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Abstract

We consider and initial boundary value problem for a system of equations
describing nonstationary flows of nonhomogeneous incompressible asymmet-
ric fluids in unbounded domains. Under conditions similar to the ones for
the ones for the usual Navier-Stokes equations, we prove the existence and
uniqueness of strong solutions.

1 Introduction

Let Q be a bounded or unbounded domain in I?*, T > 0 and Qr = Q x [0, T).
The equations that describe the motion of nonhomogeneous asymmetric flu-
ids are given by

(0
pa—ltl+p(u-V)u— (u+ pr)Au+ Vp=2u, rot w+ pf,
divu=0,
ow (1)

Por +pu- V)W — (¢4 + cq) AW — (cg + ¢4 — ¢,)V div w
+4p,w = 2p, rot u+ pg ,
dp
P u-V)p=0
| 5 T (@ V)p=0,
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together with the following boundary and initial conditions

u=0 on >,=00x(0,T),

u(z,0) =ug(z) in Q,

w=0 on Yr,=00x(0,T), (2)
w(z,0) =wy(z) in Q,

p(z,0) = po(z) in Q.

The functions u = (uy, ug, uz), w = (wy,ws, ws),p and p denote the ve-
locity vector, the angular velocity vector of rotation of particles, the pressure
and the density of the fluid, respectively. The functions £ = (f1, f2, f3) and
g = (g1,92,93) denote external sources of linear and angular momentum,
respectively. The positive constants pu, i, co, ¢, and ¢4 are viscosities. We
consider ¢y + ¢4 > ¢,.

For the derivation and discussion of equations (1.1)- (1.2) which represent
conservation laws, see [?], [?].

Existence of solutions to the system (1.1)-(1.2) in a bounded domain are
considered in Lukaszewicz [?] ( see, also [?]), Boldrini and Rojas-Medar [?]
and Conca, Gormaz, Ortega-Torres and Rojas-Medar [?], the two last works
obtain also the uniqueness of solutions.

The local existence of weak solutions for (1.1)-(1.2) was established by
Lukaszewicz [?] under certain assumptions by using linearization and almost
fixed point theorem.

Using the spectral semi-Galerkin method, Boldrini and Rojas-Medar [?]
proved the existence and uniqueness of strong solutions (local and global).
Analogous results were obtained in [?], in this work an iterative procedure
was used.

However, no study of existence and uniqueness has been considered for
system (1.1)-(1.2) in unbounded domains. We observe that this model in-
cludes as a particular case of the nonhomogeneous Navier-Stokes equations,
which has been studied early by some authors, for example, Kazhikov [?]
(see, also [?], [?]), Kim [?], for weak solutions, Ladyzhenskaya and Solon-
nikov [?], Okamoto [?], Salvi [?], Boldrini and Rojas-Medar [?] for existence
and uniqueness of strong solutions. The above authors work in bounded
domains. For exterior domains see the works of Padula [?], [?] and in un-
bounded domains Ferndndez-Caras and Guillén [?] and Itoh and Tani [?]
(see, also Lions [?]).

This paper is organized as follows: in Section 2 we state some preliminary
results, we also state the result of existence and uniqueness of strong solu-



tion. In Section 3, we study the linear problems associated with (1.1)-(1.2).
Finally, in Section 4 we prove our result.

2 Preliminaries

We use the classical notations and results of the Sobolev spaces. For k =
0,1,2,... and 1 < ¢ < o0,

W (Q) = {ue Ly(Q) / > [ID7ul < oo}

q
|| <k

Wi (@Qr) = {u € Ly(Qr) / [[ullywz gy = el @m+ D 1D7ullz,@n < oo},
|| <2
where D% = (aixl)al (3%2)&2 (3%3)&3 and || =; a;.
It is know that the values of the function from W2'(Qr) on the hyper-

plane t = const. belong for V ¢ € [0,T] to the Slobodetsku Besov space

2

W;ﬂ (2) and depend continuously on ¢ in the norm of Wq K (Q2), defined by

S

hull, o, (2 ID2ult o+ X, f Y 'qda:dy)

Wy lal<1 la|=1

Moreover, we have the Solonnikov’inequality

JuC Ol

< '70 2-2 + | , )
oy S ICO 25+l

where the constant ¢ does not depend on ¢.
For more details of the Solobodetskii-Besov space see [?]
Let ¢ > 3. assume that

po(z) € C°(Q2), V() € W, (),

0<m< po(x) <M < oo,

wo(z) € Wy "(Q), wols = 0, div u = 0,

92
wo(x) € Wy “(Q), wols =0,
f,g GLQ(QT).
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Then there exists 77 € (0,7] such that problem (1.1)-(1.2) has a unique
solution (p, u, w,p) which satisfies

p € C°(Qn), Vp € C°([0, Th]; W, (),
0<m<p(x,t) <M < oo,
u(z,t) € W' (Qn),

VP € LQ(QTI)
MALS WqQ’l(QTl)'

In the rest of work we assume that ¢ > 3.

3 Linear problems

In this section, we study some linear problems associated with (1.1)-(1.2).
The first Lemma is proved in Itoh and Tani [?].
Let p € C*(Qr),a,B € (0,1) such that 0 < m < py(z) < M < oo.

Then for any F' € L, (Qr) and uy(z) € WquE(Q) with u0|ZT = 0 and
div ug = 0, problem

%,
S —(u+m)bu+Vp = F,

ot
diva = 0,
uly, =0
u(0) = wuy(x)

has a unique solution u € W2>'(Qr), satisfying

Iz @n + IVPlL@n) < Kalllpllces@ry Tl oz 4 IFllii@n),
q
where K is an increasing function of ||p||ca.s g7y and 7', depending on m and

M.
The next Lemma is proved in [?].



Let p € C%%(Qr), a, B € (0,1), such that 0 < m < p(z,t) < M. Then for
any function G € Ly(Qr), ¢ > 3 and wo(z) € W2=%(Q) with W0|ZT =0,
problem

ow
P ot
w = 0 sobre Xp |

— VAW —yVdivw + 4, w = G(z,t) em €,

w(z,0) = wy(z) em Q,

has a unique solution w € W2'(Qr), satisfying

q q
(Il )"+ s1p (Iw(a Dl )
< 3
Mqul(t) _1 (o) o q
CmTl(t) L+m (t)STlg[P(%T)]Q {Gq(t)-i_”wHLa(Qt)]a
where
M(t) = max(l,rrbaxp),
t
m(t) = min(l,rrclginp),
Gt = 615, 0+ W0y

We observe that the above inequality can write of the following form

¥lhsziam) < Kalpllcnom DIwoll oo +1Gl@n). @

q

where K is an increasing function of ||pl| ga.s g7 and 7', depending on m and
M (it is consequence from (3.1) by standard arguments see [?]}

The next Lemma is proved in Ladyszenskaya and Solonnikov [?] (see also
7])

If u satisfies div u=0, u|ZT =0 and

T
lulleiar + [ IV0@)lls @t < o0

then for any py € C"'(Q) such that 0 < m < py(z) < M < oo, problem

)
L -V = 0,

ot
p(0) = po()
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has a unique solution p € C%'(Qr), which satisfies

m < p(z,t) <M
T
IVl (@r) < VB3IV o0/l Lo exp(/0 IVu(t)||z.odt),

T
loellzcior < V3llullz@m I Voollz.@) exp(/0 IVu(t)| oo d2).-

Moreover, if Vpg € W/ (Q) and u € Ly(0,T; W2(Q)), then
d
%HVP(t)Hqu(Q) < cl|u(®) lwze Vo) lw; (o)

The proof of the next Lemma is easily.
Let u be the same as in Lemma 3.3. If p € C"'(Q) satisfies

dp
EWL(U'V)P = h,
p(0) = po(z)

where h € L1(0,T; Ly (€2)), then we have

t
Ity < [ 10 1cionr

4 Auxiliary result
We construct approximate solution inductively
u® =0, w® =0

and for k = 1,2,3,..., {p®}, {u® p*} and {w*} are respectively, the so-
lutions of problems

ptk)

5 + ™. v =0, (5)

PP 0) = po(x)
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*) ou®)

p — (p+ p)Au® + Vp®) = pBF L2y vot wk D — pB) (D) L)

ot

divu® = o0, (6)

u(k)|ZT = 0,
u®(0) = uy(x)

and
ow (k)
pk) v;t — (ca + cd)Aw(k) — (co 4+ cqg — ¢,)V div w®) 4y, wk)
(k) —

w |ZT = 0

w(k)(O) = wo(z).

Now, we prove the boundness of above sequence.
For sufficiently small 7} € (0, T, the sequence {u*), Vp®) w{¥)} is bounded

in W2(@n,)  Lo(Qn) x W2 (Qn).
Let

OW(T) = [[u® 200, + WP 210, + 1VDP |00
Lemmas 3.1 and 3.2 imply

eM(T) < Ki(llpllcos@ry T)(lmoll -2 Q)+||p('“)f||Lq(QT)+IIP('“)(H('“_I)'V)u(k_l)||Lq(QT)

+[12pr ot wE 11 00)

o (llplloes @y T)Iwoll a-z  + 1P gllz,@p + 0™ (@® D V)w YL, )
q

+12r rot u* V1 0r)-
Now, we estimate the right-hand side of the above inequality.

To estimate the term [|p® (u®~1 . V)u* V|| o, we will obtain first the
following inequality

[0 @ry < Callolly-are + WWolly-araigy + TO~YPO060=0 ().

(8)



Since
[0 D) gy < 10 (0) = W0l cg + 0]l (o)

using the interpolation inequality (see [?])with ¢ = oo, ¢/ = r, a = 3/q and
the fact that u*=V(#)]sq = 0, up(z)|sn = 0, we have

[a®= (1) = 1ol o) < Collu =D (8) = w31 10 *D(8) = o1, - (9)

Therefore,

[0 00—l = [ ) —wl'de

¢ q
= /Q/()ugk_l)(s)ds

dx (10)

t /¢ 1/q]?
< L) (f i ora) |
a/q -1)||4
S 13 ||U. ||W¢12’1(QT),

where % + % =1.
By using the Sobolev embedding (see [?] pp. 108]), for mg > 3, we have

o]0 < Colluollwy (@) < Cslluollyy2=2sa g - (11)
Using the Solonnikov inequality , we obtain

sup [0 Dy < sup u® V(@)

2-2/q
0<t<T 0<t<T We ()

< Callu iy g, + 0]l 2210
Subtituying the inequalities (4.6) and (4.7) in (4.5), we obtain the in-

equality (4.4).
Now, we estimate the following term. By using, we get

IN

T
Cs [ D) ot

T 1/q' T 1/q
e ([Ca) ([ e 0l
0 0 q

< CyTY1pk-D(T),

T
LIV @)l

IN
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Using the interpolation inequality, we have
IVu® V)@ < [0 Vi
_ _ 1-
< D@z * D 011 )

Consequently
T
1% @D - I, < ML g [T gt
< M1 (k—1) 19 r (k—1)1agq (k— (1- ath
I gy [ 0D 5 g D )
T
_ _ a — l1-a
< Mgy [ Dol D 11 e
T
< OMu® YR [ D ()5 ot

T a
< M YT ([ )

q (k—1) (1—a) (k—1)|1aq
< OMTu=) | P2 7O D)o,

finally, we obtain

l1—a

— — — 2—a _— — a
1p® (*D - V)u* V| o) < CM[uED )P0 T (pED(T))e
Using the inequality and Young inequality ab < caw + (%)ﬁ (1- a)bﬁ,

with o = a/2, we obtain

(1-a) a
1P (D )y )| o) < CMT 7 (6*0(T))5 <||“°||W32/qm>+

)

(
IWolly2-2/aq) + T(l—l/q)(1_3/q)¢(k—1)(T)>
< e (T)? + (1 — a)&’E(HuoHWg—z/q(Q) + ||w0||WqQ_2/q(Q)

+7 (=10 (=3/a) p(k=1) (T)2(CMT

1

l1—a
7 )1—

1 . .
)a and making some computations, we have

1—a

Chosing ¢ = (T«

1% D5y D) < OM ((alyamsre + W0l ) + T4 (TP



To estimate the rot operator, we observe

|| rot w(k_l)HLq(Q) < C“VW(k_l)HLq(Q)

— a — l1-a
< ClIw® Dzl ® V1 &)
and
T (k1) (4|04 (o) [ [T e th=1) 110 ’
[ O e < 70 ([0t
(1—a) ||, (k—1)||2q
S T ||W ||Wq2’1(QT)
< T(l—a)(q)(k—l)(T))aq'
Consequently, we obtain
T
| rot W(k_l)”qu(QT) = /0 /Q|r0t w9 dzdt
T

= /0 I rotw(kfl)Hqu(Q)dt

T
< O [ ITwEIE gt

IN

T
- 1-a — a
C [ It Ol [ Ol oyt

— 1—a M — a
< Cllwt D) QT (p*(T)).

Applying the Young inequality, we obtain

— — 1—a M — a
| ot w1, gp < ClIWED @S0 T (9*=D(T))

Loo(QT

(1-a)
(0% D))" (ollyz 13+ W02y + T /9405 0(T))

l1—a

CT

IN

— ae¢® (T + (1 — a)e T <||u0||qu_2/q(Q) o+ W0l y2-272 g
LTU=1a0-3/0 (k=D ()) (CT“T“)ﬁ
l—a %
Taking ¢ = (C’MTW) , we have
I vot 5,0y < O (Iolly -7y + W0l - gy + T 64 (T))
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The above inequality also is verified by rot u =",

The estimate for the term ||p® (u®=" . V)wE=D||; o) is quite similar
to the done to obtain the estimate, since we can obtain

1P (* - )W D o
— 17—0‘ — 1—a — a
< MY on T W VI o W%Vl g
Since

Iw® 1 iom < C <||u0||WqQ_2/q(Q) + ||wa||Wq2_2/q(Q) + T(l_l/q)(1_3/q)¢(k—1)(T)> ,
we get

B B 1-a
1p® (@D VywE V|, 0 < T MC’((||u0||W;72/q(Q) + ||w0||W372/q(Q))

+T(1*1/Q)(1*3/Q)¢(’€*1)(T))Z*a(¢(k*1)(T))a

and consequently

||p(k)(u(kfl)_V)w(kfl)”Lq(QT) < MC (“110”3[/2—2/:;(9
q

+ |Wol[2 2ms/a oy + T ¢FD(T)?) .
) Wy

(@)

Using the above estimates in the inequality, we obtain
oM(T) < Killpllonin: T){lIolly2-2ragq) + MIIEl2,0m)

A MC (00l gy + W0 2oy + T+ 6% (TP

(@ (@)

420, MC <||u0||Wq2_2/q(m {1 wollyy-2ragcy + T51¢<k—1>(T))}
+EKs(|lpll e T){||Wo||Wq2—2/a(Q) + Mgz, @r)
MO ([0l 2-sr0igy + 10 30 gy + T 0 D(TY?)
2, MC <||u0||Wq2_2/q(m  Wollyz-sre gy + T ¢(k—1)(T)>}
Setting C' = max{(1 + MC),2MC, M}, we have
89() < CK(lpllors, T (Iuollyz-2rs ) + [Wollyz-27o
2 2
(1020 [0l gy ) +
(1€l ot@r) + lIgllLy(@r) ) + T " (T) + Tt D(T)?}
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Now, we observe that

p®) (2, 1) — pP(y,5)| [pW (2, t) = pP)(y, 1) + pW(y, 1) — pP(y, 5)|
|z —y|+ [t — 5] |z —y|+ [t — 5]
< PPt = o0l 1001 = 0Py s)]
- |z — y| |t — s

For ¢ fixed and s € [0, 1], we define the function
o(s) = M (sy + (1 = 5)z, 1)

Moreover

P90 - @0 = le() -0 = | [ &

/0 Vo sy + (1= ), 0)-(y — @)l ds

< VAP liwi@nly — |-
Therefore, if ¢, s € [0,T] are arbitrary, we have

IN

Bk k
P 1) = 0,9 = | [0 0.0)8] < 16 it ~ .
Using this identities, we get

k
169 lcvs@ry < M+ 196%1w@ny + 1o i

;From Lemma (3.3), we obtain

loPllorsian < M +V30+ [u* @)
T
x||V o[ 1. (2) €XP (/0 IIVu(kl’(t)llLoo(fz)dt)

M + \/5(1 —+ Cl(||u0||szz/q(Q) + ||W0||W372/q(9) + T(lfl/P)(173/P)¢(k71)(T))

X[V 0o | 1. (@) €xD(C5 T H/DO8/0) (k1) (T))
= Ky(o™ 1’(T),T)_

IN

Consequently, we get

SOT) < K(Ko(6*D(T),T),T) x {(luollyz-2sniey + Wl 21
+(10ll3y2-210q) + Wollfyz-2r0 ) + Ifllac@r) + I8l Lo@r)
IO () £ Tk (T )}-

12



If we consider A; such that

A > K (M VB Cullualggorgy + ol )+ DIV

2 2
X <||110||W32/q(m + ||W0||W3,2/qm) + ||u0||W§_2/"(m + HWOHWZ‘W(n)

Hfllzo@n + lglza@n +2)

and we define
T, = min {Al—l(l—l/l’)fl(l—?’/l’)*l,AI—Q/‘S, A1—1/51, (015141)_(1_1/:0)71} ]

Then, ¢*)(T}) < Ay, holds provided that =1 (T}) < A,
Since

(1) < K(M+\/§||VPO||LOO(Q)aTl){||u0||w2

A

Hiwoll oo, + Ml 0r) + lgll,(@r) }
q ()
S Ala

the assertion of the lemma follows.

5 Proof of the theorem

Setting p(Wh) = p+h) — pM) k) = y+k) _ y) pnk) = pntk) _ pn) and
w(mk) = wtk) _ ™) e have

Dplmk)
ot

(@) L g) 0B = (g 1h) L g )
p"R0) = 0,

() 00

ot
divu™® = 0,
(n.k) _
u |ZT =0,
u"M(0) = 0,

13



where F(F) = 241, rot w(n=1h) — pmk)[f — u™ — (um=1 . 7)ur-D]
_p(n+k)[(u(nfl,k) . v)u(an»k) _ (u(nfl) . V)u(nfl,k)] and

(nth) Ow (k)
ot

—(ca+cd)Aw("’k)—(co—l—cd—ca)V div w("’k)+4urw("’k) = Gk)

TL,k)| — 0,

W(
T
w8 (0) = 0,
where G™F) = 21, rot u"=1k) — pmk[g — W™ — (u=D . ¥)wr-D]
_p(n+k)[(u(nfl+k) . V)w(an»k) _ (u(nfl,k) . v)w(nfl)]
Let
R () = ||u(n’k)||wq2v1(Qt) + ||W(n’k)||Wq2‘1(Qt) + VD" @)

Then, from , it follows that for ¢ € (0, T}],

IF™ 0 < cllVW L0 + 10" | a0 Il oo + 108 [0
(@™ V- ) V), 00}
A" Lo @0 LIl ) B 6,
("D - )" o0}

We observe that
(n—1,k) |19 t (n—1,k) q
[FwO B g < [ ITWT I @) g dr
t
< [ IwO @y @dr
t
(n—1,k) q
< o [ W@ dr

t
c/ G=LR) () dr,
0

IN

By other hand

t
R AN 1 o1 P e O
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t
< sup [Vu O o) [ OO dr

0<r<t

t
< sup [0 @) ) [ @l 0 dr
0<7<t
< gup "0 / a0 dr
0<s<t 7 a(
3 o)l g(Q)
t
2lla® ) 0 ) [ I sy T
t
< c/ Y=Lk () aqr
0
and
(n=1) . ) g (n-14) < ("4 (n=1) 4] 7y (= 1k 44
Ja® a0 oy < [ [ v e
t
< I o / CRIT
< g [ O /||u"““||
0<7<t 7
< sup ||u“||q /||u“k||q 0
0<7<t
< (Jlu™ (0 2
< (>||W; gm)
2l e g, M/ (el RPN

< c/ Y=Lk (r)aqr,
0
Also from Lemma 3.4, we have
t
1P PO |z < /0 [0 () o) [V (7)o sy 7

t
< o [ Iy g dr

t
< c/ \Il("_l’k)(T)dT
0

Also, by the above estimates and the hypothesis on f, we have

16" rci@o{1E a0 + 107 llzg@0 + 1Y - F)u D g0}
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IN

ez
t 1
o [ WOty
0

IN

Consequently
(n,k) ! (n—1,k) t (n—1,k) 1
1FmD L 0 < c/o p (T)d7+c(/0 WO (adr) (12)
t 1
< o [ WO (i)
0
Analogously, we have
t
||G(”’k)||Lq(Qt) < C(/ \I,(n—l,k)(T)da)é‘ (13)
0

By using the estimates (5.1), (5.2) and together with Lemmas 3.1 and 3.2,
we have for ¢t € [0,7}] and ¢ > 3

1

v <o [ t W (r)odr ) (14)

or

[wrn) <o w10 () ar,

consequently W(™*)(¢) — 0 as n — oo, V t € [0,T1]. Firstly, we observe that

W2H(Qy) is a Banach space and consequently, we have there exist u,w €
W2H(Qr, ), such that

n

u” — u strongly in Wf’l(QTl),
w"” — w strongly in WqQ’l(QTl)'

Also, from of the completeness of L,(Qr,), there exist p € Ly(Qr,) such
that

p" — p strongly in L,(Qr,).
Now, the next step is to take limit. But, once the above convergences
have been established, this is a standard procedure to obtain that u, w,p is
a strong solution of the problem (1.1)-(1.2).

We need only to argument the uniqueness of the solution in order to
complete the proof of Theorem . Suppose that there exist another solution

16



uy, wi,py of (1.1) and (1.2) with the same regularity as stated in the Theorem.
Define
U=u —uW=w —w,P=p —p.

These auxiliary functions verify a set of equations similar to (4.1)-(4.3). Re-

peat the argument used to obtain (5.2), we get for 0(t) = ||U||€V2,1(Qt) +
q

“W“;I/V,f’l(Qt) +[IP[|7, (g, an inequality of the following type

0(t) < c/ote(T)dT

which, by Gronwall’s inequality, is equivalent to assert U =0, W =0, P = 0.
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