Fky+1)— (—kg+ky—1) 2k <2kg+2<2kg+2

k5—k = (kg +ky+1) — (kg + k) 2kg < 2kg 4+ 1 < 2kg + 2

Hence the third set of inequalities of Proposition 8.2 holds under the
conditions of the lemma.

o (a,B,(a+B)/2)=(I,1,5): ka+Fksg < 2kiaypy2+1 < ko +Ekg+2. Put
v=(a+ ) /2and § = (f — a) /2. Both  and ¢ are short roots (again
look at Bs). We have f = v+0 and o = v — 4, so that kg = k, + ks or
kg =ky+ks+1and kg =k, — ks — 1 or k, = ky — k;. Plugging these
choices into ko + kg < 2k, +1 < ko + kg + 2 we get:

ko + ks = (ky — ks — 1) + (ky + k) 2k, —1 <2k, +1< 2k, +1
ko+ksg=(ky—Fks—=1)+ (ky+ks+1) 2k, <2k, +1<2k, +2
ko + kg = (ky — ks) + (ky + ks) 2k, < 2ky +1 < 2k, +2
ko + kg = (ky — ks) + (ky + ks + 1) 2k, +1 <2k, +1<2k,+3
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Concluding the proof of the lemma. []

We return now to Theorem 8.1. Let J = {¢,} be an iacs in the doubly-
laced root system II, which satisfies the cone-free property. Then the restric-
tion J* of J to the short roots I1° is cone-free. Hence, by Theorem 7.1, .J*is
affine, so that there are integers kg, 5 € II°, forming the coordinates of an
alcove in TT°, such that e5 = (—1)" for all g € TI°.

Maintaining this choice of alcove in II° we intend to extend the integers
k, to the long roots. Taking into account the third condition of Lemma
8.5, we must define ko, o € II', by the expression (6) already used in the
simply-laced case, but now with o a long root and 8 and v short roots, such
that o = 8 +~. Again, the very expression for k4 ensures that e, = (—1)™.
Hence, in order to proceed we must prove that the integers k,, a € II', are
well defined, and form the coordinates of an alcove.

Lemma 8.6 Let kg, 8 € II°, be the coordinates of an alcove in II°, repre-

senting J°. Let o > 0 be a long root with a = 3+ vy, 5 and ~y short roots,

and put

| = (=1)feth o,
2

Then k, is independent of the short roots 3 and .

ko = kg + ky +

(7)

Proof: Let a = 5; + 7, be another sum with §; and ~; short roots. Denote
by V' the subspace spanned by the roots 3, v, 8 and ~q, and let I, = V NIl
be the corresponding subsystem. The possible dimensions of V" are 2 or 3. If
dimV = 2, Il, is a B, system, so that the components in the two sums are
equal. Similarly, in Bj there is only one way of writing a long root as a sum
of two short roots. Hence we can assume that I, is Cj.

By Proposition 4.3 any cone-free iacs in Cj is affine. Of course, the
restriction J, of J to II, is cone-free. Hence, there are integers, say msg,
§ € II,, which are the coordinates of an alcove in Cj, such that e5 = (—1)° for
all § € II,. In particular ks = mgsmod2 for every short root § € Il,. The set
of short roots in C'3 forms an As-root system, so that we can apply Corollary
7.6, to get A such that for every short root § € II, we have k; = ms + (), 0)
and (), 0) € 2Z. Since the long roots in C3 are linear combinations of short
roots with integer coefficients, it follows that (A, d) € 2Z for the long roots
in [T, as well. Therefore, ms+ (), d), 0 € II,, are the coordinates of an alcove
A* such that J, = J (A*).
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Now, let @« = 8 4+ v be as in the statement. By the third condition in
Lemma 8.5 we have
1—(—1)fethr g,
2

Since the left hand side is independent of the way « is written as a sum of
short roots, the lemma follows. L]

ma + (A, @) = kg + k, +

It remains to prove that the extension of k, to the long roots given by
(7) form the coordinates of an alcove. For this we use Lemma 8.5, and verify
that the three conditions of that lemma are satisfied. Firstly, the integers k£,
were chosen so that they form the coordinates of an alcove on the short roots.
Also, the compatibility condition (3) follows immediately from the definition
of k, in (7). Hence, the point is to show that the integers k, are coordinates
of an alcove on the long roots. At this point we consider C; separately. In
fact, the set II' of long roots of C; is a decomposable root system with [
orthogonal positive roots. In such a root system there are no restrictions
on the integers to be the coordinates of an alcove. In particular, for C
the condition of Lemma 8.5 regarding the long roots is vacuous. Therefore,
Theorem 8.1 is true in the C| case.

To consider B; and F; we prove first the following easy lemma.

Lemma 8.7 Let J = {e,} be an affine iacs in the root system
Bi={t(eite;):1<i<j<Ii}U{te;:1<i<lI}.

Suppose we are given integers k;, 1 = 1,...,1 such that ., = (—1)]”. Then
there exists an alcove A with coordinates ko, (A) satisfying ke, = ki, i =

1,...,1 and such that J = J (A).

Proof: Is similar to the proof of Lemma 7.4, after taking into account that
the short roots e;, : = 1,...,[, span B; over Z. []

Finally, we can conclude the proof of Theorem 8.1 for B, and F}, by
showing that the extension defined in Lemma 8.6 are indeed the coordinates
of an alcove on the set of long roots.

Lemma 8.8 Given kg, 8 € 11°, define k,, a € TI' as in Lemma 8.6. Then
{ko} are the coordinates of an alcove in TI'.
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Proof: By Lemma 7.2 we must show that if o, # and . + § are long roots
then either koyp = ko + kg OF koip = ko + kg + 1.

Write § = v, + 72 as a sum of short roots and denote by V' the subspace
spanned by {a,v1,72}. Let I, be the root system V NII. We claim that TI,
is a Bs-subsystem. In fact, dimV" > 1 because § # +« and we cannot have
dim V' = 2, since this would imply that II, is a By-system, because it contains
short and long roots and a pair of roots (y; and 7,) whose sum is a root. But
in By the sum of two long roots is not a root. Hence, dim V' = 3. Analogous
arguments show that II, is irreducible. Now, II, has roots of different length,
so that either II, = Bs or (3. However, in C3 no sum of two long roots is a
root. Therefore, IT, = Bj, as claimed.

By looking at the roots of B; we can ensure that, since o + [ is a root,
one of the roots in the decomposition of /3, say 7, is such that there exists
a short root d with & = —v; + 9. Hence, o + 3 = 75 + 4, and we have

° ka+ﬁ = k,h + ks + (1 _ (_l)kwfrk(s 5&4—,8)7
® ko= —ky —1+ks+ (1 + (—1)"“”1”“‘S 5a>, and
[ ] kﬁ = ]{?71 —+ k»ﬁ + (1 — (—1)k71+k72 85).

These formulae imply that the dependence of k,.5— (ko + ks) on the integers
k., v € 11, is only mod2.

Now, we use the cone-free condition to get an alcove A* in V' such that
J. = J(A*), where J, is the restriction of J to II,. For a root v € I,
Ey = (=) = (=1)" so that k, (A*) = k, (mod2). The formulae above
are true with k, (A*), v € II, in place of k,. But we know that for the coor-
dinates of an alcove either k,ig (A*) — (ko (A*) + kg (A*)) = 0 or 1. Hence,
either ko153 — (ko + kg) = 0 or 1, concluding the proof of the lemma. O
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