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Abstra
t. We investigate the spa
e of abnormal extremals of nonlinear de-

terministi
 
ontrol systems whi
h are linear in the 
ontrols. Our main results


on
ern the abnormal 
urves for a 
lass of systems whose state spa
es are nilpo-

tent Lie groups.

1. Introdu
tion

Sub{Riemannian geometry is 
on
erned with the study of a nonintegrable

k{plane distribution D , endowed with a Riemannian metri
, on an n{dimensional

manifold M . The 
ase k = n 
orresponds to 
lassi
al Riemannian geometry, and

ea
h geodesi
 is the proje
tion of an integral 
urve of the Hamiltonian ve
tor �eld

asso
iated with the metri
. When k < n, a geodesi
 is still a lo
ally minimizing


urve for the length fun
tional, but in this 
ase it is well known that geodesi
s

that are not the proje
tion of Hamiltonian 
urves do exist [6℄. These 
urves are


alled stri
tly abnormal geodesi
s, the other geodesi
 
urves are 
alled normals (see

Se
t. 2). These geometries arise among other pla
es as the limits of Riemannian

geometries.

A basi
 question is \are all sub{Riemannian geodesi
s smooth" ? Sin
e

normal extremals are automati
ally smooth [5℄, this is equivalent to the question

\are all abnormal minimizers smooth ?". Hamenst�at suggested the following idea

to investigate this last question: try to asso
iate to every abnormal 
urve 
 some

smooth submanifold M(
) of M 
ontaining 
 and su
h that 
 is normal as an

integral 
urve for the restri
tion of D to M(
) (the submanifold M(
) is 
alled

a 
hara
teristi
 manifold for 
). In general, M(
) does not always exist [6℄. This

question motivated our work.

As in 
lassi
al geometry, in sub{Riemannian geometry the 
ase of Lie groups

is espe
ially important and interesting (see Se
tions 3 and 4). If M = G is a Lie

group, it is natural to assume that both the distribution D and the metri
 are

left invariant. In the 
ase when G is a 
ompa
t 
onne
ted Lie group and D is

the distribution orthogonal to its maximal torus, all sub{Riemannian geodesi
s

are smooth [7℄. In this paper, we study sub{Riemannian geodesi
s in nilpotent Lie

groups.

The present paper has the following stru
ture. In Se
tion 2, the basi


notations, de�nitions and examples are introdu
ed. In Se
tion 3, we introdu
e

Carnot groups, 
at distributions and Cartan system. A 
at distribution is a

lo
al approximation of a sub{Riemannian stru
ture at regular points. Carnot

groups are to sub{Riemannian geometry as Eu
lidean geometry is to Riemannian

geometry. In Se
tion 4, we give examples of graded nilpotent Lie groups with
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stri
tly abnormal geodesi
s, nilpotent Lie group G with left invariant distribution

D and subgroup H whose geodesi
s, for the indu
ed stru
ture, are not geodesi
s

in (G;D).

2. De�nitions

A sub{Riemannian stru
ture on an n{dimensional manifold M 
onsists of

a ve
tor subbundle D � TM of the tangent bundle of M together with a �ber

inner produ
t h:; :i on this subbundle. A 
urve 
 is said to be horizontal (or a D{


urve) if its derivative _
(t) exists almost everywhere and lies in D when it exists.

We measure the length l(
) of a horizontal 
urve as in Riemannian geometry:

l(
) =

Z

k _
(t)k dt:

In this formula, k _
(t)k =

p

h _
(t); _
(t)i is 
omputed using the inner produ
t

on D(
(t)) and the integral is taken over the domain of the 
urve. The sub{

Riemannian distan
e d(x; y) between two points x and y is taken over all hori-

zontal paths whi
h 
onne
t x and y . This distan
e is in�nite if there is no path

joining both points. A horizontal path is said to be a minimizer if it realizes the

distan
e between its endpoints. A path 
 : I � R !M is said to be a geodesi
 if

it is lo
ally a minimizer.

The distribution D � TM is bra
ket generating at p if it admits a lo
al

frame (X

i

) in a neighborhood of p for whi
h the iterated Lie bra
kets [X

i

; X

j

℄,

[X

i

; [X

j

; X

k

℄℄ : : : , together with the X

i

span the tangent spa
e at every point of

this neighborhood. Given two points in a sub{Riemannian manifold (M;D; h:; :i),

are there any horizontal paths that join them? A 
orollary to a 
lassi
al theorem

of Chow asserts that, if D is bra
ket generating and M is 
onne
ted, then any

two points of M 
an be joined by a horizontal path. Is there a minimizer joining

both points? If M is 
onne
ted, bra
ket generating and 
omplete relative to the

sub{Riemannian distan
e fun
tion, then any two points of M 
an be joined by a

minimizer.

Normal 
urves and geodesi
s equations The 
otangent bundle T

�

M of M

has a natural symple
ti
 stru
ture determined by the 2{forms 
 = d! , where

! is the 1{form given by !(x; �)(v) = h�; d�

�

(v)i for v 2 T

(x;�)

(T

�

M). To

ea
h ve
tor �eld X on M , we asso
iate the fun
tion H

X

: T

�

M ! R given

by H

X

(q; �) = h�;X(q)i for � 2 T

�

q

M . Then X is of 
lass C

k

if and only if

H

X

is C

k

. We use

~

H

X

to denote the Hamilton ve
tor �eld asso
iated to H

X

(by

de�nition,

~

H

X

is the ve
tor �eld on T

�

M su
h that 
(Y;

~

H

X

) = dH

X

(Y ) for

every ve
tor �eld Y on T

�

M [2℄).

Let (M;D; h:; :i) be a sub{Riemannian manifold. If (p; �) 2 T

�

M , then

the restri
tion �

D(p)

of � to the subspa
e D(p) of T

p

M has a well de�ned norm,

sin
e D(p) is an inner produ
t spa
e. We will use k�k to denote this norm. The

fun
tion H : T

�

M ! R given by H(�; p) = �k�k

2

=2 is the Hamiltonian of the

sub{Riemannain stru
ture (D; h:; :i). The Hamiltonian H is a smooth fun
tion

on T

�

M . Indeed, if fX

i

g

1�i�k

is a lo
al orthonormal frame for the distribution



ABIB 3

D (here, k is the rank of D), then

H(x; �) = �

1

2

k

X

i=1

H

2

X

i

(x; �):

The 
ow indu
ed by H on T

�

M is 
alled the sub{Riemannian geodesi
 
ow.

Let �(t) = (
(t); p(t)) be a solution to Hamilton's equation on T

�

M for the

sub{Riemannain Hamiltonian H . Then [5℄ every suÆ
iently short ar
 of 
 is a

sub{Riemannian minimizer. The proje
tion 
 is 
alled a normal 
urve. Unlike

the Riemannian situation, not every geodesi
 is normal [6℄. There may exist

\abnormal" geodesi
s unrelated to our Hamiltonian.

Abnormal 
urves An abnormal 
urve is a horizontal 
urve (i.e. a D{
urve)

whi
h is the proje
tion onto M of an absolutely 
ontinuous 
urve in the annihilator

D

?

� T

�

M of D , whi
h does not interse
t the zero se
tion and whose derivative,

whenever it exists, lies in the kernel of 
 restri
ted to D

?

. The 
ondition that

a 
urve is abnormal depends only on the distribution and not at all on the inner

produ
t on the distribution. Contrarily to the normal 
urves, the abnormal ones

need not be minimizing. If a 
urve is abnormal but not normal, we say that it is

stri
tly abnormal.

Examples..

1) If D = TM , the abnormal 
urves are trivial.

2) If D is a 
onta
t distribution, the abnormal 
urves are trivial.

3) Heisenberg Group. Consider R

3

with the multipli
ation

(x

1

; y

1

; z

1

)(x

2

; y

2

; z

2

) = (x

1

+ x

2

; y

1

+ y

2

; z

1

+ z

2

+ x

1

y

2

� x

2

y

1

):

The left invariant 
onta
t distribution D on R

3

is spanned by

X =

�

�x

� y

�

�y

; Y =

�

�y

+ x

�

�z

:

A 
urve 
(t) = (x(t); y(t); z(t)) is horizontal if and only if _z = y _x�x _y (
onstraint

equation). D is bra
ket generating be
ause X; Y; [X; Y ℄ are linearly independent

at ea
h point. It then follows from Chow's theorem that, given any two points

p

1

; p

2

, there exists a �nite 
on
atenation of integral 
urves of X and Y that

goes from p

1

to p

2

. We de�ne a Riemannain metri
 h:; :i on D by de
laring

fX; Y g to be an orthonormal basis of se
tions of D . The Hamiltonian H :

T

�

R

3

! R is H(p; �) = �

1

2

(H

2

X

(p; �) +H

2

Y

(p; �)); then H(x; y; z; �; �; �) =

�

1

2

((� � y�)

2

+ (� + x�)

2

). The normal 
urves are proje
tion of integral 
urves

of

~

H . Let �(x; y; z) = (x; y) be the proje
tion. Given a suÆ
iently smooth


urve 
(t) = (x(t); y(t)) in the xy plane, and a starting height z

0

, there is a

unique horizontal 
urve whi
h starts at p

0

= (x(0); y(0); z

0

) and proje
ts onto

(x(t); y(t)). It is 
alled the horizontal lift of 
 passing through p

0

. THe geodesi
s

for the Heisenberg Group are exa
tly the horizontal lifts of ar
s of 
ir
les and every

minimizer is normal.

4) The Heisenberg Group is a prin
ipal bundle over the plane, with proje
tion

(x; y; z) 7! (x; y) and the form � = dz � (ydx � xdy) is a 
onne
tion for this
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bundle. To generalize, repla
e the Heisenberg Group with a general prin
ipal

bundle P over a Riemannian base, and put a 
onne
tion on this prin
ipal bundle.

The spa
e P then inherits a sub{Riemannian stru
ture. ITs geodesi
s, proje
ted

to the base, satisfy the non{Abelian Lorentz equations. In the spa
ial 
ase when

P = G is a Lie group and the proje
tion is that for a homogeneous spa
e G! G=H

then, with an additional assumption regarding the inner produ
t, we 
an expli
itly

write down all the normal sub{Riemannian geodesi
s in Lie theoreti
al terms.

3. Carnot groups and nilpotentization

Let G be a 
onne
ted simply 
onne
ted nilpotent Lie group. Suppose that

its Lie algebra g is graded:

g = g

1

� g

2

� � � � � g

r

; [g

i

; g

j

℄ � g

i+j

; g

s

= f0g if s > r;

and generated by its 
omponent of degree 1, i.e., Lie(g

1

) = g . Then D = g

1


an

be 
onsidered as a nonintegrable left invariant distribution on the Lie group G.

We say that the distribution D is 
at. If D is equipped with a left invariant inner

produ
t in g

1

, then (D; h:; :i) is 
alled a 
at sub{Riemannian distribution on G.

A Lie group whose Lie algebra is graded nilpotent, endowed with an inner

produ
t on the spa
e g

1

, with the property that this subspa
e Lie{generates the

whole Lie algebra, is 
alled a Carnot group.

Examples.

1) Let g be the 3{dimensional Heisenberg algebra, i.e., the unique 3{dimensional

2{step nilpotent Lie algebra:

dim g = 3; dim[g; g℄ = 1; dim[g; [g; g℄℄ = 0:

Let G be the 
orresponding 
onne
ted simply 
onne
ted Lie group. A 
at rank two

distribution D on G is just any rank two nonintegrable left invariant distribution

on G:

D � g; dimD = 2; Lie(D) = g:

To obtain a 
at sub{Riemannian stru
ture on G, one has to add any left invariant

inner produ
t h:; :i in D . Choose an orthonormal frame:

D = span(u

1

; u

2

); hu

i

; u

j

i = Æ

i;j

; 1 � i; j � 2:

D is nonintegrable. Then u

3

= [u

1

; u

2

℄ 62 D and g = span(u

1

; u

2

; u

3

), [u

1

; u

3

℄ = 0;

[u

2

; u

3

℄ = 0; g = g

1

� g

2

with g

1

= span(u

1

; u

2

), g

2

= span(u

3

). \Up to

isomorphism there exists exa
tly one 
at distribution on G, and the same is true

for 
at sub{Riemannian stru
tures".

2) The Cartan 
ase [4℄. Let g be the 5{dimensional nilpotent 3{step Lie algebra

with multipli
ation rules in some base (u

1

; u

2

; u

3

; u

4

; u

5

):

[u

1

; u

2

℄ = u

3

; [u

1

; u

3

℄ = u

4

; [u

2

; u

3

℄ = u

5

(all other bra
kets beeing equal to zero); (u

1

; u

2

; u

3

; u

4

; u

5

) is 
alled a standard

frame on g . The Lie algebra g is graded:

g = g

1

� g

2

� g

3

; g

1

= span(u

1

; u

2

); g

2

= span(u

3

); g

3

= span(u

4

; u

5

):
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Denote by G the simply 
onne
ted Lie group 
orresponding to g . Any 
at

distribution or 
at sub{Riemannian stru
ture of rank two on the Lie group G

is isomorphi
 to the following ones de�ned via a standard frame in g :

D = span(u

1

; u

2

); hu

i

; u

j

i = Æ

ij

; 1 � i; j � 2:

Indeed, take an arbitrary 
at sub{Riemannian stru
ture (D; h:; :i) on the Lie group

G 
orresponding to a graduation of g :

g = h

1

� h

2

� h

3

; D = h

1

; dimh

1

= 2;

h

2

= [h

1

; h

1

℄; dimh

2

= 1; h

3

= [h

1

; h

2

℄; dimh

3

= 2:

Choose any base of D su
h that D = span(u

1

; u

2

), hu

i

; u

j

i = Æ

ij

. Then u

3

=

[u

1

; u

2

℄ spans h

2

, and the ve
tors u

4

= [u

1

; u

3

℄ and u

5

= [u

1

; u

2

℄ span h

3

. Thus

fu

1

; u

2

g generates a standard frame in g . This proves the uniqueness of 
at sub{

Riemannian stru
tures on G up to isomorphism.

Why 
at distributions and Carnot groups are important in SR geometry?

We are going to show how to asso
iate a Carnot group of dimension n to a regular

point q of a sub{Riemannian manifold M of dimension n. This Carnot group G

q

will be 
alled a nilpotentization of M at q [8℄. For a distribution D � TM , its

Lie 
ag is de�ned as follows:

D = D

1

� D

2

� � � � D

j

� : : :

where D

2

= [D

1

; D

1

℄; : : :D

j+1

= [D;D

j

℄ (here D also denotes the C

1

(M){module

of ve
tor �elds on M whi
h are tangent to the distribution D). The growth ve
tor

of D at point q is the ve
tor (n

1

; n

2

; : : : ), n

j

= dimD

j

(q). The distribution is

said to be regular near q if the growth ve
tor is 
onstant in a neighborhood of q .

Let h:; :i be a Riemannian metri
 on D and q a regular point. Write

Gr(D)

q

=

r

�

i=1

V

i

(q); V

i

(q) = D

i

(q)=D

i�1

(q);

so that V

1

(q) = D(q). This Gr(D)

q

is a graded ve
tor spa
e whose total dimension

is that of the manifold M . It inherits a Lie algebra stru
ture from the Lie

bra
ket of ve
tor �elds. Gr(D)

q

be
omes a graded nilpotent r{step (here, r is the

smallest integer su
h that D

r

(q) = T

q

M ). The 
orresponding simply 
onne
ted

Lie group G

q

inherits a left invariant sub{Riemannian stru
ture de�ned by taking

the distribution to be V

1

= D(q) � T

e

G

q

with its given inner produ
t and then

left{translating this on G

q

.

The nilpotentization at q has the same relationship to M as the eu
lidean

tangent spa
e of a Riemannian manifold has to that manifold. THis statement was

made pre
ise by Mit
hell, who showed that G

q

is isometri
 to the metri
 tangent


one to M .

Examples..

1) For a 
at distribution D � TG, D

i

(q) =

i

�

j=1

g

j

(q) and the growth ve
tor takes

the form (n

1

; n

2

; : : : ), n

i

=

P

i

j=1

dim g

j

.

2) For the Cartan 
ase, the growth ve
tor is (2; 3; 5).
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3) G = R

5

endowed with the multipli
ation rule

(x

1

; y

1

; z

1

; u

1

; v

1

)(x

2

; y

2

; z

2

; u

2

; v

2

)

= (x

1

+x

2

; y

1

+ y

2

; z

1

+ z

2

+x

1

y

2

; u

1

+u

2

+ z

1

y

2

+x

1

y

2

2

=2; v

1

+ v

2

+2x

1

z

2

+x

2

1

y

2

)

be
omes a nilpotent Lie group with the standard left invariant frame

X

1

=

�

�x

; X

2

=

�

�y

+ x

�

�z

+ z

�

�u

+ x

2

�

�v

;

X

3

= [X

1

; X

2

℄; X

4

= [X

1

; X

3

℄; X

5

= [X

2

; X

3

℄:

Set D = span(X

1

; X

2

), hX

i

; X

j

i = Æ

ij

. The growth ve
tor is (2; 3; 5) and R

5

is a

Carnot group.

Remark.. A Cartan distribution is a 2{dimensional distribution on a 5{manifold

with growth ve
tor (2; 3; 5) [4℄. If we 
onsider two solid bodies in R

3

that roll

without slipping and twisting, the main questions are as follows: what motions

of the bodies are realized and whi
h of them are optimal in a 
ertain sense? The

geometri
 model for this problem is a Cartan distribution [3℄. The authors of

[3℄ 
onstru
t a 
anoni
al nilpotent approximation (nilpotentization) and express

extremals of the 
orresponding optimal 
ontrol problem via ellipti
 fun
tions. But

the geometri
 model is not 
at.

Problem.. When is a Cartan distribution D 
at, i.e. isomorphi
 to a G

q

, where

q is a regular point of D? In [1℄, I begin the analysis of this problem in terms of

G{stru
tures (Cartan's method of equivalen
e).

4. Minimizers on Lie groups

Consider now a Lie group G with left invariant distribution D � TG,

TG

�

=

G � g . We shall identify every left invariant distribution with a subspa
e

of the Lie algebra g of G. More spe
i�
ally, D

�

=

G � D

e

and its annihilator is

D

?

�

=

G�D

?

e

. The identi�
ations are made through left translations, e denotes

the identity element of G. We 
hoose a left invariant frame fe

1

; : : : ; e

r

g for D

and 
omplete it to a basis fe

1

; : : : ; e

n

g of g . Let (�

1

; : : : ; �

n

) be the dual 
oframe.

We write the ve
tor �eld in G as

P

i




i

e

i

where 


1

; : : : ; 


n

are the 
oordinate

fun
tions on the �ber of TG. The stru
ture 
onstants C

k

ij

of g are de�ned by

[e

i

; e

j

℄ =

P

k

C

k

ij

e

k

and

�

H

e

i

; H

e

j

	

=

P

k

C

k

ij

H

e

k

(Poisson bra
kets of fun
tions on

g

�

).

The abnormal equations Let ! be the 
anoni
al 1{form on T

�

G and 
 = d! .

Let �(t) = (x(t); �(t)) 2 T

�

G � f0g where �(t) =

P

n

i=1

�

i

(t)�

i

2 g

�

, x

0

(t) =

P

r

i=1




i

(t)e

i

(x(t) is a D{
urve). x(t) is abnormal if and only if �(t) 6= 0,

�(t) 2 D

?

and 
(

_

�(t);  ) = 0 for all  2 T

�(t)

D

?

. We obtain the equations:

(I)

8

<

:

�

1

(t) = � � � = �

r

(t) = 0

P

r

j=1

P

n

k=r+1

C

k

ij




j

(t)�

k

(t) = 0 (i = 1; : : : ; r)

�

0

i

(t) = �

P

r

j=1

P

n

k=r+1

C

k

ij




j

(t)�

k

(t); (i = r + 1; : : : ; n):
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The normal equations Let (e

1

; : : : ; e

r

; : : : ; e

n

) be a basis of g , D = span(e

1

; : : : ; e

r

),

he

i

; e

j

i = Æ

ij

(1 � i; j � r), H = �

1

2

P

r

i=1

H

2

e

i

the SR{Hamiltonian. Let x(t) be

a D{
urve, x

0

(t) =

P

r

i=1




i

(t)e

i

and �(t) = (x(t); h(t)) 2 T

�

G � f0g where

h(t) =

P

n

i=1

h

i

(t)�

i

. A normal 
urve is the proje
tion onto G of a solution of the

Hamiltonian system in T

�

G with Hamiltinian H (here h

i

= H

e

i

). We 
an write

the Hamiltonian system

(II)

�




i

(t) = �h

i

(t) (i = 1; : : : ; r);

h

0

i

(t) = �

P

r

j=1

P

n

k=1

C

k

ij

h

j

h

k

(i = 1; : : : ; n):

Some results..

1) From (I) and (II), we obtain the following results.

a) Take the Engel algebra g = span(e

1

; e

2

; e

3

; e

4

), D = (e

1

; e

2

) with [e

1

; e

2

℄ = e

3

;

[e

1

; e

3

℄ = e

4

: Then the only abnormal 
urves are tangent to e

2

. They are also

normal.

b) Let g = span(e

1

; e

2

; e

3

; e

4

; e

5

; e

6

; e

7

; e

8

) with the following relations:

[e

1

; e

2

℄ = e

3

; [e

1

; e

3

℄ = e

4

; [e

2

; e

3

℄ = e

5

;

[e

1

; e

4

℄ = e

6

; [e

1

; e

5

℄ = e

7

; [e

2

; e

4

℄ = e

7

; [e

2

; e

5

℄ = e

8

:

g is nilpotent 4{step and D is 
at (the Lie group of g is a Carnot group). Any


urve obtained by integrating x

0

(t) = � sin te

1

+ 
os te

2

is not left invariant, but

x(t) is both normal and abnormal.

2) Consider now (G;D; h:; :i) as a sub{Riemannian manifold, where G is a Lie

group and D (resp. h:; :i) a left invariant distribution (resp. metri
). For every

Lie subgroup H of G, let D

H

= D \ TH and let h:; :i

H

be the restri
tion of h:; :i

to D

H

. Let 
 be an abnormal path in (G;D; h:; :i). If 
 � H is a geodesi
 in G

whi
h is not an abnormal path of (H;D

H

; h:; :i), 
 is normal in (H;D

H

; h:; :i

H

).

Lemma Let H be a Lie subgroup of G having the following properties: for ea
h

point p 2 H , there exists lo
ally

(i) a distribution D

1

� D su
h that D

1

H

= D

H

,

(ii) a distribution D

2


ontaining the orthogonal of D

1

in D and transvers to H

(i.e. TG = TH �D

2

along H ),

(iii) an orthonormal basis X

1

; : : : ; X

r

of D

1

and a basis Y

1

; : : : ; Y

s

of D

2

su
h

that ea
h [X

i

; Y

j

℄ is tangent to D

2

along 
.

Then ea
h normal 
urve of (H;D

H

; h:; :i

H

) is normal for (G;D; h:; :i). In parti
u-

lar, a geodesi
 
 of G having H as 
hara
teristi
 group is normal in G.

Theorem Let G be a 2{step nilpotent Lie group and D a subspa
e of g whi
h

is supplementary to the 
enter z(g). Let H be a Lie subgroup of G and h its Lie

algebra. Suppose hat H has the following property: for all X 2 D

H

= h\D and

for all Y in the orthogonal of D

H

, [X; Y ℄ is orthogonal to h. Then ea
h normal

geodesi
 of (H;D

H

; h:; :i

H

) is a normal geodesi
 of (G;D; h:; :i).

Proof. Let D

0

be the orthogonal of D in g . We suppose that h:; :i is su
h

that D

0

= z(g). Set D

1

= (h+D)

0

and D

2

= D

0

H

+D

1

. Then [X; Y ℄ 2 h

0

\z(g).

The distributions D

1

and D

2

satisfy the hypothesis of the Lemma.
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3) On R

6

, 
onsider the ve
tor �elds

X

1

=

�

�x

1

; X

2

=

�

�x

2

+ x

1

�

�x

5

; X

3

=

�

�x

3

+ x

1

�

�x

6

; X

4

=

�

�x

4

+ x

2

�

�x

5

:

Let X

5

= [X

1

; X

2

℄, X

6

= [X

1

; X

3

℄ and g = span(X

1

; X

2

; X

3

; X

4

; X

5

; X

6

); g

is a 2{step nilpotent Lie algebra. Consider the left invariant distribution D =

span(X

1

; X

2

; X

3

; X

4

). Endow this distribution with the metri
 su
h that (X

1

; X

2

; X

3

; X

4

)

is orthonormal. The �elds X

1

; X

2

; X

5

de�ne a Lie subalgebra h whose Lie sub-

group H is isomorphi
 to the Heisenberg group. In the subgroup H , we 
onsider

the indu
ed stru
ture (H;D

H

; h:; :i

H

). From Equations (I) and (II), the normal

geodesi
s in H are not geodesi
s in (G;D; h:; :i).

4) We give an example of a stri
tly abnormal 
urve in the Carnot group whi
h is


ontained in no proper subgroup. Let g = span(e

1

; e

2

; e

3

; e

4

; e

5

; e

6

) be de�ned by

the relations

[e

1

; e

2

℄ = e

3

; [e

1

; e

3

℄ = e

4

; [e

2

; e

3

℄ = e

5

; [e

1

; e

4

℄ = e

6

:

Let D = span(e

1

; e

2

). D is 
at. Let G be the Lie group asso
iated with g . G

is a Carnot group. We equip D with the metri
 that makes the frame (e

1

; e

2

)

orthonormal. We are looking for an abnormal 
urve, say x(t) = (x

1

(t); : : : ; x

6

(t))

whi
h 
annot be normal for (G;D). Let x

0

(t) = 


1

(t)e

1

+ 


2

(t)e

2

: The abnormal

equations (I) are

(I)

�




2

�

3

= 0; �


1

�

3

= 0; �

0

3

� 


1

�

4

� 


2

�

5

= 0;

�

0

4

� 


1

�

6

= 0; �

0

5

= �

0

6

= 0 = �

1

= �

2

:

Here �

3

= 0. We shall assume that x(t) is parametrized by ar
 length, i.e.




2

1

+ 


2

2

= 1. We look for a solution x(t) with �

5

and �

6

nonzero. From




1

=

�

0

4

�

6

; 


2

= 


1

�

4

�

5

= �

�

4

�

0

4

�

5

�

6

and 


2

1

+ 


2

2

= 1;

we get

(�

0

4

)

2

(�

2

4

+ �

2

5

) = �

2

5

�

2

6

: (1)

Proposition Let �

4

be a solution of (1) with �

5

and �

6

nonzero. Then any

solution to x

0

(t) = 


1

(t)e

1

+ 


2

(t)e

2

with x(0) = 0, where 


1

; 


2

satisfy 


1

=

�

0

4

�

6

,




2

= �

�

4

�

0

4

�

5

�

6

, is a stri
tly abnormal minimizer. Su
h a 
urve 
annot be normal in

any subgroup of G.

In this example, the normal equations are

(II) 


0

1

+


2

h

3

= 0; 


0

2

�


1

h

3

= 0; h

0

3

�


1

h

4

�


2

h

5

= 0; h

0

4

�


1

h

6

= 0; h

0

5

= h

0

6

= 0:

Let x(t) be an abnormal 
urve whi
h is also normal, parametrized by ar
 length,

x(t) = 


1

(t)e

1

+ 


2

(t)e

2

2 D . If �

5

; �

6

6= 0 we get a 
ontradi
tion (�

0

4

= 0). Then

�

5

= 0 or �

6

= 0. From Equation (1), �

0

4

must be also zero and therefore �

4

is 
onstant. This gives the linear equation 


1

�

4

+ 


2

�

5

= 0 (with �

4

; �

5

being


onstant). But �

4

6= 0 and 


2

1

+


2

2

= 1 implies that 


1

and 


2

are 
onstant. Then

x(t) is a left invariant 
urve.
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