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Abstra
t

The phase-�eld method provides an alternative mathemati
al des
ription

for free-boundary problems 
orresponding to physi
al pro
esses with phase

transitions. It postulates the existen
e of a fun
tion, 
alled the phase-�eld,

whose value identi�es the phase at a parti
ular point in spa
e and time, and

it is parti
ularly suitable for 
ases with 
omplex growth stru
tures o

urring

during phase transitions.

The mathemati
al model studied in this work des
ribes the solidi�
ation

pro
ess o

urring in a binary alloy with temperature dependent properties.

It is based on a highly nonlinear degenerate paraboli
 system of partial dif-

ferential equations with three independent variables: phase-�eld, solute 
on-


entration and temperature.

Existen
e of weak solutions of su
h system is obtained via the introdu
tion

of a regularized problem, followed by the derivation of suitable estimates and

the appli
ation of 
ompa
tness arguments.
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1 Introdu
tion

We are interested in performing a mathemati
al analysis of a model for phase


hange pro
esses o

urring in binary alloys with thermal properties. Su
h a

model, using a phase-�eld methodology, was proposed by Caginalp and Xie

[3℄ and a detailed derivation of more 
omprehensive system was presented

by Caginalp and Jones [2℄. It is des
ribed as the following 
oupled system of

nonlinear partial di�erential equations:

��

2

�

t

� �

2

�� =

1

2

(�� �

3

) + � (� � 
�

A

� (1� 
)�

B

) in 
� (0;1);(1)

C

V

�

t

+

l

2

�

t

= r �K

1

(�)r� in 
� (0;1); (2)




t

= K

2

r � 
(1� 
)r

�

M� + ln




1� 


�

in 
� (0;1); (3)

��

�n

= 0;

��

�n

= 0;

�


�n

= 0 on �
� (0;1); (4)

�(0) = �

0

; �(0) = �

0

; 
(0) = 


0

in 
: (5)

Here 
 is an open bounded domain of IR

N

; N = 2; 3, with smooth boundary

�
. The order parameter (phase-�eld) � is the state variable 
hara
terizing

the di�erent phases; the fun
tion � represents the temperature; the 
on
en-

tration 
 2 (0; 1) denotes the fra
tion of one of the two materials in the

mixture. The parameter � > 0 is the relaxation s
aling; the parameter �

is given by � = �[s℄=3�, where � > 0 is a measure of the interfa
e width,

� the surfa
e tension and [s℄ the entropy density di�eren
e between phases;

C

V

> 0 is the spe
i�
 heat; the 
onstant l > 0 the latent heat; �

A

, �

B

,

are the respe
tive melting temperatures of ea
h of the two materials in the

alloy; K

2

> 0 is the solute di�usivity; M is a 
onstant related to the slopes

of solidus and liquidus lines; K

1

> 0 denotes the thermal 
ondu
tivity. Con-


erning this last physi
al parameter, throughout this paper we assume the


onditions of Lauren�
ot [11℄:

(A) K

1

depends only on the order parameter � and is a Lips
hitz 
on-

tinuous fun
tion. Moreover, there exists b > 0 su
h that

0 � K

1

(r) � b for all r 2 IR:
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We observe that one te
hni
al diÆ
ulty with the previous system is that,

when K

1

vanishes the equation (2) degenerates and looses its paraboli
ity.

Note also that equation (3) 
an be rewritten as




t

= K

2

(�
 +Mr � 
(1� 
)r�)

= K

2

�
+K

2

M(1� 2
)r
 � r�+K

2

M
(1� 
)�� (6)

and that for the pure materials, that is, when 
 � 0 or 
 � 1, the equations

redu
e to the usual phase �eld model for pure materials.

We should remark that in re
ent years the phase-�eld methodology has

a
hieved 
onsiderable importan
e in modeling and numeri
ally simulating a

range of phase transitions and 
omplex growth stru
tures o

urring during

solidi�
ation. Phase-�eld models have been used to des
ribe phase transi-

tions of pure material due to thermal e�e
ts; they lead to nonlinear paraboli


systems for the phase-�eld and the temperature. Su
h models have been stud-

ied, and we refer for instan
e to [1, 8, 11, 14℄, where existen
e and unique-

ness of solutions are investigated for various types of nonlinearities. The

phase-�eld governing equations have been derived in a thermodynami
ally


onsistent way by Penrose and Fife [15℄, whi
h re
overs the phase-�eld model

employed by Caginalp [1℄ by linearization of the heat 
ux. Many papers has

been devoted to the mathemati
al analysis of the Penrose-Fife model, for

instan
e see [4, 5℄ and referen
es therein. Several phase-�eld models have

also been developed for binary alloys. The �rst work in this dire
tion was

due to Wheeler et al [19℄ and is 
on
erned isothermal solidi�
ation. Warren

and Boettinger [18℄ extended this model, while re
ently Rappaz and S
heid

[16℄ investigated well-posedness of solutions under suitable assumptions for

the non-linearities. Another similar model in
luding temperatures 
hanges

was developed by Caginalp and Xie [3℄. In a su
h models, the governing

equations for the phase-�eld and the 
on
entration are derived from a free

energy fun
tional, and an appropriate balan
e equation for the temperature

is then adjoined to 
omplete the model.

Con
erning notations, in this paper we use standard ones, with the remark

that we denote by h�; �i the duality pairing between H

1

(
) and H

1

(
)

0

. Also,

for a given �xed T > 0, we denote Q = 
� (0; T ).

The main result of this paper is the following.
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Theorem 1 Suppose that �

0

2 H

1

(
); �

0

2 L

2

(
); 


0

2 H

1

(
); 0 < 


0

< 1

a.e. in

�


; satisfy the 
ompatibility 
onditions. Under the assumption (A),

there exist fun
tions (�; �; 
; J) satisfying, for any �xed T > 0;

i) � 2 L

2

(0; T ;H

2

(
)) \ L

1

(0; T ;H

1

(
)); �

t

2 L

2

(Q); �(0) = �

0

;

ii) � 2 L

1

(0; T ;L

2

(
)); �

t

2 L

2

(0; T ;H

1

(
)

0

); �(0) = �

0

;

iii) 
 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)); 


t

2 L

2

(0; T ;H

1

(
)

0

);


(0) = 


0

; 0 < 
 < 1 a.e. in Q;

iv) J 2 L

2

(Q; IR

n

); J = r(K

1

(�)�)� �rK

1

(�);

and su
h that

��

2

�

t

� �

2

�� =

1

2

(�� �

3

) + � (� + (�

B

� �

A

)
� �

B

) a.e. in Q; (7)

��

�n

= 0 a.e. on �
� (0; T ); (8)

C

�

Z

T

0

h�

t

; �idt+

l

2

Z

T

0

Z




�

t

� dxdt+

Z

T

0

Z




J � r� dxdt = 0; (9)

Z

T

0

h


t

; �idt+K

2

Z

T

0

Z




r
 � r� dxdt+K

2

M

Z

T

0

Z





(1� 
)r� � r� dxdt = 0;

(10)

for any � 2 L

2

(0; T ;H

1

(
)):

If, in addition, K

1

� b

0

for some b

0

> 0; then � 2 L

2

(0; T ;H

1

(
)) for

ea
h T > 0; and J = K

1

(�)r�:

We remark that be
ause the possibility of degenera
y of the paraboli



hara
ter of the model, we were able neither to prove uniqueness nor to

improve the regularity of the 
onstru
ted solution.

Finally, the outline of this paper is as follows. In Se
tion 2, we study

a family of regularized problems depending on a small a

essory positive

parameter; this study will be auxiliary to prove the main existen
e result, and

it will be introdu
ed to avoid the above mentioned possibility of degenera
y

of paraboli
ity in equation (3). Se
tion 3 is devoted to proof of Theorem 1;

it will be done with the help of suitable estimates derived for the regularized

problem together with 
ompa
tness arguments.
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2 A regularized problem

In this se
tion we introdu
e a regularized problem related to (1){(5); for

it, we prove a result of existen
e of solutions by using Leray-S
hauder �xed

point theorem ([6℄ pp. 189).

Before doing so, we re
all 
ertain results that will be helpful in the intro-

du
tion of su
h regularized problem.

Re
all that there is an extension operator Ext(�) taking any fun
tion w

in the spa
e

W

2;1

2

(Q) =

n

w 2 L

2

(Q) =D

x

w;D

2

x

w 2 L

2

(Q); w

t

2 L

2

(Q)

o

and extending it to a fun
tion Ext(w) 2 W

2;1

2

(IR

N+1

) with 
ompa
t support

satisfying

kExt(w)k

W

2;1

2

(IR

N+1

)

� C kwk

W

2;1

2

(Q)

;

with C independent of w (see [13℄ pp.157).

For Æ 2 (0; 1), let �

Æ

2 C

1

0

(IR

N+1

) be a family of symmetri
 positive

molli�er fun
tions 
onverging to the Dira
 delta fun
tion, and denote by �

the 
onvolution operation. Then, given a fun
tion w 2 W

2;1

q

(Q), we de�ne a

regularization �

Æ

(w) 2 C

1

0

(IR

N+1

) of w by

�

Æ

(w) = �

Æ

� Ext(w):

Now, we de�ne K

Æ

1

for ea
h Æ 2 (0; 1) by

K

Æ

1

(r) = K

1

(r) + Æ

for all r 2 IR: We infer from (A) that,

(B) K

Æ

1

is a Lips
hitz 
ontinuous fun
tion and

0 < Æ � K

Æ

1

(r) � b + 1 for all r 2 IR:

Now, we are in position to de�ne the following family of regularized prob-

lems. For Æ 2 (0; 1), we 
onsider the system

��

2

�

Æ

t

� �

2

��

Æ

=

1

2

(�

Æ

� (�

Æ

)

3

) + �

�

�

Æ

+ (�

B

� �

A

)


Æ

� �

B

�

in Q;(11)
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C

V

�

Æ

t

+

l

2

�

Æ

t

= r �K

Æ

1

(�

Æ

(�

Æ

))r�

Æ

in Q; (12)




Æ

t

�K

2

�


Æ

= K

2

Mr � 


Æ

(1� 


Æ

)r

�

�

Æ

(�

Æ

)

�

in Q; (13)

��

Æ

�n

= 0;

��

Æ

�n

= 0;

�


Æ

�n

= 0 on �
� (0; T ); (14)

�

Æ

(0) = �

Æ

0

; �

Æ

(0) = �

Æ

0

; 


Æ

(0) = 


Æ

0

in 
: (15)

We then have the following existen
e result.

Proposition 1 For ea
h Æ 2 (0; 1), let (�

Æ

0

; �

Æ

0

; 


Æ

0

) 2 H

1

(
)�H

1

(
)�C

1

(

�


)

satisfying the 
ompatibility 
onditions and 0 < 


Æ

0

< 1 in

�


. Under the

assumption (B), there exist fun
tions (�

Æ

; �

Æ

; 


Æ

) satisfying, for any �xed

T > 0,

i) �

Æ

2 L

2

(0; T ;H

2

(
)); �

Æ

t

2 L

2

(Q);

ii) �

Æ

2 L

2

(0; T ;H

2

(
)); �

Æ

t

2 L

2

(Q);

iii) 


Æ

2 C

2;1

(Q); 0 < 


Æ

< 1;

iv) (�

Æ

; �

Æ

; 


Æ

) satis�es (11)-(15) almost everywhere.

Proof: To ease the notation, in this proof we will omit the supers
ript Æ of

the variables �

Æ

; �

Æ

; 


Æ

.

First of all, we 
onsider the following family of operators, indexed by the

parameter 0 � � � 1,

T

�

: B ! B;

where B is the Bana
h spa
e

B = L

2

(Q)� L

2

(Q)� L

2

(Q);

and de�ned as follows: given (

^

�;

^

�; 
̂) 2 B, let T

�

(

^

�;

^

�; 
̂) = (�; �; 
), where

(�; �; 
) is obtained by solving the problem

��

2

�

t

� �

2

�� �

1

2

(�� �

3

) = ��

�

^

� + (�

B

� �

A

)
̂� �

B

�

in Q; (16)
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C

V

�

t

+

l

2

�

t

= r �K

Æ

1

(�

Æ

(�))r� in Q; (17)




t

�K

2

�
 = K

2

Mr � 
(1� 
)r (�

Æ

(�)) in Q; (18)

��

�n

= 0;

��

�n

= 0;

�


�n

= 0 on �
� (0; T ); (19)

�(0) = �

Æ

0

; �(0) = �

Æ

0

; 
(0) = 


Æ

0

in 
: (20)

Before we prove that T

�

is well de�ned, we observe that 
learly (�; �; 
)

is a solution of (11)-(15) if and only if it is a �xed point of the operator T

1

.

In the following, we prove that T

1

has at least one �xed point by using the

Leray-S
hauder �xed point theorem.

To verify that T

�

is well de�ned, observe that sin
e

^

�; 
̂ 2 L

2

(Q), we infer

from Theorem 2.1 of [8℄ that there is a unique solution � of equation (16)

with � 2 W

2;1

2

(Q).

Now, sin
e K

Æ

1

is a bounded Lips
hitz 
ontinuous fun
tion and �

Æ

(�) 2

C

1

0

(IR

N+1

), we have that K

Æ

1

(�

Æ

(�)) 2 W

1;1

r

(Q) for 1 � r � 1. Thus, sin
e

�

t

2 L

2

(Q); we infer from L

p

-theory of paraboli
 equations ([10℄ pp. 341)

that there is a unique solution � of equation (17) with � 2 W

2;1

2

(Q).

We observe that equation (18) is a semilinear paraboli
 equation with

smooth 
oeÆ
ients. Moreover, by looking at the right-hand side of this

equation, written in form (6), it has the properties and growth 
onditions to

apply semigroup results of Henry [7℄, pp.75. Thus, we 
on
lude that there is

a unique global 
lassi
al solution 
.

In addition, note that equation (18) does not admit 
onstant solutions,

ex
ept 
 � 0 and 
 � 1. Thus, by using Maximum Prin
iples together with


onditions 0 < 


Æ

0

< 1 and

�


Æ

�n

= 0, we 
an dedu
e that

0 < 
(x; t) < 1; 8 (x; t) 2 Q: (21)

Therefore, for ea
h � 2 [0; 1℄, the mapping T

�

is well de�ned from B into B.

To prove 
ontinuity of T

�

, let (

^

�

n

;

^

�

n

; 
̂

n

) 2 B strongly 
onverging to

(

^

�;

^

�; 
̂) 2 B; for ea
h n, let (�

n

; �

n

; 


n

) the 
orresponding solution of the

problem:

��

2

�

n

t

� �

2

��

n

�

1

2

(�

n

� �

3

n

) = ��

�

^

�

n

+ (�

B

� �

A

)
̂

n

� �

B

�

in Q;(22)
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C

V

�

n

t

+

l

2

�

n

t

= r �K

Æ

1

(�

Æ

(�

n

))r�

n

in Q; (23)




n

t

�K

2

�


n

= K

2

Mr � 


n

(1� 


n

)r (�

Æ

(�

n

)) in Q; (24)

��

n

�n

= 0;

��

n

�n

= 0;

�


n

�n

= 0 on �
� (0; T ); (25)

�

n

(0) = �

0

; �

n

(0) = �

0

; 


n

(0) = 


0

in 
: (26)

We show that the sequen
e (�

n

; �

n

; 


n

) 
onverges strongly to (�; �; 
) =

T

�

(

^

�;

^

�; 
̂) in B: For that purpose, we will obtain estimates, uniformly with

respe
t to n, for (�

n

; �

n

; 


n

). We denote by C

i

any positive 
onstant inde-

pendent of n.

We multiply (22) su

essively by �

n

, �

n

t

and ���

n

, and integrate over


 � (0; t). After integration by parts and the use the H�older's and Young's

inequalities, we obtain the following three estimates:

��

2

2

Z




j�

n

j

2

dx +

Z

t

0

Z




 

�

2

2

jr�

n

j

2

+

1

4

�

4

n

!

dxdt

� C

1

+ C

2

Z

t

0

Z




�

j

^

�

n

j

2

+ j
̂

n

j

2

+ j�

n

j

2

�

dxdt; (27)

��

2

2

Z

t

0

Z




j�

n

t

j

2

dxdt +

Z




 

�

2

jr�

n

j

2

+

�

4

n

8

�

�

2

n

4

!

dx

� C

1

+ C

2

Z

t

0

Z




�

j

^

�

n

j

2

+ j
̂

n

j

2

�

dxdt; (28)

��

2

2

Z




jr�

n

j

2

dx +

�

2

2

Z

t

0

Z




j��

n

j

2

dxdt

� C

1

+ C

2

Z

t

0

Z




�

jr�

n

j

2

+ j

^

�

n

j

2

+ j
̂

n

j

2

�

dxdt:(29)

By multiplying (28) by ��

2

and adding the result to (27), we �nd

Z




�

j�

n

j

2

+ jr�

n

j

2

+ �

4

n

�

dx

� C

1

+ C

2

Z

t

0

Z




�

j

^

�

n

j

2

+ j
̂

n

j

2

+ j�

n

j

2

�

dxdt: (30)
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Sin
e k

^

�

n

k

L

2

(Q)

and k
̂

n

k

L

2

(Q)

are bounded independent of n, we infer from

(30) and Gronwall's Lemma that

k�

n

k

L

1

(0;T ;H

1

(
))

� C

1

: (31)

Then, thanks to (27)-(29) we have

k�

n

k

L

2

(0;T ;H

2

(
))

+ k�

n

t

k

L

2

(Q)

� C

1

: (32)

Now, by multiplying (23) by �

n

, one obtains in a similar way as above

that

Z




j�

n

j

2

dx +

Z

t

0

Z




jr�

n

j

2

dxdt � C

1

+ C

2

Z

t

0

Z




�

j�

n

t

j

2

+ j�

n

j

2

�

dxdt: (33)

Thus, with the help of (32) and Gronwall's Lemma, we infer that

k�

n

k

L

1

(0;T ;L

2

(
))

� C

1

: (34)

Hen
e, it follows from (33) that

k�

n

k

L

2

(0;T ;H

1

(
))

� C

2

: (35)

Now, we take s
alar produ
t in L

2

(
) of (23) with � 2 H

1

(
). By

integrating by parts and using H�older's and Young's inequalities, we obtain

k�

n

t

k

H

1

(
)

0

� C

1

�

kr�

n

k

L

2

(
)

+ k�

n

t

k

L

2

(
)

�

:

Thus, we infer from (32) and (35) that

k�

n

t

k

L

2

(0;T ;H

1

(
)

0

)

� C

1

: (36)

Next, by multiplying (24) by 


n

, with the help of (21), as above we 
on-


lude that

Z




j


n

j

2

dx+

Z

t

0

Z




jr


n

j

2

dxdt � C

1

+ C

2

Z

t

0

Z




jr�

n

j

2

dxdt:

Hen
e, from (32) we have,

k


n

k

L

2

(0;T ;H

1

(
))

+ k


n

k

L

1

(0;T ;L

2

(
))

� C

1

: (37)

10



In order to get an estimate for 


n

t

in L

2

(0; T ;H

1

(
)

0

); we return to equa-

tion (24) and use similar te
hniques as above to obtain

k


n

t

k

L

2

(0;T ;H

1

(
)

0

)

� C

1

: (38)

We now infer from (31) and (32) that the sequen
e (�

n

) is bounded in

W

1

=

n

v 2 L

2

(0; T ;H

2

(
)); v

t

2 L

2

(0; T ;L

2

(
))

o

and in

W

2

=

n

v 2 L

1

(0; T ;H

1

(
)); v

t

2 L

2

(0; T ;L

2

(
)):

o

;

We also infer from (34)-(37) that the sequen
es (�

n

) and (


n

) are bounded in

W

3

=

n

v 2 L

2

(0; T ;H

1

(
)); v

t

2 L

2

(0; T ;H

1

(
)

0

)

o

and in

W

4

=

n

v 2 L

1

(0; T ;L

2

(
)); v

t

2 L

2

(0; T ;H

1

(
)

0

)

o

:

Sin
eW

1

is 
ompa
tly embedded in L

2

(0; T ;H

1

(
)),W

2

in C([0; T ℄;L

2

(
)),

W

3

in L

2

(0; T ;L

2

(
)) andW

4

in C([0; T ℄;H

1

(
)

0

) ([17℄ Cor.4), it follows that

there exist

� 2 L

2

(0; T ;H

2

(
)) \ L

1

(0; T ;H

1

(
)) with �

t

2 L

2

(Q);

� 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)) with �

t

2 L

2

(0; T ;H

1

(
)

0

);


 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)) with 


t

2 L

2

(0; T ;H

1

(
)

0

);

and a subsequen
e of (�

n

; �

n

; 


n

) (whi
h we still denote by (�

n

; �

n

; 


n

) ), su
h

that, as n! +1;

�

n

! � in L

2

(0; T ;H

1

(
)) \ C([0; T ℄;L

2

(
)) strongly,

�

n

* � in L

2

(0; T ;H

2

(
)) weakly,

�

n

! � in L

2

(Q) \ C([0; T ℄;H

1

(
)

0

) strongly,

�

n

* � in L

2

(0; T ;H

1

(
)) weakly,




n

! 
 in L

2

(Q) \ C([0; T ℄;H

1

(
)

0

) strongly,




n

* 
 in L

2

(0; T ;H

1

(
)) weakly,

(39)

It now remains to pass to the limit as n tends to 1 in (22)-(26). Sin
e

the embedding of W

2;1

2

(Q) into L

9

(Q) is 
ompa
t ([12℄ pp.15), and (�

n

) is

bounded in W

2;1

2

(Q); we infer that �

3

n


onverges to �

3

in L

2

(Q): We then

pass to the limit in (22) and get

��

2

�

t

� �

2

���

1

2

(�� �

3

) = ��

�

^

� + (�

B

� �

A

)
̂� �

B

�

a.e. in Q:

11



Sin
e K

Æ

1

is bounded Lips
hitz 
ontinuous fun
tion and �

Æ

(�

n

) 
onverges

to �

Æ

(�) in L

2

(Q); we have that K

Æ

1

(�

Æ

(�

n

)) 
onverges to K

Æ

1

(�

Æ

(�)) in L

p

(Q)

for any p 2 [1;1). This fa
t and (39) yield the weak 
onvergen
e of

K

Æ

1

(�

Æ

(�

n

))r�

n

to K

Æ

1

(�

Æ

(�))r� in L

3=2

(Q): Now, by multiplying (23) by

� 2 L

2

(0; T ;H

1

(
)) and integrating over 
 � (0; T ), after integration by

parts, we obtain

C

V

Z

T

0

Z




�

n

t

� dxdt+

l

2

Z

T

0

Z




�

n

t

� dxdt+

Z

T

0

Z




K

Æ

1

(�

Æ

(�

n

))r�

n

�r� dxdt = 0:

Then, we may pass to the limit and �nd that

C

V

Z

T

0

h�

t

; �idt+

l

2

Z

T

0

Z




�

t

� dxdt+

Z

T

0

Z




K

Æ

1

(�

Æ

(�))r� � r� dxdt = 0

holds for any � 2 L

2

(0; T ;H

1

(
)). This implies that

C

V

�

t

+

l

2

�

t

= r �K

Æ

1

(�

Æ

(�))r� in D

0

(Q): (40)

Now, by using the L

p

-theory of paraboli
 equations, it is easy to 
on
lude

that (40) holds almost everywhere in Q.

It remains to pass to the limit in (24). We infer from (39) that r�

Æ

(�

n

)


onverges to r�

Æ

(�) in L

2

(Q) and sin
e k


n

k

L

1

(Q)

is bounded, it follows that




n

(1 � 


n

) 
onverges to 
(1 � 
) in L

p

(Q) for any p 2 [1;1). Similarly, we

may pass to the limit in (24) to obtain




t

�K

2

�
 = K

2

Mr � 
(1� 
)r (�

Æ

(�)) in Q:

Therefore T

�

is 
ontinuous for all 0 � � � 1. At the same time, T

�

is

bounded in W

1

�W

3

�W

3

, and the embedding of this spa
e in B is 
ompa
t.

We 
on
lude that T

�

is a 
ompa
t operator for ea
h � 2 [0; 1℄.

To prove that for (

^

�;

^

�; 
̂) in a bounded set of B, T

�

is uniformly 
ontin-

uous with respe
t to �, let 0 � �

1

; �

2

� 1 and (�

i

; �

i

; 


i

) (i = 1; 2) be the


orresponding solutions of (16)-(20). We observe that � = �

1

��

2

; � = �

1

��

2

and 
 = 


1

� 


2

satisfy the following problem:

��

2

�

t

� �

2

�� =

1

2

�(1� (�

2

1

+ �

1

�

2

+ �

2

2

))

+ (�

1

� �

2

)�

�

^

� + (�

B

� �

A

)
̂� �

B

�

in Q; (41)

12



C

V

�

t

+

l

2

�

t

= r �K

Æ

1

(�

Æ

(�

1

))r�

+ r �

h

K

Æ

1

(�

Æ

(�

1

))�K

Æ

1

(�

Æ

(�

2

))

i

r�

2

in Q; (42)




t

�K

2

�
 = K

2

Mr � 


1

(1� 


1

) (r�

Æ

(�

1

)�r�

Æ

(�

2

))

+ K

2

Mr � 
(1� (


1

+ 


2

))r�

Æ

(�

2

) in Q; (43)

��

�n

= 0;

��

�n

= 0;

�


�n

= 0 on �
� (0; T ); (44)

�(0) = 0; �(0) = 0; 
(0) = 0 in 
: (45)

We remark that d := �

2

1

+ �

1

�

2

+ �

2

2

� 0. Now, multiply equation (41)

by � and integrate over Q; after integration by parts and the use of H�older's

and Young's inequalities we, obtain

Z




j�j

2

dx+

Z

t

0

Z




jr�j

2

dxdt � C

1

Z

t

0

Z




j�j

2

dxdt

+ C

2

j�

1

� �

2

j

2

Z

t

0

Z




�

j

^

�j

2

+ j
̂j

2

�

dxdt:

By applying Gronwall's Lemma, we arrive at

k�k

2

L

1

(0;T ;L

2

(
))

+ k�k

2

L

2

(0;T ;H

1

(
))

� C

1

j�

1

� �

2

j

2

: (46)

Now, multiply (41) by �

t

and use H�older's inequality to obtain

��

2

Z

t

0

Z




j�

t

j

2

dxdt +

�

2

2

Z




jr�j

2

dx

� C

1

Z

t

0

Z




j�j

2

dxdt+

��

2

2

Z

t

0

Z




j�

t

j

2

dxdt

+ C

2

�

Z

t

0

Z




j�j

10=3

dxdt

�

3=5

�

Z

t

0

Z




jdj

5

dxdt

�

2=5

+ C

2

j�

1

� �

2

j

2

Z

t

0

Z




�

j

^

�j

2

+ j
̂j

2

�

dxdt:

Sin
e W

2;1

2

(Q) ,! L

10

(Q), the following interpolation inequality holds

k�k

2

L

10=3

(Q)

� � k�k

2

W

2;1

2

(Q)

+

~

C k�k

2

L

2

(Q)

for all � > 0:

13



Moreover, sin
e kdk

L

5

(Q)

� C, withC depending on k�

1

k

L

10

(Q)

and k�

2

k

L

10

(Q)

,

by rearranging the terms in the last inequality, we obtain

Z

t

0

Z




j�

t

j

2

dxdt +

Z




jr�j

2

dx

� C

1

Z

t

0

Z




j�j

2

dxdt+ C

2

� k�k

2

W

2;1

2

(Q)

(47)

+ C

3

j�

1

� �

2

j

2

Z

t

0

Z




�

j

^

�j

2

+ j
̂j

2

�

dxdt:

By multiplying (41) by ���, we infer in a similar way that

Z




jr�j

2

dx +

Z

t

0

Z




j��j

2

dxdt

� C

1

Z

t

0

Z




�

j�j

2

+ jr�j

2

�

dxdt + C

2

� k�k

2

W

2;1

2

(Q)

(48)

+ C

3

j�

1

� �

2

j

2

Z

t

0

Z




�

j

^

�j

2

+ j
̂j

2

�

dxdt:

By taking � > 0 small enough and 
onsidering (46) we 
on
lude from (47)

and (48) that

k�k

2

W

2;1

2

(Q)

+ k�k

2

L

1

(0;T ;H

1

(
))

� C

1

j�

1

� �

2

j

2

: (49)

By multiplying (42) by �, integrating over 
 and using H�older's inequality

and (B), we have

d

dt

Z




j�j

2

dx+ Æ

Z




jr�j

2

dxdt � C

1

Z




�

j�

t

j

2

+ j�j

2

+ j�j jr�

2

j jr�j

�

dxdt

� C

1

Z




�

j�

t

j

2

+ j�j

2

�

dxdt+

Æ

2

Z




jr�j

2

+ C

3

k�k

2

L

1

(0;T ;H

1

(
))

k�

2

k

2

H

2

(
)

:

Therefore, integration with respe
t to t and the use of Gronwall's Lemma

and (49) lead to the estimate

k�k

2

L

1

(0;T ;L

2

(
))

� C

1

j�

1

� �

2

j

2

: (50)

Now, we multiply (43) by 
 and integrate over 
� (0; t). By integration

by parts and we use H�older's and Young's inequalities and (21), we obtain

Z




j
j

2

dx+

Z

t

0

Z




jr
j

2

dxdt � C

1

Z

t

0

Z




�

jr�

Æ

(�

1

)�r�

Æ

(�

2

)j

2

+ j
j

2

�

dxdt

� C

1

Z

t

0

Z




�

jr�j

2

+ j
j

2

�

dxdt:

14



By applying Gronwall's Lemma and using (49), we arrive at

k
k

2

L

1

(0;T ;L

2

(
))

� C

1

j�

1

� �

2

j

2

: (51)

Therefore, it follows from (49)-(51) that T

�

is uniformly 
ontinuous with

respe
t � on bounded sets of B.

Now we have to estimate the set of all �xed points of T

�

, let (�; �; 
) 2 B

be su
h a �xed point, i.e., it is a solution of the problem

��

2

�

t

� �

2

�� �

1

2

(�� �

3

) = �� (� + (�

B

� �

A

)
� �

B

) in Q; (52)

C

V

�

t

+

l

2

�

t

= r �K

Æ

1

(�

Æ

(�))r� in Q; (53)




t

�K

2

�
 = K

2

Mr � 
(1� 
)r (�

Æ

(�)) in Q; (54)

��

�n

= 0;

��

�n

= 0;

�


�n

= 0 on �
 � (0; T ); (55)

�(0) = �

Æ

0

; �(0) = �

Æ

0

; 
(0) = 


Æ

0

in 
: (56)

For this, we multiply the �rst equation (52) su

essively by �, �

t

and

���, and integrate over 
. After integration by parts, using H�older's and

Young's inequalities, we obtain, respe
tively

��

2

2

d

dt

Z




j�j

2

dx +

Z




�

�

2

jr�j

2

+

1

4

�

4

�

dx

� C

1

+ C

2

Z




�

j�j

2

+ j
j

2

+ j�j

2

�

dx; (57)

��

2

2

Z




j�

t

j

2

dx +

d

dt

Z




 

�

2

2

jr�j

2

+

1

8

�

4

�

1

4

j�j

2

!

dx

� C

1

+ C

2

Z




�

j�j

2

+ j
j

2

�

dx; (58)

��

2

2

d

dt

Z




jr�j

2

dx +

Z




�

2

2

j��j

2

dx

� C

1

+ C

2

Z




�

j�j

2

+ j
j

2

+ jr�j

2

�

dx: (59)
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By multiplying (53) by � and (54) by 
, arguments similar to the previous

ones lead to the following estimates

d

dt

Z




C

�

2

j�j

2

dx+ Æ

Z




jr�j

2

dx �

�

2

�

4

4

Z




j�

t

j

2

dx+ C

1

Z




j�j

2

dx; (60)

d

dt

Z




j
j

2

dx+K

2

Z




jr
j

2

dx � C

1

Z




jr�j

2

dx; (61)

where (21) was used to obtain the last inequality.

Now, multiply (58) by ��

2

and add the result to (57), (59)- (61), to obtain

d

dt

Z




 

��

2

4

j�j

2

+

 

��

2

2

+

��

4

2

!

jr�j

2

+

��

2

8

�

4

+

C

�

2

j�j

2

+ j
j

2

!

dx

Z




 

�

2

jr�j

2

+

1

4

�

4

+

�

2

�

4

4

j�

t

j

2

+

�

2

2

j��j

2

+ Æjr�j

2

+K

2

jr
j

2

!

dx

� C

1

+ C

2

Z




�

j�j

2

+ j
j

2

+ j�j

2

+ jr�j

2

�

dx: (62)

Hen
e, the integration of (62) with respe
t t and the use Gronwall's

Lemma give us

k�k

L

1

(0;T ;H

1

(
))

+ k�k

L

1

(0;T ;L

2

(
))

+ k
k

L

1

(0;T ;L

2

(
))

� C

1

;

where C

1

is independent of �.

Therefore, all �xed points of T

�

in B are bounded independently of � 2

[0; 1℄:

Finally, for � = 0, we 
an reason as in the proof that T

�

is well de�ned

to 
on
lude that problem (16)-(20) has a unique solution. Therefore, we 
an

apply Leray-S
hauder's �xed point theorem, and so there is at least one �xed

point (�; �; 
) 2 B \W

2;1

2

(Q) �W

2;1

2

(Q) � C

2;1

(Q) of the operator T

1

, i.e.,

(�; �; 
) = T

1

(�; �; 
). This 
orresponds to a solution of problem (11)-(15)

and the proof of Proposition 1 thus 
omplete.

3 Proof of Theorem 1

To prove Theorem 1, we start by taking the initial 
ondition in the previous

regularized problem as follows. For a sequen
e Æ ! 0+, we 
hoose �

Æ

0

= �

0

16



and pi
k two 
orresponding sequen
es �

Æ

0

2 H

1

(
) and 


Æ

0

2 C

1

(

�


) satisfying

0 < 


Æ

0

< 1, �

Æ

0

! �

0

in L

2

(
) and 


Æ

0

! 


0

in H

1

(
).

From Proposition 1, we know that there exist a sequen
e (�

Æ

; �

Æ

; 


Æ

) of


orresponding solutions of problem (11)-(15). For su
h solutions, we will

derive bounds, uniform with respe
t to Æ; then, we will use 
ompa
tness

arguments to pass to the limit and establish the desired result.

Lemma 1 There exists a 
onstant C

1

su
h that, for any Æ 2 (0; 1)

k�

Æ

k

L

1

(0;T ;H

1

(
))\L

2

(0;T ;H

2

(
))

+ k�

Æ

t

k

L

2

(Q)

� C

1

(63)

k�

Æ

k

L

1

(0;T ;L

2

(
))

+

Z

T

0

Z




K

Æ

1

(�

Æ

(�

Æ

))jr�

Æ

j

2

dxdt � C

1

(64)

k


Æ

k

L

1

(0;T ;L

2

(
))\L

2

(0;T ;H

1

(
))

� C

1

: (65)

Proof: From inequality (62), it follows estimates (63), (65) and also

k�

Æ

k

L

1

(0;T ;L

2

(
))

� C

1

: (66)

By multiplying (12) by �

Æ

and integrating over Q, we obtain

Z




j�

Æ

j

2

dx+

Z

T

0

Z




K

Æ

1

(�

Æ

(�

Æ

))jr�

Æ

j

2

dxdt � C

1

Z

T

0

Z




�

j�

Æ

t

j

2

+ j�

Æ

j

2

�

dxdt:

In view of (63) and (66), this gives estimate (64).

Lemma 2 There exists a 
onstant C

1

su
h that, for any Æ 2 (0; 1)

k�

Æ

t

k

L

2

(0;T ;H

1

(
)

0

)

� C

1

(67)

k


Æ

t

k

L

2

(0;T ;H

1

(
)

0

)

� C

1

: (68)

Proof: We take the s
alar produ
t in L

2

(
) of (12) with � 2 H

1

(
). By

using H�older's inequality and (B), we �nd

C

V

k�

Æ

t

k

H

1

(
)

0

�

�

(b + 1)

Z




K

Æ

1

(�

Æ

(�

Æ

))jr�

Æ

j

2

dx

�

1=2

+

l

2

k�

Æ

t

k

L

2

(
)

:

Then, (67) follows from (63)-(64). Estimate (68) 
an be similarly obtained

by using (63) and (65).
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We now infer from Lemma 1 and Lemma 2 that there exist

� 2 L

2

(0; T ;H

2

(
)) \ L

1

(0; T ;H

1

(
)) with �

t

2 L

2

(Q);

� 2 L

1

(0; T ;L

2

(
)) with �

t

2 L

2

(0; T ;H

1

(
)

0

);


 2 L

2

(0; T ;H

1

(
)) \ L

1

(0; T ;L

2

(
)) with 


t

2 L

2

(0; T ;H

1

(
)

0

);

J 2 L

2

(Q)

and a subsequen
e that to ease the notation we still denote (�

Æ

; �

Æ

; 


Æ

), su
h

that as Æ ! 0+, satis�es

�

Æ

! � in L

2

(0; T ;H

1

(
)) \ C([0; T ℄;L

2

(
)) strongly,

�

Æ

t

* �

t

in L

2

(Q) weakly,

�

Æ

! � in C([0; T ℄;H

1

(
)

0

) strongly,

�

Æ

* � in L

2

(Q) weakly,




Æ

! 
 in L

2

(Q) \ C([0; T ℄;H

1

(
)

0

) strongly,




Æ

* 
 in L

2

(0; T ;H

1

(
)) weakly,

K

Æ

1

(�

Æ

(�

Æ

))r�

Æ

* J in L

2

(Q) weakly.

(69)

It now remains to identify J in terms of � and � and pass to the limit as

Æ approa
hes zero in (11)-(15).

It follows from (69) that we may pass to the limit in (11) and �nd that

(7) holds almost everywhere.

Sin
e K

1

is a Lips
hitz 
ontinuous fun
tion and �

Æ

(�

Æ

) 
onverges to � in

L

2

(0; T ;H

1

(
)), we have (see, e.g.[9℄ Thm 16.7)

K

1

(�

Æ

(�

Æ

))! K

1

(�) in L

2

(0; T ;H

1

(
)) strongly. (70)

From (69)-(70), we 
on
lude that

�

Æ

rK

1

(�

Æ

(�

Æ

)) * �rK

1

(�) in L

1

(Q) weakly,

K

1

(�

Æ

(�

Æ

))�

Æ

* K

1

(�)�

Æ

in L

1

(Q) weakly.

(71)

Also, sin
e K

1

(�

Æ

(�

Æ

)) 2 L

1

(0; T ;H

1

(
)) and �

Æ

2 L

2

(0; T ;H

1

(
)), we have

K

1

(�

Æ

(�

Æ

))�

Æ

2 L

2

(0; T ;W

1;p

(
)) for p = min

�

2;

N

N � 1

�

and

r

�

K

1

(�

Æ

(�

Æ

))�

Æ

�

= K

1

(�

Æ

(�

Æ

))r�

Æ

+ �

Æ

rK

1

(�

Æ

(�

Æ

)):

It then follows from (71) that

K

1

(�

Æ

(�

Æ

))r�

Æ

! r (K

1

(�)�)� �rK

1

(�) in D

0

(Q): (72)
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Sin
e K

1

is nonnegative, the de�nition of K

Æ

1

and (64) yield that

kÆ

1

2

r�

Æ

k

L

2

(Q)

� C, with C independent of Æ. Thus,

Ær�

Æ

! 0 in L

2

(Q): (73)

From (69), (72) and (73), we 
on
lude that

J = r (K

1

(�)�)� �rK

1

(�):

Moreover, we may pass to the limit in a weak sense in (12) and obtain (9).

In order to pass to the limit in (13), we take s
alar produ
t in L

2

(
) of

it with � 2 L

2

(0; T ;H

1

(
)), to obtain

Z

T

0

Z







Æ

t

� dxdt + K

2

Z

T

0

Z




r


Æ

� r� dxdt

+ K

2

M

Z

T

0

Z







Æ

(1� 


Æ

)r�

Æ

(�

Æ

)) � r� dxdt = 0:

Then, from (69), we have that

Z

T

0

h


t

; �idxdt+K

2

Z

T

0

Z




r
 �r� dxdt+K

2

M

Z

T

0

Z





(1�
)r� �r� dxdt = 0

holds for any � 2 L

2

(0; T ;H

1

(
)).

Moreover, sin
e 0 < 


Æ

< 1 and 


Æ


onverges to 
 in L

2

(Q), we have that

0 < 
 < 1 a.e. in Q.

Finally, it follows from (69) that

��

�n

= 0, �(0) = �

0

, �(0) = �

0

and


(0) = 


0

.

The proof of Theorem 1 is then 
omplete.

Remark. From the L

p

-theory of paraboli
 equations, it is easy to 
on-


lude that 
 2 W

2;1

3=2

(Q), and therefore the equation for 
 holds almost every-

where.
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