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Abstract

The concept of Z s-linearity arises from the labeling of the Hamming Space (Z3, d5) by the rotation group
Z4 and its coordinate-wise extension to Z3™ [4]. This labeling establishes a correspondence between several
well-known classes of good non-linear binary codes and submodules of Z}. A natural question should be
if Zs-linearity can be extended to other Hamming spaces. A partial and negative answer to this question
have been done [5]: there is no cyclic labeling of Z; for p prime. In this paper we extend this result showing
that there is no cyclic labeling for general Hamming spaces. This points out to how special Zg-linearity is
and also means that any extension of this concept to Hamming spaces must consider other kinds of labeling
groups.

1 Introduction

Since the appearance of Zg4-linearity in [4] several papers have dealt with possible extensions of this con-
cept/technique to other alphabets. This question has been addressed in [7] for binary Hamming spaces; this
was further developed in [5], where the author proves that there is no possible extension for Hamming spaces
(Z,d), with p prime. In order to address this question we should explain what we mean by an extension of
7 4-linearity.

The Gray map ¢ : Z4 — 73 given by ¢(0) = 00, ¢(1) = 01, ¢(2) = 11, ¢(3) = 10 is the source of Z4-linear
codes. This map is induced by a quarter-of-turn rotation on the vertices of the square Z3 and its coordinate-wise
extension is an action of Z7 in Z2", which is also an isometry between lee space (Z%,dj..) and the Hamming
space (Z3",d)[4].

In [5], the extension problem is considered by showing that there is no invariant metric d' (weight) on
the cyclic group Z,. such that (Z,,d’) and the Hamming space (Z;ﬁ,d) are isometric, for p prime. Here we
translate Zg4-linearity and the possibility of extensions of Z4-linearity in terms of group actions and extend the
previous result for any number p and in fact to general Hamming spaces.

To consider a generic situation, let X be a finite set. The Hamming space (X", d) is the metric space over
X" with metric

d((p1y ., pn), (@1, -, qn)) = the number of distinct coordinates.

Let G be a group which acts as a group of isometries in the metric space (X™,d). For each point p € X™
we have an evaluation map ev, : G — X" given by ev,(g) = g(p). When G acts freely, this induces a metric
on G given by d,(g,h) = d(g(p), h(p). This metric is also left-invariant, d,(g,h) = d,(h™'g,id). Z4-linearity
follows this pattern, and the Lee distance on Z} is just the induced metric d, with p = 0. So, in this context,
the search for an extension of Zg-linearity can be translated in terms of group actions: is there a cyclic group
G acting sharply transitively (freely and transitively) on (X™,d) as a group of isometries? Such a group should
is called a labeling group. The labeling maps are the ev,’s defined above.

The answer unfortunately is no (Theorem 1). One may ask then if it is possible to use, for instance, abelian
labeling groups instead of cyclic ones, and still get good “linearizing” results for codes. This is still an open
question for Hamming spaces. For Lee spaces (Z7, djc.) there is no cyclic [1] neither abelian labeling group [6].
Anyway, the result obtained here shows once more that Z4-linearity is quite a special phenomenon in coding
theory.

2 There is no cyclic labeling for Hamming spaces

The proof only makes use of some basic geometric features of Hamming spaces and a characterization of cyclic
groups.
In a Hamming space (X™,d) we consider the “lines” X; , passing by a point p which are given by



Xi7p = {(pla'"7pi—17w7pi+17"'7pn)|w € X}

Lemma 1 Let Bi(p) be the unitary ball centered at p € X. For any other point q, we have
(H1) d(p,q) =1 if and only if B1(p) N Bi(q) = X;ip = X, 4 for some i;
(H2) d(p,q) = 2 if and only if B1(p) N B1(q) is a set of two distinct points.

These equivalences are important in the results that follow.
We will also the following Lemma:

Lemma 2 Let G be a group. Then G is cyclic if and only if for any element g # id of G, if h is another
element and |h| divides |g|, then h € (g).

In what follows, the point p = (p1,p2,...,pn) is fixed and we will write X; instead of X; ,, for notational
convenience.

Lemma 3 Let g be an isometry of (X",d) ,m > 2, and G be the subgroup generated by g, G = (g). Then

() If p, gt(p) and g*(p) are distinct points, g*(p) and g*(p) both lying in the same line X;, then g'~*(p) also
lies on X;.

(ii) Let G act freely in X™. If g(p) and g*(p) lie in the same line X;, then the orbit G(p) = {g*(p)|k =
1,2,...,|9|} is contained in X;.If g(p) lies in X; but g>(p) does not, the only points in the intersection of the
orbit G(p) with X; are p and g(p).

Proof (i) By hypothesis, d(g*(p), 9°(p)) = 1 and d(g°(p), p) = 1. Therefore d(g'~*(p),p) = d(g'(p), 9°(p)) =
1L and d(g"*(p), 9" (p)) = d(g *(p),p) = d(p, 9°(p)) = 1. This shows that ¢'* € Bi(p) N Bi (¢'(p)) = X;.

(ii.a) Suppose that g(p) and g?(p) belong to X;. Since G acts freely, g*(p) # g'(p) if k # 1 and 0 < k,I < |g|.
For k = |g| — 1, we have gl91='(p) = ¢~ (p) = ¢'~2(p) € X; by (i). For all other k we can set by induction that
if g*(p) € X, then g"*'(p) = g*=(=1)(p) € X;.

(ii.b) Now, if g(p) € X; and g%(p) ¢ X, let t > 1 be the first exponent such that g’(p) belongs to X;. We
will show that gt = id. Surely g'(p) # g(p), because g*(p) = g(p) & g* " 1(p) = p, a contradiction with the
choice of t. On the other hand, if g*(p) # p, then the points p, g(p), g*(p) are all distinct and lie on X;, hence
g'71(p) also belongs to X; (by (i)), another contradiction. Therefore g*(p) = p, which implies that g* = id, and
Gp)NX; ={p,g9(p)}-

(ii.a) Suppose that g(p) and g>(p) belong to X;. Since G acts freely, g*(p) # g'(p) if k # l and 0 < k,1 < |g|-
For k = |g| — 1, we have gl91=1(p) = g (p) = ¢*2(p) € X; by (i). For all other k we can set by induction that
if g*(p) € Xi, then g**(p) = g*~ "1 (p) € X;.

(ii.b) Now, if g(p) € X; and ¢*(p) ¢ X, let £ > 1 be the first exponent such that g’(p) belongs to X;. We
will show that gt = id. Surely g'(p) # g(p), because g'(p) = g(p) & ¢*~'(p) = p, a contradiction with the
choice of . On the other hand, if g*(p) # p, then the points p, g(p), g*(p) are all distinct and lie on X;, hence
g!~!(p) also belongs to X; (by (i)), another contradiction. Therefore g‘(p) = p, which implies that g* = id, and

G(p)NX; ={p,9(p)}

Theorem 1 Let (X", d) be the Hamming space over X", where |X| = m. If (m,n) # (2,2) and n > 1, then
there is no cyclic labeling of (X™,d).

Proof The proof of this statement splits in two cases, m = 2 and m > 2. Although the binary case is only
a subcase of the results presented in [5], we produce another proof here for the sake of completeness and to see
how the Zg4-linearity appears naturally in this context.

We start with m > 2. Suppose that there is a cyclic group G acting sharply transitively on X™ as a group
of isometries, and let g be a generator for G. For each X; we take k; as the least positive integer such that
g"(p) € X;, and define G; to be the subgroup of G generated by g**, G; = (g*'). We will show that n = 1.

Suppose that g% (p) ¢ X;.

By Lemma 1.ii, G1(p) N X1 = {p,g** (p)}. Since m > 2, there is a point ¢ € X; such that ¢ # p and q #
g*' (p). By hypothesis there is ¢,0 < t < m™, such that gf(p) = ¢. Lemma 1.i assures that gt=*! (p) € X;. On
the other hand, we also have d(gt=*1(p), g7 % (p)) = d(g(p), p) = 1. Since d(g~* (p),p) = d(g** (p),p) = 1, but
g~ (p) ¢ X1, we must have g™ (p) = (p1,...,pj—1,a,Dj41,---,Pn), With a # p; and j # 1 Therefore g*=*1 (p)
belongs to By (g% (p))NX; = {p}. Hence g% (p) = p, what implies ¢ = g*(p) = ¢g**(p), a contradiction. This
means that G(p) N X; = G;(p) N X; = {p,¢**(p)} and we do not have a labeling, contradiction again. Then it
must be the case that ¢%*1(p) € X;.

Let’s show now that the condition g* (p) € X, implies G;(p) = X;. By Lemma 1.ii we already know that
G1(p) C X,.For the converse, let v be any point in X; and [ be such that 0 < 1 < m", ¢g'(p) = v. There is a
s > 0 such that sk; <1 < (s+ 1)k; or, in other words, 0 <1 — sk; < ky. Suppose that [ # sk;. Then lemma
1.i guarantees that ¢g'~**'(p) € X, but the minimality of k; implies that [ — sk; = 0, contradiction. Hence



g' = g°F1 belongs to G. This shows that G (p) = X;. This also implies that |G| = m, because the action of
G is free, and then Gy = <gm"*1> by (CG).
Can n be greater than 1? Certainly not. Suppose that n > 1 and let j # 1. We cannot have ¢g*i (p) lying

n—1

in X; because this would lead us to |G;| = m and then G; = <gm > = (1 ((CG) again). Neither can we

have g?i (p) ¢ X, (as we have seen above), for we have seen that this leads to X; = G(p) N X; = {p, g% (p)},
absurd (| X;| > 2). Conclusion: n =1, G1 = (g) = G = Zp,

For the binary case, identify X" with Z2, p with the origin and let {ey,...,e,} be the canonical basis of Z}.
This is just for notational convenience: we will not use other algebraic structures besides the group structure
of G.

Let g and G be as before, and let k be the solution of g*(0) = e;, 0 < k < 2". We will show that either
n=2and k=1or 3 (a Z4 labeling), or n = k = 1.

Suppose that |g¥| > 2; then g=* # g*, so that g=*(0) = e; for some j # 1. Let I be such that ¢'(0) = e; +e;.
We have

d(g"**(0), '(0)) = d(g*(0),0) = 1;
d(g'**(0),0) = d(¢'(0),4"(0)) = 1.

Then we can assert that
g'*(0) € 51(0) N S1(g(0)) = {g*(0), g7"(0)} = ¢'** = g*F.

We get either g' = ¢° = id, which means 0 = e; + €j, nonsense, or g' = g**, the right answer. The same
reasoning applied to g% in place of g!'** yields g' = g72*, i.e., g** = (¢?¥)~1, and therefore ¢g** has order two.
This implies that ¢g* has order four.

By (CG) we know that any element of order four belongs to <g2n72> , which has only two of such elements,

¢>" > and ¢*2" . This implies that only two points of S;(0) can be reached by elements of order greater than

2, e; and ej. If n > 2 the other points of the unit sphere must be reached by elements of order two, but the
only element of order two 92"71 is exactly our ¢! above. Since the action of G is transitive and only two points
in S;(0) are in its orbit, we conclude that n = 2, k = 1 or 3, and the corresponding actions of Z4 on Z3 are the
generated by a clockwise or counter-clockwise (Gray map) quarter-of-turn rotation, respectively.

To conclude the proof we must examine the case [g¥| = 2, i.e., k = 2"~1. We claim that this leads to n = 1.
In fact, any g' satisfying d(g?(0),0) = 1 must have order 2 or 4, as seen above. If |gf| = 4, then we have just
seen that g2 (0) does not belong to By (0). Hence gt(0) € By(0) = ¢t = 2"~ Since @ acts transitively, n = 1
and G = Zs, the trivial action.

Corollary 1 There is no labeling of the Hamming spaces (GF(q*)",d) and (ng,d) by Z i, except for q =
2,k =1 and n = 2 (and the trivial ones for n =1).

3 Concluding remarks

In this paper we rule out any possibility of extending Z 4-linear codes to other cyclic group actions in Hamming
spaces, thus establishing, in a certain sense, the “uniqueness” of Zg4-linearity. Nevertheless, there are more
general open questions related to possible good codes if we allow other kinds of groups. The idea is to consider
“linearization” of codes in a wider sense, but still linking codes to isometry groups, to assure geometrical
uniformity considering the concept introduced in [4] extended to Hamming spaces.
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