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Abstrat

The phase-�eld method provides an alternative mathematial desription

for free-boundary problems orresponding to physial proesses with phase

transitions. It postulates the existene of a funtion, alled the phase-�eld,

whose value identi�es the phase at a partiular point in spae and time, and

it is partiularly suitable for ases with omplex growth strutures ourring

during phase transitions.

The mathematial model studied in this work desribes the solidi�ation

proess ourring in a binary alloy with temperature dependent properties.

It is based on a highly nonlinear degenerate paraboli system of partial dif-

ferential equations with three independent variables: phase-�eld, solute on-

entration and temperature.

Existene of weak solutions of suh system is obtained via the introdution

of a regularized problem, followed by the derivation of suitable estimates and

the appliation of ompatness arguments.
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1 Introdution

We are interested in performing a mathematial analysis of a model for phase

hange proesses ourring in binary alloys with thermal properties. Suh a

model, using a phase-�eld methodology, was proposed by Caginalp and Xie

[3℄ and a detailed derivation of more omprehensive system was presented

by Caginalp and Jones [2℄. It is desribed as the following oupled system of

nonlinear partial di�erential equations:

��

2

�

t

� �

2

�� =

1

2

(�� �

3

) + � (� � �

A

� (1� )�

B

) in 
� (0;1);(1)

C

V

�

t

+

l

2

�

t

= r �K

1

(�)r� in 
� (0;1); (2)



t

= K

2

r � (1� )r

�

M� + ln



1� 

�

in 
� (0;1); (3)

��

�n

= 0;

��

�n

= 0;

�

�n

= 0 on �
� (0;1); (4)

�(0) = �

0

; �(0) = �

0

; (0) = 

0

in 
: (5)

Here 
 is an open bounded domain of IR

N

; N = 2; 3, with smooth boundary

�
. The order parameter (phase-�eld) � is the state variable haraterizing

the di�erent phases; the funtion � represents the temperature; the onen-

tration  2 (0; 1) denotes the fration of one of the two materials in the

mixture. The parameter � > 0 is the relaxation saling; the parameter �

is given by � = �[s℄=3�, where � > 0 is a measure of the interfae width,

� the surfae tension and [s℄ the entropy density di�erene between phases;

C

V

> 0 is the spei� heat; the onstant l > 0 the latent heat; �

A

, �

B

,

are the respetive melting temperatures of eah of the two materials in the

alloy; K

2

> 0 is the solute di�usivity; M is a onstant related to the slopes

of solidus and liquidus lines; K

1

> 0 denotes the thermal ondutivity. Con-

erning this last physial parameter, throughout this paper we assume the

onditions of Lauren�ot [11℄:

(A) K

1

depends only on the order parameter � and is a Lipshitz on-

tinuous funtion. Moreover, there exists b > 0 suh that

0 � K

1

(r) � b for all r 2 IR:
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We observe that one tehnial diÆulty with the previous system is that,

when K

1

vanishes the equation (2) degenerates and looses its paraboliity.

Note also that equation (3) an be rewritten as



t

= K

2

(� +Mr � (1� )r�)

= K

2

�+K

2

M(1� 2)r � r�+K

2

M(1� )�� (6)

and that for the pure materials, that is, when  � 0 or  � 1, the equations

redue to the usual phase �eld model for pure materials.

We should remark that in reent years the phase-�eld methodology has

ahieved onsiderable importane in modeling and numerially simulating a

range of phase transitions and omplex growth strutures ourring during

solidi�ation. Phase-�eld models have been used to desribe phase transi-

tions of pure material due to thermal e�ets; they lead to nonlinear paraboli

systems for the phase-�eld and the temperature. Suh models have been stud-

ied, and we refer for instane to [1, 8, 11, 14℄, where existene and unique-

ness of solutions are investigated for various types of nonlinearities. The

phase-�eld governing equations have been derived in a thermodynamially

onsistent way by Penrose and Fife [15℄, whih reovers the phase-�eld model

employed by Caginalp [1℄ by linearization of the heat ux. Many papers has

been devoted to the mathematial analysis of the Penrose-Fife model, for

instane see [4, 5℄ and referenes therein. Several phase-�eld models have

also been developed for binary alloys. The �rst work in this diretion was

due to Wheeler et al [19℄ and is onerned isothermal solidi�ation. Warren

and Boettinger [18℄ extended this model, while reently Rappaz and Sheid

[16℄ investigated well-posedness of solutions under suitable assumptions for

the non-linearities. Another similar model inluding temperatures hanges

was developed by Caginalp and Xie [3℄. In a suh models, the governing

equations for the phase-�eld and the onentration are derived from a free

energy funtional, and an appropriate balane equation for the temperature

is then adjoined to omplete the model.

Conerning notations, in this paper we use standard ones, with the remark

that we denote by h�; �i the duality pairing between H

1

(
) and H

1

(
)

0

. Also,

for a given �xed T > 0, we denote Q = 
� (0; T ).

The main result of this paper is the following.
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Theorem 1 Suppose that �

0

2 H

1

(
); �

0

2 L

2

(
); 

0

2 H

1

(
); 0 < 

0

< 1

a.e. in

�


; satisfy the ompatibility onditions. Under the assumption (A),

there exist funtions (�; �; ; J) satisfying, for any �xed T > 0;

i) � 2 L

2

(0; T ;H

2

(
)) \ L

1

(0; T ;H

1

(
)); �

t

2 L

2

(Q); �(0) = �

0

;

ii) � 2 L

1

(0; T ;L

2

(
)); �

t

2 L

2

(0; T ;H

1

(
)

0

); �(0) = �

0

;

iii)  2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)); 

t

2 L

2

(0; T ;H

1

(
)

0

);

(0) = 

0

; 0 <  < 1 a.e. in Q;

iv) J 2 L

2

(Q; IR

n

); J = r(K

1

(�)�)� �rK

1

(�);

and suh that

��

2

�

t

� �

2

�� =

1

2

(�� �

3

) + � (� + (�

B

� �

A

)� �

B

) a.e. in Q; (7)

��

�n

= 0 a.e. on �
� (0; T ); (8)

C

�

Z

T

0

h�

t

; �idt+

l

2

Z

T

0

Z




�

t

� dxdt+

Z

T

0

Z




J � r� dxdt = 0; (9)

Z

T

0

h

t

; �idt+K

2

Z

T

0

Z




r � r� dxdt+K

2

M

Z

T

0

Z




(1� )r� � r� dxdt = 0;

(10)

for any � 2 L

2

(0; T ;H

1

(
)):

If, in addition, K

1

� b

0

for some b

0

> 0; then � 2 L

2

(0; T ;H

1

(
)) for

eah T > 0; and J = K

1

(�)r�:

We remark that beause the possibility of degeneray of the paraboli

harater of the model, we were able neither to prove uniqueness nor to

improve the regularity of the onstruted solution.

Finally, the outline of this paper is as follows. In Setion 2, we study

a family of regularized problems depending on a small aessory positive

parameter; this study will be auxiliary to prove the main existene result, and

it will be introdued to avoid the above mentioned possibility of degeneray

of paraboliity in equation (3). Setion 3 is devoted to proof of Theorem 1;

it will be done with the help of suitable estimates derived for the regularized

problem together with ompatness arguments.
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2 A regularized problem

In this setion we introdue a regularized problem related to (1){(5); for

it, we prove a result of existene of solutions by using Leray-Shauder �xed

point theorem ([6℄ pp. 189).

Before doing so, we reall ertain results that will be helpful in the intro-

dution of suh regularized problem.

Reall that there is an extension operator Ext(�) taking any funtion w

in the spae

W

2;1

2

(Q) =

n

w 2 L

2

(Q) =D

x

w;D

2

x

w 2 L

2

(Q); w

t

2 L

2

(Q)

o

and extending it to a funtion Ext(w) 2 W

2;1

2

(IR

N+1

) with ompat support

satisfying

kExt(w)k

W

2;1

2

(IR

N+1

)

� C kwk

W

2;1

2

(Q)

;

with C independent of w (see [13℄ pp.157).

For Æ 2 (0; 1), let �

Æ

2 C

1

0

(IR

N+1

) be a family of symmetri positive

molli�er funtions onverging to the Dira delta funtion, and denote by �

the onvolution operation. Then, given a funtion w 2 W

2;1

q

(Q), we de�ne a

regularization �

Æ

(w) 2 C

1

0

(IR

N+1

) of w by

�

Æ

(w) = �

Æ

� Ext(w):

Now, we de�ne K

Æ

1

for eah Æ 2 (0; 1) by

K

Æ

1

(r) = K

1

(r) + Æ

for all r 2 IR: We infer from (A) that,

(B) K

Æ

1

is a Lipshitz ontinuous funtion and

0 < Æ � K

Æ

1

(r) � b + 1 for all r 2 IR:

Now, we are in position to de�ne the following family of regularized prob-

lems. For Æ 2 (0; 1), we onsider the system

��

2

�

Æ

t

� �

2

��

Æ

=

1

2

(�

Æ

� (�

Æ

)

3

) + �

�

�

Æ

+ (�

B

� �

A

)

Æ

� �

B

�

in Q;(11)
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C

V

�

Æ

t

+

l

2

�

Æ

t

= r �K

Æ

1

(�

Æ

(�

Æ

))r�

Æ

in Q; (12)



Æ

t

�K

2

�

Æ

= K

2

Mr � 

Æ

(1� 

Æ

)r

�

�

Æ

(�

Æ

)

�

in Q; (13)

��

Æ

�n

= 0;

��

Æ

�n

= 0;

�

Æ

�n

= 0 on �
� (0; T ); (14)

�

Æ

(0) = �

Æ

0

; �

Æ

(0) = �

Æ

0

; 

Æ

(0) = 

Æ

0

in 
: (15)

We then have the following existene result.

Proposition 1 For eah Æ 2 (0; 1), let (�

Æ

0

; �

Æ

0

; 

Æ

0

) 2 H

1

(
)�H

1

(
)�C

1

(

�


)

satisfying the ompatibility onditions and 0 < 

Æ

0

< 1 in

�


. Under the

assumption (B), there exist funtions (�

Æ

; �

Æ

; 

Æ

) satisfying, for any �xed

T > 0,

i) �

Æ

2 L

2

(0; T ;H

2

(
)); �

Æ

t

2 L

2

(Q);

ii) �

Æ

2 L

2

(0; T ;H

2

(
)); �

Æ

t

2 L

2

(Q);

iii) 

Æ

2 C

2;1

(Q); 0 < 

Æ

< 1;

iv) (�

Æ

; �

Æ

; 

Æ

) satis�es (11)-(15) almost everywhere.

Proof: To ease the notation, in this proof we will omit the supersript Æ of

the variables �

Æ

; �

Æ

; 

Æ

.

First of all, we onsider the following family of operators, indexed by the

parameter 0 � � � 1,

T

�

: B ! B;

where B is the Banah spae

B = L

2

(Q)� L

2

(Q)� L

2

(Q);

and de�ned as follows: given (

^

�;

^

�; ̂) 2 B, let T

�

(

^

�;

^

�; ̂) = (�; �; ), where

(�; �; ) is obtained by solving the problem

��

2

�

t

� �

2

�� �

1

2

(�� �

3

) = ��

�

^

� + (�

B

� �

A

)̂� �

B

�

in Q; (16)
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C

V

�

t

+

l

2

�

t

= r �K

Æ

1

(�

Æ

(�))r� in Q; (17)



t

�K

2

� = K

2

Mr � (1� )r (�

Æ

(�)) in Q; (18)

��

�n

= 0;

��

�n

= 0;

�

�n

= 0 on �
� (0; T ); (19)

�(0) = �

Æ

0

; �(0) = �

Æ

0

; (0) = 

Æ

0

in 
: (20)

Before we prove that T

�

is well de�ned, we observe that learly (�; �; )

is a solution of (11)-(15) if and only if it is a �xed point of the operator T

1

.

In the following, we prove that T

1

has at least one �xed point by using the

Leray-Shauder �xed point theorem.

To verify that T

�

is well de�ned, observe that sine

^

�; ̂ 2 L

2

(Q), we infer

from Theorem 2.1 of [8℄ that there is a unique solution � of equation (16)

with � 2 W

2;1

2

(Q).

Now, sine K

Æ

1

is a bounded Lipshitz ontinuous funtion and �

Æ

(�) 2

C

1

0

(IR

N+1

), we have that K

Æ

1

(�

Æ

(�)) 2 W

1;1

r

(Q) for 1 � r � 1. Thus, sine

�

t

2 L

2

(Q); we infer from L

p

-theory of paraboli equations ([10℄ pp. 341)

that there is a unique solution � of equation (17) with � 2 W

2;1

2

(Q).

We observe that equation (18) is a semilinear paraboli equation with

smooth oeÆients. Moreover, by looking at the right-hand side of this

equation, written in form (6), it has the properties and growth onditions to

apply semigroup results of Henry [7℄, pp.75. Thus, we onlude that there is

a unique global lassial solution .

In addition, note that equation (18) does not admit onstant solutions,

exept  � 0 and  � 1. Thus, by using Maximum Priniples together with

onditions 0 < 

Æ

0

< 1 and

�

Æ

�n

= 0, we an dedue that

0 < (x; t) < 1; 8 (x; t) 2 Q: (21)

Therefore, for eah � 2 [0; 1℄, the mapping T

�

is well de�ned from B into B.

To prove ontinuity of T

�

, let (

^

�

n

;

^

�

n

; ̂

n

) 2 B strongly onverging to

(

^

�;

^

�; ̂) 2 B; for eah n, let (�

n

; �

n

; 

n

) the orresponding solution of the

problem:

��

2

�

n

t

� �

2

��

n

�

1

2

(�

n

� �

3

n

) = ��

�

^

�

n

+ (�

B

� �

A

)̂

n

� �

B

�

in Q;(22)
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C

V

�

n

t

+

l

2

�

n

t

= r �K

Æ

1

(�

Æ

(�

n

))r�

n

in Q; (23)



n

t

�K

2

�

n

= K

2

Mr � 

n

(1� 

n

)r (�

Æ

(�

n

)) in Q; (24)

��

n

�n

= 0;

��

n

�n

= 0;

�

n

�n

= 0 on �
� (0; T ); (25)

�

n

(0) = �

0

; �

n

(0) = �

0

; 

n

(0) = 

0

in 
: (26)

We show that the sequene (�

n

; �

n

; 

n

) onverges strongly to (�; �; ) =

T

�

(

^

�;

^

�; ̂) in B: For that purpose, we will obtain estimates, uniformly with

respet to n, for (�

n

; �

n

; 

n

). We denote by C

i

any positive onstant inde-

pendent of n.

We multiply (22) suessively by �

n

, �

n

t

and ���

n

, and integrate over


 � (0; t). After integration by parts and the use the H�older's and Young's

inequalities, we obtain the following three estimates:

��

2

2

Z




j�

n

j

2

dx +

Z

t

0

Z




 

�

2

2

jr�

n

j

2

+

1

4

�

4

n

!

dxdt

� C

1

+ C

2

Z

t

0

Z




�

j

^

�

n

j

2

+ ĵ

n

j

2

+ j�

n

j

2

�

dxdt; (27)

��

2

2

Z

t

0

Z




j�

n

t

j

2

dxdt +

Z




 

�

2

jr�

n

j

2

+

�

4

n

8

�

�

2

n

4

!

dx

� C

1

+ C

2

Z

t

0

Z




�

j

^

�

n

j

2

+ ĵ

n

j

2

�

dxdt; (28)

��

2

2

Z




jr�

n

j

2

dx +

�

2

2

Z

t

0

Z




j��

n

j

2

dxdt

� C

1

+ C

2

Z

t

0

Z




�

jr�

n

j

2

+ j

^

�

n

j

2

+ ĵ

n

j

2

�

dxdt:(29)

By multiplying (28) by ��

2

and adding the result to (27), we �nd

Z




�

j�

n

j

2

+ jr�

n

j

2

+ �

4

n

�

dx

� C

1

+ C

2

Z

t

0

Z




�

j

^

�

n

j

2

+ ĵ

n

j

2

+ j�

n

j

2

�

dxdt: (30)
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Sine k

^

�

n

k

L

2

(Q)

and k̂

n

k

L

2

(Q)

are bounded independent of n, we infer from

(30) and Gronwall's Lemma that

k�

n

k

L

1

(0;T ;H

1

(
))

� C

1

: (31)

Then, thanks to (27)-(29) we have

k�

n

k

L

2

(0;T ;H

2

(
))

+ k�

n

t

k

L

2

(Q)

� C

1

: (32)

Now, by multiplying (23) by �

n

, one obtains in a similar way as above

that

Z




j�

n

j

2

dx +

Z

t

0

Z




jr�

n

j

2

dxdt � C

1

+ C

2

Z

t

0

Z




�

j�

n

t

j

2

+ j�

n

j

2

�

dxdt: (33)

Thus, with the help of (32) and Gronwall's Lemma, we infer that

k�

n

k

L

1

(0;T ;L

2

(
))

� C

1

: (34)

Hene, it follows from (33) that

k�

n

k

L

2

(0;T ;H

1

(
))

� C

2

: (35)

Now, we take salar produt in L

2

(
) of (23) with � 2 H

1

(
). By

integrating by parts and using H�older's and Young's inequalities, we obtain

k�

n

t

k

H

1

(
)

0

� C

1

�

kr�

n

k

L

2

(
)

+ k�

n

t

k

L

2

(
)

�

:

Thus, we infer from (32) and (35) that

k�

n

t

k

L

2

(0;T ;H

1

(
)

0

)

� C

1

: (36)

Next, by multiplying (24) by 

n

, with the help of (21), as above we on-

lude that

Z




j

n

j

2

dx+

Z

t

0

Z




jr

n

j

2

dxdt � C

1

+ C

2

Z

t

0

Z




jr�

n

j

2

dxdt:

Hene, from (32) we have,

k

n

k

L

2

(0;T ;H

1

(
))

+ k

n

k

L

1

(0;T ;L

2

(
))

� C

1

: (37)
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In order to get an estimate for 

n

t

in L

2

(0; T ;H

1

(
)

0

); we return to equa-

tion (24) and use similar tehniques as above to obtain

k

n

t

k

L

2

(0;T ;H

1

(
)

0

)

� C

1

: (38)

We now infer from (31) and (32) that the sequene (�

n

) is bounded in

W

1

=

n

v 2 L

2

(0; T ;H

2

(
)); v

t

2 L

2

(0; T ;L

2

(
))

o

and in

W

2

=

n

v 2 L

1

(0; T ;H

1

(
)); v

t

2 L

2

(0; T ;L

2

(
)):

o

;

We also infer from (34)-(37) that the sequenes (�

n

) and (

n

) are bounded in

W

3

=

n

v 2 L

2

(0; T ;H

1

(
)); v

t

2 L

2

(0; T ;H

1

(
)

0

)

o

and in

W

4

=

n

v 2 L

1

(0; T ;L

2

(
)); v

t

2 L

2

(0; T ;H

1

(
)

0

)

o

:

SineW

1

is ompatly embedded in L

2

(0; T ;H

1

(
)),W

2

in C([0; T ℄;L

2

(
)),

W

3

in L

2

(0; T ;L

2

(
)) andW

4

in C([0; T ℄;H

1

(
)

0

) ([17℄ Cor.4), it follows that

there exist

� 2 L

2

(0; T ;H

2

(
)) \ L

1

(0; T ;H

1

(
)) with �

t

2 L

2

(Q);

� 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)) with �

t

2 L

2

(0; T ;H

1

(
)

0

);

 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)) with 

t

2 L

2

(0; T ;H

1

(
)

0

);

and a subsequene of (�

n

; �

n

; 

n

) (whih we still denote by (�

n

; �

n

; 

n

) ), suh

that, as n! +1;

�

n

! � in L

2

(0; T ;H

1

(
)) \ C([0; T ℄;L

2

(
)) strongly,

�

n

* � in L

2

(0; T ;H

2

(
)) weakly,

�

n

! � in L

2

(Q) \ C([0; T ℄;H

1

(
)

0

) strongly,

�

n

* � in L

2

(0; T ;H

1

(
)) weakly,



n

!  in L

2

(Q) \ C([0; T ℄;H

1

(
)

0

) strongly,



n

*  in L

2

(0; T ;H

1

(
)) weakly,

(39)

It now remains to pass to the limit as n tends to 1 in (22)-(26). Sine

the embedding of W

2;1

2

(Q) into L

9

(Q) is ompat ([12℄ pp.15), and (�

n

) is

bounded in W

2;1

2

(Q); we infer that �

3

n

onverges to �

3

in L

2

(Q): We then

pass to the limit in (22) and get

��

2

�

t

� �

2

���

1

2

(�� �

3

) = ��

�

^

� + (�

B

� �

A

)̂� �

B

�

a.e. in Q:

11



Sine K

Æ

1

is bounded Lipshitz ontinuous funtion and �

Æ

(�

n

) onverges

to �

Æ

(�) in L

2

(Q); we have that K

Æ

1

(�

Æ

(�

n

)) onverges to K

Æ

1

(�

Æ

(�)) in L

p

(Q)

for any p 2 [1;1). This fat and (39) yield the weak onvergene of

K

Æ

1

(�

Æ

(�

n

))r�

n

to K

Æ

1

(�

Æ

(�))r� in L

3=2

(Q): Now, by multiplying (23) by

� 2 L

2

(0; T ;H

1

(
)) and integrating over 
 � (0; T ), after integration by

parts, we obtain

C

V

Z

T

0

Z




�

n

t

� dxdt+

l

2

Z

T

0

Z




�

n

t

� dxdt+

Z

T

0

Z




K

Æ

1

(�

Æ

(�

n

))r�

n

�r� dxdt = 0:

Then, we may pass to the limit and �nd that

C

V

Z

T

0

h�

t

; �idt+

l

2

Z

T

0

Z




�

t

� dxdt+

Z

T

0

Z




K

Æ

1

(�

Æ

(�))r� � r� dxdt = 0

holds for any � 2 L

2

(0; T ;H

1

(
)). This implies that

C

V

�

t

+

l

2

�

t

= r �K

Æ

1

(�

Æ

(�))r� in D

0

(Q): (40)

Now, by using the L

p

-theory of paraboli equations, it is easy to onlude

that (40) holds almost everywhere in Q.

It remains to pass to the limit in (24). We infer from (39) that r�

Æ

(�

n

)

onverges to r�

Æ

(�) in L

2

(Q) and sine k

n

k

L

1

(Q)

is bounded, it follows that



n

(1 � 

n

) onverges to (1 � ) in L

p

(Q) for any p 2 [1;1). Similarly, we

may pass to the limit in (24) to obtain



t

�K

2

� = K

2

Mr � (1� )r (�

Æ

(�)) in Q:

Therefore T

�

is ontinuous for all 0 � � � 1. At the same time, T

�

is

bounded in W

1

�W

3

�W

3

, and the embedding of this spae in B is ompat.

We onlude that T

�

is a ompat operator for eah � 2 [0; 1℄.

To prove that for (

^

�;

^

�; ̂) in a bounded set of B, T

�

is uniformly ontin-

uous with respet to �, let 0 � �

1

; �

2

� 1 and (�

i

; �

i

; 

i

) (i = 1; 2) be the

orresponding solutions of (16)-(20). We observe that � = �

1

��

2

; � = �

1

��

2

and  = 

1

� 

2

satisfy the following problem:

��

2

�

t

� �

2

�� =

1

2

�(1� (�

2

1

+ �

1

�

2

+ �

2

2

))

+ (�

1

� �

2

)�

�

^

� + (�

B

� �

A

)̂� �

B

�

in Q; (41)

12



C

V

�

t

+

l

2

�

t

= r �K

Æ

1

(�

Æ

(�

1

))r�

+ r �

h

K

Æ

1

(�

Æ

(�

1

))�K

Æ

1

(�

Æ

(�

2

))

i

r�

2

in Q; (42)



t

�K

2

� = K

2

Mr � 

1

(1� 

1

) (r�

Æ

(�

1

)�r�

Æ

(�

2

))

+ K

2

Mr � (1� (

1

+ 

2

))r�

Æ

(�

2

) in Q; (43)

��

�n

= 0;

��

�n

= 0;

�

�n

= 0 on �
� (0; T ); (44)

�(0) = 0; �(0) = 0; (0) = 0 in 
: (45)

We remark that d := �

2

1

+ �

1

�

2

+ �

2

2

� 0. Now, multiply equation (41)

by � and integrate over Q; after integration by parts and the use of H�older's

and Young's inequalities we, obtain

Z




j�j

2

dx+

Z

t

0

Z




jr�j

2

dxdt � C

1

Z

t

0

Z




j�j

2

dxdt

+ C

2

j�

1

� �

2

j

2

Z

t

0

Z




�

j

^

�j

2

+ ĵj

2

�

dxdt:

By applying Gronwall's Lemma, we arrive at

k�k

2

L

1

(0;T ;L

2

(
))

+ k�k

2

L

2

(0;T ;H

1

(
))

� C

1

j�

1

� �

2

j

2

: (46)

Now, multiply (41) by �

t

and use H�older's inequality to obtain

��

2

Z

t

0

Z




j�

t

j

2

dxdt +

�

2

2

Z




jr�j

2

dx

� C

1

Z

t

0

Z




j�j

2

dxdt+

��

2

2

Z

t

0

Z




j�

t

j

2

dxdt

+ C

2

�

Z

t

0

Z




j�j

10=3

dxdt

�

3=5

�

Z

t

0

Z




jdj

5

dxdt

�

2=5

+ C

2

j�

1

� �

2

j

2

Z

t

0

Z




�

j

^

�j

2

+ ĵj

2

�

dxdt:

Sine W

2;1

2

(Q) ,! L

10

(Q), the following interpolation inequality holds

k�k

2

L

10=3

(Q)

� � k�k

2

W

2;1

2

(Q)

+

~

C k�k

2

L

2

(Q)

for all � > 0:

13



Moreover, sine kdk

L

5

(Q)

� C, withC depending on k�

1

k

L

10

(Q)

and k�

2

k

L

10

(Q)

,

by rearranging the terms in the last inequality, we obtain

Z

t

0

Z




j�

t

j

2

dxdt +

Z




jr�j

2

dx

� C

1

Z

t

0

Z




j�j

2

dxdt+ C

2

� k�k

2

W

2;1

2

(Q)

(47)

+ C

3

j�

1

� �

2

j

2

Z

t

0

Z




�

j

^

�j

2

+ ĵj

2

�

dxdt:

By multiplying (41) by ���, we infer in a similar way that

Z




jr�j

2

dx +

Z

t

0

Z




j��j

2

dxdt

� C

1

Z

t

0

Z




�

j�j

2

+ jr�j

2

�

dxdt + C

2

� k�k

2

W

2;1

2

(Q)

(48)

+ C

3

j�

1

� �

2

j

2

Z

t

0

Z




�

j

^

�j

2

+ ĵj

2

�

dxdt:

By taking � > 0 small enough and onsidering (46) we onlude from (47)

and (48) that

k�k

2

W

2;1

2

(Q)

+ k�k

2

L

1

(0;T ;H

1

(
))

� C

1

j�

1

� �

2

j

2

: (49)

By multiplying (42) by �, integrating over 
 and using H�older's inequality

and (B), we have

d

dt

Z




j�j

2

dx+ Æ

Z




jr�j

2

dxdt � C

1

Z




�

j�

t

j

2

+ j�j

2

+ j�j jr�

2

j jr�j

�

dxdt

� C

1

Z




�

j�

t

j

2

+ j�j

2

�

dxdt+

Æ

2

Z




jr�j

2

+ C

3

k�k

2

L

1

(0;T ;H

1

(
))

k�

2

k

2

H

2

(
)

:

Therefore, integration with respet to t and the use of Gronwall's Lemma

and (49) lead to the estimate

k�k

2

L

1

(0;T ;L

2

(
))

� C

1

j�

1

� �

2

j

2

: (50)

Now, we multiply (43) by  and integrate over 
� (0; t). By integration

by parts and we use H�older's and Young's inequalities and (21), we obtain

Z




jj

2

dx+

Z

t

0

Z




jrj

2

dxdt � C

1

Z

t

0

Z




�

jr�

Æ

(�

1

)�r�

Æ

(�

2

)j

2

+ jj

2

�

dxdt

� C

1

Z

t

0

Z




�

jr�j

2

+ jj

2

�

dxdt:

14



By applying Gronwall's Lemma and using (49), we arrive at

kk

2

L

1

(0;T ;L

2

(
))

� C

1

j�

1

� �

2

j

2

: (51)

Therefore, it follows from (49)-(51) that T

�

is uniformly ontinuous with

respet � on bounded sets of B.

Now we have to estimate the set of all �xed points of T

�

, let (�; �; ) 2 B

be suh a �xed point, i.e., it is a solution of the problem

��

2

�

t

� �

2

�� �

1

2

(�� �

3

) = �� (� + (�

B

� �

A

)� �

B

) in Q; (52)

C

V

�

t

+

l

2

�

t

= r �K

Æ

1

(�

Æ

(�))r� in Q; (53)



t

�K

2

� = K

2

Mr � (1� )r (�

Æ

(�)) in Q; (54)

��

�n

= 0;

��

�n

= 0;

�

�n

= 0 on �
 � (0; T ); (55)

�(0) = �

Æ

0

; �(0) = �

Æ

0

; (0) = 

Æ

0

in 
: (56)

For this, we multiply the �rst equation (52) suessively by �, �

t

and

���, and integrate over 
. After integration by parts, using H�older's and

Young's inequalities, we obtain, respetively

��

2

2

d

dt

Z




j�j

2

dx +

Z




�

�

2

jr�j

2

+

1

4

�

4

�

dx

� C

1

+ C

2

Z




�

j�j

2

+ jj

2

+ j�j

2

�

dx; (57)

��

2

2

Z




j�

t

j

2

dx +

d

dt

Z




 

�

2

2

jr�j

2

+

1

8

�

4

�

1

4

j�j

2

!

dx

� C

1

+ C

2

Z




�

j�j

2

+ jj

2

�

dx; (58)

��

2

2

d

dt

Z




jr�j

2

dx +

Z




�

2

2

j��j

2

dx

� C

1

+ C

2

Z




�

j�j

2

+ jj

2

+ jr�j

2

�

dx: (59)
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By multiplying (53) by � and (54) by , arguments similar to the previous

ones lead to the following estimates

d

dt

Z




C

�

2

j�j

2

dx+ Æ

Z




jr�j

2

dx �

�

2

�

4

4

Z




j�

t

j

2

dx+ C

1

Z




j�j

2

dx; (60)

d

dt

Z




jj

2

dx+K

2

Z




jrj

2

dx � C

1

Z




jr�j

2

dx; (61)

where (21) was used to obtain the last inequality.

Now, multiply (58) by ��

2

and add the result to (57), (59)- (61), to obtain

d

dt

Z




 

��

2

4

j�j

2

+

 

��

2

2

+

��

4

2

!

jr�j

2

+

��

2

8

�

4

+

C

�

2

j�j

2

+ jj

2

!

dx

Z




 

�

2

jr�j

2

+

1

4

�

4

+

�

2

�

4

4

j�

t

j

2

+

�

2

2

j��j

2

+ Æjr�j

2

+K

2

jrj

2

!

dx

� C

1

+ C

2

Z




�

j�j

2

+ jj

2

+ j�j

2

+ jr�j

2

�

dx: (62)

Hene, the integration of (62) with respet t and the use Gronwall's

Lemma give us

k�k

L

1

(0;T ;H

1

(
))

+ k�k

L

1

(0;T ;L

2

(
))

+ kk

L

1

(0;T ;L

2

(
))

� C

1

;

where C

1

is independent of �.

Therefore, all �xed points of T

�

in B are bounded independently of � 2

[0; 1℄:

Finally, for � = 0, we an reason as in the proof that T

�

is well de�ned

to onlude that problem (16)-(20) has a unique solution. Therefore, we an

apply Leray-Shauder's �xed point theorem, and so there is at least one �xed

point (�; �; ) 2 B \W

2;1

2

(Q) �W

2;1

2

(Q) � C

2;1

(Q) of the operator T

1

, i.e.,

(�; �; ) = T

1

(�; �; ). This orresponds to a solution of problem (11)-(15)

and the proof of Proposition 1 thus omplete.

3 Proof of Theorem 1

To prove Theorem 1, we start by taking the initial ondition in the previous

regularized problem as follows. For a sequene Æ ! 0+, we hoose �

Æ

0

= �

0
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and pik two orresponding sequenes �

Æ

0

2 H

1

(
) and 

Æ

0

2 C

1

(

�


) satisfying

0 < 

Æ

0

< 1, �

Æ

0

! �

0

in L

2

(
) and 

Æ

0

! 

0

in H

1

(
).

From Proposition 1, we know that there exist a sequene (�

Æ

; �

Æ

; 

Æ

) of

orresponding solutions of problem (11)-(15). For suh solutions, we will

derive bounds, uniform with respet to Æ; then, we will use ompatness

arguments to pass to the limit and establish the desired result.

Lemma 1 There exists a onstant C

1

suh that, for any Æ 2 (0; 1)

k�

Æ

k

L

1

(0;T ;H

1

(
))\L

2

(0;T ;H

2

(
))

+ k�

Æ

t

k

L

2

(Q)

� C

1

(63)

k�

Æ

k

L

1

(0;T ;L

2

(
))

+

Z

T

0

Z




K

Æ

1

(�

Æ

(�

Æ

))jr�

Æ

j

2

dxdt � C

1

(64)

k

Æ

k

L

1

(0;T ;L

2

(
))\L

2

(0;T ;H

1

(
))

� C

1

: (65)

Proof: From inequality (62), it follows estimates (63), (65) and also

k�

Æ

k

L

1

(0;T ;L

2

(
))

� C

1

: (66)

By multiplying (12) by �

Æ

and integrating over Q, we obtain

Z




j�

Æ

j

2

dx+

Z

T

0

Z




K

Æ

1

(�

Æ

(�

Æ

))jr�

Æ

j

2

dxdt � C

1

Z

T

0

Z




�

j�

Æ

t

j

2

+ j�

Æ

j

2

�

dxdt:

In view of (63) and (66), this gives estimate (64).

Lemma 2 There exists a onstant C

1

suh that, for any Æ 2 (0; 1)

k�

Æ

t

k

L

2

(0;T ;H

1

(
)

0

)

� C

1

(67)

k

Æ

t

k

L

2

(0;T ;H

1

(
)

0

)

� C

1

: (68)

Proof: We take the salar produt in L

2

(
) of (12) with � 2 H

1

(
). By

using H�older's inequality and (B), we �nd

C

V

k�

Æ

t

k

H

1

(
)

0

�

�

(b + 1)

Z




K

Æ

1

(�

Æ

(�

Æ

))jr�

Æ

j

2

dx

�

1=2

+

l

2

k�

Æ

t

k

L

2

(
)

:

Then, (67) follows from (63)-(64). Estimate (68) an be similarly obtained

by using (63) and (65).
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We now infer from Lemma 1 and Lemma 2 that there exist

� 2 L

2

(0; T ;H

2

(
)) \ L

1

(0; T ;H

1

(
)) with �

t

2 L

2

(Q);

� 2 L

1

(0; T ;L

2

(
)) with �

t

2 L

2

(0; T ;H

1

(
)

0

);

 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)) with 

t

2 L

2

(0; T ;H

1

(
)

0

);

J 2 L

2

(Q)

and a subsequene that to ease the notation we still denote (�

Æ

; �

Æ

; 

Æ

), suh

that as Æ ! 0+, satis�es

�

Æ

! � in L

2

(0; T ;H

1

(
)) \ C([0; T ℄;L

2

(
)) strongly,

�

Æ

t

* �

t

in L

2

(Q) weakly,

�

Æ

! � in C([0; T ℄;H

1

(
)

0

) strongly,

�

Æ

* � in L

2

(Q) weakly,



Æ

!  in L

2

(Q) \ C([0; T ℄;H

1

(
)

0

) strongly,



Æ

*  in L

2

(0; T ;H

1

(
)) weakly,

K

Æ

1

(�

Æ

(�

Æ

))r�

Æ

* J in L

2

(Q) weakly.

(69)

It now remains to identify J in terms of � and � and pass to the limit as

Æ approahes zero in (11)-(15).

It follows from (69) that we may pass to the limit in (11) and �nd that

(7) holds almost everywhere.

Sine K

1

is a Lipshitz ontinuous funtion and �

Æ

(�

Æ

) onverges to � in

L

2

(0; T ;H

1

(
)), we have (see, e.g.[9℄ Thm 16.7)

K

1

(�

Æ

(�

Æ

))! K

1

(�) in L

2

(0; T ;H

1

(
)) strongly. (70)

From (69)-(70), we onlude that

�

Æ

rK

1

(�

Æ

(�

Æ

)) * �rK

1

(�) in L

1

(Q) weakly,

K

1

(�

Æ

(�

Æ

))�

Æ

* K

1

(�)�

Æ

in L

1

(Q) weakly.

(71)

Also, sine K

1

(�

Æ

(�

Æ

)) 2 L

1

(0; T ;H

1

(
)) and �

Æ

2 L

2

(0; T ;H

1

(
)), we have

K

1

(�

Æ

(�

Æ

))�

Æ

2 L

2

(0; T ;W

1;p

(
)) for p = min

�

2;

N

N � 1

�

and

r

�

K

1

(�

Æ

(�

Æ

))�

Æ

�

= K

1

(�

Æ

(�

Æ

))r�

Æ

+ �

Æ

rK

1

(�

Æ

(�

Æ

)):

It then follows from (71) that

K

1

(�

Æ

(�

Æ

))r�

Æ

! r (K

1

(�)�)� �rK

1

(�) in D

0

(Q): (72)
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Sine K

1

is nonnegative, the de�nition of K

Æ

1

and (64) yield that

kÆ

1

2

r�

Æ

k

L

2

(Q)

� C, with C independent of Æ. Thus,

Ær�

Æ

! 0 in L

2

(Q): (73)

From (69), (72) and (73), we onlude that

J = r (K

1

(�)�)� �rK

1

(�):

Moreover, we may pass to the limit in a weak sense in (12) and obtain (9).

In order to pass to the limit in (13), we take salar produt in L

2

(
) of

it with � 2 L

2

(0; T ;H

1

(
)), to obtain

Z

T

0

Z






Æ

t

� dxdt + K

2

Z

T

0

Z




r

Æ

� r� dxdt

+ K

2

M

Z

T

0

Z






Æ

(1� 

Æ

)r�

Æ

(�

Æ

)) � r� dxdt = 0:

Then, from (69), we have that

Z

T

0

h

t

; �idxdt+K

2

Z

T

0

Z




r �r� dxdt+K

2

M

Z

T

0

Z




(1�)r� �r� dxdt = 0

holds for any � 2 L

2

(0; T ;H

1

(
)).

Moreover, sine 0 < 

Æ

< 1 and 

Æ

onverges to  in L

2

(Q), we have that

0 <  < 1 a.e. in Q.

Finally, it follows from (69) that

��

�n

= 0, �(0) = �

0

, �(0) = �

0

and

(0) = 

0

.

The proof of Theorem 1 is then omplete.

Remark. From the L

p

-theory of paraboli equations, it is easy to on-

lude that  2 W

2;1

3=2

(Q), and therefore the equation for  holds almost every-

where.
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