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Abstra
t. We show that a F

q

2

-maximal 
urve of genus q(q � 3)=6 in 
hara
teristi


three is unique up to F

q

2
-isomorphism unless an unexpe
ted situation o

urs.

1. Introdu
tion

Let X be a proje
tive, geometri
ally irredu
ible, non-singular algebrai
 
urve of genus g

de�ned over the �nite �eld F

q

2

of order q

2

. The 
urve X is 
alled F

q

2

-maximal if it attains

the Hasse-Weil upper bound on the number of F

q

2

-rational points; i.e., if one has

#X (F

q

2

) = (q + 1)

2

+ q(2g � 2) :

Maximal 
urves are known to be very useful in Coding Theory [18℄ and they have been

intensively studied by several authors: see e.g. [34℄, [17℄, [12℄, [13℄, [14℄, [16℄, [15℄, [28℄,

[29℄. The subje
t of this paper is related to the following basi
 questions:

� For a given power q of a prime, whi
h is the spe
trum of the genera g of F

q

2

-

maximal 
urves?

� For ea
h g in the previous item, how many non-isomorphi
 F

q

2

-maximal 
urves of

genus g do exist?

� Write down an expli
it F

q

2

-plane model for ea
h of the 
urves in the previous item.

Ihara [26℄ observed that g 
annot be large enough 
ompared with q

2

. More pre
isely,

g � g

1

= g

1

(q

2

) := q(q � 1)=2 :

R�u
k and Sti
htenoth [32℄ showed that (up to F

q

2

-isomorphism) there is just one F

q

2

-

maximal 
urve of genus g

1

, namely the Hermitian 
urve of equation

(1.1) Y

q

Z + Y Z

q

= X

q+1

:

Conversely, if g < g

1

, then

g � g

2

= g

2

(q

2

) := b(q � 1)

2

=4
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(see [34℄, [13℄) and, up to F

q

2

-isomorphism, there is just one F

q

2

-maximal 
urve of genus

g

2

whi
h is obtained as the quotient of the Hermitian 
urve by a 
ertain involution (see

[12, Thm. 3.1℄, [4℄, [29, Thm. 3.1℄). Now if g < g

2

, then (see [29℄)

g � g

3

= g

3

(q

2

) := b(q

2

� q + 4)=6
 ;

being this bound sharp as examples in [15℄, [28℄, and [11℄ show. These examples arise as

quotient 
urves of the Hermitian 
urve by 
ertain automorphism of order three; however

it is not known whether or not su
h 
urves are F

q

2

-unique. In view of the results stated

above and taking into 
onsideration the examples in [10℄, [11℄ and [15℄, it is reasonable

to expe
t that only few (non-isomorphism) F

q

2

-maximal 
urves do exist having genus g


lose to the upper limit g

1

provided that q is �xed. As a matter of fa
t, in the range

b(q � 1)(q � 2)=6
 � g < g

3

;

the following statements hold:

(I) If q � 2 (mod 3), there exists an F

q

2

-maximal 
urve of genus g = g

3

� 1; see [10,

Thm. 6.2℄ and [15, Thm. 5.1℄. Su
h a 
urve is also the quotient of the Hermitian


urve by a 
ertain automorphism of order three and it is also not known whether

this 
urve is unique or not;

(II) If q � 2 (mod 3) and q � 11, there is just one F

q

2

-maximal 
urve (up to F

q

2

-

isomorphism) of genus (q � 1)(q � 2)=6, namely the non-singular model of the

aÆne plane 
urve y

q

+ y = x

(q+1)=3

, see [29, Thm. 4.5℄;

(III) If q � 1 (mod 3) with q � 13, there is no F

q

2

-maximal 
urve of genus (q � 1)(q �

2)=6, lo
. 
it.;

(IV) If q = 3

t

, t � 1, there exists an F

q

2

-maximal 
urve of genus g = q(q�3)=6, namely

the non-singular model over F

q

2

of the aÆne plane 
urve

(1.2)

t

X

i=1

y

q=3

i

= x

q+1

:

The obje
tive of this paper is to investigate the uniqueness (up to F

q

2

-isomorphism) of

the F

q

2

-maximal 
urve in statement (IV) above. Our main result is Theorem 4.1, where

we show that if su
h a 
urve is not uniquely de�ned by (1.2), then an unexpe
ted situation

might o

ur; unfortunately, we we do not know whether or not su
h a 
ir
umstan
e 
an

be eliminated (see Remarks in Se
tion 3). We point out that several examples of non-

isomorphi
 F

q

2

-maximal 
urves of genus g � q

2

=8 are known; see [9, Remark 4.1℄, [1℄,

[3℄.

As in previous resear
h (see e.g. [12℄, [29℄ and the referen
e therein), the essential tool used

here is St�ohr-Volo
h's approa
h [35℄ to the Hasse-Weil bound applied to the 
omplete base-

point-free linear series D := j(q + 1)P

0

j de�ned on maximal 
urves whi
h was introdu
ed

in [13℄. In Se
tion 2 we review some properties of D; in parti
ular, for g = (q� 3)q=6 and
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q � 9 we �nd that the dimension of D is either three or four. The later 
ase is handle as

in [4℄ although here we simplify some 
omputations.

2. Preliminaries

Throughout the paper we assume q � 9 sin
e the 
ase q = 3 is trivial. As it is known from

[13℄, any F

q

2

-maximal 
urve X is equipped with its F

q

2

-
anoni
al linear series; namely,

the 
omplete simple base-point-free linear series

D = D

X

:= j(q + 1)P

0

j ;

where P

0

is an arbitrary F

q

2

-rational point of X . The key property of D is the following

linear equivalen
e of divisors [12, Cor. 1.2℄:

(2.1) qP +�(P ) � (q + 1)P

0

; 8P 2 X ;

where � = �

q

2

is the Frobenius morphism on X relative to F

q

2

. In parti
ular, this allows

us to �x a F

q

2

-rational point P

0

for the rest of the paper. To deal with the dimension N

of D we use the Castelnuovo's genus bound (for 
urves in proje
tive spa
es) whi
h, for

a simple linear series g

r

d

on X , upper bounds the genus g of the 
urve by means of the

Castelnuovo's number 
(d; r); i.e., one has

(2.2) g � 
(d; r) :=

d� 1� �

2(r � 1)

(d� r + �) ;

being � the unique integer with 0 � � � r � 2 and d� 1 � � (mod r � 1); see [8℄, [6, p.

116℄, [20, IV, Thm 6.4℄, [31, Cor. 2.8℄.

Lemma 2.1. For a F

q

2

-maximal 
urve of genus g = q(q � 3)=6; N 2 f3; 4g:

Proof. We have that N � 2 and that N = 2 if and only if X is the Hermitian 
urve whose

genus is g = q(q � 1)=2 (see [14, Thm. 2.4℄). Therefore N � 3. If N � 5, from (2.2) and

the hypothesis on g we would have q(q�3)=6 � (q�2)

2

=8; so q

2

� 12, a 
ontradi
tion. �

Next based on St�ohr-Volo
h's Theory [35℄, we summarize some properties on Weierstrass

Point Theory and Frobenius Orders with respe
t to the linear series D. Let �

0

= 0 <

�

1

= 1 < : : : < �

N

and �

0

= 0 < �

1

< : : : < �

N�1

denote respe
tively the D-orders

and F

q

2

-Frobenius orders of D. For P 2 X , let j

0

(P ) = 0 < j

1

(P ) < : : : < j

N

(P ) be

the (D; P )-orders of D, and (n

i

(P ) : i = 0; 1; : : :) the stri
tly in
reasing sequen
e that

enumerates the Weierstrass semigroup H(P ) at P . We have

0 < n

1

(P ) < : : : < n

N�1

(P ) � q < q + 1 � n

N

(P ) ;

and n

N

(P ) = q + 1 for P 2 X (F

q

2

) by (2.1); furthermore, n

N�1

(P ) = q for any P 2 X

([12, Prop. 1.9℄, [29, Thm. 2.5℄). We also have the following fa
ts from [12, Thm. 1.4,

Prop. 1.5℄:

Lemma 2.2. (1) �

N

= �

N�1

= q;
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(2) �

1

= 1 if N � 3;

(3) j

1

(P ) = 1 for any P ;

(4) j

N

(P ) = q + 1 if P 2 X (F

q

2

), otherwise j

N

(P ) = q;

(5) If P 2 X (F

q

2

); then the (D; P )-orders are n

N

(P )� n

i

(P ), i = 0; 1; : : : ; N ;

(6) If P 62 X (F

q

2

); then the elements n

N�1

(P )� n

i

(P ); i = 0; : : : ; N � 1; are (D; P )-

orders:

3. Case N = 3

Let X be a F

q

2

-maximal 
urve of genus g = q(q � 3)=6 and let us keep the notation in

Se
tion 2. Then, as we saw in Lemma 2.1, the dimension N of D = D

X

is either 3 or 4.

In this se
tion we point out some 
onsequen
es of former possibility.

Lemma 3.1. If N = 3; then �

2

= 3:

Proof. Let S be the F

q

2

-Frobenius divisor asso
iated to D (
f. [35℄). Then deg(S) =

(�

1

+ �

2

)(2g � 2) + (q

2

+ 3)(q + 1), where �

1

= 1 and �

2

= q by Lemma 2.2. For

P 2 X (F

q

2

) it is known that (lo
. 
it.)

v

P

(S) � j

1

(P ) + (j

2

(P )� �

1

) + (j

3

(P )� �

2

) = j

2

(P ) + 1 :

Moreover, as j

2

(P ) � �

2

, the maximality of X implies deg(S) � (�

2

+1)((q+1)

2

+q(2g�2)) :

Now, suppose that �

2

� 4. Then the above inequality be
omes

(q + 1)(q

2

� 5q � 2) � (2g � 2)(4q � 1) ;

whi
h is a 
ontradi
tion with the hypothesis on g. Thus we have shown that �

2

2 f2; 3g.

If �

2

were 2, from [10, Remark 3.3(1)℄ we would have g � (q

2

� 2q + 3)=6, whi
h is again

a 
ontradi
tion with respe
t to g. �

Corollary 3.2. If N = 3; then dim(2D) � 9:

Proof. Sin
e 0; 1; 3; q are D-orders (Lemma 2.2), then it is easy to see that

0; 1; 2; 3; 4; 6; q; q+ 1; q + 3; 2q are 2D-orders and the result follows. �

Corollary 3.3. ([10, Lemma 3.7℄) If N = 3; then there exists a F

q

2

-rational point P su
h

that n

1

(P ) = q � 2:

This se
tion is 
lose with some feelings about the possibility N = 3.

Remark 3.4. (Related with Weierstrass semigroups) From Lemma 2.2 and Corollary 3.3

there exists P 2 X (F

q

2

) su
h that n

1

(P ) = q � 2, n

2

(P ) = q, n

3

(P ) = q + 1; i.e., the

Weierstrass semigroup H(P ) 
ontains the semigroup

H := hq � 2; q; q + 1i = f(q � 2)i : i 2 Ng [ fqi� 2(i� 1) : i 2 Z

+

g
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whose genus (i.e; #(N nH)) is equal to (q

2

� q)=6 (see e.g. [10, Lemma 3.4℄). How 
an

we 
omplete H in order to get H(P )? We have to 
hoose q=3 elements from N nH, and

it is easy to see that su
h elements must belong to the set

f(i(q � 1) : i = 2; : : : ; q=3� 1g [ fq

2

� 5q=3� 1; q

2

� 5q; q

2

� 5q=3 + 1g :

This set 
ontains q=3+2 elements, so we have to ex
lude two elements from it. Hen
e we

arrive to the following seven possibilities:

(i) q � 1; 2q � 2 =2 H(P );

(ii) q � 1 =2 H(P ) but 2q � 2 2 H(P ); in this 
ase we have to eliminate one element

from the set fq

2

� 5q=3� 1; q

2

� 5q=3; q

2

� 5q=3 + 1g;

(iii) q � 1; 2q � 2 2 H(P ); in this 
ase we have to eliminate two elements from the set

fq

2

� 5q=3� 1; q

2

� 5q=3; q

2

� 5q=3 + 1g.

So far, we do not know how an obstru
tion (for N being equal to 3) might arise from

some of the possibilities above.

Remark 3.5. (Related with the Hermitian 
urve (1.1)) Suppose that X is F

q

2

-
overed by

the Hermitian 
urve. Then the 
overing 
annot be Galois; otherwise by [11, Prop. 5.6℄

the 
urve would be F

q

2

-isomorphi
 to the non-singular model of (1.2) and thus N = 4.

We re
all that there is not known any example of a F

q

2

-maximal 
urve F

q

2

-
overed by

the Hermitian 
urve by a non-Galois 
overing.

Remark 3.6. (Re
exivity, Duality and the Surfa
e Tangent) Re
all that we 
an assume

our 
urve X as being embedded in P

3

(

�

F

q

2

) by [28, Thm. 2.5℄. Hefez [21℄ noti
ed that four


ases for the generi
 
onta
t orders for spa
e 
urves 
an o

ur. Homma [25℄ realized that

all the four aforementioned 
ases o

ur and 
hara
terized ea
h of them by means of the

re
exivity of either the 
urve X , or the tangent surfa
e Tan(X ) asso
iated to it (see also

[24℄). In our situation (�

2

= 3 and �

3

= q), the 
urve is non-re
exive by Hefez-Kleiman

Generi
 Order of Conta
t Theorem [23℄. Thus, by Homma's result, it holds that N = 3 if

and only Tan(X ) is non-re
exive. So far we do not know how to relate the maximality of

X to the non-re
exivity of its tangent surfa
e. We mention that te
hniques analogous to

those of [35℄ that work on 
ertain surfa
es in P

3

over prime �elds is now available thanks

to a re
ent paper by Volo
h [36℄.

Remark 3.7. (Related to Halphen's theorem) Balli
o [7℄ extended Harris [19℄ and Rath-

mann [31℄ results 
on
erning spa
e 
urves 
ontained in surfa
es of 
ertain degree. For a

F

q

2

-maximal 
urve X of genus q(q�3)=6, with q large enough, Balli
o's result implies that

X is 
ontained in a surfa
e of degree 3 or 4. On the other hand, suppose that Volo
h's

approa
h [36℄ 
an be extended to 
over the 
ase of surfa
es over arbitrary �nite �elds.

Then a 
onjun
tion of Balli
o and Volo
h's result would provide with further insights of

the 
urves studied here.
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4. Main Result

Theorem 4.1. Let X be a F

q

2

-maximal 
urve of genus g = q(q � 3)=6: Then either

(1) X is F

q

2

-isomorphi
 to the non-singular model of the plane 
urve (1.2); or

(2) N := dim(D

X

) = 3 and �

2

= 3:

Remark 4.2. In Case (1), the 
urve is F

q

2

-
overed by the Hermitian 
urve (1.1).

To give the proof of the theorem we need some auxiliary results. First of all, by Lemmas

2.1 and 3.1, we 
an assume N = 4. In parti
ular, we noti
e that g is equal to Castelnuovo's

number 
(q+1; 4) and hen
e from A

ola's paper [5, p. 36 and Lemma 3.5℄ the following

holds:

Lemma 4.3. (1) dim(2D) = 11;

(2) There exists a base-point-free 2-dimensional 
omplete linear series D

0

of degree

2q=3 su
h that

q�6

3

D +D

0

is the 
anoni
al linear series of X :

Part (1) of this lemma implies Lemmas 4.2 and 4.4 in [29℄:

Corollary 4.4. (1) If j

2

(P ) = 2; then j

3

(P ) = 3;

(2) If P 2 X (F

q

2

) and j

2

(P ) > 2; then j

2

(P ) = (q + 3)=3; j

3

(P ) = (2q + 3)=3;

(3) If P 62 X (F

q

2

) and j

2

(P ) > 2; then either j

2

(P ) = q=3; j

3

(P ) = 2q=3; or j

2

(P ) =

(q � 1)=2); j

3

(P ) = (q + 1)=2:

Lemma 4.5. For q = 9, n

1

(P ) = 3 for any P 2 X (F

q

2

):

Proof. Let P be a F

q

2

-rational and set n

i

:= n

i

(P ). Lemma 2.2 implies that 0; 1; j

2

=

10 � n

2

; j

3

= 10 � n

1

; 10 are the D-orders at the point. Then the set of 2D-orders at P

must 
ontain the set f0; 1; 2; j

2

; j

2

+1; 2j

2

; j

3

; j

3

+1; j

2

+ j

3

; 2j

3

; 10; 11; j

2

+10; j

3

+10; 20g

and hen
e, as dim(2D) = 11 by Lemma 4.3, the result follows. �

From now on let us assume q � 27:

Lemma 4.6. (1) The 
ase (3) in Corollary 4.4 
annot o

ur;

(2) There exists P

1

2 X (F

q

2

) su
h that j

2

(P

1

) > 2; in this 
ase, n

1

(P

1

) = q=3;

(3) Let P

1

be as in (2) and x 2 F

q

2

(X ) su
h that div

1

(x) =

q

3

P

1

: Then the morphism

x : X n fP

1

g ! A

1

(

�

F

q

2

) is unrami�ed.

(4) The D-orders and F

q

2

-Frobenius orders of D are respe
tively 0; 1; 2; 3; q and

0; 1; 2; q:

Proof. For P 2 X , set j

i

= j

i

(P ) and n

i

= n

i

(P ).

(1) We have that fq � n

2

; q � n

1

g � f1; j

2

; j

3

g by Lemma 2.2(6). Suppose that Case (3)

in Cor. 4.4 o

urs.
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Case j

2

= q=3, j

3

= 2q=3. Here n

1

2 f2q=3; q=3g; let f 2

�

F

q

2

(X ) su
h that div(f �

f(�(P ))) = D+ e�(P )� n

1

P , where e � 1 and P 62 Supp(D). If n

1

= 2q=3, then 3e+2

is an (2D;�(P ))-order by (2.1). However, as dim(2D) = 11, the sequen
e of (2D;�(P ))-

orders is 0; 1; 2; q=3; q=3 + 1; 2q=3; 2q=3 + 1; q; q + 1; 4q=3; 5q=3; 2q and thus n

1

= q=3. In

this 
ase, arguing as above, 3e+ 1 is an (D;�(P ))-order whi
h is a 
ontradi
tion.

Case j

2

= (q � 1)=2, j

3

= (q + 1)=2. From Lemma 4.3(2) and the hypothesis q � 27, we

have that 2j

2

+ 1 = q is a Weierstrass gap at P (i.e.; q 62 H(P )), a 
ontradi
tion with

n

3

= q.

(2) If we show that there exists P

1

2 X su
h that j

2

(P

1

) > 2, then the point P

1

will

be F

q

2

-rational by (1). So, suppose that j

2

(P ) = 2 for any P 2 X . Let R denote the

rami�
ation divisor asso
iated to D (
f. [35℄). Then the D-Weierstrass points 
oin
ide

with the set of F

q

2

-rational points and v

P

(R) = 1 for P 2 X (F

q

2

) (
f. Lemma 2.2).

Therefore

deg(R) = (q + 6)(2g � 2) + 5(q + 1) = (q + 1)

2

+ q(2g � 2) ;

so that 2g � 2 = (q � 1)(q � 4)=6, a 
ontradi
tion. That n

1

= q=3 follows immediately

from Cor. 4.4(2) and Lemma 2.2(5).

(3)-(4) Let y 2 F

q

2

(X ) be su
h that div

1

(y) = (q + 1)P

0

. Then the se
tions of D are

generated by 1; x; x

2

; x

3

; y. Now, if we show that there exists P 2 X (F

q

2

) su
h that

j

2

(P ) = 2 and j

3

(P ) = 3, then (4) follows sin
e �

i

� j

i

(P ) and �

i�i

� j

i

(P )� j

1

(P ) (
f.

[35℄). To see that su
h a point P do exist, we pro
eed as in [14, p. 38℄. For P 2 X nfP

0

g,

write div(x � x(P )) = eP + D � n

1

P

0

with e � 1 and P; P

0

62 Supp(D). Then e; 2e; 3e

are (D; P )-orders and if e > 1, 3e = q + 1, a 
ontradi
tion as q � 0 (mod 3). Thus the

proof is 
omplete. �

Let v = v

P

0

be the valuation at P

0

, and D

i

:= D

i

x

the i-th Hasse di�erential operator on

�

F

q

2

(X ) with respe
t to x (see e.g. [22, x3℄). We set D := D

1

.

Corollary 4.7. v(Dy) = �q

2

=3:

Proof. (
f. [4, p. 47℄) Let t be a lo
al parameter at P

0

; then

v(Dy) = v(dy=dt)� v(dx=dt) = �q � 2� 2g � 2 = �q

2

=3;

sin
e by the previous lemma the morphism x : X ! P

1

(

�

F

q

2

) is totally rami�ed at P

0

and

unrami�ed outside P

0

, and sin
e a 
anoni
al divisor has degree 2g � 2. �

Proof of Theorem 4.1. Let x and y be as above; they are related to ea
h other by an

equation over F

q

2

of type (see e.g. [27℄)

(4.1) x

q+1

+ ay

q=3

+

q=3�1

X

i=0

A

i

(x)y

i

= 0 ;
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where a 6= 0, and the A

i

(x)'s are polynomials in x su
h that deg(A

i

(x)) � q � 3i. Now

by Lemma 4.6(3) we have a relation of type (
f. [35, Prop. 2.1℄):

(4.2) y

q

2

� y = (x

q

2

� x)Dy + (x

q

2

� x)

2

D

2

y + (x

q

2

� x)

3

D

3

y

Claim 4.8. (1) A

i

(x) = 0 for i not a power of 3, i � 2;

(2) A

3

j
(x) 2 F

q

2

for j = 0; 1; : : : ; t� 2:

Proof. First we show that A

i

(x) = 0 if i � 2 and i 6� 0 (mod 3). To do that, let apply D

to Eq. 4.1; so

0 = x

q

+

q=3�1

X

i=0

DA

i

(x)y

i

+ (

q=3�1

X

i=1

A

i

(x)iy

i�1

)Dy :

Suppose that A

i

(x) 6= 0 for some i � 2, i 6� 0 (mod 3). Then, as

v(

q=3�1

X

i=1

A

i

(x)iy

i�1

Dy) < v(x

q

) ;

by Cor. 4.7, we must have that

v(

q=3�1

X

i=1

A

i

(x)iy

q�1

Dy) = v(

q=3�1

X

i=0

DA

i

(x)y

i

) ;

so that there exists integers 2 � i

0

� q=3� 1, i

0

6� 0 (mod 3) and 1 � j

0

� q=3� 1 su
h

that v(A

i

0

(x)y

i

0

�1

= v(DA

j

0

(x)y

j

0

) and then �q=3(deg(DA

j

0

� deg(A

i

0

) = �(q +1)(i

0

�

1� j

0

)� q

2

=3 and it gives us a 
ontradi
tion.

Then Eq. 4.1 is redu
ed to

(4.3) x

q+1

+ ay

q=3

+ A

0

(x) + a

1

(x)y +

q=9�1

X

i=1

A

3i

(x)y

3i

= 0 :

Now we 
an 
on
lude that A

1

2 F

q

2

. Indeed, applying D to Eq. 4.3 we have that

0 = x

q

+ DA

0

(x) + D(A

1

(x)y) +

P

q=9�1

i=1

DA

3i

(x)y

3i

; and then from Cor 4.7 the 
laim

follows.

Next we show that A

3i

(x) = 0 for i � 2 and i 6� 0 (mod 3). In order to do that we need

to 
ompute v(D

3

y). From Eq. 4.2 we have that v(D

2

y � (x

q

2

� x)D

3

y) = �q

3

=3 � q

2

.

Then it is enough to show that v(D

2

y) > �q

3

=3� q

2

. This follows by applying D

2

to Eq.

4.3 and 
omparing valuations. Thus v(D

3

y) = �q

2

.

Finally, we use indu
tion via D

3

i

applied to Eq. 4.3 (i = 1; : : : ; t � 2) together with

properties of the valuation v. �



ON A F

q

2
-MAXIMAL CURVE OF GENUS q(q� 3)=6 9

Thus Eq. 4.1 be
omes

ay

q=3

+ x

q+1

+ A

0

(x) +

t�2

X

i=0

A

3

i

y

3

i

= 0 ;

with ea
h A

i

2 F

q

2

. Noti
e that A

1

6= 0 sin
e the extension

�

F

q

2

(x; y)j

�

F

q

2

(x) is separable.

Finally the proof of Theorem 4.1 follows from [2, Se
t. 5℄; here we just point out the main

ideas from that referen
e for the 
ase p = 3:

(i) By using the orders of the linear series D (Lemma 4.6), we have that

A

0

(x) = b

0

+ b

1

x + b

2

x

2

+

t�1

X

i=1

b

3

i
x

3

i

+

t�1

X

i=1

b

23

i
x

23

i

:

(ii) From the previous item and Eq. 4.2 we �nd that

b

i3

j
= a

j

b

3

j

i

; i = 1; 2; j = 1; : : : ; t� 1 :

Similarly, A

j

= A

(3

t�j

�1)=2

1

.

(iii) Next the polynomial A

0

(x) 
an be redu
ed to an additive polynomial: A

0

(x) =

P

t�1

i=0

b

3

i
x

3

i

+ b

0

sin
e b

2

= 0 whi
h follows from the previous item.

(iv) Finally, the previous redu
tion on A

0

(x) and the relations for its 
oeÆ
ients in

Item (ii) implies the theorem via a F

q

2

-
hange of 
oordinates, namely x 7! dx,

y 7! y+b

1

x+e, where d

q+1

= 
 with 
 su
h that 


2

= A

1

, and where e is a solution

of the equation in Z:

P

t�1

i=0

A

i

Z

3

i

= b

0

.
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