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Abstract

We investigate the existence and regularity of weak solutions of
a phase field type model for pure material solidification in presence
of natural convection. We assume that the nonstationary solidifica-
tion process occurs in a bounded domain, which for technical rea-
sons are restricted to be two dimensional. The governing equations of
the model are the following: the phase field equation coupled with a
nonlinear heat equation and modified Navier-Stokes equations which
include buoyancy forces modeled by Boussinesq approximation and
a Carman-Koseny term to model the flow in mushy regions. Since
this modified Navier-Stokes equations only hold in a priori unknown
non-solid regions, we actually have a free boundary value problem.
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1 Introduction

One of the first papers to consider phase field models applied to change
of phases was one by Fix [12], which fostered many other studies in this
subject. For instance, in a sequence of papers ([6]-[3]-[2]-[5]), Caginalp and
others took over the task of understanding the phase field approach, both
in its mathematical aspects and in its relations to the classical approach
of using sharp interfaces to separate the phases (which gives rise to what
is known by Stefan type problems.) We remark that, for the derivation
of kinetic equation for the phase field, Caginalp and others used the free
energy functional as a basis of the argument (see Hoffman and Jiang [13],
for instance.) An alternative derivation, suggested by Peronse and Fife [20]-
[21], uses an entropy functional which gives a kinetic equations for the phase
field ensuring monotonic increase of the entropy in time. Peronse and Fife
exhibit a specific choice of entropy density which essentially recovers the
phase field model employed by Caginalp [6] by linearization of the heat flux.
Thus, phase field models have a sound physical basis and provide simple
and elegant descriptions of phase transition processes. Moreover, it is more
versatile than enthalpy method, which is yet another approach to model
phase change processes, since effects as supercooling and others may be easily
included. An important example of the utility the phase field approach is
its use for the numerical study of dendritic growth (see Caginalp [3] and
Kobayshi [14], for instance).

One point to stress is that, whatever the approach used to model phase
change, until a few years ago the possibility of low occurring in non solidified
portions of the material was neglected in papers interested in the mathemat-
ical analysis of these models. In many practical situations, however, this
assumption is not satisfactory because the existence of such motions may
affect in important ways the outcome of the process of phase change. On the
other hand, the inclusion of the possibility of convective effects in the model
brings another very difficult aspect to an already difficult problem. In fact,
to realize this it is enough to observe that such a flow must occur only in an
a priori unknown non-solid region, and thus one is left with a rather difficult
free boundary value problem to handle.

In recent years, some authors have considered convective effects; for in-
stance:

Cannon et al [7]-[8], DiBenedetto and Friedman [11], DiBenedetto and
O’Leary[10] and O’Leary [15] addressed such questions by using weak formu-



lations of the Stefan type approach.

Blanc et al [1], Pericleouns etal [19] and Voller et al [25]-[26] considered
convective effects in phase change problems by using the enthalpy approach
to describe change of phases, together with modified Navier-Stokes equations
to model the flow. In these works, the phases may be distinguished by the
values of a variable corresponding to the solid fraction that is associated
to the enthalpy; this same variable is used in a term that is added to the
Navier-Stokes equations to cope with the influence of the mushy zones in the
flow. Particular expressions for this term may be obtained by modeling such
mushy zones as porous media.

In this paper we are interested in the mathematical analysis of a model
problem having some of the main aspects that a reasonable model for a
solidification process with convection should have. We will consider a rather
simple situation of this sort in the hope to obtain a better understanding
of the mathematical difficulties brought by the coupling of terms describing
phase change and the terms describing convection.

We restrict the subject to the analysis of solidification of pure materials,
and, differently of the previous papers considering the analogous subject, we
employ a phase field methodology to model phase change. Convective effects,
however, will be included by using the ideas suggested by Blanc et al [1] and
Voller et al [25]. Since the indicator of phase in these last papers is the solid
fraction, we relate the two approaches by postulating a functional relationship
between the solid fraction and the phase field. The governing equations of
the model are the following: the phase field equation is as in Hoffman and
Jiang [13]; it is coupled with equations for the temperature and velocity that
are based on usual conservation principles. These last equations become
respectively a nonlinear heat equation and modified Navier-Stokes equations
which include buoyancy forces modelled by Boussinesq approximation and
a Carman-Koseny type term to model the flow in mushy regions. Since
this modified Navier-Stokes equations only hold in a priori unknown non-
solid regions, we actually have a free boundary value problem. Detail of the
model problem can be found in Section 2, equations (2.1); the corresponding
weak formulation can be found in Definition 3.1.

We present a result on existence and regularity of solutions of this model
equations corresponding to a nonstationary phase change process in a bounded
domain, which for technical reasons in this paper is assumed to be two di-
mensional.

Existence will be obtained by using a regularization technique similar to



the one already used by Blanc et al [1]: an auxiliary positive parameter will
be introduced in the equations in such way that the original free boundary
value problem will be transformed in a more standard (penalized) one. We
say that this is the regularized problem. By solving this, one hopes to recover
the solution of the original problem as the parameter approaches zero. To
accomplish such program, we will firstly solve the regularized problem by
using the Leray-Schauder degree theory (see Section 8.3, p. 56 in Deimling
[9]); we will also have to use results holding for a certain modified Navier-
Stokes equations that were presented in Vaz [24]. Then, by taking a sequence
of values of the parameter approaching zero, we will correspondingly have a
sequence of approximate solutions. By obtaining suitable uniform estimates
for this sequence, we will then be able to take the limit along a subsequence
and, by compactness arguments, to show that we have in fact a solution of
the original problem. The stated regularity of this solution will be obtained
by applying the L,-theory of the parabolic linear equations together with
bootstrapping arguments.

This paper is organized as follows. In Section 2, we describe the math-
ematical model and its variables. In Section 3, we fix the notation and
describe the the basic functional spaces to be used; we recall certain results
and present auxiliary problems; we also state assumptions holding through-
out the paper and define the concept of generalized solution. In Section 4, we
consider the question of existence, uniqueness and regularity of solutions of
the regularized problem. Section 5 is dedicated to the the proof of existence
of a solution of the original free boundary value problem.

Finally, as it is usual in papers of this sort, C' will denote a generic
constant depending only on a priori known quantities.

2 Model Equations

The model problem presented here has aspects of the models studied in the
works of Blanc [1], Caginalp [6] and Voller et al [25]-[26]. As we said in the
Introduction, the phase of the material will be described by using the phase
field methodology, which in its simplest approach assumes that there is a
scalar field o(z,t), the phase field, depending on the spatial variable = and
time ¢ and real values s < ¢, such that if p(z,t) < p, then the material at
point  at time ¢ is in solid state; if ¢, < ¢(x,t) then the material at point
x at time ¢ is in liquid state; if p, < @(z,t) < ¢ then, at time ¢ the point



x is in the mushy region. We follow Caginalp [6] and Hoffman and Jiang[13]
and take the phase field equation as

0
a—f—aAsozaso+bsO2—so3+9,
where 6 is the temperature; « is a (small) fixed positive constant, and a and
b are known functions which regularity will be described later on.

We observe that the function g(s) = as + bs* — s> used at the right hand
side of the above equation is the classical possibility coming from the classical
double-well potential (see Hoffman and Jiang [13]). Other possibilities for the
double-well potential can be found for instance in Caginalp [6] and Penrose
[21].

To obtain a equation for the temperature, we observe that when there is
phase change, the thermal energy has the following expression:

€:9+§(1—fs)7

where 6 and ¢/2 represent respectively the sensible heat (for simplicity of
notation, we took the specific heat coefficient to be one) and latent heat. f
is the solid fraction (1 — f; is the non-solid fraction), which for simplycity we
assume to be a known function only of the phase field (obviously dependent
on the material being considered.)

Then, the energy balance in pure material solidification process may be
written (see Vaz [24]) as follows:

00 Lofs, Op
where v represent the velocity of the material.

We will assume that only non solid portions of the material can move,
and this is done as an incompressible flow. Consequently, in non-solid regions
Navier- Stokes type equations are required. According to Voller et al [25]
and Blanc et al [1] these equations can be taken as

% —vAv+ (v.V)v + Vp = G(fs,v) + F(9)
dive =0

where v is velocity, p is pressure, v is viscosity and G(fs,v) and F(#) are
source terms which will be defined below.



Assuming the Boussinesq treatment to be valid, natural convection effects
can be accounted for by defining the buoyancy source term to be

F(0) = Cpg(0 — 0,)

where p is the mean value of the density, g is the gravity, C' is a constant
and 0, is a reference temperature. In order to simplify the calculations let
us consider F(#) =o 6.

The source term G(fs,v) is used to modify the Navier-Stokes equations
in the mushy regions, and according to [25], [26], can be taken of form
G(fs,v) = —k(fs)v. Usually the function k(fs) is taken as the Carman-
Koseny expression (see again [25]-[26]), which is

fi

As in Blanc et al [1], we will consider a more general situation including
the previous one. We will assume that assuming that £ is a nonnegative
function in C%(—o0,1), k = 0 in IR~ and }lflgnl k(y) = +o0, and in this case,

we will refer to G as the Carman-Kosen type term.

To complete the description of the model problem, we must define the
regions where the above equations are valid. By using the solid fraction,
the following subsets of (), denoted by @Q;, @,, and @); and corresponding
respectively to the liquid, mushy and solid regions, are defined as:

Qi ={(z,1) € Q; fi(p(x,)) = 0}
Qs ={(z, 1) € Q; fi(p(x,1)) =1}
Qm ={(z,1) € @; 0 < fi(p(x,1)) <1}
In the following, Q. = Q\ @s will denote the non-solid part of (). More-
over, for each time ¢ € [0, 7], we define Q,(t) = {x € Q; f,(¢(x,t)) = 1},
Qi (t) = Q\Q, () and Sy = {(2,t) €Q ;1 € OV (t)}.

We must emphasize that this model is the free boundary problem since
that @, @,, and @), are a priori unknown.
Now, we can now summarize the formulation of the problem to be ana-



lyzed as:
4 890

E—aAgpzag0+b302—go3+9 in @,
00 _Lofy, Oy ,
E—A0+U.V0—2ago(g0) Y in Q,
v . . (2.1)
i vAv + (v.V)o + Vp + k(fs(@))v =0 6 in Qu,
dive =0 in Qu,
0
L v=20 in @Q,,

subject to the following boundary conditions

g—z =0 on S,
0 = 0 on S, (2.2)
v =0 on Sml-

and also to the followin initial conditions

{ e(r,0) = @o(x) in Q,
6(x,0) = 6by(x) in Q, (2.3)
v(z,0) = wvy(z) in ©,,(0),

where ¢y, 6y and vy are suitably given functions such that for compatibility
vg is identically zero outside €2,,,,(0).

3 Preliminaries and Main Result

3.1 Notations, functional spaces and auxiliary results

Let © C IR? be an open and bounded domain with a sufficiently smooth
boundary 02 and Q = € x [0, T] the space-time cylinder with lateral surface
S =08 x [0,T]. Fort € [0,T], we denote Q; = Q2 x [0, t].

We denote by W?(Q) the usual Sobolev space and W2*(Q) the Banach

space consisting of functions u(x,t) in L(Q)) whose generalized derivatives
Dyu, D2u, uy are Li—integrable (¢ > 1). The norm in W2>'(Q) is defined by

el &) = llull,q + 1Dsull, g + | D2u

I [ (3.4)

7



where D? denotes any partial derivatives with respect to variables zq, xo, ..., z,,
of order s=1,2 and ||.||, the usual norm in the space L!(Q).

Moreover, W,*(Q) is a Hilbert space for the scalar product

(U,’U)WZI,O(Q) = /qu + Vu.Vou dudt

0
and T " (Q) is a Hilbert space for the scalar product
(u, U)Wzl,l(Q) = /qu + Vu.Vv + w, dodt

whose functions vanish on S in the sense of traces.
We also denote by V2(Q)) the Banach space consisting of function u(x,t)
in W,°(Q) having the following finite norm

ulvy(@) = ess sup [lu(z,?)[l,q + [Vulz, )]l,q - (3.5)
0<t<T

0
Vo (Q) is Banach space consisting of those elements of V5(Q) that vanish
on S in the sense of traces.

We now define spaces consisting of functions that are continuous in the
sense of Holder. We say that a function u(x,t) defined in @ is Holder con-
tinuous in x and t, respectively with exponents o and 3 € (0, 1), if following
quantities, called Holder constants, are finite:

|u(w1,t) — uws, 1)]

(u)® = sup a
(210s(@20) € @ 1= |
T1#£T2
B) _ |U(.’L‘,t1) — u(x,t2)|
<u>t - sup |t1 _ t2|ﬂ
(z,t1),(z,t2) € Q
t1#t

Then, we define the Holder space H™7/2(Q), with 0 < 7 < 1, (see La-
dyzenskaja et al [16]), as the Banach space of functions u(x,t) that are con-
tinuous in @, having finite norm given by:

jul§y) = max[u] +{Dzu)7) + (). (3.6)



For the functional spaces associated to the velocity field, we denote D =
{u e C®(Q)? : suppu C Q} and V = {u € D : div u=0}. The closure of

0
V in L*(Q)? is denoted by H and the closure of V in W3(2)? is denoted by
V. These functional spaces appear in the mathematical theory of the Navier-
Stokes equations; their properties can be found for instance in Temam [23].

The following two lemmas are particular case of Lemma 3.3 in Ladyzen-
skaja et al ([16]; p. 80). They are stated here for ease of reference.

The first lemma is immediate consequence of Lemma 3.3 in [16], p. 80,
by taking there [ =1, n=2and r =s=0.

Lemma 3.1 Let 2 and () as in the beginning of this section. Then for any
function u € WqZ’l(Q) we also have u € LP(Q), and it is valid the following
inequality

lull,q < C llull$, (3.7)
provided that

( 1 1

00 if ——=-<0
q 2
1 1

p=4 Vp>1 if ——==0
1 ¢ 2
L1y

The constant C > 0 depends only on T, 2, p and q.

The second lemma is immediately obtained from Lemma 3.3 in [16], p.
80, by taking there [ =1, n=2,r=s=0 and ¢ = 3.

Lemma 3.2 Let Q and Q) be as in the beginning of this section. Then for
any function u € W3 (Q) we also have u € H*3'/3(Q) satisfing the estimate

2/3
lul”? < € ull$, (3.8)
The constant C' > 0 depends only on T and €).

In the following we will consider two auxiliary problems, respectively
related to the phase field and the velocity equations.



The first one is the following:

aa—f—aA¢:ag0+b902—go3+g(x,t) in Q,

¢ =0 on S, (3:9)
on

o(x,0) = po(x) in €.

where « in a positive constant.

Problem (3.9) was treated by Hoffman and Jaing [13] when the initial
date satisfies py € W2 (). Since we will need an existence result for ¢, €
W2=1(Q) n WE272(Q), with § € (0,1), we restate the result of [13]. We
remark that exactly the same proof presented in [13] holds in this situation

(see also Vaz [24] for details, where some other specific results concerning
(3.9) are proved.)

Proposition 3.1 Let € and Q) be as in the beginning of this section. Assume
that a(x,t) and b(x,t) in L®(Q), g € LU(Q), po € W2 2/1(Q) nW5*7°(q),

0
where ¢ > 2, 6 € (0,1) and % = 0 in 092. Then there exists an unique
n
solution ¢ € W2 (Q) of problem (3.9), which satisfies the estimate

11 < € (Ilgollya-sroiay + 19l (3.10)

where C depends only on T, «, Q, ||a(z, )|, o and on ||b(z, )|, o

The second auxiliary problem is the following:

% —vAv + (v.V)v + Vp + k(z, t)v = f(x,1) in Q,
dive =0 in Q, (3.11)
v=>0 on S,
v(z,0) = vo(x) in €.

Proposition 3.2 Let () and @ be as in the beginning of this section. Assume
that k(z,t) € C°(Q), k(z,t) > 0, f(z,t) € L*(Q)* and vo(x) € H. Then
there exists an unique solution v(x,t) € L*(0,T; V)N L>®(0,T;H) of problem
(3.11) which satisfies the estimate

19/l poeo 2,11y + 10l 220,y < © (lleollz + 1110 (3.12)

10



Moreover, by interpolation results v € L*(Q)? and

1o/l < € (llvoll g + 1flloq) » (3.13)

where C' depends only on T and on €.

The proof of Propositon 3.2 is done by using the same arguments used in
the classical theory of weak solutions of the Navier-Stokes equations. As in
this classical situation, the fact that the domain is two dimensional is impor-
tant to obtain uniqueness of solutions (see Temam [23], p.282, for instance.)

3.2 Technical Hypotheses and Generalized Solution

All along this work we will be using the following technical hypotheses:

(Hy) © C IR is an open and bounded domain with sufficiently smooth
boundary 0€; T is a finite positive number; ) = Q x (0,7).

(Hy) a(x,t), b(x,t) are given functions in L*®(Q);
fi€CHR), 0< fi(2) <1 VzeR
k(y) € C°(—o0,1), k(0) = 0, k(y) = 0 in IR, k(y) is nonnegative and
lim k(y) = +o0.
yol

(H3) vy € H;
0y € W3 (2), 8y = 0 on 9;

Yy € W;B(Q) N WS/ZH(Q), for some 0 € (0,1), ? =0 on 0S.
n

In the following we will explain in what sense we will understand a solution
of (2.1), (2.2), (2.3):

Definition 3.1 By a generalized solution of the problem (2.1), (2.2),

(2.3), we mean a triple of functions (@, 0,v) such that p € V5(Q), 6 6192 (@)
and v € L*(0,T; V)N L>(0,T; H). Moreover, being

Qs ={(z,1) € Q; fi(plz,t)) =1},

0,(0) = {a € 2 i(o(r.0) = 1}

Qm = Q\ Qs and le(o) = Q\ Qs (0)

11



0
we have v = 0 a.e in Q,, and ¢, 0 and v satisfy the following the integral
relations:

—/ © By da;dt+a/ VoV dudt
Q Q

(3.14)
= /Q (a+bg0—g02) goﬂd:vdt+/@95da;dt+/ngo(a:)ﬂ(a;,())d:p
_ / 0 &,dudt + / VOVEdrdt + / v.V0 Edadt
“rap, ¢ © (3.15)
= [, 39, (@) pudude + | o), 0)da
— v ¢y dadt + v VoV dxdt + (v.V)v ¢ dadt
Qmi /Qm /Q I (3.16)

+/lek(fs(g0))v¢da;dt:/Q 139¢dxdt+/: o vo(2)p(z,0)dx

m ml

for all B in Wy (Q) such that B(z,T) = 0; for all £ in I/%/é’l(Q) such that
&(z,T) = 0, and for all $ € C([0,T]; Wy (Qmu(t))) such that ¢(.,T) = 0,
div¢(.,t) =0Vt € [0,T] and supp ¢(z,t) C Quu U 2,,(0).

Note that due to our technical hypotheses and choice of functional spaces,
all of the integrals in Definition 3.1 are well defined.

3.3 Existence of Generalized Solutions
The purpose of this paper is to prove the following result

Theorem 3.1 Under the hypotheses (H,), (Hz), (Hs), there is a general-
ized solution of the problem (2.1), (2.2), (2.3) in the sense of the Definition
3.1. Moreover, when @y € W2 21(Q) N W2I*T(Q) for some 8 € (0,1) and
g > 3, and By € W;’z/p(Q) with 3 < p < 4, then such solution satisfies
p € W2HQ)NL®(Q), § € W2 (Q)NLX(Q), ve L*(0,T;V)NL>(0,T; H).

The proof of the previous result is long and will be done in the following
sections. Here we want just to sketch it: existence of a solution of prob-
lem (2.1), (2.2), (2.3) will proved by using a regularization technique already
used by Blanc et al in [1]. The purpose this regularization is to deal with the
Navier-Stokes equations in whole domain instead of unknown regions. Thus,
the problem will be adequately regularized with the help of a positive param-
eter, and the existence of solutions for this regularized problem will obtained

12



by using the Leray-Schauder degree theory (see Theorem 4.1). Then, as this
parameter approaches zero, a sequence of regularized solutions is obtained.
With the help of suitable estimates and compactness arguments, a limit of
a subsequence is then proved to exist and to be a solution of problem (2.1),
(2.2), (2.3).

We also remark that the phase field equation admits classic solution when
¢y is sufficiently smooth. In fact, its right hand side term satisfies ap + byp? —
¢*+0 € L*(Q), and, in particular when ¢y € W2=2/4(2) N WA, with
q > 2, we obtain a strong solution with the equation satisfied in the a.e-
sense. The boundary and initial conditions are also satisfied in the pontual
sense because ¢ € C'(Q). When 6y € W2 /7(Q), with 3 < p < 4, the same
sort of arguments applies and the solution is strong with § € C°(Q); the
temperature equation and the boundary and initial conditions are valid in
pontual sense. Unfortunately, we are not able to improve the regularity of
the corresponding solution even if the initial velocity is very regular. Thus,
we only generalized solutions are obtained for the velocity equation.

4 Regularized Problem

In this section we regularize problem (2.1), (2.2), (2.3) by changing the term
k(fs(¢))v in the velocity equation. We will obtain a result of the existence,
uniqueness and regularity for this associated regularized problem:

Theorem 4.1 Fizec € (0,1]. Under the hypotheses (Hy), (Hs), (Hs), there
exists an unique solution (¢.,v.,0.) € W3 (Q)x (L*(0,T; V)NL>(0,T; H)) x
Wy Q) € LS(Q) x L*(0,T; H) x L*(Q) of the following problem.:

aaig — aAp. = ap. +bpZ — ¢l + 0.
Ov
= —vAv + (V. V). + Vp. + k(fs(¢:) — €)v. = T6.
5 (ve.V) pe + k(fs(pe) —¢) WO, (417)
dive, =0
00, LOfs, — Op.
AN ) ==
| or A0Vl =55 ),

13



([ O

on 0

0. = 0 on S, (4.18)
[ Ve =0
((¢e(2,0) = @olw)

0.(x,0) = 6p(x) in Q. (4.19)
[ v:(2,0) = wo(x)

|, such solutions (¢., v, ;) are uniformly bounded

1
) % (L*(0,T5V) N L>(0, T H)) x Wy (Q).

Moreover, as € varies m [0
with respect to & in W' (Q

The proof of the previous result will be done at the end of this section,
after some preparation and auxiliary lemmas. The solvability of problem
(4.17), (4.18), (4.19) will be proved by applying the Leray-Schauder degree
theory (see Deimling [9]) as in Morosanu and Motreanu [18]. For this, we will
reformulate the problem as T'(1, ¢, v,6) = (¢, v,0), where T'(), -) is a compact
homotopy depending on a parameter A € [0, 1] to be described shortly.

Basic tools in our argument are L,—theory of parabolic equations and
Theorems 3.1 and 3.2 in Section 3. Moreover, we emphasize that the regu-
larity of solution of Navier-Stokes and phase field equations plays an essential
role in this proof. Such connection is strictly related with a selection of the
order of the equations in quasilinear problem, mainly in deriving a prior:
estimates for possible solutions. Moreover, since that the phase field has
smooth solution (classical solution), the regularity of Navier-Stokes equa-
tions becomes very important but this regularity is governed by the ad-
ditional Carman-Koseny type term k(fs(¢))v that one not permits one to
obtain uniform estimate in some different as L?(0,7;V) N L*(0,T; H).

For simplicity of notation, we omit the subscript € in the rest of this
section.

Definition 4.1 Define the homotopy T : [0,1] x L%(Q) x L*(0,T;H) x
L3(Q) — L*(Q) x L*(0,T; H) x L*(Q) as

T\ ¢,u,w) = (p,v,0) (4.20)

14



where (¢, v,0) is the unique solution of the following quasilinear problem:

g—f—aAc,pza<,0+bg02—g03+)\w

v
— —vA Y)v+V — &)l =A\T
o v+ (v.V)o+ Vp+ k(fs(@) —e)v=A0w (4.21)

dive =0 in Q,
00 Lofs, \O¢

AN’ B v/ R ad
W 0+v.VO )\2890(%0)815

¢

o on S, (4.22)

=

=
I
AN
(e}
8

in Q, (4.23)

We observe that the homotopy T'(A,-) is well defined. In fact, for fixed
A € [0,1], by using Proposition 3.1 and Lemma 3.1, we conclude that first
equation of problem (4.21), (4.22), (4.23) has a unique solution ¢ € W3 (Q)N
L*>*(Q). Once ¢ is known, Proposition 3.2 implies that the modified Navier-
Stokes equations has an unique solution v € L*(0,7;V) N L*(0,T; H). By
usual interpolation, it results that v € L*(Q)?. Now that ¢ and v are known,
the L,—theory of parabolic equations , that also is valid for Neumann bound-
ary condition (see Ladyzenskaja et al [16];p.351), Lemma 3.1 and the facts

9]
that a—f € L3(Q), v € LYQ)?, and f, € C,"*(IR) imply that there is a unique

solution # € W3 (Q) N L>(Q) for the third equation of (4.21).

Lemma 4.1 Under assumptions (H,), (Hsz), (Hs), the mapping T : [0,1] x
L5(Q) x L*(0,T; H) x L*(Q) — L%(Q) x L*(0,T; H) x L*(Q) is a compact
mapping, t.e, it 1s continuous and maps bounded sets into relatively compact
sets.

Proof: Let us check the continuity of T'(A,.). For this, let A\, — A in
[0,1] and (P, Un,wn) — (¢, u,w) in L(Q) x L*(0,T;H) x L*(Q). Denoting
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T( Ay Gy Uy wr) = (@, Uny 0r), from (4.20), we write

agtn — alAp, = ap, + b2 — P + \ywy, (4.24)
ovy, —
5 vAv, + (0, V)vy + Vo, + k(fs(@n) — €)vn = Ay 0 wy, (4.25)
div v, =0, (4.26)
% — AO, +v,.V0, = Angg—ﬁ(%)a;" (4.27)
in Q;
aag;n _ 0
T (4.28)
0, = 0,
on S, and

on(2,0) = @o(z),

vp(z,0) = wvp(x), (4.29)
0,(z,0) = 0y(x)
in €.

By applying Proposition 3.1 with w, € L*(Q), we obtain the following
estimate for the phase-field equation (4.24)

2
lenll$h < € (|Anl llwnlla.g + l0llwscey ) (4.30)

Now, by applying Proposition 3.2, we obtain the following estimates for
the velocity equation (4.25)

1oall g 2,11y + N0nll 2oy < C (eollyy + al llwallo ) (4.31)
which by usual interpolation implies
lenllig < € (llolly + Aal lonllz o) (4.32)
For (4.27), the L,-theory of the parabolic equation (see Ladyzenskaja [16];
p.351) with the facts that % € L*(Q), g—“:;s(gon) € L™(Q), v, € L*(Q)?
and 0y € W5 () provides the estimate
H%WéSCOMMQWNMmHﬂMI%%Q +wwwm0 (4.33)
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Since the sequences (w,) and (),) are respectively bounded in L?(Q) and
[0,1], from (4.30) and (4.31) we obtain for all n that

2
lenllp <€ and  floall oo rm) + 1onll 20y < C (4.34)
Consequently, from (4.33) we have for all n
16all5% < © (4.35)

Estimates (4.34) and (4.35) show that the norm of the sequence
{T(Any Ony Uy wn)} = {(¢n,Vn,0,)} is uniformly bounded with respect to
n in the functional space W3 (Q) x (L2(0,T;V) N L*®(0,T; H)) x W3 (Q).

Moreover, we observe that for fixed ¢ € (0,1], from the properties of
k(y) (see the conditions stated in (Hj)), there is a finite positive constant C
depending only on ¢ such that sup{k(y — ¢)} < C. By using this and our
previous estimates as in Lions [17], p. 71, we conclude that for all n

[|(wn)el |20,y < Ce). (4.36)

Thus, the previous estimates, with the help of Aubin-Lions Lemma (see
Temam [23] or Lions [17]), allow us to select a subsequence, which we denote

{T (Mg, ks ke, wr)} = {(k, vk, 0) } such that

or— ¢ in WN(Q) (4.37)
v = v in L*(0,T;V) (4.38)
v = v in L>(0,T;H) (4.39)
O, — 60 in Wy (Q) (4.40)
(vg): = v, in L*(0,T;V") (4.41)
pr = ¢ in L°(Q) (4.42)
v — v in L*(0,7;H) (4.43)
0, — 0 in L*(Q) (4.44)

Now, let us verify that T(\, ¢, u,w) = (¢,v,0), in other words, that
(p,v,0) is solution of (4.21), (4.22),(4.23). For this, we are going to pass to
the limit with respect to the above subsequence in equations (4.24)-(4.27)
together with the conditions (4.28)-(4.29).

Let us prove that the equations are satisfied in the sense distribution. For
this, fix in the sequel g € C°(Q), and let us describe the process of taking

17



the limit only for those terms of the equations that are neither trivial nor
standard.
We observe that by using (4.42) and A\, — A, we obtain

/Q e (ay, + bo? — op)g dedt — /Q May + bp? — ©*) g dadt Vg (4.45)

Thus, passing to the limit in phase field equation (4.24), using the con-
vergence (4.37), (4.42) and (4.45), we obtain the first equation in (4.21).
To verify the convergence

/Q k(fy(on) — )vp g dadt — /Q k(fo(0) — )v g dadt (4.46)

we use (4.43), the fact that for fixed ¢ € (0,1], k(fs(-) — £ is bounded,
and following argument. Consider h, = |k(fs(¢r) — €) — k(fs(p) — €)%
Since k(fs(+) —€) is continuous and (4.42) is valid, passing to a subsequence
if necessary, we know that h, — 0 almost everywhere in Q. Moreover,
lhe] < C|fs(9)|]%, a.e and therefore hy — 0 in L*(Q) by Lebesgue domi-
nated convergence theorem. Thus, k(fs(¢r) — ) — k(fs(p) — ¢) in L*(Q),
what together with (4.38) implies (4.46).

By passing to the limit in velocity equation (4.25), using the convergence
(4.38), (4.43) and (4.46) we obtain the second equation in (4.21).

Now, we use (4.37), (4.42), Ay — A and arguments similar to the ones

previously with a—s(gok) in place of f; to obtain
¥

A —— gdxdt A —— g dxdt 4.4
J e g (o) gt [ AT (@) 50 g (4.47)

By passing to the limit in temperature equation (4.27), using the conver-
gence (4.40), (4.44) and (4.47), we obtain the third equation in (4.21)

The required boundary conditions are included in the definitions of the
functional spaces where (¢,v,6) is in. Also, with the estimates we have
obtained, it is standard to prove that ¢, v and 6 satisfy the required initial
conditions. Hence, (¢, v, ) is solution of (4.24)-(4.29).

Moreover, we observe that if we start with any given subsequence of
{T(An, Pn, Un, 0n) }, exactly the above arguments can be applied to conclude
that this subsequence admits another subsequence converging to a solution
of (4.24)-(4.29). Since (¢, u,w) is also fixed and the solution of this last
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problem is unique, we conclude that {T(\,, ¢n, Vs, 0,)} is a sequence with
the property that any one of its subquences has by its turn a subsequence
converging to a limit that is independent of the chosen subsequence. Hence,
{T(An, Pn, Un, )} converges to this limit, and the continuity of 7" is proved.

The same sort of arguments prove that mapping 7" is a compact mapping.
In fact, if {(¢n, tn,w,)} is any bounded sequence in L5(Q) x (L*(0,T;V) N
L>(0,T; H)) x L*(Q), the above arguments can be applied to obtain ex-
actly the same sort of estimates for T'(\,, ¢n, tun,w,). These imply that
{(pn,vn,0,)} is relatively compact in L5(Q) x L?(0,T; H) x L*(Q), and
thus there exists a subsequence of T'(\,, ¢p, Uy, w,) converging in L°(Q) x
L*(0,T; H) x L*(Q). Therefore, the compactness is proved. [

The next lemma give us an uniform estimate for any possible fix point of
T(\, ).

Lemma 4.2 Under assumptions (H,), (Hs), (Hs), there exists a positive
number p, depending only on the given data of the problem and in particular
independent of A € [0, 1], with the property any fiz point of T(),.) is in the
interior of the ball of radius p in L5(Q) x L*(0,T; H) x L*(Q). That is,

T (A ,v,0) = (9,v,0) = |l(¢,v,0)| < p, (4.48)
where ||-|| denotes the norm in L°(Q) x L*(0,T; H) x L3(Q).

Proof: By using (4.20), the condition T'(\, p,v,0) = (¢, v,0) is equivalent

to

2 A+ 0T+ V4 K(le) ~ = AT 0 (4.50)
diveo =0 in @, (4.51)
o0 Ofs, Oy

P A0+ 0.V0 = A= 7e 4.52
> TV =50 (@) (4.52)
22~

077 _ 0 on S, (4.53)
v =0
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p(z,0) = ()

O(x,0) = 6by(x)

v(z,0) = wvo(x)

To obtain estimates for (¢, v, #), we start by multiplying the first equation

(4.49) by ¢. After integrating of the result over Q; (¢ € (0,77), using Fubini’s
theorem, Green’s formula and Young’s inequality, we get

t t
/¢2dx+/ / |V<,o|2dg;dt+3/ /<,o4dg;dt
Q 0 Ja 2 Jo Ja

2 r 2 r 2
<C(llpolba+ [ [ 10Pdvat+ [ [ |oldzat

1
where C' depends on « and (m?XQ (a(w, t) + b(x,t)s — 532>.
z,t)e

in Q. (4.54)

(4.55)

By applying Gronwall’s inequality in (4.55), we get

T T
2 < 2 / / 2 . .
[ [ tepasti < ¢ (Nl + [ [ loPasa (1.56)

Thus, by combining (4.55) and (4.56), we conclude

T T
/0 /Q|Vg0|2dxdt§ C <||<,00 §,Q+/O /Q|9||2dxdt> (4.57)

é/T/ tdzdt < C (||l +/T/ 10]2dwd (4.58)
2 Jo Jo¥ - Pollza ™ Joo J, '

Now, we multiply equation (4.52) by 6 and integrate over ();. Then we

Ofs _
use the fact that af € L*(IR), (4.51), Green’s formula and also Poincare’s
¥

and Young’s inequalities to obtain

t T
/02dx+/ / |V9|2dxdt§0<||90||§g+/ / |2 dxdt), (4.59)
Q 0 JQ ’ 0 Q

Ofs
dp

where C' depend on €2, ¢ and H

o0
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9,
By multiplying the first equation (4.49) by a—f, integrating over (Q;, using

Green’s formula and Young’s inequality, we obtain

¢ oo\’ t
//(—) da;dt+/ / IV o|2ddt
0o Ja \ Ot 0o Ja
2 T 2 r 2
<C(IVeolla+ [ [ lePdudt+ [ [ |ofdwdt),
’ 0 Q 0 Q

here C' depend d t) + bz, t)s — s°).
where epends on « an (g;}g{@((m,)qL (x,t)s 8)

(4.60)

By using (4.56) in (4.60) and applying the resulting estimate in (4.59),
we get

t 2 2 2 r
/QGde—l—/O /Q|ve| drdt < c(||00||m+||g00||W21(Q)+/0 /Q|9|2 dm&)

By applying Gronwall inequality in (4.61), we obtain
16015, < C (I80ll5,0 + llolliwyey) (4.61)

and, consequently, [|VOl, o < C (ool + [20lwyo))-

Moreover, by interpolation results (see Ladyzenskaja [16] p. 74), we have

1601, < M (1160l + 2olliwsey) - (4.62)
By using (4.61) in (4.56), (4.57) and (4.58) , we conclude that
¢l < C (I18olls.0 + Pollwyce) (4.63)

< C (Iolls0 + lollws o) (4.64)
Mellg < € (I6ollo.0 + l190llwsey) - (4.65)

By using (4.61) and (4.63) in (4.60), we have

C (1ollo,0 + lleollws o)) - (4.66)
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Now, by multiplying the first equation (4.49) equation by —Ay integrat-
ing over (), using Green formula and Young inequalities, we obtain

t t
/|Vg0|2dx+/ / |Ag0|2dxdt+3)\/ /g02|V<,0|2dxdt
Q 0 JQ 0 JQ

T T T
g0<||wo||§79+/0 /Q|9|2d:vdt+/0 /Q|90|2dazdt+)\/0 /Q|gp|4dxdt>,

(4.67)
here C' Q 0fs
where C' depend on Q, «, [lal|,, o, [[b]l,, o and % B
By using (4.61), (4.63) and (4.65) in (4.67), we obtain
1A¢l,0 < C (100ll,0 + el o) (4.68)

Combining estimates (4.63), (4.64), (4.66) and (4.68), using the imbed-
ding om Lemma 3.1, we have

el < Cllellsh < € (1160

so+leollyie) (@>6).  (4.69)

Now, by multiplying the second equation (4.50) by v, integrating over @)y,
using Green’s formula, and Poncare’s and Young’s inequalities, we get

Ll e V[ : [ —e)v?
2/91) d:r—|—2/0/9|Vv| dxdt + ; Q/{:(fs(go) ) vidxdt

T (4.70)
<C <||v0||H+/0 /Q|9|2da;dt>.

Combining (4.61) and (4.70), using that k(fs(¢) —€) > 0, we conclude
that

||U||Loo(0,T;H) + ||U||L2(0,T;V) <C (HUO”H + ||00||2,Q + ||%00||W12(Q)) :

Finally, by the interpolation result given in Theorem (3.2), we have

o]l < € (ool + 16ollo,0 + o]l 2e) (4.71)
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The next lemma tell us that there is an unique fix point in the special
case A = 0.

Lemma 4.3 Under assumptions (H,), (Hz), (Hs), there exists an unique
solution of the problem T'(0, p,v,0) = (p,v,0) (T defined in (4.20.))

Proof: T(0,¢,v,0) = (¢,v,0) is equivalent to the following nonlinear sys-
tem:

(aa—(':—aAgpzag0+b902—g03
0
a—z —vAv + (v.V)o + Vp+ k(fs(¢) —e)v=0
dive =0 in Q,
o0
— —A04+0v.VO=0
l 5 +ov.V
0
a—“" =0
977 — 0 on S,
v = 0

QD(.T,O) = QD[)(ZL‘)
0(x,0) = 6y(x) in Q,
'U(.’L‘,O) = UO(:E)

For these equations, Proposition 3.1 ensures the existence and uniqueness of
¢; then Proposition 3.2 gives the existence and uniqueness v. The L,—theory
of the linear parabolic equations ensures then the existence and uniqueness

Now we are ready for the

Proof of Theorem 4.1: According to Lemma 4.2, we know the existence
of the a number p satisfying property (4.48). Let us consider the open ball

B, ={(¢.0,6) € L(Q) x L*(0,T: H) x L*(Q) ; ll(¢.0.0)]| < p}

where ||-|| is the norm in the space L°(Q) x L*(0,T; H) x L*(Q).

23



Lemma 4.1 ensures that the mapping T : [0, 1] x L5(Q) x L*(0,T;H) x
L3(Q) — L%(Q) x L*(0,T;H) x L*(Q) is a homotopy of compact transfor-
mations on the closed ball B, and Lemma 4.2 implies that

The foregoing properties allow us consider the Leray-Schauder degree
D(Id—T(\,),B,,0), VA € [0,1] (see Deimling [9]). The homotopy invari-
ance of Leray-Schauder degree shows that the equality below holds

D(Id—T(0,),B,,0) = D(Id—T(1,), B,,0) (4.72)

Moreover, the Lemma 4.3 ensures that the problem 7(0, ¢, v, 0) = (¢, v, 0)
has a unique solution in L%(Q) x L?(0,T;H) x L*(Q). Hence we can choose
a sufficiently large p > 0 such that the ball B, contains this solution, it
turns out that D(Id — T°(0, ), B,,0) = 1. Then relation (4.72) ensures that
the equation T'(1,¢,v,0) — (¢,v,60) = 0 has a solution (¢,v,6) € B, C
L5(Q) x L*(0,T;H) x L*(Q). By (4.20) with A\ = 1, this is just a solution of
the problem (4.17)-(4.18)-(4.19).

The uniqueness and regularity of problem (4.17), (4.18), (4.19) are con-
sequence of the application of the Propositions 3.1 and 3.2 and L,-regularity
theory for linear parabolic equations. To prove uniqueness let ¢;, v; and 6;
with i = 1, 2 be two solutions of problem (4.17), (4.18), (4.19), with corre-
sponding pressures p; (for simplicity of exposition, we omit the subscript ).
We first observe that by using the previously obtained estimates and argu-
ments similar to the ones used to prove that T) is well defined (Definition
4.1), we conclude that ¢; € Wy (Q)NL®(Q), v; € L*(0,T;V)NL>(0,T; H)
and 6 € W3 (Q) N LP(Q) (for any finite p > 1).

By denoting ¢ = @1 — s, § = v — U, 0 = 01 — 05 and p = p; — po, these
functions satisfy the following equations and conditions:

22 —aig = [ale, 1)+b(z, (1 +r) - (L +orort D]+,
(4.73)
% _ AT+ (0.V)5 + Vi £ k(fol1) — ) §
=0 0 — (0.V)vs + {k(fo(01) — &) — k(filp2) — )}, (4.74)
div v = 0,
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o0 Lofs  0¢
E—A9+ 1V9_§8 (1 )815
~ E afs afs 6902
@90+ 5 (S0 - Ste) 2o (1.7
i 0, onS,  (4.76)
v = 0,
(x,0) = 0(x,0) =0, :
5. 0) = 0. in Q. (4.77)

By multiplying equation (4.73) by ¢ and integrating on €2, after usual
integration by parts, using the fact that a(-), b(-), ¢1, w2 € L®(Q) and
Holder’s inequality, we obtain

d R ~ 5 ~
Z12@)[20 +201VE@)l20 < CiL12(0) [5.0 +1100)]150 ] (4.78)

95
Now, we multiply (4.73) by a—f and integrate on 2. Proceeding similarly
as before, we can obtain

0p _ ~
157 Dllza + 5 dth@( N0 < Collle@Iz0 + 1100501 (4.79)

Next, we multiply equation (4.74) by ¥ and proceed as usual with the
help of the facts that div vi = 0, k(fs(¢1) — € > 0 and Holder’s inequality to
obtain

1d
2ﬁH(Hbo+WVM)bQ

|

c1lg) um@

/( )i (1)

ﬁ[ =€) = k(fula(t) — ] [
(4.80)
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The integral terms on the right hand side of the previous inequality can be
estimated as follows.

allv®Il3 o
llo@ll2ollVo(D)ll20
allP®)ll50 + ZIIVOD|0

I/Q(ﬁ(t)-v)va(t)ﬁ(t)l < C[IVoa(t)]l2
< C[IVoa(t)]l2
< G lIVua(1)][3

Next, by using the facts that k() is a Lipschitz function on (—oo,1 — €)
and fy(+) is a L*>°-function, we obtain:

| Jalk(fs(@1(t) = €) = k(fi(2(t) — o)]|5(t)]*da]
< Cefo |lfs(@1(2) = €] = [fsler (1)) — e]l[o(1)Pda
= Ce Jo | fs(p1(t)) = fs(er (1) [[0(2)[*dx

< Cllo(0)]13.0-

By using the last two estimates in (4.80), we get

d -~ 2 3 ~ 2
0@l + SVI[VO@)||20 (4.81)

< Gsl6(t)[[3.0 + Ca(1 + [[Vea(0)[[3 ) 1513

We proceed by multiplying equation (4.75) by , integranting on . After

0fs
LOO
5o € L),

integration by parts and the use of the facts that div v; = 0,
with the help of Holder’s inequality, we obtain:

5 I Mo + 9901
< CUBOIBa+ 1% ()]50)
+/Q(@( ).V)92 0(t)dx

+ [5G e) - Gt ) @) ) do

(4.82)

2

The last two integrals terms in the above inequality can be estimated as
follows.
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[ Ja(9(8)-V)0:0(t)dz | = | o div (¥(t)62) 6(t)dx | i
= [ Ja(8(t)02) VO(t)dz| < ||5(t)||sall2(t)llial VO |20

< Allo0)] ol 00 + 51IV8C i
< C1I0) ol V3Ol (0 o + —||ve( o
< QBT OIBa + 51V B + VIO

0
Moreover, using the fact that 8—][5 is a Lipschitz function, we obtain:
¥

] 5 G = G0 ) B0 d |

890
<0/|90 ()] 1522 ®)] 161 de

90,

< Clle®llzall =, Bllsal 0®)]o0

< Clla(t )Ilmllﬁ( NsallVO@) 20

Oy . 1, -~
< 2( DEalle®Ee + Z1IVO0) e

By using the last two inequalities in (4.82), we get

d - _
£II9(t)I|§,Q + VO[30

- 8@
< Gs(10()|5.0 + 115> Y (t)
+06||92( Miallo®)]130
+C7|| ()||3Q||90||§Q

20) (4.83)

Now, we multiply (4.79) by 2C5 and add the result to (4.78), (4.81) and
(4.83). After some simplifications, we obtain:

d . _ d, _ d . -
— )0 + = NoO)50 + =103 +0405 ||V90( )30
dt dt 5 (t)dt
© N
< Cy(1+ || 22212 )||%0(t)||2,9
+Co (1 + |[Vua(t)|[5.0 + 102 |11 15(8)[|2,0
+Cio10]13.0-
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By denoting z(t) = [|2(t)[[3.0 + [10(®)]130 + 10|50 + aCs5|[VE(®)][3 0,
the last inequality implies
02

S <on+ 122

30) +IV0)[50 + 1162(6)[15 ol2(2)-

This inequality implies that for ¢ € [0, T

0 < 2(t) < 2(0) exp{C(T)[1+ II%@) 3.0) T IV2(O)l[E2(0,mv) + 1162(6)) 11 o]}

. 8802 . .
Since ||ﬁ(t)||%3(9)) + ||v2(t)||%2(07T;V) + ||92(t))||4L4(Q) is finite, due to the
known regularity of the involved functions, and z(0) = 0, we conclude that

z(t) = 0, and therefore » = 0, v = 0, § = 0, which imply the uniqueness of
the solutions.

In the following we will show that the solutions (p.,v.,6.) € L5(Q) x
L*(0,T;H)x L3(Q) of the problem (4.17), (4.18), (4.19) are uniformly bounded
with respect to e in the space Wy (Q) x L*(0, T; V)NL>®(0,T; H) x Wy (Q).

For this, note first that 6. € L3*(Q); the L,-theory of parabolic linear
equation combined with Theorem 3.1 and Lemma 3.1 allow us to conclude
that there exists an unique o, € W3 (Q) N L>(Q) such that

fn<C (H(a + b — 7).

o+ 1Bl g+ Ioellyan ey )
(4.84)
But max (a(x,t) +b(z,t)s — 52) is finite; hence, from (4.84), we get

(z,t)eQ
that

[#elloo,0 < C llpe

||(108||00,Q <C ||905||% <C (“SOEHﬁ,Q + ||95||3,Q + ||9005||W34/3(Q)> . (4.85)

Now, by combining (4.62), (4.69) and (4.85) and using usual Sobolev
imbeddings, we conclude that

2
eI < € (ol + gl ) - (4.5

Moreover, Lemma 3.2 gives us that ¢, € H*/3'/3(Q) such that

2/3
ocl§ < Cllel < (Mol + Io0llygingy ) - (487)
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We consider then the equation for the temperature. By applying the L,-
theory of parabolic linear equations (see Ladyzenskaja [16]) together with

the facts that aais € L*(Q), f, € Cy(R) and v, € L*(Q)?, we have that

there exists an unique 6, € W5 (Q) N LP(Q) (p > 2) such that

Ofs
dyp

161, < © (||vg||4,c2 160< L3 0y + H + ||905||W21(Q,> (4.88)

o
w0 10t l20

where the estimates ||v.||,, and H%H are given by (4.71) and (4.66),
b 2,Q

respectively.
By combining (4.69), (4.71) and (4.88), we obtain

10185 < € (ool + Ieolhggrngey + Wolhwgey ) (4:89)

Therefore, the solutions (p,v.,6.) of problem (4.17), (4.18), (4.19) are
uniformly bounded with respect to € in the space W5 (Q) x (L*(0,T;V) N
L>(0,T; H)) x W5 (Q), and this completes the proof of Theorem 4.1. W

5 Proof of the Theorem 3.1

In this section we will use the results of Theorem 4.1, the L,—theory of
parabolic equations, the imbedding of Lemma 3.2 and compactness argu-
ments to prove a result on existence and regularity of solution for problem
(2.1), (2.2), (2.3). This will be obtained by passing to the limit in the regular-
ized problem (4.17), (4.18), (4.19) as € approaches zero. Due to the estimates
we presente, the convergence of almost all the terms in the equations of the
regularized problem will be standard ones, except for the regularized veloc-
ity equation that will require a local argument. The stated regularity of the
solutions wil be obtained by using bootstrapping arguments. Unfortunately,
due to the additional Carman-Koseny type term in the velocity equation, we
cannot improve the regularity of weak solution of Navier-Stokes equations.

Passing to the Limit

As a consequence of Theorem 4.1, for € € (0, 1], any solution (¢., v, 0.) €
L5(Q) x L*(0,T;H) x L*(Q) of problem (4.17), (4.18), (4.19) is uniformly
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bounded with respect to ¢ in the space W2 (Q)x (L(0, T; V)NL*®(0,T; H)) x
W3 (Q).

With the help of Aubin-Lions Lemma (see Temam [23], Lions [17] or
Corolary 4, p. 85, in Simon [22]), there exists (¢, v,0) € L5(Q)xL?(0,T; H) %
L3(Q) and a subsequence, which for simplicity of notation is still indexed by
g, such that as e — 0

w. — @ in LYQ)(q>06)

Veo. — Ve in L3(Q)?

. — ¢ in WPNQ)

. — 6 in LP(Q)(p=>2)
VO, — V6 in L*(Q)?

. — 0 in W;YQ)

ve — v in L*0,T;V)

v. = v in L*®(0,T;H)
Moreover, by Lemma 3.2, ¢. € H?/*Y/3(Q) and for all £ € [0, 1] we have

|g05|8/3) < C’||<,05||gz). In particular, sup |p:(x,t)| < C, and <g05>§1/3) < C.
Q
Thus, {¢. } is uniformly bounded and equicontinuous family in ). By Arzela-

Ascoli’s Theorem it follows that there exists a subsequence, that we denote,
for simplicity, again by {¢.} such that ¢, — ¢ uniformly in Q.

We check now that (¢, v,0) € L5(Q)x L?(0,T; H) x L3(Q) is a generalized
solution of problem (2.1), (2.2), (2.3).

We start by taking Q)5 and ),,,; as in Definition 3.1 with the just obtained
function .

0
Now, we have to prove that v = 0 in (),. For this, we will use an argument

0
already used by Blanc et al [1]: we take K a compact subset in (), and observe
that f, € Cp"'(R), fs(¢(z,t)) = 1 in a neighborhood of K. Since ¢, — ¢

uniformly in (), we conclude that there is a small positive €, such that
fs(pe(z,t)) =1 in K
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whenever € € (0,ek).

By multiplying the regularized velocity equation of problem (4.17)-(4.18)-
(4.19) by v., integrating over K, using Green’s formula and Young’s inequal-
ity, we obtain

k(L =e) l[vellyx < C

with C' a positive constant independent of € € (0,2k).
As € approaches zero, k(1—¢) blows up and compels ||vg||Lz )2 to converge
to 0. Therefore, v.,, — 0 in L?*(K), and consequently v = 0 1n K. Since K

was an arbitrary compact set of 6?25, we conclude that v = 0 in C?)s.

Now we have to show that the triple of functions (p, 0, v) satisfies equa-
tions (3.14), (3.15) and (3.16). We start by proving that (3.16) is satisfied.

For this, we multiply the second equation in (4.17) by a test function
¢ € C([0,T]; W (t))) such that div ¢(.,t) = 0 for all t+ € [0,7] ,
supp ¢(z,t) C Quu U Q2 (0) and ¢(.,7) = 0 and integrate over Q). Af-
ter some usual integrations by parts using (4.18), (4.19) and observing the
properties of ¢, we obtain

_ / v. by dadt + v / V.V dedt + / (0..V)0. & dadt

+/ k(fy(0.) — )vg¢dxdt_/ 3 95¢dxdt+/9 o) (@9, 0)d

" " (5.90)
The stated convergences for ¢., 6. and v. are enough to conclude the
convergence of the first and second terms of the left hand side and also of
the first term of the right hand side of equation (5.90). For the convergence
of the third and fourth term of the left hand side, however, we need to be
more careful.
We first observe that

k(fs(p:) =€) = k(fs(p) in C°(Km) (5.91)

for any fixed compact K,y C Quu U Quu(0). In fact, in such K,
k(fs(pe(x,t)) —e) and k(fs(¢(x,t))) are bounded continuous functions, and,
since fs(p.) — & converges to fs(¢) in C°(K,,;), we obtain the stated result.
In particular, this result holds for K, taken as supp ¢, and this guaran-
tees the convergence of the last term in the left hand side of the last equation.
For the convergence of the third term of the left hand side it is necessary to
improve the convergence of v.. For this, we first observe that (),,; is an open
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set and can be covered by a countable number of open cylinders €2; x (a;, b;),
such that for each i = 1,...,00, we have Q; C Q and [a;, b;] C (0,T). Thus,
for each i = 1,..., 00, we can take the compact set ; x [a;, b;] as K in (5.91)
and conclude that there is ¢; € (0,1] and C; > 0 independent of € € (0, ¢]
such that for such ¢ we have

||k(fs(805) - 6)||L°°(§i><[ai,bi]) S OZ

This and our previous estimates allow us to work with the second equation
in (4.17) restrited to €; x (a;, b;) to obtain that there is C; > 0 independent
of ¢ € (0,¢;] such that for such ¢ we have

where V'(€;) is the topological dual of the Banach space V(€;) =

0 0
{ue Wi(Q)?% divu=0}, considered with the norm of W3(€2;)2.

Also, our previous estimates tell us in particular that {v.} for is unifomly
bounded with respect to ¢ € (0,&;] in L*(a;, bj; W (), where W(Q;) =
{u € W5 (%)% div u =0} is a Banach space with the W, (€;)?-norm.

ov,
ot

S Cia

L2(a;,bi; V' ()

Being the Banach space
H(Q) = {u € L*(Q;)?% div u =0, and null normal trace}

considered with the L?(€;)?>-norm (see Temam [23] for properties of this and
the previous Banach spaces , we observe that W(;) € H(;) € V'(%),
and the first imbeding is compact, we can use Corolary 4, p. 85, in Si-
mon [22] to conclude that there is a subsequence of {v.} converging to v
in L?(a;, b;; H(Q;)). In particular, this implies that along such subsequence
ve — v in L2 X (a;, b;)).

Proceeding as above for each i = 1,...,00, with the help of the usual
diagonal argument, we obtain a subsequence such that

ve = v in L (Qum).

Thus, along such subsequence, we can pass to the limit as ¢ — 0 in (5.90)
by proceeding exactly as in the case of the classical Navier-Stokes equations
and conclude that (3.16) is satisfied.
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To obtain the other equations in Definition 3.1, we multiply the first and
third equations of (4.17) respectively by 8 € W5'(Q) with 3(.,T) = 0 and

0
£ ew Q) with £(.,T) = 0, and proceed as before. Using arguments
similar to the ones in (4.45) and (4.47), we conclude that

/ (agoE + by, — gog’) B dxdt — / (ago + by — g03) B dzxdt,
Q Q

Ofs
Q Oy

Ofs ( )0905

0
050 %) ()5, Edadt,

dxdt
Edxdt — 5

as ¢ — 0.
With these results, it is easy to to pass to the limit as ¢ — 0 and conclude
that equations (3.14) and (3.15) are also satisfied.

Regularity of the Solution

Now we have to examine the regularity of (p,8,v). For this, we remark
that by interpolation (see Ladyzenskaja [16] p. 74), # € L*(Q). Thus,
applying Proposition 3.1 with # € L3(Q), we conclude that ¢ € W;"'(Q) N
L%(Q).

Also, Proposition 3.2 give us that v € L*(Q)2.

By applying the L,—theory of parabolic equations together with the facts
that f, € Cp''(IR), v € L*(Q)?, %—f € Ly(®) and Lemma the result of 3.1, we
conclude that § € WyH(Q) N LP(Q) (p > 2).

Therefore, by using a bootstrapping argument with 6 € L%(Q) where
¢ > 3 and smoothness of the data ¢ we conclude that ¢ € W' (Q)NL®(Q).

Applying again the L,—theory of parabolic equations with f; € C’bl’l( R),

9,
v e LYQ)?, a—f € LP(Q), with 2 < p < 4, recalling the given smoothness

of 6y and the result of Lemma 3.1, we conclude that # € W' (Q) N L>(Q),
with 2 < p < 4.

This completes the proof of Theorem 3.1. [ |
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