ON A $\mathrm{F}_{\mathrm{q}^{2}}$-MAXIMAL CURVE OF GENUS $\mathrm{q}(\mathrm{q}-3) / 6$

MIRIAM ABDÓN AND FERNANDO TORRES

Abstract

We show that a $\mathbf{F}_{q^{2}}$-maximal curve of genus $q(q-3) / 6$ in characteristic three is unique up to $\mathbf{F}_{q^{2}}$-isomorphism unless an unexpected situation occurs.

1. Introduction

Let \mathcal{X} be a projective, geometrically irreducible, non-singular algebraic curve of genus g defined over the finite field $\mathbf{F}_{q^{2}}$ of order q^{2}. The curve \mathcal{X} is called $\mathbf{F}_{q^{2}}$-maximal if it attains the Hasse-Weil upper bound on the number of $\mathbf{F}_{q^{2}}$-rational points; i.e., if one has

$$
\# \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)=(q+1)^{2}+q(2 g-2) .
$$

Maximal curves are known to be very useful in Coding Theory [18] and they have been intensively studied by several authors: see e.g. [34], [17], [12], [13], [14], [16], [15], [28], [29]. The subject of this paper is related to the following basic questions:

- For a given power q of a prime, which is the spectrum of the genera g of $\mathbf{F}_{q^{2-}}$ maximal curves?
- For each g in the previous item, how many non-isomorphic $\mathbf{F}_{q^{2}}$-maximal curves of genus g do exist?
- Write down an explicit $\mathbf{F}_{q^{2}}$-plane model for each of the curves in the previous item. Ihara [26] observed that g cannot be large enough compared with q^{2}. More precisely,

$$
g \leq g_{1}=g_{1}\left(q^{2}\right):=q(q-1) / 2 .
$$

Rück and Stichtenoth [32] showed that (up to $\mathbf{F}_{q^{2}}$-isomorphism) there is just one $\mathbf{F}_{q^{2-}}$ maximal curve of genus g_{1}, namely the Hermitian curve of equation

$$
\begin{equation*}
Y^{q} Z+Y Z^{q}=X^{q+1} \tag{1.1}
\end{equation*}
$$

Conversely, if $g<g_{1}$, then

$$
g \leq g_{2}=g_{2}\left(q^{2}\right):=\left\lfloor(q-1)^{2} / 4\right\rfloor
$$

[^0](see [34], [13]) and, up to $\mathbf{F}_{q^{2}}$-isomorphism, there is just one $\mathbf{F}_{q^{2}}$-maximal curve of genus g_{2} which is obtained as the quotient of the Hermitian curve by a certain involution (see [12, Thm. 3.1], [4], [29, Thm. 3.1]). Now if $g<g_{2}$, then (see [29])
$$
g \leq g_{3}=g_{3}\left(q^{2}\right):=\left\lfloor\left(q^{2}-q+4\right) / 6\right\rfloor,
$$
being this bound sharp as examples in [15], [28], and [11] show. These examples arise as quotient curves of the Hermitian curve by certain automorphism of order three; however it is not known whether or not such curves are $\mathbf{F}_{q^{2}}$-unique. In view of the results stated above and taking into consideration the examples in [10], [11] and [15], it is reasonable to expect that only few (non-isomorphism) $\mathbf{F}_{q^{2}}$-maximal curves do exist having genus g close to the upper limit g_{1} provided that q is fixed. As a matter of fact, in the range
$$
\lfloor(q-1)(q-2) / 6\rfloor \leq g<g_{3},
$$
the following statements hold:
(I) If $q \equiv 2(\bmod 3)$, there exists an $\mathbf{F}_{q^{2}}$-maximal curve of genus $g=g_{3}-1$; see [10, Thm. 6.2] and [15, Thm. 5.1]. Such a curve is also the quotient of the Hermitian curve by a certain automorphism of order three and it is also not known whether this curve is unique or not;
(II) If $q \equiv 2(\bmod 3)$ and $q \geq 11$, there is just one $\mathbf{F}_{q^{2}}$-maximal curve (up to $\mathbf{F}_{q^{2}}$ isomorphism) of genus $(q-1)(q-2) / 6$, namely the non-singular model of the affine plane curve $y^{q}+y=x^{(q+1) / 3}$, see [29, Thm. 4.5];
(III) If $q \equiv 1(\bmod 3)$ with $q \geq 13$, there is no $\mathbf{F}_{q^{2}}$-maximal curve of genus $(q-1)(q-$ 2) $/ 6$, loc. cit.;
(IV) If $q=3^{t}, t \geq 1$, there exists an $\mathbf{F}_{q^{2}}$-maximal curve of genus $g=q(q-3) / 6$, namely the non-singular model over $\mathbf{F}_{q^{2}}$ of the affine plane curve
\[

$$
\begin{equation*}
\sum_{i=1}^{t} y^{q / 3^{i}}=x^{q+1} \tag{1.2}
\end{equation*}
$$

\]

The objective of this paper is to investigate the uniqueness (up to $\mathbf{F}_{q^{2}}$-isomorphism) of the $\mathbf{F}_{q^{2}}$-maximal curve in statement (IV) above. Our main result is Theorem 4.1, where we show that if such a curve is not uniquely defined by (1.2), then an unexpected situation might occur; unfortunately, we we do not know whether or not such a circumstance can be eliminated (see Remarks in Section 3). We point out that several examples of nonisomorphic $\mathbf{F}_{q^{2}}$-maximal curves of genus $g \approx q^{2} / 8$ are known; see [9, Remark 4.1], [1], [3].

As in previous research (see e.g. [12], [29] and the reference therein), the essential tool used here is Stöhr-Voloch's approach [35] to the Hasse-Weil bound applied to the complete base-point-free linear series $\mathcal{D}:=\left|(q+1) P_{0}\right|$ defined on maximal curves which was introduced in [13]. In Section 2 we review some properties of \mathcal{D}; in particular, for $g=(q-3) q / 6$ and
$q \geq 9$ we find that the dimension of \mathcal{D} is either three or four. The later case is handle as in [4] although here we simplify some computations.

2. Preliminaries

Throughout the paper we assume $q \geq 9$ since the case $q=3$ is trivial. As it is known from [13], any $\mathbf{F}_{q^{2}}$-maximal curve \mathcal{X} is equipped with its $\mathbf{F}_{q^{2}}$-canonical linear series; namely, the complete simple base-point-free linear series

$$
\mathcal{D}=\mathcal{D}_{\mathcal{X}}:=\left|(q+1) P_{0}\right|,
$$

where P_{0} is an arbitrary $\mathbf{F}_{q^{2}}$ rational point of \mathcal{X}. The key property of \mathcal{D} is the following linear equivalence of divisors [12, Cor. 1.2]:

$$
\begin{equation*}
q P+\boldsymbol{\Phi}(P) \sim(q+1) P_{0}, \quad \forall P \in \mathcal{X} \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{\Phi}=\boldsymbol{\Phi}_{q^{2}}$ is the Frobenius morphism on \mathcal{X} relative to $\mathbf{F}_{q^{2}}$. In particular, this allows us to fix a $\mathbf{F}_{q^{2}}$-rational point P_{0} for the rest of the paper. To deal with the dimension N of \mathcal{D} we use the Castelnuovo's genus bound (for curves in projective spaces) which, for a simple linear series g_{d}^{r} on \mathcal{X}, upper bounds the genus g of the curve by means of the Castelnuovo's number $c(d, r)$; i.e., one has

$$
\begin{equation*}
g \leq c(d, r):=\frac{d-1-\epsilon}{2(r-1)}(d-r+\epsilon) \tag{2.2}
\end{equation*}
$$

being ϵ the unique integer with $0 \leq \epsilon \leq r-2$ and $d-1 \equiv \epsilon(\bmod r-1)$; see [8], [6, p. 116], [20, IV, Thm 6.4], [31, Cor. 2.8].

Lemma 2.1. For a $\mathbf{F}_{q^{2}}$-maximal curve of genus $g=q(q-3) / 6, N \in\{3,4\}$.
Proof. We have that $N \geq 2$ and that $N=2$ if and only if \mathcal{X} is the Hermitian curve whose genus is $g=q(q-1) / 2$ (see [14, Thm. 2.4]). Therefore $N \geq 3$. If $N \geq 5$, from (2.2) and the hypothesis on g we would have $q(q-3) / 6 \leq(q-2)^{2} / 8$; so $q^{2} \leq 12$, a contradiction.

Next based on Stöhr-Voloch's Theory [35], we summarize some properties on Weierstrass Point Theory and Frobenius Orders with respect to the linear series \mathcal{D}. Let $\epsilon_{0}=0<$ $\epsilon_{1}=1<\ldots<\epsilon_{N}$ and $\nu_{0}=0<\nu_{1}<\ldots<\nu_{N-1}$ denote respectively the \mathcal{D}-orders and $\mathbf{F}_{q^{2}}$-Frobenius orders of \mathcal{D}. For $P \in \mathcal{X}$, let $j_{0}(P)=0<j_{1}(P)<\ldots<j_{N}(P)$ be the (\mathcal{D}, P)-orders of \mathcal{D}, and $\left(n_{i}(P): i=0,1, \ldots\right)$ the strictly increasing sequence that enumerates the Weierstrass semigroup $H(P)$ at P. We have

$$
0<n_{1}(P)<\ldots<n_{N-1}(P) \leq q<q+1 \leq n_{N}(P)
$$

and $n_{N}(P)=q+1$ for $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$ by (2.1); furthermore, $n_{N-1}(P)=q$ for any $P \in \mathcal{X}$ ([12, Prop. 1.9], [29, Thm. 2.5]). We also have the following facts from [12, Thm. 1.4, Prop. 1.5]:

Lemma 2.2. (1) $\epsilon_{N}=\nu_{N-1}=q$;
(2) $\nu_{1}=1$ if $N \geq 3$;
(3) $j_{1}(P)=1$ for any P;
(4) $j_{N}(P)=q+1$ if $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$, otherwise $j_{N}(P)=q$;
(5) If $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$, then the (\mathcal{D}, P)-orders are $n_{N}(P)-n_{i}(P), i=0,1, \ldots, N$;
(6) If $P \notin \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$, then the elements $n_{N-1}(P)-n_{i}(P), i=0, \ldots, N-1$, are (\mathcal{D}, P) orders.

3. Case $N=3$

Let \mathcal{X} be a $\mathbf{F}_{q^{2}}$-maximal curve of genus $g=q(q-3) / 6$ and let us keep the notation in Section 2. Then, as we saw in Lemma 2.1, the dimension N of $\mathcal{D}=\mathcal{D}_{\mathcal{X}}$ is either 3 or 4 . In this section we point out some consequences of former possibility.

Lemma 3.1. If $N=3$, then $\epsilon_{2}=3$.
Proof. Let S be the $\mathbf{F}_{q^{2}}$-Frobenius divisor associated to \mathcal{D} (cf. [35]). Then $\operatorname{deg}(S)=$ $\left(\nu_{1}+\nu_{2}\right)(2 g-2)+\left(q^{2}+3\right)(q+1)$, where $\nu_{1}=1$ and $\nu_{2}=q$ by Lemma 2.2. For $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$ it is known that (loc. cit.)

$$
v_{P}(S) \geq j_{1}(P)+\left(j_{2}(P)-\nu_{1}\right)+\left(j_{3}(P)-\nu_{2}\right)=j_{2}(P)+1
$$

Moreover, as $j_{2}(P) \geq \epsilon_{2}$, the maximality of \mathcal{X} implies $\operatorname{deg}(S) \geq\left(\epsilon_{2}+1\right)\left((q+1)^{2}+q(2 g-2)\right)$. Now, suppose that $\epsilon_{2} \geq 4$. Then the above inequality becomes

$$
(q+1)\left(q^{2}-5 q-2\right) \geq(2 g-2)(4 q-1),
$$

which is a contradiction with the hypothesis on g. Thus we have shown that $\epsilon_{2} \in\{2,3\}$. If ϵ_{2} were 2 , from [10, Remark 3.3(1)] we would have $g \geq\left(q^{2}-2 q+3\right) / 6$, which is again a contradiction with respect to g.

Corollary 3.2. If $N=3$, then $\operatorname{dim}(2 \mathcal{D}) \geq 9$.
Proof. Since $0,1,3, q$ are \mathcal{D}-orders (Lemma 2.2), then it is easy to see that $0,1,2,3,4,6, q, q+1, q+3,2 q$ are $2 \mathcal{D}$-orders and the result follows.

Corollary 3.3. ([10, Lemma 3.7]) If $N=3$, then there exists a $\mathbf{F}_{q^{2}}$-rational point P such that $n_{1}(P)=q-2$.

This section is close with some feelings about the possibility $N=3$.
Remark 3.4. (Related with Weierstrass semigroups) From Lemma 2.2 and Corollary 3.3 there exists $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$ such that $n_{1}(P)=q-2, n_{2}(P)=q, n_{3}(P)=q+1$; i.e., the Weierstrass semigroup $H(P)$ contains the semigroup

$$
H:=\langle q-2, q, q+1\rangle=\{(q-2) i: i \in \mathbf{N}\} \cup\left\{q i-2(i-1): i \in \mathbf{Z}^{+}\right\}
$$

whose genus (i.e; $\#(\mathbf{N} \backslash H)$) is equal to $\left(q^{2}-q\right) / 6$ (see e.g. [10, Lemma 3.4]). How can we complete H in order to get $H(P)$? We have to choose $q / 3$ elements from $\mathbf{N} \backslash H$, and it is easy to see that such elements must belong to the set

$$
\left\{(i(q-1): i=2, \ldots, q / 3-1\} \cup\left\{q^{2}-5 q / 3-1, q^{2}-5 q, q^{2}-5 q / 3+1\right\}\right.
$$

This set contains $q / 3+2$ elements, so we have to exclude two elements from it. Hence we arrive to the following seven possibilities:
(i) $q-1,2 q-2 \notin H(P)$;
(ii) $q-1 \notin H(P)$ but $2 q-2 \in H(P)$; in this case we have to eliminate one element from the set $\left\{q^{2}-5 q / 3-1, q^{2}-5 q / 3, q^{2}-5 q / 3+1\right\}$;
(iii) $q-1,2 q-2 \in H(P)$; in this case we have to eliminate two elements from the set $\left\{q^{2}-5 q / 3-1, q^{2}-5 q / 3, q^{2}-5 q / 3+1\right\}$.

So far, we do not know how an obstruction (for N being equal to 3) might arise from some of the possibilities above.

Remark 3.5. (Related with the Hermitian curve (1.1)) Suppose that \mathcal{X} is $\mathbf{F}_{q^{2}}$-covered by the Hermitian curve. Then the covering cannot be Galois; otherwise by [11, Prop. 5.6] the curve would be $\mathbf{F}_{q^{2}}$-isomorphic to the non-singular model of (1.2) and thus $N=4$. We recall that there is not known any example of a $\mathbf{F}_{q^{2}}$-maximal curve $\mathbf{F}_{q^{2}}$-covered by the Hermitian curve by a non-Galois covering.

Remark 3.6. (Reflexivity, Duality and the Surface Tangent) Recall that we can assume our curve \mathcal{X} as being embedded in $\mathbf{P}^{3}\left(\overline{\mathbf{F}}_{q^{2}}\right)$ by [28, Thm. 2.5]. Hefez [21] noticed that four cases for the generic contact orders for space curves can occur. Homma [25] realized that all the four aforementioned cases occur and characterized each of them by means of the reflexivity of either the curve \mathcal{X}, or the tangent $\operatorname{surface} \operatorname{Tan}(\mathcal{X})$ associated to it (see also [24]). In our situation $\left(\epsilon_{2}=3\right.$ and $\left.\epsilon_{3}=q\right)$, the curve is non-reflexive by Hefez-Kleiman Generic Order of Contact Theorem [23]. Thus, by Homma's result, it holds that $N=3$ if and only $\operatorname{Tan}(\mathcal{X})$ is non-reflexive. So far we do not know how to relate the maximality of \mathcal{X} to the non-reflexivity of its tangent surface. We mention that techniques analogous to those of [35] that work on certain surfaces in \mathbf{P}^{3} over prime fields is now available thanks to a recent paper by Voloch [36].

Remark 3.7. (Related to Halphen's theorem) Ballico [7] extended Harris [19] and Rathmann [31] results concerning space curves contained in surfaces of certain degree. For a $\mathbf{F}_{q^{2}}$-maximal curve \mathcal{X} of genus $q(q-3) / 6$, with q large enough, Ballico's result implies that \mathcal{X} is contained in a surface of degree 3 or 4 . On the other hand, suppose that Voloch's approach [36] can be extended to cover the case of surfaces over arbitrary finite fields. Then a conjunction of Ballico and Voloch's result would provide with further insights of the curves studied here.

4. Main Result

Theorem 4.1. Let \mathcal{X} be a $\mathbf{F}_{q^{2}}$-maximal curve of genus $g=q(q-3) / 6$. Then either
(1) \mathcal{X} is $\mathbf{F}_{q^{2}}$-isomorphic to the non-singular model of the plane curve (1.2); or
(2) $N:=\operatorname{dim}\left(\mathcal{D}_{\mathcal{X}}\right)=3$ and $\epsilon_{2}=3$.

Remark 4.2. In Case (1), the curve is $\mathbf{F}_{q^{2}}$-covered by the Hermitian curve (1.1).
To give the proof of the theorem we need some auxiliary results. First of all, by Lemmas 2.1 and 3.1, we can assume $N=4$. In particular, we notice that g is equal to Castelnuovo's number $c(q+1,4)$ and hence from Accola's paper [5, p. 36 and Lemma 3.5] the following holds:

Lemma 4.3. (1) $\operatorname{dim}(2 \mathcal{D})=11$;
(2) There exists a base-point-free 2-dimensional complete linear series \mathcal{D}^{\prime} of degree $2 q / 3$ such that $\frac{q-6}{3} \mathcal{D}+\mathcal{D}^{\prime}$ is the canonical linear series of \mathcal{X}.

Part (1) of this lemma implies Lemmas 4.2 and 4.4 in [29]:
Corollary 4.4. (1) If $j_{2}(P)=2$, then $j_{3}(P)=3$;
(2) If $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$ and $j_{2}(P)>2$, then $j_{2}(P)=(q+3) / 3, j_{3}(P)=(2 q+3) / 3$;
(3) If $P \notin \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$ and $j_{2}(P)>2$, then either $j_{2}(P)=q / 3, j_{3}(P)=2 q / 3$; or $j_{2}(P)=$ $(q-1) / 2), j_{3}(P)=(q+1) / 2$.

Lemma 4.5. For $q=9, n_{1}(P)=3$ for any $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$.
Proof. Let P be a $\mathbf{F}_{q^{2}}$-rational and set $n_{i}:=n_{i}(P)$. Lemma 2.2 implies that $0,1, j_{2}=$ $10-n_{2}, j_{3}=10-n_{1}, 10$ are the \mathcal{D}-orders at the point. Then the set of $2 \mathcal{D}$-orders at P must contain the set $\left\{0,1,2, j_{2}, j_{2}+1,2 j_{2}, j_{3}, j_{3}+1, j_{2}+j_{3}, 2 j_{3}, 10,11, j_{2}+10, j_{3}+10,20\right\}$ and hence, as $\operatorname{dim}(2 \mathcal{D})=11$ by Lemma 4.3, the result follows.

From now on let us assume $q \geq 27$.
Lemma 4.6. (1) The case (3) in Corollary 4.4 cannot occur;
(2) There exists $P_{1} \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$ such that $j_{2}\left(P_{1}\right)>2$; in this case, $n_{1}\left(P_{1}\right)=q / 3$;
(3) Let P_{1} be as in (2) and $x \in \mathbf{F}_{q^{2}}(\mathcal{X})$ such that $\operatorname{div}_{\infty}(x)=\frac{q}{3} P_{1}$. Then the morphism $x: \mathcal{X} \backslash\left\{P_{1}\right\} \rightarrow \mathbf{A}^{1}\left(\overline{\mathbf{F}}_{q^{2}}\right)$ is unramified.
(4) The \mathcal{D}-orders and $\mathbf{F}_{q^{2}}$-Frobenius orders of \mathcal{D} are respectively $0,1,2,3, q$ and $0,1,2, q$.

Proof. For $P \in \mathcal{X}$, set $j_{i}=j_{i}(P)$ and $n_{i}=n_{i}(P)$.
(1) We have that $\left\{q-n_{2}, q-n_{1}\right\} \subseteq\left\{1, j_{2}, j_{3}\right\}$ by Lemma 2.2(6). Suppose that Case (3) in Cor. 4.4 occurs.

Case $j_{2}=q / 3, j_{3}=2 q / 3$. Here $n_{1} \in\{2 q / 3, q / 3\}$; let $f \in \overline{\mathbf{F}}_{q^{2}}(\mathcal{X})$ such that $\operatorname{div}(f-$ $f(\boldsymbol{\Phi}(P)))=D+e \boldsymbol{\Phi}(P)-n_{1} P$, where $e \geq 1$ and $P \notin \operatorname{Supp}(D)$. If $n_{1}=2 q / 3$, then $3 e+2$ is an $(2 \mathcal{D}, \boldsymbol{\Phi}(P))$-order by (2.1). However, as $\operatorname{dim}(2 \mathcal{D})=11$, the sequence of $(2 \mathcal{D}, \boldsymbol{\Phi}(P))$ orders is $0,1,2, q / 3, q / 3+1,2 q / 3,2 q / 3+1, q, q+1,4 q / 3,5 q / 3,2 q$ and thus $n_{1}=q / 3$. In this case, arguing as above, $3 e+1$ is an $(\mathcal{D}, \Phi(P))$-order which is a contradiction.
Case $j_{2}=(q-1) / 2, j_{3}=(q+1) / 2$. From Lemma 4.3(2) and the hypothesis $q \geq 27$, we have that $2 j_{2}+1=q$ is a Weierstrass gap at P (i.e.; $q \notin H(P)$), a contradiction with $n_{3}=q$.
(2) If we show that there exists $P_{1} \in \mathcal{X}$ such that $j_{2}\left(P_{1}\right)>2$, then the point P_{1} will be $\mathbf{F}_{q^{2}}$-rational by (1). So, suppose that $j_{2}(P)=2$ for any $P \in \mathcal{X}$. Let R denote the ramification divisor associated to \mathcal{D} (cf. [35]). Then the \mathcal{D}-Weierstrass points coincide with the set of $\mathbf{F}_{q^{2}}$-rational points and $v_{P}(R)=1$ for $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$ (cf. Lemma 2.2). Therefore

$$
\operatorname{deg}(R)=(q+6)(2 g-2)+5(q+1)=(q+1)^{2}+q(2 g-2)
$$

so that $2 g-2=(q-1)(q-4) / 6$, a contradiction. That $n_{1}=q / 3$ follows immediately from Cor. 4.4(2) and Lemma 2.2(5).
(3)-(4) Let $y \in \mathbf{F}_{q^{2}}(\mathcal{X})$ be such that $\operatorname{div}_{\infty}(y)=(q+1) P_{0}$. Then the sections of \mathcal{D} are generated by $1, x, x^{2}, x^{3}, y$. Now, if we show that there exists $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$ such that $j_{2}(P)=2$ and $j_{3}(P)=3$, then (4) follows since $\epsilon_{i} \leq j_{i}(P)$ and $\nu_{i-i} \leq j_{i}(P)-j_{1}(P)$ (cf. [35]). To see that such a point P do exist, we proceed as in [14, p. 38]. For $P \in \mathcal{X} \backslash\left\{P_{0}\right\}$, write $\operatorname{div}(x-x(P))=e P+D-n_{1} P_{0}$ with $e \geq 1$ and $P, P_{0} \notin \operatorname{Supp}(D)$. Then $e, 2 e, 3 e$ are (\mathcal{D}, P)-orders and if $e>1,3 e=q+1$, a contradiction as $q \equiv 0(\bmod 3)$. Thus the proof is complete.

Let $v=v_{P_{0}}$ be the valuation at P_{0}, and $D^{i}:=D_{x}^{i}$ the i-th Hasse differential operator on $\overline{\mathbf{F}}_{q^{2}}(\mathcal{X})$ with respect to x (see e.g. [22, §3]). We set $D:=D^{1}$.

Corollary 4.7. $\quad v(D y)=-q^{2} / 3$.
Proof. (cf. [4, p. 47]) Let t be a local parameter at P_{0}; then

$$
v(D y)=v(d y / d t)-v(d x / d t)=-q-2-2 g-2=-q^{2} / 3
$$

since by the previous lemma the morphism $x: \mathcal{X} \rightarrow \mathbf{P}^{1}\left(\overline{\mathbf{F}}_{q^{2}}\right)$ is totally ramified at P_{0} and unramified outside P_{0}, and since a canonical divisor has degree $2 g-2$.

Proof of Theorem 4.1. Let x and y be as above; they are related to each other by an equation over $\mathbf{F}_{q^{2}}$ of type (see e.g. [27])

$$
\begin{equation*}
x^{q+1}+a y^{q / 3}+\sum_{i=0}^{q / 3-1} A_{i}(x) y^{i}=0 \tag{4.1}
\end{equation*}
$$

where $a \neq 0$, and the $A_{i}(x)$'s are polynomials in x such that $\operatorname{deg}\left(A_{i}(x)\right) \leq q-3 i$. Now by Lemma 4.6 (3) we have a relation of type (cf. [35, Prop. 2.1]):

$$
\begin{equation*}
y^{q^{2}}-y=\left(x^{q^{2}}-x\right) D y+\left(x^{q^{2}}-x\right)^{2} D^{2} y+\left(x^{q^{2}}-x\right)^{3} D^{3} y \tag{4.2}
\end{equation*}
$$

Claim 4.8. (1) $A_{i}(x)=0$ for i not a power of $3, i \geq 2$;
(2) $A_{3 j}(x) \in \mathbf{F}_{q^{2}}$ for $j=0,1, \ldots, t-2$.

Proof. First we show that $A_{i}(x)=0$ if $i \geq 2$ and $i \not \equiv 0(\bmod 3)$. To do that, let apply D to Eq. 4.1; so

$$
0=x^{q}+\sum_{i=0}^{q / 3-1} D A_{i}(x) y^{i}+\left(\sum_{i=1}^{q / 3-1} A_{i}(x) i y^{i-1}\right) D y .
$$

Suppose that $A_{i}(x) \neq 0$ for some $i \geq 2, i \not \equiv 0(\bmod 3)$. Then, as

$$
v\left(\sum_{i=1}^{q / 3-1} A_{i}(x) i y^{i-1} D y\right)<v\left(x^{q}\right),
$$

by Cor. 4.7 , we must have that

$$
v\left(\sum_{i=1}^{q / 3-1} A_{i}(x) i y^{q-1} D y\right)=v\left(\sum_{i=0}^{q / 3-1} D A_{i}(x) y^{i}\right),
$$

so that there exists integers $2 \leq i_{0} \leq q / 3-1, i_{0} \not \equiv 0(\bmod 3)$ and $1 \leq j_{0} \leq q / 3-1$ such that $v\left(A_{i_{0}}(x) y^{i_{0}-1}=v\left(D A_{j_{0}}(x) y^{j_{0}}\right)\right.$ and then $-q / 3\left(\operatorname{deg}\left(D A_{j_{0}}-\operatorname{deg}\left(A_{i_{0}}\right)=-(q+1)\left(i_{0}-\right.\right.\right.$ $\left.1-j_{0}\right)-q^{2} / 3$ and it gives us a contradiction.
Then Eq. 4.1 is reduced to

$$
\begin{equation*}
x^{q+1}+a y^{q / 3}+A_{0}(x)+a_{1}(x) y+\sum_{i=1}^{q / 9-1} A_{3 i}(x) y^{3 i}=0 . \tag{4.3}
\end{equation*}
$$

Now we can conclude that $A_{1} \in \mathbf{F}_{q^{2}}$. Indeed, applying D to Eq. 4.3 we have that $0=x^{q}+D A_{0}(x)+D\left(A_{1}(x) y\right)+\sum_{i=1}^{q / 9-1} D A_{3 i}(x) y^{3 i}$, and then from Cor 4.7 the claim follows.

Next we show that $A_{3 i}(x)=0$ for $i \geq 2$ and $i \not \equiv 0(\bmod 3)$. In order to do that we need to compute $v\left(D^{3} y\right)$. From Eq. 4.2 we have that $v\left(D^{2} y-\left(x^{q^{2}}-x\right) D^{3} y\right)=-q^{3} / 3-q^{2}$. Then it is enough to show that $v\left(D^{2} y\right)>-q^{3} / 3-q^{2}$. This follows by applying D^{2} to Eq. 4.3 and comparing valuations. Thus $v\left(D^{3} y\right)=-q^{2}$.

Finally, we use induction via $D^{3^{i}}$ applied to Eq. $4.3(i=1, \ldots, t-2)$ together with properties of the valuation v.

Thus Eq. 4.1 becomes

$$
a y^{q / 3}+x^{q+1}+A_{0}(x)+\sum_{i=0}^{t-2} A_{3^{i}} y^{3^{i}}=0
$$

with each $A_{i} \in \mathbf{F}_{q^{2}}$. Notice that $A_{1} \neq 0$ since the extension $\overline{\mathbf{F}}_{q^{2}}^{-}(x, y) \mid \overline{\mathbf{F}}_{q^{2}}(x)$ is separable. Finally the proof of Theorem 4.1 follows from [2, Sect. 5]; here we just point out the main ideas from that reference for the case $p=3$:
(i) By using the orders of the linear series \mathcal{D} (Lemma 4.6), we have that

$$
A_{0}(x)=b_{0}+b_{1} x+b_{2} x^{2}+\sum_{i=1}^{t-1} b_{3 i} x^{3^{i}}+\sum_{i=1}^{t-1} b_{23^{i}} x^{23^{i}}
$$

(ii) From the previous item and Eq. 4.2 we find that

$$
b_{i 3 j}=a_{j} b_{i}^{3^{j}}, \quad i=1,2 ; j=1, \ldots, t-1 .
$$

Similarly, $A_{j}=A_{1}^{\left(3^{t-j}-1\right) / 2}$.
(iii) Next the polynomial $A_{0}(x)$ can be reduced to an additive polynomial: $A_{0}(x)=$ $\sum_{i=0}^{t-1} b_{3^{i}} x^{3^{i}}+b_{0}$ since $b_{2}=0$ which follows from the previous item.
(iv) Finally, the previous reduction on $A_{0}(x)$ and the relations for its coefficients in Item (ii) implies the theorem via a $\mathbf{F}_{q^{2}}$-change of coordinates, namely $x \mapsto d x$, $y \mapsto y+b_{1} x+e$, where $d^{q+1}=c$ with c such that $c^{2}=A_{1}$, and where e is a solution of the equation in $Z: \sum_{i=0}^{t-1} A_{i} Z^{3^{i}}=b_{0}$.

References

[1] M. Abdón, "On maximal curves in characteristic two", Ph.D. dissertation, Série F-121/2000, IMPA, Rio de Janeiro, Brazil, 2000.
[2] M. Abdón and A. Garcia, "On a characterization of certain maximal curves" (provisory title), work in progress.
[3] M. Abdón, H. Stichtenoth and F. Torres, On maximal curves and Artin Schreier extensions (provisory title), work in progress.
[4] M. Abdón and F. Torres, On maximal curves in characteristic two, Manuscripta Math. 99 (1999), 39-53.
[5] R.D.M. Accola, On Castelnuovo's inequality for algebraic curves, I, Trans. Amer. Math. Soc. 251 (1979), 357-373.
[6] E. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris, "Geometry of Algebraic Curves," Vol. I, Springer-Verlag, New-York, 1985.
[7] E. Ballico, Space curves not contained in low degree surfaces in positive characteristic, Preprint May 2000.
[8] G. Castelnuovo, Ricerche di geometria sulle curve algebriche, Atti. R. Acad. Sci. Torino 24 (1889), 196-223.
[9] A. Cossidente, J.W.P. Hirschfeld, G. Korchmáros and F. Torres, On plane maximal curves, Compositio Math. 121 (2000), 163-181.
[10] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the Hermitian curve, J. Algebra 216 (1999), 56-76.
[11] A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the Hermitian curve, Comm. Algebra 28(10) (2000), 4707-4728.
[12] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. Number Theory 67(1) (1997), 29-51.
[13] R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103-106.
[14] R. Fuhrmann and F. Torres, On Weierstrass points and optimal curves, Rend. Circ. Mat. Palermo Suppl. 51 (1998), 25-46.
[15] A. Garcia, H. Stichtenoth and C.P. Xing, On subfields of the Hermitian function field, Compositio Math. 120 (2000), 137-170.
[16] A. Garcia and F. Torres, On maximal curves having classical Weierstrass gaps, Contemp. Math. 245 Amer. Math. Soc. (1999), 49-59.
[17] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, Arithmetic Geometry (Cortona 1994), F. Catanese Ed., Cambridge Univ. Press, Cambridge, 169-189, 1997.
[18] V.D. Goppa, "Geometry and codes", Mathematics and its applications, Vol. 24. Kluwer Academic Publisher, Dordrechet-Boston-London, 1988.
[19] J. Harris, The genus of space curves, Math. Ann. 249 (1980), 191-204.
[20] R. Hartshorne, "Algebraic Geometry", Grad. Texts in Math., Vol. 52, Springer-Verlag, New YorkBerlin, 1977.
[21] A. Hefez, Non classical curves, Atas 16 Coloquio Bras. de Matem. (1988), 33-37.
[22] A. Hefez, Non-reflexive curves, Compositio Math. 69 (1989), 3-35.
[23] A. Hefez and S. Kleiman, Notes on the duality of project varieties, "Geometry Today", 143-183, Birkhäuser, 1985.
[24] M. Homma, Reflexivity of tangent varieties associated with a curve, Ann. Mat. Pura Appl. (4) 156 (1990), 195-210.
[25] M. Homma, Duality of spaces and their tangent surfaces in characteristic $p>0$, Ark. Math. 28(2) (1991), 221-235.
[26] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokio 28 (1981), 721-724.
[27] T. Kato, On Weierstrass points whose first non-gaps are three, J. Reine Angew. Math. 316 (1979), 99-109.
[28] G. Korchmáros and F. Torres, Embedding of a maximal curve in a Hermitian variety, Composition Math., to appear.
[29] G. Korchmáros and F. Torres, On the genus of a maximal curve, arXiv: math.AG/000802.
[30] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305, Série I (1987), 729-732.
[31] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann. 276 (1987), 565-579.
[32] H.G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185-188.
[33] H. Stichtenoth, "Algebraic function fields and codes", Springer-Verlag, Berlin, 1993.
[34] H. Stichtenoth and C.P. Xing, The genus of maximal function fields, Manuscripta Math. 86 (1995), 217-224.
[35] K.O. Stöhr and J.F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. 52 (1986), 1-19.
[36] J.F. Voloch, Surfaces in \mathbf{P}^{3} over finite fields, preprint available at the location http://www.ma.utexas.edu/users/voloch.

Instituto de Matemática (GAN) - UFF, Rua Mário Santos Braga, s/n, Campus do Valonguinho, Niteroi, 24.020-140-RJ, Brazil

E-mail address: miriam@mat.uff.br

IMECC-UNICAMP, Cx. P. 6065, Campinas, 13083-970-SP, Brazil
E-mail address: ftorres@ime.unicamp.br

Current Address: Departamento de Matemática, Universidad de Valladolid, Spain

[^0]: 2000 Math. Subj. Class.: Primary 11G20, Secondary 14G05, 14G10.
 Key words.: Finite field, Maximal curve, Artin-Schreier extension, Additive polynomial.
 Abdón was partially supported by FAPERJ and PRONEX-Cnpq (Brazil) while Torres acknowledges support by Cnpq-Brazil, Proc. 300681/97-6.

