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Abstract

The phase-field method provides an alternative mathematical description
for free-boundary problems corresponding to physical processes with phase
transitions. It postulates the existence of a function, called the phase-field,
whose value identifies the phase at a particular point in space and time, and
it is particularly suitable for cases with complex growth structures occurring
during phase transitions.

The mathematical model studied in this work describes the solidification
process occurring in a binary alloy with temperature dependent properties.
It is based on a highly nonlinear degenerate parabolic system of partial dif-
ferential equations with three independent variables: phase-field, solute con-
centration and temperature.

Existence of weak solutions of such system is obtained via the introduction
of a regularized problem, followed by the derivation of suitable estimates and
the application of compactness arguments.



1 Introduction

We are interested in performing a mathematical analysis of a model for phase
change processes occurring in binary alloys with thermal properties. Such a
model, using a phase-field methodology, was proposed by Caginalp and Xie
[3] and a detailed derivation of more comprehensive system was presented
by Caginalp and Jones [2]. It is described as the following coupled system of
nonlinear partial differential equations:

0ed, — EAp = %(qﬁ C )4 B0 — By — (1)) in Q x (0,00),(1)

Crl; + %qﬁt — V-K(6)VO  in Q x (0,00), 2)
c .
¢ = K)V-c¢(l—c)V <M¢ + In — c> in © x (0,00), (3)
9 o de
% = 0, % = 0, an =0 on 0F2 X (O, OO), (4)
¢(0) = ¢0, 9(0) = 90, C(O) = Cp in Q. (5)

Here €2 is an open bounded domain of IRY, N = 2,3, with smooth boundary
09. The order parameter (phase-field) ¢ is the state variable characterizing
the different phases; the function 6 represents the temperature; the concen-
tration ¢ € (0,1) denotes the fraction of one of the two materials in the
mixture. The parameter o > 0 is the relaxation scaling; the parameter /3
is given by § = €[s]/30, where € > 0 is a measure of the interface width,
o the surface tension and [s] the entropy density difference between phases;
Cy > 0 is the specific heat; the constant [ > 0 the latent heat; 6, , 0p,
are the respective melting temperatures of each of the two materials in the
alloy; K5 > 0 is the solute diffusivity; M is a constant related to the slopes
of solidus and liquidus lines; K; > 0 denotes the thermal conductivity. Con-
cerning this last physical parameter, throughout this paper we assume the
conditions of Laurencot [11]:

(A) K; depends only on the order parameter ¢ and is a Lipschitz con-
tinuous function. Moreover, there exists b > 0 such that

0<Ki(r)<b for all r € IR.



We observe that one technical difficulty with the previous system is that,
when K vanishes the equation (2) degenerates and looses its parabolicity.
Note also that equation (3) can be rewritten as

¢ = Ky(Ac+ MV - c(1—-¢)Vo)
= K)Ac+ KyM(1—2¢)Ve-Vo+ KoMe(l —c)A¢p (6)

and that for the pure materials, that is, when ¢ = 0 or ¢ = 1, the equations
reduce to the usual phase field model for pure materials.

We should remark that in recent years the phase-field methodology has
achieved considerable importance in modeling and numerically simulating a
range of phase transitions and complex growth structures occurring during
solidification. Phase-field models have been used to describe phase transi-
tions of pure material due to thermal effects; they lead to nonlinear parabolic
systems for the phase-field and the temperature. Such models have been stud-
ied, and we refer for instance to [1, 8, 11, 14], where existence and unique-
ness of solutions are investigated for various types of nonlinearities. The
phase-field governing equations have been derived in a thermodynamically
consistent way by Penrose and Fife [15], which recovers the phase-field model
employed by Caginalp [1] by linearization of the heat flux. Many papers has
been devoted to the mathematical analysis of the Penrose-Fife model, for
instance see [4, 5] and references therein. Several phase-field models have
also been developed for binary alloys. The first work in this direction was
due to Wheeler et al [19] and is concerned isothermal solidification. Warren
and Boettinger [18] extended this model, while recently Rappaz and Scheid
[16] investigated well-posedness of solutions under suitable assumptions for
the non-linearities. Another similar model including temperatures changes
was developed by Caginalp and Xie [3]. In a such models, the governing
equations for the phase-field and the concentration are derived from a free
energy functional, and an appropriate balance equation for the temperature
is then adjoined to complete the model.

Concerning notations, in this paper we use standard ones, with the remark
that we denote by (-,-) the duality pairing between H'(Q2) and H'(Q)'. Also,
for a given fixed 7" > 0, we denote @ = Q2 x (0, 7).

The main result of this paper is the following.



Theorem 1 Suppose that ¢y € H'(Q), 0y € L*(2), co € H'(Q), 0 < ¢p < 1
a.e. in Q, satisfy the compatibility conditions. Under the assumption (A),
there exist functions (¢,0, ¢, J) satisfying, for any fized T > 0,

1) ¢ € L2(07T; HQ(Q)) n Loo(oaT; HI(Q))a ¢t € L2(Q)7 ¢(O) = ¢07
i) 0 € Lo(0,T; L2(Q)), 6, € L*(0,T; HY(Q)), 6(0) = 6y,

iii) c € L*(0,T; HY(Q)) N L>(0,T; L*(2)), ¢ € L*0,T; HY(R)),
c(0)=cy, 0<c<1l ae inQ,

iv) J e L*Q,R"), J=V(K($)d) —OVEK,(s),
and such that
aey — e Ap = %(qﬁ )4 B0+ (0 —01)c—08)  ac inQ, (7)

99 _
on

C’,,/OT(Gt,n>dt+%/OT/ngtnda;dH/oT/QJ-Vndxdt:0, (9)

0 a.e. on 02 x (0,7, (8)

T T T
/ (ct,n>dt+K2/ /Vc-Vnda;dt+K2M/ /c(l—c)ng-Vnda;dt:O,
0 0 Jo o Jo
(10)
for any n € L*(0,T; H'(2)).
If, in addition, K; > by for some by > 0, then 6 € L*(0,T; H(2)) for
each T'> 0, and J = K,(¢)V4.

We remark that because the possibility of degeneracy of the parabolic
character of the model, we were able neither to prove uniqueness nor to
improve the regularity of the constructed solution.

Finally, the outline of this paper is as follows. In Section 2, we study
a family of regularized problems depending on a small accessory positive
parameter; this study will be auxiliary to prove the main existence result, and
it will be introduced to avoid the above mentioned possibility of degeneracy
of parabolicity in equation (3). Section 3 is devoted to proof of Theorem 1;
it will be done with the help of suitable estimates derived for the regularized
problem together with compactness arguments.



2 A regularized problem

In this section we introduce a regularized problem related to (1)—(5); for
it, we prove a result of existence of solutions by using Leray-Schauder fixed
point theorem ([6] pp. 189).

Before doing so, we recall certain results that will be helpful in the intro-
duction of such regularized problem.

Recall that there is an extension operator Ext(-) taking any function w
in the space

W Q) = {w € LX(Q) / Dyw, D2w € L*(Q),w, € L*(Q)}

and extending it to a function Ext(w) € Wy (IRN*!) with compact support
satisfying
||E33t(w)||w22’1(RN+1) <C ||w||W22’1(Q)7

with C' independent of w (see [13] pp.157).

For § € (0,1), let ps € CP(IRN™!) be a family of symmetric positive
mollifier functions converging to the Dirac delta function, and denote by *
the convolution operation. Then, given a function w € W2 (Q), we define a
regularization ps(w) € C3°(IRN 1) of w by

ps(w) = ps * Ext(w).
Now, we define K? for each 6 € (0,1) by
K{(r) = Ki(r)+6

for all r € IR. We infer from (A) that,

(B) K¢ is a Lipschitz continuous function and
0<6<KXNr)y<b+1 for all r € IR.

Now, we are in position to define the following family of regularized prob-
lems. For 6 € (0,1), we consider the system

ae’gy — Ay’ = %@6 —(¢°)°) + 8 (96 + (05— 0.4)" — 93) in Q,(11)



OO+ S = VK@)V @, (12)

¢) — KoAP = KoMV -(1—c)V (P6(¢6)) n @, (13)
0¢’ 00° oc’
%_0, %_0, %_0 on 90 x (0,7, (14)
SO =, CO)=0 LO)=¢ nQ (15)

We then have the following existence result.

Proposition 1 For each d € (0,1), let (45,00, c)) € H(Q) x H'(Q) x CH(Q)
satisfying the compatibility conditions and 0 < ¢} < 1 in Q. Under the
assumption (B), there exist functions (¢°,0°,¢°) satisfying, for any fized
T>0,

i) ¢° € L*(0,T: H*(Q), ¢} € L*(Q),

ii) ¢° € L*(0,T; H*(?)), 07 € L*(Q),

iii) ¢ € C?21(Q), 0< ¢ <1,

iv) (¢°,6°,¢%) satisfies (11)-(15) almost everywhere.

Proof: To ease the notation, in this proof we will omit the superscript ¢ of
the variables ¢°,0°, ¢°.
First of all, we consider the following family of operators, indexed by the
parameter 0 < A < 1,
T\: B — B,

where B is the Banach space
B = L*(Q) x L*(Q) x L*(Q),

and defined as follows: given (¢,0,¢) € B, let Tx(¢,0,¢) = (¢,0,c), where
(¢, 0, c) is obtained by solving the problem

00, — @00 — (6~ %) = A3 (0+ (65— 0)¢ — 05) n Q, (16)



Gt Lo = VK@)V Q. (17)

¢ — KoAe = KoMV -c(1—c¢)V (ps(9)) in @, (18)
0 00 0
a—izo, 5 =0, 6—2:0 on A2 x (0,7),  (19)
$(0) = ¢, 0(0) =03,  c(0)=c) in Q. (20)

Before we prove that 7, is well defined, we observe that clearly (¢, 6, c)
is a solution of (11)-(15) if and only if it is a fixed point of the operator 7.
In the following, we prove that 7; has at least one fixed point by using the
Leray-Schauder fixed point theorem.

To verify that 7y is well defined, observe that since 6, ¢ € L*(Q), we infer
from Theorem 2.1 of [8] that there is a unique solution ¢ of equation (16)
with ¢ € W' (Q).

Now, since K?{ is a bounded Lipschitz continuous function and ps(¢) €
CS(IRN+1), we have that K (ps(¢)) € WH(Q) for 1 < r < oo. Thus, since
¢; € L*(Q), we infer from LP-theory of parabolic equations ([10] pp. 341)
that there is a unique solution # of equation (17) with 6 € W, (Q).

We observe that equation (18) is a semilinear parabolic equation with
smooth coefficients. Moreover, by looking at the right-hand side of this
equation, written in form (6), it has the properties and growth conditions to
apply semigroup results of Henry [7], pp.75. Thus, we conclude that there is
a unique global classical solution c.

In addition, note that equation (18) does not admit constant solutions,

except ¢ = 0 and ¢ = 1. Thus, by using Maximum Principles together with
5

c
conditions 0 < ¢} < 1 and = 0, we can deduce that
n

0 <c(x,t) <1, V(x,t) € Q. (21)

Therefore, for each A € [0, 1], the mapping 7, is well defined from B into B.

To prove continuity of 7y, let (gzgn,én,én) € B strongly converging to
(QAS, 0, ¢) € B; for each n, let (én,0,,c,) the corresponding solution of the
problem:

€ Gy, — AP, — %(d)n — 65) = AB (0 + (05 — 04)én — 0p) in Q(22)

8



cveméqsm = V- Kl(ps(¢s)V6,  inQ, (23)

Cnt — K2Acn - [(2*]\4v . Cn(l - Cn)v (p5(¢n)) in Q) (24)
06, _ 00, _ . Oy _

5 =0, 5o=0, SE=0 mdex(01),  (25)

¢n(0) == ¢0, Hn(()) = 90, Cn(O) = (g in €. (26)

We show that the sequence (¢,,0,,c,) converges strongly to (¢,6,c) =
7}(¢?, é, ¢) in B. For that purpose, we will obtain estimates, uniformly with
respect to n, for (¢, 0,,c,). We denote by C; any positive constant inde-
pendent of n.

We multiply (22) successively by ¢, ¢,, and —Ag,, and integrate over
2 x (0,t). After integration by parts and the use the Holder’s and Young’s
inequalities, we obtain the following three estimates:

2 t 2 1
& lontar + [ f (5|V¢n|2+—¢i> dedt
2 Ja 0o Ja\ 2 4

t ~
< CaCo [ [ (10 + el + |90 f?) dodt, (27)
e [t 2 € 2 ¢;lz ¢$z
=/ /Q|¢nt| drdt + /Q<§|V¢n| + =) da
t ~
< Ot [ [ (10af2 + Jenf?) dadt, (28)
0 JQ
2 2 t
O‘—G/ Va2 + i/ / A 2ddt
2 Ja 2 Jo Ja
t N
f§Q+@AéOWﬁ+ﬂfHQﬂMW%)
By multiplying (28) by ae? and adding the result to (27), we find
L (10uP + 1900l +63) do

t ~
< 01+C’2//(|9n|2+|én|2+|¢n|2)dxdt. (30)
0 JQ



Since ||én||L2(Q) and [|¢,||z2(g) are bounded independent of n, we infer from
(30) and Gronwall’s Lemma that

|Pnll oo 0,751 () < Ch- (31)
Then, thanks to (27)-(29) we have
[énllz20,1;m2(0)) + | Onillz2(@) < Ch- (32)

Now, by multiplying (23) by 6,, one obtains in a similar way as above
that

¢ t
[ 162+ [ [ 196, 2dadt < o+ Cy [ [ (160 + 16a) dudt. (33)
0 0 Ja 0 Ja
Thus, with the help of (32) and Gronwall’s Lemma, we infer that
10|l 2o 0,7;L2(2)) < C1. (34)
Hence, it follows from (33) that

10w ll 220,131 () < Co. (35)

Now, we take scalar product in L*(Q) of (23) with n € H'(Q2). By
integrating by parts and using Holder’s and Young’s inequalities, we obtain

6l < Cr (I98ulliziey + Nouclioe)) -
Thus, we infer from (32) and (35) that
10wl 20,1501 02y < Ch. (36)

Next, by multiplying (24) by ¢,, with the help of (21), as above we con-
clude that

t t
/|cn|2dx+/ / |Vcn|2dxdt§6’1+02/ / IV 6| 2dcdt.
Q 0 JQ 0 JQ

Hence, from (32) we have,

[enll 20,7501 () + [€nll L 0,m522(0)) < Ch. (37)

10



In order to get an estimate for ¢,, in L?(0,T; H'(Q2)"), we return to equa-
tion (24) and use similar techniques as above to obtain

lenell 2o, 0y < Ch. (38)
We now infer from (31) and (32) that the sequence (¢,,) is bounded in
Wy = {v e L*(0,T; H(Q)), v, € L*(0,T; L*(Q)) }
and in
Wy = {v € L®(0,T; H'(Q)), v € L*(0,T; L*(Q)).} ,
We also infer from (34)-(37) that the sequences (6,,) and (¢,) are bounded in
Wy = {v e L*0,T; H\(Q)), v, € L*(0,T; H'(Q))}
and in
Wy = {v e L®(0,T; LA(Q)), v, € L*(0,T; H(Q))} .

Since W is compactly embedded in L*(0,7; H*(Q2)), Wo in C([0, T]; L*(€2)),
W3 in L?(0,T; L*(2)) and Wy in C([0,T]; H*(Q)") ([17] Cor.4), it follows that
there exist

¢ € L20,T;H?
0 € L*0,T;H!

E )N L®(0,T; HY(2)) with ¢, € L*(Q),
¢ € L*0,T;HY(
(

QO
Q)) N L*®(0,T; L*()) with 8, € L2(0,T; H'(Q)"),
Q)) N L*®(0,T; L*(2)) with ¢, € L*(0,T; HY(Q)'),

and a subsequence of (¢, 0, ¢,) (which we still denote by (¢, 0,,¢c,) ), such
that, as n — 400,

¢ — ¢ in  L*0,T; HY(Q)) N C([0,T]; L*(2)) strongly,

¢ — ¢ in  L*0,T; H*Q)) weakly,

0, — 0 in L*Q)NC([0,T); H'(R)") strongly,

6, — 0 in L*0,T; H'(Q)) weakly, (39)
c — ¢ in LAQ)NC([0,T); H(Q)') strongly,

cn, — ¢ in  L*0,T; HY(Q)) weakly,

It now remains to pass to the limit as n tends to oo in (22)-(26). Since
the embedding of W, (Q) into L°(Q) is compact ([12] pp.15), and (¢,) is
bounded in W;"'(Q), we infer that ¢? converges to ¢* in L*(Q). We then
pass to the limit in (22) and get

a€’p, — €A — %(¢ —¢*) =\ (é + (0 —04)¢ — 93) a.e. in Q.

11



Since K? is bounded Lipschitz continuous function and ps(¢,) converges

to ps(¢) in L?(Q), we have that K?(ps(¢,)) converges to K¢ (ps(4)) in LP(Q)
for any p € [l,00). This fact and (39) yield the weak convergence of
K (p5(60)) VO, to K7 (ps(4))VE in L*?(Q). Now, by multiplying (23) by
n € L*(0,T; H(Q)) and integrating over © x (0,7'), after integration by
parts, we obtain

Cy /OT/Qemnd:vdtnL%/OT/Q¢ntnda;dt+/0T/QKf(p5(¢n))ven-vn dadt = 0.

Then, we may pass to the limit and find that

T [ [T T 5
C’V/O (9t,n>dt+§/0 /Q¢mda;dt+/0 /QKl(pg(gb))VG-Vndxdt—O

holds for any n € L*(0,T; H*(2)). This implies that

bt 5o=V K@)V nD(Q) (40)

Now, by using the LP-theory of parabolic equations, it is easy to conclude
that (40) holds almost everywhere in Q.

[t remains to pass to the limit in (24). We infer from (39) that Vps(¢,,)
converges to Vps(¢) in L*(Q) and since ||¢, ||p=(g) is bounded, it follows that
cn(1 — ¢,) converges to ¢(1 — ¢) in LP(Q) for any p € [1,00). Similarly, we
may pass to the limit in (24) to obtain

¢t — KoAe = KoMV - ¢(1 — )V (ps(9)) in Q.

Therefore 7, is continuous for all 0 < A < 1. At the same time, 7, is
bounded in Wy x W3 x W3, and the embedding of this space in B is compact.
We conclude that 7, is a compact operator for each A € [0, 1].

To prove that for (qg, 0, ¢) in a bounded set of B, Ty is uniformly contin-
uous with respect to A, let 0 < A, Ay < 1 and (¢;,6;,¢;) (i = 1,2) be the
corresponding solutions of (16)-(20). We observe that ¢ = ¢1— ¢y, = 0, —0
and ¢ = ¢; — ¢, satisfy the following problem:

00, — @06 = Zo(1— (8} + 616+ 63)
+ (M= A)B(0+ (05 — 04)¢ — Op) inQ, (41)

12



Cvgt‘i‘%ﬁﬁt = V- K (ps(¢1))V0
+ V- [Kl(ps(01)) = K{(ps(¢2))] VB2 inQ, (42)

— KyAc = KoMV -ci(1—¢1) (Vps(p1) — Vps(p2))
+ KoMV -c(1—(c1+ c2))Vps(o2) in @, (43)

9o 00 de
5 =0 5, =0 5-=0  ondQx(0,71), (44)
$(0)=0,  0(0)=0, ¢(0)=0  inQ. (45)

We remark that d := ¢? + ¢1d + ¢3 > 0. Now, multiply equation (41)
by ¢ and integrate over (); after integration by parts and the use of Holder’s
and Young’s inequalities we, obtain

t t
/|¢|2dx+/ / Vo2dedt < C’l/ / |2t
Q 0 JQ 0 JQ ¢ .
+ C’2|)\1—)\2|2//(|9|2+|é|2)d:rdt.
0 JQ
By applying Gronwall’s Lemma, we arrive at

161170 (0,7:12(09) + 191720, 1100 < Cr [A1 = Aol (46)

Now, multiply (41) by ¢; and use Holder’s inequality to obtain

ez/ot/ﬂ|¢t|2dxdt + i/ Vo |2da

01/ / 16| da;dt+—/ / | [Pddt

+ (//|¢|10/3dxdt> <//|d| dxdt>2/5
N

O\ —)\2|2/ / (1812 + [¢l?) davdr.
0 JQ

[N

Since Wy (Q) = L'°(Q), the following interpolation inequality holds

16117072y < 116113210y + C l6l7(q) for all > 0.

13



Moreover, since ||d|[ 5y < C, with C' depending on ||¢ || L10(gy and [|dz| £10(g),
by rearranging the terms in the last inequality, we obtain

t
| [1odzat + [ [VoPda
0 JQ Q
t
< O [ IoPdudt+ Conlldlidasg,  (47)

t ~
+ 03|)\1—)\2|2//(|0|2+|é|2)dxdt.
0 JQ

By multiplying (41) by —A¢, we infer in a similar way that

/Q|ng|2da; ¥ /Ot/Q|A¢|2da;dt
t
< O [ [ (161 + V6F) drdt + Con 16l 2nq,  (48)

t o
+ (13|)\1—)\2|2/ / (1612 + [¢[?) ddt.
0 JQ

By taking n > 0 small enough and considering (46) we conclude from (47)
and (48) that

1612, 20 gy + 18100 zsaricany < €1 1Aa = Aol (49)

By multiplying (42) by 6, integrating over € and using Holder’s inequality
and (B), we have
d
—/ 102dz + 5/ VO]2dwdt < 01/ (164[? + 16 + 16| V9| [V)) dudt
dt Ja Q Q 5
< O (1o +10) dadt + 5 [ V0P
+ C3||¢||%°°(0,T;H1(Q))||02||?{2(Q)'

Therefore, integration with respect to ¢ and the use of Gronwall’s Lemma
and (49) lead to the estimate

10117 0.7 20) < O A1 = Ao, (50)

Now, we multiply (43) by ¢ and integrate over Q2 x (0,¢). By integration
by parts and we use Holder’s and Young’s inequalities and (21), we obtain

/Q|C|2dx_|_/0t/g|vc|2dxdt < ¢ /OZ/Q(ng(qﬁl)—vp5(¢2)|2+|c|2) dudt
01/0 /Q(|V¢|2+|c|2) dxdt.

14
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By applying Gronwall’s Lemma and using (49), we arrive at

el o.rizz@y < Crld — Aol (51)

Therefore, it follows from (49)-(51) that 7, is uniformly continuous with

respect A on bounded sets of B.

Now we have to estimate the set of all fixed points of 7y, let (¢,0,¢) € B
be such a fixed point, i.e., it is a solution of the problem

0e2d, — A — %(qﬁ C ) = AB(0+ (0 — Oa)c—Op) in Q. (52)

Cubot 5o = V- Ki(pp(@)V0 @, (53)
¢ — KoAe = KoMV -c(1—¢)V (ps(9)) in @, (54)
G, 00 3,
a—zzo, o=, 8—;:0 on dQ x (0,T), (55
6(0) =0y,  0(0)=06, c(0)=c¢  nQ (56)

For this, we multiply the first equation (52) successively by ¢, ¢; and
—A¢, and integrate over (2. After integration by parts, using Holder’s and
Young’s inequalities, we obtain, respectively

ae’ d

- 2
2 dt/9|¢| e
e’ 9
— d
> | oide

ae? d

2
ac @ d
2 dt/(z|v¢| o

+

<

+

[N

+

IN

/Q (62|V¢|2 + i¢4> dx

e +02/Q (1612 + Ic]? + 6[) da, (57)
2

s (%w ot §|¢|2> o

Cu+Cy [ (10 +|ef?) da, (58)

62
| 5 1a0pds
Q 2

O+ 02/9 (10 + |ef? + Vo) de.  (59)

15



By multiplying (53) by 6 and (54) by ¢, arguments similar to the previous
ones lead to the following estimates

d 1 Cy ,
%/QTW da;+6/Q|V0| dz

d
%/Q|c|2dx+K2/Q|Vc|2dx < 01/(2|v¢|2dx, (61)

IN

264
©E [1ode+ [ pPds, (60)

where (21) was used to obtain the last inequality.
Now, multiply (58) by ae? and add the result to (57), (59)- (61), to obtain

ae? L oe € C,
L (oo (%4 5 ) 19+ St SHiop 4 12
[, (€vor Jot + Sl + 10 + 90 + Kol Vel
<C, +C 0)? 2 2 %) dx. 62
<Ci+Cy [ (108 +Ief +I6F + Vo) dr.  (62)

Hence, the integration of (62) with respect ¢t and the use Gronwall’s
Lemma give us

||¢||Lo<>(0,T;H1(Q)) + ||9||L°°(0,T;L2(Q)) + ||C||Loo(0,T;L2(Q)) <y,

where (] is independent of .
Therefore, all fixed points of 7, in B are bounded independently of A\ €
[0, 1].

Finally, for A = 0, we can reason as in the proof that 7, is well defined
to conclude that problem (16)-(20) has a unique solution. Therefore, we can
apply Leray-Schauder’s fixed point theorem, and so there is at least one fixed
point (4,6,¢c) € BNW3HQ) x Wi (Q) x C*HQ) of the operator Ty, i.e.,
(p,0,¢) = Ti(¢,0,c). This corresponds to a solution of problem (11)-(15)
and the proof of Proposition 1 thus complete. [ |

3 Proof of Theorem 1

To prove Theorem 1, we start by taking the initial condition in the previous
regularized problem as follows. For a sequence § — 0+, we choose ¢ = ¢y

16



and pick two corresponding sequences 65 € H*(Q) and ¢ € C'(Q) satisfying
0<c)<1,05— 0 in L?(Q) and ¢} — ¢y in H(Q).

From Proposition 1, we know that there exist a sequence (¢°,6°,¢°) of
corresponding solutions of problem (11)-(15). For such solutions, we will
derive bounds, uniform with respect to ¢; then, we will use compactness
arguments to pass to the limit and establish the desired result.

Lemma 1 There exists a constant Cy such that, for any 6 € (0,1)

16°]| oo .1 @2 ) + 1612 < Ca (63)

T
10 ieoirzn + [ [ Ki(ps(@® DIV Pzt < €1 (04)
C,. (65)

IN

16}l 0.1582 @22 0,130 (20)
Proof: From inequality (62), it follows estimates (63), (65) and also
16°|| oo 0,752 (2)) < - (66)

By multiplying (12) by #° and integrating over (), we obtain
T T
/ |95|2dx+/ /Kf(p5(¢5))|V95|2dxdt§ 01/ / (1671 + 16°[) dexdt.
Q 0 Jo o Jo
In view of (63) and (66), this gives estimate (64). ]

Lemma 2 There exists a constant Cy such that, for any § € (0,1)

Ci (67)
o (68)

10711 220,71 2y

IA TN

et Wl 20,7 )

Proof: We take the scalar product in L?(2) of (12) with n € H*(Q2). By
using Holder’s inequality and (B), we find

1/2 l
Colbillmey < (0+1) [ Kios(@)IVOPdz) "+ S168ln

Then, (67) follows from (63)-(64). Estimate (68) can be similarly obtained
by using (63) and (65). ]
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We now infer from Lemma 1 and Lemma 2 that there exist

¢ € L*(0,T; H*(Q))NL>®0,T; HY(Q)) with ¢, € L*(Q),

0 € L>(0,T;L*Q)) with 0, € L*(0,T; H'(Q)"),

c € L*0,T; HY(Q)) N L>(0,T; L*)) with ¢; € L*(0,T; H(2)"),
J € L*Q)

and a subsequence that to ease the notation we still denote (¢°,6°, ¢%), such
that as 0 — 0+, satisfies

#° — ¢ in L%(0,T; HY(Q)) N C([0,T); L*(2)) strongly,
) = o inL¥(Q) weakly
° — 6 in C([0,T); HL(Q)") strongly,
° — 0 in L?(Q) weakly,
¢ — ¢ inL*Q)NC([0,T]; HY(Q)") strongly,
¢ — ¢ in L*(0,T; H'(Q)) weakly,
K{(ps(¢°))VE# — J in L?(Q) weakly.

(69)
It now remains to identify J in terms of ¢ and # and pass to the limit as
d approaches zero in (11)-(15).
It follows from (69) that we may pass to the limit in (11) and find that
(7) holds almost everywhere.

Since K is a Lipschitz continuous function and ps(¢°) converges to ¢ in
L*(0,T; H'()), we have (see, e.g.[9] Thm 16.7)

Ki(ps(¢')) — Ki(@) in L*(0,T; H'(Q)) strongly. (70)
From (69)-(70), we conclude that

O°VEKi(ps(¢°)) — OVEi(¢) in L'Y(Q) weakly,

Ki(ps(¢)0? — Ki(¢)® in LYQ) weakly. (71)

Also, since K;(ps(¢°)) € L>®(0,T; H*(Q)) and §° € L*(0,T; H'(£2)), we have

Ki(ps(¢°))0° € L*(0,T; W'P(Q2)) for p = min {2, ﬁ}

and
V (K1(ps(6))6°) = K1(ps(6°))VO® + 0°V K1 (ps(°)).
It then follows from (71) that

Ki(ps(¢"))VO° = V (K1(9)0) — OVE1(9) in D'(Q). (72)
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Since K, is nonnegative, the definition of K¢ and (64) yield that
||(5%V9‘5||L2(Q) < C, with C independent of 6. Thus,

5VO° — 0 in L*(Q). (73)
From (69), (72) and (73), we conclude that
J =V (Ki(9)8) — 0VE.(6).

Moreover, we may pass to the limit in a weak sense in (12) and obtain (9).
In order to pass to the limit in (13), we take scalar product in L*(Q) of
it with n € L*(0,7; H'(Q2)), to obtain

/ /ctnda;dt + KQ/ /vc Vi dadt
+ KQM/ / (1= )V ps(¢°)) - Viy dadt = 0.
Then, from (69), we have that
/OT(ct, >d:rdt—|—K2/ /Vc Vnda:dt+K2M/ / 1—¢)Vé-Vndzdt =0
holds for any n € L*(0,T; H*(Q2)).

Moreover, since 0 < ¢® < 1 and ¢ converges to ¢ in L?(Q), we have that
0<c<Tlae. in Q.
0¢

Finally, it follows from (69) that ol =0, ¢(0) = ¢, 0(0) = 6y and
n
c(0) = cp.
The proof of Theorem 1 is then complete. ]

Remark. From the LP-theory of parabolic equations, it is easy to con-
clude that ¢ € W?)Q/;(Q), and therefore the equation for ¢ holds almost every-
where.
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