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Abstrat. We investigate the spae of abnormal extremals of nonlinear de-

terministi ontrol systems whih are linear in the ontrols. Our main results

onern the abnormal urves for a lass of systems whose state spaes are nilpo-

tent Lie groups.

1. Introdution

Sub{Riemannian geometry is onerned with the study of a nonintegrable

k{plane distribution D , endowed with a Riemannian metri, on an n{dimensional

manifold M . The ase k = n orresponds to lassial Riemannian geometry, and

eah geodesi is the projetion of an integral urve of the Hamiltonian vetor �eld

assoiated with the metri. When k < n, a geodesi is still a loally minimizing

urve for the length funtional, but in this ase it is well known that geodesis

that are not the projetion of Hamiltonian urves do exist [6℄. These urves are

alled stritly abnormal geodesis, the other geodesi urves are alled normals (see

Set. 2). These geometries arise among other plaes as the limits of Riemannian

geometries.

A basi question is \are all sub{Riemannian geodesis smooth" ? Sine

normal extremals are automatially smooth [5℄, this is equivalent to the question

\are all abnormal minimizers smooth ?". Hamenst�at suggested the following idea

to investigate this last question: try to assoiate to every abnormal urve  some

smooth submanifold M() of M ontaining  and suh that  is normal as an

integral urve for the restrition of D to M() (the submanifold M() is alled

a harateristi manifold for ). In general, M() does not always exist [6℄. This

question motivated our work.

As in lassial geometry, in sub{Riemannian geometry the ase of Lie groups

is espeially important and interesting (see Setions 3 and 4). If M = G is a Lie

group, it is natural to assume that both the distribution D and the metri are

left invariant. In the ase when G is a ompat onneted Lie group and D is

the distribution orthogonal to its maximal torus, all sub{Riemannian geodesis

are smooth [7℄. In this paper, we study sub{Riemannian geodesis in nilpotent Lie

groups.

The present paper has the following struture. In Setion 2, the basi

notations, de�nitions and examples are introdued. In Setion 3, we introdue

Carnot groups, at distributions and Cartan system. A at distribution is a

loal approximation of a sub{Riemannian struture at regular points. Carnot

groups are to sub{Riemannian geometry as Eulidean geometry is to Riemannian

geometry. In Setion 4, we give examples of graded nilpotent Lie groups with



ABIB 2

stritly abnormal geodesis, nilpotent Lie group G with left invariant distribution

D and subgroup H whose geodesis, for the indued struture, are not geodesis

in (G;D).

2. De�nitions

A sub{Riemannian struture on an n{dimensional manifold M onsists of

a vetor subbundle D � TM of the tangent bundle of M together with a �ber

inner produt h:; :i on this subbundle. A urve  is said to be horizontal (or a D{

urve) if its derivative _(t) exists almost everywhere and lies in D when it exists.

We measure the length l() of a horizontal urve as in Riemannian geometry:

l() =

Z

k _(t)k dt:

In this formula, k _(t)k =

p

h _(t); _(t)i is omputed using the inner produt

on D((t)) and the integral is taken over the domain of the urve. The sub{

Riemannian distane d(x; y) between two points x and y is taken over all hori-

zontal paths whih onnet x and y . This distane is in�nite if there is no path

joining both points. A horizontal path is said to be a minimizer if it realizes the

distane between its endpoints. A path  : I � R !M is said to be a geodesi if

it is loally a minimizer.

The distribution D � TM is braket generating at p if it admits a loal

frame (X

i

) in a neighborhood of p for whih the iterated Lie brakets [X

i

; X

j

℄,

[X

i

; [X

j

; X

k

℄℄ : : : , together with the X

i

span the tangent spae at every point of

this neighborhood. Given two points in a sub{Riemannian manifold (M;D; h:; :i),

are there any horizontal paths that join them? A orollary to a lassial theorem

of Chow asserts that, if D is braket generating and M is onneted, then any

two points of M an be joined by a horizontal path. Is there a minimizer joining

both points? If M is onneted, braket generating and omplete relative to the

sub{Riemannian distane funtion, then any two points of M an be joined by a

minimizer.

Normal urves and geodesis equations The otangent bundle T

�

M of M

has a natural sympleti struture determined by the 2{forms 
 = d! , where

! is the 1{form given by !(x; �)(v) = h�; d�

�

(v)i for v 2 T

(x;�)

(T

�

M). To

eah vetor �eld X on M , we assoiate the funtion H

X

: T

�

M ! R given

by H

X

(q; �) = h�;X(q)i for � 2 T

�

q

M . Then X is of lass C

k

if and only if

H

X

is C

k

. We use

~

H

X

to denote the Hamilton vetor �eld assoiated to H

X

(by

de�nition,

~

H

X

is the vetor �eld on T

�

M suh that 
(Y;

~

H

X

) = dH

X

(Y ) for

every vetor �eld Y on T

�

M [2℄).

Let (M;D; h:; :i) be a sub{Riemannian manifold. If (p; �) 2 T

�

M , then

the restrition �

D(p)

of � to the subspae D(p) of T

p

M has a well de�ned norm,

sine D(p) is an inner produt spae. We will use k�k to denote this norm. The

funtion H : T

�

M ! R given by H(�; p) = �k�k

2

=2 is the Hamiltonian of the

sub{Riemannain struture (D; h:; :i). The Hamiltonian H is a smooth funtion

on T

�

M . Indeed, if fX

i

g

1�i�k

is a loal orthonormal frame for the distribution
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D (here, k is the rank of D), then

H(x; �) = �

1

2

k

X

i=1

H

2

X

i

(x; �):

The ow indued by H on T

�

M is alled the sub{Riemannian geodesi ow.

Let �(t) = ((t); p(t)) be a solution to Hamilton's equation on T

�

M for the

sub{Riemannain Hamiltonian H . Then [5℄ every suÆiently short ar of  is a

sub{Riemannian minimizer. The projetion  is alled a normal urve. Unlike

the Riemannian situation, not every geodesi is normal [6℄. There may exist

\abnormal" geodesis unrelated to our Hamiltonian.

Abnormal urves An abnormal urve is a horizontal urve (i.e. a D{urve)

whih is the projetion onto M of an absolutely ontinuous urve in the annihilator

D

?

� T

�

M of D , whih does not interset the zero setion and whose derivative,

whenever it exists, lies in the kernel of 
 restrited to D

?

. The ondition that

a urve is abnormal depends only on the distribution and not at all on the inner

produt on the distribution. Contrarily to the normal urves, the abnormal ones

need not be minimizing. If a urve is abnormal but not normal, we say that it is

stritly abnormal.

Examples..

1) If D = TM , the abnormal urves are trivial.

2) If D is a ontat distribution, the abnormal urves are trivial.

3) Heisenberg Group. Consider R

3

with the multipliation

(x

1

; y

1

; z

1

)(x

2

; y

2

; z

2

) = (x

1

+ x

2

; y

1

+ y

2

; z

1

+ z

2

+ x

1

y

2

� x

2

y

1

):

The left invariant ontat distribution D on R

3

is spanned by

X =

�

�x

� y

�

�y

; Y =

�

�y

+ x

�

�z

:

A urve (t) = (x(t); y(t); z(t)) is horizontal if and only if _z = y _x�x _y (onstraint

equation). D is braket generating beause X; Y; [X; Y ℄ are linearly independent

at eah point. It then follows from Chow's theorem that, given any two points

p

1

; p

2

, there exists a �nite onatenation of integral urves of X and Y that

goes from p

1

to p

2

. We de�ne a Riemannain metri h:; :i on D by delaring

fX; Y g to be an orthonormal basis of setions of D . The Hamiltonian H :

T

�

R

3

! R is H(p; �) = �

1

2

(H

2

X

(p; �) +H

2

Y

(p; �)); then H(x; y; z; �; �; �) =

�

1

2

((� � y�)

2

+ (� + x�)

2

). The normal urves are projetion of integral urves

of

~

H . Let �(x; y; z) = (x; y) be the projetion. Given a suÆiently smooth

urve (t) = (x(t); y(t)) in the xy plane, and a starting height z

0

, there is a

unique horizontal urve whih starts at p

0

= (x(0); y(0); z

0

) and projets onto

(x(t); y(t)). It is alled the horizontal lift of  passing through p

0

. THe geodesis

for the Heisenberg Group are exatly the horizontal lifts of ars of irles and every

minimizer is normal.

4) The Heisenberg Group is a prinipal bundle over the plane, with projetion

(x; y; z) 7! (x; y) and the form � = dz � (ydx � xdy) is a onnetion for this
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bundle. To generalize, replae the Heisenberg Group with a general prinipal

bundle P over a Riemannian base, and put a onnetion on this prinipal bundle.

The spae P then inherits a sub{Riemannian struture. ITs geodesis, projeted

to the base, satisfy the non{Abelian Lorentz equations. In the spaial ase when

P = G is a Lie group and the projetion is that for a homogeneous spae G! G=H

then, with an additional assumption regarding the inner produt, we an expliitly

write down all the normal sub{Riemannian geodesis in Lie theoretial terms.

3. Carnot groups and nilpotentization

Let G be a onneted simply onneted nilpotent Lie group. Suppose that

its Lie algebra g is graded:

g = g

1

� g

2

� � � � � g

r

; [g

i

; g

j

℄ � g

i+j

; g

s

= f0g if s > r;

and generated by its omponent of degree 1, i.e., Lie(g

1

) = g . Then D = g

1

an

be onsidered as a nonintegrable left invariant distribution on the Lie group G.

We say that the distribution D is at. If D is equipped with a left invariant inner

produt in g

1

, then (D; h:; :i) is alled a at sub{Riemannian distribution on G.

A Lie group whose Lie algebra is graded nilpotent, endowed with an inner

produt on the spae g

1

, with the property that this subspae Lie{generates the

whole Lie algebra, is alled a Carnot group.

Examples.

1) Let g be the 3{dimensional Heisenberg algebra, i.e., the unique 3{dimensional

2{step nilpotent Lie algebra:

dim g = 3; dim[g; g℄ = 1; dim[g; [g; g℄℄ = 0:

Let G be the orresponding onneted simply onneted Lie group. A at rank two

distribution D on G is just any rank two nonintegrable left invariant distribution

on G:

D � g; dimD = 2; Lie(D) = g:

To obtain a at sub{Riemannian struture on G, one has to add any left invariant

inner produt h:; :i in D . Choose an orthonormal frame:

D = span(u

1

; u

2

); hu

i

; u

j

i = Æ

i;j

; 1 � i; j � 2:

D is nonintegrable. Then u

3

= [u

1

; u

2

℄ 62 D and g = span(u

1

; u

2

; u

3

), [u

1

; u

3

℄ = 0;

[u

2

; u

3

℄ = 0; g = g

1

� g

2

with g

1

= span(u

1

; u

2

), g

2

= span(u

3

). \Up to

isomorphism there exists exatly one at distribution on G, and the same is true

for at sub{Riemannian strutures".

2) The Cartan ase [4℄. Let g be the 5{dimensional nilpotent 3{step Lie algebra

with multipliation rules in some base (u

1

; u

2

; u

3

; u

4

; u

5

):

[u

1

; u

2

℄ = u

3

; [u

1

; u

3

℄ = u

4

; [u

2

; u

3

℄ = u

5

(all other brakets beeing equal to zero); (u

1

; u

2

; u

3

; u

4

; u

5

) is alled a standard

frame on g . The Lie algebra g is graded:

g = g

1

� g

2

� g

3

; g

1

= span(u

1

; u

2

); g

2

= span(u

3

); g

3

= span(u

4

; u

5

):
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Denote by G the simply onneted Lie group orresponding to g . Any at

distribution or at sub{Riemannian struture of rank two on the Lie group G

is isomorphi to the following ones de�ned via a standard frame in g :

D = span(u

1

; u

2

); hu

i

; u

j

i = Æ

ij

; 1 � i; j � 2:

Indeed, take an arbitrary at sub{Riemannian struture (D; h:; :i) on the Lie group

G orresponding to a graduation of g :

g = h

1

� h

2

� h

3

; D = h

1

; dimh

1

= 2;

h

2

= [h

1

; h

1

℄; dimh

2

= 1; h

3

= [h

1

; h

2

℄; dimh

3

= 2:

Choose any base of D suh that D = span(u

1

; u

2

), hu

i

; u

j

i = Æ

ij

. Then u

3

=

[u

1

; u

2

℄ spans h

2

, and the vetors u

4

= [u

1

; u

3

℄ and u

5

= [u

1

; u

2

℄ span h

3

. Thus

fu

1

; u

2

g generates a standard frame in g . This proves the uniqueness of at sub{

Riemannian strutures on G up to isomorphism.

Why at distributions and Carnot groups are important in SR geometry?

We are going to show how to assoiate a Carnot group of dimension n to a regular

point q of a sub{Riemannian manifold M of dimension n. This Carnot group G

q

will be alled a nilpotentization of M at q [8℄. For a distribution D � TM , its

Lie ag is de�ned as follows:

D = D

1

� D

2

� � � � D

j

� : : :

where D

2

= [D

1

; D

1

℄; : : :D

j+1

= [D;D

j

℄ (here D also denotes the C

1

(M){module

of vetor �elds on M whih are tangent to the distribution D). The growth vetor

of D at point q is the vetor (n

1

; n

2

; : : : ), n

j

= dimD

j

(q). The distribution is

said to be regular near q if the growth vetor is onstant in a neighborhood of q .

Let h:; :i be a Riemannian metri on D and q a regular point. Write

Gr(D)

q

=

r

�

i=1

V

i

(q); V

i

(q) = D

i

(q)=D

i�1

(q);

so that V

1

(q) = D(q). This Gr(D)

q

is a graded vetor spae whose total dimension

is that of the manifold M . It inherits a Lie algebra struture from the Lie

braket of vetor �elds. Gr(D)

q

beomes a graded nilpotent r{step (here, r is the

smallest integer suh that D

r

(q) = T

q

M ). The orresponding simply onneted

Lie group G

q

inherits a left invariant sub{Riemannian struture de�ned by taking

the distribution to be V

1

= D(q) � T

e

G

q

with its given inner produt and then

left{translating this on G

q

.

The nilpotentization at q has the same relationship to M as the eulidean

tangent spae of a Riemannian manifold has to that manifold. THis statement was

made preise by Mithell, who showed that G

q

is isometri to the metri tangent

one to M .

Examples..

1) For a at distribution D � TG, D

i

(q) =

i

�

j=1

g

j

(q) and the growth vetor takes

the form (n

1

; n

2

; : : : ), n

i

=

P

i

j=1

dim g

j

.

2) For the Cartan ase, the growth vetor is (2; 3; 5).



ABIB 6

3) G = R

5

endowed with the multipliation rule

(x

1

; y

1

; z

1

; u

1

; v

1

)(x

2

; y

2

; z

2

; u

2

; v

2

)

= (x

1

+x

2

; y

1

+ y

2

; z

1

+ z

2

+x

1

y

2

; u

1

+u

2

+ z

1

y

2

+x

1

y

2

2

=2; v

1

+ v

2

+2x

1

z

2

+x

2

1

y

2

)

beomes a nilpotent Lie group with the standard left invariant frame

X

1

=

�

�x

; X

2

=

�

�y

+ x

�

�z

+ z

�

�u

+ x

2

�

�v

;

X

3

= [X

1

; X

2

℄; X

4

= [X

1

; X

3

℄; X

5

= [X

2

; X

3

℄:

Set D = span(X

1

; X

2

), hX

i

; X

j

i = Æ

ij

. The growth vetor is (2; 3; 5) and R

5

is a

Carnot group.

Remark.. A Cartan distribution is a 2{dimensional distribution on a 5{manifold

with growth vetor (2; 3; 5) [4℄. If we onsider two solid bodies in R

3

that roll

without slipping and twisting, the main questions are as follows: what motions

of the bodies are realized and whih of them are optimal in a ertain sense? The

geometri model for this problem is a Cartan distribution [3℄. The authors of

[3℄ onstrut a anonial nilpotent approximation (nilpotentization) and express

extremals of the orresponding optimal ontrol problem via ellipti funtions. But

the geometri model is not at.

Problem.. When is a Cartan distribution D at, i.e. isomorphi to a G

q

, where

q is a regular point of D? In [1℄, I begin the analysis of this problem in terms of

G{strutures (Cartan's method of equivalene).

4. Minimizers on Lie groups

Consider now a Lie group G with left invariant distribution D � TG,

TG

�

=

G � g . We shall identify every left invariant distribution with a subspae

of the Lie algebra g of G. More spei�ally, D

�

=

G � D

e

and its annihilator is

D

?

�

=

G�D

?

e

. The identi�ations are made through left translations, e denotes

the identity element of G. We hoose a left invariant frame fe

1

; : : : ; e

r

g for D

and omplete it to a basis fe

1

; : : : ; e

n

g of g . Let (�

1

; : : : ; �

n

) be the dual oframe.

We write the vetor �eld in G as

P

i



i

e

i

where 

1

; : : : ; 

n

are the oordinate

funtions on the �ber of TG. The struture onstants C

k

ij

of g are de�ned by

[e

i

; e

j

℄ =

P

k

C

k

ij

e

k

and

�

H

e

i

; H

e

j

	

=

P

k

C

k

ij

H

e

k

(Poisson brakets of funtions on

g

�

).

The abnormal equations Let ! be the anonial 1{form on T

�

G and 
 = d! .

Let �(t) = (x(t); �(t)) 2 T

�

G � f0g where �(t) =

P

n

i=1

�

i

(t)�

i

2 g

�

, x

0

(t) =

P

r

i=1



i

(t)e

i

(x(t) is a D{urve). x(t) is abnormal if and only if �(t) 6= 0,

�(t) 2 D

?

and 
(

_

�(t);  ) = 0 for all  2 T

�(t)

D

?

. We obtain the equations:

(I)

8

<

:

�

1

(t) = � � � = �

r

(t) = 0

P

r

j=1

P

n

k=r+1

C

k

ij



j

(t)�

k

(t) = 0 (i = 1; : : : ; r)

�

0

i

(t) = �

P

r

j=1

P

n

k=r+1

C

k

ij



j

(t)�

k

(t); (i = r + 1; : : : ; n):
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The normal equations Let (e

1

; : : : ; e

r

; : : : ; e

n

) be a basis of g , D = span(e

1

; : : : ; e

r

),

he

i

; e

j

i = Æ

ij

(1 � i; j � r), H = �

1

2

P

r

i=1

H

2

e

i

the SR{Hamiltonian. Let x(t) be

a D{urve, x

0

(t) =

P

r

i=1



i

(t)e

i

and �(t) = (x(t); h(t)) 2 T

�

G � f0g where

h(t) =

P

n

i=1

h

i

(t)�

i

. A normal urve is the projetion onto G of a solution of the

Hamiltonian system in T

�

G with Hamiltinian H (here h

i

= H

e

i

). We an write

the Hamiltonian system

(II)

�



i

(t) = �h

i

(t) (i = 1; : : : ; r);

h

0

i

(t) = �

P

r

j=1

P

n

k=1

C

k

ij

h

j

h

k

(i = 1; : : : ; n):

Some results..

1) From (I) and (II), we obtain the following results.

a) Take the Engel algebra g = span(e

1

; e

2

; e

3

; e

4

), D = (e

1

; e

2

) with [e

1

; e

2

℄ = e

3

;

[e

1

; e

3

℄ = e

4

: Then the only abnormal urves are tangent to e

2

. They are also

normal.

b) Let g = span(e

1

; e

2

; e

3

; e

4

; e

5

; e

6

; e

7

; e

8

) with the following relations:

[e

1

; e

2

℄ = e

3

; [e

1

; e

3

℄ = e

4

; [e

2

; e

3

℄ = e

5

;

[e

1

; e

4

℄ = e

6

; [e

1

; e

5

℄ = e

7

; [e

2

; e

4

℄ = e

7

; [e

2

; e

5

℄ = e

8

:

g is nilpotent 4{step and D is at (the Lie group of g is a Carnot group). Any

urve obtained by integrating x

0

(t) = � sin te

1

+ os te

2

is not left invariant, but

x(t) is both normal and abnormal.

2) Consider now (G;D; h:; :i) as a sub{Riemannian manifold, where G is a Lie

group and D (resp. h:; :i) a left invariant distribution (resp. metri). For every

Lie subgroup H of G, let D

H

= D \ TH and let h:; :i

H

be the restrition of h:; :i

to D

H

. Let  be an abnormal path in (G;D; h:; :i). If  � H is a geodesi in G

whih is not an abnormal path of (H;D

H

; h:; :i),  is normal in (H;D

H

; h:; :i

H

).

Lemma Let H be a Lie subgroup of G having the following properties: for eah

point p 2 H , there exists loally

(i) a distribution D

1

� D suh that D

1

H

= D

H

,

(ii) a distribution D

2

ontaining the orthogonal of D

1

in D and transvers to H

(i.e. TG = TH �D

2

along H ),

(iii) an orthonormal basis X

1

; : : : ; X

r

of D

1

and a basis Y

1

; : : : ; Y

s

of D

2

suh

that eah [X

i

; Y

j

℄ is tangent to D

2

along .

Then eah normal urve of (H;D

H

; h:; :i

H

) is normal for (G;D; h:; :i). In partiu-

lar, a geodesi  of G having H as harateristi group is normal in G.

Theorem Let G be a 2{step nilpotent Lie group and D a subspae of g whih

is supplementary to the enter z(g). Let H be a Lie subgroup of G and h its Lie

algebra. Suppose hat H has the following property: for all X 2 D

H

= h\D and

for all Y in the orthogonal of D

H

, [X; Y ℄ is orthogonal to h. Then eah normal

geodesi of (H;D

H

; h:; :i

H

) is a normal geodesi of (G;D; h:; :i).

Proof. Let D

0

be the orthogonal of D in g . We suppose that h:; :i is suh

that D

0

= z(g). Set D

1

= (h+D)

0

and D

2

= D

0

H

+D

1

. Then [X; Y ℄ 2 h

0

\z(g).

The distributions D

1

and D

2

satisfy the hypothesis of the Lemma.
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3) On R

6

, onsider the vetor �elds

X

1

=

�

�x

1

; X

2

=

�

�x

2

+ x

1

�

�x

5

; X

3

=

�

�x

3

+ x

1

�

�x

6

; X

4

=

�

�x

4

+ x

2

�

�x

5

:

Let X

5

= [X

1

; X

2

℄, X

6

= [X

1

; X

3

℄ and g = span(X

1

; X

2

; X

3

; X

4

; X

5

; X

6

); g

is a 2{step nilpotent Lie algebra. Consider the left invariant distribution D =

span(X

1

; X

2

; X

3

; X

4

). Endow this distribution with the metri suh that (X

1

; X

2

; X

3

; X

4

)

is orthonormal. The �elds X

1

; X

2

; X

5

de�ne a Lie subalgebra h whose Lie sub-

group H is isomorphi to the Heisenberg group. In the subgroup H , we onsider

the indued struture (H;D

H

; h:; :i

H

). From Equations (I) and (II), the normal

geodesis in H are not geodesis in (G;D; h:; :i).

4) We give an example of a stritly abnormal urve in the Carnot group whih is

ontained in no proper subgroup. Let g = span(e

1

; e

2

; e

3

; e

4

; e

5

; e

6

) be de�ned by

the relations

[e

1

; e

2

℄ = e

3

; [e

1

; e

3

℄ = e

4

; [e

2

; e

3

℄ = e

5

; [e

1

; e

4

℄ = e

6

:

Let D = span(e

1

; e

2

). D is at. Let G be the Lie group assoiated with g . G

is a Carnot group. We equip D with the metri that makes the frame (e

1

; e

2

)

orthonormal. We are looking for an abnormal urve, say x(t) = (x

1

(t); : : : ; x

6

(t))

whih annot be normal for (G;D). Let x

0

(t) = 

1

(t)e

1

+ 

2

(t)e

2

: The abnormal

equations (I) are

(I)

�



2

�

3

= 0; �

1

�

3

= 0; �

0

3

� 

1

�

4

� 

2

�

5

= 0;

�

0

4

� 

1

�

6

= 0; �

0

5

= �

0

6

= 0 = �

1

= �

2

:

Here �

3

= 0. We shall assume that x(t) is parametrized by ar length, i.e.



2

1

+ 

2

2

= 1. We look for a solution x(t) with �

5

and �

6

nonzero. From



1

=

�

0

4

�

6

; 

2

= 

1

�

4

�

5

= �

�

4

�

0

4

�

5

�

6

and 

2

1

+ 

2

2

= 1;

we get

(�

0

4

)

2

(�

2

4

+ �

2

5

) = �

2

5

�

2

6

: (1)

Proposition Let �

4

be a solution of (1) with �

5

and �

6

nonzero. Then any

solution to x

0

(t) = 

1

(t)e

1

+ 

2

(t)e

2

with x(0) = 0, where 

1

; 

2

satisfy 

1

=

�

0

4

�

6

,



2

= �

�

4

�

0

4

�

5

�

6

, is a stritly abnormal minimizer. Suh a urve annot be normal in

any subgroup of G.

In this example, the normal equations are

(II) 

0

1

+

2

h

3

= 0; 

0

2

�

1

h

3

= 0; h

0

3

�

1

h

4

�

2

h

5

= 0; h

0

4

�

1

h

6

= 0; h

0

5

= h

0

6

= 0:

Let x(t) be an abnormal urve whih is also normal, parametrized by ar length,

x(t) = 

1

(t)e

1

+ 

2

(t)e

2

2 D . If �

5

; �

6

6= 0 we get a ontradition (�

0

4

= 0). Then

�

5

= 0 or �

6

= 0. From Equation (1), �

0

4

must be also zero and therefore �

4

is onstant. This gives the linear equation 

1

�

4

+ 

2

�

5

= 0 (with �

4

; �

5

being

onstant). But �

4

6= 0 and 

2

1

+

2

2

= 1 implies that 

1

and 

2

are onstant. Then

x(t) is a left invariant urve.
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