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Abstrat

We investigate the existene and regularity of weak solutions of

a phase �eld type model for pure material solidi�ation in presene

of natural onvetion. We assume that the nonstationary solidi�a-

tion proess ours in a bounded domain, whih for tehnial rea-

sons are restrited to be two dimensional. The governing equations of

the model are the following: the phase �eld equation oupled with a

nonlinear heat equation and modi�ed Navier-Stokes equations whih

inlude buoyany fores modeled by Boussinesq approximation and

a Carman-Koseny term to model the ow in mushy regions. Sine

this modi�ed Navier-Stokes equations only hold in a priori unknown

non-solid regions, we atually have a free boundary value problem.
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1 Introdution

One of the �rst papers to onsider phase �eld models applied to hange

of phases was one by Fix [12℄, whih fostered many other studies in this

subjet. For instane, in a sequene of papers ([6℄-[3℄-[2℄-[5℄), Caginalp and

others took over the task of understanding the phase �eld approah, both

in its mathematial aspets and in its relations to the lassial approah

of using sharp interfaes to separate the phases (whih gives rise to what

is known by Stefan type problems.) We remark that, for the derivation

of kineti equation for the phase �eld, Caginalp and others used the free

energy funtional as a basis of the argument (see Ho�man and Jiang [13℄,

for instane.) An alternative derivation, suggested by Peronse and Fife [20℄-

[21℄, uses an entropy funtional whih gives a kineti equations for the phase

�eld ensuring monotoni inrease of the entropy in time. Peronse and Fife

exhibit a spei� hoie of entropy density whih essentially reovers the

phase �eld model employed by Caginalp [6℄ by linearization of the heat ux.

Thus, phase �eld models have a sound physial basis and provide simple

and elegant desriptions of phase transition proesses. Moreover, it is more

versatile than enthalpy method, whih is yet another approah to model

phase hange proesses, sine e�ets as superooling and others may be easily

inluded. An important example of the utility the phase �eld approah is

its use for the numerial study of dendriti growth (see Caginalp [3℄ and

Kobayshi [14℄, for instane).

One point to stress is that, whatever the approah used to model phase

hange, until a few years ago the possibility of ow ourring in non solidi�ed

portions of the material was negleted in papers interested in the mathemat-

ial analysis of these models. In many pratial situations, however, this

assumption is not satisfatory beause the existene of suh motions may

a�et in important ways the outome of the proess of phase hange. On the

other hand, the inlusion of the possibility of onvetive e�ets in the model

brings another very diÆult aspet to an already diÆult problem. In fat,

to realize this it is enough to observe that suh a ow must our only in an

a priori unknown non-solid region, and thus one is left with a rather diÆult

free boundary value problem to handle.

In reent years, some authors have onsidered onvetive e�ets; for in-

stane:

Cannon et al [7℄-[8℄, DiBenedetto and Friedman [11℄, DiBenedetto and

O'Leary[10℄ and O'Leary [15℄ addressed suh questions by using weak formu-
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lations of the Stefan type approah.

Blan et al [1℄, Perileouns etal [19℄ and Voller et al [25℄-[26℄ onsidered

onvetive e�ets in phase hange problems by using the enthalpy approah

to desribe hange of phases, together with modi�ed Navier-Stokes equations

to model the ow. In these works, the phases may be distinguished by the

values of a variable orresponding to the solid fration that is assoiated

to the enthalpy; this same variable is used in a term that is added to the

Navier-Stokes equations to ope with the inuene of the mushy zones in the

ow. Partiular expressions for this term may be obtained by modeling suh

mushy zones as porous media.

In this paper we are interested in the mathematial analysis of a model

problem having some of the main aspets that a reasonable model for a

solidi�ation proess with onvetion should have. We will onsider a rather

simple situation of this sort in the hope to obtain a better understanding

of the mathematial diÆulties brought by the oupling of terms desribing

phase hange and the terms desribing onvetion.

We restrit the subjet to the analysis of solidi�ation of pure materials,

and, di�erently of the previous papers onsidering the analogous subjet, we

employ a phase �eld methodology to model phase hange. Convetive e�ets,

however, will be inluded by using the ideas suggested by Blan et al [1℄ and

Voller et al [25℄. Sine the indiator of phase in these last papers is the solid

fration, we relate the two approahes by postulating a funtional relationship

between the solid fration and the phase �eld. The governing equations of

the model are the following: the phase �eld equation is as in Ho�man and

Jiang [13℄; it is oupled with equations for the temperature and veloity that

are based on usual onservation priniples. These last equations beome

respetively a nonlinear heat equation and modi�ed Navier-Stokes equations

whih inlude buoyany fores modelled by Boussinesq approximation and

a Carman-Koseny type term to model the ow in mushy regions. Sine

this modi�ed Navier-Stokes equations only hold in a priori unknown non-

solid regions, we atually have a free boundary value problem. Detail of the

model problem an be found in Setion 2, equations (2.1); the orresponding

weak formulation an be found in De�nition 3.1.

We present a result on existene and regularity of solutions of this model

equations orresponding to a nonstationary phase hange proess in a bounded

domain, whih for tehnial reasons in this paper is assumed to be two di-

mensional.

Existene will be obtained by using a regularization tehnique similar to
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the one already used by Blan et al [1℄: an auxiliary positive parameter will

be introdued in the equations in suh way that the original free boundary

value problem will be transformed in a more standard (penalized) one. We

say that this is the regularized problem. By solving this, one hopes to reover

the solution of the original problem as the parameter approahes zero. To

aomplish suh program, we will �rstly solve the regularized problem by

using the Leray-Shauder degree theory (see Setion 8.3, p. 56 in Deimling

[9℄); we will also have to use results holding for a ertain modi�ed Navier-

Stokes equations that were presented in Vaz [24℄. Then, by taking a sequene

of values of the parameter approahing zero, we will orrespondingly have a

sequene of approximate solutions. By obtaining suitable uniform estimates

for this sequene, we will then be able to take the limit along a subsequene

and, by ompatness arguments, to show that we have in fat a solution of

the original problem. The stated regularity of this solution will be obtained

by applying the L

p

-theory of the paraboli linear equations together with

bootstrapping arguments.

This paper is organized as follows. In Setion 2, we desribe the math-

ematial model and its variables. In Setion 3, we �x the notation and

desribe the the basi funtional spaes to be used; we reall ertain results

and present auxiliary problems; we also state assumptions holding through-

out the paper and de�ne the onept of generalized solution. In Setion 4, we

onsider the question of existene, uniqueness and regularity of solutions of

the regularized problem. Setion 5 is dediated to the the proof of existene

of a solution of the original free boundary value problem.

Finally, as it is usual in papers of this sort, C will denote a generi

onstant depending only on a priori known quantities.

2 Model Equations

The model problem presented here has aspets of the models studied in the

works of Blan [1℄, Caginalp [6℄ and Voller et al [25℄-[26℄. As we said in the

Introdution, the phase of the material will be desribed by using the phase

�eld methodology, whih in its simplest approah assumes that there is a

salar �eld '(x; t), the phase �eld, depending on the spatial variable x and

time t and real values '

s

< '

`

suh that if '(x; t) � '

s

then the material at

point x at time t is in solid state; if '

`

� '(x; t) then the material at point

x at time t is in liquid state; if '

s

< '(x; t) < '

`

then, at time t the point
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x is in the mushy region. We follow Caginalp [6℄ and Ho�man and Jiang[13℄

and take the phase �eld equation as

�'

�t

� ��' = a' + b'

2

� '

3

+ �;

where � is the temperature; � is a (small) �xed positive onstant, and a and

b are known funtions whih regularity will be desribed later on.

We observe that the funtion g(s) = as+ bs

2

� s

3

used at the right hand

side of the above equation is the lassial possibility oming from the lassial

double-well potential (see Ho�man and Jiang [13℄). Other possibilities for the

double-well potential an be found for instane in Caginalp [6℄ and Penrose

[21℄.

To obtain a equation for the temperature, we observe that when there is

phase hange, the thermal energy has the following expression:

e = � +

`

2

(1� f

s

);

where � and `=2 represent respetively the sensible heat (for simpliity of

notation, we took the spei� heat oeÆient to be one) and latent heat. f

s

is the solid fration (1�f

s

is the non-solid fration), whih for simplyity we

assume to be a known funtion only of the phase �eld (obviously dependent

on the material being onsidered.)

Then, the energy balane in pure material solidi�ation proess may be

written (see Vaz [24℄) as follows:

��

�t

� �� + v:r� =

`

2

�f

s

�'

(')

�'

�t

where v represent the veloity of the material.

We will assume that only non solid portions of the material an move,

and this is done as an inompressible ow. Consequently, in non-solid regions

Navier- Stokes type equations are required. Aording to Voller et al [25℄

and Blan et al [1℄ these equations an be taken as

8

>

<

>

:

�v

�t

� ��v + (v:r)v +rp = G(f

s

; v) + F (�)

div v = 0

where v is veloity, p is pressure, � is visosity and G(f

s

; v) and F (�) are

soure terms whih will be de�ned below.

5



Assuming the Boussinesq treatment to be valid, natural onvetion e�ets

an be aounted for by de�ning the buoyany soure term to be

F (�) = C�g(� � �

r

)

where � is the mean value of the density, g is the gravity, C is a onstant

and �

r

is a referene temperature. In order to simplify the alulations let

us onsider F (�) =

!

�

�.

The soure term G(f

s

; v) is used to modify the Navier-Stokes equations

in the mushy regions, and aording to [25℄, [26℄, an be taken of form

G(f

s

; v) = �k(f

s

)v. Usually the funtion k(f

s

) is taken as the Carman-

Koseny expression (see again [25℄-[26℄), whih is

k(f

s

) =

f

2

s

(1� f

s

)

3

:

As in Blan et al [1℄, we will onsider a more general situation inluding

the previous one. We will assume that assuming that k is a nonnegative

funtion in C

0

(�1; 1), k = 0 in IR

�

and lim

y!1

k(y) = +1, and in this ase,

we will refer to G as the Carman-Kosen type term.

To omplete the desription of the model problem, we must de�ne the

regions where the above equations are valid. By using the solid fration,

the following subsets of Q, denoted by Q

l

, Q

m

and Q

s

and orresponding

respetively to the liquid, mushy and solid regions, are de�ned as:

Q

l

= f(x; t) 2 Q ; f

s

('(x; t)) = 0g

Q

s

= f(x; t) 2 Q ; f

s

('(x; t)) = 1g

Q

m

= f(x; t) 2 Q ; 0 < f

s

('(x; t)) < 1g

In the following, Q

ml

= Qn

�

Q

s

will denote the non-solid part of Q. More-

over, for eah time t 2 [0; T ℄, we de�ne 


s

(t) = fx 2 
 ; f

s

('(x; t)) = 1g,




ml

(t) = 
n

�




s

(t) and S

ml

= f(x; t) 2

�

Q
; x 2 �


ml

(t)g.

We must emphasize that this model is the free boundary problem sine

that Q

l

, Q

m

and Q

s

are a priori unknown.

Now, we an now summarize the formulation of the problem to be ana-
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lyzed as:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�'

�t

� ��' = a' + b'

2

� '

3

+ � in Q;

��

�t

��� + v:r� =

`

2

�f

s

�'

(')

�'

�t

in Q;

�v

�t

� ��v + (v:r)v +rp + k(f

s

('))v =

!

�

� in Q

ml

;

div v = 0 in Q

ml

;

v = 0 in

0

Q

s

;

(2.1)

subjet to the following boundary onditions

8

>

>

>

<

>

>

>

:

�'

�n

= 0 on S;

� = 0 on S;

v = 0 on S

ml

:

(2.2)

and also to the followin initial onditions

8

>

<

>

:

'(x; 0) = '

0

(x) in 
;

�(x; 0) = �

0

(x) in 
;

v(x; 0) = v

0

(x) in 


ml

(0);

(2.3)

where '

0

, �

0

and v

0

are suitably given funtions suh that for ompatibility

v

0

is identially zero outside 


ml

(0).

3 Preliminaries and Main Result

3.1 Notations, funtional spaes and auxiliary results

Let 
 � IR

2

be an open and bounded domain with a suÆiently smooth

boundary �
 and Q = 
� [0; T ℄ the spae-time ylinder with lateral surfae

S = �
 � [0; T ℄. For t 2 [0; T ℄, we denote Q

t

= 
� [0; t℄.

We denote by W

p

q

(
) the usual Sobolev spae and W

2;1

q

(Q) the Banah

spae onsisting of funtions u(x; t) in L

q

(Q) whose generalized derivatives

D

x

u, D

2

x

u, u

t

are L

q

�integrable (q � 1). The norm in W

2;1

q

(Q) is de�ned by

kuk

(2)

q;Q

= kuk

q;Q

+ kD

x

uk

q;Q

+





D

2

x

u







q;Q

+ ku

t

k

q;Q

(3.4)
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where D

s

x

denotes any partial derivatives with respet to variables x

1

; x

2

; :::; x

n

of order s=1,2 and k:k

q

the usual norm in the spae L

q

(Q).

Moreover, W

1;0

2

(Q) is a Hilbert spae for the salar produt

(u; v)

W

1;0

2

(Q)

=

Z

Q

uv +ru:rv dxdt

and

0

W

1;1

2

(Q) is a Hilbert spae for the salar produt

(u; v)

W

1;1

2

(Q)

=

Z

Q

uv +ru:rv + u

t

v

t

dxdt

whose funtions vanish on S in the sense of traes.

We also denote by V

2

(Q) the Banah spae onsisting of funtion u(x; t)

in W

1;0

2

(Q) having the following �nite norm

juj

V

2

(Q)

= ess sup

0�t�T

ku(x; t)k

2;


+ kru(x; t)k

2;Q

: (3.5)

0

V

2

(Q) is Banah spae onsisting of those elements of V

2

(Q) that vanish

on S in the sense of traes.

We now de�ne spaes onsisting of funtions that are ontinuous in the

sense of H�older. We say that a funtion u(x,t) de�ned in Q is H�older on-

tinuous in x and t, respetively with exponents � and � 2 (0; 1), if following

quantities, alled H�older onstants, are �nite:

hui

(�)

x

= sup

(x

1

;t);(x

2

;t)2 Q

x

1

6=x

2

ju(x

1

; t)� u(x

2

; t)j

jx

1

� x

2

j

�

hui

(�)

t

= sup

(x;t

1

);(x;t

2

)2 Q

t

1

6=t

2

ju(x; t

1

)� u(x; t

2

)j

jt

1

� t

2

j

�

Then, we de�ne the H�older spae H

�;�=2

(Q), with 0 � � < 1, (see La-

dyzenskaja et al [16℄), as the Banah spae of funtions u(x,t) that are on-

tinuous in Q, having �nite norm given by:

juj

(�)

Q

= max

Q

juj+ hD

x

ui

(�)

x

+ hui

(�=2)

t

: (3.6)
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For the funtional spaes assoiated to the veloity �eld, we denote D =

fu 2 C

1

(
)

2

: supp u � 
g and V = fu 2 D : div u = 0g. The losure of

V in L

2

(
)

2

is denoted by H and the losure of V in

0

W

1

2

(
)

2

is denoted by

V. These funtional spaes appear in the mathematial theory of the Navier-

Stokes equations; their properties an be found for instane in Temam [23℄.

The following two lemmas are partiular ase of Lemma 3.3 in Ladyzen-

skaja et al ([16℄; p. 80). They are stated here for ease of referene.

The �rst lemma is immediate onsequene of Lemma 3.3 in [16℄, p. 80,

by taking there l = 1, n = 2 and r = s = 0.

Lemma 3.1 Let 
 and Q as in the beginning of this setion. Then for any

funtion u 2 W

2;1

q

(Q) we also have u 2 L

p

(Q), and it is valid the following

inequality

kuk

p;Q

� C kuk

(2)

q;Q

; (3.7)

provided that

p =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1 if

1

q

�

1

2

< 0

8p � 1 if

1

q

�

1

2

= 0

 

1

q

�

1

2

!

�1

if

1

q

�

1

2

> 0

The onstant C > 0 depends only on T, 
, p and q.

The seond lemma is immediately obtained from Lemma 3.3 in [16℄, p.

80, by taking there l = 1, n = 2, r = s = 0 and q = 3.

Lemma 3.2 Let 
 and Q be as in the beginning of this setion. Then for

any funtion u 2 W

2;1

3

(Q) we also have u 2 H

2=3;1=3

(Q) satis�ng the estimate

juj

(2=3)

Q

� C kuk

(2)

3;Q

(3.8)

The onstant C > 0 depends only on T and 
.

In the following we will onsider two auxiliary problems, respetively

related to the phase �eld and the veloity equations.
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The �rst one is the following:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�'

�t

� ��' = a' + b'

2

� '

3

+ g(x; t) in Q;

�'

��

= 0 on S;

'(x; 0) = '

0

(x) in 
:

(3.9)

where � in a positive onstant.

Problem (3.9) was treated by Ho�man and Jaing [13℄ when the initial

date satis�es '

0

2 W

2

1

(
). Sine we will need an existene result for '

0

2

W

2�2=q

q

(
) \ W

3=2�Æ

2

(
), with Æ 2 (0; 1), we restate the result of [13℄. We

remark that exatly the same proof presented in [13℄ holds in this situation

(see also Vaz [24℄ for details, where some other spei� results onerning

(3.9) are proved.)

Proposition 3.1 Let 
 and Q be as in the beginning of this setion. Assume

that a(x; t) and b(x; t) in L

1

(Q), g 2 L

q

(Q), '

0

2 W

2�2=q

q

(
) \W

3=2�Æ

2

(
),

where q � 2, Æ 2 (0; 1) and

�'

0

��

= 0 in �
. Then there exists an unique

solution ' 2 W

2;1

q

(Q) of problem (3.9), whih satis�es the estimate

k'k

(2)

q;Q

� C

�

k'

0

k

W

2�2=q

q

(
)

+ kgk

q;Q

�

; (3.10)

where C depends only on T, �, 
, ka(x; t)k

1;Q

and on kb(x; t)k

1;Q

.

The seond auxiliary problem is the following:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�v

�t

� ��v + (v:r)v +rp + k(x; t)v = f(x; t) in Q;

div v = 0 in Q;

v = 0 on S;

v(x; 0) = v

0

(x) in 
:

(3.11)

Proposition 3.2 Let 
 and Q be as in the beginning of this setion. Assume

that k(x; t) 2 C

0

(Q), k(x; t) � 0, f(x; t) 2 L

2

(Q)

2

and v

0

(x) 2 H. Then

there exists an unique solution v(x; t) 2 L

2

(0; T ; V)\L

1

(0; T ; H) of problem

(3.11) whih satis�es the estimate

kvk

L

1

(0;T;H)

+ kvk

L

2

(0;T;V )

� C

�

kv

0

k

H

+ kfk

2;Q

�

(3.12)
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Moreover, by interpolation results v 2 L

4

(Q)

2

and

kvk

4;Q

� C

�

kv

0

k

H

+ kfk

2;Q

�

; (3.13)

where C depends only on T and on 
.

The proof of Propositon 3.2 is done by using the same arguments used in

the lassial theory of weak solutions of the Navier-Stokes equations. As in

this lassial situation, the fat that the domain is two dimensional is impor-

tant to obtain uniqueness of solutions (see Temam [23℄, p.282, for instane.)

3.2 Tehnial Hypotheses and Generalized Solution

All along this work we will be using the following tehnial hypotheses:

(H

1

) 
 � IR

2

is an open and bounded domain with suÆiently smooth

boundary �
; T is a �nite positive number; Q = 
� (0; T ).

(H

2

) a(x,t), b(x,t) are given funtions in L

1

(Q);

f

s

2 C

1;1

b

(IR), 0 � f

s

(z) � 1 8z 2 IR;

k(y) 2 C

0

(�1; 1), k(0) = 0, k(y) = 0 in IR

�

, k(y) is nonnegative and

lim

y!1

k(y) = +1.

(H

3

) v

0

2 H;

�

0

2 W

1

2

(
), �

0

= 0 on �
;

'

0

2 W

4=3

3

(
) \ W

3=2+Æ

2

(
), for some Æ 2 (0; 1),

�'

0

��

= 0 on �
.

In the following we will explain in what sense we will understand a solution

of (2.1), (2.2), (2.3):

De�nition 3.1 By a generalized solution of the problem (2.1), (2.2),

(2.3), we mean a triple of funtions ('; �; v) suh that ' 2 V

2

(Q), � 2

0

V

2

(Q)

and v 2 L

2

(0; T ;V ) \ L

1

(0; T ;H). Moreover, being

Q

s

= f(x; t) 2 Q ; f

s

('(x; t)) = 1g,




s

(t) = fx 2 
 ; f

s

('(x; t)) = 1g,

Q

ml

= Qn

�

Q

s

and 


ml

(0) = 
n

�




s

(0)
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we have v = 0 a.e in

0

Q

s

, and ', � and v satisfy the following the integral

relations:

�

Z

Q

'�

t

dxdt + �

Z

Q

r'r� dxdt

=

Z

Q

�

a + b'� '

2

�

'�dxdt +

Z

Q

��dxdt +

Z




'

0

(x)�(x; 0)dx

(3.14)

�

Z

Q

� �

t

dxdt +

Z

Q

r�r�dxdt +

Z

Q

v:r� �dxdt

=

Z

Q

`

2

�f

s

�'

(')'

t

� dxdt +

Z




�

0

(x)�(x; 0)dx

(3.15)

�

Z

Q

ml

v �

t

dxdt + �

Z

Q

ml

rvr� dxdt +

Z

Q

ml

(v:r)v � dxdt

+

Z

Q

ml

k(f

s

('))v � dxdt =

Z

Q

ml

!

�

�� dxdt +

Z




ml

(0)

v

0

(x)�(x; 0)dx

(3.16)

for all � in W

1;1

2

(Q) suh that �(x; T ) = 0; for all � in

0

W

1;1

2

(Q) suh that

�(x; T ) = 0, and for all � 2 C([0; T ℄;W

1

2

(


ml

(t))) suh that �(:; T ) = 0,

div �(:; t) = 0 8t 2 [0; T ℄ and supp �(x; t) � Q

ml

[ 


ml

(0).

Note that due to our tehnial hypotheses and hoie of funtional spaes,

all of the integrals in De�nition 3.1 are well de�ned.

3.3 Existene of Generalized Solutions

The purpose of this paper is to prove the following result

Theorem 3.1 Under the hypotheses (H

1

), (H

2

), (H

3

), there is a general-

ized solution of the problem (2.1), (2.2), (2.3) in the sense of the De�nition

3.1. Moreover, when '

0

2 W

2�2=q

q

(
) \W

3=2+Æ

2

(
) for some Æ 2 (0,1) and

q � 3, and �

0

2 W

2�2=p

p

(
) with 3 � p < 4, then suh solution satis�es

' 2 W

2;1

q

(Q)\L

1

(Q), � 2 W

2;1

p

(Q)\L

1

(Q), v 2 L

2

(0; T ;V )\L

1

(0; T ;H).

The proof of the previous result is long and will be done in the following

setions. Here we want just to sketh it: existene of a solution of prob-

lem (2.1), (2.2), (2.3) will proved by using a regularization tehnique already

used by Blan et al in [1℄. The purpose this regularization is to deal with the

Navier-Stokes equations in whole domain instead of unknown regions. Thus,

the problem will be adequately regularized with the help of a positive param-

eter, and the existene of solutions for this regularized problem will obtained

12



by using the Leray-Shauder degree theory (see Theorem 4.1). Then, as this

parameter approahes zero, a sequene of regularized solutions is obtained.

With the help of suitable estimates and ompatness arguments, a limit of

a subsequene is then proved to exist and to be a solution of problem (2.1),

(2.2), (2.3).

We also remark that the phase �eld equation admits lassi solution when

'

0

is suÆiently smooth. In fat, its right hand side term satis�es a'+b'

2

�

'

3

+ � 2 L

1

(Q), and, in partiular when '

0

2 W

2�2=q

q

(
)\W

3=2+Æ

2

(
), with

q � 2, we obtain a strong solution with the equation satis�ed in the a.e-

sense. The boundary and initial onditions are also satis�ed in the pontual

sense beause ' 2 C

1

(Q). When �

0

2 W

2�2=p

p

(
), with 3 � p < 4, the same

sort of arguments applies and the solution is strong with � 2 C

0

(Q); the

temperature equation and the boundary and initial onditions are valid in

pontual sense. Unfortunately, we are not able to improve the regularity of

the orresponding solution even if the initial veloity is very regular. Thus,

we only generalized solutions are obtained for the veloity equation.

4 Regularized Problem

In this setion we regularize problem (2.1), (2.2), (2.3) by hanging the term

k(f

s

('))v in the veloity equation. We will obtain a result of the existene,

uniqueness and regularity for this assoiated regularized problem:

Theorem 4.1 Fix " 2 (0; 1℄. Under the hypotheses (H

1

), (H

2

), (H

3

), there

exists an unique solution ('

"

; v

"

; �

"

) 2 W

2;1

3

(Q)�(L

2

(0; T ;V )\L

1

(0; T ;H))�

W

2;1

2

(Q) � L

6

(Q)� L

2

(0; T ;H)� L

3

(Q) of the following problem:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�'

"

�t

� ��'

"

= a'

"

+ b'

2

"

� '

3

"

+ �

"

�v

"

�t

� ��v

"

+ (v

"

:r)v

"

+rp

"

+ k(f

s

('

"

) � ")v

"

=

�!

� �

"

div v

"

= 0

��

"

�t

� ��

"

+ v

"

:r�

"

=

`

2

�f

s

�'

('

"

)

�'

"

�t

in Q; (4.17)
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8

>

>

>

>

>

<

>

>

>

>

>

:

�'

"

�n

= 0

�

"

= 0

v

"

= 0

on S; (4.18)

8

>

>

>

<

>

>

>

:

'

"

(x; 0) = '

0

(x)

�

"

(x; 0) = �

0

(x)

v

"

(x; 0) = v

0

(x)

in 
: (4.19)

Moreover, as " varies in [0; 1℄, suh solutions ('

"

; v

"

; �

"

) are uniformly bounded

with respet to " in W

2;1

3

(Q)� (L

2

(0; T ;V ) \ L

1

(0; T ;H))�W

2;1

2

(Q).

The proof of the previous result will be done at the end of this setion,

after some preparation and auxiliary lemmas. The solvability of problem

(4.17), (4.18), (4.19) will be proved by applying the Leray-Shauder degree

theory (see Deimling [9℄) as in Morosanu and Motreanu [18℄. For this, we will

reformulate the problem as T (1; '; v; �) = ('; v; �), where T (�; �) is a ompat

homotopy depending on a parameter � 2 [0; 1℄ to be desribed shortly.

Basi tools in our argument are L

p

�theory of paraboli equations and

Theorems 3.1 and 3.2 in Setion 3. Moreover, we emphasize that the regu-

larity of solution of Navier-Stokes and phase �eld equations plays an essential

role in this proof. Suh onnetion is stritly related with a seletion of the

order of the equations in quasilinear problem, mainly in deriving a priori

estimates for possible solutions. Moreover, sine that the phase �eld has

smooth solution (lassial solution), the regularity of Navier-Stokes equa-

tions beomes very important but this regularity is governed by the ad-

ditional Carman-Koseny type term k(f

s

('))v that one not permits one to

obtain uniform estimate in some di�erent as L

2

(0; T ; V) \  L

1

(0; T ;H).

For simpliity of notation, we omit the subsript " in the rest of this

setion.

De�nition 4.1 De�ne the homotopy T : [0; 1℄ � L

6

(Q) � L

2

(0; T ;H) �

L

3

(Q) ! L

6

(Q)� L

2

(0; T ;H)� L

3

(Q) as

T (�; �; u; !) = ('; v; �) (4.20)
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where ('; v; �) is the unique solution of the following quasilinear problem:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�'

�t

� ��' = a' + b'

2

� '

3

+ �!

�v

�t

� ��v + (v:r)v +rp + k(f

s

(')� ")v = �

�!

� !

div v = 0 in Q;

��

�t

��� + v:r� = �

`

2

�f

s

�'

(')

�'

�t

(4.21)

8

>

>

>

<

>

>

>

:

�'

�n

= 0

� = 0

v = 0

on S; (4.22)

8

>

<

>

:

'(x; 0) = '

0

(x)

�(x; 0) = �

0

(x)

v(x; 0) = v

0

(x)

in 
; (4.23)

We observe that the homotopy T (�; �) is well de�ned. In fat, for �xed

� 2 [0; 1℄, by using Proposition 3.1 and Lemma 3.1, we onlude that �rst

equation of problem (4.21), (4.22), (4.23) has a unique solution ' 2 W

2;1

3

(Q)\

L

1

(Q). One ' is known, Proposition 3.2 implies that the modi�ed Navier-

Stokes equations has an unique solution v 2 L

2

(0; T ;V ) \ L

1

(0; T ;H). By

usual interpolation, it results that v 2 L

4

(Q)

2

. Now that ' and v are known,

the L

p

�theory of paraboli equations , that also is valid for Neumann bound-

ary ondition (see Ladyzenskaja et al [16℄ ; p.351), Lemma 3.1 and the fats

that

�'

�t

2 L

3

(Q), v 2 L

4

(Q)

2

, and f

s

2 C

1;1

b

(IR) imply that there is a unique

solution � 2 W

2;1

3

(Q) \ L

1

(Q) for the third equation of (4.21).

Lemma 4.1 Under assumptions (H

1

), (H

2

), (H

3

), the mapping T : [0; 1℄�

L

6

(Q) � L

2

(0; T ;H) � L

3

(Q) ! L

6

(Q) � L

2

(0; T ;H) � L

3

(Q) is a ompat

mapping, i.e, it is ontinuous and maps bounded sets into relatively ompat

sets.

Proof: Let us hek the ontinuity of T (�; :). For this, let �

n

! � in

[0,1℄ and (�

n

; u

n

; !

n

) ! (�; u; !) in L

6

(Q) � L

2

(0; T ; H) � L

3

(Q). Denoting
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T (�

n

; �

n

; u

n

; !

n

) = ('

n

; v

n

; �

n

), from (4.20), we write

�'

n

�t

� ��'

n

= a'

n

+ b'

2

n

� '

3

n

+ �

n

!

n

; (4.24)

�v

n

�t

� ��v

n

+ (v

n

:r)v

n

+rp

n

+ k(f

s

('

n

)� ")v

n

= �

n

!

�

!

n

; (4.25)

div v

n

= 0; (4.26)

��

n

�t

� ��

n

+ v

n

:r�

n

= �

n

`

2

�f

s

�'

('

n

)

�'

n

�t

(4.27)

in Q;

�'

n

��

= 0

v

n

= 0

�

n

= 0;

(4.28)

on S, and

'

n

(x; 0) = '

0

(x);

v

n

(x; 0) = v

0

(x);

�

n

(x; 0) = �

0

(x)

(4.29)

in 
.

By applying Proposition 3.1 with !

n

2 L

2

(Q), we obtain the following

estimate for the phase-�eld equation (4.24)

k'

n

k

(2)

2;Q

� C

�

j�

n

j k!

n

k

2;Q

+ k'

0

k

W

1

2

(
)

�

(4.30)

Now, by applying Proposition 3.2, we obtain the following estimates for

the veloity equation (4.25)

kv

n

k

L

1

(0;T;H)

+ kv

n

k

L

2

(0;T;V )

� C

�

kv

0

k

H

+ j�

n

j k!

n

k

2;Q

�

; (4.31)

whih by usual interpolation implies

kv

n

k

4;Q

� C

�

kv

0

k

H

+ j�

n

j k!

n

k

2;Q

�

(4.32)

For (4.27), the L

p

-theory of the paraboli equation (see Ladyzenskaja [16℄;

p.351) with the fats that

�'

n

�t

2 L

2

(Q),

�f

s

�'

('

n

) 2 L

1

(Q), v

n

2 L

4

(Q)

2

and �

0

2 W

1

2

(
) provides the estimate

k�

n

k

(2)

2;Q

� C

0

�

kv

n

k

4;Q

k�

0

k

W

1

2

(
)

+ j�

n

j











�'

n

�t











2;Q

+ k�

0

k

W

1

2

(
)

1

A

(4.33)
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Sine the sequenes (!

n

) and (�

n

) are respetively bounded in L

2

(Q) and

[0,1℄, from (4.30) and (4.31) we obtain for all n that

k'

n

k

(2)

2;Q

� C and kv

n

k

L

1

(0;T;H)

+ kv

n

k

L

2

(0;T;V )

� C (4.34)

Consequently, from (4.33) we have for all n

k�

n

k

(2)

2;Q

� C (4.35)

Estimates (4.34) and (4.35) show that the norm of the sequene

fT (�

n

; �

n

; u

n

; !

n

)g = f('

n

; v

n

; �

n

)g is uniformly bounded with respet to

n in the funtional spae W

2;1

2

(Q)� (L

2

(0; T ;V ) \ L

1

(0; T ;H))�W

2;1

2

(Q).

Moreover, we observe that for �xed " 2 (0; 1℄, from the properties of

k(y) (see the onditions stated in (H

2

)), there is a �nite positive onstant C

depending only on " suh that supfk(y � ")g � C. By using this and our

previous estimates as in Lions [17℄, p. 71, we onlude that for all n

jj(v

n

)

t

jj

L

2

(0;T ;V

0

)

� C("): (4.36)

Thus, the previous estimates, with the help of Aubin-Lions Lemma (see

Temam [23℄ or Lions [17℄), allow us to selet a subsequene, whih we denote

fT (�

k

; �

k

; u

k

; !

k

)g = f('

k

; v

k

; �

k

)g suh that

'

k

* ' in W

2;1

2

(Q) (4.37)

v

k

* v in L

2

(0; T ;V ) (4.38)

v

k

�

* v in L

1

(0; T ;H) (4.39)

�

k

* � in W

2;1

2

(Q) (4.40)

(v

k

)

t

* v

t

in L

2

(0; T ;V

0

) (4.41)

'

k

! ' in L

6

(Q) (4.42)

v

k

! v in L

2

(0; T ;H) (4.43)

�

k

! � in L

3

(Q) (4.44)

Now, let us verify that T (�; �; u; !) = ('; v; �), in other words, that

('; v; �) is solution of (4.21), (4.22),(4.23). For this, we are going to pass to

the limit with respet to the above subsequene in equations (4.24)-(4.27)

together with the onditions (4.28)-(4.29).

Let us prove that the equations are satis�ed in the sense distribution. For

this, �x in the sequel g 2 C

1



(Q), and let us desribe the proess of taking
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the limit only for those terms of the equations that are neither trivial nor

standard.

We observe that by using (4.42) and �

k

! �, we obtain

Z

Q

�

k

(a'

k

+ b'

2

k

� '

3

k

)g dxdt!

Z

Q

�(a'+ b'

2

� '

3

)g dxdt 8 g (4.45)

Thus, passing to the limit in phase �eld equation (4.24), using the on-

vergene (4.37), (4.42) and (4.45), we obtain the �rst equation in (4.21).

To verify the onvergene

Z

Q

k(f

s

('

k

) � ")v

k

g dxdt!

Z

Q

k(f

s

(')� ")v g dxdt (4.46)

we use (4.43), the fat that for �xed " 2 (0; 1℄, k(f

s

(�) � " is bounded,

and following argument. Consider h

k

= jk(f

s

('

k

) � ") � k(f

s

(') � ")j

2

.

Sine k(f

s

(�)� ") is ontinuous and (4.42) is valid, passing to a subsequene

if neessary, we know that h

k

! 0 almost everywhere in Q. Moreover,

jh

k

j � C kf

s

(')k

2

1

a.e and therefore h

k

! 0 in L

1

(Q) by Lebesgue domi-

nated onvergene theorem. Thus, k(f

s

('

k

) � ") ! k(f

s

(') � ") in L

2

(Q),

what together with (4.38) implies (4.46).

By passing to the limit in veloity equation (4.25), using the onvergene

(4.38), (4.43) and (4.46) we obtain the seond equation in (4.21).

Now, we use (4.37), (4.42), �

k

! � and arguments similar to the ones

previously with

�f

s

�'

('

k

) in plae of f

s

to obtain

Z

Q

�

k

�f

s

�'

('

k

)

�'

k

�t

g dxdt!

Z

Q

�

�f

s

�'

(')

�'

�t

g dxdt (4.47)

By passing to the limit in temperature equation (4.27), using the onver-

gene (4.40), (4.44) and (4.47), we obtain the third equation in (4.21)

The required boundary onditions are inluded in the de�nitions of the

funtional spaes where ('; v; �) is in. Also, with the estimates we have

obtained, it is standard to prove that ', v and � satisfy the required initial

onditions. Hene, ('; v; �) is solution of (4.24)-(4.29).

Moreover, we observe that if we start with any given subsequene of

fT (�

n

; '

n

; v

n

; �

n

)g, exatly the above arguments an be applied to onlude

that this subsequene admits another subsequene onverging to a solution

of (4.24)-(4.29). Sine (�; u; !) is also �xed and the solution of this last
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problem is unique, we onlude that fT (�

n

; '

n

; v

n

; �

n

)g is a sequene with

the property that any one of its subquenes has by its turn a subsequene

onverging to a limit that is independent of the hosen subsequene. Hene,

fT (�

n

; '

n

; v

n

; �

n

)g onverges to this limit, and the ontinuity of T is proved.

The same sort of arguments prove that mapping T is a ompat mapping.

In fat, if f(�

n

; u

n

; !

n

)g is any bounded sequene in L

6

(Q) � (L

2

(0; T ;V ) \

L

1

(0; T ;H)) � L

3

(Q), the above arguments an be applied to obtain ex-

atly the same sort of estimates for T (�

n

; �

n

; u

n

; !

n

). These imply that

f('

n

; v

n

; �

n

)g is relatively ompat in L

6

(Q) � L

2

(0; T ;H) � L

3

(Q), and

thus there exists a subsequene of T (�

n

; �

n

; u

n

; !

n

) onverging in L

6

(Q) �

L

2

(0; T ;H)� L

3

(Q). Therefore, the ompatness is proved.

The next lemma give us an uniform estimate for any possible �x point of

T (�; �).

Lemma 4.2 Under assumptions (H

1

), (H

2

), (H

3

), there exists a positive

number �, depending only on the given data of the problem and in partiular

independent of � 2 [0; 1℄, with the property any �x point of T (�; :) is in the

interior of the ball of radius � in L

6

(Q)� L

2

(0; T ;H)� L

3

(Q). That is,

T (�; '; v; �) = ('; v; �) ) k('; v; �)k < �; (4.48)

where k�k denotes the norm in L

6

(Q)� L

2

(0; T ;H)� L

3

(Q).

Proof: By using (4.20), the ondition T (�; '; v; �) = ('; v; �) is equivalent

to

�'

�t

� ��' = a' + b'

2

� '

3

+ �� (4.49)

�v

�t

� ��v + (v:r)v +rp + k(f

s

(')� ")v = �

!

�

� (4.50)

div v = 0 in Q; (4.51)

��

�t

��� + v:r� = �

`

2

�f

s

�'

(')

�'

�t

(4.52)

�'

��

= 0

� = 0

v = 0

on S; (4.53)
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'(x; 0) = '

0

(x)

�(x; 0) = �

0

(x)

v(x; 0) = v

0

(x)

in 
: (4.54)

To obtain estimates for ('; v; �), we start by multiplying the �rst equation

(4.49) by '. After integrating of the result over Q

t

( t 2 (0; T ℄), using Fubini's

theorem, Green's formula and Young's inequality, we get

Z




'

2

dx +

Z

t

0

Z




jr'j

2

dxdt +

�

2

Z

t

0

Z




'

4

dxdt

� C

 

k'

0

k

2

2;


+

Z

T

0

Z




j�j

2

dxdt +

Z

T

0

Z




j'j

2

dxdt

!

(4.55)

where C depends on � and max

(x;t)2Q

�

a(x; t) + b(x; t)s�

1

2

s

2

�

.

By applying Gronwall's inequality in (4.55), we get

Z

T

0

Z




j'j

2

dxdt � C

 

k'

0

k

2

2;


+

Z

T

0

Z




j�j

2

dxdt

!

: (4.56)

Thus, by ombining (4.55) and (4.56), we onlude

Z

T

0

Z




jr'j

2

dxdt � C

 

k'

0

k

2

2;


+

Z

T

0

Z




j�k

2

dxdt

!

(4.57)

�

2

Z

T

0

Z




'

4

dxdt � C

 

k'

0

k

2

2;


+

Z

T

0

Z




j�j

2

dxdt

!

(4.58)

Now, we multiply equation (4.52) by � and integrate over Q

t

. Then we

use the fat that

�f

s

�'

2 L

1

(IR), (4.51), Green's formula and also Poinar�e's

and Young's inequalities to obtain

Z




�

2

dx +

Z

t

0

Z




jr�j

2

dxdt � C

 

k�

0

k

2

2;


+

Z

T

0

Z




j'

t

j

2

dxdt

!

; (4.59)

where C depend on 
, ` and











�f

s

�'











1

:

20



By multiplying the �rst equation (4.49) by

�'

�t

, integrating over Q

t

, using

Green's formula and Young's inequality, we obtain

Z

t

0

Z




 

�'

�t

!

2

dxdt +

Z

t

0

Z




jr'j

2

dxdt

� C

 

kr'

0

k

2

2;


+

Z

T

0

Z




j'j

2

dxdt +

Z

T

0

Z




j�j

2

dxdt

!

;

(4.60)

where C depends on � and max

(x;t)2Q

�

a(x; t) + b(x; t)s� s

2

�

.

By using (4.56) in (4.60) and applying the resulting estimate in (4.59),

we get

Z




�

2

dx +

Z

t

0

Z




jr�j

2

dxdt � C

 

k�

0

k

2

2;


+ k'

0

k

2

W

1

2

(
)

+

Z

T

0

Z




j�j

2

dxdt

!

By applying Gronwall inequality in (4.61), we obtain

k�k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

; (4.61)

and, onsequently, kr�k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

.

Moreover, by interpolation results (see Ladyzenskaja [16℄ p. 74), we have

k�k

4;Q

�M

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

: (4.62)

By using (4.61) in (4.56), (4.57) and (4.58) , we onlude that

k'k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

; (4.63)

kr'k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

; (4.64)

� k'k

4;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

: (4.65)

By using (4.61) and (4.63) in (4.60), we have











�'

�t











2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

: (4.66)
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Now, by multiplying the �rst equation (4.49) equation by ��' integrat-

ing over Q

t

, using Green formula and Young inequalities, we obtain

Z




jr'j

2

dx +

Z

t

0

Z




j�'j

2

dxdt + 3�

Z

t

0

Z




'

2

jr'j

2

dxdt

� C

 

kr'

0

k

2

2;


+

Z

T

0

Z




j�j

2

dxdt +

Z

T

0

Z




j'j

2

dxdt + �

Z

T

0

Z




j'j

4

dxdt

!

;

(4.67)

where C depend on 
, �, kak

1;Q

, kbk

1;Q

and











�f

s

�'











1

.

By using (4.61), (4.63) and (4.65) in (4.67), we obtain

k�'k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

(4.68)

Combining estimates (4.63), (4.64), (4.66) and (4.68), using the imbed-

ding om Lemma 3.1, we have

k'k

p;Q

� C k'k

(2)

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

(p � 6): (4.69)

Now, by multiplying the seond equation (4.50) by v, integrating over Q

t

,

using Green's formula, and Ponar�e's and Young's inequalities, we get

1

2

Z




v

2

dx +

�

2

Z

t

0

Z




jrvj

2

dxdt +

Z

t

0

Z




k (f

s

(')� ") v

2

dxdt

� C

 

kv

0

k

H

+

Z

T

0

Z




j�j

2

dxdt

!

:

(4.70)

Combining (4.61) and (4.70), using that k(f

s

(') � �) � 0, we onlude

that

kvk

L

1

(0;T ;H)

+ kvk

L

2

(0;T ;V)

� C

�

kv

0

k

H

+ k�

0

k

2;


+ k'

0

k

W

2

1

(
)

�

:

Finally, by the interpolation result given in Theorem (3.2), we have

kvk

4;Q

� C

�

kv

0

k

H

+ k�

0

k

2;


+ k'

0

k

W

2

1

(
)

�

(4.71)
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The next lemma tell us that there is an unique �x point in the speial

ase � = 0.

Lemma 4.3 Under assumptions (H

1

), (H

2

), (H

3

), there exists an unique

solution of the problem T (0; '; v; �) = ('; v; �) (T de�ned in (4.20.))

Proof: T (0; '; v; �) = ('; v; �) is equivalent to the following nonlinear sys-

tem:

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

�'

�t

� ��' = a' + b'

2

� '

3

�v

�t

� ��v + (v:r)v +rp + k(f

s

(')� ")v = 0

div v = 0 in Q;

��

�t

� �� + v:r� = 0

8

>

>

>

<

>

>

>

:

�'

��

= 0

� = 0

v = 0

on S;

8

>

<

>

:

'(x; 0) = '

0

(x)

�(x; 0) = �

0

(x)

v(x; 0) = v

0

(x)

in 
;

For these equations, Proposition 3.1 ensures the existene and uniqueness of

'; then Proposition 3.2 gives the existene and uniqueness v. The L

p

�theory

of the linear paraboli equations ensures then the existene and uniqueness

of �.

Now we are ready for the

Proof of Theorem 4.1: Aording to Lemma 4.2, we know the existene

of the a number � satisfying property (4.48). Let us onsider the open ball

B

�

=

n

('; v; �) 2 L

6

(Q)� L

2

(0; T ;H)� L

3

(Q) ; k('; v; �)k < �

o

where k�k is the norm in the spae L

6

(Q)� L

2

(0; T ;H)� L

3

(Q).
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Lemma 4.1 ensures that the mapping T : [0; 1℄ � L

6

(Q) � L

2

(0; T ; H) �

L

3

(Q) ! L

6

(Q) � L

2

(0; T ; H) � L

3

(Q) is a homotopy of ompat transfor-

mations on the losed ball B

�

and Lemma 4.2 implies that

T (�; '; v; �) 6= ('; v; �) 8('; v; �) 2 �B

�

; 8� 2 [0; 1℄

The foregoing properties allow us onsider the Leray-Shauder degree

D(Id � T (�;

:

); B

�

; 0); 8� 2 [0; 1℄ (see Deimling [9℄). The homotopy invari-

ane of Leray-Shauder degree shows that the equality below holds

D(Id� T (0;

:

); B

�

; 0) = D(Id� T (1;

:

); B

�

; 0) (4.72)

Moreover, the Lemma 4.3 ensures that the problem T (0; '; v; �) = ('; v; �)

has a unique solution in L

6

(Q)� L

2

(0; T ; H)� L

3

(Q). Hene we an hoose

a suÆiently large � > 0 suh that the ball B

�

ontains this solution, it

turns out that D(Id� T (0;

:

); B

�

; 0) = 1. Then relation (4.72) ensures that

the equation T (1; '; v; �) � ('; v; �) = 0 has a solution ('; v; �) 2 B

�

�

L

6

(Q)� L

2

(0; T ; H)� L

3

(Q). By (4.20) with � = 1, this is just a solution of

the problem (4.17)-(4.18)-(4.19).

The uniqueness and regularity of problem (4.17), (4.18), (4.19) are on-

sequene of the appliation of the Propositions 3.1 and 3.2 and L

p

-regularity

theory for linear paraboli equations. To prove uniqueness let '

i

, v

i

and �

i

with i = 1, 2 be two solutions of problem (4.17), (4.18), (4.19), with orre-

sponding pressures p

i

(for simpliity of exposition, we omit the subsript ").

We �rst observe that by using the previously obtained estimates and argu-

ments similar to the ones used to prove that T

�

is well de�ned (De�nition

4.1), we onlude that '

i

2 W

2;1

3

(Q)\L

1

(Q), v

i

2 L

2

(0; T ;V )\L

1

(0; T ;H)

and � 2 W

2;1

2

(Q) \ L

p

(Q) (for any �nite p � 1).

By denoting ~' = '

1

� '

2

, ~v = v

1

� v

2

,

~

� = �

1

� �

2

and ~p = p

1

� p

2

, these

funtions satisfy the following equations and onditions:

� ~'

�t

��� ~' = [a(x; t)+b(x; t)('

1

+'

2

)�('

2

1

+'

1

'

2

+'

2

2

)℄ ~'+

~

�;

(4.73)

�~v

�t

� ��~v + (v

1

:r)~v +r~p + k(f

s

('

1

)� ") ~v

=

!

�

~

� � (~v:r)v

2

+ fk(f

s

('

1

)� ")� k(f

s

('

2

)� ")g~v; (4.74)

div ~v = 0;
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�

~

�

�t

��

~

� + v

1

:r

~

� =

`

2

�f

s

�'

('

1

)

� ~'

�t

�(~v:r)�

2

+

`

2

 

�f

s

�'

('

1

) �

�f

s

�'

('

2

)

!

�'

2

�t

; (4.75)

� ~'

��

= 0;

~

� = 0;

~v = 0;

on S; (4.76)

~'(x; 0) =

~

�(x; 0) = 0;

~v(x; 0) = 0:

in 
: (4.77)

By multiplying equation (4.73) by ~' and integrating on 
, after usual

integration by parts, using the fat that a(�), b(�), '

1

, '

2

2 L

1

(Q) and

Holder's inequality, we obtain

d

dt

jj ~'(t)jj

2

2;


+ 2�jjr ~'(t)jj

2

2;


� C

1

[ jj ~'(t)jj

2

2;


+ jj

~

�(t)jj

2

2;


℄: (4.78)

Now, we multiply (4.73) by

� ~'

�t

and integrate on 
. Proeeding similarly

as before, we an obtain

jj

� ~'

�t

(t)jj

2

2;


+

�

2

d

dt

jjr ~'(t)jj

2

2;


� C

2

[ jj ~'(t)jj

2

2;


+ jj

~

�(t)jj

2

2;


℄: (4.79)

Next, we multiply equation (4.74) by ~v and proeed as usual with the

help of the fats that div v

1

= 0, k(f

s

('

1

)� � � 0 and Holder's inequality to

obtain

1

2

d

dt

jj~v(t)jj

2

2;


+ �jjr~v(t)jj

2

2;


� C[jj

~

�(t)jj

2

2;


+ jj~v(t)jj

2

2;


+

Z




(~v(t):r)v

2

(t)~v(t)

+

Z




[k(f

s

('

1

(t))� �) � k(f

s

('

2

(t))� �)℄ j~v(t)j

2

℄

(4.80)
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The integral terms on the right hand side of the previous inequality an be

estimated as follows.

j

Z




(~v(t):r)v

2

(t)~v(t)j � Cjjrv

2

(t)jj

2;


jj~v(t)jj

2

4;


� Cjjrv

2

(t)jj

2;


jj~v(t)jj

2;


jjr~v(t)jj

2;


� C

�

jjrv

2

(t)jj

2

2;


jj~v(t)jj

2

2;


+

�

4

jjr~v(t)jj

2

2;


Next, by using the fats that k(�) is a Lipshitz funtion on (�1; 1� �)

and f

s

(�) is a L

1

-funtion, we obtain:

j

R




[k(f

s

('

1

(t)) � �) � k(f

s

('

2

(t)) � �)℄j~v(t)j

2

dxj

� C

�

R




j[f

s

('

1

(t))� �)℄� [f

s

('

1

(t))� �℄jj~v(t)j

2

dx

= C

�

R




jf

s

('

1

(t))� f

s

('

1

(t))jj~v(t)j

2

dx

� Cjj~v(t)jj

2

2;


:

By using the last two estimates in (4.80), we get

d

dt

jj~v(t)jj

2

2;


+

3

2

�jjr~v(t)jj

2

2;


� C

3

jj

~

�(t)jj

2

2;


+ C

4

(1 + jjrv

2

(t)jj

2

2;


)jj~v(t)jj

2

2;


(4.81)

We proeed by multiplying equation (4.75) by

~

�, integranting on 
. After

integration by parts and the use of the fats that div v

1

= 0,

�f

s

�'

2 L

1

(R),

with the help of Holder's inequality, we obtain:

1

2

d

dt

jj

~

�(t)jj

2

2;


+ jjr

~

�(t)jj

2

2;


� C(jj

~

�(t)jj

2

2;


+ jj

� ~'

�t

(t)jj

2

2;


)

+

Z




(~v(t):r)�

2

~

�(t)dx

+

Z




`

2

(

�f

s

�'

('

1

(t))�

�f

s

�'

('

1

(t)))

�'

2

�t

(t)

~

�(t) dx

(4.82)

The last two integrals terms in the above inequality an be estimated as

follows.
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j

R




(~v(t):r)�

2

~

�(t)dx j = j

R




div (~v(t)�

2

)

~

�(t)dx j

= j

R




(~v(t)�

2

) r

~

�(t)dxj � jj~v(t)jj

4;


jj�

2

(t)jj

4;


jjr

~

�(t)jj

2;


� 4jj~v(t)jj

2

4;


jj�

2

(t)jj

2

4;


+

1

4

jjr

~

�(t)jj

2

2;


� Cjj~v(t)jj

2;


jjr~v(t)jj

2;


jj�

2

(t)jj

2

4;


+

1

4

jjr

~

�(t)jj

2

2;


� C

�

jj�

2

(t)jj

4

4;


jj~v(t)jj

2

2;


+

�

2

jjr~v(t)jj

2

2;


+

1

4

jjr

~

�(t)jj

2

2;


:

Moreover, using the fat that

�f

s

�'

is a Lipshitz funtion, we obtain:

j

Z




`

2

(

�f

s

�'

('

1

(t))�

�f

s

�'

('

1

(t)))

�'

2

�t

(t)

~

�(t) dx j

� C

Z




j ~'(t)j j

�'

2

�t

(t)j j

~

�(t)j dx

� Cjj ~'(t)jj

2;


jj

�'

2

�t

(t)jj

3;


jj

~

�(t)jj

6;


� Cjj ~'(t)jj

2;


jj

�'

2

�t

(t)jj

3;


jjr

~

�(t)jj

2;


� Cjj

�'

2

�t

(t)jj

2

3;


jj ~'(t)jj

2

2;


+

1

4

jjr

~

�(t)jj

2

2;


:

By using the last two inequalities in (4.82), we get

d

dt

jj

~

�(t)jj

2

2;


+ jjr

~

�(t)jj

2

2;


� C

5

(jj

~

�(t)jj

2

2;


+ jj

� ~'

�t

(t)jj

2

2;


)

+C

6

jj�

2

(t)jj

4

4;


jj~v(t)jj

2

2;


+C

7

jj

�'

2

�t

(t)jj

2

3;


jj ~'jj

2

2;


:

(4.83)

Now, we multiply (4.79) by 2C

5

and add the result to (4.78), (4.81) and

(4.83). After some simpli�ations, we obtain:

d

dt

jj ~'(t)jj

2

2;


+

d

dt

jj~v(t)jj

2

2;


+

d

dt

jj

~

�(t)jj

2

2;


+ �C

5

d

dt

jjr ~'(t)jj

2

2;


� C

8

(1 + jj

�'

2

(t)

�t

jj

2

3;


)jj ~'(t)jj

2;


+C

9

(1 + jjrv

2

(t)jj

2

2;


+ jj�

2

(t))jj

4

4;


)jj~v(t)jj

2;


+C

10

jj

~

�jj

2

2;


:

27



By denoting z(t) = jj ~'(t)jj

2

2;


+ jj~v(t)jj

2

2;


+ jj

~

�(t)jj

2

2;


+ �C

5

jjr ~'(t)jj

2

2;


,

the last inequality implies

d

dt

z(t) � C[1 + jj

�'

2

�t

(t)jj

2

3;


) + jjrv

2

(t)jj

2

2;


+ jj�

2

(t))jj

4

4;


℄z(t):

This inequality implies that for t 2 [0; T ℄

0 � z(t) � z(0) expfC(T)[1 + jj

�'

2

�t

(t)jj

2

3;Q

) + jjv

2

(t)jj

2

L

2

(0;T;V)

+ jj�

2

(t))jj

4

4;Q

℄g:

Sine jj

�'

2

�t

(t)jj

2

L

3

(Q)

) + jjv

2

(t)jj

2

L

2

(0;T ;V )

+ jj�

2

(t))jj

4

L

4

(Q)

is �nite, due to the

known regularity of the involved funtions, and z(0) = 0, we onlude that

z(t) � 0, and therefore ~' � 0, ~v � 0,

~

� � 0, whih imply the uniqueness of

the solutions.

In the following we will show that the solutions ('

"

; v

"

; �

"

) 2 L

6

(Q) �

L

2

(0; T ; H)�L

3

(Q) of the problem (4.17), (4.18), (4.19) are uniformly bounded

with respet to " in the spae W

2;1

3

(Q)�L

2

(0; T ;V )\L

1

(0; T ;H)�W

2;1

2

(Q).

For this, note �rst that �

"

2 L

3

(Q); the L

p

-theory of paraboli linear

equation ombined with Theorem 3.1 and Lemma 3.1 allow us to onlude

that there exists an unique '

"

2 W

2;1

3

(Q) \ L

1

(Q) suh that

k'

"

k

1;Q

� C k'

"

k

(2)

3;Q

� C

�





(a + b'

"

� '

2

"

)'

"







3;Q

+ k�

"

k

3;Q

+ k'

0"

k

W

4=3

3

(
)

�

:

(4.84)

But max

(x;t)2Q

�

a(x; t) + b(x; t)s� s

2

�

is �nite; hene, from (4.84), we get

that

k'

"

k

1;Q

� C k'

"

k

(2)

3;Q

� C

�

k'

"

k

6;Q

+ k�

"

k

3;Q

+ k'

0"

k

W

4=3

3

(
)

�

: (4.85)

Now, by ombining (4.62), (4.69) and (4.85) and using usual Sobolev

imbeddings, we onlude that

k'

"

k

(2)

3;Q

� C

�

k�

0"

k

2;


+ k'

0"

k

W

4=3

3

(
)

�

: (4.86)

Moreover, Lemma 3.2 gives us that '

"

2 H

2=3;1=3

(Q) suh that

j'

"

j

(2=3)

Q

� C k'

"

k

(2)

3;Q

� C

�

k�

0"

k

2;


+ k'

0"

k

W

4=3

3

(
)

�

: (4.87)
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We onsider then the equation for the temperature. By applying the L

p

-

theory of paraboli linear equations (see Ladyzenskaja [16℄) together with

the fats that

�'

"

�t

2 L

2

(Q), f

s

2 C

1;1

b

( IR) and v

"

2 L

4

(Q)

2

, we have that

there exists an unique �

"

2 W

2;1

2

(Q) \ L

p

(Q) (p � 2) suh that

k�

"

k

(2)

2;Q

� C

0

�

kv

"

k

4;Q

k�

0"

k

W

1

2

(
)

+











�f

s

�'











1;Q









'

"

�t









2;Q

+ k�

0"

k

W

1

2

(
)

1

A

(4.88)

where the estimates kv

"

k

4;Q

and









'

"

�t









2;Q

are given by (4.71) and (4.66),

respetively.

By ombining (4.69), (4.71) and (4.88), we obtain

k�

"

k

(2)

2;Q

� C

�

kv

0

k

H

+ k'

0

k

W

4=3

3

(
)

+ k�

0

k

W

1

2

(
)

�

(4.89)

Therefore, the solutions ('

"

; v

"

; �

"

) of problem (4.17), (4.18), (4.19) are

uniformly bounded with respet to " in the spae W

2;1

3

(Q) � (L

2

(0; T ;V ) \

L

1

(0; T ;H))�W

2;1

2

(Q), and this ompletes the proof of Theorem 4.1.

5 Proof of the Theorem 3.1

In this setion we will use the results of Theorem 4.1, the L

p

�theory of

paraboli equations, the imbedding of Lemma 3.2 and ompatness argu-

ments to prove a result on existene and regularity of solution for problem

(2.1), (2.2), (2.3). This will be obtained by passing to the limit in the regular-

ized problem (4.17), (4.18), (4.19) as " approahes zero. Due to the estimates

we presente, the onvergene of almost all the terms in the equations of the

regularized problem will be standard ones, exept for the regularized velo-

ity equation that will require a loal argument. The stated regularity of the

solutions wil be obtained by using bootstrapping arguments. Unfortunately,

due to the additional Carman-Koseny type term in the veloity equation, we

annot improve the regularity of weak solution of Navier-Stokes equations.

Passing to the Limit

As a onsequene of Theorem 4.1, for " 2 (0; 1℄, any solution ('

"

; v

"

; �

"

) 2

L

6

(Q) � L

2

(0; T ; H) � L

3

(Q) of problem (4.17), (4.18), (4.19) is uniformly
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bounded with respet to " in the spae W

2;1

3

(Q)�(L

2

(0; T ;V )\L

1

(0; T ;H))�

W

2;1

2

(Q).

With the help of Aubin-Lions Lemma (see Temam [23℄, Lions [17℄ or

Corolary 4, p. 85, in Simon [22℄), there exists ('; v; �) 2 L

6

(Q)�L

2

(0; T ;H)�

L

3

(Q) and a subsequene, whih for simpliity of notation is still indexed by

", suh that as "! 0

'

"

! ' in L

q

(Q) (q � 6)

r'

"

! r' in L

3

(Q)

2

'

"

* ' in W

2;1

3

(Q)

�

"

! � in L

p

(Q) (p � 2)

r�

"

! r� in L

2

(Q)

2

�

"

* � in W

2;1

2

(Q)

v

"

* v in L

2

(0; T ; V)

v

"

�

* v in L

1

(0; T ; H)

Moreover, by Lemma 3.2, '

"

2 H

2=3;1=3

(Q) and for all " 2 [0; 1℄ we have

j'

"

j

(2=3)

Q

� C k'

"

k

(2)

3

. In partiular, sup

Q

j'

"

(x; t)j � C, and h'

"

i

(1=3)

t

� C.

Thus, f'

"

g is uniformly bounded and equiontinuous family in Q. By Arzela-

Asoli's Theorem it follows that there exists a subsequene, that we denote,

for simpliity, again by f'

"

g suh that '

"

! ' uniformly in Q.

We hek now that ('; v; �) 2 L

6

(Q)�L

2

(0; T ;H)�L

3

(Q) is a generalized

solution of problem (2.1), (2.2), (2.3).

We start by taking Q

s

and Q

ml

as in De�nition 3.1 with the just obtained

funtion '.

Now, we have to prove that v = 0 in

0

Q

s

. For this, we will use an argument

already used by Blan et al [1℄: we take K a ompat subset in

0

Q

s

and observe

that f

s

2 C

1;1

b

(IR), f

s

('(x; t)) = 1 in a neighborhood of K. Sine '

"

! '

uniformly in Q, we onlude that there is a small positive "

K

suh that

f

s

('

"

(x; t)) = 1 in K
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whenever " 2 (0; "

K

).

By multiplying the regularized veloity equation of problem (4.17)-(4.18)-

(4.19) by v

"

, integrating over K, using Green's formula and Young's inequal-

ity, we obtain

k(1� ") kv

"

k

2;K

� C

with C a positive onstant independent of " 2 (0; "

K

).

As " approahes zero, k(1�") blows up and ompels kv

"

k

L

2

(K)

2

to onverge

to 0. Therefore, v

"j

K

! 0 in L

2

(K), and onsequently v = 0 in K. Sine K

was an arbitrary ompat set of

0

Q

s

, we onlude that v = 0 in

0

Q

s

.

Now we have to show that the triple of funtions ('; �; v) satis�es equa-

tions (3.14), (3.15) and (3.16). We start by proving that (3.16) is satis�ed.

For this, we multiply the seond equation in (4.17) by a test funtion

� 2 C([0; T ℄;W

1

2

(


ml

(t))) suh that div �(:; t) = 0 for all t 2 [0; T ℄ ,

supp �(x; t) � Q

ml

[ 


ml

(0) and �(:; T ) = 0 and integrate over Q. Af-

ter some usual integrations by parts using (4.18), (4.19) and observing the

properties of �, we obtain

�

Z

Q

ml

v

"

�

t

dxdt + �

Z

Q

ml

rv

"

r� dxdt +

Z

Q

ml

(v

"

:r)v

"

� dxdt

+

Z

Q

ml

k(f

s

('

"

)� ")v

"

� dxdt =

Z

Q

ml

!

�

�

"

� dxdt +

Z




ml

(0)

v

0

(x)�(x; 0)dx

(5.90)

The stated onvergenes for '

"

, �

"

and v

"

are enough to onlude the

onvergene of the �rst and seond terms of the left hand side and also of

the �rst term of the right hand side of equation (5.90). For the onvergene

of the third and fourth term of the left hand side, however, we need to be

more areful.

We �rst observe that

k(f

s

('

"

)� ") ! k(f

s

(')) in C

0

(K

ml

) (5.91)

for any �xed ompat K

ml

� Q

ml

[ 


ml

(0). In fat, in suh K

ml

,

k(f

s

('

"

(x; t))� ") and k(f

s

('(x; t))) are bounded ontinuous funtions, and,

sine f

s

('

"

)� " onverges to f

s

(') in C

0

(K

ml

), we obtain the stated result.

In partiular, this result holds for K

ml

taken as supp �, and this guaran-

tees the onvergene of the last term in the left hand side of the last equation.

For the onvergene of the third term of the left hand side it is neessary to

improve the onvergene of v

"

. For this, we �rst observe that Q

ml

is an open
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set and an be overed by a ountable number of open ylinders 


i

� (a

i

; b

i

),

suh that for eah i = 1; : : : ;1, we have 


i

� 
 and [a

i

; b

i

℄ � (0; T ). Thus,

for eah i = 1; : : : ;1, we an take the ompat set 


i

�[a

i

; b

i

℄ as K

ml

in (5.91)

and onlude that there is "

i

2 (0; 1℄ and C

i

> 0 independent of " 2 (0; "

i

℄

suh that for suh " we have

jjk(f

s

('

"

)� ")jj

L

1

(


i

�[a

i

;b

i

℄)

� C

i

:

This and our previous estimates allow us to work with the seond equation

in (4.17) restrited to 


i

� (a

i

; b

i

) to obtain that there is C

i

> 0 independent

of " 2 (0; "

i

℄ suh that for suh " we have











�v

"

�t











L

2

(a

i

;b

i

;V

0

(


i

)

� C

i

;

where V

0

(


i

) is the topologial dual of the Banah spae V (


i

) =

fu 2

0

W

1

2

(


i

)

2

; div u = 0g, onsidered with the norm of

0

W

1

2

(


i

)

2

.

Also, our previous estimates tell us in partiular that fv

"

g for is unifomly

bounded with respet to " 2 (0; "

i

℄ in L

2

(a

i

; b

i

;W (


i

)), where W (


i

) =

fu 2 W

1

2

(


i

)

2

; div u = 0g is a Banah spae with the W

1

2

(


i

)

2

-norm.

Being the Banah spae

H(


i

) = fu 2 L

2

(


i

)

2

; div u = 0; and null normal traeg

onsidered with the L

2

(


i

)

2

-norm (see Temam [23℄ for properties of this and

the previous Banah spaes , we observe that W (


i

) � H(


i

) � V

0

(


i

),

and the �rst imbeding is ompat, we an use Corolary 4, p. 85, in Si-

mon [22℄ to onlude that there is a subsequene of fv

"

g onverging to v

in L

2

(a

i

; b

i

;H(


i

)). In partiular, this implies that along suh subsequene

v

"

! v in L

2

(


i

� (a

i

; b

i

)).

Proeeding as above for eah i = 1; : : : ;1, with the help of the usual

diagonal argument, we obtain a subsequene suh that

v

"

! v in L

2

lo

(Q

ml

):

Thus, along suh subsequene, we an pass to the limit as "! 0 in (5.90)

by proeeding exatly as in the ase of the lassial Navier-Stokes equations

and onlude that (3.16) is satis�ed.
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To obtain the other equations in De�nition 3.1, we multiply the �rst and

third equations of (4.17) respetively by � 2 W

1;1

2

(Q) with �(: ; T ) = 0 and

� 2

0

W

1;1

2

(Q) with �(: ; T ) = 0, and proeed as before. Using arguments

similar to the ones in (4.45) and (4.47), we onlude that

Z

Q

�

a'

"

+ b'

"

� '

3

"

�

� dxdt!

Z

Q

�

a' + b'� '

3

�

� dxdt;

Z

Q

�f

s

�'

('

"

)

�'

"

�t

� dxdt!

Z

Q

�f

s

�'

(')

�'

�t

� dxdt;

as "! 0.

With these results, it is easy to to pass to the limit as "! 0 and onlude

that equations (3.14) and (3.15) are also satis�ed.

Regularity of the Solution

Now we have to examine the regularity of ('; �; v). For this, we remark

that by interpolation (see Ladyzenskaja [16℄ p. 74), � 2 L

4

(Q). Thus,

applying Proposition 3.1 with � 2 L

3

(Q), we onlude that ' 2 W

2;1

3

(Q) \

L

1

(Q).

Also, Proposition 3.2 give us that v 2 L

4

(Q)

2

.

By applying the L

p

�theory of paraboli equations together with the fats

that f

s

2 C

1;1

b

(IR), v 2 L

4

(Q)

2

,

�'

�t

2 L

2

(Q) and Lemma the result of 3.1, we

onlude that � 2 W

2;1

2

(Q) \ L

p

(Q) (p � 2).

Therefore, by using a bootstrapping argument with � 2 L

q

(Q) where

q � 3 and smoothness of the data '

0

we onlude that ' 2 W

2;1

q

(Q)\L

1

(Q).

Applying again the L

p

�theory of paraboli equations with f

s

2 C

1;1

b

( IR),

v 2 L

4

(Q)

2

,

�'

�t

2 L

p

(Q), with 2 � p < 4, realling the given smoothness

of �

0

and the result of Lemma 3.1, we onlude that � 2 W

2;1

p

(Q) \ L

1

(Q),

with 2 � p < 4.

This ompletes the proof of Theorem 3.1.
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