Sub-Riemannian Geodesics on Lie Groups

Odinette Renée ABIB

Abstract

We investigate the space of abnormal extremals of nonlinear deterministic control systems which are linear in the controls. Our main results concern the abnormal curves for a class of systems whose state spaces are nilpotent Lie groups.

1. Introduction

Sub-Riemannian geometry is concerned with the study of a nonintegrable k-plane distribution D, endowed with a Riemannian metric, on an n-dimensional manifold M. The case $k=n$ corresponds to classical Riemannian geometry, and each geodesic is the projection of an integral curve of the Hamiltonian vector field associated with the metric. When $k<n$, a geodesic is still a locally minimizing curve for the length functional, but in this case it is well known that geodesics that are not the projection of Hamiltonian curves do exist [6]. These curves are called strictly abnormal geodesics, the other geodesic curves are called normals (see Sect. 2). These geometries arise among other places as the limits of Riemannian geometries.

A basic question is "are all sub-Riemannian geodesics smooth" ? Since normal extremals are automatically smooth [5], this is equivalent to the question "are all abnormal minimizers smooth ?". Hamenstät suggested the following idea to investigate this last question: try to associate to every abnormal curve c some smooth submanifold $M(c)$ of M containing c and such that c is normal as an integral curve for the restriction of D to $M(c)$ (the submanifold $M(c)$ is called a characteristic manifold for $c)$. In general, $M(c)$ does not always exist [6]. This question motivated our work.

As in classical geometry, in sub-Riemannian geometry the case of Lie groups is especially important and interesting (see Sections 3 and 4). If $M=G$ is a Lie group, it is natural to assume that both the distribution D and the metric are left invariant. In the case when G is a compact connected Lie group and D is the distribution orthogonal to its maximal torus, all sub-Riemannian geodesics are smooth [7]. In this paper, we study sub-Riemannian geodesics in nilpotent Lie groups.

The present paper has the following structure. In Section 2, the basic notations, definitions and examples are introduced. In Section 3, we introduce Carnot groups, flat distributions and Cartan system. A flat distribution is a local approximation of a sub-Riemannian structure at regular points. Carnot groups are to sub-Riemannian geometry as Euclidean geometry is to Riemannian geometry. In Section 4, we give examples of graded nilpotent Lie groups with
strictly abnormal geodesics, nilpotent Lie group G with left invariant distribution D and subgroup H whose geodesics, for the induced structure, are not geodesics in (G, D).

2. Definitions

A sub-Riemannian structure on an n-dimensional manifold M consists of a vector subbundle $D \subset T M$ of the tangent bundle of M together with a fiber inner product $\langle.,$.$\rangle on this subbundle. A curve \gamma$ is said to be horizontal (or a D curve) if its derivative $\dot{\gamma}(t)$ exists almost everywhere and lies in D when it exists. We measure the length $l(\gamma)$ of a horizontal curve as in Riemannian geometry:

$$
l(\gamma)=\int\|\dot{\gamma}(t)\| d t
$$

In this formula, $\|\dot{\gamma}(t)\|=\sqrt{\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle}$ is computed using the inner product on $D(\gamma(t))$ and the integral is taken over the domain of the curve. The subRiemannian distance $d(x, y)$ between two points x and y is taken over all horizontal paths which connect x and y. This distance is infinite if there is no path joining both points. A horizontal path is said to be a minimizer if it realizes the distance between its endpoints. A path $\gamma: I \subset \mathbb{R} \rightarrow M$ is said to be a geodesic if it is locally a minimizer.

The distribution $D \subset T M$ is bracket generating at p if it admits a local frame $\left(X_{i}\right)$ in a neighborhood of p for which the iterated Lie brackets $\left[X_{i}, X_{j}\right]$, $\left[X_{i},\left[X_{j}, X_{k}\right]\right] \ldots$, together with the X_{i} span the tangent space at every point of this neighborhood. Given two points in a sub-Riemannian manifold ($M, D,\langle.,$.$\rangle),$ are there any horizontal paths that join them? A corollary to a classical theorem of Chow asserts that, if D is bracket generating and M is connected, then any two points of M can be joined by a horizontal path. Is there a minimizer joining both points? If M is connected, bracket generating and complete relative to the sub-Riemannian distance function, then any two points of M can be joined by a minimizer.

Normal curves and geodesics equations The cotangent bundle $T^{*} M$ of M has a natural symplectic structure determined by the 2 -forms $\Omega=d \omega$, where ω is the 1 -form given by $\omega(x, \lambda)(v)=\left\langle\lambda, d \pi^{*}(v)\right\rangle$ for $v \in T_{(x, \lambda)}\left(T^{*} M\right)$. To each vector field X on M, we associate the function $H_{X}: T^{*} M \rightarrow \mathbb{R}$ given by $H_{X}(q, \lambda)=\langle\lambda, X(q)\rangle$ for $\lambda \in T_{q}^{*} M$. Then X is of class \mathcal{C}^{k} if and only if H_{X} is \mathcal{C}^{k}. We use \vec{H}_{X} to denote the Hamilton vector field associated to H_{X} (by definition, \vec{H}_{X} is the vector field on $T^{*} M$ such that $\Omega\left(Y, \vec{H}_{X}\right)=d H_{X}(Y)$ for every vector field Y on $T^{*} M$ [2]).

Let $(M, D,\langle.,\rangle$.$) be a sub-Riemannian manifold. If (p, \lambda) \in T^{*} M$, then the restriction $\left.\lambda\right|_{D(p)}$ of λ to the subspace $D(p)$ of $T_{p} M$ has a well defined norm, since $D(p)$ is an inner product space. We will use $\|\lambda\|$ to denote this norm. The function $H: T^{*} M \rightarrow \mathbb{R}$ given by $H(\lambda, p)=-\|\lambda\|^{2} / 2$ is the Hamiltonian of the sub-Riemannain structure $(D,\langle.,\rangle$.$) . The Hamiltonian H$ is a smooth function on $T^{*} M$. Indeed, if $\left\{X_{i}\right\}_{1 \leq i \leq k}$ is a local orthonormal frame for the distribution
D (here, k is the rank of D), then

$$
H(x, \lambda)=-\frac{1}{2} \sum_{i=1}^{k} H_{X_{i}}^{2}(x, \lambda)
$$

The flow induced by H on $T^{*} M$ is called the sub-Riemannian geodesic flow. Let $\xi(t)=(\gamma(t), p(t))$ be a solution to Hamilton's equation on $T^{*} M$ for the sub-Riemannain Hamiltonian H. Then [5] every sufficiently short arc of γ is a sub-Riemannian minimizer. The projection γ is called a normal curve. Unlike the Riemannian situation, not every geodesic is normal [6]. There may exist "abnormal" geodesics unrelated to our Hamiltonian.

Abnormal curves An abnormal curve is a horizontal curve (i.e. a D-curve) which is the projection onto M of an absolutely continuous curve in the annihilator $D^{\perp} \subset T^{*} M$ of D, which does not intersect the zero section and whose derivative, whenever it exists, lies in the kernel of Ω restricted to D^{\perp}. The condition that a curve is abnormal depends only on the distribution and not at all on the inner product on the distribution. Contrarily to the normal curves, the abnormal ones need not be minimizing. If a curve is abnormal but not normal, we say that it is strictly abnormal.
Examples..

1) If $D=T M$, the abnormal curves are trivial.
2) If D is a contact distribution, the abnormal curves are trivial.
3) Heisenberg Group. Consider \mathbb{R}^{3} with the multiplication

$$
\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+x_{1} y_{2}-x_{2} y_{1}\right)
$$

The left invariant contact distribution D on \mathbb{R}^{3} is spanned by

$$
X=\frac{\partial}{\partial x}-y \frac{\partial}{\partial y}, \quad Y=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}
$$

A curve $\gamma(t)=(x(t), y(t), z(t))$ is horizontal if and only if $\dot{z}=y \dot{x}-x \dot{y}$ (constraint equation). D is bracket generating because $X, Y,[X, Y]$ are linearly independent at each point. It then follows from Chow's theorem that, given any two points p_{1}, p_{2}, there exists a finite concatenation of integral curves of X and Y that goes from p_{1} to p_{2}. We define a Riemannain metric $\langle.,$.$\rangle on D$ by declaring $\{X, Y\}$ to be an orthonormal basis of sections of D. The Hamiltonian H : $T^{*} \mathbb{R}^{3} \rightarrow \mathbb{R}$ is $H(p, \lambda)=-\frac{1}{2}\left(H_{X}^{2}(p, \lambda)+H_{Y}^{2}(p, \lambda)\right) ;$ then $H(x, y, z, \xi, \eta, \mu)=$ $-\frac{1}{2}\left((\xi-y \mu)^{2}+(\eta+x \mu)^{2}\right)$. The normal curves are projection of integral curves of \vec{H}. Let $\pi(x, y, z)=(x, y)$ be the projection. Given a sufficiently smooth curve $c(t)=(x(t), y(t))$ in the $x y$ plane, and a starting height z_{0}, there is a unique horizontal curve which starts at $p_{0}=\left(x(0), y(0), z_{0}\right)$ and projects onto $(x(t), y(t))$. It is called the horizontal lift of c passing through p_{0}. THe geodesics for the Heisenberg Group are exactly the horizontal lifts of arcs of circles and every minimizer is normal.
4) The Heisenberg Group is a principal bundle over the plane, with projection $(x, y, z) \mapsto(x, y)$ and the form $\alpha=d z-(y d x-x d y)$ is a connection for this
bundle. To generalize, replace the Heisenberg Group with a general principal bundle P over a Riemannian base, and put a connection on this principal bundle. The space P then inherits a sub-Riemannian structure. ITs geodesics, projected to the base, satisfy the non-Abelian Lorentz equations. In the spacial case when $P=G$ is a Lie group and the projection is that for a homogeneous space $G \rightarrow G / H$ then, with an additional assumption regarding the inner product, we can explicitly write down all the normal sub-Riemannian geodesics in Lie theoretical terms.

3. Carnot groups and nilpotentization

Let G be a connected simply connected nilpotent Lie group. Suppose that its Lie algebra g is graded:

$$
g=g_{1} \oplus g_{2} \oplus \cdots \oplus g_{r}, \quad\left[g_{i}, g_{j}\right] \subset g_{i+j}, \quad g_{s}=\{0\} \text { if } s>r
$$

and generated by its component of degree 1, i.e., $\operatorname{Lie}\left(g_{1}\right)=g$. Then $D=g_{1}$ can be considered as a nonintegrable left invariant distribution on the Lie group G. We say that the distribution D is flat. If D is equipped with a left invariant inner product in g_{1}, then $(D,\langle.,\rangle$.$) is called a flat sub-Riemannian distribution on G$.

A Lie group whose Lie algebra is graded nilpotent, endowed with an inner product on the space g_{1}, with the property that this subspace Lie-generates the whole Lie algebra, is called a Carnot group.
Examples.

1) Let g be the 3-dimensional Heisenberg algebra, i.e., the unique 3-dimensional 2-step nilpotent Lie algebra:

$$
\operatorname{dim} g=3, \quad \operatorname{dim}[g, g]=1, \quad \operatorname{dim}[g,[g, g]]=0
$$

Let G be the corresponding connected simply connected Lie group. A flat rank two distribution D on G is just any rank two nonintegrable left invariant distribution on G :

$$
D \subset g, \quad \operatorname{dim} D=2, \quad \operatorname{Lie}(D)=g
$$

To obtain a flat sub-Riemannian structure on G, one has to add any left invariant inner product $\langle.,$.$\rangle in D$. Choose an orthonormal frame:

$$
D=\operatorname{span}\left(u_{1}, u_{2}\right), \quad\left\langle u_{i}, u_{j}\right\rangle=\delta_{i, j}, \quad 1 \leq i, j \leq 2
$$

D is nonintegrable. Then $u_{3}=\left[u_{1}, u_{2}\right] \notin D$ and $g=\operatorname{span}\left(u_{1}, u_{2}, u_{3}\right),\left[u_{1}, u_{3}\right]=0$, $\left[u_{2}, u_{3}\right]=0, g=g_{1} \oplus g_{2}$ with $g_{1}=\operatorname{span}\left(u_{1}, u_{2}\right), g_{2}=\operatorname{span}\left(u_{3}\right)$. "Up to isomorphism there exists exactly one flat distribution on G, and the same is true for flat sub-Riemannian structures".
2) The Cartan case [4]. Let g be the 5-dimensional nilpotent 3-step Lie algebra with multiplication rules in some base $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$:

$$
\left[u_{1}, u_{2}\right]=u_{3}, \quad\left[u_{1}, u_{3}\right]=u_{4}, \quad\left[u_{2}, u_{3}\right]=u_{5}
$$

(all other brackets beeing equal to zero); $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right)$ is called a standard frame on g. The Lie algebra g is graded:

$$
g=g_{1} \oplus g_{2} \oplus g_{3}, \quad g_{1}=\operatorname{span}\left(u_{1}, u_{2}\right), \quad g_{2}=\operatorname{span}\left(u_{3}\right), \quad g_{3}=\operatorname{span}\left(u_{4}, u_{5}\right) .
$$

Denote by G the simply connected Lie group corresponding to g. Any flat distribution or flat sub-Riemannian structure of rank two on the Lie group G is isomorphic to the following ones defined via a standard frame in g :

$$
D=\operatorname{span}\left(u_{1}, u_{2}\right), \quad\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}, \quad 1 \leq i, j \leq 2 .
$$

Indeed, take an arbitrary flat sub-Riemannian structure $(D,\langle.,\rangle$.$) on the Lie group$ G corresponding to a graduation of g :

$$
\begin{aligned}
g=h_{1} \oplus h_{2} \oplus h_{3}, \quad D=h_{1}, & \operatorname{dim} h_{1}=2, \\
h_{2}=\left[h_{1}, h_{1}\right], & \operatorname{dim} h_{2}=1, \quad h_{3}=\left[h_{1}, h_{2}\right], \quad \operatorname{dim} h_{3}=2 .
\end{aligned}
$$

Choose any base of D such that $D=\operatorname{span}\left(u_{1}, u_{2}\right),\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}$. Then $u_{3}=$ [$\left.u_{1}, u_{2}\right]$ spans h_{2}, and the vectors $u_{4}=\left[u_{1}, u_{3}\right]$ and $u_{5}=\left[u_{1}, u_{2}\right]$ span h_{3}. Thus $\left\{u_{1}, u_{2}\right\}$ generates a standard frame in g. This proves the uniqueness of flat subRiemannian structures on G up to isomorphism.

Why flat distributions and Carnot groups are important in SR geometry? We are going to show how to associate a Carnot group of dimension n to a regular point q of a sub-Riemannian manifold M of dimension n. This Carnot group G_{q} will be called a nilpotentization of M at q [8]. For a distribution $D \subset T M$, its Lie flag is defined as follows:

$$
D=D^{1} \subset D^{2} \cdots \subset D^{j} \subset \ldots
$$

where $D^{2}=\left[D^{1}, D^{1}\right], \ldots D^{j+1}=\left[D, D^{j}\right]$ (here D also denotes the $\mathcal{C}^{\infty}(M)$-module of vector fields on M which are tangent to the distribution D). The growth vector of D at point q is the vector $\left(n_{1}, n_{2}, \ldots\right), n_{j}=\operatorname{dim} D^{j}(q)$. The distribution is said to be regular near q if the growth vector is constant in a neighborhood of q. Let $\langle.,$.$\rangle be a Riemannian metric on D$ and q a regular point. Write

$$
\operatorname{Gr}(D)_{q}=\underset{i=1}{\stackrel{r}{\oplus}} V_{i}(q), \quad V_{i}(q)=D^{i}(q) / D^{i-1}(q)
$$

so that $V_{1}(q)=D(q)$. This $\operatorname{Gr}(D)_{q}$ is a graded vector space whose total dimension is that of the manifold M. It inherits a Lie algebra structure from the Lie bracket of vector fields. $\operatorname{Gr}(D)_{q}$ becomes a graded nilpotent r-step (here, r is the smallest integer such that $\left.D^{r}(q)=T_{q} M\right)$. The corresponding simply connected Lie group G_{q} inherits a left invariant sub-Riemannian structure defined by taking the distribution to be $V_{1}=D(q) \subset T_{e} G_{q}$ with its given inner product and then left-translating this on G_{q}.

The nilpotentization at q has the same relationship to M as the euclidean tangent space of a Riemannian manifold has to that manifold. THis statement was made precise by Mitchell, who showed that G_{q} is isometric to the metric tangent cone to M.

Examples..

1) For a flat distribution $D \subset T G, D^{i}(q)=\underset{j=1}{\oplus} g^{j}(q)$ and the growth vector takes the form $\left(n_{1}, n_{2}, \ldots\right), n_{i}=\sum_{j=1}^{i} \operatorname{dim} g^{j}$.
2) For the Cartan case, the growth vector is $(2,3,5)$.
3) $G=\mathbb{R}^{5}$ endowed with the multiplication rule

$$
\begin{aligned}
& \left(x_{1}, y_{1}, z_{1}, u_{1}, v_{1}\right)\left(x_{2}, y_{2}, z_{2}, u_{2}, v_{2}\right) \\
= & \left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+x_{1} y_{2}, u_{1}+u_{2}+z_{1} y_{2}+x_{1} y_{2}^{2} / 2, v_{1}+v_{2}+2 x_{1} z_{2}+x_{1}^{2} y_{2}\right)
\end{aligned}
$$

becomes a nilpotent Lie group with the standard left invariant frame

$$
\begin{aligned}
X_{1}=\frac{\partial}{\partial x}, \quad X_{2}=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z} & +z \frac{\partial}{\partial u}+x^{2} \frac{\partial}{\partial v}, \\
& X_{3}=\left[X_{1}, X_{2}\right], \quad X_{4}=\left[X_{1}, X_{3}\right], \quad X_{5}=\left[X_{2}, X_{3}\right] .
\end{aligned}
$$

Set $D=\operatorname{span}\left(X_{1}, X_{2}\right),\left\langle X_{i}, X_{j}\right\rangle=\delta_{i j}$. The growth vector is $(2,3,5)$ and \mathbb{R}^{5} is a Carnot group.
Remark.. A Cartan distribution is a 2 -dimensional distribution on a 5-manifold with growth vector $(2,3,5)$ [4]. If we consider two solid bodies in \mathbb{R}^{3} that roll without slipping and twisting, the main questions are as follows: what motions of the bodies are realized and which of them are optimal in a certain sense? The geometric model for this problem is a Cartan distribution [3]. The authors of [3] construct a canonical nilpotent approximation (nilpotentization) and express extremals of the corresponding optimal control problem via elliptic functions. But the geometric model is not flat.
Problem.. When is a Cartan distribution D flat, i.e. isomorphic to a G_{q}, where q is a regular point of D ? In [1], I begin the analysis of this problem in terms of G-structures (Cartan's method of equivalence).

4. Minimizers on Lie groups

Consider now a Lie group G with left invariant distribution $D \subset T G$, $T G \cong G \times g$. We shall identify every left invariant distribution with a subspace of the Lie algebra g of G. More specifically, $D \cong G \times D_{e}$ and its annihilator is $D^{\perp} \cong G \times D_{e}^{\perp}$. The identifications are made through left translations, e denotes the identity element of G. We choose a left invariant frame $\left\{e_{1}, \ldots, e_{r}\right\}$ for D and complete it to a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of g. Let $\left(\theta_{1}, \ldots, \theta_{n}\right)$ be the dual coframe. We write the vector field in G as $\sum_{i} \gamma_{i} e_{i}$ where $\gamma_{1}, \ldots, \gamma_{n}$ are the coordinate functions on the fiber of $T G$. The structure constants $C_{i j}^{k}$ of g are defined by [$\left.e_{i}, e_{j}\right]=\sum_{k} C_{i j}^{k} e_{k}$ and $\left\{H_{e_{i}}, H_{e_{j}}\right\}=\sum_{k} C_{i j}^{k} H_{e_{k}}$ (Poisson brackets of functions on $\left.g^{*}\right)$.

The abnormal equations Let ω be the canonical 1-form on $T^{*} G$ and $\Omega=d \omega$. Let $\Gamma(t)=(x(t), \lambda(t)) \in T^{*} G-\{0\}$ where $\lambda(t)=\sum_{i=1}^{n} \lambda_{i}(t) \theta_{i} \in g^{*}, x^{\prime}(t)=$ $\sum_{i=1}^{r} \gamma_{i}(t) e_{i}(x(t)$ is a D-curve). $\quad x(t)$ is abnormal if and only if $\lambda(t) \neq 0$, $\lambda(t) \in D^{\perp}$ and $\Omega(\dot{\lambda}(t), \psi)=0$ for all $\psi \in T_{\lambda(t)} D^{\perp}$. We obtain the equations:

$$
(I)\left\{\begin{array}{l}
\lambda_{1}(t)=\cdots=\lambda_{r}(t)=0 \\
\sum_{j=1}^{r} \sum_{k=r+1}^{n} C_{i j}^{k} \gamma_{j}(t) \lambda_{k}(t)=0 \quad(i=1, \ldots, r) \\
\lambda_{i}^{\prime}(t)=-\sum_{j=1}^{r} \sum_{k=r+1}^{n} C_{i j}^{k} \gamma_{j}(t) \lambda_{k}(t), \quad(i=r+1, \ldots, n)
\end{array}\right.
$$

The normal equations Let $\left(e_{1}, \ldots, e_{r}, \ldots, e_{n}\right)$ be a basis of $g, D=\operatorname{span}\left(e_{1}, \ldots, e_{r}\right)$, $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}(1 \leq i, j \leq r), H=-\frac{1}{2} \sum_{i=1}^{r} H_{e_{i}}^{2}$ the SR-Hamiltonian. Let $x(t)$ be a D-curve, $x^{\prime}(t)=\sum_{i=1}^{r} \gamma_{i}(t) e_{i}$ and $\Gamma(t)=(x(t), h(t)) \in T^{*} G-\{0\}$ where $h(t)=\sum_{i=1}^{n} h_{i}(t) \theta_{i}$. A normal curve is the projection onto G of a solution of the Hamiltonian system in $T^{*} G$ with Hamiltinian H (here $h_{i}=H_{e_{i}}$). We can write the Hamiltonian system

$$
(I I)\left\{\begin{array}{rlr}
\gamma_{i}(t) & =-h_{i}(t) & (i=1, \ldots, r), \\
h_{i}^{\prime}(t) & =-\sum_{j=1}^{r} \sum_{k=1}^{n} C_{i j}^{k} h_{j} h_{k} & \\
(i=1, \ldots, n) .
\end{array}\right.
$$

Some results..

1) From (I) and ($I I$), we obtain the following results.
a) Take the Engel algebra $g=\operatorname{span}\left(e_{1}, e_{2}, e_{3}, e_{4}\right), D=\left(e_{1}, e_{2}\right)$ with $\left[e_{1}, e_{2}\right]=e_{3}$, $\left[e_{1}, e_{3}\right]=e_{4}$. Then the only abnormal curves are tangent to e_{2}. They are also normal.
b) Let $g=\operatorname{span}\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right)$ with the following relations:

$$
\begin{array}{lll}
{\left[e_{1}, e_{2}\right]=e_{3},} & {\left[e_{1}, e_{3}\right]=e_{4},} & {\left[e_{2}, e_{3}\right]=e_{5},} \\
& {\left[e_{1}, e_{4}\right]=e_{6},} & {\left[e_{1}, e_{5}\right]=e_{7}, \quad\left[e_{2}, e_{4}\right]=e_{7}, \quad\left[e_{2}, e_{5}\right]=e_{8}}
\end{array}
$$

g is nilpotent 4 -step and D is flat (the Lie group of g is a Carnot group). Any curve obtained by integrating $x^{\prime}(t)=-\sin t e_{1}+\cos t e_{2}$ is not left invariant, but $x(t)$ is both normal and abnormal.
2) Consider now $(G, D,\langle.,\rangle$.$) as a sub-Riemannian manifold, where G$ is a Lie group and D (resp. $\langle.,$.$\rangle) a left invariant distribution (resp. metric). For every$ Lie subgroup H of G, let $D_{H}=D \cap T H$ and let $\langle., .\rangle_{H}$ be the restriction of $\langle.,$. to D_{H}. Let c be an abnormal path in $(G, D,\langle.,\rangle$.$) . If c \subset H$ is a geodesic in G which is not an abnormal path of $\left(H, D_{H},\langle.,\rangle.\right), c$ is normal in $\left(H, D_{H},\langle., .\rangle_{H}\right)$.

Lemma Let H be a Lie subgroup of G having the following properties: for each point $p \in H$, there exists locally
(i) a distribution $D_{1} \subset D$ such that $\left.D_{1}\right|_{H}=D_{H}$,
(ii) a distribution D_{2} containing the orthogonal of D_{1} in D and transvers to H (i.e. $T G=T H \oplus D_{2}$ along H),
(iii) an orthonormal basis X_{1}, \ldots, X_{r} of D_{1} and a basis Y_{1}, \ldots, Y_{s} of D_{2} such that each $\left[X_{i}, Y_{j}\right]$ is tangent to D_{2} along c.
Then each normal curve of $\left(H, D_{H},\langle., .\rangle_{H}\right)$ is normal for $(G, D,\langle.,\rangle$.$) . In particu-$ lar, a geodesic c of G having H as characteristic group is normal in G.

Theorem Let G be a 2 -step nilpotent Lie group and D a subspace of g which is supplementary to the center $z(g)$. Let H be a Lie subgroup of G and h its Lie algebra. Suppose hat H has the following property: for all $X \in D_{H}=h \cap D$ and for all Y in the orthogonal of $D_{H},[X, Y]$ is orthogonal to h. Then each normal geodesic of $\left(H, D_{H},\langle., .\rangle_{H}\right)$ is a normal geodesic of $(G, D,\langle.,\rangle$.$) .$

Proof. Let D^{0} be the orthogonal of D in g. We suppose that $\langle.,$.$\rangle is such$ that $D^{0}=z(g)$. Set $D_{1}=(h+D)^{0}$ and $D_{2}=D_{H}^{0}+D_{1}$. Then $[X, Y] \in h^{0} \cap z(g)$. The distributions D_{1} and D_{2} satisfy the hypothesis of the Lemma.
3) On \mathbb{R}^{6}, consider the vector fields

$$
X_{1}=\frac{\partial}{\partial x_{1}}, \quad X_{2}=\frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{5}}, \quad X_{3}=\frac{\partial}{\partial x_{3}}+x_{1} \frac{\partial}{\partial x_{6}}, \quad X_{4}=\frac{\partial}{\partial x_{4}}+x_{2} \frac{\partial}{\partial x_{5}} .
$$

Let $X_{5}=\left[X_{1}, X_{2}\right], X_{6}=\left[X_{1}, X_{3}\right]$ and $g=\operatorname{span}\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right) ; g$ is a 2 -step nilpotent Lie algebra. Consider the left invariant distribution $D=$ $\operatorname{span}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$. Endow this distribution with the metric such that $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is orthonormal. The fields X_{1}, X_{2}, X_{5} define a Lie subalgebra h whose Lie subgroup H is isomorphic to the Heisenberg group. In the subgroup H, we consider the induced structure $\left(H, D_{H},\langle., .\rangle_{H}\right)$. From Equations (I) and (II), the normal geodesics in H are not geodesics in $(G, D,\langle.,\rangle$.$) .$
4) We give an example of a strictly abnormal curve in the Carnot group which is contained in no proper subgroup. Let $g=\operatorname{span}\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right)$ be defined by the relations

$$
\left[e_{1}, e_{2}\right]=e_{3}, \quad\left[e_{1}, e_{3}\right]=e_{4}, \quad\left[e_{2}, e_{3}\right]=e_{5}, \quad\left[e_{1}, e_{4}\right]=e_{6}
$$

Let $D=\operatorname{span}\left(e_{1}, e_{2}\right)$. D is flat. Let G be the Lie group associated with $g . G$ is a Carnot group. We equip D with the metric that makes the frame $\left(e_{1}, e_{2}\right)$ orthonormal. We are looking for an abnormal curve, say $x(t)=\left(x_{1}(t), \ldots, x_{6}(t)\right)$ which cannot be normal for (G, D). Let $x^{\prime}(t)=\gamma_{1}(t) e_{1}+\gamma_{2}(t) e_{2}$. The abnormal equations (I) are

$$
(I)\left\{\begin{array}{l}
\gamma_{2} \lambda_{3}=0, \quad-\gamma_{1} \lambda_{3}=0, \quad \lambda_{3}^{\prime}-\gamma_{1} \lambda_{4}-\gamma_{2} \lambda_{5}=0 \\
\lambda_{4}^{\prime}-\gamma_{1} \lambda_{6}=0, \quad \lambda_{5}^{\prime}=\lambda_{6}^{\prime}=0=\lambda_{1}=\lambda_{2}
\end{array}\right.
$$

Here $\lambda_{3}=0$. We shall assume that $x(t)$ is parametrized by arc length, i.e. $\gamma_{1}^{2}+\gamma_{2}^{2}=1$. We look for a solution $x(t)$ with λ_{5} and λ_{6} nonzero. From

$$
\gamma_{1}=\frac{\lambda_{4}^{\prime}}{\lambda_{6}}, \quad \gamma_{2}=\gamma_{1} \frac{\lambda_{4}}{\lambda_{5}}=-\frac{\lambda_{4} \lambda_{4}^{\prime}}{\lambda_{5} \lambda_{6}} \text { and } \gamma_{1}^{2}+\gamma_{2}^{2}=1
$$

we get

$$
\begin{equation*}
\left(\lambda_{4}^{\prime}\right)^{2}\left(\lambda_{4}^{2}+\lambda_{5}^{2}\right)=\lambda_{5}^{2} \lambda_{6}^{2} . \tag{1}
\end{equation*}
$$

Proposition Let λ_{4} be a solution of (1) with λ_{5} and λ_{6} nonzero. Then any solution to $x^{\prime}(t)=\gamma_{1}(t) e_{1}+\gamma_{2}(t) e_{2}$ with $x(0)=0$, where γ_{1}, γ_{2} satisfy $\gamma_{1}=\frac{\lambda_{4}^{\prime}}{\lambda_{6}}$, $\gamma_{2}=-\frac{\lambda_{4} \lambda_{4}^{\prime}}{\lambda_{5} \lambda_{6}}$, is a strictly abnormal minimizer. Such a curve cannot be normal in any subgroup of G.

In this example, the normal equations are
(II) $\gamma_{1}^{\prime}+\gamma_{2} h_{3}=0, \gamma_{2}^{\prime}-\gamma_{1} h_{3}=0, h_{3}^{\prime}-\gamma_{1} h_{4}-\gamma_{2} h_{5}=0, h_{4}^{\prime}-\gamma_{1} h_{6}=0, h_{5}^{\prime}=h_{6}^{\prime}=0$.

Let $x(t)$ be an abnormal curve which is also normal, parametrized by arc length, $x(t)=\gamma_{1}(t) e_{1}+\gamma_{2}(t) e_{2} \in D$. If $\lambda_{5}, \lambda_{6} \neq 0$ we get a contradiction $\left(\lambda_{4}^{\prime}=0\right)$. Then $\lambda_{5}=0$ or $\lambda_{6}=0$. From Equation (1), λ_{4}^{\prime} must be also zero and therefore λ_{4} is constant. This gives the linear equation $\gamma_{1} \lambda_{4}+\gamma_{2} \lambda_{5}=0$ (with λ_{4}, λ_{5} being constant). But $\lambda_{4} \neq 0$ and $\gamma_{1}^{2}+\gamma_{2}^{2}=1$ implies that γ_{1} and γ_{2} are constant. Then $x(t)$ is a left invariant curve.

References

[1] Abib, O. R., Cartan Systems, In preparation.
[2] Abraham, R., and Marsden, J. E., "Foundations of Mechanics", Benjamin/Cummings (1978).
[3] Agrachev, A., and Sachkov, Y., An intrinsic approach to the control of rolling bodies, ISAS (Trieste), preprint (1999).
[4] Cartan, É., "Les Systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre", Ann. Sci. École Normale 27 (1910), 109-192.
[5] Hamenstät, U., Some regularity theorems for Carnot-Carathéodory metrics, J. Diff. Geometry, 32 (1990), 819-850.
[6] Liu, W. and Sussmann, H., "Shortest paths for sub-Riemannian metrics on rank two distributions", Mem. Am. Math. Soc. Vol. 564, Number 118, Providence, R.I (1995).
[7] Montgomery, R., Singular extremals on Lie groups, Math. Controls, Signals and Systems, 7(3) (1994), 217-234.
[8] Vershik, A. M., and Gershkovich, V., Nonholonomic dynamical systems, geometry of distributions and variational problems, in Encycl. Mathematical Sciences, Vol. 16, "Dynamical Sytems VII", Springer Verlag (1994), 1-81.

Odinette Renée Abib
UMR - CNRS 6085
Laboratoire Raphaël Salem
Université de Rouen
Faculté des Sciences
F76 821 Mont Saint Aignan Cedex, France
e-mail: Renee.Abib@univ-rouen.fr

