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Abstract

The interest here is the between- and within-group comparison of genomic sequences. All possible
pairwise comparisons within and across groups are performed. Thus, unlike in analyses relying on
measures of diversity (such as the Gini-Simpson index), sequences are considered on an individual
basis. We develop a categorical analysis-of-variance framework for Hamming distances. This metric
measures the proportion of positions at which two aligned sequences differ. We assume that the
sequences are distantly related, but do not require that positions along the genome be independent.
The total sum of squares is decomposed into within-, between- and across-group expressions. The
latter term does not appear in the classical set-up. The theory of generalized U-statistics is utilized to
find the asymptotic distribution of each sum of squares. Test statistics to assess homogeneity among
groups are constructed.

1. Introduction

The focus of this paper lies in the comparison of genomic sequences, be they either DNA or protein
sequences. These sequences are grouped in some way and the heterogeneity in these groups is quan-
tified. The objective is to assess whether the variability is constant across groups. For instance, for
sequences from the human immunodeficiency virus (HIV), a number of papers have investigated whether
heterogeneity in the envelope gene is the same for all clades (see Seillier-Moiseiwitsch et al. (1994) for a

review).
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Weir (1990) described an analysis of variance for the genetic variation in populations, as measured
by the observed heterozygosity. The variance of the average heterozygosity is broken down to show
the contribution of populations, loci and individuals by setting out the calculations as in an analysis of
variance. Our situation is somewhat different because we would like to consider genomic regions rather
than a small number of loci. This is why we selected the Hamming distance as our metric. The Hamming
distance is the proportion of positions at which two aligned sequences differ. The sequences are regarded
as independent but no assumption is imposed on the correlation between positions.

We develop an analysis-of-variance framework based on Hamming distances. The sequences are con-
sidered on an individual basis in the sense that they are compared to each other: all possible pairwise
comparisons within and across groups are performed. We estimate the variability between, within and
across groups (Section 2). In the within-group sum of squares, we are estimating the variability among
sequences within a group around the average distance within this group. In the across-group sum of
squares, we are estimating the variability of sequences across two groups with respect to the average
distance between those groups. In the between-group sum of squares, we estimate the variability in the
group average distances around the overall average. U-statistics are utilized to represent the average
distance between and within groups as well as the overall distance (Sections 3, 4 and 5). The total sum
of squares is decomposed into within-, between- and across-group sums of squares. The latter term does
not appear in the classical set-up. The theory for generalized U-statistics (Puri & Sen, 1971; Lee, 1990;
Sen & Singer, 1993) is used to find the asymptotic distributions of these sums of squares. In Section 6,
test statistics are developed to assess homogeneity among groups. The power of the tests is discussed in
Section 7. A data analysis is described briefly in Section 8. The paper closes with a discussion in Section
9.

2. The Total Sum of Squares and its Decomposition

Let X[, be the label (i.e., an amino acid for protein sequences or a nucleotide 27, € {A, C, T, G}
for DNA sequences) present at position k (k = 1,...,K) of sequence i (i = 1,...,N,) in group g
(9g=1,...,G). Then X¥ = (X%, X7, ..., X7) is the random vector representing sequence i of group g.
Consider XY and ng/.
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Define the average distance within a group as

1 —1 K
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which is a U-statistic of degree 2 (Lee, 1990). The average distance between groups g and ¢’ is
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which is a two-sample U-statistics of degree (1,1) (Hoeffding, 1948; Puri & Sen, 1971; Lee, 1990). The
overall distance is
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which is a linear combination of U-statistics.
The Total Sum of Squares can be decomposed as
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= WSS+ BSS+ AWSS + ABSS

where WSS, BSS, AWSS and ABSS stand, respectively, for the within-, between-, across/within- and
across/between-group sum of squares.

3. Connections Between Sums of Squares and U-statistics

There are G groups with N, sequences each. Yet, we can disregard the group clustering and think of

G
the sequences as a random sample of size Z Ny =M. Then
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These sums of squares can also be expressed as linear combinations of U-statistics (Pinheiro, 1997).

For instance, WSS is a linear combination of one-sample U-statistics of degrees 3 and 4, and AW SS

two-sample U-statistics of degrees (2,2) and (2,1).

4. Asymptotic Distributions and Decompositions of U-statistics

Let F' denote the distribution function of X; and U™ be a U-statistic of degree m, computed from a

sample of size n, with kernel ¢(X1,...,X,,) and E(U™) = 0(F) = 6.

~1

UmEU(Xl,...,Xn):<:L) Z O Xiysoo o, X)), m>m
1<ig < <im <n

where §(F) = Ep{d(X1,...,Xm)} = / /¢ X1y, Tm) dF(x1) ... dF (2,)

Let

\ch(wlv"'axC) = E{¢(x17"‘71'67XC+17"'7X7TL)}
wc(xla"wxc) = E{¢(xla'",mc,Xc—‘rla"'aXm) - 9}

& =EB{¥%(Xy,...,X.)} - 6% and & =0.

The function ¥, has the following properties (Lee, 1990, p. 11):
(1) Ue(z1, .. ze) = E{¥y(z1,...,2c, Xet1,-.., Xg)} for 1 <c<d<m,
(ii) E{Uc(z1,...,2c)} = E{d(X1,..., Xm)}

Now
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where Z stands for summation over all subscripts such that
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(e)
and exactly ¢ equations iy = jj, are satisfied. By (4.4), each term in Z is equal to &.. The number of

(c)
terms in Z is
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Since &y = 0,

The inequality 0 < &, < ggd with 1 < ¢ < d < m (Hoeffding, 1948) leads to
2
e <var(m) < Zg,,
n n

From (4.6) and (4.5), nVar(U™) is a decreasing function of n which tends to its lower bound m?&; as n
increases, i.e.,

Var(U™) = %251—1—0(71_2) (4.7)

Therefore, if E(¢?) < oo and & > 0,
n'2(Um — 9) -4 N(0, m26;) (4.8)
(Hoeffding, 1948).

Definition 1
F,(x) is the empirical distribution function (d.f.)

n

1
Fn(sc):EZe(x—Xi) reRP, n>1
i=1

with e(u) being 1 if all p coordinates of u are nonnegative and 0 otherwise. |

We may rewrite (4.1) as

U™ = plml /Rp ~/¢($1,...,$m)Hd(€($j _Xij))a
j=1

1<117é Fim

where n=" = (n™H)=1 ={n.. . (n—m+ 1)}

Writing d(e(z; — X;,)) = dF (x;) + d[e(z; — Xy;) — F(x;)], 1 < j < m, we obtain
m m .
F)+Z<h>Uh n>m (4.9)
h=1
h
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for 1 < h < m, we obtain

-1
U = (") Y WX, X)), 1<h<m (4.11)
h , ‘
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and the U] are themselves U-statistics. Note that for h = 2, we have
E(U3") = E(¥3(X1,X3)) = E(¥2(X1, X3)) — E(¥1(X1))
— E(U1(X2))+6(F)
= O(F)—0(F)—6(F)+06(F)=0

Let
\Ifzﬁ_l(l‘l, Ce ,xh_l) = E[\I/,OL(Xl,.. -aXh—laXh) ‘ Xl, e ,Xh_l]
Then

U3, (X1) = E[W3(Xy, Xo) | X1
E[Us (X1, Xo) | X1] — E[W1(X4) [ Xa] — E[W1(Xa) | X4] +6(F)
= Ui(X1) — ¥ (Xq) — E(P1(X2)) + 0(F)
— O(F)—6(F) =0

€ =E[03,(X1)]> — (E(UF))* = 0 and by (4.6),

Var(Ug) = f‘f&f; Gt n(jf—g 1)
= %gf +0(n %) =0(n?) (4.12)
Consequently, US* = O,(n™1).
From direct computation, E(U]") =0, V1 < h < m and
Var(U™) = E[(UM)? =0(n™"), h=12,...,m; (4.13)
and we can write
U™ =0(F)+ % zn:[\lfl(Xi) —O(F)] +O0,(n1) (4.14)

Now we consider multiple-sample U-statistics.

Let {XZ(-j ); i > 1}, j =1,...,¢(> 2) be independent sequences of independent random vectors,
where Xl(-j) has a distribution function FU)(x), x € IR?, for j = 1,...,c. Let F = (F(M) ... F(©)) and
qS(Xz(-j), 1 <i<mj, 1 <j<c)bea Borel-measurable kernel of degree m = (my, ..., m.), where without
loss of generality we assume that ¢ is symmetric in the m;(> 1) arguments of the jth set, for j =1,...,c
Let mg=mq1+---+m. and

c mj

o(F) :/Bmo ---/¢(x§j), 1<i<my, 1<j<o[[[[dF? ) (4.15)
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Definition 2
For a set of samples of sizes n = (n1,ng,...,n:) with n; > m;, 1 <j <e¢, m = (mq,mq,...,m.) the
generalized U-statistic for O(F) is

c —1 =x*
U(m):H(mJj> Z¢(X&J)7 =1, ydjm;, 1 <j<c), (4.16)
J=1 (n)
where the summation Z extends over all 1 <ij; < ... < bim; < nj, 1 <7< e UM i5 an unbiased
(n)
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so that g = 0(F) and ¥, = ¢. Then
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so that & (F) = 0. Then, for every n > m (Sen, 1981),
Var[ (m)} Zn 10 [14+O0(ngh)] (4.19)
where ng = min(ny,...,n.) and
UJZ = m? €551, 5.7‘c(F) J=1...c (4.20)
with dog = 1 or 0 according to whether av = 8 or not.
For a two-sample U-statistic of degree (my, ms), the kernel is
¢(X1;-~-aXm1;Yl7~-~7Ym2)
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Then,
| Umm) gD, FR) = Opng"): no = min(ny, ng) (4.21)

ny ?

provided the variance of U(™1:72) exists.
\I]dldz(x17 o Tdy s Yty e 7yd2)
= E{¢($17 e ?‘rd17Xd1+1? e aXm1;y1a cee 7yd2aYd2+17 e aYM2)} )
g, = E{U3 4 (X1,.... Xa,, Y1,...,Yy,)} — 02(FO, FP) (4.22)
for d1 :O,...,ml, d2 :0,...,m2. (600 EO) Then,

(Y ) THU ) — g(PD), @) L N(0, 1), (4.23)

2
Vg = ( )fm + ( ) €o1- (4.24)

The decomposition for U™ can be developed similarly to the one-sample U-statistic. For a two-

where

sample U-statistic of degree (my,ms2), we have

1 n2

[imims) Q(F)+%Z[\P10(Xi)79(F)] 7:2 Z[\Pm(Y) 0(F)]

where ng = min(ny, na).

The above expression can be generalized for multiple-sample U-statistics. For instance, the decompo-
sition for a three-sample and four-sample U-statistics are as follows

ni na

m m
glmomams)— — - 9(F) + n—ll > [Wioo(Xi) — 6(F)] + n—j > [Woio(Yi) — 6(F)]
i=1 i=1
ms
+ Z Woo1(Z (F)] + O,(ng ) (4.26)
where ng = min(ny, ne,n3) and
(m1,m2,m3,my4) — m S m2 S
U = 0(F)+ N Z[‘I’looo(Xz‘) —0(F)] + . Z[‘I’omo(Yi) — 0(F)]
i=1 i—1
m 3 m T4
+ n—jiﬂ[‘lfoom( i) —O(F )]+n—f;[‘1’0001( i) — O0(F)]
+ Op(ngh) (4.27)
where ng = min(ny, na, ng, ng).
5. Combining the U-statistics
We can write
G
WSS Z U8 + Ul + U
g=1
a _3)
+ > om0 =) e |yl 4 ug)
g=1



3 NN
vi= () X ooy

1<j<g’
are one-sample U-statistics of degree 3 and

4 N\ ! 4 N !
wi=(Y) X @peonr. uis= () X 0y -0p)

i<j<i’ <j’ 1</ <j<j’
@) _ (Ng >
Uz s = ( 4 ) Y. (D -Diy)
i</ <G <j
are one-sample U-statistics of degree 4.

Note that Uj(f,?) represents a U-statistic of degree m with expected value pu;, i.e., E(U;f)) = u; for
any k. The expected value of WSS is

G
N, -3
E(WSS) = Y (N, {u1g+( I >uzg}

g=1

4 4 ’ 4,
oy = E(U) = E(U; 2) = E(Uyy) = B((DY; — DY;)?).
Under Hy, there is homogeneity among groups, i.e., for any g, 8 = 65 and

where u1, = E(UP) =E(UP)) = E(UP)) = E(DY — DY,)? and

Gzlkz = Ok, k,. Therefore, 14 = 1 and pog = pi2, thus

o(WSS) i {,ul + W/Lz}

g=1
where
Hig = H1 = Zek + Z 0k1k2 Zek { jazv‘] Z 0k1k2(iaj;i7j/) (51)
k1§£k2 k1¢k2
and
9 K
H2g = p2 = 555 D 01 =0)+ > (O, — On, k) (5.2)
k=1 k1#ks
with
c-1
Or = 0k(i,j) = P(Xar # Xji) = Z pr(c)[1 — pr(c)] (5.3)
c=0

9k1k2 = 0k17k2 (Z’]) = P(Xikl 7é Xjk1§Xik2 # Xjk2)

c—-1 c-1 C-1
= Z Pkiks (61562) Z Z Pkiks (C3,C4) (54)
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c—-1

07(i,j3i,5") = P(X], # X3, X pL(e)[1 — (o)), (5.5)
c=0
921k2(i7j;i7j/) = ( 7& ]kl 1k2 # X )
c-1
= > Pl —pf ()]l - pl, ()], (5.6)
01702:0
pe(c) = P(X§, =c) and lekz (c1,¢2) = P(Xig;gl = ChXing = c2) (5.7)

Decomposing WSS, under Hy,

ma

WSS = Ng—2) (M1+(]\7947_3)M2)
. s 2
b YN =2 S an (X)) — ] + 0,(1)
g=1 9 =1
G Ny
Y RIS (e (X0 — ] + 04Ny 58)

and the associated mean square expression is

WSS 2WSS

WMS = _
Yoot (%) ey Ne(Ny—1)
= 2 S (Ng —3)
T Y N,(N, - 1) {;(N 2) (ﬂ + = u2>
g Ng
+ 2N 2)Nig (W (1)1(Xi) = ] + Op(1)
G N,
S5 (Ny = 2)(N, —3) , M .
= ng 1 Ny(Ny — 1) {NZJrNg;(\IJ@n(Xi)/Ag)} + O,(Ny ) (5.9)
with
Eo(WMS) = +0O( )
and
4SS INE — 10N2 4 3TN, — 60+ 36/Ny] o) y
Varg(WMS) = S0, Ny(N, — 1) &7+ 0N, )
G
= 1o Ny @ L o2 (5.10)

[0 Ng(Ny —1)]2
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For AWSS,

(Ng —1)(Ng = 1) (1122 2,2
awss = % [ L (Ul +UlyY)
1<g<g’<G
¢ WDy, W = Dyo
where
N\ (Ny\T 7 : :
Ufiz) _ [( 29) ( 29 ﬂ Z Z(Dz(f,g ) _ Dl(/gj,lg ))2 and
i 7::7/’
2.2 NN\ /N, N\t o o
URR = [( 29)( ;H S S0 - D)2
7, A

are two-sample U-statistics of degree (2,2) and

-1 Ny

N N , ’ ’
Ugf%:[<f>(f;>} > > (DD and

i=1 1<j,j'<N_,

P
ot
i#3

Ng/

N\ /NN 7! , ,
U(sz,él) _ [( g) ( g )} Z Z (Dz(Jg,g ) Dl(,gj,g ))2
2 1 J=1 1<i,i’<Ng

il itil

are two sample U-statistics of degree (1,2) and (2,1), respectively.

(N, = 1)(N, —1) (N, —1) (N, —1)
E(AWSS) = ) [ (g T Ha(g.g) F T a9
1<g<g’<G

. 2,2 2,2 1,2 2,1

with fia(g ) = E(USE) = B(USY) and 50,y = E(USYY) = E(UGY).

Under Ho, ,u4(g,g’) = U4 and H5(g,9") = M5, therefore

1
Eo(AWSS) = ) Z [(Ng = 1)(Ngr = Dppa + (Ng + Ny — 2) 5]
1<g<g'<G

where g = po is given by (5.2) and ps = py is given by (5.1).

AW SS can be decomposed as

N
(N, —1)(Ny — 1) 2
AWSS = Z ? 9 7 Ha(g,9") T N Z(\Ij(ﬁl)lo(xf) - M4(g,g’))
1<g<g’'<G 9 i=1
2 Ng/
TN, Z(\I}(‘l)Ol(X? ) = Hg,g)a) + Op(Ng )
N
(N, —1) 2
+ L (g0 + o DO (T5)10(XY) — pis(g.91)
2 Ny &=
1 < ;
+ N, Z(@(5)01(X§ ) - MS(g,g/))
g j=1
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Ny

(N, — 1) 1
+ 1500 T 5 2 (Ye)10(XY) — 15(g.00)
2 Ny i=1
2 Ng/
+ 5 2P0 X)) — isggn) + O (N5 ) (5.11)
g j=1

with No = min (N).

The associated mean-square expression is

AWSS

AWMS = —————
Zg<g/N9N9'

N
1 (Ng = D(Ny — 1) 2y
- 2 Z g g ] Ha(g,9") T N, Z(\P(4)1O(Xf) ~ Hi(g.g))
g

1<g<g'<G 3 i=1
NgNgy
|:g<g’
N,/
2 < / _
+ N (\P(4)01(X? ) = a(g,gn) | + Op(Ng N (5.12)
g

1

<.
Il

Eo(AWMS) = %+0(Ngl)

Note that Eq(AWMS) = Eo(WMS), since under Hy, pg = pa.

N, —1)?(Ny —1)2 [ 4 4
5 W U )<Nf$+N@$0}+OWW)

9<g’

1
Varg(AWMS) = (Zg<g’ NyNy)2 {

(4) (4)
W {Z(Ng1)2(Ng'1)2 (&—O+%>} +O(NO_2) (5'13)

9<g’

Now
& N, (N, — 1) 1
_ g\-Vg — Ng _ D\2 — 1
BSSL?=1 —H——(D? = D)*= ;D\D,

where D; is the G x 1 vector

D, = (VNN ~ (D! - D) ... VNo(Ng ~ (D¢ ~ D))

Note that
E(DY) = — B(D%) = LS g2 o
D=y L2, Y T e
E(Dﬁgyg’)) _ i ia(g,g') _ gﬁg,g’)
K k=1 *
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and

2
g=1 9<g’
G
where M = ZNQ‘
g=1
Therefore,
M\ T & N (N, - 1) o
m =ED—-D.) =6 — ( 2) S e —2g N NNy 6 o) (5.14)
g=1 9<g’
Since DY is a U-statistic of degree 2,
= 4 (2 _
Var(D?) = 5 2 L o(N;?)
where 5%12) = EW(212)1(X?)]7 and since D99 is a two-sample U-statistic of degree (1,1),
Var(D99)) = N a4 —§<13 +O(Ng?) (5.15)
g
where £{,” = E[v?,,(X9)] and £5}*) = E[?4,, (X?)]. Under H,
- (13)10\™4 01 (13)01 . 05
K
q/’(212)1(Xi) = K2 ZPz Jk # Tik) + - _9 Z Xk # Tik)
1
t 52 Z P(Xjn, # Tiky; Xjky 7# Tiky)
k1 #ko
We are assuming that under Hy there is homogeneity across or within groups, i.e., 0 = 07 = .-+ = HkG =0
and 0,(69’9 ) = 07 = 6. Therefore, under Hy,
VN, (D9 —8)) -4 N(0,4¢")) (5.16)
and
A (D.(g’g') _ é.) ~4N(0,1) (5.17)

where 7, = N, 6(13 + Nl,f(()iB) = (N%] + le) (' by (5.15) and under Hj.

If D. is a linear combination of normal variables, then D. also follows a normal distribution.

G

_ M\t N,(N, —1) - I
g=1 1<g<g’<G

G
where M = Z Ny. Under Hy,

szo(D):C\j)l f:(j\;9>+ > NNy |6 =0

1<g<g’<G



Varo(D,)

)
N
I1l

M2(M —1)?

ZN

DRSS

1<g<g’'<G

L9 Z N,N, NT§(13,1,132)+2Z Z

1<g,9’,9T <G
g#g’'#gt

where 5(13’1’13 %) = E{Ya3,110(X
T
Elp132(x{, X7 ) —

1?(13,2)10( '):
Y12)1(Xi) = Yazy0(Xi) =

¢(13)o1(
(12) (13) _ +(13) _ +(13,1;13,2) _

i)

9=1g'=g+1

f)¢(13 2) 10( )} and
gla:s’ )]. Under Hy,

1
N2 N2 (13)
< 510 + Ng

1)N, E(12,13)

( )¢(13,1)10(Xi) = 1p(13,2)10(X;). Therefore,
é. 12 13 and

(13)>
01

10 = So1 10
45 (12)
ol = M2(M T ZN —1)%+ Z NgNg (Ng + Ny)
1<g<g’'<G
G @
+ 2 ) NNy Ny 42> > Ny(N, (5.18)
1<g,9’.9t <G 9=1g'=g+1
g#g’#gt
Hence, under Hy,
or ' (D. - 0.) < N(0,1)
Now, under Hy,
Vl—Eo(th—D):é—é:O (519)
and
ng = Varg(DY — D.)
= Varg(D9) + Var(D.) — 2C0V0(D? D))
4 8(Nyg—1) ] .12 _ 8(M = Ng) ,12,13)
R T 90 2
N, M(M — )} te M(M —1) & (5:20)
here £ = B XY X9)} = ") i X;) = X;) under H,
where &; = E{va2)1(X7)Y13)10(X7)} = &7, since Y12y1(Xi) = Y13)10(Xs) under Hy.
Then,
G
2 _ 45(12) 1 N 29:1 Ny(N, —1)? NyNgy (Ny —|—N 49 Z N N NT
19 ! N, M2(M —1)2 M2(M — M2(M —1)?
g<g’ 9#9’ #gf
G @
+ 22 Z Nq(Nq_l)Nq’_Q (Ng_l) _Q(M_Ng)
M?(M —1)? M(M —-1) M(M —1)
g=1g'=g+1
(5.21)
So,
i H(D9 — D.) -5 N(0,1)
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Since BSS is a quadratic form of normal random variables,
G
BSS = D D, ~ ZAg (Xf)g
g_

which is a linear combination of x7 random variables, where \,’s are the characteristic roots of Var(D;) =
3;. Note that the diagonal elements of 3, are Ny(N, — 1)7'12g and the off-diagonal elements, under Hy,

are

\/Ng(Ng — )Ny (Ng = 1)T1gg = \/Ng(Ng —1)Ny (Ng — 1)Covo(D? — D-7D~g/ ~D.)

46012
= \/Ng(Ng — )Ny (Ng — 1) <_M§7 [Ng =14+ M = Ng+ Ny =14+ M — Ny| ‘*‘U%

(M —1)
85%12) )
= /Ny(Ny — Ny (N — 1) -2 4o (5.22)
where o7 is given by (5.18).
Now,
1 1 & )
Eo(BSS) = 5 trace(31) = 5 > Ny(Ny =17,
g=1
and
1
Varg(BSS) = 1 trace(X;)?
Let
/
BMS — GBSSN _ _ DiD,
Zg:l ( 2g) Zg:l Ng(Ng - 1)
Then
2
Ba(B218) = —eE) T NNy — 7
Zg:l Ng(Ng - 1) Zg:l N ( 1)
and
1 ¥,)?2
Varg(BMS) = ————Vary(BSS) = Gtrace< V -
G _
{Zgzl (J\;Q)] [Zg:l Ng(Ng —1)]
For ABSS we have,
N N ’

ABSS= Y ZZ D) _D)? = DyD,

1<g<g’'<G i=1 j=1

where Dy = [N No (D" — D), N N3 (D' = D.),..., /N1 Na(D9™9 — D)) is a GG 1
vector.

Let



Under Hy,
vo =Eo(DY9) — D)= —0. =0
and
7—22(97!]') = Var( (QQ) D)

= Var( <”>)+Var(’)_zcov( (99 D)
4

= N a6 o [0 - e (-

M(M -1)
13,1;13,2
00, e >}

Note that under Hy there is homogeneity among groups,

K
‘I’(13)10(Xi) = ‘I’(13)01(Xj) = ‘I’(1371)10(Xz‘) = ‘I’(13 2)10 (xi) = Z

since the sequences are i.i.d.
Therefore, (13 1)10(X:) ¥ (13,2)10(Xi) = UF13),0(x:) and

13,1;13,2 13 13 (12) 12,13
et =) = (Y = 'Y = 1

So, under Hy,
2 _ (Ng + Ny') 8 (12) 2
T2(9.9) T { N,Ny, M &7 oy
As in BSS,

G(G-1)/2
ABSS~ Y xn(xd),

(5.23)

1)l (12,13) +N, g(13)
(5.24)
Xik 7é z]k
(5.25)

where \;’s are the characteristic roots of Xy = Var(D3). The diagonal elements of 3o are NqNngzg(g )

and, if all groups are different, the off-diagonal elements are

_ _ 8
/NgNy N, Ny:Cov(D9) — D DY) D)= \/[N,NyNyi Ny <_M§§u>+0§) (5.26)

and if there is one group in common, i.e., g = g' or ¢’ = ¢T,

, o B (12)
Nyy/Ny N, Cov(D@9) — D D9 _ Dy = N, [Ny N, ( N
g

Now

Eo(ABSS) = trace(£2) = Y NyNy3y o1

9<g’

16

ge(12)
i\/[ 01> (5.27)



Varg(ABSS) = trace(3s)?

The corresponding mean-square term is defined as

ABSS DD,

ABMS = =
Zg<9’ NgNy Eg<g’ NgNgy
Then
2
Eo(ABMS) = trace(Zo) _ 2g<y NoloTae.90
> geq NgNy > gy NNy
trace(Xy)?
Varg(ABMS) = —————
[Eg<g’ NgNg’]2

6. Test Statistics
One alternative is to compare WM S with AWMS. Let 11 = AVKV%SS Under Hy,

G
S (N, — (N, - 3) .,
= o+ e S (W (Xo) = i) § -+ Op(Ng )
23 N, (N, — 1) =t
WMS g=1
AWMS Z (Ng - 1)(Ng’ - 1) N, Ny
= S NN, qu ; YanXi) = pa) + %;(‘I’@ﬂ(xﬁ —p2) ¢+ Op(Ng )

g<g’

: — _ _ WMS
Provided that Ny = lgggc(Ng) and Ny = O(Ny), Vg =1,...G, we have that 4777375 21 as Ny — oo,
i.e, asymptotically the distribution of % is degenerate.

By (5.21) and (5.22) we have that 3; = O(Np) and by (5.25), (5.26) and (5.27), 3o = O(Ny)).

BSS Yo Mg (),
Yo () 5L No(Ng — 1)

where \4’s are the characteristic roots of Var(D;) = 3;.

BMS =

ABSS 1
ABMS = ~ )\21' X2 .
S NoNy ~ S, NyNy ; (x1),

where \g;’s are the characteristic roots of Var(Dy) = 3.

Also, under Hy, by theoretical results pertaining to U-statistics

VNG (WMS = p2/2) = N (0,4¢”)

17



and

VN (AWMS — 1o /2) — N (0,6

Thus,
BMS = O0,(Ny') and ABMS = 0,(N;")
while
WMS = 0,(N;*/?) and AWMS = 0,(N; /%)
Define
BMS ABMS
Tno =Ny | —— d Tn3=No|——
N2 =" <WMS> o N3 =0 (AWMS)
Since, BM S and ABM S are the dominating terms in T 2 and Ty 3, respectively, we can write
2No(BM S _
TN = 2No(BMS) + O0p(Ng 1/2)
M2
and
2No(ABMS _
Tnz = 2No(ABM S) + 0,(N, 1/2)
2
Therefore,
G
Ny Lger Mg (XT),
N2~ —
i 30 Ny(Ng —1)
and

9N, G(G-1)/2

Thyg~ ——————— i (%¢2).
N,3 12 qu, N,N, ; 2i (Xl)z

Because the elements of 37 and Xy are unknown, the characteristic roots of these matrices are also
unknown. Therefore, the above distributions do not have a closed analytic form and we call upon
resampling methods, such as the bootstrap, to generate the reference distribution for the test statistic.

7. Power of the Tests

Lemma 1
Let T, be a vector of random variables that can be expressed as
1
v+ Jn +
where R,, = O,(n71).
If Q(T) = T'AT is a quadratic form on T. Then,

AT = (vt / L
Q(T) = TAT={v+ ﬁUn + R, YA{v + ﬁUn +R,}
= Q)+ %V’AUH + %Q(Un) + 20/ AR, + 0, (n™%/?)
If v =0 then Q(T) = %Q(Un) + 0p(n~3/?). [
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In our case, T = D; and the quadratic form is Q(D;) = D|D,. Note that we can write,

G G
DID, = S N,(N,— 1)(D— D)2 = 3 Ny(N, - 1)(D? - D. - 1p)?
g=1

g=1

G G
+ 201 ) Ng(Ng—1)(D¢ = D. — 1) + > Ng(Ny — 1)1}
g=1

g=1

Let Vny = Dy — vy, where v; is a vector G x 1 with elements /Ny (N, — 1)1, g =1,...,G and 1y
is given by (5.14). Then, E(V ) = 0 and Var(Vy) = Var(D;) = X1 = NyX] = O(Np). Therefore,

Q(D;) =D|D; = Vy\Vy + 20/ Vx + Vv,

Since \\//—N% ~ N(0,X%7),

MWy %
~ * 2
Ny ;Ag (Xl)g

where A7 are the characteristic roots of ¥7. Also,

UV vV
vy N (0,40 ¥7v1) or V13/2N
VNo N,

With the above results, we can see that Vy = Op(Né/Q), NV =0,(Ny) and v|Vy = Op(Ng’/Q).

~N(0,4r7%})

Now,
2N0 , 4N3/2V/1 VN 2N0 2 —1/2
Tno = e NYN+—F +——v7 + Op(Ny ')
v Ny )
12  Ng(Ny —1) p2Y  Ng(Ng—1)
g=1 g=1

G
D Ny(N, = 1)(D¢ = D. — y)°
< Ty — 2Nov? /ps ) g=1
ANG P /12 35 Ny(N, — 1)]

2N 21,

G
1 N B —
+ WE  Ny(Ny = 1)(D? = D. — 1) + Op(NG 1)
0 g=1

Note that
G _ _
S Ng(Ny = 1)(D? — D. — )? 12
3/2 = OP(NO )a
2N0 121
G _ _
Ny(N, —1)(D? — D. — 1y)? AV
since g=1 g( Y )( 1) _ YNVYN _ Op(l)




since

T g A VAN
7 2 No(Ny = (DY = D. =) =~ = 0,(1)
0 g=1 0
So, for a fixed 11 # 0, as Ny — oo,
G
TN — 2Nov? /s ) 1 = - ~1/2
: = N,(N, — 1)(DY — D. — 1) + O, (N4 /%)
5/2 G 3 22 gy (Vo
<4No/ vi/lu2 g No(Ng = 1] ) NP =

Thus,

pa — 2Nour)

G
P(Tno>vi) =P Z>ZN9(NQ—1)( 573 — 1, as Ny — oo,
g=1 4]VO

i.e., this test is consistent.

Now, consider a local alternative hypothesis. Let vy = \/LNT’YI , where 7] is a constant. Then,

2N,

!
Tno = e VN

F‘2ZN9(N9 -1)

g=1

G
4yF _ 1
n _ 7 \/NOZNQ(Ng—l)(D_g—D.—\/]Tﬁ)l
= 0
N2ZN9(N9*1) o
g=1

2 _
+ )+ 0Ny )
M2

2
G N N9 N 1
TN,? -2 (7{)2 /IuQ Zg:l Ng( g 1) (D - /NOPYT>

¢ 2Noy
A NG/ M2ZN9(N9 -1
g=1

G
. I -
N NN, - 1) (D%’ . mvf) L0, (Ny )

g=1
Note that
1 2 1
N,(N,—-1)[ D9 —D. — ——~* N,(N,—-1)(D9—D. — —~7
Z 9( g )( \/N—O’Yl) Z 9( g )( \/N71>

Noo? =0,(1) and NP2 = 0,(1)

Therefore, T2 no longer follows a Normal distribution as Ny — oco. It is a convolution of a linear

combination of chi-square random variables and a normal random variable:

2N, AN, 2 (v)? _
In2 = G : NN+ —5 : (v1)' Vn + 20d)° +0,(Ny %),
M2
p2  Ng(Ny —1) 12 Ng(Ny —1)
g=1 g=1
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where v7 = (/N1 (N1 — 1)

2N2 16N3 2 (v)?
Tya~ —g— ZA N0 () i1 | + <Z;)
#2ZN9(N9 - N% [ZNQ(NQ - 1)‘|
g=1

where Aj, are the characteristic roots of 37.

Now, let us find out whether V'V and (v%)' Vy are independent. V'V and (y}) Vy are
independent if and only if (%) $; = 0 (Searle, 1971).

Recall that

Ni(Ny — )78 VNi(N1 = 1)No(N2 — 1)1112 ... \/N1i(N1 — 1)Na(Ng — 1)
5 V/N1(N1 = 1)Na (N3 — 1) 1112 No(Na —1)73 .. /Na(N2 — 1)Ng(Ne — D)7i2c
1= . . . :
\/Nl(Nl — 1)Ng(NG — 1)T11G \/NQ(NQ — I)NG(NG - 1)7'126' cee NG(NG - 1)7—12G
where
G
2 g ] L Dgo1 Ng(Ng —1)° 3 NyNy (Ny +N po Y 2 N N /Nyi
1g 1 Ng MQ(M _ 1)2 = MQ(M ot T )2
979 79
N, . (N, —1) (M — N,)
2 g 9 g -2 g
+ Z Z “12 MM -1 M —1)
g=1g'=g+1
and
4€(12 1 G
Tigy = ( M ) _2+m ZNQ(N9_1)2+ Z NgNg (Ng + Ny)
g=1 1<g<g¢'<G
G G
+ 2 ) NNy N +2) 0 Y Ny(N,
1<g,9’,9t <G 9=1g'=g+1
g#9’#gt
Then, the first element of (y}) 1 is
71 -
\/Jl\f_ole(Nl — 1) [Ni(Ny = D7 4+ ) No(Ny — D]

g=2

and

VFNO\/Nl(Nl—l) [N1(N1 — 1) 7'11"';:2]\[ =711 =0

& Ny =1loral Njs=1or (rf; =0 and all 7114) =0

So, ViyVy and (7%)' Vv are independent if and only if Ny = 1 or all N,’s = 1 or (17, = 0 and all
T114’s) = 0, which is not the case here.
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Now, write
[V Vi +2(91) Vv + (1) 7] = (Vv +91) (Vv +91)]
and
Txa = SU(BMS)+0,(N; %) = —5———DiD, +0,(N; )
M2Z Nyg(Ng = 1)
g=1

2N _
= 0 (V1) (Vi +77) + Op(Ny ?)

G
N2Z Ng(Ng — 1)
g=1

A%
Note that (Vnx +4%) ~ N(v%, 1), (J—Nio + ’7{) ~ N(v},X7) and

D
D1 ~ N(ul,Zl) or !

VNo

~N(~1, 27).

!

DD
The distribution of ——2 can also be derived the following way.
0

Let P be a G x G orthogonal matrix (i.e., P'P = I) such that PX]P’ = A, where A is a diagonal matrix,
and
D, D,

Y=P—=—=-"—"—=PY
vVNo  VNo
Then,
DD
Y ~N(P~3;,A)  and 71 —Y'PPY =YY,
0
Hence,
D/D <
N - Y'Y~ > A (x36)) (7.1)
i=1
(v1,)? . . : : .
where §; = )\Z_ , A;’s are the diagonal elements of the diagonal matrix A and v7; is the ith row of the
vector v} = P';/’f By (7.1),
G
2N, 2NZ
TN,Q = D/lDl ~ 0 Z /\i (X%((sz))l

G G
p12) " Ny(Ny — 1) 112 Ny(Ny —1) '~
g=1 g=1

Since we have a linear combination of non-central chi-square random variables, when v; =

VNy’

P(TN,Q > V1) — 1 as Ny — o0

As the distribution of Ty 3 is similar to the distribution of T 2, the above results about consistency and
power of the test apply to T 3.
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8. Data analysis

The data set consists of three groups of HIV infected individuals. The interest is to compare the env
gene V3 loops from B clade macrophage-tropic, B clade t-cell adapted and clade C sequences. There is a
hypothesis which says that clade C is like B clade macrophage-tropic sequences. For this data set there
are 356 independent sequences from B clade macrophage-tropic, 140 B clade t-cell adapted sequences and
151 clade C sequences. The sequences are all at the amino acid level with 35 positions long and they can
be downloaded from the Los Alamos repository at the address http://hiv-web.lanl.gov

Since the elements of 37 and 35 are unknown, the characteristic roots of these matrices are also
unknown and the distributions of the test statistics do not have a closed analytic form. In view of this,
we call upon resampling techniques, such as the bootstrap. Here is a summary of the procedure:

1. Compute the statistics T2 and T3 from the data set.

2. Sample 356 sequences for the B clade macrophage-tropic group, 140 sequences for B clade t-cell
adapted group and 151 for clade C group with replacement from the pooled sample, i.e., the
combined groups.

3. Recompute the test statistics T2 and T3 from this sample and store it.

4. Repeat steps 2 and 3 R times (R should be at least 1,000).

#T 08 > Tnoobs and #1355 > Tnzobs
R R '

The p-values for the tests are then

The results are

TNQObS =5.235 TN30bS =0.4173

For R = 10,000, the percentiles of the bootstrap distribution are given in Table 1.

Table 1: Percentiles of the Bootstrap Distribution

Statistic 1% 5% 95%  99%
Tno 1.275 1290 1.544 1.574
Tns 0.399 0.404 0.457 0.459

When comparing the three groups, the observed p-value for Ths is less than 1/10001 and for T is
0.7586. Therefore, we can say that relative to the within-clade variation, there is significant variability
between the three clades, but relative to the across-within-clade, there is no significant variability across-
between the three clades.

Since we found a significant variability among the three clades, we now need to compare the variability
of the groups two by two. Using the same procedure described above, we get:

For the comparison of B clade macrophage-tropic group and B clade t-cell adapted group,
Tnoobs = 5.7975 Tn3obs = 2.9928

For R = 20,000, the percentiles of the bootstrap distribution are given in Table 2.
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Table 2: Percentiles of the Bootstrap Distribution

Statistic 1% 5% 95% 99%
Thno 1.5524 1.5954 1.7682 1.8006
Tns 0.7929 0.8028 0.8463 0.8546

When comparing these two groups, the observed p-value for T2 and Tys are less than 1/20001.
Therefore, we can say that relative to the within-clade variation, there is significant variability between
the B clade macrophage-tropic group and the B clade t-cell adapted group and relative to the across-
within-clade, there is significant variability across-between the two clades.

For the comparison of B clade macrophage-tropic group and clade C group,
Tnoobs = 4.6724 Tnsobs = 2.3057

For R = 20,000, the percentiles of the bootstrap distribution are given in Table 3.

Table 3: Percentiles of the Bootstrap Distribution

Statistic 1% 5% 95% 99%
Tna 14181 14331 1.4989 1.5130
Tns 0.8964 0.9075 0.9579 0.9682

When comparing these two groups, the observed p-value for Ty and for T3 are less than 1/20001.
Therefore, we can say that relative to the within-clade variation, there is significant variability between
the B clade macrophage-tropic group and the clade C group. Also, relative to the across-within-clade,
there is significant variability across-between the two clades.

Comparing B clade t-cell adapted group and clade C group,
Tnoobs = 5.0621 Tnsobs = 1.1312

For R = 20,000, the percentiles of the bootstrap distribution are given in Table 4.

Table 4: Percentiles of the Bootstrap Distribution

Statistic 1% 5% 95% 99%
Tno 3.2125 3.4611 4.9459 5.3518
Tns 2.0066 2.1183 2.6653 2.7810

When comparing these two groups, the observed p-value for T4 is 0.0335 and for Ty is 1. Therefore,
we can say that relative to the within-clade variation, there is significant variability between the B clade
t-cell adapted group and the clade C group, but relative to the across-within-clade, there is no significant

variability across-between the two clades.
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