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Abstract

We provide geometrical conditions on the manifold for the exis-
tence of the Liao’s factorization of stochastic flows [9]. If M is simply
connected and has constant curvature then this decomposition holds
for any stochastic flow, conversely, if every flow on M has this decom-
position then M has constant curvature. Under certain conditions,
it is possible to go further on the factorization: p; = & o Uy o Oy,
where & and ¥; have the same properties of Liao’s decomposition and
(& o ¥4) are affine transformations on M. We study the asymptotic
behaviour of the isometric component &; via rotation matrix, providing
a Furstenberg-Khasminskii formula for this skew-symmetric matrix.
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1 Introduction

Factorization of non-linear flows in a Riemannian manifold into components
which lies in specific subgroups of the group of diffeomorphisms is not only
interesting by itself, but also relevant in many aspects. In particular, in the
study of the long time behaviour of systems: some interesting asymptotic
parameters arise from the long time behaviour of each of these components.
This is the contend of Ming Liao’s paper [9] where he establishes a decompo-
sition of the flow on compact manifolds with focus on Lyapunov exponents.
Here, complementing this asymptotic radial analysis, we go further on his
decomposition, but with focus on the asymptotic behaviour of the angular
(isometric) component.
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Liao’s decomposition is a kind of Iwasawa decomposition for flows in
the following sense: Let ¢; be the stochastic flow associated to a certain
stochastic differential equation (sde) on a Riemannian manifold M. Fixed
an orthonormal frame v in the tangent space at x,, if the vector fields
involved in the sde satisfies certain geometrical properties, then there exists
a (unique) decomposition ¢; = &0V, where & lies in the group of isometries,
Uy (zg) = xo and the derivative DU(u) = u s; where s, is an upper triangular
maftrix process.

In this paper we consider global geometrical conditions on the manifold
instead of on the vector fields of the sde. We show that if the manifold
M is simply connected and has constant curvature then Liao’s decompo-
sition holds for any stochastic flow. Conversely, if every flow on M has a
Liao’s decomposition then M has constant curvature. We also prove that
under certain hypothesis it is possible to go further on his decomposition,
factorizing the flow into three components:

pr = & oWy 00y,

with & as above, U, satisfying the same derivative property as above, (§;0%y)
is a process in the group of affine transformations of M, O4(zy) = z( and
the derivative DO = Id(TzOM)'

Along this article we shall consider the following Stratonovich sde on a
connected complete Riemannian manifold M:

m
doy = X(zy) 0 dW/ (1)
j=0

where XY ... X™ are (smooth) vector fields, W) = dt and (W!,...,W")
is a Brownian motion on R" with respect to a probability space (€2, F,P)
and a filtration F;. The associated stochastic flow will be denoted by ;.
Once we deal with asymptotic properties of this flow, in order to avoid finite

explosion time, we shall assume that the derivatives of the vector fields are
bounded (see e.g. Kunita [6] or [7]).

Next section provides basic results which are going to be mentioned
in the following sections. Section 3 presents the decompositions of flows
we mention above. The main results of this section concern geometrical
conditions on the manifold instead of on the vector fields of the sde. We
close this section with an example in the hyperbolic space H™. Finally, in
Section 4 we present the concept of rotation matrix and find a Furstenberg-
Hasminskii formula for this skew-symmetric matrix (rather neat, compare
to the one in [12]).



2 Geometric preliminaries

We shall denote the linear frame bundle over a d-dimensional smooth man-
ifold M by GL(M). It is a principal bundle over M with structural group
Gl(n,R). A Riemannian structure on M is determined by a choice of a sub-
bundle of orthonormal frames OM with structural subgroup O(n,R). We
shall denote by 7 : GL(M) — M and by 7, : O(M) — M the projections of
these frame bundles onto M. The canonical Iwasawa decomposition estab-
lished by the Gram-Schmidt orthonormalization in the elements of a frame
u = (ul,...,u?) defines a projection L: u — u+ € OM such that GL(M)
is again a principal bundle over OM with structural group S C Gl(d,R),
the subgroup of upper triangular matrices. The principal bundles described
above factorize as m = m, o L.

We shall consider the Levi-Civita connection. We recall that for a frame
uw in GL(M) a connection I" determines a direct sum decomposition of the
tangent spaces at u into a horizontal and vertical subspaces which will be
denoted by T,GL(M) = HT,,GL(M) ® VT,,GL(M). Analogous decomposi-
tion holds in the tangent bundle TOM C T GL(M). For k € OM, we have
that HT,OM = HT,GL(M). Given a vector field X on M, we denote its
horizontal lift to GL(M) by HX (u) € T,GL(M).

The covariant derivative of a vector field X at z denoted by VX (z) :
T, M — T, M will be written simply VX (Y) or Vy X for a vector Y € T, M.
Via adjoint, we can associate to VX an element in the structural group GI(n)
of the principal bundle GL(M) given by the matrix X (u) = ad(u1)VX,
which acts on the right such that VX (u) = uX(u). Note that, different
from VX, the right action matrix X (u) does depend on w.

The natural lift of X to GL(M) is the unique vector field X in GL(M)

such that L;sy(,)0 = 0, where 6 is the canonical R?-valued form on GL(M)
defined by #(Hu(¢)) = ¢ for all ¢ € R?. This natural lift is given by:

X () = 1D m(w)eo.

where D is the derivative of the local 1-parameter group of diffeomor-
phisms 7, associated to the vector field X. Naturally, § X is equivariant by
the right action of Gi(d, R) in the fibres.

Lemma 2.1 The projection L: GL(M) — OM is invariant for the lin-
earised flow, in the sense that, for all u € GL(M),

(Dre(u))* = (Dme(ub)) > (2)

Proof:



This is a consequence of the commutativity of the right action of GI(d, R)
(in particular, in this case, the action of S) on GL(M) with any other linear
left actions (in particular, in this case, the linearised flow). In fact, consider
the Iwasawa decomposition u = u™" - S(q) for some s,y € S. Hence,

Dy(ut - 54)) = (Dnew™) - sy = (Dne(w) ™+ $(Dae(w)-
Equality (2) follows by the uniqueness of the Iwasawa decomposition.
U

The vertical component of VX (u) at u € 7~1(zp) is given by the co-
variant derivative VX (u) (see e.g. Elworthy [3], or Kobayashi and Nomizu
[5]). At the Lie algebra level, consider the canonical Cartan decomposition
of matrices G = K @ S into a skew-symmetric and upper triangular compo-
nent respectively. By projecting in each of these two components, we write
X(u) = [X(u)]x + [X(u)]s. With this notation, the vertical component
splits into:

V6X (u) = u[X ()] +ulX (w)]s. (3)

The natural lift of X to OM, denoted by (6X)* is the projection of §X

onto OM, i.e. for k€ OM,
d
(6X)*H (k) = p7 [D (k)] e=o-

Again, we have the decomposition of (§X)*(k) into horizontal and vertical
components: (6X)1 (k) = HoX (k)+V (6X)* (k). In terms of the right action
of X (k), the vertical component is simply V (6X)* (k) = k[X (k)]k. In terms
of the left action of (VX) we shall denote V (§X)*(k) = (VX (k))*k, where
(VX (k))* is a skew-symmetric matrix. The characterisation of (VX (k))*
is the contend of the following lemma.

Lemma 2.2 Let k = (k',..., k%) € OM with 7,(k) = x. The image of the
j-th component k7 by the matriz (VX (k))* is given by:

(VX (k) "k = VX (K)—(VX(K), k)K= (VX ("), k) + (VX (k) k") k.
r<j

Proof:

It is the non-linear version of [12, Prop. 2.1 |. For reader’s convenience
we re-write the main steps of the proof. If ¢ € R —» V; € R%is differentiable
with V; # 0 for all ¢ € (—¢,€), then:

g(vt>: Vi _<Vt,vt>t
at \|IVel/, IVell IVell®

(4)
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where V; is the derivative of V;.

For sake of simplicity, fix a basis in T, M and denote by A the matrix
which represents the linear transformation VX (z). Now, use formula (4)
with ¢ = 0 in each coordinate of

Vl Vn
(ef‘”(k»l:( N )
TR

where each component of the orthogonalisation process is given by:

i gy N M) M)y
Vi = () ; (eAt(kr) , eAt(kr)) (K") -

The derivatives satisfy:

dt

= A(K) = D ((AKY), k") + (AGK"), k7)) K

t=0 r<j

which gives, by formula (4):

g <||Vv—||) = A(K) = (A(K), k)R =3 ((A(K"), B} + CA(KT), K)) K7
t =0 r<j

t
One sees the skew-symmetry of (VX (k))* checking that

< (VX (k)TE K >= — < (VX (k)KL K > .

2.1 Affine transformations and isometries

Let Diff(M) be the group of diffeomorphisms of the Riemannian manifold
M given by the exponential of the Lie algebra X' (M) of smooth, bounded
derivative vector fields. We shall denote by A(M) the Lie group of affine
transformations of M whose elements are given by maps A € Diff (M) such
that their derivatives DA preserve horizontal trajectories in TM. Its Lie
algebra a(M) is the set of infinitesimal affine transformations characterised
by vector fields X such that the Lie derivative of the connection form w on
GL(M) satisfies Lsxw = 0. Yet, X is an infinitesimal transformation if for
all vectors fields Y:
VA (Y) = R(X,Y),

where the tensor AX = Lx —Vx and R is the curvature (see e.g. Kobayashi
and Nomizu [5, Chap. VI]).



For a fixed u € GL(M), the linear map
iv:a(M) — T,GL(M)
X = 0X(u) (5)

is injective, see e.g. Kobayashi and Nomizu [5, Thm VI.2.3]. Denote by
da(u) its image in T,,GL(M).

We shall denote by I(M) the Lie group of isometries of M, I(M) C
A(M). Its Lie algebra Z(M) is the space of Killing vector fields or in-
finitesimal isometries, characterised by the skew-symmetry of the covariant
derivative, i.e.,

<VX(Z),W >=—-< Z,VX(W) >,

for all vectors Z, W in a tangent space T,M. Note that, in this case, by
Lemma 2.2 (up to change of basis), for any orthonormal frame u we have
that (VX (u))t = VX and (6X)*(u) = §X (u).

For a fixed u € OM, the linear map
iv: (M) — T,0M
X = 0X(u) (6)

is just a restriction of the map ¢; defined above, hence it is also injective.
Denote by 6Z(u) its image in T,,OM.

3 Decompositions of Stochastic Flows

Next theorem presents a factorization of the stochastic flow ¢, associated to
the sde (1) into a component A; which is a diffusion on the affine transfor-
mation group and a component ©; which fix the initial point and has trivial
derivative. Fix an element u € GL(M) with w(u) = xo, we shall assume the
following hypothesis on the vector fields X*, i = 0,1,...,m involved in the
sde (1):

H1) §DA(X")(u) € da(u), for all affine transformation A € I(M).

Theorem 3.1 Suppose the vector fields X',..., X™ in the sde (1) satisfy
the hypothesis (H1) for a certain frame uw € GL(M), with zy = m,(u). Then,
the associated stochastic flow @ has a unique decomposition:

Yt = At0®t7

where Ay is a diffusion in the group of affine transformations A(M), ©4(xo) =
zg and DOy = Id(T:cOM) for allt > 0.



Proof:

The proof goes in a similar way of the proof of the M. Liao decomposition
[9, Thm. 1] or see Theorem 3.2 below. Once the linear map i; of equation
(5) is injective, let X* be the unique infinitesimal affine transformation
which satisfies 0X*(u) = 0X(u). Hence, obviously, X%(zy) = X(z¢) and
VX“(zo) = VX(:L‘U)

Let Ay be the solution of the following equation in the group A(M), with
A[) = IdM

dA; =Y " ADATHXI)" o dW], (7)
=0

where the elements in the Lie algebra a(M) acts on the right in A(M). By
It formula in the identity ©;0, ' — Idy; one easily finds the Stratonovich
equation for the inverse A; ' in A(M):

m

dA = =D [DAHX) A o dW].

Jj=0

Now, write ©; = A, Lo ;. At the level of the group of diffeomorphism
on M, by It6 formula again, we have the following equation for ©y:

dO; = DA_;(odpy) + (odA; )y

= Y (DA (X () - [DATHXI) 01} 0 W}
j=0

= i{DAt_lXj_[DAt_l(Xj)]a}(G)t) o dWj. (8)
=0

In the last line we use the fact that, in a Lie group, the derivative of the left
action Ly(X)(h) = Ly(X (g 'h)).

By definition of X and equation (8) we have that, not only d ©;(xg) =0
but also that 6{DA;' X7 — [DA;7'(X7)]*}(©;) = 0, hence the derivative
process dDO;(u) = 0. This establishes the properties of each component
of the factorization of ¢, = A; o ©, stated in the theorem. Note that, in
general, ©; is not a diffusion in Diff (M) once its equation involves random
and time dependent vector fields.

It only remains to prove the uniqueness of the decomposition. Sup-
pose that A} o ©) = A; o ©, where A} and O] also satisfy the properties
stated. Tt implies that A, Al(xg) = o for all t > 0. Besides, the derivative
D,y (A;TA}) = Id, hence the natural lift to GL(M) satisfies the differential
equation d D(A;'A}) = 0. Once the map i; is injective, it follows that
Ay Lo A} = Idys, which guarantees the uniqueness of the decomposition.
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Note that the affine transformation process A; depends on the choice of
the initial frame u. In the proof of the theorem, this dependence appears in
the selection of the unique X* € a(M) such that 6X%(u) = dX (u).

Now, fix an element u € OM. M. Liao [9] consider the following hypoth-
esis on the vector fields X!,... X™ of the sde (1):

H2) [0D&(XH)(u)]t € Z(u) for every isometry & € I(M).

Theorem 3.2 (M. Liao [9], Thm. 1) Suppose that for a certain frame
u € GL(M), with zy = m,(u), the vector fields X°,..., X™ of the sde (1)
satisfy the hypothesis (H2). Then, the associated stochastic flow ¢, has a
unique decomposition:
pr =& o Wy,

where & is a diffusion in the group of isometries I(M), Vi(xy) = zy and
Dy Vi(u) = usy for all t > 0, where sy is a process in the group of upper
triangular matrices.

Proof:

For details, see [9], we just recall the equation for the diffusion &;, which
is the component whose asymptotic behaviour we are going to explore in
the next section.

Once the linear map iy of equation (6) is injective, we can take X°, the
unique infinitesimal isometry which satisfies 0X*(u) = (6X)*(u). Hence,
obviously, X*(z¢) = X(x¢).

The isometry process &; satisfies the following equation in the group
I(M), with &y = Idp:

dé =Y &Dg (X)) o awy, (9)

J=0
where the elements in the Lie algebra Z(M) acts on the right in I(M).

The uniqueness follows easily also from the fact that the map 49 is injec-
tive (cf. proof of uniqueness in Theorem 3.1).

0

We remark that his proof holds for non-compact manifolds as well. We
also emphasise that the decomposition depends on the initial orthonormal
frame u € OM.

Now, juxtaposing the decompositions established by Theorems 3.1 and
3.2, we have the following factorization of ¢; in three components:



Corollary 3.3 Suppose the vector fields X°,..., X™ in the sde (1) satisfy
conditions (H1) and (H2) for a certain frame v € OM, with zy = m,(u).
Then, the associated stochastic flow @ has a unique decomposition:

=& oW 00y,

where each of the components &, Vi, O have the properties stated in The-
orems 3.1 and 3.2. Moreover, (& o W) is a diffusion in the group of affine
transformations.

Proof:

By Theorem 3.1, let ¢, = Ay 0o O be the unique decomposition where
Ay is a diffusion in the group of affine transformations A(M), O(xp) = o
and DO; = IdTwOM for all t > 0.

On the other hand, by Theorem 3.2, let ¢, = & o T, be the unique
decomposition where &, is the diffusion in the group of isometries I(M),
\i/t(xo) = gy and on\i/t(u) = u §; for a certain process §; in the group of
upper triangular matrices.

Take the process & and ©; of the statement of this corollary as defined
above. Define the process ¥U; = &, 'A;. These assignments define the de-
composition.

It only remains to prove the derivative property of ¥;, namely, that
there exists a process on the group of upper triangular matrices such that
DV,(u) = u sy. By the properties asserted:

Dy (u) = D& oDVy(u)
= D& o DV, (u)
= Dﬁt(u)§t

Hence, the upper triangular matrix process s; = §;. Which confirms the
expected fact that although, in general ¥, is different from ¥, they have
the same derivative behaviour (which carries the Lyapunov information of
the system).

g

3.1 Geometrical conditions on M instead of on the vector
fields:

In Liao [9] he presents an example of application of his decomposition in
the sphere S™. The purpose of this section is to characterise the spaces
whose vector fields will always satisfy the conditions for the decompositions



described above. It turn out that the Liao decomposition exists for any sde
on M only if M has constant curvature; in particular, the further decom-
position of Corollary 3.3 exists for any sde only if M is a flat space. More
precisely, we have the following:

Theorem 3.4 If M is simply connected with constant curvature (or their
quotient by discrete groups) then for every sde (1) and every orthonormal
frame ug € OM, the associated stochastic flow @y has a unique Liao decom-
position @ = & o V. Conversely, if every flow ¢y on M has this decompo-
sition then the space M has constant curvature.

Proof:

If M has constant curvature and is simply connected one checks directly
that the dimension of Z(M) is maximal n(n + 1)/2. Hence the linear map
io defined in equation (6) is bijective. Therefore, hypothesis (H2) is always
satisfied for any set of vector fields.

Conversely, assume that for all vector field X and for every orthonormal
frame u € OM, the corresponding flow 7; has the Liao decomposition 1, =
& o Wy, Then, the trajectory u; in OM induced by 7, satisfies:

ug = [Dn(u)]* = [D& o DW(u)]*
= Dé&(u).
We recall that d
7 (D&(w) [1=0 = (0X)* (w) (10)

For any fixed u € GL(M), the linear map X — T,GL(M) given by
X +— 06X (u) is surjective because it concerns only local behaviour of X
on M. Hence, the projection of its image by L: T,GL(M) — T,.OM is
also surjective. In other words, if now v € OM, then X ~ (6X)*(u) is
surjective. If there exists the decomposition, equality (10) shows that the
dimension of Z(M) equals n(n + 1)/2 which implies that M has constant
curvature (see, e.g. Kobayashi and Nomizu [5, Thm. VI.3.3]).

g

As a particular case of the theorem above, we have the following con-
ditions on M which guarantee that every sde on it will have a flow which
factorizes in the three components stated in Corollary 3.3.

Corollary 3.5 If M is flat, simply connected (or their quotient by discrete
groups) then for every sde (1) and every orthonormal frame uw € OM, the

10



associated stochastic flow ¢ has a unique decomposition ¢ = & o V00, as
described in Corollary 3.3. Conversely, if every flow @ have this decompo-
sition then M is flat.

Proof:

If M is flat and simply connected then, checking directly, we have that
the dimensions of the groups Z(M) and A(M) are n(n +1)/2 and n(n + 1)
respectively. This implies that the injective maps %; and 42 are bijective,
hence hypotheses (H1) and (H2) are satisfied for any set of vector fields on
M.

Conversely, assume that for all vector field X and for every orthonormal
frame v € OM the corresponding flow 7; has the decomposition 7 = & o
U, o O with the properties asserted. Then, the trajectory u;, in GL(M)
induced by 7; satisfies:

Uy = DAt(u),
where Ay = & o Uy. We recall that

(D)) e=o = 6X ) (1)
Again, for a fixed u € GL(M), the linear map X +— 06X (u) is surjective
because it concerns only local structure of X on M. Hence, equality (11)
implies that the dimension of the group of affine transformations A(M)
equals n(n + 1), which implies that M is flat (see, e.g. Kobayashi and
Nomizu [5, Thm. VI.2.3]).

g

3.2 Examples

Liao [9] illustrates his decomposition working out with a unique example
in the sphere S”. The results above enlarge the class of examples to many
well known manifolds including projective spaces, hyperbolic manifolds, flat
torus and many others non-compact manifolds. In this section we shall focus
on the other two simply-connected case, namely the flat and hyperbolic
spaces. We shall concentrate mainly on the isometric part & once this is the
component which we are going to study the long time behaviour in the next
section.

The Euclidean case is rather trivial, we just recall that A(R?), the group
of affine transformations in R¢ (or any of its quotient space by discrete
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subgroup) can be represented as a subgroup of GI(d + 1, R):
. 10\ . .
A(RY) = v g with g € Gl(d,R) and v is a column vector ; .

It acts on the left in R? through its natural embedding on R?*! given by
x — (1,z). Given a vector field X and an affine frame u, the calculations of
the unique elements X?(u) € a(R?) and X'(u) € Z(R?) introduced in the
proofs of Theorems 3.1 and 3.2 are straightforward.

Now, we shall consider a hyperbolic manifold obtained as a homogeneous
space of the Lorentz group. For other examples (including hyperbolic spaces
which do not satisfy our hypotheses) one can have a look in Ratcliffe [10] and
-0 ) The Lorentz group O(1,n) is

0 I,

the linear group of transformations of R**! which preserves the quadratic
form < Sz,z >, where < -,- > is the scalar product in R**'. Once we are
dealing with flows, we can restrict ourselves to the connected component of
the identity which will be denoted by:

the references therein. Let S = (

G={A€0(1l,n); det A=1 and A;; > 1}.

Its Lie algebra is o(n,1) = {A,n x n-matrix: A'S + SA = 0} which turns

out to be: .
0 v
o(n,1) = ( v B >

where v is a column vector and B is in the Lie algebra so(n) of the orthog-
onal group O(n). Our hyperbolic space will be H" = G/SO(n) which is
diffeomorphic to:

H"={z € R < Sz,x >= —1 and z; > 1}.

The form < v,w >p=< Sv,w > defines a Riemannian metric on H" by
restricting it to its tangent spaces. With this metric, H" is a hyperbolic
manifold with constant curvature —1. Naturally, by construction, the action
of G on H™ preserves this metric (see e.g. Klingenberg [4]). Given a vector
field X on H", this example will describe the unique infinitesimal isometry
X% such that 6X%(u) = (0X)*(u).

Consider the point N = (1,0,...,0) € H™ and an orthonormal frame
u in TyM. Denote 0y = (0/9%). A vector field X(z) = ai(z) O +
oo+ apy1(x) Oppy is tangent to T, H™ at © = (x!,...,2""") if and only
if < SX(z),z >= 0. From this expression one finds that a;(N) = 0 and
Ok a1(N) = ax(N), for k =2,...,n+ 1. We recall that the map p: G — H"
given by gN determines a principal bundle with structural group SO(n),

12



hence, there is a natural identification of the oriented orthonormal bundle
SOH™ with G, see e.g. Elworthy [3].

A convenient (global) parametrisation centred at N is given by the
graphic of the map z! = (/1 + 2?221(:1:3)2 One checks that with respect to
this parametrization, the new basis for the tangent bundle is given by

:L'k
o, = (;> Oy + O,

with £ =2,...,n+1. It is easy to verify that the entries of the metric tensor
with respect to this parametrization is:

gij = 5%] - (1_1)27

where d;; are the Kronecker symbols. From this formula one sees that the
Christoffel symbols vanishes at N. Moreover, for a vector field described
with respect to the canonical basis in R*"™! as: X(z) = ay(z)0; + ... +
an+1(x) Opt1, in the basis induced by the parametrization it has the same
coefficients, but a;:

X(z) =ax(z) 0y + ...+ apt1(z) Oy yy-
We conclude that the covariant derivative of X (z) at N with respect to
these bases (which coincide at N) is simply VX = (0; a;(N))2<i j<nt1-

The infinitesimal isometry X*(z) which we are looking for can be repre-
sented by an element A in the Lie algebra so(1,n) such that X'(z) = A(z),
where A is the vector field on H" induced by A. In what regards the hori-
zontal component, A has to satisfy:

9 (M V) g = X (). (12)

And for the vertical component, it has to satisfy:

7 [ (o )]_ = ((wxtaya ) (13)

Therefore, from equations (12) and (13) we have:

0 az(N) an+1(IN)
Ao GQ(N) ;‘ _________ ';
5 o ([95a(u)t
an+1(NV) lL _________ Jl

Note that, if u is the canonical basis in Ty M them ([0} a;](u))* is simply
[(95ai)]ic-

13



4 Rotation matrix

Many relevant results concerning the asymptotic exponential radial be-
haviour of linearised random systems have been achieved since the introduc-
tion of the concept of Lyapunov exponents. In particular, the multiplicative
ergodic theorem have been playing a fundamental role on the study of sta-
bility. There are hundreds of papers on the topic (we apologise in advance
for omitting many outstanding contributions), I would rather suggest the
reader to have a look, for example, in the comprehensive bibliography in the
book of L. Arnold [1].

In contrast with the radial component, but complementing its infor-
mation, in this section we study the asymptotic behaviour of the angular
part: we shall consider the long time behaviour of the induced flow in the
orthogonal bundle. Although it is easier to study this induced process us-
ing the decomposition of flows presented in the previous section (simply
ug = D& (u)), we will be working with this process, independently of the
existence of this factorization.

As before, let ¢; be the solution of the sde (1). We recall that for an
initial orthonormal frame v € OM with 7,(u) = zy, the induced trajectory
ug in OM is given by the unceasing Gram-Schmidt orthonormalization of
the linearised trajectory on GL(M), that is u; = (Dg;(u))*. Lemma 2.1
provides a direct way to verify that (D (-))* is indeed a flow in OM.

Considering the right action of X (u) and the It6 formula, the process u;
is the diffusion in OM associated to the following Stratonovich sde:

dug =Y {H6X? (u;) + u[X (u)lc} o dW]
j=0

The matriz of rotation of a given initial orthonormal frame is the asymp-
totic average of the canonical left invariant so(d)-value 1-form in the struc-
tural group O(d) integrated along the trajectories in OM. For non-linear
systems, we parallel transport back the frame u; to the same initial fibre of
ug. In other words, considering only the vertical component of the process
ug, we have the following covariant sde:

m
Dug =Y u[X/(u)c odWy,
j=0

where Du; means the covariant derivative //, *d//qus, with //; @ TpoM —
Ty, M denoting the parallel transport along the trajectories. (Along this
section “D” will stand for the covariant derivative, from the context it will
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be clear the distinction between its two denotations). Then, the matrix of
rotation is defined by the limit

1 /T

R(u) = lim —/ uj o Duy ,
T—00 0

when the limit exists. Still, in other words, this matrix measures the average

rotation that the induced process u; performs with respect to the parallel

transport of the initial frame //¢(u) inside the same tangent bundle T}, M.

Before we carry on with the calculations of the matrix of rotation, note
that if Y is a vector field in OM, then the derivative
S d

YIX (e = — X (" )cli=o

d vy o~
[ e X w) e ol

= [Y7 X7 (u)]IC

where the last expression is the projection into the X Cartan component of
the Lie bracket. Therefore, by Itd formula, the matrix of rotation satisfies
1) [ 1o oo iy
R(u) = lim — / [XO ()i + 2 Z[[Xj(ut)];c,XJ(ut)];c dt + M(t)
0 .
Jj=1

where M(t) is an It integral of bounded integrands. It is well known that
the average of this component vanishes. Therefore, by the ergodic theorem
for Markov process we have:

Theorem 4.1 If v is an ergodic invariant probability measure on OM for
the induced flow on this space then, for v-almost all uw € OM:

R(u)= [ [X°(k)]x +
OM

DN | =

> (X7 ()], X7 (k)] dv(k)
j=1

In particular, (2,1)-the entry of the rotation matrix of the frame u =
(u',...,u?) corresponds to the rotation number of the vector u! inside the
plane spanned by the 2-frames (u},u?) (see e.g. [11] or Arnold and Imkeller
[2]). In two-dimensional systems, due to the commutativity of the orthogonal
group SO(2), the rotation matrix is independent of the initial orthonormal
frame, besides, the rotation number measures the asymptotic average angu-
lar rotation of the stable/unstable sub-manifolds along trajectories, where
the rotation is measured with respect to parallel transport, see [11, Section

6).

15



When, instead of taking the action of X (u) on the right, we use the
description of the vertical component V (§X)* () in terms of the left action
of the skew-symmetric matrix (VX (u))* (described in Lemma 2.2), we can
work coordinate-wise in each entry of the matrix of rotation. The equation
of the process is:

m
Duy =Y (VX (u)*(u) odW.
§=0
For a certain ergodic invariant probability measure v on OM, the entries of
the matrix of rotation turn out to be

Ry = [ (k) av(r). (14)

where the functions r;;(k) are given in [12, eqn. (10)], see also the appendix.

Appendix:

When we work with the vertical vector field acting on the left (repre-
sented by (VX)+), we have to overcome the difficulty that the Iwasawa
decomposition of the product of matrices is different from the products of
the Iwasawa decompositions in this particular case (cf. Lemma 2.1). This
is the reason for the formulation becoming so tortuous. For example, the
formulae for the entries of the rotation matrix as presented in equation (14)
are, for 1 <i# 5 <d:

rij(k) = < VXK, k" >

+

N | =

Z{< VIXU XL KT K > — < VXY (R), K >< VXKD, K >
=1
+ < VXYUVXUED), B > =2 < VXK, K >< VXU (KT), K >

+> [< VXU ET), K >< VXUED, E" > — < VXU(ET), k" >< VXU(E"), K >
r<j

= 30 [< VXU >< VXU, > 4+ < VXU, B>
j<r<i

+ < VXU(E), VX' E) > — < VX)), k' >< VX (E), K >}.
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