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Abstra
t

The 
on
ept of Z

4

-linearity arises from the labeling of the Hamming Spa
e (Z

2

2

; d

h

) by the rotation group

Z

4

and its 
oordinate-wise extension to Z

2n

2

[4℄. This labeling establishes a 
orresponden
e between several

well-known 
lasses of good non-linear binary 
odes and submodules of Z

n

4

. A natural question should be

if Z

4

-linearity 
an be extended to other Hamming spa
es. A partial and negative answer to this question

have been done [5℄: there is no 
y
li
 labeling of Z

n

p

for p prime. In this paper we extend this result showing

that there is no 
y
li
 labeling for general Hamming spa
es. This points out to how spe
ial Z

4

-linearity is

and also means that any extension of this 
on
ept to Hamming spa
es must 
onsider other kinds of labeling

groups.

1 Introdu
tion

Sin
e the appearan
e of Z

4

-linearity in [4℄ several papers have dealt with possible extensions of this 
on-


ept/te
hnique to other alphabets. This question has been addressed in [7℄ for binary Hamming spa
es; this

was further developed in [5℄, where the author proves that there is no possible extension for Hamming spa
es

(Z

n

p

; d), with p prime. In order to address this question we should explain what we mean by an extension of

Z

4

-linearity.

The Gray map � : Z

4

! Z

2

2

given by �(0) = 00; �(1) = 01; �(2) = 11; �(3) = 10 is the sour
e of Z

4

-linear


odes. This map is indu
ed by a quarter-of-turn rotation on the verti
es of the square Z

2

2

and its 
oordinate-wise

extension is an a
tion of Z

n

4

in Z

2n

2

, whi
h is also an isometry between lee spa
e (Z

n

4

; d

lee

) and the Hamming

spa
e (Z

2n

2

; d)[4℄.

In [5℄, the extension problem is 
onsidered by showing that there is no invariant metri
 d

0

(weight) on

the 
y
li
 group Z

p

k su
h that (Z

p

k; d

0

) and the Hamming spa
e (Z

k

p

; d) are isometri
, for p prime. Here we

translate Z

4

-linearity and the possibility of extensions of Z

4

-linearity in terms of group a
tions and extend the

previous result for any number p and in fa
t to general Hamming spa
es.

To 
onsider a generi
 situation, let X be a �nite set. The Hamming spa
e (X

n

; d) is the metri
 spa
e over

X

n

with metri


d((p

1

; :::; p

n

); (q

1

; :::; q

n

)) = the number of distin
t 
oordinates.

Let G be a group whi
h a
ts as a group of isometries in the metri
 spa
e (X

n

; d). For ea
h point p 2 X

n

we have an evaluation map ev

p

: G ! X

n

given by ev

p

(g) = g(p). When G a
ts freely, this indu
es a metri


on G given by d

p

(g; h) = d(g(p); h(p). This metri
 is also left-invariant, d

p

(g; h) = d

p

(h

�1

g; id). Z

4

-linearity

follows this pattern, and the Lee distan
e on Z

n

4

is just the indu
ed metri
 d

p

with p = 0. So, in this 
ontext,

the sear
h for an extension of Z

4

-linearity 
an be translated in terms of group a
tions: is there a 
y
li
 group

G a
ting sharply transitively (freely and transitively) on (X

n

; d) as a group of isometries? Su
h a group should

is 
alled a labeling group. The labeling maps are the ev

p

's de�ned above.

The answer unfortunately is no (Theorem 1). One may ask then if it is possible to use, for instan
e, abelian

labeling groups instead of 
y
li
 ones, and still get good \linearizing" results for 
odes. This is still an open

question for Hamming spa
es. For Lee spa
es (Z

n

m

; d

lee

) there is no 
y
li
 [1℄ neither abelian labeling group [6℄.

Anyway, the result obtained here shows on
e more that Z

4

-linearity is quite a spe
ial phenomenon in 
oding

theory.

2 There is no 
y
li
 labeling for Hamming spa
es

The proof only makes use of some basi
 geometri
 features of Hamming spa
es and a 
hara
terization of 
y
li


groups.

In a Hamming spa
e (X

n

; d) we 
onsider the \lines" X

i;p

passing by a point p whi
h are given by

1



X

i;p

= f(p

1

; : : : ; p

i�1

; x; p

i+1

; : : : ; p

n

)jx 2 Xg:

Lemma 1 Let B

1

(p) be the unitary ball 
entered at p 2 X. For any other point q, we have

(H1) d(p; q) = 1 if and only if B

1

(p) \ B

1

(q) = X

i;p

= X

i;q

for some i;

(H2) d(p; q) = 2 if and only if B

1

(p) \B

1

(q) is a set of two distin
t points.

These equivalen
es are important in the results that follow.

We will also the following Lemma:

Lemma 2 Let G be a group. Then G is 
y
li
 if and only if for any element g 6= id of G, if h is another

element and jhj divides jgj; then h 2 hgi.

In what follows, the point p = (p

1

; p

2

; : : : ; p

n

) is �xed and we will write X

i

instead of X

i;p

, for notational


onvenien
e.

Lemma 3 Let g be an isometry of (X

n

; d) ;m > 2, and G be the subgroup generated by g, G = hgi. Then

(i) If p; g

t

(p) and g

s

(p) are distin
t points, g

t

(p) and g

s

(p) both lying in the same line X

i

, then g

t�s

(p) also

lies on X

i

.

(ii) Let G a
t freely in X

n

. If g(p) and g

2

(p) lie in the same line X

i

, then the orbit G(p) = fg

k

(p)jk =

1; 2; : : : ; jgjg is 
ontained in X

i

.If g(p) lies in X

i

but g

2

(p) does not, the only points in the interse
tion of the

orbit G(p) with X

i

are p and g(p).

Proof (i) By hypothesis, d(g

t

(p); g

s

(p)) = 1 and d(g

s

(p); p) = 1. Therefore d(g

t�s

(p); p) = d(g

t

(p); g

s

(p)) =

1 and d(g

t�s

(p); g

t

(p)) = d(g

�s

(p); p) = d(p; g

s

(p)) = 1: This shows that g

t�s

2 B

1

(p) \B

1

(g

t

(p)) = X

i

.

(ii.a) Suppose that g(p) and g

2

(p) belong to X

i

. Sin
e G a
ts freely, g

k

(p) 6= g

l

(p) if k 6= l and 0 < k; l � jgj.

For k = jgj � 1, we have g

jgj�1

(p) = g

�1

(p) = g

1�2

(p) 2 X

i

by (i). For all other k we 
an set by indu
tion that

if g

k

(p) 2 X

i

, then g

k+1

(p) = g

k�(�1)

(p) 2 X

i

.

(ii.b) Now, if g(p) 2 X

i

and g

2

(p) =2 X

i

, let t > 1 be the �rst exponent su
h that g

t

(p) belongs to X

i

. We

will show that g

t

= id. Surely g

t

(p) 6= g(p), be
ause g

t

(p) = g(p) , g

t�1

(p) = p; a 
ontradi
tion with the


hoi
e of t. On the other hand, if g

t

(p) 6= p; then the points p; g(p); g

t

(p) are all distin
t and lie on X

i

; hen
e

g

t�1

(p) also belongs to X

i

(by (i)), another 
ontradi
tion. Therefore g

t

(p) = p, whi
h implies that g

t

= id, and

G(p) \X

i

= fp; g(p)g.

(ii.a) Suppose that g(p) and g

2

(p) belong to X

i

. Sin
e G a
ts freely, g

k

(p) 6= g

l

(p) if k 6= l and 0 < k; l � jgj.

For k = jgj � 1, we have g

jgj�1

(p) = g

�1

(p) = g

1�2

(p) 2 X

i

by (i). For all other k we 
an set by indu
tion that

if g

k

(p) 2 X

i

, then g

k+1

(p) = g

k�(�1)

(p) 2 X

i

.

(ii.b) Now, if g(p) 2 X

i

and g

2

(p) =2 X

i

, let t > 1 be the �rst exponent su
h that g

t

(p) belongs to X

i

. We

will show that g

t

= id. Surely g

t

(p) 6= g(p), be
ause g

t

(p) = g(p) , g

t�1

(p) = p; a 
ontradi
tion with the


hoi
e of t. On the other hand, if g

t

(p) 6= p; then the points p; g(p); g

t

(p) are all distin
t and lie on X

i

; hen
e

g

t�1

(p) also belongs to X

i

(by (i)), another 
ontradi
tion. Therefore g

t

(p) = p, whi
h implies that g

t

= id, and

G(p) \X

i

= fp; g(p)g.

Theorem 1 Let (X

n

; d) be the Hamming spa
e over X

n

, where jX j = m. If (m;n) 6= (2; 2) and n > 1, then

there is no 
y
li
 labeling of (X

n

; d).

Proof The proof of this statement splits in two 
ases, m = 2 and m > 2. Although the binary 
ase is only

a sub
ase of the results presented in [5℄, we produ
e another proof here for the sake of 
ompleteness and to see

how the Z

4

-linearity appears naturally in this 
ontext.

We start with m > 2. Suppose that there is a 
y
li
 group G a
ting sharply transitively on X

n

as a group

of isometries, and let g be a generator for G. For ea
h X

i

we take k

i

as the least positive integer su
h that

g

k

i

(p) 2 X

i

; and de�ne G

i

to be the subgroup of G generated by g

ki

, G

i

=




g

k

i

�

. We will show that n = 1.

Suppose that g

2k

1

(p) =2 X

1

.

By Lemma 1.ii, G

1

(p) \X

1

= fp; g

k

1

(p)g. Sin
e m > 2, there is a point q 2 X

1

su
h that q 6= p and q 6=

g

k

1

(p). By hypothesis there is t; 0 < t < m

n

; su
h that g

t

(p) = q. Lemma 1.i assures that g

t�k

1

(p) 2 X

1

. On

the other hand, we also have d(g

t�k

1

(p); g

�k

1

(p)) = d(g

t

(p); p) = 1. Sin
e d(g

�k

1

(p); p) = d(g

k

1

(p); p) = 1; but

g

�k

1

(p) =2 X

1

, we must have g

�k

1

(p) = (p

1

; : : : ; p

j�1

; a; p

j+1

; : : : ; p

n

); with a 6= p

j

and j 6= 1 Therefore g

t�k

1

(p)

belongs to B

1

(g

�k

i

(p))\X

1

= fpg: Hen
e g

t�k

1

(p) = p, what implies q = g

t

(p) = g

k

1

(p); a 
ontradi
tion. This

means that G(p) \X

i

= G

i

(p) \X

i

= fp; g

k

1

(p)g and we do not have a labeling, 
ontradi
tion again. Then it

must be the 
ase that g

2k

1

(p) 2 X

1

.

Let's show now that the 
ondition g

2k

1

(p) 2 X

1

implies G

1

(p) = X

1

. By Lemma 1.ii we already know that

G

1

(p) � X

1

.For the 
onverse, let v be any point in X

1

and l be su
h that 0 � l < m

n

, g

l

(p) = v. There is a

s � 0 su
h that sk

1

� l < (s+ 1)k

1

or, in other words, 0 � l � sk

1

< k

1

. Suppose that l 6= sk

1

. Then lemma

1.i guarantees that g

l�sk

1

(p) 2 X

1

, but the minimality of k

1

implies that l � sk

1

= 0, 
ontradi
tion. Hen
e

2



g

l

= g

sk

1

belongs to G

1

. This shows that G

1

(p) = X

1

. This also implies that jG

1

j = m, be
ause the a
tion of

G is free, and then G

1

=

D

g

m

n�1

E

by (CG).

Can n be greater than 1? Certainly not. Suppose that n > 1 and let j 6= 1. We 
annot have g

2k

j

(p) lying

in X

j

be
ause this would lead us to jG

j

j = m and then G

j

=

D

g

m

n�1

E

= G

1

((CG) again). Neither 
an we

have g

2k

j

(p) =2 X

j

(as we have seen above), for we have seen that this leads to X

j

= G(p) \X

j

= fp; g

k

j

(p)g;

absurd (jX

j

j > 2). Con
lusion: n = 1, G

1

= hgi = G

�

=

Z

m

.

For the binary 
ase, identify X

n

with Z

n

2

, p with the origin and let fe

1

; : : : ; e

n

g be the 
anoni
al basis of Z

n

2

.

This is just for notational 
onvenien
e: we will not use other algebrai
 stru
tures besides the group stru
ture

of G.

Let g and G be as before, and let k be the solution of g

k

(0) = e

1

, 0 < k < 2

n

. We will show that either

n = 2 and k = 1 or 3 (a Z

4

labeling), or n = k = 1:

Suppose that jg

k

j > 2; then g

�k

6= g

k

, so that g

�k

(0) = e

j

for some j 6= 1. Let l be su
h that g

l

(0) = e

1

+e

j

.

We have

d(g

l+k

(0); g

l

(0)) = d(g

k

(0); 0) = 1;

d(g

l+k

(0); 0) = d(g

l

(0); g

k

(0)) = 1.

Then we 
an assert that

g

l+k

(0) 2 S

1

(0) \ S

1

(g

l

(0)) = fg

k

(0); g

�k

(0)g =) g

l+k

= g

�k

.

We get either g

l

= g

0

= id; whi
h means 0 = e

1

+ e

j

, nonsense, or g

l

= g

2k

, the right answer. The same

reasoning applied to g

l�k

in pla
e of g

l+k

yields g

l

= g

�2k

, i.e., g

2k

= (g

2k

)

�1

, and therefore g

2k

has order two.

This implies that g

k

has order four.

By (CG) we know that any element of order four belongs to

D

g

2

n�2

E

; whi
h has only two of su
h elements,

g

2

n�2

and g

3�2

n�2

. This implies that only two points of S

1

(0) 
an be rea
hed by elements of order greater than

2, e

1

and e

j

. If n > 2 the other points of the unit sphere must be rea
hed by elements of order two, but the

only element of order two g

2

n�1

is exa
tly our g

l

above. Sin
e the a
tion of G is transitive and only two points

in S

1

(0) are in its orbit, we 
on
lude that n = 2, k = 1 or 3, and the 
orresponding a
tions of Z

4

on Z

2

2

are the

generated by a 
lo
kwise or 
ounter-
lo
kwise (Gray map) quarter-of-turn rotation, respe
tively.

To 
on
lude the proof we must examine the 
ase jg

k

j = 2, i.e., k = 2

n�1

. We 
laim that this leads to n = 1.

In fa
t, any g

t

satisfying d(g

t

(0); 0) = 1 must have order 2 or 4, as seen above. If jg

t

j = 4, then we have just

seen that g

2

n�1

(0) does not belong to B

1

(0). Hen
e g

t

(0) 2 B

1

(0)) t = 2

n�1

. Sin
e G a
ts transitively, n = 1

and G = Z

2

, the trivial a
tion.

Corollary 1 There is no labeling of the Hamming spa
es (GF (q

k

)

n

; d) and (Z

n

q

k

; d) by Z

q

kn; ex
ept for q =

2; k = 1 and n = 2 (and the trivial ones for n = 1).

3 Con
luding remarks

In this paper we rule out any possibility of extending Z

4

-linear 
odes to other 
y
li
 group a
tions in Hamming

spa
es, thus establishing, in a 
ertain sense, the \uniqueness" of Z

4

-linearity. Nevertheless, there are more

general open questions related to possible good 
odes if we allow other kinds of groups. The idea is to 
onsider

\linearization" of 
odes in a wider sense, but still linking 
odes to isometry groups, to assure geometri
al

uniformity 
onsidering the 
on
ept introdu
ed in [4℄ extended to Hamming spa
es.
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