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Abstrat

The onept of Z

4

-linearity arises from the labeling of the Hamming Spae (Z

2

2

; d

h

) by the rotation group

Z

4

and its oordinate-wise extension to Z

2n

2

[4℄. This labeling establishes a orrespondene between several

well-known lasses of good non-linear binary odes and submodules of Z

n

4

. A natural question should be

if Z

4

-linearity an be extended to other Hamming spaes. A partial and negative answer to this question

have been done [5℄: there is no yli labeling of Z

n

p

for p prime. In this paper we extend this result showing

that there is no yli labeling for general Hamming spaes. This points out to how speial Z

4

-linearity is

and also means that any extension of this onept to Hamming spaes must onsider other kinds of labeling

groups.

1 Introdution

Sine the appearane of Z

4

-linearity in [4℄ several papers have dealt with possible extensions of this on-

ept/tehnique to other alphabets. This question has been addressed in [7℄ for binary Hamming spaes; this

was further developed in [5℄, where the author proves that there is no possible extension for Hamming spaes

(Z

n

p

; d), with p prime. In order to address this question we should explain what we mean by an extension of

Z

4

-linearity.

The Gray map � : Z

4

! Z

2

2

given by �(0) = 00; �(1) = 01; �(2) = 11; �(3) = 10 is the soure of Z

4

-linear

odes. This map is indued by a quarter-of-turn rotation on the verties of the square Z

2

2

and its oordinate-wise

extension is an ation of Z

n

4

in Z

2n

2

, whih is also an isometry between lee spae (Z

n

4

; d

lee

) and the Hamming

spae (Z

2n

2

; d)[4℄.

In [5℄, the extension problem is onsidered by showing that there is no invariant metri d

0

(weight) on

the yli group Z

p

k suh that (Z

p

k; d

0

) and the Hamming spae (Z

k

p

; d) are isometri, for p prime. Here we

translate Z

4

-linearity and the possibility of extensions of Z

4

-linearity in terms of group ations and extend the

previous result for any number p and in fat to general Hamming spaes.

To onsider a generi situation, let X be a �nite set. The Hamming spae (X

n

; d) is the metri spae over

X

n

with metri

d((p

1

; :::; p

n

); (q

1

; :::; q

n

)) = the number of distint oordinates.

Let G be a group whih ats as a group of isometries in the metri spae (X

n

; d). For eah point p 2 X

n

we have an evaluation map ev

p

: G ! X

n

given by ev

p

(g) = g(p). When G ats freely, this indues a metri

on G given by d

p

(g; h) = d(g(p); h(p). This metri is also left-invariant, d

p

(g; h) = d

p

(h

�1

g; id). Z

4

-linearity

follows this pattern, and the Lee distane on Z

n

4

is just the indued metri d

p

with p = 0. So, in this ontext,

the searh for an extension of Z

4

-linearity an be translated in terms of group ations: is there a yli group

G ating sharply transitively (freely and transitively) on (X

n

; d) as a group of isometries? Suh a group should

is alled a labeling group. The labeling maps are the ev

p

's de�ned above.

The answer unfortunately is no (Theorem 1). One may ask then if it is possible to use, for instane, abelian

labeling groups instead of yli ones, and still get good \linearizing" results for odes. This is still an open

question for Hamming spaes. For Lee spaes (Z

n

m

; d

lee

) there is no yli [1℄ neither abelian labeling group [6℄.

Anyway, the result obtained here shows one more that Z

4

-linearity is quite a speial phenomenon in oding

theory.

2 There is no yli labeling for Hamming spaes

The proof only makes use of some basi geometri features of Hamming spaes and a haraterization of yli

groups.

In a Hamming spae (X

n

; d) we onsider the \lines" X

i;p

passing by a point p whih are given by

1



X

i;p

= f(p

1

; : : : ; p

i�1

; x; p

i+1

; : : : ; p

n

)jx 2 Xg:

Lemma 1 Let B

1

(p) be the unitary ball entered at p 2 X. For any other point q, we have

(H1) d(p; q) = 1 if and only if B

1

(p) \ B

1

(q) = X

i;p

= X

i;q

for some i;

(H2) d(p; q) = 2 if and only if B

1

(p) \B

1

(q) is a set of two distint points.

These equivalenes are important in the results that follow.

We will also the following Lemma:

Lemma 2 Let G be a group. Then G is yli if and only if for any element g 6= id of G, if h is another

element and jhj divides jgj; then h 2 hgi.

In what follows, the point p = (p

1

; p

2

; : : : ; p

n

) is �xed and we will write X

i

instead of X

i;p

, for notational

onveniene.

Lemma 3 Let g be an isometry of (X

n

; d) ;m > 2, and G be the subgroup generated by g, G = hgi. Then

(i) If p; g

t

(p) and g

s

(p) are distint points, g

t

(p) and g

s

(p) both lying in the same line X

i

, then g

t�s

(p) also

lies on X

i

.

(ii) Let G at freely in X

n

. If g(p) and g

2

(p) lie in the same line X

i

, then the orbit G(p) = fg

k

(p)jk =

1; 2; : : : ; jgjg is ontained in X

i

.If g(p) lies in X

i

but g

2

(p) does not, the only points in the intersetion of the

orbit G(p) with X

i

are p and g(p).

Proof (i) By hypothesis, d(g

t

(p); g

s

(p)) = 1 and d(g

s

(p); p) = 1. Therefore d(g

t�s

(p); p) = d(g

t

(p); g

s

(p)) =

1 and d(g

t�s

(p); g

t

(p)) = d(g

�s

(p); p) = d(p; g

s

(p)) = 1: This shows that g

t�s

2 B

1

(p) \B

1

(g

t

(p)) = X

i

.

(ii.a) Suppose that g(p) and g

2

(p) belong to X

i

. Sine G ats freely, g

k

(p) 6= g

l

(p) if k 6= l and 0 < k; l � jgj.

For k = jgj � 1, we have g

jgj�1

(p) = g

�1

(p) = g

1�2

(p) 2 X

i

by (i). For all other k we an set by indution that

if g

k

(p) 2 X

i

, then g

k+1

(p) = g

k�(�1)

(p) 2 X

i

.

(ii.b) Now, if g(p) 2 X

i

and g

2

(p) =2 X

i

, let t > 1 be the �rst exponent suh that g

t

(p) belongs to X

i

. We

will show that g

t

= id. Surely g

t

(p) 6= g(p), beause g

t

(p) = g(p) , g

t�1

(p) = p; a ontradition with the

hoie of t. On the other hand, if g

t

(p) 6= p; then the points p; g(p); g

t

(p) are all distint and lie on X

i

; hene

g

t�1

(p) also belongs to X

i

(by (i)), another ontradition. Therefore g

t

(p) = p, whih implies that g

t

= id, and

G(p) \X

i

= fp; g(p)g.

(ii.a) Suppose that g(p) and g

2

(p) belong to X

i

. Sine G ats freely, g

k

(p) 6= g

l

(p) if k 6= l and 0 < k; l � jgj.

For k = jgj � 1, we have g

jgj�1

(p) = g

�1

(p) = g

1�2

(p) 2 X

i

by (i). For all other k we an set by indution that

if g

k

(p) 2 X

i

, then g

k+1

(p) = g

k�(�1)

(p) 2 X

i

.

(ii.b) Now, if g(p) 2 X

i

and g

2

(p) =2 X

i

, let t > 1 be the �rst exponent suh that g

t

(p) belongs to X

i

. We

will show that g

t

= id. Surely g

t

(p) 6= g(p), beause g

t

(p) = g(p) , g

t�1

(p) = p; a ontradition with the

hoie of t. On the other hand, if g

t

(p) 6= p; then the points p; g(p); g

t

(p) are all distint and lie on X

i

; hene

g

t�1

(p) also belongs to X

i

(by (i)), another ontradition. Therefore g

t

(p) = p, whih implies that g

t

= id, and

G(p) \X

i

= fp; g(p)g.

Theorem 1 Let (X

n

; d) be the Hamming spae over X

n

, where jX j = m. If (m;n) 6= (2; 2) and n > 1, then

there is no yli labeling of (X

n

; d).

Proof The proof of this statement splits in two ases, m = 2 and m > 2. Although the binary ase is only

a subase of the results presented in [5℄, we produe another proof here for the sake of ompleteness and to see

how the Z

4

-linearity appears naturally in this ontext.

We start with m > 2. Suppose that there is a yli group G ating sharply transitively on X

n

as a group

of isometries, and let g be a generator for G. For eah X

i

we take k

i

as the least positive integer suh that

g

k

i

(p) 2 X

i

; and de�ne G

i

to be the subgroup of G generated by g

ki

, G

i

=




g

k

i

�

. We will show that n = 1.

Suppose that g

2k

1

(p) =2 X

1

.

By Lemma 1.ii, G

1

(p) \X

1

= fp; g

k

1

(p)g. Sine m > 2, there is a point q 2 X

1

suh that q 6= p and q 6=

g

k

1

(p). By hypothesis there is t; 0 < t < m

n

; suh that g

t

(p) = q. Lemma 1.i assures that g

t�k

1

(p) 2 X

1

. On

the other hand, we also have d(g

t�k

1

(p); g

�k

1

(p)) = d(g

t

(p); p) = 1. Sine d(g

�k

1

(p); p) = d(g

k

1

(p); p) = 1; but

g

�k

1

(p) =2 X

1

, we must have g

�k

1

(p) = (p

1

; : : : ; p

j�1

; a; p

j+1

; : : : ; p

n

); with a 6= p

j

and j 6= 1 Therefore g

t�k

1

(p)

belongs to B

1

(g

�k

i

(p))\X

1

= fpg: Hene g

t�k

1

(p) = p, what implies q = g

t

(p) = g

k

1

(p); a ontradition. This

means that G(p) \X

i

= G

i

(p) \X

i

= fp; g

k

1

(p)g and we do not have a labeling, ontradition again. Then it

must be the ase that g

2k

1

(p) 2 X

1

.

Let's show now that the ondition g

2k

1

(p) 2 X

1

implies G

1

(p) = X

1

. By Lemma 1.ii we already know that

G

1

(p) � X

1

.For the onverse, let v be any point in X

1

and l be suh that 0 � l < m

n

, g

l

(p) = v. There is a

s � 0 suh that sk

1

� l < (s+ 1)k

1

or, in other words, 0 � l � sk

1

< k

1

. Suppose that l 6= sk

1

. Then lemma

1.i guarantees that g

l�sk

1

(p) 2 X

1

, but the minimality of k

1

implies that l � sk

1

= 0, ontradition. Hene

2



g

l

= g

sk

1

belongs to G

1

. This shows that G

1

(p) = X

1

. This also implies that jG

1

j = m, beause the ation of

G is free, and then G

1

=

D

g

m

n�1

E

by (CG).

Can n be greater than 1? Certainly not. Suppose that n > 1 and let j 6= 1. We annot have g

2k

j

(p) lying

in X

j

beause this would lead us to jG

j

j = m and then G

j

=

D

g

m

n�1

E

= G

1

((CG) again). Neither an we

have g

2k

j

(p) =2 X

j

(as we have seen above), for we have seen that this leads to X

j

= G(p) \X

j

= fp; g

k

j

(p)g;

absurd (jX

j

j > 2). Conlusion: n = 1, G

1

= hgi = G

�

=

Z

m

.

For the binary ase, identify X

n

with Z

n

2

, p with the origin and let fe

1

; : : : ; e

n

g be the anonial basis of Z

n

2

.

This is just for notational onveniene: we will not use other algebrai strutures besides the group struture

of G.

Let g and G be as before, and let k be the solution of g

k

(0) = e

1

, 0 < k < 2

n

. We will show that either

n = 2 and k = 1 or 3 (a Z

4

labeling), or n = k = 1:

Suppose that jg

k

j > 2; then g

�k

6= g

k

, so that g

�k

(0) = e

j

for some j 6= 1. Let l be suh that g

l

(0) = e

1

+e

j

.

We have

d(g

l+k

(0); g

l

(0)) = d(g

k

(0); 0) = 1;

d(g

l+k

(0); 0) = d(g

l

(0); g

k

(0)) = 1.

Then we an assert that

g

l+k

(0) 2 S

1

(0) \ S

1

(g

l

(0)) = fg

k

(0); g

�k

(0)g =) g

l+k

= g

�k

.

We get either g

l

= g

0

= id; whih means 0 = e

1

+ e

j

, nonsense, or g

l

= g

2k

, the right answer. The same

reasoning applied to g

l�k

in plae of g

l+k

yields g

l

= g

�2k

, i.e., g

2k

= (g

2k

)

�1

, and therefore g

2k

has order two.

This implies that g

k

has order four.

By (CG) we know that any element of order four belongs to

D

g

2

n�2

E

; whih has only two of suh elements,

g

2

n�2

and g

3�2

n�2

. This implies that only two points of S

1

(0) an be reahed by elements of order greater than

2, e

1

and e

j

. If n > 2 the other points of the unit sphere must be reahed by elements of order two, but the

only element of order two g

2

n�1

is exatly our g

l

above. Sine the ation of G is transitive and only two points

in S

1

(0) are in its orbit, we onlude that n = 2, k = 1 or 3, and the orresponding ations of Z

4

on Z

2

2

are the

generated by a lokwise or ounter-lokwise (Gray map) quarter-of-turn rotation, respetively.

To onlude the proof we must examine the ase jg

k

j = 2, i.e., k = 2

n�1

. We laim that this leads to n = 1.

In fat, any g

t

satisfying d(g

t

(0); 0) = 1 must have order 2 or 4, as seen above. If jg

t

j = 4, then we have just

seen that g

2

n�1

(0) does not belong to B

1

(0). Hene g

t

(0) 2 B

1

(0)) t = 2

n�1

. Sine G ats transitively, n = 1

and G = Z

2

, the trivial ation.

Corollary 1 There is no labeling of the Hamming spaes (GF (q

k

)

n

; d) and (Z

n

q

k

; d) by Z

q

kn; exept for q =

2; k = 1 and n = 2 (and the trivial ones for n = 1).

3 Conluding remarks

In this paper we rule out any possibility of extending Z

4

-linear odes to other yli group ations in Hamming

spaes, thus establishing, in a ertain sense, the \uniqueness" of Z

4

-linearity. Nevertheless, there are more

general open questions related to possible good odes if we allow other kinds of groups. The idea is to onsider

\linearization" of odes in a wider sense, but still linking odes to isometry groups, to assure geometrial

uniformity onsidering the onept introdued in [4℄ extended to Hamming spaes.
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