Sub—Riemannian Geodesics on Lie Groups

Odinette Renée ABIB

Abstract. = We investigate the space of abnormal extremals of nonlinear de-
terministic control systems which are linear in the controls. Our main results
concern the abnormal curves for a class of systems whose state spaces are nilpo-
tent Lie groups.

1. Introduction

Sub-Riemannian geometry is concerned with the study of a nonintegrable
k—plane distribution D, endowed with a Riemannian metric, on an n—dimensional
manifold M. The case k = n corresponds to classical Riemannian geometry, and
each geodesic is the projection of an integral curve of the Hamiltonian vector field
associated with the metric. When k£ < n, a geodesic is still a locally minimizing
curve for the length functional, but in this case it is well known that geodesics
that are not the projection of Hamiltonian curves do exist [6]. These curves are
called strictly abnormal geodesics, the other geodesic curves are called normals (see
Sect. 2). These geometries arise among other places as the limits of Riemannian
geometries.

A basic question is “are all sub-Riemannian geodesics smooth” 7 Since
normal extremals are automatically smooth [5], this is equivalent to the question
“are all abnormal minimizers smooth ?”. Hamenstat suggested the following idea
to investigate this last question: try to associate to every abnormal curve ¢ some
smooth submanifold M(c) of M containing ¢ and such that ¢ is normal as an
integral curve for the restriction of D to M(c) (the submanifold M (c) is called
a characteristic manifold for ¢). In general, M(c) does not always exist [6]. This
question motivated our work.

As in classical geometry, in sub—Riemannian geometry the case of Lie groups
is especially important and interesting (see Sections 3 and 4). If M = G is a Lie
group, it is natural to assume that both the distribution D and the metric are
left invariant. In the case when G is a compact connected Lie group and D is
the distribution orthogonal to its maximal torus, all sub-Riemannian geodesics
are smooth [7]. In this paper, we study sub-Riemannian geodesics in nilpotent Lie
groups.

The present paper has the following structure. In Section 2, the basic
notations, definitions and examples are introduced. In Section 3, we introduce
Carnot groups, flat distributions and Cartan system. A flat distribution is a
local approximation of a sub-Riemannian structure at regular points. Carnot
groups are to sub-Riemannian geometry as Euclidean geometry is to Riemannian
geometry. In Section 4, we give examples of graded nilpotent Lie groups with
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strictly abnormal geodesics, nilpotent Lie group G with left invariant distribution
D and subgroup H whose geodesics, for the induced structure, are not geodesics
in (G,D).

2. Definitions

A sub—-Riemannian structure on an n—dimensional manifold M consists of
a vector subbundle D C T'M of the tangent bundle of M together with a fiber
inner product (.,.) on this subbundle. A curve 7 is said to be horizontal (or a D—
curve) if its derivative 4(t) exists almost everywhere and lies in D when it exists.
We measure the length [(7) of a horizontal curve as in Riemannian geometry:

10) = [ 1ol de

In this formula, ||§(¢)|] = /(¥(t),%(t)) is computed using the inner product
on D(y(t)) and the integral is taken over the domain of the curve. The sub-

Riemannian distance d(z,y) between two points x and y is taken over all hori-
zontal paths which connect = and y. This distance is infinite if there is no path
joining both points. A horizontal path is said to be a minimizer if it realizes the
distance between its endpoints. A path v: I C R — M is said to be a geodesic if
it is locally a minimizer.

The distribution D C TM is bracket generating at p if it admits a local
frame (X;) in a neighborhood of p for which the iterated Lie brackets [X;, X],
(X, [ X, Xi]] ..., together with the X; span the tangent space at every point of
this neighborhood. Given two points in a sub-Riemannian manifold (M, D, (.,.)),
are there any horizontal paths that join them? A corollary to a classical theorem
of Chow asserts that, if D is bracket generating and M is connected, then any
two points of M can be joined by a horizontal path. Is there a minimizer joining
both points? If M is connected, bracket generating and complete relative to the
sub—Riemannian distance function, then any two points of M can be joined by a
minimizer.

Normal curves and geodesics equations The cotangent bundle 7*M of M
has a natural symplectic structure determined by the 2—forms 2 = dw, where
w is the 1-form given by w(x,A)(v) = (A dr*(v)) for v € Tz (T*M). To
each vector field X on M, we associate the function Hy : T*M — R given
by Hx(q,A) = (X, X(q)) for A € TyM. Then X is of class C* if and only if
Hy is C¥. We use ﬁX to denote the Hamilton vector field associated to Hx (by
definition, Hy is the vector field on T*M such that Q(Y,Hy) = dHx(Y) for
every vector field Y on T*M [2]).

Let (M,D,(.,.)) be a sub-Riemannian manifold. If (p,\) € T*M, then

the restriction )\‘ of A to the subspace D(p) of T,M has a well defined norm,
D(p

)
since D(p) is an inner product space. We will use ||[A|| to denote this norm. The

function H : T*M — R given by H(\,p) = — ||A||* /2 is the Hamiltonian of the
sub—Riemannain structure (D, (.,.)). The Hamiltonian H is a smooth function
on T"M. Indeed, if {X;}, ;. is a local orthonormal frame for the distribution
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D (here, k is the rank of D), then

H(z,\) = —% > Hi (M)

1=1

The flow induced by H on T*M is called the sub-Riemannian geodesic flow.
Let &(t) = (y(¢),p(t)) be a solution to Hamilton’s equation on T*M for the
sub-Riemannain Hamiltonian H. Then [5] every sufficiently short arc of 7 is a
sub—Riemannian minimizer. The projection « is called a normal curve. Unlike
the Riemannian situation, not every geodesic is normal [6]. There may exist
“abnormal” geodesics unrelated to our Hamiltonian.

Abnormal curves An abnormal curve is a horizontal curve (i.e. a D-curve)
which is the projection onto M of an absolutely continuous curve in the annihilator
D+ CT*M of D, which does not intersect the zero section and whose derivative,
whenever it exists, lies in the kernel of € restricted to D+. The condition that
a curve is abnormal depends only on the distribution and not at all on the inner
product on the distribution. Contrarily to the normal curves, the abnormal ones
need not be minimizing. If a curve is abnormal but not normal, we say that it is
strictly abnormal.

Ezamples..

1) If D =TM, the abnormal curves are trivial.

2) If D is a contact distribution, the abnormal curves are trivial.

3) Heisenberg Group. Consider R* with the multiplication

(21,11, 21) (T2, Yo, 22) = (21 + @2, y1 + Yo, 21 + 22 + T1Y2 — T2l).

The left invariant contact distribution D on R® is spanned by

00 00
- Ox oy’ oy 0z

A curve y(t) = (z(t), y(t), z(t)) is horizontal if and only if 2 = y& — zy (constraint
equation). D is bracket generating because X,Y,[X, Y] are linearly independent
at each point. It then follows from Chow’s theorem that, given any two points
p1, P2, there exists a finite concatenation of integral curves of X and Y that
goes from p; to ps. We define a Riemannain metric (.,.) on D by declaring
{X,Y} to be an orthonormal basis of sections of D. The Hamiltonian H :

1
T*R3 — R is H(pa)‘) = _5 (Hgf(pa)‘)_i-H)Z’(p))‘))J then H(l‘ayazaganaﬂ) =

1
~3 (€ —yu)*> + (n+ xp)?). The normal curves are projection of integral curves

of H. Let m(z,y,2z) = (x,y) be the projection. Given a sufficiently smooth
curve ¢(t) = (z(t),y(t)) in the zy plane, and a starting height z;, there is a
unique horizontal curve which starts at py = (2(0),4(0), zp) and projects onto
(x(t),y(t)). It is called the horizontal lift of ¢ passing through p,. THe geodesics
for the Heisenberg Group are exactly the horizontal lifts of arcs of circles and every
minimizer is normal.

4) The Heisenberg Group is a principal bundle over the plane, with projection
(x,y,2) — (z,y) and the form « = dz — (ydx — xdy) is a connection for this
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bundle. To generalize, replace the Heisenberg Group with a general principal
bundle P over a Riemannian base, and put a connection on this principal bundle.
The space P then inherits a sub-Riemannian structure. ITs geodesics, projected
to the base, satisfy the non—Abelian Lorentz equations. In the spacial case when
P = G is a Lie group and the projection is that for a homogeneous space G — G/H
then, with an additional assumption regarding the inner product, we can explicitly
write down all the normal sub—Riemannian geodesics in Lie theoretical terms.

3. Carnot groups and nilpotentization

Let G be a connected simply connected nilpotent Lie group. Suppose that
its Lie algebra ¢ is graded:

I=0DPG® DG, 09 C girj» 9s=10}if s>,

and generated by its component of degree 1, i.e., Lie(g;) = g. Then D = g; can

be considered as a nonintegrable left invariant distribution on the Lie group G'.

We say that the distribution D is flat. If D is equipped with a left invariant inner

product in g1, then (D, (.,.)) is called a flat sub—Riemannian distribution on G.
A Lie group whose Lie algebra is graded nilpotent, endowed with an inner

product on the space g;, with the property that this subspace Lie—generates the

whole Lie algebra, is called a Carnot group.

Ezamples.

1) Let g be the 3-dimensional Heisenberg algebra, i.e., the unique 3-dimensional

2-step nilpotent Lie algebra:

dimg =3, dim[g,¢9] =1, dim|g,|g,¢]]=0.

Let G be the corresponding connected simply connected Lie group. A flat rank two

distribution D on G is just any rank two nonintegrable left invariant distribution
on G:
Dcyg, dimD =2, Lie(D)=ygy.

To obtain a flat sub-Riemannian structure on G, one has to add any left invariant
inner product (.,.) in D. Choose an orthonormal frame:

D = span(uy, uz), (uj,uj) =6, 1<1,57<2.

D is nonintegrable. Then ug = [uy, us] € D and g = span(uy, us, u3), [uy,us] =0,
[ug,us] = 0, g = g1 ® go with g1 = span(uy,uz), g = span(uz). “Up to
isomorphism there exists exactly one flat distribution on G, and the same is true
for flat sub—Riemannian structures”.

2) The Cartan case [4]. Let g be the 5-dimensional nilpotent 3—step Lie algebra
with multiplication rules in some base (uy,us, us, uy, us):

[ula u?] = Uus, [ula U/3:| = Uy, [u27 U3] = Us

(all other brackets beeing equal to zero); (uq,us, us,us, us) is called a standard
frame on ¢g. The Lie algebra ¢ is graded:

9=91D g Dys, ¢1=-span(ui,uz), ¢go=span(us), gz = span(us,us).
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Denote by G the simply connected Lie group corresponding to ¢g. Any flat
distribution or flat sub-Riemannian structure of rank two on the Lie group G
is isomorphic to the following ones defined via a standard frame in g:

D = span(uy, ug), (uj,u;) =0, 1<i4,57<2.

Indeed, take an arbitrary flat sub-Riemannian structure (D, (.,.)) on the Lie group
G corresponding to a graduation of g:

g:hl@h2®h3, D:hl, d1mh1:2,
hg = [hl, hl], dim hg = ]., h3 = [hl, hg], dim hg = 2.

Choose any base of D such that D = span(uj,ug), (u;,u;) = 6. Then uz =
[u1, ug] spans hs, and the vectors uy = [uy,us] and us = [uy, us] span hz. Thus
{uy,us} generates a standard frame in g. This proves the uniqueness of flat sub—
Riemannian structures on G up to isomorphism.

Why flat distributions and Carnot groups are important in SR geometry?
We are going to show how to associate a Carnot group of dimension n to a regular
point ¢ of a sub-Riemannian manifold M of dimension n. This Carnot group G|
will be called a nilpotentization of M at q [8]. For a distribution D C T M, its
Lie flag is defined as follows:

D=D'cD?..cDic...

where D? = [D', D'|,... D! = [D, D’] (here D also denotes the C*°(M)-module
of vector fields on M which are tangent to the distribution D). The growth vector
of D at point ¢ is the vector (ni,ns,...), n; = dim D?(q). The distribution is
said to be reqular near ¢ if the growth vector is constant in a neighborhood of ¢.
Let (.,.) be a Riemannian metric on D and ¢ a regular point. Write

Gr(D), = & Vi(g), Vilg) = D'(q)/D" '(q),

so that V1(¢) = D(q). This Gr(D), is a graded vector space whose total dimension
is that of the manifold M. It inherits a Lie algebra structure from the Lie
bracket of vector fields. Gr(D), becomes a graded nilpotent r—step (here, r is the
smallest integer such that D"(q) = T,M ). The corresponding simply connected
Lie group G|, inherits a left invariant sub-Riemannian structure defined by taking
the distribution to be V; = D(q) C T.G, with its given inner product and then
left-translating this on G| .

The nilpotentization at ¢ has the same relationship to M as the euclidean
tangent space of a Riemannian manifold has to that manifold. THis statement was
made precise by Mitchell, who showed that G is isometric to the metric tangent
cone to M.

Ezamples..

1) For a flat distribution D C TG, D'(q) = _EzBl ¢’(q) and the growth vector takes
j=

the form (ny,ng,...), n; = Z;Zl dim ¢ .

2) For the Cartan case, the growth vector is (2,3,5).
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3) G = R® endowed with the multiplication rule

($1, Y1, 21, U1, Ul)(372; Y2, 22, U2, Uz)

= (@14 T2, Y1 + Y2, 21 + 22 + T1Ya, us + Uz + 21Y2 + T1Y35 /2, v1 + 02 + 22125 + T3 Y2)
becomes a nilpotent Lie group with the standard left invariant frame

9 X —2+x2+z2+x22
ox’ 27 oy 0z ou ov’

X3 - [X17X2]7 X4 - [X17X3]7 X5 - [X27X3]-

X1:

Set D = span(Xy, Xs), (Xi, X;) = ;. The growth vector is (2,3,5) and R® is a
Carnot group.

Remark.. A Cartan distribution is a 2-dimensional distribution on a 5-manifold
with growth vector (2,3,5) [4]. If we consider two solid bodies in R® that roll
without slipping and twisting, the main questions are as follows: what motions
of the bodies are realized and which of them are optimal in a certain sense?” The
geometric model for this problem is a Cartan distribution [3]. The authors of
[3] construct a canonical nilpotent approximation (nilpotentization) and express
extremals of the corresponding optimal control problem wvia elliptic functions. But
the geometric model is not flat.

Problem.. When is a Cartan distribution D flat, i.e. isomorphic to a G, where
q is a regular point of D? In [1], I begin the analysis of this problem in terms of
G -structures (Cartan’s method of equivalence).

4. Minimizers on Lie groups

Consider now a Lie group G with left invariant distribution D C TG,
TG = G x g. We shall identify every left invariant distribution with a subspace
of the Lie algebra g of G. More specifically, D = G x D, and its annihilator is
D+ = G x D}. The identifications are made through left translations, e denotes
the identity element of G'. We choose a left invariant frame {ey,...,e,} for D
and complete it to a basis {ej,...,e,} of g. Let (0y,...,6,) be the dual coframe.
We write the vector field in G as ). v;e; where 7,...,7, are the coordinate
functions on the fiber of T'GG. The structure constants ij of g are defined by
les, €] = >, Chey and {H,,, He, } =, CEH.,, (Poisson brackets of functions on
g*)-

The abnormal equations Let w be the canonical 1-form on 7*G and €2 = dw.
Let T'(t) = (x(t),\(t)) € T*G — {0} where A(t) = >0 N(t)0; € g%, 2'(t) =
S vi(t)er (x(t) is a D-curve). x(t) is abnormal if and only if A(¢) # 0,
A(t) € D' and Q(A(t),1) = 0 for all ¢ € Ty D*. We obtain the equations:

M) == A(t) =0
(1) q 2jmt D= Gy OM(H) =0 (i=1,...,7)
)‘;(t) = Z;:I ZZ:H—I Czkj’yJ'(t))‘k(t)v (Z =r+1..., n)
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The normal equations Let (ey,...,e,,...,¢e,) beabasisof g, D = span(ey,...,e,),
1

(e ey =0 1<4,j<r), H= 5 >.i_, H? the SR-Hamiltonian. Let z(t) be

a D-curve, 2'(t) = > 7i(t)e; and T'(t) = (x(¢),h(t)) € T*G — {0} where

h(t) = >, hi(t)0;. A normal curve is the projection onto G of a solution of the

Hamiltonian system in 7*G with Hamiltinian H (here h; = H,,). We can write
the Hamiltonian system

i(t) =—hi(t) (i=1,...,7),
(”){zgw S Y Chghe (= 1m)

Some results..

1) From (I) and (II), we obtain the following results.

a) Take the Engel algebra g = span(eq, es, e3,e4), D = (e1,e2) with [e1, e5] = e,
le1,e3] = eq. Then the only abnormal curves are tangent to e,. They are also
normal.

b) Let g = span(ey, €9, €3, €4, €5, €4, €7, €g) with the following relations:

[er,e0] = €3, e, e3] = e, [ez, €3] = €5,

[61,64] = €g, [61,65] = €y, [62764] = €7, [62, 65] = €g.

g is nilpotent 4-step and D is flat (the Lie group of ¢ is a Carnot group). Any
curve obtained by integrating z'(t) = — sinte; + costey is not left invariant, but
x(t) is both normal and abnormal.

2) Consider now (G, D,(.,.)) as a sub-Riemannian manifold, where G is a Lie
group and D (resp. (.,.)) a left invariant distribution (resp. metric). For every
Lie subgroup H of G, let Dy = DNTH and let (.,.),, be the restriction of (., .)
to Dy . Let ¢ be an abnormal path in (G, D, (.,.)). If ¢ C H is a geodesic in G
which is not an abnormal path of (H, Dy, (.,.)), ¢ is normal in (H, Dy, (.,.)y)-

Lemma Let H be a Lie subgroup of G having the following properties: for each
point p € H, there exists locally

(1) a distribution Dy C D such that Dl‘ = Dy,
H
(i1) a distribution Dy containing the orthogonal of D; in D and transvers to H

(i.e. TG =TH & D, along H),

(77i) an orthonormal basis Xi,..., X, of D; and a basis Yi,...,Y; of D, such
that each [X;, Y]] is tangent to D, along c.

Then each normal curve of (H, Dy, (.,.),;) is normal for (G, D, (.,.)). In particu-
lar, a geodesic ¢ of G' having H as characteristic group is normal in G'.

Theorem Let G be a 2-step nilpotent Lie group and D a subspace of g which
is supplementary to the center z(g). Let H be a Lie subgroup of G' and h its Lie
algebra. Suppose hat H has the following property: for all X € Dy = hN D and
for all Y in the orthogonal of Dy, [X,Y] is orthogonal to h. Then each normal
geodesic of (H, Dy, (.,.);;) is a normal geodesic of (G, D, (.,.)).

Proof. Let D° be the orthogonal of D in g. We suppose that (.,.) is such
that D% = 2(g). Set D; = (h+D)? and Dy = D% + D;. Then [X,Y] € h°Nz(g).
The distributions D, and D, satisfy the hypothesis of the Lemma. ]
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3) On R®, consider the vector fields

0 0 0 0 0 0 0
M e T o T N T o T o T by T 00y

Let X5 = [X1,Xp], Xo = [X1,X3] and g = span(Xy, Xp, X3, Xy, X5, X¢); ¢
is a 2-step nilpotent Lie algebra. Consider the left invariant distribution D =
span(Xi, X, X3, Xy). Endow this distribution with the metric such that (X7, Xs, X3, X})
is orthonormal. The fields X, Xy, X5 define a Lie subalgebra h whose Lie sub-
group H is isomorphic to the Heisenberg group. In the subgroup H, we consider
the induced structure (H, Dy, (.,.)y). From Equations (/) and (II), the normal
geodesics in H are not geodesics in (G, D, (.,.)).
4) We give an example of a strictly abnormal curve in the Carnot group which is
contained in no proper subgroup. Let g = span(eq, ez, €3, €4, €5, €5) be defined by
the relations

[61,62] = e3, [61,63] = €4, [62,63] = €5, [61,64] = €g-

Let D = span(ey,es). D is flat. Let G be the Lie group associated with g. G
is a Carnot group. We equip D with the metric that makes the frame (eq,es)
orthonormal. We are looking for an abnormal curve, say z(t) = (z(t), ..., xs(t))
which cannot be normal for (G, D). Let 2'(t) = 71(t)e; + 72(t)e2. The abnormal
equations (I) are

(I) Y2A3 =0, —7A3 =0, )\g — 71— Y2 A5 =0,
)\21_71)\6:07 )\’5:)\%:0:)\1:)\2

Here A3 = 0. We shall assume that x(t) is parametrized by arc length, i.e
7?4+ 3 = 1. We look for a solution z(t) with A5 and Ag nonzero. From

Ay Ay A\
gl N Y2 =M e ek and v} + 73 =
we get
(DAL + A35) = AZAG. (1)

Proposition Let Ay be a solution of (1) with A5 and A\¢ nonzero. Then any
/

)\6

is a strictly abnormal minimizer. Such a curve cannot be normal in

solution to z'(t) = v1(t)er + y2(t)ea with x(0) = 0, where 7y, v, satisfy v, =
AN,

2T
any subgroup of G.

In this example, the normal equations are

(II) v +72hs = 0, v9—v1hs = 0, hy—"1hy—"2hs =0, hy—~1he = 0, hy = hg = 0.

Let x(t) be an abnormal curve which is also normal, parametrized by arc length,
z(t) = 1(t)er +72(t)ex € D. If A5, Ag # 0 we get a contradiction (Aj = 0). Then
As = 0 or \g = 0. From Equation (1), A}, must be also zero and therefore )\,
is constant. This gives the linear equation v Ay + 725 = 0 (with A4, A5 being
constant). But Ay # 0 and 72 ++2 = 1 implies that v; and 7 are constant. Then
x(t) is a left invariant curve.



ABIB 9

References

Abib, O. R., Cartan Systems, In preparation.

Abraham, R., and Marsden, J. E., “Foundations of Mechanics”, Ben-
jamin/Cummings (1978).

Agrachev, A., and Sachkov, Y., An intrinsic approach to the control of
rolling bodies, ISAS (Trieste), preprint (1999).

Cartan, E., “Les Systemes de Pfaff a cing variables et les équations aux
dérivées partielles du second ordre”, Ann. Sci. Ecole Normale 27 (1910),
109-192.

Hamenstat, U., Some regqularity theorems for Carnot-Carathéodory met-
rics , J. Diff. Geometry, 32 (1990), 819-850.

Liu, W. and Sussmann, H., “Shortest paths for sub-Riemannian metrics
on rank two distributions”, Mem. Am. Math. Soc. Vol. 564, Number 118,
Providence, R.I (1995).

Montgomery, R., Singular extremals on Lie groups , Math. Controls, Sig-
nals and Systems, 7(3) (1994), 217-234.

Vershik, A. M., and Gershkovich, V., Nonholonomic dynamical systems,
geometry of distributions and variational problems, in Encycl. Mathemat-
ical Sciences, Vol. 16, “Dynamical Sytems VII”, Springer Verlag (1994),
1-81.

Odinette Renée Abib

UMR — CNRS 6085

Laboratoire Raphaél Salem

Université de Rouen

Faculté des Sciences

F76 821 Mont Saint Aignan Cedex, France
e-mail: Renee.AbibQuniv-rouen.fr



