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Abstra
t

We investigate the existen
e and regularity of weak solutions of

a phase �eld type model for pure material solidi�
ation in presen
e

of natural 
onve
tion. We assume that the nonstationary solidi�
a-

tion pro
ess o

urs in a bounded domain, whi
h for te
hni
al rea-

sons are restri
ted to be two dimensional. The governing equations of

the model are the following: the phase �eld equation 
oupled with a

nonlinear heat equation and modi�ed Navier-Stokes equations whi
h

in
lude buoyan
y for
es modeled by Boussinesq approximation and

a Carman-Koseny term to model the 
ow in mushy regions. Sin
e

this modi�ed Navier-Stokes equations only hold in a priori unknown

non-solid regions, we a
tually have a free boundary value problem.
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1 Introdu
tion

One of the �rst papers to 
onsider phase �eld models applied to 
hange

of phases was one by Fix [12℄, whi
h fostered many other studies in this

subje
t. For instan
e, in a sequen
e of papers ([6℄-[3℄-[2℄-[5℄), Caginalp and

others took over the task of understanding the phase �eld approa
h, both

in its mathemati
al aspe
ts and in its relations to the 
lassi
al approa
h

of using sharp interfa
es to separate the phases (whi
h gives rise to what

is known by Stefan type problems.) We remark that, for the derivation

of kineti
 equation for the phase �eld, Caginalp and others used the free

energy fun
tional as a basis of the argument (see Ho�man and Jiang [13℄,

for instan
e.) An alternative derivation, suggested by Peronse and Fife [20℄-

[21℄, uses an entropy fun
tional whi
h gives a kineti
 equations for the phase

�eld ensuring monotoni
 in
rease of the entropy in time. Peronse and Fife

exhibit a spe
i�
 
hoi
e of entropy density whi
h essentially re
overs the

phase �eld model employed by Caginalp [6℄ by linearization of the heat 
ux.

Thus, phase �eld models have a sound physi
al basis and provide simple

and elegant des
riptions of phase transition pro
esses. Moreover, it is more

versatile than enthalpy method, whi
h is yet another approa
h to model

phase 
hange pro
esses, sin
e e�e
ts as super
ooling and others may be easily

in
luded. An important example of the utility the phase �eld approa
h is

its use for the numeri
al study of dendriti
 growth (see Caginalp [3℄ and

Kobayshi [14℄, for instan
e).

One point to stress is that, whatever the approa
h used to model phase


hange, until a few years ago the possibility of 
ow o

urring in non solidi�ed

portions of the material was negle
ted in papers interested in the mathemat-

i
al analysis of these models. In many pra
ti
al situations, however, this

assumption is not satisfa
tory be
ause the existen
e of su
h motions may

a�e
t in important ways the out
ome of the pro
ess of phase 
hange. On the

other hand, the in
lusion of the possibility of 
onve
tive e�e
ts in the model

brings another very diÆ
ult aspe
t to an already diÆ
ult problem. In fa
t,

to realize this it is enough to observe that su
h a 
ow must o

ur only in an

a priori unknown non-solid region, and thus one is left with a rather diÆ
ult

free boundary value problem to handle.

In re
ent years, some authors have 
onsidered 
onve
tive e�e
ts; for in-

stan
e:

Cannon et al [7℄-[8℄, DiBenedetto and Friedman [11℄, DiBenedetto and

O'Leary[10℄ and O'Leary [15℄ addressed su
h questions by using weak formu-

2



lations of the Stefan type approa
h.

Blan
 et al [1℄, Peri
leouns etal [19℄ and Voller et al [25℄-[26℄ 
onsidered


onve
tive e�e
ts in phase 
hange problems by using the enthalpy approa
h

to des
ribe 
hange of phases, together with modi�ed Navier-Stokes equations

to model the 
ow. In these works, the phases may be distinguished by the

values of a variable 
orresponding to the solid fra
tion that is asso
iated

to the enthalpy; this same variable is used in a term that is added to the

Navier-Stokes equations to 
ope with the in
uen
e of the mushy zones in the


ow. Parti
ular expressions for this term may be obtained by modeling su
h

mushy zones as porous media.

In this paper we are interested in the mathemati
al analysis of a model

problem having some of the main aspe
ts that a reasonable model for a

solidi�
ation pro
ess with 
onve
tion should have. We will 
onsider a rather

simple situation of this sort in the hope to obtain a better understanding

of the mathemati
al diÆ
ulties brought by the 
oupling of terms des
ribing

phase 
hange and the terms des
ribing 
onve
tion.

We restri
t the subje
t to the analysis of solidi�
ation of pure materials,

and, di�erently of the previous papers 
onsidering the analogous subje
t, we

employ a phase �eld methodology to model phase 
hange. Conve
tive e�e
ts,

however, will be in
luded by using the ideas suggested by Blan
 et al [1℄ and

Voller et al [25℄. Sin
e the indi
ator of phase in these last papers is the solid

fra
tion, we relate the two approa
hes by postulating a fun
tional relationship

between the solid fra
tion and the phase �eld. The governing equations of

the model are the following: the phase �eld equation is as in Ho�man and

Jiang [13℄; it is 
oupled with equations for the temperature and velo
ity that

are based on usual 
onservation prin
iples. These last equations be
ome

respe
tively a nonlinear heat equation and modi�ed Navier-Stokes equations

whi
h in
lude buoyan
y for
es modelled by Boussinesq approximation and

a Carman-Koseny type term to model the 
ow in mushy regions. Sin
e

this modi�ed Navier-Stokes equations only hold in a priori unknown non-

solid regions, we a
tually have a free boundary value problem. Detail of the

model problem 
an be found in Se
tion 2, equations (2.1); the 
orresponding

weak formulation 
an be found in De�nition 3.1.

We present a result on existen
e and regularity of solutions of this model

equations 
orresponding to a nonstationary phase 
hange pro
ess in a bounded

domain, whi
h for te
hni
al reasons in this paper is assumed to be two di-

mensional.

Existen
e will be obtained by using a regularization te
hnique similar to
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the one already used by Blan
 et al [1℄: an auxiliary positive parameter will

be introdu
ed in the equations in su
h way that the original free boundary

value problem will be transformed in a more standard (penalized) one. We

say that this is the regularized problem. By solving this, one hopes to re
over

the solution of the original problem as the parameter approa
hes zero. To

a

omplish su
h program, we will �rstly solve the regularized problem by

using the Leray-S
hauder degree theory (see Se
tion 8.3, p. 56 in Deimling

[9℄); we will also have to use results holding for a 
ertain modi�ed Navier-

Stokes equations that were presented in Vaz [24℄. Then, by taking a sequen
e

of values of the parameter approa
hing zero, we will 
orrespondingly have a

sequen
e of approximate solutions. By obtaining suitable uniform estimates

for this sequen
e, we will then be able to take the limit along a subsequen
e

and, by 
ompa
tness arguments, to show that we have in fa
t a solution of

the original problem. The stated regularity of this solution will be obtained

by applying the L

p

-theory of the paraboli
 linear equations together with

bootstrapping arguments.

This paper is organized as follows. In Se
tion 2, we des
ribe the math-

emati
al model and its variables. In Se
tion 3, we �x the notation and

des
ribe the the basi
 fun
tional spa
es to be used; we re
all 
ertain results

and present auxiliary problems; we also state assumptions holding through-

out the paper and de�ne the 
on
ept of generalized solution. In Se
tion 4, we


onsider the question of existen
e, uniqueness and regularity of solutions of

the regularized problem. Se
tion 5 is dedi
ated to the the proof of existen
e

of a solution of the original free boundary value problem.

Finally, as it is usual in papers of this sort, C will denote a generi



onstant depending only on a priori known quantities.

2 Model Equations

The model problem presented here has aspe
ts of the models studied in the

works of Blan
 [1℄, Caginalp [6℄ and Voller et al [25℄-[26℄. As we said in the

Introdu
tion, the phase of the material will be des
ribed by using the phase

�eld methodology, whi
h in its simplest approa
h assumes that there is a

s
alar �eld '(x; t), the phase �eld, depending on the spatial variable x and

time t and real values '

s

< '

`

su
h that if '(x; t) � '

s

then the material at

point x at time t is in solid state; if '

`

� '(x; t) then the material at point

x at time t is in liquid state; if '

s

< '(x; t) < '

`

then, at time t the point
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x is in the mushy region. We follow Caginalp [6℄ and Ho�man and Jiang[13℄

and take the phase �eld equation as

�'

�t

� ��' = a' + b'

2

� '

3

+ �;

where � is the temperature; � is a (small) �xed positive 
onstant, and a and

b are known fun
tions whi
h regularity will be des
ribed later on.

We observe that the fun
tion g(s) = as+ bs

2

� s

3

used at the right hand

side of the above equation is the 
lassi
al possibility 
oming from the 
lassi
al

double-well potential (see Ho�man and Jiang [13℄). Other possibilities for the

double-well potential 
an be found for instan
e in Caginalp [6℄ and Penrose

[21℄.

To obtain a equation for the temperature, we observe that when there is

phase 
hange, the thermal energy has the following expression:

e = � +

`

2

(1� f

s

);

where � and `=2 represent respe
tively the sensible heat (for simpli
ity of

notation, we took the spe
i�
 heat 
oeÆ
ient to be one) and latent heat. f

s

is the solid fra
tion (1�f

s

is the non-solid fra
tion), whi
h for simply
ity we

assume to be a known fun
tion only of the phase �eld (obviously dependent

on the material being 
onsidered.)

Then, the energy balan
e in pure material solidi�
ation pro
ess may be

written (see Vaz [24℄) as follows:

��

�t

� �� + v:r� =

`

2

�f

s

�'

(')

�'

�t

where v represent the velo
ity of the material.

We will assume that only non solid portions of the material 
an move,

and this is done as an in
ompressible 
ow. Consequently, in non-solid regions

Navier- Stokes type equations are required. A

ording to Voller et al [25℄

and Blan
 et al [1℄ these equations 
an be taken as

8

>

<

>

:

�v

�t

� ��v + (v:r)v +rp = G(f

s

; v) + F (�)

div v = 0

where v is velo
ity, p is pressure, � is vis
osity and G(f

s

; v) and F (�) are

sour
e terms whi
h will be de�ned below.
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Assuming the Boussinesq treatment to be valid, natural 
onve
tion e�e
ts


an be a

ounted for by de�ning the buoyan
y sour
e term to be

F (�) = C�g(� � �

r

)

where � is the mean value of the density, g is the gravity, C is a 
onstant

and �

r

is a referen
e temperature. In order to simplify the 
al
ulations let

us 
onsider F (�) =

!

�

�.

The sour
e term G(f

s

; v) is used to modify the Navier-Stokes equations

in the mushy regions, and a

ording to [25℄, [26℄, 
an be taken of form

G(f

s

; v) = �k(f

s

)v. Usually the fun
tion k(f

s

) is taken as the Carman-

Koseny expression (see again [25℄-[26℄), whi
h is

k(f

s

) =

f

2

s

(1� f

s

)

3

:

As in Blan
 et al [1℄, we will 
onsider a more general situation in
luding

the previous one. We will assume that assuming that k is a nonnegative

fun
tion in C

0

(�1; 1), k = 0 in IR

�

and lim

y!1

k(y) = +1, and in this 
ase,

we will refer to G as the Carman-Kosen type term.

To 
omplete the des
ription of the model problem, we must de�ne the

regions where the above equations are valid. By using the solid fra
tion,

the following subsets of Q, denoted by Q

l

, Q

m

and Q

s

and 
orresponding

respe
tively to the liquid, mushy and solid regions, are de�ned as:

Q

l

= f(x; t) 2 Q ; f

s

('(x; t)) = 0g

Q

s

= f(x; t) 2 Q ; f

s

('(x; t)) = 1g

Q

m

= f(x; t) 2 Q ; 0 < f

s

('(x; t)) < 1g

In the following, Q

ml

= Qn

�

Q

s

will denote the non-solid part of Q. More-

over, for ea
h time t 2 [0; T ℄, we de�ne 


s

(t) = fx 2 
 ; f

s

('(x; t)) = 1g,




ml

(t) = 
n

�




s

(t) and S

ml

= f(x; t) 2

�

Q
; x 2 �


ml

(t)g.

We must emphasize that this model is the free boundary problem sin
e

that Q

l

, Q

m

and Q

s

are a priori unknown.

Now, we 
an now summarize the formulation of the problem to be ana-
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lyzed as:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�'

�t

� ��' = a' + b'

2

� '

3

+ � in Q;

��

�t

��� + v:r� =

`

2

�f

s

�'

(')

�'

�t

in Q;

�v

�t

� ��v + (v:r)v +rp + k(f

s

('))v =

!

�

� in Q

ml

;

div v = 0 in Q

ml

;

v = 0 in

0

Q

s

;

(2.1)

subje
t to the following boundary 
onditions

8

>

>

>

<

>

>

>

:

�'

�n

= 0 on S;

� = 0 on S;

v = 0 on S

ml

:

(2.2)

and also to the followin initial 
onditions

8

>

<

>

:

'(x; 0) = '

0

(x) in 
;

�(x; 0) = �

0

(x) in 
;

v(x; 0) = v

0

(x) in 


ml

(0);

(2.3)

where '

0

, �

0

and v

0

are suitably given fun
tions su
h that for 
ompatibility

v

0

is identi
ally zero outside 


ml

(0).

3 Preliminaries and Main Result

3.1 Notations, fun
tional spa
es and auxiliary results

Let 
 � IR

2

be an open and bounded domain with a suÆ
iently smooth

boundary �
 and Q = 
� [0; T ℄ the spa
e-time 
ylinder with lateral surfa
e

S = �
 � [0; T ℄. For t 2 [0; T ℄, we denote Q

t

= 
� [0; t℄.

We denote by W

p

q

(
) the usual Sobolev spa
e and W

2;1

q

(Q) the Bana
h

spa
e 
onsisting of fun
tions u(x; t) in L

q

(Q) whose generalized derivatives

D

x

u, D

2

x

u, u

t

are L

q

�integrable (q � 1). The norm in W

2;1

q

(Q) is de�ned by

kuk

(2)

q;Q

= kuk

q;Q

+ kD

x

uk

q;Q

+








D

2

x

u










q;Q

+ ku

t

k

q;Q

(3.4)
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where D

s

x

denotes any partial derivatives with respe
t to variables x

1

; x

2

; :::; x

n

of order s=1,2 and k:k

q

the usual norm in the spa
e L

q

(Q).

Moreover, W

1;0

2

(Q) is a Hilbert spa
e for the s
alar produ
t

(u; v)

W

1;0

2

(Q)

=

Z

Q

uv +ru:rv dxdt

and

0

W

1;1

2

(Q) is a Hilbert spa
e for the s
alar produ
t

(u; v)

W

1;1

2

(Q)

=

Z

Q

uv +ru:rv + u

t

v

t

dxdt

whose fun
tions vanish on S in the sense of tra
es.

We also denote by V

2

(Q) the Bana
h spa
e 
onsisting of fun
tion u(x; t)

in W

1;0

2

(Q) having the following �nite norm

juj

V

2

(Q)

= ess sup

0�t�T

ku(x; t)k

2;


+ kru(x; t)k

2;Q

: (3.5)

0

V

2

(Q) is Bana
h spa
e 
onsisting of those elements of V

2

(Q) that vanish

on S in the sense of tra
es.

We now de�ne spa
es 
onsisting of fun
tions that are 
ontinuous in the

sense of H�older. We say that a fun
tion u(x,t) de�ned in Q is H�older 
on-

tinuous in x and t, respe
tively with exponents � and � 2 (0; 1), if following

quantities, 
alled H�older 
onstants, are �nite:

hui

(�)

x

= sup

(x

1

;t);(x

2

;t)2 Q

x

1

6=x

2

ju(x

1

; t)� u(x

2

; t)j

jx

1

� x

2

j

�

hui

(�)

t

= sup

(x;t

1

);(x;t

2

)2 Q

t

1

6=t

2

ju(x; t

1

)� u(x; t

2

)j

jt

1

� t

2

j

�

Then, we de�ne the H�older spa
e H

�;�=2

(Q), with 0 � � < 1, (see La-

dyzenskaja et al [16℄), as the Bana
h spa
e of fun
tions u(x,t) that are 
on-

tinuous in Q, having �nite norm given by:

juj

(�)

Q

= max

Q

juj+ hD

x

ui

(�)

x

+ hui

(�=2)

t

: (3.6)
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For the fun
tional spa
es asso
iated to the velo
ity �eld, we denote D =

fu 2 C

1

(
)

2

: supp u � 
g and V = fu 2 D : div u = 0g. The 
losure of

V in L

2

(
)

2

is denoted by H and the 
losure of V in

0

W

1

2

(
)

2

is denoted by

V. These fun
tional spa
es appear in the mathemati
al theory of the Navier-

Stokes equations; their properties 
an be found for instan
e in Temam [23℄.

The following two lemmas are parti
ular 
ase of Lemma 3.3 in Ladyzen-

skaja et al ([16℄; p. 80). They are stated here for ease of referen
e.

The �rst lemma is immediate 
onsequen
e of Lemma 3.3 in [16℄, p. 80,

by taking there l = 1, n = 2 and r = s = 0.

Lemma 3.1 Let 
 and Q as in the beginning of this se
tion. Then for any

fun
tion u 2 W

2;1

q

(Q) we also have u 2 L

p

(Q), and it is valid the following

inequality

kuk

p;Q

� C kuk

(2)

q;Q

; (3.7)

provided that

p =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1 if

1

q

�

1

2

< 0

8p � 1 if

1

q

�

1

2

= 0

 

1

q

�

1

2

!

�1

if

1

q

�

1

2

> 0

The 
onstant C > 0 depends only on T, 
, p and q.

The se
ond lemma is immediately obtained from Lemma 3.3 in [16℄, p.

80, by taking there l = 1, n = 2, r = s = 0 and q = 3.

Lemma 3.2 Let 
 and Q be as in the beginning of this se
tion. Then for

any fun
tion u 2 W

2;1

3

(Q) we also have u 2 H

2=3;1=3

(Q) satis�ng the estimate

juj

(2=3)

Q

� C kuk

(2)

3;Q

(3.8)

The 
onstant C > 0 depends only on T and 
.

In the following we will 
onsider two auxiliary problems, respe
tively

related to the phase �eld and the velo
ity equations.
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The �rst one is the following:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�'

�t

� ��' = a' + b'

2

� '

3

+ g(x; t) in Q;

�'

��

= 0 on S;

'(x; 0) = '

0

(x) in 
:

(3.9)

where � in a positive 
onstant.

Problem (3.9) was treated by Ho�man and Jaing [13℄ when the initial

date satis�es '

0

2 W

2

1

(
). Sin
e we will need an existen
e result for '

0

2

W

2�2=q

q

(
) \ W

3=2�Æ

2

(
), with Æ 2 (0; 1), we restate the result of [13℄. We

remark that exa
tly the same proof presented in [13℄ holds in this situation

(see also Vaz [24℄ for details, where some other spe
i�
 results 
on
erning

(3.9) are proved.)

Proposition 3.1 Let 
 and Q be as in the beginning of this se
tion. Assume

that a(x; t) and b(x; t) in L

1

(Q), g 2 L

q

(Q), '

0

2 W

2�2=q

q

(
) \W

3=2�Æ

2

(
),

where q � 2, Æ 2 (0; 1) and

�'

0

��

= 0 in �
. Then there exists an unique

solution ' 2 W

2;1

q

(Q) of problem (3.9), whi
h satis�es the estimate

k'k

(2)

q;Q

� C

�

k'

0

k

W

2�2=q

q

(
)

+ kgk

q;Q

�

; (3.10)

where C depends only on T, �, 
, ka(x; t)k

1;Q

and on kb(x; t)k

1;Q

.

The se
ond auxiliary problem is the following:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�v

�t

� ��v + (v:r)v +rp + k(x; t)v = f(x; t) in Q;

div v = 0 in Q;

v = 0 on S;

v(x; 0) = v

0

(x) in 
:

(3.11)

Proposition 3.2 Let 
 and Q be as in the beginning of this se
tion. Assume

that k(x; t) 2 C

0

(Q), k(x; t) � 0, f(x; t) 2 L

2

(Q)

2

and v

0

(x) 2 H. Then

there exists an unique solution v(x; t) 2 L

2

(0; T ; V)\L

1

(0; T ; H) of problem

(3.11) whi
h satis�es the estimate

kvk

L

1

(0;T;H)

+ kvk

L

2

(0;T;V )

� C

�

kv

0

k

H

+ kfk

2;Q

�

(3.12)
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Moreover, by interpolation results v 2 L

4

(Q)

2

and

kvk

4;Q

� C

�

kv

0

k

H

+ kfk

2;Q

�

; (3.13)

where C depends only on T and on 
.

The proof of Propositon 3.2 is done by using the same arguments used in

the 
lassi
al theory of weak solutions of the Navier-Stokes equations. As in

this 
lassi
al situation, the fa
t that the domain is two dimensional is impor-

tant to obtain uniqueness of solutions (see Temam [23℄, p.282, for instan
e.)

3.2 Te
hni
al Hypotheses and Generalized Solution

All along this work we will be using the following te
hni
al hypotheses:

(H

1

) 
 � IR

2

is an open and bounded domain with suÆ
iently smooth

boundary �
; T is a �nite positive number; Q = 
� (0; T ).

(H

2

) a(x,t), b(x,t) are given fun
tions in L

1

(Q);

f

s

2 C

1;1

b

(IR), 0 � f

s

(z) � 1 8z 2 IR;

k(y) 2 C

0

(�1; 1), k(0) = 0, k(y) = 0 in IR

�

, k(y) is nonnegative and

lim

y!1

k(y) = +1.

(H

3

) v

0

2 H;

�

0

2 W

1

2

(
), �

0

= 0 on �
;

'

0

2 W

4=3

3

(
) \ W

3=2+Æ

2

(
), for some Æ 2 (0; 1),

�'

0

��

= 0 on �
.

In the following we will explain in what sense we will understand a solution

of (2.1), (2.2), (2.3):

De�nition 3.1 By a generalized solution of the problem (2.1), (2.2),

(2.3), we mean a triple of fun
tions ('; �; v) su
h that ' 2 V

2

(Q), � 2

0

V

2

(Q)

and v 2 L

2

(0; T ;V ) \ L

1

(0; T ;H). Moreover, being

Q

s

= f(x; t) 2 Q ; f

s

('(x; t)) = 1g,




s

(t) = fx 2 
 ; f

s

('(x; t)) = 1g,

Q

ml

= Qn

�

Q

s

and 


ml

(0) = 
n

�




s

(0)

11



we have v = 0 a.e in

0

Q

s

, and ', � and v satisfy the following the integral

relations:

�

Z

Q

'�

t

dxdt + �

Z

Q

r'r� dxdt

=

Z

Q

�

a + b'� '

2

�

'�dxdt +

Z

Q

��dxdt +

Z




'

0

(x)�(x; 0)dx

(3.14)

�

Z

Q

� �

t

dxdt +

Z

Q

r�r�dxdt +

Z

Q

v:r� �dxdt

=

Z

Q

`

2

�f

s

�'

(')'

t

� dxdt +

Z




�

0

(x)�(x; 0)dx

(3.15)

�

Z

Q

ml

v �

t

dxdt + �

Z

Q

ml

rvr� dxdt +

Z

Q

ml

(v:r)v � dxdt

+

Z

Q

ml

k(f

s

('))v � dxdt =

Z

Q

ml

!

�

�� dxdt +

Z




ml

(0)

v

0

(x)�(x; 0)dx

(3.16)

for all � in W

1;1

2

(Q) su
h that �(x; T ) = 0; for all � in

0

W

1;1

2

(Q) su
h that

�(x; T ) = 0, and for all � 2 C([0; T ℄;W

1

2

(


ml

(t))) su
h that �(:; T ) = 0,

div �(:; t) = 0 8t 2 [0; T ℄ and supp �(x; t) � Q

ml

[ 


ml

(0).

Note that due to our te
hni
al hypotheses and 
hoi
e of fun
tional spa
es,

all of the integrals in De�nition 3.1 are well de�ned.

3.3 Existen
e of Generalized Solutions

The purpose of this paper is to prove the following result

Theorem 3.1 Under the hypotheses (H

1

), (H

2

), (H

3

), there is a general-

ized solution of the problem (2.1), (2.2), (2.3) in the sense of the De�nition

3.1. Moreover, when '

0

2 W

2�2=q

q

(
) \W

3=2+Æ

2

(
) for some Æ 2 (0,1) and

q � 3, and �

0

2 W

2�2=p

p

(
) with 3 � p < 4, then su
h solution satis�es

' 2 W

2;1

q

(Q)\L

1

(Q), � 2 W

2;1

p

(Q)\L

1

(Q), v 2 L

2

(0; T ;V )\L

1

(0; T ;H).

The proof of the previous result is long and will be done in the following

se
tions. Here we want just to sket
h it: existen
e of a solution of prob-

lem (2.1), (2.2), (2.3) will proved by using a regularization te
hnique already

used by Blan
 et al in [1℄. The purpose this regularization is to deal with the

Navier-Stokes equations in whole domain instead of unknown regions. Thus,

the problem will be adequately regularized with the help of a positive param-

eter, and the existen
e of solutions for this regularized problem will obtained

12



by using the Leray-S
hauder degree theory (see Theorem 4.1). Then, as this

parameter approa
hes zero, a sequen
e of regularized solutions is obtained.

With the help of suitable estimates and 
ompa
tness arguments, a limit of

a subsequen
e is then proved to exist and to be a solution of problem (2.1),

(2.2), (2.3).

We also remark that the phase �eld equation admits 
lassi
 solution when

'

0

is suÆ
iently smooth. In fa
t, its right hand side term satis�es a'+b'

2

�

'

3

+ � 2 L

1

(Q), and, in parti
ular when '

0

2 W

2�2=q

q

(
)\W

3=2+Æ

2

(
), with

q � 2, we obtain a strong solution with the equation satis�ed in the a.e-

sense. The boundary and initial 
onditions are also satis�ed in the pontual

sense be
ause ' 2 C

1

(Q). When �

0

2 W

2�2=p

p

(
), with 3 � p < 4, the same

sort of arguments applies and the solution is strong with � 2 C

0

(Q); the

temperature equation and the boundary and initial 
onditions are valid in

pontual sense. Unfortunately, we are not able to improve the regularity of

the 
orresponding solution even if the initial velo
ity is very regular. Thus,

we only generalized solutions are obtained for the velo
ity equation.

4 Regularized Problem

In this se
tion we regularize problem (2.1), (2.2), (2.3) by 
hanging the term

k(f

s

('))v in the velo
ity equation. We will obtain a result of the existen
e,

uniqueness and regularity for this asso
iated regularized problem:

Theorem 4.1 Fix " 2 (0; 1℄. Under the hypotheses (H

1

), (H

2

), (H

3

), there

exists an unique solution ('

"

; v

"

; �

"

) 2 W

2;1

3

(Q)�(L

2

(0; T ;V )\L

1

(0; T ;H))�

W

2;1

2

(Q) � L

6

(Q)� L

2

(0; T ;H)� L

3

(Q) of the following problem:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�'

"

�t

� ��'

"

= a'

"

+ b'

2

"

� '

3

"

+ �

"

�v

"

�t

� ��v

"

+ (v

"

:r)v

"

+rp

"

+ k(f

s

('

"

) � ")v

"

=

�!

� �

"

div v

"

= 0

��

"

�t

� ��

"

+ v

"

:r�

"

=

`

2

�f

s

�'

('

"

)

�'

"

�t

in Q; (4.17)
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8

>

>

>

>

>

<

>

>

>

>

>

:

�'

"

�n

= 0

�

"

= 0

v

"

= 0

on S; (4.18)

8

>

>

>

<

>

>

>

:

'

"

(x; 0) = '

0

(x)

�

"

(x; 0) = �

0

(x)

v

"

(x; 0) = v

0

(x)

in 
: (4.19)

Moreover, as " varies in [0; 1℄, su
h solutions ('

"

; v

"

; �

"

) are uniformly bounded

with respe
t to " in W

2;1

3

(Q)� (L

2

(0; T ;V ) \ L

1

(0; T ;H))�W

2;1

2

(Q).

The proof of the previous result will be done at the end of this se
tion,

after some preparation and auxiliary lemmas. The solvability of problem

(4.17), (4.18), (4.19) will be proved by applying the Leray-S
hauder degree

theory (see Deimling [9℄) as in Morosanu and Motreanu [18℄. For this, we will

reformulate the problem as T (1; '; v; �) = ('; v; �), where T (�; �) is a 
ompa
t

homotopy depending on a parameter � 2 [0; 1℄ to be des
ribed shortly.

Basi
 tools in our argument are L

p

�theory of paraboli
 equations and

Theorems 3.1 and 3.2 in Se
tion 3. Moreover, we emphasize that the regu-

larity of solution of Navier-Stokes and phase �eld equations plays an essential

role in this proof. Su
h 
onne
tion is stri
tly related with a sele
tion of the

order of the equations in quasilinear problem, mainly in deriving a priori

estimates for possible solutions. Moreover, sin
e that the phase �eld has

smooth solution (
lassi
al solution), the regularity of Navier-Stokes equa-

tions be
omes very important but this regularity is governed by the ad-

ditional Carman-Koseny type term k(f

s

('))v that one not permits one to

obtain uniform estimate in some di�erent as L

2

(0; T ; V) \  L

1

(0; T ;H).

For simpli
ity of notation, we omit the subs
ript " in the rest of this

se
tion.

De�nition 4.1 De�ne the homotopy T : [0; 1℄ � L

6

(Q) � L

2

(0; T ;H) �

L

3

(Q) ! L

6

(Q)� L

2

(0; T ;H)� L

3

(Q) as

T (�; �; u; !) = ('; v; �) (4.20)
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where ('; v; �) is the unique solution of the following quasilinear problem:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�'

�t

� ��' = a' + b'

2

� '

3

+ �!

�v

�t

� ��v + (v:r)v +rp + k(f

s

(')� ")v = �

�!

� !

div v = 0 in Q;

��

�t

��� + v:r� = �

`

2

�f

s

�'

(')

�'

�t

(4.21)

8

>

>

>

<

>

>

>

:

�'

�n

= 0

� = 0

v = 0

on S; (4.22)

8

>

<

>

:

'(x; 0) = '

0

(x)

�(x; 0) = �

0

(x)

v(x; 0) = v

0

(x)

in 
; (4.23)

We observe that the homotopy T (�; �) is well de�ned. In fa
t, for �xed

� 2 [0; 1℄, by using Proposition 3.1 and Lemma 3.1, we 
on
lude that �rst

equation of problem (4.21), (4.22), (4.23) has a unique solution ' 2 W

2;1

3

(Q)\

L

1

(Q). On
e ' is known, Proposition 3.2 implies that the modi�ed Navier-

Stokes equations has an unique solution v 2 L

2

(0; T ;V ) \ L

1

(0; T ;H). By

usual interpolation, it results that v 2 L

4

(Q)

2

. Now that ' and v are known,

the L

p

�theory of paraboli
 equations , that also is valid for Neumann bound-

ary 
ondition (see Ladyzenskaja et al [16℄ ; p.351), Lemma 3.1 and the fa
ts

that

�'

�t

2 L

3

(Q), v 2 L

4

(Q)

2

, and f

s

2 C

1;1

b

(IR) imply that there is a unique

solution � 2 W

2;1

3

(Q) \ L

1

(Q) for the third equation of (4.21).

Lemma 4.1 Under assumptions (H

1

), (H

2

), (H

3

), the mapping T : [0; 1℄�

L

6

(Q) � L

2

(0; T ;H) � L

3

(Q) ! L

6

(Q) � L

2

(0; T ;H) � L

3

(Q) is a 
ompa
t

mapping, i.e, it is 
ontinuous and maps bounded sets into relatively 
ompa
t

sets.

Proof: Let us 
he
k the 
ontinuity of T (�; :). For this, let �

n

! � in

[0,1℄ and (�

n

; u

n

; !

n

) ! (�; u; !) in L

6

(Q) � L

2

(0; T ; H) � L

3

(Q). Denoting
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T (�

n

; �

n

; u

n

; !

n

) = ('

n

; v

n

; �

n

), from (4.20), we write

�'

n

�t

� ��'

n

= a'

n

+ b'

2

n

� '

3

n

+ �

n

!

n

; (4.24)

�v

n

�t

� ��v

n

+ (v

n

:r)v

n

+rp

n

+ k(f

s

('

n

)� ")v

n

= �

n

!

�

!

n

; (4.25)

div v

n

= 0; (4.26)

��

n

�t

� ��

n

+ v

n

:r�

n

= �

n

`

2

�f

s

�'

('

n

)

�'

n

�t

(4.27)

in Q;

�'

n

��

= 0

v

n

= 0

�

n

= 0;

(4.28)

on S, and

'

n

(x; 0) = '

0

(x);

v

n

(x; 0) = v

0

(x);

�

n

(x; 0) = �

0

(x)

(4.29)

in 
.

By applying Proposition 3.1 with !

n

2 L

2

(Q), we obtain the following

estimate for the phase-�eld equation (4.24)

k'

n

k

(2)

2;Q

� C

�

j�

n

j k!

n

k

2;Q

+ k'

0

k

W

1

2

(
)

�

(4.30)

Now, by applying Proposition 3.2, we obtain the following estimates for

the velo
ity equation (4.25)

kv

n

k

L

1

(0;T;H)

+ kv

n

k

L

2

(0;T;V )

� C

�

kv

0

k

H

+ j�

n

j k!

n

k

2;Q

�

; (4.31)

whi
h by usual interpolation implies

kv

n

k

4;Q

� C

�

kv

0

k

H

+ j�

n

j k!

n

k

2;Q

�

(4.32)

For (4.27), the L

p

-theory of the paraboli
 equation (see Ladyzenskaja [16℄;

p.351) with the fa
ts that

�'

n

�t

2 L

2

(Q),

�f

s

�'

('

n

) 2 L

1

(Q), v

n

2 L

4

(Q)

2

and �

0

2 W

1

2

(
) provides the estimate

k�

n

k

(2)

2;Q

� C

0

�

kv

n

k

4;Q

k�

0

k

W

1

2

(
)

+ j�

n

j
















�'

n

�t
















2;Q

+ k�

0

k

W

1

2

(
)

1

A

(4.33)
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Sin
e the sequen
es (!

n

) and (�

n

) are respe
tively bounded in L

2

(Q) and

[0,1℄, from (4.30) and (4.31) we obtain for all n that

k'

n

k

(2)

2;Q

� C and kv

n

k

L

1

(0;T;H)

+ kv

n

k

L

2

(0;T;V )

� C (4.34)

Consequently, from (4.33) we have for all n

k�

n

k

(2)

2;Q

� C (4.35)

Estimates (4.34) and (4.35) show that the norm of the sequen
e

fT (�

n

; �

n

; u

n

; !

n

)g = f('

n

; v

n

; �

n

)g is uniformly bounded with respe
t to

n in the fun
tional spa
e W

2;1

2

(Q)� (L

2

(0; T ;V ) \ L

1

(0; T ;H))�W

2;1

2

(Q).

Moreover, we observe that for �xed " 2 (0; 1℄, from the properties of

k(y) (see the 
onditions stated in (H

2

)), there is a �nite positive 
onstant C

depending only on " su
h that supfk(y � ")g � C. By using this and our

previous estimates as in Lions [17℄, p. 71, we 
on
lude that for all n

jj(v

n

)

t

jj

L

2

(0;T ;V

0

)

� C("): (4.36)

Thus, the previous estimates, with the help of Aubin-Lions Lemma (see

Temam [23℄ or Lions [17℄), allow us to sele
t a subsequen
e, whi
h we denote

fT (�

k

; �

k

; u

k

; !

k

)g = f('

k

; v

k

; �

k

)g su
h that

'

k

* ' in W

2;1

2

(Q) (4.37)

v

k

* v in L

2

(0; T ;V ) (4.38)

v

k

�

* v in L

1

(0; T ;H) (4.39)

�

k

* � in W

2;1

2

(Q) (4.40)

(v

k

)

t

* v

t

in L

2

(0; T ;V

0

) (4.41)

'

k

! ' in L

6

(Q) (4.42)

v

k

! v in L

2

(0; T ;H) (4.43)

�

k

! � in L

3

(Q) (4.44)

Now, let us verify that T (�; �; u; !) = ('; v; �), in other words, that

('; v; �) is solution of (4.21), (4.22),(4.23). For this, we are going to pass to

the limit with respe
t to the above subsequen
e in equations (4.24)-(4.27)

together with the 
onditions (4.28)-(4.29).

Let us prove that the equations are satis�ed in the sense distribution. For

this, �x in the sequel g 2 C

1




(Q), and let us des
ribe the pro
ess of taking
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the limit only for those terms of the equations that are neither trivial nor

standard.

We observe that by using (4.42) and �

k

! �, we obtain

Z

Q

�

k

(a'

k

+ b'

2

k

� '

3

k

)g dxdt!

Z

Q

�(a'+ b'

2

� '

3

)g dxdt 8 g (4.45)

Thus, passing to the limit in phase �eld equation (4.24), using the 
on-

vergen
e (4.37), (4.42) and (4.45), we obtain the �rst equation in (4.21).

To verify the 
onvergen
e

Z

Q

k(f

s

('

k

) � ")v

k

g dxdt!

Z

Q

k(f

s

(')� ")v g dxdt (4.46)

we use (4.43), the fa
t that for �xed " 2 (0; 1℄, k(f

s

(�) � " is bounded,

and following argument. Consider h

k

= jk(f

s

('

k

) � ") � k(f

s

(') � ")j

2

.

Sin
e k(f

s

(�)� ") is 
ontinuous and (4.42) is valid, passing to a subsequen
e

if ne
essary, we know that h

k

! 0 almost everywhere in Q. Moreover,

jh

k

j � C kf

s

(')k

2

1

a.e and therefore h

k

! 0 in L

1

(Q) by Lebesgue domi-

nated 
onvergen
e theorem. Thus, k(f

s

('

k

) � ") ! k(f

s

(') � ") in L

2

(Q),

what together with (4.38) implies (4.46).

By passing to the limit in velo
ity equation (4.25), using the 
onvergen
e

(4.38), (4.43) and (4.46) we obtain the se
ond equation in (4.21).

Now, we use (4.37), (4.42), �

k

! � and arguments similar to the ones

previously with

�f

s

�'

('

k

) in pla
e of f

s

to obtain

Z

Q

�

k

�f

s

�'

('

k

)

�'

k

�t

g dxdt!

Z

Q

�

�f

s

�'

(')

�'

�t

g dxdt (4.47)

By passing to the limit in temperature equation (4.27), using the 
onver-

gen
e (4.40), (4.44) and (4.47), we obtain the third equation in (4.21)

The required boundary 
onditions are in
luded in the de�nitions of the

fun
tional spa
es where ('; v; �) is in. Also, with the estimates we have

obtained, it is standard to prove that ', v and � satisfy the required initial


onditions. Hen
e, ('; v; �) is solution of (4.24)-(4.29).

Moreover, we observe that if we start with any given subsequen
e of

fT (�

n

; '

n

; v

n

; �

n

)g, exa
tly the above arguments 
an be applied to 
on
lude

that this subsequen
e admits another subsequen
e 
onverging to a solution

of (4.24)-(4.29). Sin
e (�; u; !) is also �xed and the solution of this last

18



problem is unique, we 
on
lude that fT (�

n

; '

n

; v

n

; �

n

)g is a sequen
e with

the property that any one of its subquen
es has by its turn a subsequen
e


onverging to a limit that is independent of the 
hosen subsequen
e. Hen
e,

fT (�

n

; '

n

; v

n

; �

n

)g 
onverges to this limit, and the 
ontinuity of T is proved.

The same sort of arguments prove that mapping T is a 
ompa
t mapping.

In fa
t, if f(�

n

; u

n

; !

n

)g is any bounded sequen
e in L

6

(Q) � (L

2

(0; T ;V ) \

L

1

(0; T ;H)) � L

3

(Q), the above arguments 
an be applied to obtain ex-

a
tly the same sort of estimates for T (�

n

; �

n

; u

n

; !

n

). These imply that

f('

n

; v

n

; �

n

)g is relatively 
ompa
t in L

6

(Q) � L

2

(0; T ;H) � L

3

(Q), and

thus there exists a subsequen
e of T (�

n

; �

n

; u

n

; !

n

) 
onverging in L

6

(Q) �

L

2

(0; T ;H)� L

3

(Q). Therefore, the 
ompa
tness is proved.

The next lemma give us an uniform estimate for any possible �x point of

T (�; �).

Lemma 4.2 Under assumptions (H

1

), (H

2

), (H

3

), there exists a positive

number �, depending only on the given data of the problem and in parti
ular

independent of � 2 [0; 1℄, with the property any �x point of T (�; :) is in the

interior of the ball of radius � in L

6

(Q)� L

2

(0; T ;H)� L

3

(Q). That is,

T (�; '; v; �) = ('; v; �) ) k('; v; �)k < �; (4.48)

where k�k denotes the norm in L

6

(Q)� L

2

(0; T ;H)� L

3

(Q).

Proof: By using (4.20), the 
ondition T (�; '; v; �) = ('; v; �) is equivalent

to

�'

�t

� ��' = a' + b'

2

� '

3

+ �� (4.49)

�v

�t

� ��v + (v:r)v +rp + k(f

s

(')� ")v = �

!

�

� (4.50)

div v = 0 in Q; (4.51)

��

�t

��� + v:r� = �

`

2

�f

s

�'

(')

�'

�t

(4.52)

�'

��

= 0

� = 0

v = 0

on S; (4.53)
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'(x; 0) = '

0

(x)

�(x; 0) = �

0

(x)

v(x; 0) = v

0

(x)

in 
: (4.54)

To obtain estimates for ('; v; �), we start by multiplying the �rst equation

(4.49) by '. After integrating of the result over Q

t

( t 2 (0; T ℄), using Fubini's

theorem, Green's formula and Young's inequality, we get

Z




'

2

dx +

Z

t

0

Z




jr'j

2

dxdt +

�

2

Z

t

0

Z




'

4

dxdt

� C

 

k'

0

k

2

2;


+

Z

T

0

Z




j�j

2

dxdt +

Z

T

0

Z




j'j

2

dxdt

!

(4.55)

where C depends on � and max

(x;t)2Q

�

a(x; t) + b(x; t)s�

1

2

s

2

�

.

By applying Gronwall's inequality in (4.55), we get

Z

T

0

Z




j'j

2

dxdt � C

 

k'

0

k

2

2;


+

Z

T

0

Z




j�j

2

dxdt

!

: (4.56)

Thus, by 
ombining (4.55) and (4.56), we 
on
lude

Z

T

0

Z




jr'j

2

dxdt � C

 

k'

0

k

2

2;


+

Z

T

0

Z




j�k

2

dxdt

!

(4.57)

�

2

Z

T

0

Z




'

4

dxdt � C

 

k'

0

k

2

2;


+

Z

T

0

Z




j�j

2

dxdt

!

(4.58)

Now, we multiply equation (4.52) by � and integrate over Q

t

. Then we

use the fa
t that

�f

s

�'

2 L

1

(IR), (4.51), Green's formula and also Poin
ar�e's

and Young's inequalities to obtain

Z




�

2

dx +

Z

t

0

Z




jr�j

2

dxdt � C

 

k�

0

k

2

2;


+

Z

T

0

Z




j'

t

j

2

dxdt

!

; (4.59)

where C depend on 
, ` and
















�f

s

�'
















1

:
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By multiplying the �rst equation (4.49) by

�'

�t

, integrating over Q

t

, using

Green's formula and Young's inequality, we obtain

Z

t

0

Z




 

�'

�t

!

2

dxdt +

Z

t

0

Z




jr'j

2

dxdt

� C

 

kr'

0

k

2

2;


+

Z

T

0

Z




j'j

2

dxdt +

Z

T

0

Z




j�j

2

dxdt

!

;

(4.60)

where C depends on � and max

(x;t)2Q

�

a(x; t) + b(x; t)s� s

2

�

.

By using (4.56) in (4.60) and applying the resulting estimate in (4.59),

we get

Z




�

2

dx +

Z

t

0

Z




jr�j

2

dxdt � C

 

k�

0

k

2

2;


+ k'

0

k

2

W

1

2

(
)

+

Z

T

0

Z




j�j

2

dxdt

!

By applying Gronwall inequality in (4.61), we obtain

k�k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

; (4.61)

and, 
onsequently, kr�k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

.

Moreover, by interpolation results (see Ladyzenskaja [16℄ p. 74), we have

k�k

4;Q

�M

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

: (4.62)

By using (4.61) in (4.56), (4.57) and (4.58) , we 
on
lude that

k'k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

; (4.63)

kr'k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

; (4.64)

� k'k

4;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

: (4.65)

By using (4.61) and (4.63) in (4.60), we have
















�'

�t
















2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

: (4.66)
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Now, by multiplying the �rst equation (4.49) equation by ��' integrat-

ing over Q

t

, using Green formula and Young inequalities, we obtain

Z




jr'j

2

dx +

Z

t

0

Z




j�'j

2

dxdt + 3�

Z

t

0

Z




'

2

jr'j

2

dxdt

� C

 

kr'

0

k

2

2;


+

Z

T

0

Z




j�j

2

dxdt +

Z

T

0

Z




j'j

2

dxdt + �

Z

T

0

Z




j'j

4

dxdt

!

;

(4.67)

where C depend on 
, �, kak

1;Q

, kbk

1;Q

and
















�f

s

�'
















1

.

By using (4.61), (4.63) and (4.65) in (4.67), we obtain

k�'k

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

(4.68)

Combining estimates (4.63), (4.64), (4.66) and (4.68), using the imbed-

ding om Lemma 3.1, we have

k'k

p;Q

� C k'k

(2)

2;Q

� C

�

k�

0

k

2;


+ k'

0

k

W

1

2

(
)

�

(p � 6): (4.69)

Now, by multiplying the se
ond equation (4.50) by v, integrating over Q

t

,

using Green's formula, and Pon
ar�e's and Young's inequalities, we get

1

2

Z




v

2

dx +

�

2

Z

t

0

Z




jrvj

2

dxdt +

Z

t

0

Z




k (f

s

(')� ") v

2

dxdt

� C

 

kv

0

k

H

+

Z

T

0

Z




j�j

2

dxdt

!

:

(4.70)

Combining (4.61) and (4.70), using that k(f

s

(') � �) � 0, we 
on
lude

that

kvk

L

1

(0;T ;H)

+ kvk

L

2

(0;T ;V)

� C

�

kv

0

k

H

+ k�

0

k

2;


+ k'

0

k

W

2

1

(
)

�

:

Finally, by the interpolation result given in Theorem (3.2), we have

kvk

4;Q

� C

�

kv

0

k

H

+ k�

0

k

2;


+ k'

0

k

W

2

1

(
)

�

(4.71)
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The next lemma tell us that there is an unique �x point in the spe
ial


ase � = 0.

Lemma 4.3 Under assumptions (H

1

), (H

2

), (H

3

), there exists an unique

solution of the problem T (0; '; v; �) = ('; v; �) (T de�ned in (4.20.))

Proof: T (0; '; v; �) = ('; v; �) is equivalent to the following nonlinear sys-

tem:

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

�'

�t

� ��' = a' + b'

2

� '

3

�v

�t

� ��v + (v:r)v +rp + k(f

s

(')� ")v = 0

div v = 0 in Q;

��

�t

� �� + v:r� = 0

8

>

>

>

<

>

>

>

:

�'

��

= 0

� = 0

v = 0

on S;

8

>

<

>

:

'(x; 0) = '

0

(x)

�(x; 0) = �

0

(x)

v(x; 0) = v

0

(x)

in 
;

For these equations, Proposition 3.1 ensures the existen
e and uniqueness of

'; then Proposition 3.2 gives the existen
e and uniqueness v. The L

p

�theory

of the linear paraboli
 equations ensures then the existen
e and uniqueness

of �.

Now we are ready for the

Proof of Theorem 4.1: A

ording to Lemma 4.2, we know the existen
e

of the a number � satisfying property (4.48). Let us 
onsider the open ball

B

�

=

n

('; v; �) 2 L

6

(Q)� L

2

(0; T ;H)� L

3

(Q) ; k('; v; �)k < �

o

where k�k is the norm in the spa
e L

6

(Q)� L

2

(0; T ;H)� L

3

(Q).
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Lemma 4.1 ensures that the mapping T : [0; 1℄ � L

6

(Q) � L

2

(0; T ; H) �

L

3

(Q) ! L

6

(Q) � L

2

(0; T ; H) � L

3

(Q) is a homotopy of 
ompa
t transfor-

mations on the 
losed ball B

�

and Lemma 4.2 implies that

T (�; '; v; �) 6= ('; v; �) 8('; v; �) 2 �B

�

; 8� 2 [0; 1℄

The foregoing properties allow us 
onsider the Leray-S
hauder degree

D(Id � T (�;

:

); B

�

; 0); 8� 2 [0; 1℄ (see Deimling [9℄). The homotopy invari-

an
e of Leray-S
hauder degree shows that the equality below holds

D(Id� T (0;

:

); B

�

; 0) = D(Id� T (1;

:

); B

�

; 0) (4.72)

Moreover, the Lemma 4.3 ensures that the problem T (0; '; v; �) = ('; v; �)

has a unique solution in L

6

(Q)� L

2

(0; T ; H)� L

3

(Q). Hen
e we 
an 
hoose

a suÆ
iently large � > 0 su
h that the ball B

�


ontains this solution, it

turns out that D(Id� T (0;

:

); B

�

; 0) = 1. Then relation (4.72) ensures that

the equation T (1; '; v; �) � ('; v; �) = 0 has a solution ('; v; �) 2 B

�

�

L

6

(Q)� L

2

(0; T ; H)� L

3

(Q). By (4.20) with � = 1, this is just a solution of

the problem (4.17)-(4.18)-(4.19).

The uniqueness and regularity of problem (4.17), (4.18), (4.19) are 
on-

sequen
e of the appli
ation of the Propositions 3.1 and 3.2 and L

p

-regularity

theory for linear paraboli
 equations. To prove uniqueness let '

i

, v

i

and �

i

with i = 1, 2 be two solutions of problem (4.17), (4.18), (4.19), with 
orre-

sponding pressures p

i

(for simpli
ity of exposition, we omit the subs
ript ").

We �rst observe that by using the previously obtained estimates and argu-

ments similar to the ones used to prove that T

�

is well de�ned (De�nition

4.1), we 
on
lude that '

i

2 W

2;1

3

(Q)\L

1

(Q), v

i

2 L

2

(0; T ;V )\L

1

(0; T ;H)

and � 2 W

2;1

2

(Q) \ L

p

(Q) (for any �nite p � 1).

By denoting ~' = '

1

� '

2

, ~v = v

1

� v

2

,

~

� = �

1

� �

2

and ~p = p

1

� p

2

, these

fun
tions satisfy the following equations and 
onditions:

� ~'

�t

��� ~' = [a(x; t)+b(x; t)('

1

+'

2

)�('

2

1

+'

1

'

2

+'

2

2

)℄ ~'+

~

�;

(4.73)

�~v

�t

� ��~v + (v

1

:r)~v +r~p + k(f

s

('

1

)� ") ~v

=

!

�

~

� � (~v:r)v

2

+ fk(f

s

('

1

)� ")� k(f

s

('

2

)� ")g~v; (4.74)

div ~v = 0;
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�

~

�

�t

��

~

� + v

1

:r

~

� =

`

2

�f

s

�'

('

1

)

� ~'

�t

�(~v:r)�

2

+

`

2

 

�f

s

�'

('

1

) �

�f

s

�'

('

2

)

!

�'

2

�t

; (4.75)

� ~'

��

= 0;

~

� = 0;

~v = 0;

on S; (4.76)

~'(x; 0) =

~

�(x; 0) = 0;

~v(x; 0) = 0:

in 
: (4.77)

By multiplying equation (4.73) by ~' and integrating on 
, after usual

integration by parts, using the fa
t that a(�), b(�), '

1

, '

2

2 L

1

(Q) and

Holder's inequality, we obtain

d

dt

jj ~'(t)jj

2

2;


+ 2�jjr ~'(t)jj

2

2;


� C

1

[ jj ~'(t)jj

2

2;


+ jj

~

�(t)jj

2

2;


℄: (4.78)

Now, we multiply (4.73) by

� ~'

�t

and integrate on 
. Pro
eeding similarly

as before, we 
an obtain

jj

� ~'

�t

(t)jj

2

2;


+

�

2

d

dt

jjr ~'(t)jj

2

2;


� C

2

[ jj ~'(t)jj

2

2;


+ jj

~

�(t)jj

2

2;


℄: (4.79)

Next, we multiply equation (4.74) by ~v and pro
eed as usual with the

help of the fa
ts that div v

1

= 0, k(f

s

('

1

)� � � 0 and Holder's inequality to

obtain

1

2

d

dt

jj~v(t)jj

2

2;


+ �jjr~v(t)jj

2

2;


� C[jj

~

�(t)jj

2

2;


+ jj~v(t)jj

2

2;


+

Z




(~v(t):r)v

2

(t)~v(t)

+

Z




[k(f

s

('

1

(t))� �) � k(f

s

('

2

(t))� �)℄ j~v(t)j

2

℄

(4.80)
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The integral terms on the right hand side of the previous inequality 
an be

estimated as follows.

j

Z




(~v(t):r)v

2

(t)~v(t)j � Cjjrv

2

(t)jj

2;


jj~v(t)jj

2

4;


� Cjjrv

2

(t)jj

2;


jj~v(t)jj

2;


jjr~v(t)jj

2;


� C

�

jjrv

2

(t)jj

2

2;


jj~v(t)jj

2

2;


+

�

4

jjr~v(t)jj

2

2;


Next, by using the fa
ts that k(�) is a Lips
hitz fun
tion on (�1; 1� �)

and f

s

(�) is a L

1

-fun
tion, we obtain:

j

R




[k(f

s

('

1

(t)) � �) � k(f

s

('

2

(t)) � �)℄j~v(t)j

2

dxj

� C

�

R




j[f

s

('

1

(t))� �)℄� [f

s

('

1

(t))� �℄jj~v(t)j

2

dx

= C

�

R




jf

s

('

1

(t))� f

s

('

1

(t))jj~v(t)j

2

dx

� Cjj~v(t)jj

2

2;


:

By using the last two estimates in (4.80), we get

d

dt

jj~v(t)jj

2

2;


+

3

2

�jjr~v(t)jj

2

2;


� C

3

jj

~

�(t)jj

2

2;


+ C

4

(1 + jjrv

2

(t)jj

2

2;


)jj~v(t)jj

2

2;


(4.81)

We pro
eed by multiplying equation (4.75) by

~

�, integranting on 
. After

integration by parts and the use of the fa
ts that div v

1

= 0,

�f

s

�'

2 L

1

(R),

with the help of Holder's inequality, we obtain:

1

2

d

dt

jj

~

�(t)jj

2

2;


+ jjr

~

�(t)jj

2

2;


� C(jj

~

�(t)jj

2

2;


+ jj

� ~'

�t

(t)jj

2

2;


)

+

Z




(~v(t):r)�

2

~

�(t)dx

+

Z




`

2

(

�f

s

�'

('

1

(t))�

�f

s

�'

('

1

(t)))

�'

2

�t

(t)

~

�(t) dx

(4.82)

The last two integrals terms in the above inequality 
an be estimated as

follows.
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j

R




(~v(t):r)�

2

~

�(t)dx j = j

R




div (~v(t)�

2

)

~

�(t)dx j

= j

R




(~v(t)�

2

) r

~

�(t)dxj � jj~v(t)jj

4;


jj�

2

(t)jj

4;


jjr

~

�(t)jj

2;


� 4jj~v(t)jj

2

4;


jj�

2

(t)jj

2

4;


+

1

4

jjr

~

�(t)jj

2

2;


� Cjj~v(t)jj

2;


jjr~v(t)jj

2;


jj�

2

(t)jj

2

4;


+

1

4

jjr

~

�(t)jj

2

2;


� C

�

jj�

2

(t)jj

4

4;


jj~v(t)jj

2

2;


+

�

2

jjr~v(t)jj

2

2;


+

1

4

jjr

~

�(t)jj

2

2;


:

Moreover, using the fa
t that

�f

s

�'

is a Lips
hitz fun
tion, we obtain:

j

Z




`

2

(

�f

s

�'

('

1

(t))�

�f

s

�'

('

1

(t)))

�'

2

�t

(t)

~

�(t) dx j

� C

Z




j ~'(t)j j

�'

2

�t

(t)j j

~

�(t)j dx

� Cjj ~'(t)jj

2;


jj

�'

2

�t

(t)jj

3;


jj

~

�(t)jj

6;


� Cjj ~'(t)jj

2;


jj

�'

2

�t

(t)jj

3;


jjr

~

�(t)jj

2;


� Cjj

�'

2

�t

(t)jj

2

3;


jj ~'(t)jj

2

2;


+

1

4

jjr

~

�(t)jj

2

2;


:

By using the last two inequalities in (4.82), we get

d

dt

jj

~

�(t)jj

2

2;


+ jjr

~

�(t)jj

2

2;


� C

5

(jj

~

�(t)jj

2

2;


+ jj

� ~'

�t

(t)jj

2

2;


)

+C

6

jj�

2

(t)jj

4

4;


jj~v(t)jj

2

2;


+C

7

jj

�'

2

�t

(t)jj

2

3;


jj ~'jj

2

2;


:

(4.83)

Now, we multiply (4.79) by 2C

5

and add the result to (4.78), (4.81) and

(4.83). After some simpli�
ations, we obtain:

d

dt

jj ~'(t)jj

2

2;


+

d

dt

jj~v(t)jj

2

2;


+

d

dt

jj

~

�(t)jj

2

2;


+ �C

5

d

dt

jjr ~'(t)jj

2

2;


� C

8

(1 + jj

�'

2

(t)

�t

jj

2

3;


)jj ~'(t)jj

2;


+C

9

(1 + jjrv

2

(t)jj

2

2;


+ jj�

2

(t))jj

4

4;


)jj~v(t)jj

2;


+C

10

jj

~

�jj

2

2;


:
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By denoting z(t) = jj ~'(t)jj

2

2;


+ jj~v(t)jj

2

2;


+ jj

~

�(t)jj

2

2;


+ �C

5

jjr ~'(t)jj

2

2;


,

the last inequality implies

d

dt

z(t) � C[1 + jj

�'

2

�t

(t)jj

2

3;


) + jjrv

2

(t)jj

2

2;


+ jj�

2

(t))jj

4

4;


℄z(t):

This inequality implies that for t 2 [0; T ℄

0 � z(t) � z(0) expfC(T)[1 + jj

�'

2

�t

(t)jj

2

3;Q

) + jjv

2

(t)jj

2

L

2

(0;T;V)

+ jj�

2

(t))jj

4

4;Q

℄g:

Sin
e jj

�'

2

�t

(t)jj

2

L

3

(Q)

) + jjv

2

(t)jj

2

L

2

(0;T ;V )

+ jj�

2

(t))jj

4

L

4

(Q)

is �nite, due to the

known regularity of the involved fun
tions, and z(0) = 0, we 
on
lude that

z(t) � 0, and therefore ~' � 0, ~v � 0,

~

� � 0, whi
h imply the uniqueness of

the solutions.

In the following we will show that the solutions ('

"

; v

"

; �

"

) 2 L

6

(Q) �

L

2

(0; T ; H)�L

3

(Q) of the problem (4.17), (4.18), (4.19) are uniformly bounded

with respe
t to " in the spa
e W

2;1

3

(Q)�L

2

(0; T ;V )\L

1

(0; T ;H)�W

2;1

2

(Q).

For this, note �rst that �

"

2 L

3

(Q); the L

p

-theory of paraboli
 linear

equation 
ombined with Theorem 3.1 and Lemma 3.1 allow us to 
on
lude

that there exists an unique '

"

2 W

2;1

3

(Q) \ L

1

(Q) su
h that

k'

"

k

1;Q

� C k'

"

k

(2)

3;Q

� C

�








(a + b'

"

� '

2

"

)'

"










3;Q

+ k�

"

k

3;Q

+ k'

0"

k

W

4=3

3

(
)

�

:

(4.84)

But max

(x;t)2Q

�

a(x; t) + b(x; t)s� s

2

�

is �nite; hen
e, from (4.84), we get

that

k'

"

k

1;Q

� C k'

"

k

(2)

3;Q

� C

�

k'

"

k

6;Q

+ k�

"

k

3;Q

+ k'

0"

k

W

4=3

3

(
)

�

: (4.85)

Now, by 
ombining (4.62), (4.69) and (4.85) and using usual Sobolev

imbeddings, we 
on
lude that

k'

"

k

(2)

3;Q

� C

�

k�

0"

k

2;


+ k'

0"

k

W

4=3

3

(
)

�

: (4.86)

Moreover, Lemma 3.2 gives us that '

"

2 H

2=3;1=3

(Q) su
h that

j'

"

j

(2=3)

Q

� C k'

"

k

(2)

3;Q

� C

�

k�

0"

k

2;


+ k'

0"

k

W

4=3

3

(
)

�

: (4.87)
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We 
onsider then the equation for the temperature. By applying the L

p

-

theory of paraboli
 linear equations (see Ladyzenskaja [16℄) together with

the fa
ts that

�'

"

�t

2 L

2

(Q), f

s

2 C

1;1

b

( IR) and v

"

2 L

4

(Q)

2

, we have that

there exists an unique �

"

2 W

2;1

2

(Q) \ L

p

(Q) (p � 2) su
h that

k�

"

k

(2)

2;Q

� C

0

�

kv

"

k

4;Q

k�

0"

k

W

1

2

(
)

+
















�f

s

�'
















1;Q













'

"

�t













2;Q

+ k�

0"

k

W

1

2

(
)

1

A

(4.88)

where the estimates kv

"

k

4;Q

and













'

"

�t













2;Q

are given by (4.71) and (4.66),

respe
tively.

By 
ombining (4.69), (4.71) and (4.88), we obtain

k�

"

k

(2)

2;Q

� C

�

kv

0

k

H

+ k'

0

k

W

4=3

3

(
)

+ k�

0

k

W

1

2

(
)

�

(4.89)

Therefore, the solutions ('

"

; v

"

; �

"

) of problem (4.17), (4.18), (4.19) are

uniformly bounded with respe
t to " in the spa
e W

2;1

3

(Q) � (L

2

(0; T ;V ) \

L

1

(0; T ;H))�W

2;1

2

(Q), and this 
ompletes the proof of Theorem 4.1.

5 Proof of the Theorem 3.1

In this se
tion we will use the results of Theorem 4.1, the L

p

�theory of

paraboli
 equations, the imbedding of Lemma 3.2 and 
ompa
tness argu-

ments to prove a result on existen
e and regularity of solution for problem

(2.1), (2.2), (2.3). This will be obtained by passing to the limit in the regular-

ized problem (4.17), (4.18), (4.19) as " approa
hes zero. Due to the estimates

we presente, the 
onvergen
e of almost all the terms in the equations of the

regularized problem will be standard ones, ex
ept for the regularized velo
-

ity equation that will require a lo
al argument. The stated regularity of the

solutions wil be obtained by using bootstrapping arguments. Unfortunately,

due to the additional Carman-Koseny type term in the velo
ity equation, we


annot improve the regularity of weak solution of Navier-Stokes equations.

Passing to the Limit

As a 
onsequen
e of Theorem 4.1, for " 2 (0; 1℄, any solution ('

"

; v

"

; �

"

) 2

L

6

(Q) � L

2

(0; T ; H) � L

3

(Q) of problem (4.17), (4.18), (4.19) is uniformly
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bounded with respe
t to " in the spa
e W

2;1

3

(Q)�(L

2

(0; T ;V )\L

1

(0; T ;H))�

W

2;1

2

(Q).

With the help of Aubin-Lions Lemma (see Temam [23℄, Lions [17℄ or

Corolary 4, p. 85, in Simon [22℄), there exists ('; v; �) 2 L

6

(Q)�L

2

(0; T ;H)�

L

3

(Q) and a subsequen
e, whi
h for simpli
ity of notation is still indexed by

", su
h that as "! 0

'

"

! ' in L

q

(Q) (q � 6)

r'

"

! r' in L

3

(Q)

2

'

"

* ' in W

2;1

3

(Q)

�

"

! � in L

p

(Q) (p � 2)

r�

"

! r� in L

2

(Q)

2

�

"

* � in W

2;1

2

(Q)

v

"

* v in L

2

(0; T ; V)

v

"

�

* v in L

1

(0; T ; H)

Moreover, by Lemma 3.2, '

"

2 H

2=3;1=3

(Q) and for all " 2 [0; 1℄ we have

j'

"

j

(2=3)

Q

� C k'

"

k

(2)

3

. In parti
ular, sup

Q

j'

"

(x; t)j � C, and h'

"

i

(1=3)

t

� C.

Thus, f'

"

g is uniformly bounded and equi
ontinuous family in Q. By Arzela-

As
oli's Theorem it follows that there exists a subsequen
e, that we denote,

for simpli
ity, again by f'

"

g su
h that '

"

! ' uniformly in Q.

We 
he
k now that ('; v; �) 2 L

6

(Q)�L

2

(0; T ;H)�L

3

(Q) is a generalized

solution of problem (2.1), (2.2), (2.3).

We start by taking Q

s

and Q

ml

as in De�nition 3.1 with the just obtained

fun
tion '.

Now, we have to prove that v = 0 in

0

Q

s

. For this, we will use an argument

already used by Blan
 et al [1℄: we take K a 
ompa
t subset in

0

Q

s

and observe

that f

s

2 C

1;1

b

(IR), f

s

('(x; t)) = 1 in a neighborhood of K. Sin
e '

"

! '

uniformly in Q, we 
on
lude that there is a small positive "

K

su
h that

f

s

('

"

(x; t)) = 1 in K
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whenever " 2 (0; "

K

).

By multiplying the regularized velo
ity equation of problem (4.17)-(4.18)-

(4.19) by v

"

, integrating over K, using Green's formula and Young's inequal-

ity, we obtain

k(1� ") kv

"

k

2;K

� C

with C a positive 
onstant independent of " 2 (0; "

K

).

As " approa
hes zero, k(1�") blows up and 
ompels kv

"

k

L

2

(K)

2

to 
onverge

to 0. Therefore, v

"j

K

! 0 in L

2

(K), and 
onsequently v = 0 in K. Sin
e K

was an arbitrary 
ompa
t set of

0

Q

s

, we 
on
lude that v = 0 in

0

Q

s

.

Now we have to show that the triple of fun
tions ('; �; v) satis�es equa-

tions (3.14), (3.15) and (3.16). We start by proving that (3.16) is satis�ed.

For this, we multiply the se
ond equation in (4.17) by a test fun
tion

� 2 C([0; T ℄;W

1

2

(


ml

(t))) su
h that div �(:; t) = 0 for all t 2 [0; T ℄ ,

supp �(x; t) � Q

ml

[ 


ml

(0) and �(:; T ) = 0 and integrate over Q. Af-

ter some usual integrations by parts using (4.18), (4.19) and observing the

properties of �, we obtain

�

Z

Q

ml

v

"

�

t

dxdt + �

Z

Q

ml

rv

"

r� dxdt +

Z

Q

ml

(v

"

:r)v

"

� dxdt

+

Z

Q

ml

k(f

s

('

"

)� ")v

"

� dxdt =

Z

Q

ml

!

�

�

"

� dxdt +

Z




ml

(0)

v

0

(x)�(x; 0)dx

(5.90)

The stated 
onvergen
es for '

"

, �

"

and v

"

are enough to 
on
lude the


onvergen
e of the �rst and se
ond terms of the left hand side and also of

the �rst term of the right hand side of equation (5.90). For the 
onvergen
e

of the third and fourth term of the left hand side, however, we need to be

more 
areful.

We �rst observe that

k(f

s

('

"

)� ") ! k(f

s

(')) in C

0

(K

ml

) (5.91)

for any �xed 
ompa
t K

ml

� Q

ml

[ 


ml

(0). In fa
t, in su
h K

ml

,

k(f

s

('

"

(x; t))� ") and k(f

s

('(x; t))) are bounded 
ontinuous fun
tions, and,

sin
e f

s

('

"

)� " 
onverges to f

s

(') in C

0

(K

ml

), we obtain the stated result.

In parti
ular, this result holds for K

ml

taken as supp �, and this guaran-

tees the 
onvergen
e of the last term in the left hand side of the last equation.

For the 
onvergen
e of the third term of the left hand side it is ne
essary to

improve the 
onvergen
e of v

"

. For this, we �rst observe that Q

ml

is an open
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set and 
an be 
overed by a 
ountable number of open 
ylinders 


i

� (a

i

; b

i

),

su
h that for ea
h i = 1; : : : ;1, we have 


i

� 
 and [a

i

; b

i

℄ � (0; T ). Thus,

for ea
h i = 1; : : : ;1, we 
an take the 
ompa
t set 


i

�[a

i

; b

i

℄ as K

ml

in (5.91)

and 
on
lude that there is "

i

2 (0; 1℄ and C

i

> 0 independent of " 2 (0; "

i

℄

su
h that for su
h " we have

jjk(f

s

('

"

)� ")jj

L

1

(


i

�[a

i

;b

i

℄)

� C

i

:

This and our previous estimates allow us to work with the se
ond equation

in (4.17) restrited to 


i

� (a

i

; b

i

) to obtain that there is C

i

> 0 independent

of " 2 (0; "

i

℄ su
h that for su
h " we have
















�v

"

�t
















L

2

(a

i

;b

i

;V

0

(


i

)

� C

i

;

where V

0

(


i

) is the topologi
al dual of the Bana
h spa
e V (


i

) =

fu 2

0

W

1

2

(


i

)

2

; div u = 0g, 
onsidered with the norm of

0

W

1

2

(


i

)

2

.

Also, our previous estimates tell us in parti
ular that fv

"

g for is unifomly

bounded with respe
t to " 2 (0; "

i

℄ in L

2

(a

i

; b

i

;W (


i

)), where W (


i

) =

fu 2 W

1

2

(


i

)

2

; div u = 0g is a Bana
h spa
e with the W

1

2

(


i

)

2

-norm.

Being the Bana
h spa
e

H(


i

) = fu 2 L

2

(


i

)

2

; div u = 0; and null normal tra
eg


onsidered with the L

2

(


i

)

2

-norm (see Temam [23℄ for properties of this and

the previous Bana
h spa
es , we observe that W (


i

) � H(


i

) � V

0

(


i

),

and the �rst imbeding is 
ompa
t, we 
an use Corolary 4, p. 85, in Si-

mon [22℄ to 
on
lude that there is a subsequen
e of fv

"

g 
onverging to v

in L

2

(a

i

; b

i

;H(


i

)). In parti
ular, this implies that along su
h subsequen
e

v

"

! v in L

2

(


i

� (a

i

; b

i

)).

Pro
eeding as above for ea
h i = 1; : : : ;1, with the help of the usual

diagonal argument, we obtain a subsequen
e su
h that

v

"

! v in L

2

lo


(Q

ml

):

Thus, along su
h subsequen
e, we 
an pass to the limit as "! 0 in (5.90)

by pro
eeding exa
tly as in the 
ase of the 
lassi
al Navier-Stokes equations

and 
on
lude that (3.16) is satis�ed.
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To obtain the other equations in De�nition 3.1, we multiply the �rst and

third equations of (4.17) respe
tively by � 2 W

1;1

2

(Q) with �(: ; T ) = 0 and

� 2

0

W

1;1

2

(Q) with �(: ; T ) = 0, and pro
eed as before. Using arguments

similar to the ones in (4.45) and (4.47), we 
on
lude that

Z

Q

�

a'

"

+ b'

"

� '

3

"

�

� dxdt!

Z

Q

�

a' + b'� '

3

�

� dxdt;

Z

Q

�f

s

�'

('

"

)

�'

"

�t

� dxdt!

Z

Q

�f

s

�'

(')

�'

�t

� dxdt;

as "! 0.

With these results, it is easy to to pass to the limit as "! 0 and 
on
lude

that equations (3.14) and (3.15) are also satis�ed.

Regularity of the Solution

Now we have to examine the regularity of ('; �; v). For this, we remark

that by interpolation (see Ladyzenskaja [16℄ p. 74), � 2 L

4

(Q). Thus,

applying Proposition 3.1 with � 2 L

3

(Q), we 
on
lude that ' 2 W

2;1

3

(Q) \

L

1

(Q).

Also, Proposition 3.2 give us that v 2 L

4

(Q)

2

.

By applying the L

p

�theory of paraboli
 equations together with the fa
ts

that f

s

2 C

1;1

b

(IR), v 2 L

4

(Q)

2

,

�'

�t

2 L

2

(Q) and Lemma the result of 3.1, we


on
lude that � 2 W

2;1

2

(Q) \ L

p

(Q) (p � 2).

Therefore, by using a bootstrapping argument with � 2 L

q

(Q) where

q � 3 and smoothness of the data '

0

we 
on
lude that ' 2 W

2;1

q

(Q)\L

1

(Q).

Applying again the L

p

�theory of paraboli
 equations with f

s

2 C

1;1

b

( IR),

v 2 L

4

(Q)

2

,

�'

�t

2 L

p

(Q), with 2 � p < 4, re
alling the given smoothness

of �

0

and the result of Lemma 3.1, we 
on
lude that � 2 W

2;1

p

(Q) \ L

1

(Q),

with 2 � p < 4.

This 
ompletes the proof of Theorem 3.1.
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