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Abstra
t

This paper 
onsiders invariant (1; 2)-symple
ti
 almost Hermitian

stru
tures on the maximal 
ag manifod asso
iated to a 
omplex semi-

simple Lie group G. The 
on
ept of 
one-free invariant almost 
om-

plex stru
ture is introdu
ed. It involves the rank-three subgroups of

G, and generalizes the 
one-free property for tournaments related to

Sl (n; C ) 
ase. It is proved that the 
one-free property is ne
essary

for an invariant almost-
omplex stru
ture to take part in an invariant

�
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(1; 2)-symple
ti
 almost Hermitian stru
ture. It is also suÆ
ient if the

Lie group is not B

l

, l � 3, G

2

or F

4

. For B

l

and F

4

a 
lose 
ondition

turns out to be suÆ
ient.

1 Introdu
tion

The subje
t matter of this paper is the invariant almost Hermitian stru
tures

on the generalized 
ag manifolds asso
iated to semi-simple 
omplex Lie al-

gebras and groups. Let G be a 
omplex semi-simple Lie group and denote

by F = G=P the maximal 
ag manifold of G, where P is a Borel (minimal

paraboli
) subgroup of G. Alternatively, F = U=T where U is a 
ompa
t real

form of G and T = P \ U a maximal torus.

The U -invariant almost Hermitian stru
tures on F have been studied

re
ently in [2℄ and [10℄ with di�erent methods. First, in [2℄ the group G is

spe
ialized to be Sl (n; C ), so that U = SU (n) and F is identi�ed with the

manifold of 
omplete 
ags of subspa
es of C

n

. In this 
ase there exists a

natural bije
tion between the set of U -invariant almost 
omplex stru
tures

on F and n-player tournaments. Taking advantage of this bije
tion in [2℄

the invariant stru
tures were studied with the aid of the 
ombinatori
s of

tournaments (see also [3℄).

On the other hand, [10℄ adopts the general set up, and studies invari-

ant stru
tures on the 
ag manifold asso
iated to an arbitrary semi-simple


omplex group G. The methods of [10℄ are intrinsi
 in the sense that the


ombinatorial questions are resolved within the framework of root systems

and Weyl groups.

In both papers the basi
 issue is the des
ription of the (1; 2)-symple
ti


Hermitian stru
tures. One of the main results is the derivation of a stan-

dard form for the 
orresponding invariant almost-
omplex stru
tures. In [2℄

the standard form is given in terms of stair-shaped in
iden
e matri
es of

tournaments, while in the general setting of [10℄ it is proved that the (1; 2)-

symple
ti
 Hermitian stru
tures 
an be put in 
orresponden
e to the abelian

ideals of a Borel subalgebra. Although the results of [10℄ extend those of [2℄

the proofs are 
ompletely independent. In parti
ular, the notion of 
one-free

tournament { whi
h plays a 
entral role in [2℄ as a ne
essary and suÆ
ient


ondition { does not appear in [10℄, leaving a gap in the development of the

theory.

The purpose of this paper is to �ll this gap, by extending the 
one-free
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on
ept to the 
ontext of semi-simple Lie algebras, and analyzing its relation

to the (1; 2)-symple
ti
 stru
tures. The 
one-free property for the A

l

series


an be translated into a 
ondition involving quadruples of roots, and thus

makes sense in general (see De�nition 3.1). We maintain the name of 
one-

free for the property stated in terms of roots. It is related to the (1; 2)-

symple
ti
 stru
tures as follows: An invariant Hermitian stru
ture is a pair

(J;�) with J a U -invariant almost 
omplex stru
ture and � an invariant

Riemannian metri
. The 
one-free property refers to the invariant almost


omplex stru
tures. Su
h a stru
ture is said to be (1; 2)-admissible if there

exists � su
h that (J;�) is (1; 2)-symple
ti
. We prove in Theorem 3.3 that

the 
one-free property is ne
essary for J to be (1; 2)-admissible. It is also

suÆ
ient if the semi-simple Lie algebra does not 
ontain 
omponents of the

types B

l

, l � 3, G

2

or F

4

. The point is that for the Lie algebras with rank

� 3, the 
one-free property 
on
erns the restri
tion of J to the rank-three

subalgebras, and is equivalent to (1; 2)-admissibility in A

3

and C

3

but not

in B

3

. For this reason the 
orre
t 
ondition for the Lie algebras B

l

and F

4

(whi
h are the only ones whi
h 
ontain B

3

) is that the restri
tion of J to any

rank-three subalgebra is (1; 2)-admissible.

We regard our approa
h here as an appli
ation of the aÆne Weyl group


hara
terization of the (1; 2)-symple
ti
 stru
tures, proved in [10℄. Indeed

we 
he
k that a 
ertain J is (1; 2)-admissible by showing that it belongs to

the 
lass of aÆne invariant almost 
omplex stru
tures, whi
h are de�ned

by means of al
oves of the aÆne Weyl group (see De�nition 6.3 below). It

was proved in [10℄ that aÆne stru
tures are (1; 2)-admissible and 
onversely.

Through the aÆne stru
tures we have a

ess to the algebra of integer al-


ove 
oordinates developed by Shi [11℄. This algebra is used to solve the


ombinatorial problems arising in the study of invariant stru
tures.

The relation of 
one-free tournaments with (1; 2)-symple
ti
 stru
tures on

the 
lassi
al 
ag manifolds is dis
ussed in Mo and Negreiros [7℄ and Paredes

[9℄. The ne
essity of the 
one-free property for (1; 2)-admissibility was �rst

stated and proved in [7℄, with the aid of the moving frame method, while

eviden
e for suÆ
ien
y was provided in [9℄, by 
he
king small-sized tourna-

ments. A general proof of suÆ
ien
y for tournaments of arbitrary size was

given in [2℄.

Our attempt to understand the (1; 2)-symple
ti
 stru
tures was moti-

vated by the study of harmoni
 maps into 
ag manifolds. However, after

studying them in [10℄ it be
ame 
lear that among the invariant almost Her-

mitian stru
tures on the 
ag manifolds the (1; 2)-symple
ti
 ones form an
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outstanding 
lass, allowing the 
lassi�
ation of the invariant stru
tures given

in [10℄.

2 Preliminaries

Let g and h be a simple 
omplex Lie algebra and a Cartan subalgebra. Denote

by � the set of roots of the pair (g; h), and let

g

�

= fX 2 g : 8H 2 h; [H;X℄ = � (H)Xg

be the one-dimensional root spa
e 
orresponding to � 2 �. Given � 2 h

�

we

let H

�

be de�ned by � (�) = hH

�

; �i, where h�; �i stands for the Cartan-Killing

form of g and de�ne h

R

to be the subspa
e spanned over R by H

�

, � 2 �. We

�x on
e and for all aWeyl basis of g whi
h amounts to 
hoosing for ea
h � 2 �

an elementX

�

2 g

�

su
h that hX

�

; X

��

i = 1, and [X

�

; X

�

℄ = m

�;�

X

�+�

with

m

�;�

2 R, m

��;��

= �m

�;�

and m

�;�

= 0 if �+� is not a root (see Helgason

[4℄, Chapter IX).

Given a 
hoi
e of positive roots �

+

� �, denote by � the 
orresponding

simple system of roots and let p = h �

P

�2�

+

g

�

be the Borel subalgebra

generated by �

+

. Let F = G=P be the asso
iated maximal 
ag manifold,

where G is any 
onne
ted 
omplex Lie group with Lie algebra g and P is the

normalizer of p in G. Let u be the 
ompa
t real form of g spanned by ih

R

and A

�

, iS

�

, � 2 �, where A

�

= X

�

�X

��

and S

�

= X

�

+X

��

. Denote by

U the 
orresponding 
ompa
t real form of G. By the transitive a
tion of U

on F we 
an write F = U=T where T = P \ U is a maximal torus of U .

If b

0

stands for the origin of F, the tangent spa
e at b

0

identi�es naturally

with the subspa
e q � u spanned by A

�

, iS

�

, � 2 �. Analogously, the


omplex tangent spa
e of F is identi�ed with q

C

= g 	 h � u, spanned by

the root spa
es g

�

, � 2 �. Clearly, the adjoint a
tion of T on g leaves q

invariant.

2.1 Invariant metri
s

A U -invariant Riemannian metri
 on F is 
ompletely determined by its value

at b

0

, that is, by an inner produ
t (�; �) in q, whi
h is invariant under the ad-

joint a
tion of T . Su
h an inner produ
t has the form (X; Y )

�

= �h� (X) ; Y i

with � : q! q positive-de�nite with respe
t to the Cartan-Killing form. The

inner produ
t (�; �)

�

admits a natural extension to a symmetri
 bilinear form
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on the 
omplexi�
ation q

C

of q. These 
omplexi�ed obje
ts are denoted the

same way as the real ones. The T -invarian
e of (�; �)

�

amounts to the elements

of the standard basis A

�

, iS

�

, � 2 �, being eigenve
tors of �, for the same

eigenvalue. Thus, in the 
omplex tangent spa
e we have � (X

�

) = �

�

X

�

with �

�

= �

��

> 0. We denote by ds

2

�

the invariant metri
 asso
iated with

�. In the sequel we allow abuse of notation and write simply � instead of

ds

2

�

.

2.2 Invariant almost 
omplex stru
tures

In the sequel we use the abbreviation ia
s for U -invariant almost 
omplex

stru
ture on F. An ia
s is 
ompletely determined by its value J : q! q in the

tangent spa
e at the origin. The map J satis�es J

2

= �1 and 
ommutes with

the adjoint a
tion of T on q. We denote by the same letter the real valued

stru
ture J and its 
omplexi�
ation to q

C

. The invarian
e of J entails that

J (g

�

) = g

�

for all � 2 �. The eigenvalues of J are �i and the eigenve
tors

in q

C

are X

�

, � 2 �. Hen
e J (X

�

) = i"

�

X

�

with "

�

= �1 satisfying

"

�

= �"

��

. As usual the eigenve
tors asso
iated to +i are said to be of

type (1; 0) while �i-eigenve
tors are of type (0; 1). Thus the (1; 0) ve
tors

are linear 
ombinations of X

�

, "

�

= +1, and the (0; 1) ve
tors are spanned

by X

�

, "

�

= �1.

An ia
s on F is 
ompletely pres
ribed by a set of signs f"

�

g

�2�

with

"

��

= �"

��

. In the sequel we allow some abuse of notation and identify the

invariant stru
ture on F with J = f"

�

g.

Sin
e F is a homogeneous spa
e of a 
omplex Lie group it has a natural

stru
ture of a 
omplex manifold. The asso
iated integrable ia
s J




is given

by "

�

= +1 if � < 0. The 
onjugate stru
ture �J




is also integrable. These

are 
alled the standard ia
s.

2.3 K�ahler form

It is easy to see that any invariant metri
 ds

2

�

is almost Hermitian with

respe
t to any ia
s J , that is, ds

2

�

(JX; JY ) = ds

2

�

(X; Y ) (
f. [13℄, Se
tion

8). Let 
 = 


J;�

stand for the 
orresponding K�ahler form


 (X; Y ) = ds

2

�

(X; JY ) = �h�X; JY i:

This form extends naturally to a U -invariant 2-form de�ned on the 
omplex-

i�
ation q

C

of q, whi
h we also denote by 
. Its values on the basi
 ve
tors
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are:


 (X

�

; X

�

) = �i�

�

"

�

hX

�

; X

�

i:

Sin
e hX

�

; X

�

i = 0 unless � = ��, 
 is not zero only on the pairs (X

�

; X

��

),

at whi
h 
 takes the value i�

�

"

�

.

The following formula is well known (see [6℄).

Lemma 2.1 Let ! be an invariant k-di�erential form on the homogeneous

spa
e L=H. Then

d! (X

1

; : : : ; X

k+1

) = (k + 1)

X

i<j

(�1)

i+j

!

�

[X

i

; X

j

℄; X

1

; : : : ;

b

X

i

; : : :

b

X

j

; : : : ; X

k+1

�

:

for X

1

; : : : ; X

k+1

in the Lie algebra l of L.

Spe
ializing this lemma to the form 
 we get

�

1

3

d
 (X; Y; Z) = �
 ([X; Y ℄; Z) + 
 ([X;Z℄; Y )� 
 ([Y; Z℄; X) (1)

From (1) an easy 
omputation yields that d
 (X

�

; X

�

; X




) is zero unless

� + � + 
 = 0. In this 
ase

d
 (X

�

; X

�

; X




) = �i3m

�;�

("

�

�

�

+ "

�

�

�

+ "




�




) (2)

with m

�;�

as in Se
tion 2 (
f. [10℄, Proposition 2.1).

Taking into a

ount (2) we make the following distin
tion between two

types of roots triples.

De�nition 2.2 Let J = f"

�

g be an ia
s. A triple of roots �; �; 
 with � +

� + 
 = 0 is said to be a f0; 3g-triple if "

�

= "

�

= "




, and a f1; 2g-triple

otherwise.

Re
all that an almost Hermitian manifold is said to be (1; 2)-symple
ti


(or quasi-K�ahler) if

d
 (X; Y; Z) = 0

when one of the ve
tors X; Y; Z is of type (1; 0) and the other two are of

type (0; 1).The stru
ture is (2; 1)-symple
ti
 if the roles of (1; 0) and (0; 1)

are inter
hanged. A

ordingly, the stru
ture is (i; j)-symple
ti
 if the (i; j)


omponent d


(i;j)

of d
 is zero.

In our invariant setting we have the following 
riterion for an invariant

pair (J;�) to be (1; 2)-symple
ti
, whi
h follows immediately from formula

(2), and the fa
t that X

�

has type (1; 0) if "

�

= +1 and (0; 1) if "

�

= �1 (see

[10℄, Proposition 2.3 and [13℄, Theorem 9.15).
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Proposition 2.3 The invariant pair (J = f"

�

g;� = f�

�

g) is (1; 2)-symple
ti


if and only if

"

�

�

�

+ "

�

�

�

+ "




�




= 0

for every f1; 2g-triple f�; �; 
g.

In the sequel J is said to be (1; 2)-admissible if there exists � su
h that

the pair (J;�) is invariant and (1; 2)-symple
ti
.

3 The 
one-free property

Given a set of four roots q = f�; �; 
; Æg with � + � + 
 + Æ = 0 we say

that a triple of roots f(u+ v) ; w

1

; w

2

g is extra
ted from q by u and v if

fu; v; w

1

; w

2

g = f�; �; 
; Æg. Of 
ourse, any su
h triple satis�es (u+ v) +

w

1

+ w

2

= 0. The 
one-free 
ondition is stated in terms of su
h triples.

De�nition 3.1 Let J = f"

�

g be an ia
s. We say that J is 
one-free if the

following 
ondition is satis�ed:

� If q = f�; �; 
; Æg 
ontains no pairs of opposite roots and �+�+
+Æ =

0 then the number of f0; 3g-triples extra
ted from q is di�erent from 1.

In this de�nition the hypothesis that the quadruples do not have opposite

roots is redundant and is in
luded only for emphasis sake. Indeed, suppose,

for instan
e, that � = ��. Then Æ = �
, and the possible triples extra
ted

from the quadruple are (� + 
;��;�
), (�� 
;��; 
), (�� + 
; �;�
) and

(��� 
; �; 
). It is easy to see that in this set f0; 3g-triples appear in pairs,

independently of J .

Ex
ept when the root system is G

2

the 
one-free property is a 
ondition

on the rank-three subsystems of the root system. In fa
t, sin
e there are no

opposite roots in f�; �; 
; Æg the subspa
e V spanned by these roots is either

two or three dimensional. However, it is easy to see that in the rank-two root

systems A

1

� A

1

, A

2

and B

2

, whi
h are di�erent from G

2

, there are no su
h

sets of roots. Hen
e, the interse
tion of � \ V is a rank-three root system if

we are not in G

2

(see Se
tion 5 below for a dis
ussion of G

2

).

The explanation for the term 
one in the above de�nition 
omes from the

relation between ia
s in the 
ag manifolds of the A

l

series (the Lie algebras

sl (n; C ), n = l+1) and tournaments. Re
all that an n-player tournament is
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a 
omplete dire
ted graph T = (N;E) where N is an ordered set, jN j = n,

and E stands for the arrows of T . With ea
h tournament T there is assigned

its in
iden
e matrix " = "

T

, whi
h is a real skew-symmetri
 matrix with all

o�-diagonal entries �1. If (a; b) 2 E we say that a wins against b and set

"

ab

= 1 and "

ba

= �1.

On the other hand, in the standard realization, the roots of A

l

are �

jk

,

1 � j 6= k � l + 1, with �

kj

= ��

jk

. Thus an ia
s on the 
orresponding 
ag

manifold is given by the signs "

jk

= "

�

jk

= �1, j 6= k. These numbers are

assembled to form the in
iden
e matrix " of some tournament, establishing

a one-to-one 
orresponden
e between the ia
s on the maximal 
ag manifold

of A

l

and n-players tournaments.

A 3-
y
le in a tournament is a 3-players subtournament fi; j; kg whi
h

forms the loop i! j ! k ! i. When T is the tournament asso
iated to the

ia
s J , a 3-
y
le fi; j; kg 
orresponds to the f0; 3g-triple f�

ij

; �

jk

; �

ki

g (see

[2℄).

Now, up to isomorphism, there are four distin
t 4-player tournaments.

The two of them whi
h 
ontain a single 3-
y
le are 
alled 
ones. Ea
h of

them 
ontains a 
y
le and a winner or a loser. The other equivalen
e 
lasses

of 4-player tournaments 
ontain an even number of 
y
les (zero or two).

Proposition 3.2 In the maximal 
ag manifold asso
iated to A

n�1

= sl (n; C ),

an ia
s is 
one-free in the sense of De�nition 3.1 if and only if no 4-player

subtournament of the asso
iated tournament is a 
one.

Proof: Assume �rst that an ia
s J with 
orresponding tournament T is


one-free in the sense of De�nition 3.1. Let fi; j; k; lg be a 4-player subtour-

nament, and 
onsider the 
orresponding set of four roots f�

ij

; �

jk

; �

kl

; �

li

g

whi
h satis�es

�

ij

+ �

jk

+ �

kl

+ �

li

= 0:

From this set we extra
t the four triples f�

ik

; �

kl

; �

li

g, f�

jl

; �

li

; �

ij

g, f�

ki

; �

ij

; �

jk

g

and f�

lj

; �

jk

; �

kl

g. Ea
h one of these triples 
orresponds to a 3-player sub-

tournament (e.g. f�

ik

; �

kl

; �

li

g is asso
iated to fi; k; lg), in su
h a way that

f0; 3g-triples 
orrespond to 3-
y
les. Hen
e, by our generalized 
one-free


ondition fi; j; k; lg is not a 
one.

For the 
onverse, note that a set of four roots f�; �; 
; Æg with �+�+
+

Æ = 0 whi
h do not 
ontain opposite roots spans a rank-three root subsys-

tem, and hen
e the set has the form f�

ij

; �

jk

; �

kl

; �

li

g for 1 � i; j; k; l � n.

Repeating the above argument we get the generalized 
one-free 
ondition if

8



the tournament has no 
ones.

We pro
eed now to prove that the 
one-free 
ondition is ne
essary for an

ia
s to be (1; 2)-admissible. Write d


f0;3g

= d


(0;3)

+ d


(3;0)

and d


f1;2g

=

d


(1;2)

+ d


(2;1)

, so that

d
 = d


f0;3g

+ d


f1;2g

:

We get a ne
essary 
ondition for d


f1;2g

= 0 by exploiting the fa
t that

d

2

= 0, 
omputing formally d

2


 (X

�

; X

�

; X




; X

Æ

). Analogous to the 
ase of

d
 the only quadruples f�; �; 
; Æg of interest are those satisfying � + � +


 + Æ = 0. Using the exterior derivative formula of Lemma 2.1, we get for

these quadruples, that d

2


 is the sum of the following six terms:

1. +m

�;�

m


;Æ

("

�+�

�

�+�

+ "




�




+ "

Æ

�

Æ

)

2. �m

�;


m

�;Æ

("

�+


�

�+


+ "

�

�

�

+ "

Æ

�

Æ

)

3. +m

�;Æ

m

�;


("

�+Æ

�

�+Æ

+ "

�

�

�

+ "




�




)

4. +m

�;


m

�;Æ

("

�+


�

�+


+ "

�

�

�

+ "

Æ

�

Æ

)

5. �m

�;Æ

m

�;


("

�+Æ

�

�+Æ

+ "

�

�

�

+ "




�




)

6. +m


;Æ

m

�;�

("


+Æ

�


+Æ

+ "

�

�

�

+ "

�

�

�

)

These terms 
an
el mutually (e.g. the 
oeÆ
ient of "

�

�

�

is m

�;�

m


;Æ

+

m

�;


m

�;Æ

+ m


;�

m

�;Æ

whi
h is known to be zero, see [4℄, Lemma III 5.3).

In order to look at them 
loser let us take, for instan
e, the �rst one. The


oeÆ
ient m

�;�

is not zero if and only if � + � is a root. But � + � =

� (
 + Æ), so that both 
oeÆ
ients m

�;�

and m


;Æ

are simultaneously zero or

not. The same remark is true for the other terms. Next, in ea
h term the

sum appearing in bra
es has the form d
 (X

�

; X

�

; X

�

) with (�; �; �) a triple

extra
ted from f�; �; 
; Æg if the 
oeÆ
ients m

�;�

are not zero.

These 
omments yield an alternative proof of the following result of [7℄.

Theorem 3.3 A ne
essary 
ondition for (J;�) to be (1; 2)-symple
ti
 is that

J is 
one-free in the sense of De�nition 3.1.

9



Proof: Let q = f�; �; 
; Æg be a root quadruple su
h that �+ �+ 
+ Æ = 0.

Among the six terms above, those 
orresponding to f1; 2g-triples extra
ted

from q are zero if d


f1;2g

= 0. On the other hand a term 
orresponding to an

extra
ted f0; 3g-triple is not zero. Hen
e, for d

2


 to be zero it is not possible

to extra
t just one f0; 3g-triple.

4 Rank-three Lie algebras

The 
one-free 
ondition involves sets of four roots whose sum is zero in su
h

a way that no two roots are opposite to ea
h other. This has the 
onsequen
e

that the subspa
e spanned by the roots is three dimensional if the root system

is not G

2

. Hen
e, ex
luding G

2

the 
one-free 
ondition refers to the rank-

three subsystems of roots. The purpose of this preparatory se
tion is to look

at those rank-three root systems (mainly the irredu
ible ones A

3

, B

3

and C

3

)

required to study the 
one-free 
ondition in general root systems.

Note �rst that the rank-three redu
ible root systems are A

1

� A

1

� A

1

,

A

1

�A

2

and A

1

�B

2

. It is easy to 
he
k that any ia
s in these root systems

are (1; 2)-admissible, and thus satisfy the 
one-free 
ondition.

Con
erning A

3

= sl (4; C ), an ia
s J on the maximal 
ag manifold 
or-

responds to a 4-tournament T . By Proposition 3.2, J satis�es our 
one-free


ondition if and only if T does not 
ontain a 
one. We know that su
h ia
s

are (1; 2)-admissible (see [2℄, [3℄). A
tually, the set of 
one-free ia
s has two

equivalen
e 
lasses, whi
h are represented by the in
iden
e matri
es

0

B

B

�

0 1 1 1

�1 0 1 1

�1 �1 0 1

�1 �1 �1 0

1

C

C

A

0

B

B

�

0 1 1 �1

�1 0 1 1

�1 �1 0 1

1 �1 �1 0

1

C

C

A

: (3)

The 
lass represented by the �rst matrix 
onsists of the standard ia
s.

Now, we look at the more deli
ate B

3

. In its standard realization the

positive root system is L [ S where L = fe

i

� e

j

: 1 � i < j � 3g and

S = fe

i

: 1 � i � 3g are the sets of long and short roots, respe
tively.

The set L is isomorphi
 to the positive root system L

3

= f�

ij

: 1 � i <

j � 3g of A

3

via the bije
tion:

� Simple roots: �

12

$ e

2

� e

3

; �

23

$ e

1

� e

2

; �

34

$ e

2

+ e

3

.

10



� Height 2: �

13

$ e

1

� e

3

; �

34

$ e

1

+ e

3

.

� Height 3: �

14

$ e

1

+ e

2

.

Now, let J = f"

�

g be a 
one-free ia
s in B

3

. Its restri
tion J

l

to L is

also 
one-free so that we 
an assume that it is represented by one of the two

matri
es in (3). It remains to see what happens at the short roots e

1

, e

2

and

e

3

. Regarding e

3

, we 
an assume without loss of generality that "

e

3

= +1. In

fa
t, the re
e
tion r

3

with respe
t to e

3

leaves L

3

invariant �xes the highest

root e

1

+ e

2

. Hen
e, we 
an repla
e J by r

3

� J without a�e
ting its values in

L

3

if J

l

is represented by one of the matri
es in (3). As to e

1

and e

2

we have

Lemma 4.1 "

e

1

= "

e

2

.

Proof: Consider the quadruple (�e

1

) + (e

1

� e

2

) + (e

2

� e

3

) + e

3

= 0. The

triples extra
ted from it are f�e

2

; e

2

� e

3

; e

3

g, f�e

1

+ e

3

; e

1

� e

2

; e

2

� e

3

g,

fe

2

;�e

1

; e

1

� e

2

g and fe

1

� e

3

;�e

1

; e

3

g.

Note that f�e

1

+ e

3

; e

1

� e

2

; e

2

� e

3

g is a f1; 2g-triple. Suppose that

"

e

2

= �1. Then f�e

2

; e

2

� e

3

; e

3

g is a f0; 3g-triple, and fe

2

;�e

1

; e

1

� e

2

g is

a f1; 2g-triple, for
ing the last triple to be f0; 3g, whi
h implies "

e

1

= �1.

The root e

1

+ e

2

does not appear in the extra
ted triples, ensuring that our

arguments are independent of the 
hoi
e of J

l

.

On the other hand from the quadruple (e

1

� e

2

) + (e

2

+ e

3

) + (�e

1

) +

(�e

3

) = 0, the only extra
ted triple whi
h is not automati
ally of type f0; 3g

is fe

2

; e

1

� e

2

;�e

1

g. Hen
e, this set must be a f1; 2g-triple, so that "

e

2

= +1

implies "

e

1

= +1. Again the extra
ted triples do not involve e

1

+ e

2

, hen
e

it is immaterial whi
h of the J

l

's we 
onsider.

We arrive at the following des
ription of the 
one-free ia
s on B

3

.

Proposition 4.2 Denote by M (J) the set of positive roots � of B

3

su
h that

"

�

= �1. Fixing the 
hoi
es of J

l

given by (3) and "

e

3

= +1, the possible

ia
s satisfying the 
one-free 
ondition are:

1. M (J

1

) = ;.

2. M (J

2

) = fe

1

+ e

2

g.

3. M (J

3

) = fe

1

; e

2

g.

11



4. M (J

4

) = fe

1

; e

2

; e

1

+ e

2

g.

Among them the only (1; 2)-admissible ia
s are J

1

and J

2

.

Proof: The (1; 2)-admissibility of J

1

and J

2

is a 
onsequen
e of the abelian

ideal shape of [10℄. On the other hand, J

3

and J

4

are not (1; 2)-admissible.

To see this 
onsider the triples fe

1

; e

1

+ e

3

;�e

3

g and fe

1

; e

3

;�e

1

� e

3

g. They

are f1; 2g-triples for both J

3

and J

4

. Now, assume that � = f�

�

g is (1; 2)-

symple
ti
 with respe
t to J

3

or J

4

. Then �

e

1

+e

3

= �

e

1

+ �

e

3

and �

e

3

=

�

e

1

+ �

e

1

+e

3

, for
ing �

e

1

= 0, a 
ontradi
tion.

Finally, it is straighforward but 
umbersome to verify that J

3

and J

4

in-

deed satisfy the 
one-free 
ondition. One must write down the quadruples of

roots of B

3

summing up zero, and their extra
ted triples, and 
he
k that the

f0; 3g-triples do not appear isolated.

The dis
ussion of C

3

follows the same pattern as that of B

3

. In the

standard realization of C

3

, its short roots 
oin
ide with the long roots of B

3

,

whereas the long roots are given by �2e

i

, i = 1; 2; 3. Again we 
an assume

that the restri
tion J

s

of a 
one-free ia
s J to the short roots has one of the

in
iden
e matri
es (3). Also, after applying the re
e
tion with respe
t to e

3

we 
an assume that "

2e

3

= +1. With the aid of these 
hoi
es we 
an 
he
k

the quadruples of C

3

and prove the

Proposition 4.3 Denote, as before, by M (J) the set of positive roots � of

C

3

su
h that "

�

= �1. Fixing the above 
hoi
es of J

s

and "

e

3

= +1, the

possible ia
s satisfying the 
one-free 
ondition are:

1. M (J

1

) = ;.

2. M (J

2

) = fe

1

+ e

2

; 2e

1

g.

3. M (J

3

) = f2e

2

; e

1

+ e

2

; 2e

1

g.

Ea
h M (J

i

), i = 1; 2; 3, is an abelian ideal of the set of positive roots, so

that the 
one-free ia
s are (1; 2)-admissible.

Proof: The proposition is a 
onsequen
e of the following impli
ations:

"

e

1

+e

2

= +1) "

2e

2

= "

2e

1

= +1; "

e

1

+e

2

= �1) "

2e

1

= �1:

12



whi
h are easy 
onsequen
es of the 
one-free property applied to the quadru-

ples fe

1

� e

2

; 2e

2

;�e

2

+ e

3

;�e

1

� e

3

g, fe

1

� e

2

; e

1

� e

3

; e

2

+ e

3

;�2e

1

g and

fe

1

� e

2

; e

2

� e

3

; e

1

+ e

3

;�2e

1

g, respe
tively.

5 G

2

As mentioned above, G

2

is the only rank-two root system where the 
one-free


ondition is not va
uous. For the sake of 
ompleteness we analyze here the

ia
s on G

2

whi
h satisfy this 
ondition. We write the positive roots as

�

1

�

2

�

1

+ �

2

�

1

+ 2�

2

�

1

+ 3�

2

2�

1

+ 3�

2

:

The set of short roots f��

2

;� (�

1

+ �

2

) ;� (�

1

+ 2�

2

)g is an A

2

-root system.

Let J be an ia
s on G

2

and denote by J

s

its restri
tion to the set of short

roots. In A

2

there are two equivalen
e 
lasses of ia
s, so that we 
an assume

without loss of generality that J

s

is one of the following two ia
s:

1. J

s

1

= f"

�

2

= +1; "

�

1

+�

2

= +1; "

�

1

+2�

2

= +1g.

2. J

s

2

= f"

�

2

= +1; "

�

1

+�

2

= +1; "

�

1

+2�

2

= �1g.

Denote by r the re
e
tion with respe
t to �

1

. It satis�es r�

2

= �

1

+ �

2

and r (�

1

+ 2�

2

) = �

1

+2�

2

. This implies that r leaves J

s

invariant. Hen
e,

we may assume that "

�

1

= +1.

Now, assuming that J satis�es the 
one-free 
ondition, it remains to de-

termine the values of "

�

1

+3�

2

and "

2�

1

+3�

2

. Up to 
hange of signs there are

the following three zero-sum root quadruples:

1. q

1

: (�

1

) + (�

2

) + (�

1

+ 2�

2

) + (�2�

1

� 3�

2

) = 0.

2. q

2

: (�

2

) + (�

1

+ �

2

) + (�

1

+ �

2

) + (�2�

1

� 3�

2

) = 0.

3. q

3

: (�

1

) + (�

1

+ 3�

2

) + (��

1

� �

2

) + (��

1

� 2�

2

) = 0.

First suppose that J

s

= J

s

1

. Writing down the triples extra
ted from q

3

,

it is straighforward to 
he
k that "

�

1

+3"

2

= �1 implies that "

2�

1

+3"

2

= �1.

Hen
e, the possible 
one-free ia
s are

+

+

++++,

+

+

+++� and

+

+

++��.
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By the abelian ideal property stated in [10℄, these ia
s are (1; 2)-admissible,

and hen
e they are indeed 
one-free.

Suppose now that J

s

= J

s

2

. Looking at the triples extra
ted from q

1

it

is easy to see that "

�

1

+3�

2

= +1 implies "

2�

1

+3�

2

= +1. Sin
e there are no

other restri
tions, the 
one-free ia
s are

+

+

+ � + +,

+

+

+ � � + and

+

+

+ � � �. The last one is (1; 2)-admissible, whereas, similar to the B

3


ase, one 
an 
he
k that the �rst two are not (1; 2)-admissible. (We remark

that in 
he
king the 
one-free property the quadruple q

2

is irrelevant, sin
e

in it ea
h extra
ted triple appears twi
e.)

6 The aÆne Weyl group

In this se
tion we re
all the de�nition of the aÆne ia
s introdu
ed in [10℄.

These stru
tures are 
onstru
ted by 
ounting hyperplanes separating a given

al
ove and the basi
 one. We refer to Humphreys [5℄ as a basi
 sour
e for

the aÆne Weyl group. Consider the subspa
e h

R

introdu
ed in Se
tion 2. To


onform with the usual notation we often identify h

R

with its dual h

�

R

and

write hx; �i instead of � (x), x 2 h

R

, � 2 h

�

R

. Given � 2 � and k 2 Z de�ne

the aÆne hyperplane

H (�; k) = fx 2 h

R

: hx; �i = kg:

The 
omplement A of the set of hyperplanes H (�; k), � 2 �, k 2 Z,

is the disjoint union of 
onne
ted open simple
es 
alled al
oves. Given an

al
ove A and a root �, by de�nition there exists an integer k

�

= k

�

(A) su
h

that

k

�

< hx; �i < k

�

+ 1 x 2 A:

Of 
ourse, k

�

= [� (x)℄ for any x 2 A where [a℄ denotes the integer part

of the real number a. A

ording to Shi [11℄, the integers k

�

(A) are 
alled

the 
oordinates of the al
ove A. An al
ove is 
ompletely determined by its


oordinates. A ne
essary and suÆ
ient 
ondition for k

�

, � 2 �, to be the


oordinates of an al
ove are given by the inequalities below. In writing down

these inequalities we must look � as the set of 
o-roots of another root system

e

�:

� = f�

_

=

2�

h�; �i

: � 2

e

�g:
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The root system is normalized so that j�j = 1 if � is a short root.

Proposition 6.1 A set of integers k

�

, � 2

e

�

+

, form the 
oordinates of an

al
ove if and only if for every pair of roots �; � 2

e

� su
h that �+� 2

e

�, the

following inequalities hold:

j�j

2

k

�

+ j�j

2

k

�

+ 1 � j� + �j

2

(k

�+�

+ 1)

� j�j

2

k

�

+ j�j

2

k

�

+ j�j

2

+ j�j

2

+ j� + �j

2

� 1:

(4)

Proof: See [11℄, Lemma 1.2 and Proposition 5.1.

Remark: It is easy to see that the inequalities in this proposition are equiv-

alent to

j�j

2

k

�

+ j�j

2

k

�

+ j
j

2

k




� 1:

For later referen
e we note also the following easy ne
essary 
ondition.

Lemma 6.2 A ne
essary 
ondition for the integers k

�

2 Z, � 2 �, to be the


oordinates of an al
ove is that k

�+�

is either k

�

+k

�

or k

�

+k

�

+1 whenever

�, � and � + � are roots.

Proof: We have, for all x 2 A, k

�

< hx; �i < k

�

+1 and k

�

< hx; �i < k

�

+1,

so that

k

�

+ k

�

< hx; �+ �i < k

�

+ k

�

+ 2:

Hen
e, the integer part of hx; � + �i is either k

�+�

= k

�

+ k

�

or k

�+�

=

k

�

+ k

�

+ 1.

De�nition 6.3 Given an al
ove A with 
oordinates fk

�

: � 2 �g, the ia
s

J (A) = f"

�

(A)g is de�ned by "

�

(A) = (�1)

k

�

. We say that J is an aÆne

ia
s if it has the form J = J (A) for some al
ove A.

Note that J (A) is indeed an ia
s, sin
e k

��

= �k

�

�1, so that "

��

(A) =

�"

�

(A). The following theorem is one of the main results in [10℄. It provides

the 
riterion whi
h will be used in the sequel for ensuring that ia
s are (1; 2)-

admissible.

Theorem 6.4 An ia
s J is (1; 2)-admissible if and only if it is aÆne.
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7 Simply-la
ed root systems

In this se
tion we prove that the 
one-free 
ondition is suÆ
ient for an ia
s to

be (1; 2)-admissible, in 
ase the algebra g has a simply-la
ed Dynkin diagram,

i.e. � = A

l

, D

l

, E

6

, E

7

or E

8

. The doubly-la
ed 
ase will be treated in

Se
tion 8. We use the equivalen
e between the aÆne and (1; 2)-admissible

ia
s, as stated in Theorem 6.4, and 
onstru
t an al
ove A su
h that J = J (A)

if J satis�es the 
one-free 
ondition. Thus the purpose of this se
tion is to

prove the following statement.

Theorem 7.1 Let � be a simply-la
ed root system, and suppose that J =

f"

�

g is a 
one-free ia
s on F. Then J is aÆne.

The proof will 
onsist of several steps. By de�nition of aÆne ia
s we

must �nd a set of integers fk

�

: � 2 �g satisfying the inequalities of Shi (4)

su
h that "

�

= (�1)

k

�

, � 2 �. In a simply-la
ed root system the roots have

the same length, simplifying these inequalities. In fa
t, we have the following

equivalent 
ondition for a set k

�

to be the 
oordinates of an al
ove.

Lemma 7.2 Let � be simply-la
ed. Then the integers k

�

2 Z, � 2 �,

form the 
oordinates of an al
ove if and only if either k

�+�

= k

�

+ k

�

or

k

�+�

= k

�

+ k

�

+ 1 when �, � and � + � are roots.

Proof: The 
ondition is ne
essary by Lemma 6.2. Conversely, if � is simply-

la
ed, the j�j

2

appearing in inequalities (4) are equal to 1, hen
e they redu
e

to

k

�

+ k

�

� k

�+�

� k

�

+ k

�

+ 1:

Therefore, these inequalities are satis�ed by k

�

, � 2 �, if they are under the


onditions of the statement.

Before pro
eeding we prove some lemmas.

Lemma 7.3 Let �

�

� � be a root subsystem of �. Then �

+

�

= �

�

\ �

+

is

a 
hoi
e of positive roots in �

�

.

Proof: There exists 
 2 h

�

R

su
h that

�

+

= f� 2 � : h�; 
i > 0g:
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Of 
ourse, h�; 
i 6= 0 for all � 2 �. Let 


1

be the orthogonal proje
tion of 


onto the subspa
e of h

�

R

spanned by �

�

. For � 2 �

�

we have h�; 
i = h�; 


1

i,

so that h�; 


1

i 6= 0 for all � 2 �

�

. Hen
e, 


1

is regular for �

�

, implying that

�

+

�

= f� 2 �

�

: h�; 


1

i > 0g

is a 
hoi
e of positive roots in �

�

. Using again h�; 
i = h�; 


1

i, � 2 �

�

, it

follows that �

+

�

= �

�

\ �

+

, proving the lemma.

Lemma 7.4 Fix a simple system of roots �, and let J = f"

�

g be an aÆne

ia
s. Suppose that a set of integers m

�

2 Z, � 2 �, satis�es "

�

= (�1)

m

�

.

Then there exists an al
ove A su
h that J = J (A) and k

�

(A) = m

�

, � 2 �.

Proof: Put � = f�

1

; : : : ; �

l

g and de�ne f!

1

; : : : ; !

l

g by h�

i

; !

j

i = Æ

ij

. Also,

let A

1

be an al
ove su
h that J = J (A

1

), that is, "

�

= (�1)

k

�(

A

1

)

. Sin
e

"

�

= (�1)

m

�

, the integers m

�

i

� k

�

i

(A

1

) are even. Now, a translation t

�

with � spanned over Z by !

i

, i = 1; : : : ; l, maps al
oves into al
oves, and the


oordinates are 
hanged a

ording to

k

�

(t

�

A) = h�; �i+ k

�

(A) : (5)

Take � = d

�

1

!

1

+� � �+d

�

l

!

l

, with d

�

i

= m

�

i

�k

�

i

(A

1

). Then the 
oordinates

of A = t

�

A

1

are k

�

(A) = h�; �i + k

�

(A

1

), and sin
e h�; �i is even for all

�, we 
on
lude that J = J (A). Furthermore, for a simple roots �

i

we have

k

�

i

(A) = d

�

1

+ k

�

(A

1

) = m

�

i

, proving the lemma.

Now, for proving Theorem 7.1 we 
onstru
t k

�

, � 2 �, by indu
tion on

the height of �. Thus let us �x on
e and for all a simple system of roots �

with �

+

the 
orresponding set of positive roots. Then given J = f"

�

g de�ne:

1. Let � 2 �. Then k

�

= (1� "

�

) =2.

2. Let �; �; 
 2 �

+

be su
h that � = � + 
. Then

k

�

= k

�

+ k




+

1� (�1)

k

�

+k




"

�

2

: (6)

3. Let � 2 ��

+

. Then k

�

= �k

��

� 1.
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A 
ase by 
ase analysis shows easily that the 
oordinates fk

�

g so de�ned

satisfy "

�

= (�1)

k

�

. Also, the 
ondition of Lemma 7.2 is readily satis�ed.

The point is to show that k

�

is independent of the de
omposition � = � + 


used in (6). We prove this by indu
tion on the height h (�) of � 2 �

+

. If

h (�) = 1, the root is simple, and no de
omposition � = � + 
, �; 
 2 �

+

exists, hen
e k

�

is well de�ned.

Now take � 2 �

+

su
h that � = �

1

+ 


1

= �

2

+ 


2

, �

i

, i = 1; 2, positive

roots, and hen
e having height smaller than h (�). By the indu
tive hypothe-

sis k

�

i

, k




i

, i = 1; 2 are well de�ned. We must show that k

�

1

+k




1

= k

�

2

+k




2

.

Denote by V � h

�

R

the subspa
e spanned by �

1

, 


1

, �

2

and 


2

. We have

dimV = 2 or 3.

In 
ase dimV = 2, the subset V \ � is a rank-two system of roots,


ontaining two roots (�

1

and 


1

) whose sum is a root. Hen
e V \ � is

irredu
ible, and sin
e our original root system is simply-la
ed, it follows that

V \ � is an A

2

system. Now, in A

2

a root is written uniquely as a sum of

two roots, hen
e there is nothing to prove.

Suppose then that dimV = 3, and let �

�

= V \ � be the 
orresponding

rank-three system. Sin
e the roots in � have the same length, either �

�

=

A

1

� A

2

or �

�

= A

3

. Again, there is nothing to prove in the A

1

� A

2


ase.

Assuming that �

�

= A

3

, let J

�

be the restri
tion of J to �

�

. Then J

�

is

(1; 2)-admissible and hen
e aÆne.

Now, by Lemma 7.3, �

+

�

= �

�

\�

+

is a positive root system. Let �

�

� �

+

the 
orresponding set of simple roots.

Lemma 7.5 � is the highest root in �

+

�

.

Proof: Write the positive roots of A

3

as �

ij

, 1 � i < j � 4, so that � is one

of these roots. It is not a simple root, sin
e � = �

1

+ 


1

with �

1

; 


1

2 �

+

�

.

Also, a root of height 2 in A

3

is written uniquely as a sum of two posi-

tive roots. Hen
e the height of � in �

+

�

is not 2, sin
e dimV = 3 and

� = �

1

+ 


1

= �

2

+ 


2

. Therefore, the height of � in �

+

�

is three, that is, �

is the highest root.

By this lemma and the equality �

+

�

= �

�

\ �

+

we 
on
lude that the

height of � in �

+

is bigger than the height (in �

+

) of any 
 2 �

�

. Hen
e,

the indu
tive hypothesis ensures that k




is well de�ned for 
 2 �

�

.

Now, by the 
one-free assumption, there exists an al
ove A

�

in the aÆne

system of �

�

su
h that J

�

= J (A

�

). By Lemma 7.4 we 
an 
hoose A

�

so

18



that k




(A

�

) = k




for all 
 2 �

�

. The integers k

Æ

(A

�

), Æ 2 �

�

, satisfy the


onditions of Lemma 7.2. Also, J

�

= J (A

�

) is the restri
tion of J to �

�

.

Hen
e starting with k




(A

�

) = k




, 
 2 �

�

, the values of k

Æ

(A

�

), Æ 2 �

+

�

, are

determined a

ording to the rules used to de�ne k

�

. This means that within

�

+

�

, k

�

is well de�ned. However, the de
ompositions � = �

1

+ 


1

= �

2

+ 


2

are inside �

+

�

, so that the value of k

�

does not depend upon one of these

de
ompositions, 
on
luding the proof of Theorem 7.1.

Corollary 7.6 In a simply-la
ed situation let A

1

and A

2

be al
oves su
h that

J (A

1

) = J (A

2

). Then there exists � with h�; �i 2 2Z for every root � su
h

that A

2

= t

�

A

1

.

Proof: As in the proof of Lemma 7.4 let f�

1

; : : : ; �

l

g be a simple system of

roots and f!

1

; : : : ; !

l

g its dual basis, and put

� = d

�

1

!

1

+ � � �+ d

�

l

!

l

with d

�

i

= k

�

i

(A

2

) � k

�

i

(A

1

). The assumption J (A

1

) = J (A

2

) implies

that d

�

i

, i = 1; : : : ; l, are even integers, so that h�; �i 2 2Z for all � 2 �.

A

ording to the 
hange of 
oordinates formula (5), to see that A

2

= t

�

A

1

we must 
he
k that k

�

(A

2

) = h�; �i+k

�

(A

1

) for every positive root �. This

is done by indu
tion on the height of �: If � is simple, the equality holds

by de�nition of �. On the other hand if � = � + 
 with �; 
 2 �

+

, we

assume by indu
tion that the equality is true for � and 
. In parti
ular,

k

�

(A

1

) + k




(A

1

) � k

�

(A

2

) + k




(A

2

)mod2. Now, from the 
onstru
tion

performed in the proof of Theorem 7.1, it follows that formula (6) holds for

both sets of integers k

Æ

(A

1

) and k

Æ

(A

2

), Æ 2 �, with the same "

�

. Therefore,

k

�

(A

i

) � k

�

(A

i

) � k




(A

i

) is independent of i = 1; 2. Thus applying the

indu
tive hypothesis we get

k

�

�

A

2

�

= k

�

�

A

1

�

+ h�; �i+ h�; 
i = k

�

�

A

1

�

+ h�; �i;


on
luding the proof.

Remark: It is worth mentioning that with Theorem 7.1 we get an indi-

re
t proof of a result in tournament theory, namely Theorem 3.5 of [2℄ whi
h

asserts that the verti
es of a tournament T 
an be rearranged so that its in
i-

den
e matrix be
omes stair-shaped in 
ase T has no 
ones. In fa
t, this result

follows by pie
ing together Proposition 3.2, Theorem 7.1 and the results of

[10℄ on invariant almost 
omplex stru
tures (see [10℄, Theorem 4.12).
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8 Doubly-la
ed root systems

In this se
tion we look at the 
one-free property for the doubly-la
ed diagrams

(B

l

, C

l

and F

4

). The �nal result for C

l

di�ers from B

l

and F

4

.

Theorem 8.1 Let � be a root system and J an ia
s on the 
orresponding

maximal 
ag manifold.

1. Suppose that � is C

l

. Then J is aÆne (and hen
e (1; 2)-admissible) if

and only if J satis�es the 
one-free property.

2. Suppose that � is B

l

or F

4

, and that the restri
tion of J to any rank-

three subsystem is aÆne. Then J is aÆne, and hen
e (1; 2)-admissible.

Remark: The rank-three 
ondition for B

l

and F

4

is equivalent to J being


one-free together with the additional assumption that the restri
tion of J to

any B

3

-subsystem is aÆne. This assumption is not required for C

l

be
ause

it does not 
ontain B

3

-subsystems.

The proof of Theorem 8.1 uses the 
orresponding result for simply-la
ed

diagrams (Theorem 7.1), applied to the set of short roots of �. Let �

s

and

�

l

denote the sets of short roots and long roots, respe
tively. We have the

disjoint union � = �

s

[�

l

. Both sets �

s

and �

l

are simply-la
ed root systems

(for example, in � = B

l

, �

l

is a D

l

while �

s

is redu
ible with l orthogonal


omponents).

Let J

s

stand for the restri
tion of J to �

s

. Clearly, under the 
onditions

of Theorem 8.1, J

s

satis�es the 
one-free assumption of Theorem 7.1, so that

J

s

is aÆne in �

s

. Thus there are integers k

�

, � 2 �

s

, with "

�

= (�1)

k

�

su
h

that k

�

form the 
oordinates of an al
ove in �

s

. We shall prove Theorem 8.1

by extending these 
oordinates to �

l

.

For the doubly-la
ed root systems, we have the following 
hara
terization

of the 
oordinates of al
oves, whi
h is obtained from the inequalities of Shi

after a 
ase-by-
ase analysis.

Proposition 8.2 In a doubly-la
ed root system a set of integers k

�

, � 2 Z,

are the 
oordinates of an al
ove if and only if the following inequalities are

satis�ed. Ea
h inequality is satis�ed by a triple of roots as indi
ated, where

s means short root and l long root.

1. (�; �; �+ �) = (l; l; l): k

�

+ k

�

� k

�+�

� k

�

+ k

�

+ 1
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2. (�; �; �+ �) = (s; s; s): 2k

�

+ 2k

�

+ 1 � 2k

�+�

+ 2 � 2k

�

+ 2k

�

+ 5

3. (�; �; �+ 2�) = (l; s; l): k

�

+ 2k

�

� k

�+2�

� k

�

+ 2k

�

+ 2

4. (�; �; (� + �) =2) = (l; l; s): k

�

+ k

�

� 2k

(�+�)=2

+ 1 � k

�

+ k

�

+ 2

Proof: See [10℄, Proposition 5.4.

Lemma 8.3 Suppose the doubly-la
ed root system � is irredu
ible, and let

� be a long root. Then there exists a short root � su
h that h�; �i 6= 0.

Proof: There are a long root �

1

and a short root �

1

su
h that h�

1

; �

1

i 6= 0

(look e.g. at the Dynkin diagram). The Weyl groupW leaves invariant both

�

l

and �

s

, and sin
e � is irredu
ible, these subsets are orbits of W. Hen
e,

for a long root � there exists w 2 W with � = w�

1

. Thus, h�;w�

1

i 6= 0.

Lemma 8.4 Let � be a long root. Then there are short roots � and 
 su
h

that

� = � + 
:

Proof: By the previous lemma there exists a short root � with h�; �i 6= 0.

Let �

2

be the interse
tion of � with the subspa
e spanned by � and �. It has

rank-two and 
ontains two roots � and � of di�erent length with h�; �i 6= 0.

Hen
e �

2

is a B

2

. The lemma follows then by looking at the roots of B

2

.

Now, we write down the 
onditions for a set of integers to be the 
oordi-

nates of an al
ove in terms of the short and long roots.

Lemma 8.5 In a doubly-la
ed root system � the following 
onditions are

ne
essary and suÆ
ient for a set of integers k

�

, � 2 �, to be the 
oordinates

of an al
ove:

1. The integers k

�

, � 2 �

l

, are the 
oordinates of an al
ove in the root

system of the long roots.

2. The integers k

�

, � 2 �

s

, are the 
oordinates of an al
ove in the root

system of the short roots.

21



3. Take a long root � = � + 
 with � and 
 short roots. Then either

k

�

= k

�

+ k




or k

�

= k

�

+ k




+ 1.

Proof: Suppose �rst that k

�

, � 2 �, are the 
oordinates of an al
ove. Then

the �rst and se
ond sets of inequalities in Proposition 8.2 together with the


orresponding inequalities in the simply-la
ed 
ase show that the restri
tion

of k

�

to the long roots as well as to the short roots are 
oordinates of al
oves.

Furthermore, the last 
ondition is ne
essary by Lemma 6.2.

We prove suÆ
ien
y by showing that the three 
onditions of the lemma

imply the inequalities of Proposition 8.2. The �rst two sets of those inequal-

ities are equivalent to our 
onditions on the sets of long and short roots,

respe
tively. For the other two we make a 
ase by 
ase analysis. As before l

means long root and s short root.

� (�; �; �+ 2�) = (l; s; l): k

�

+ 2k

�

� k

�+2�

� k

�

+ 2k

�

+ 2. Put


 = � + � and Æ = � + 2�. Note that 
 is a short root (look at

the roots of B

2

) Æ is a long root, and Æ = � + 
. Hen
e by the third


ondition either k

Æ

= k

�

+ k




or k

Æ

= k

�

+ k




+ 1. On the other hand,

� = �� + 
 is a sum of short roots giving rise to a long root. So

that either k

�

= �k

�

+ k




� 1 or k

�

= �k

�

+ k




. Now, we plug these

possibilities into 2k

�

� k

Æ

�k

�

� 2k

�

+2. We list below the inequalities

that arise:

k

Æ

� k

�

= (k

�

+ k




)� (�k

�

+ k




� 1) 2k

�

� 2k

�

+ 1 � 2k

�

+ 2

k

Æ

� k

�

= (k

�

+ k




)� (�k

�

+ k




) 2k

�

� 2k

�

� 2k

�

+ 2

k

Æ

� k

�

= (k

�

+ k




+ 1)� (�k

�

+ k




� 1) 2k

�

� 2k

�

+ 2 � 2k

�

+ 2

k

Æ

� k

�

= (k

�

+ k




+ 1)� (�k

�

+ k




) 2k

�

� 2k

�

+ 1 � 2k

�

+ 2

Hen
e the third set of inequalities of Proposition 8.2 holds under the


onditions of the lemma.

� (�; �; (� + �) =2) = (l; l; s): k

�

+ k

�

� 2k

(�+�)=2

+1 � k

�

+ k

�

+2. Put


 = (� + �) =2 and Æ = (� � �) =2. Both 
 and Æ are short roots (again

look at B

2

). We have � = 
 + Æ and � = 
� Æ, so that k

�

= k




+ k

Æ

or

k

�

= k




+ k

Æ

+ 1 and k

�

= k




� k

Æ

� 1 or k

�

= k




� k

Æ

. Plugging these


hoi
es into k

�

+ k

�

� 2k




+ 1 � k

�

+ k

�

+ 2 we get:

k

�

+ k

�

= (k




� k

Æ

� 1) + (k




+ k

Æ

) 2k




� 1 � 2k




+ 1 � 2k




+ 1

k

�

+ k

�

= (k




� k

Æ

� 1) + (k




+ k

Æ

+ 1) 2k




� 2k




+ 1 � 2k




+ 2

k

�

+ k

�

= (k




� k

Æ

) + (k




+ k

Æ

) 2k




� 2k




+ 1 � 2k




+ 2

k

�

+ k

�

= (k




� k

Æ

) + (k




+ k

Æ

+ 1) 2k




+ 1 � 2k




+ 1 � 2k




+ 3
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Con
luding the proof of the lemma.

We return now to Theorem 8.1. Let J = f"

�

g be an ia
s in the doubly-

la
ed root system �, whi
h satis�es the 
one-free property. Then the restri
-

tion J

s

of J to the short roots �

s

is 
one-free. Hen
e, by Theorem 7.1, J

s

is

aÆne, so that there are integers k

�

, � 2 �

s

, forming the 
oordinates of an

al
ove in �

s

, su
h that "

�

= (�1)

k

�

for all � 2 �

s

.

Maintaining this 
hoi
e of al
ove in �

s

we intend to extend the integers

k

�

to the long roots. Taking into a

ount the third 
ondition of Lemma

8.5, we must de�ne k

�

, � 2 �

l

, by the expression (6) already used in the

simply-la
ed 
ase, but now with � a long root and � and 
 short roots, su
h

that � = � + 
. Again, the very expression for k

�

ensures that "

�

= (�1)

k

�

.

Hen
e, in order to pro
eed we must prove that the integers k

�

, � 2 �

l

, are

well de�ned, and form the 
oordinates of an al
ove.

Lemma 8.6 Let k

�

, � 2 �

s

, be the 
oordinates of an al
ove in �

s

, repre-

senting J

s

. Let � > 0 be a long root with � = � + 
, � and 
 short roots,

and put

k

�

= k

�

+ k




+

1� (�1)

k

�

+k




"

�

2

: (7)

Then k

�

is independent of the short roots � and 
.

Proof: Let � = �

1

+ 


1

be another sum with �

1

and 


1

short roots. Denote

by V the subspa
e spanned by the roots �, 
, �

1

and 


1

, and let �

�

= V \�

be the 
orresponding subsystem. The possible dimensions of V are 2 or 3. If

dimV = 2, �

�

is a B

2

system, so that the 
omponents in the two sums are

equal. Similarly, in B

3

there is only one way of writing a long root as a sum

of two short roots. Hen
e we 
an assume that �

�

is C

3

.

By Proposition 4.3 any 
one-free ia
s in C

3

is aÆne. Of 
ourse, the

restri
tion J

�

of J to �

�

is 
one-free. Hen
e, there are integers, say m

Æ

,

Æ 2 �

�

, whi
h are the 
oordinates of an al
ove in C

3

, su
h that "

Æ

= (�1)

Æ

for

all Æ 2 �

�

. In parti
ular k

Æ

� m

Æ

mod2 for every short root Æ 2 �

�

. The set

of short roots in C

3

forms an A

3

-root system, so that we 
an apply Corollary

7.6, to get � su
h that for every short root Æ 2 �

�

we have k

Æ

= m

Æ

+ h�; Æi

and h�; Æi 2 2Z. Sin
e the long roots in C

3

are linear 
ombinations of short

roots with integer 
oeÆ
ients, it follows that h�; Æi 2 2Z for the long roots

in �

�

as well. Therefore, m

Æ

+ h�; Æi, Æ 2 �

�

, are the 
oordinates of an al
ove

A

�

su
h that J

�

= J (A

�

).
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Now, let � = � + 
 be as in the statement. By the third 
ondition in

Lemma 8.5 we have

m

�

+ h�; �i = k

�

+ k




+

1� (�1)

k

�

+k




"

�

2

:

Sin
e the left hand side is independent of the way � is written as a sum of

short roots, the lemma follows.

It remains to prove that the extension of k

�

to the long roots given by

(7) form the 
oordinates of an al
ove. For this we use Lemma 8.5, and verify

that the three 
onditions of that lemma are satis�ed. Firstly, the integers k

�

were 
hosen so that they form the 
oordinates of an al
ove on the short roots.

Also, the 
ompatibility 
ondition (3) follows immediately from the de�nition

of k

�

in (7). Hen
e, the point is to show that the integers k

�

are 
oordinates

of an al
ove on the long roots. At this point we 
onsider C

l

separately. In

fa
t, the set �

l

of long roots of C

l

is a de
omposable root system with l

orthogonal positive roots. In su
h a root system there are no restri
tions

on the integers to be the 
oordinates of an al
ove. In parti
ular, for C

l

the 
ondition of Lemma 8.5 regarding the long roots is va
uous. Therefore,

Theorem 8.1 is true in the C

l


ase.

To 
onsider B

l

and F

4

we prove �rst the following easy lemma.

Lemma 8.7 Let J = f"

�

g be an aÆne ia
s in the root system

B

l

= f� (e

i

� e

j

) : 1 � i < j � lg [ f�e

i

: 1 � i � lg:

Suppose we are given integers k

i

, i = 1; : : : ; l su
h that "

e

i

= (�1)

k

i

. Then

there exists an al
ove A with 
oordinates k

�

(A) satisfying k

e

i

= k

i

, i =

1; : : : ; l and su
h that J = J (A).

Proof: Is similar to the proof of Lemma 7.4, after taking into a

ount that

the short roots e

i

, i = 1; : : : ; l, span B

l

over Z.

Finally, we 
an 
on
lude the proof of Theorem 8.1 for B

l

and F

4

, by

showing that the extension de�ned in Lemma 8.6 are indeed the 
oordinates

of an al
ove on the set of long roots.

Lemma 8.8 Given k

�

, � 2 �

s

, de�ne k

�

, � 2 �

l

as in Lemma 8.6. Then

fk

�

g are the 
oordinates of an al
ove in �

l

.
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Proof: By Lemma 7.2 we must show that if �, � and � + � are long roots

then either k

�+�

= k

�

+ k

�

or k

�+�

= k

�

+ k

�

+ 1.

Write � = 


1

+ 


2

as a sum of short roots and denote by V the subspa
e

spanned by f�; 


1

; 


2

g. Let �

�

be the root system V \�. We 
laim that �

�

is a B

3

-subsystem. In fa
t, dimV > 1 be
ause � 6= �� and we 
annot have

dimV = 2, sin
e this would imply that �

�

is a B

2

-system, be
ause it 
ontains

short and long roots and a pair of roots (


1

and 


2

) whose sum is a root. But

in B

2

the sum of two long roots is not a root. Hen
e, dimV = 3. Analogous

arguments show that �

�

is irredu
ible. Now, �

�

has roots of di�erent length,

so that either �

�

= B

3

or C

3

. However, in C

3

no sum of two long roots is a

root. Therefore, �

�

= B

3

, as 
laimed.

By looking at the roots of B

3

we 
an ensure that, sin
e � + � is a root,

one of the roots in the de
omposition of �, say 


1

, is su
h that there exists

a short root Æ with � = �


1

+ Æ. Hen
e, � + � = 


2

+ Æ, and we have

� k

�+�

= k




2

+ k

Æ

+

�

1� (�1)

k




2

+k

Æ

"

�+�

�

,

� k

�

= �k




1

� 1 + k

Æ

+

�

1 + (�1)

k




1

+k

Æ

"

�

�

, and

� k

�

= k




1

+ k




2

+

�

1� (�1)

k




1

+k




2

"

�

�

.

These formulae imply that the dependen
e of k

�+�

�(k

�

+ k

�

) on the integers

k




, 
 2 �, is only mod2.

Now, we use the 
one-free 
ondition to get an al
ove A

�

in V su
h that

J

�

= J (A

�

), where J

�

is the restri
tion of J to �

�

. For a root 
 2 �

�

,

"




= (�1)

k




(A

�

)

= (�1)

k




, so that k




(A

�

) � k




(mod2). The formulae above

are true with k




(A

�

), 
 2 �, in pla
e of k




. But we know that for the 
oor-

dinates of an al
ove either k

�+�

(A

�

)� (k

�

(A

�

) + k

�

(A

�

)) = 0 or 1. Hen
e,

either k

�+�

� (k

�

+ k

�

) = 0 or 1, 
on
luding the proof of the lemma.
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