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Abstrat

We provide geometrial onditions on the manifold for the exis-

tene of the Liao's fatorization of stohasti ows [9℄. If M is simply

onneted and has onstant urvature then this deomposition holds

for any stohasti ow, onversely, if every ow on M has this deom-

position then M has onstant urvature. Under ertain onditions,

it is possible to go further on the fatorization: '

t

= �

t

Æ 	

t

Æ �

t

,

where �

t

and 	

t

have the same properties of Liao's deomposition and

(�

t

Æ 	

t

) are aÆne transformations on M . We study the asymptoti

behaviour of the isometri omponent �

t

via rotation matrix, providing

a Furstenberg-Khasminskii formula for this skew-symmetri matrix.

Key words: stohasti di�erential equations, group of aÆne transforma-

tions, isometries, deomposition of ows, rotation matrix.
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1 Introdution

Fatorization of non-linear ows in a Riemannian manifold into omponents

whih lies in spei� subgroups of the group of di�eomorphisms is not only

interesting by itself, but also relevant in many aspets. In partiular, in the

study of the long time behaviour of systems: some interesting asymptoti

parameters arise from the long time behaviour of eah of these omponents.

This is the ontend of Ming Liao's paper [9℄ where he establishes a deompo-

sition of the ow on ompat manifolds with fous on Lyapunov exponents.

Here, omplementing this asymptoti radial analysis, we go further on his

deomposition, but with fous on the asymptoti behaviour of the angular

(isometri) omponent.
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Liao's deomposition is a kind of Iwasawa deomposition for ows in

the following sense: Let '

t

be the stohasti ow assoiated to a ertain

stohasti di�erential equation (sde) on a Riemannian manifold M . Fixed

an orthonormal frame u in the tangent spae at x

o

, if the vetor �elds

involved in the sde satis�es ertain geometrial properties, then there exists

a (unique) deomposition '

t

= �

t

Æ	

t

, where �

t

lies in the group of isometries,

	

t

(x

0

) � x

0

and the derivative D	(u) = u s

t

where s

t

is an upper triangular

matrix proess.

In this paper we onsider global geometrial onditions on the manifold

instead of on the vetor �elds of the sde. We show that if the manifold

M is simply onneted and has onstant urvature then Liao's deompo-

sition holds for any stohasti ow. Conversely, if every ow on M has a

Liao's deomposition then M has onstant urvature. We also prove that

under ertain hypothesis it is possible to go further on his deomposition,

fatorizing the ow into three omponents:

'

t

= �

t

Æ	

t

Æ�

t

;

with �

t

as above, 	

t

satisfying the same derivative property as above, (�

t

Æ	

t

)

is a proess in the group of aÆne transformations of M , �

t

(x

0

) � x

0

and

the derivative D�

t

� Id

(T

x

0

M)

.

Along this artile we shall onsider the following Stratonovih sde on a

onneted omplete Riemannian manifold M :

d x

t

=

m

X

j=0

X

j

(x

t

) Æ dW

j

t

(1)

where X

0

; : : : ;X

m

are (smooth) vetor �elds, W

0

t

= dt and (W

1

; : : : ;W

n

)

is a Brownian motion on R

n

with respet to a probability spae (
;F ;P)

and a �ltration F

t

. The assoiated stohasti ow will be denoted by '

t

.

One we deal with asymptoti properties of this ow, in order to avoid �nite

explosion time, we shall assume that the derivatives of the vetor �elds are

bounded (see e.g. Kunita [6℄ or [7℄).

Next setion provides basi results whih are going to be mentioned

in the following setions. Setion 3 presents the deompositions of ows

we mention above. The main results of this setion onern geometrial

onditions on the manifold instead of on the vetor �elds of the sde. We

lose this setion with an example in the hyperboli spae H

n

. Finally, in

Setion 4 we present the onept of rotation matrix and �nd a Furstenberg-

Hasminskii formula for this skew-symmetri matrix (rather neat, ompare

to the one in [12℄).
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2 Geometri preliminaries

We shall denote the linear frame bundle over a d-dimensional smooth man-

ifold M by GL(M). It is a prinipal bundle over M with strutural group

Gl(n;R). A Riemannian struture on M is determined by a hoie of a sub-

bundle of orthonormal frames OM with strutural subgroup O(n;R). We

shall denote by � : GL(M)!M and by �

o

: O(M)!M the projetions of

these frame bundles onto M . The anonial Iwasawa deomposition estab-

lished by the Gram-Shmidt orthonormalization in the elements of a frame

u = (u

1

; : : : ; u

d

) de�nes a projetion ?: u ! u

?

2 OM suh that GL(M)

is again a prinipal bundle over OM with strutural group S � Gl(d;R),

the subgroup of upper triangular matries. The prinipal bundles desribed

above fatorize as � = �

o

Æ ?.

We shall onsider the Levi-Civita onnetion. We reall that for a frame

u in GL(M) a onnetion � determines a diret sum deomposition of the

tangent spaes at u into a horizontal and vertial subspaes whih will be

denoted by T

u

GL(M) = HT

u

GL(M)�V T

u

GL(M). Analogous deomposi-

tion holds in the tangent bundle TOM � T GL(M). For k 2 OM , we have

that HT

k

OM = HT

k

GL(M). Given a vetor �eld X on M , we denote its

horizontal lift to GL(M) by HX(u) 2 T

u

GL(M).

The ovariant derivative of a vetor �eld X at x denoted by rX(x) :

T

x

M ! T

x

M will be written simplyrX(Y ) or r

Y

X for a vetor Y 2 T

x

M .

Via adjoint, we an assoiate torX an element in the strutural groupGl(n)

of the prinipal bundle GL(M) given by the matrix

~

X(u) = ad(u

�1

)rX,

whih ats on the right suh that rX(u) = u

~

X(u). Note that, di�erent

from rX, the right ation matrix

~

X(u) does depend on u.

The natural lift of X to GL(M) is the unique vetor �eld ÆX in GL(M)

suh that L

ÆX(u)

� = 0, where � is the anonial R

d

-valued form on GL(M)

de�ned by �(Hu(�)) = � for all � 2 R

d

. This natural lift is given by:

ÆX(u) =

d

dt

[D �

t

(u)℄j

t=0

:

where D�

t

is the derivative of the loal 1-parameter group of di�eomor-

phisms �

t

assoiated to the vetor �eld X. Naturally, ÆX is equivariant by

the right ation of Gl(d;R) in the �bres.

Lemma 2.1 The projetion ?: GL(M) ! OM is invariant for the lin-

earised ow, in the sense that, for all u 2 GL(M),

(D�

t

(u))

?

= (D�

t

(u

?

))

?

: (2)

Proof:
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This is a onsequene of the ommutativity of the right ation of Gl(d;R)

(in partiular, in this ase, the ation of S) on GL(M) with any other linear

left ations (in partiular, in this ase, the linearised ow). In fat, onsider

the Iwasawa deomposition u = u

?

� s

(u)

for some s

(u)

2 S. Hene,

D�

t

(u

?

� s

(u)

) = (D�

t

u

?

) � s

(u)

= (D�

t

(u))

?

� s

(D�

t

(u))

:

Equality (2) follows by the uniqueness of the Iwasawa deomposition.

�

The vertial omponent of V ÆX(u) at u 2 �

�1

(x

0

) is given by the o-

variant derivative rX(u) (see e.g. Elworthy [3℄, or Kobayashi and Nomizu

[5℄). At the Lie algebra level, onsider the anonial Cartan deomposition

of matries G = K� S into a skew-symmetri and upper triangular ompo-

nent respetively. By projeting in eah of these two omponents, we write

~

X(u) = [

~

X(u)℄

K

+ [

~

X(u)℄

S

. With this notation, the vertial omponent

splits into:

V ÆX(u) = u[

~

X(u)℄

K

+ u[

~

X(u)℄

S

: (3)

The natural lift of X to OM , denoted by (ÆX)

?

is the projetion of ÆX

onto OM , i.e. for k 2 OM ,

(ÆX)

?

(k) :=

d

dt

[D �

t

(k)℄

?

j

t=0

:

Again, we have the deomposition of (ÆX)

?

(k) into horizontal and vertial

omponents: (ÆX)

?

(k) = HÆX(k)+V (ÆX)

?

(k). In terms of the right ation

of

~

X(k), the vertial omponent is simply V (ÆX)

?

(k) = k[

~

X(k)℄

K

. In terms

of the left ation of (rX) we shall denote V (ÆX)

?

(k) = (rX(k))

?

k, where

(rX(k))

?

is a skew-symmetri matrix. The haraterisation of (rX(k))

?

is the ontend of the following lemma.

Lemma 2.2 Let k = (k

1

; : : : ; k

d

) 2 OM with �

o

(k) = x. The image of the

j-th omponent k

j

by the matrix (rX(k))

?

is given by:

(rX(k))

?

k

j

= rX(k

j

)�hrX(k

j

); k

j

ik

j

�

X

r<j

�

hrX(k

r

); k

j

i+ hrX(k

j

); k

r

i

�

k

r

:

Proof:

It is the non-linear version of [12, Prop. 2.1 ℄. For reader's onveniene

we re-write the main steps of the proof. If t 2 R 7�! V

t

2 R

d

is di�erentiable

with V

t

6= 0 for all t 2 (��; �), then:

d

dt

�

V

t

kV

t

k

�

t

=

_

V

t

kV

t

k

�

h

_

V

t

; V

t

i

kV

t

k

3

V

t

; (4)
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where

_

V

t

is the derivative of V

t

.

For sake of simpliity, �x a basis in T

x

M and denote by A the matrix

whih represents the linear transformation rX(x). Now, use formula (4)

with t = 0 in eah oordinate of

(e

At

(k))

?

=

�

V

1

t

kV

1

t

k

; : : : ;

V

n

t

kV

n

t

k

�

;

where eah omponent of the orthogonalisation proess is given by:

V

j

t

= e

At

(k

j

)�

X

r<j

he

At

(k

j

) ; e

At

(k

r

)i

he

At

(k

r

) ; e

At

(k

r

)i

e

At

(k

r

) :

The derivatives satisfy:

dV

j

t

dt

�

�

�

�

�

t=0

= A(k

j

)�

X

r<j

�

hA(k

j

); k

r

i+ hA(k

r

); k

j

i

�

k

r

;

whih gives, by formula (4):

d

dt

 

V

j

t

kV

t

k

!

t=0

= A(k

j

)� hA(k

j

); k

j

ik

j

�

X

r<j

�

hA(k

r

); k

j

i+ hA(k

j

); k

r

i

�

k

r

:

�

One sees the skew-symmetry of (rX(k))

?

heking that

< (rX(k))

?

k

j

; k

i

>= � < (rX(k))

?

k

i

; k

j

> :

2.1 AÆne transformations and isometries

Let Di�(M) be the group of di�eomorphisms of the Riemannian manifold

M given by the exponential of the Lie algebra X (M) of smooth, bounded

derivative vetor �elds. We shall denote by A(M) the Lie group of aÆne

transformations of M whose elements are given by maps � 2 Di�(M) suh

that their derivatives D� preserve horizontal trajetories in TM . Its Lie

algebra a(M) is the set of in�nitesimal aÆne transformations haraterised

by vetor �elds X suh that the Lie derivative of the onnetion form ! on

GL(M) satis�es L

ÆX

! = 0. Yet, X is an in�nitesimal transformation if for

all vetors �elds Y :

rA

X

(Y ) = R(X;Y );

where the tensor A

X

= L

X

�r

X

and R is the urvature (see e.g. Kobayashi

and Nomizu [5, Chap. VI℄).
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For a �xed u 2 GL(M), the linear map

i

1

: a(M) ! T

u

GL(M)

X 7! ÆX(u) (5)

is injetive, see e.g. Kobayashi and Nomizu [5, Thm VI.2.3℄. Denote by

Æa(u) its image in T

u

GL(M).

We shall denote by I(M) the Lie group of isometries of M , I(M) �

A(M). Its Lie algebra I(M) is the spae of Killing vetor �elds or in-

�nitesimal isometries, haraterised by the skew-symmetry of the ovariant

derivative, i.e.,

< rX(Z);W >= � < Z;rX(W ) >;

for all vetors Z;W in a tangent spae T

x

M . Note that, in this ase, by

Lemma 2.2 (up to hange of basis), for any orthonormal frame u we have

that (rX(u))

?

= rX and (ÆX)

?

(u) = ÆX(u).

For a �xed u 2 OM , the linear map

i

2

: I(M) ! T

u

OM

X 7! ÆX(u) (6)

is just a restrition of the map i

1

de�ned above, hene it is also injetive.

Denote by ÆI(u) its image in T

u

OM .

3 Deompositions of Stohasti Flows

Next theorem presents a fatorization of the stohasti ow '

t

assoiated to

the sde (1) into a omponent �

t

whih is a di�usion on the aÆne transfor-

mation group and a omponent �

t

whih �x the initial point and has trivial

derivative. Fix an element u 2 GL(M) with �(u) = x

0

, we shall assume the

following hypothesis on the vetor �elds X

i

, i = 0; 1; : : : ;m involved in the

sde (1):

H1) ÆD�(X

i

)(u) 2 Æa(u), for all aÆne transformation � 2 I(M).

Theorem 3.1 Suppose the vetor �elds X

1

; : : : ;X

m

in the sde (1) satisfy

the hypothesis (H1) for a ertain frame u 2 GL(M), with x

0

= �

o

(u). Then,

the assoiated stohasti ow '

t

has a unique deomposition:

'

t

= �

t

Æ�

t

;

where �

t

is a di�usion in the group of aÆne transformations A(M), �

t

(x

0

) =

x

0

and D�

t

= Id

(T

x

0

M)

for all t � 0.
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Proof:

The proof goes in a similar way of the proof of the M. Liao deomposition

[9, Thm. 1℄ or see Theorem 3.2 below. One the linear map i

1

of equation

(5) is injetive, let X

a

be the unique in�nitesimal aÆne transformation

whih satis�es ÆX

a

(u) = ÆX(u). Hene, obviously, X

a

(x

0

) = X(x

0

) and

rX

a

(x

0

) = rX(x

0

).

Let �

t

be the solution of the following equation in the group A(M), with

�

0

= Id

M

:

d�

t

=

n

X

j=0

�

t

[D�

�1

t

(X

j

)℄

a

Æ dW

j

t

; (7)

where the elements in the Lie algebra a(M) ats on the right in A(M). By

Itô formula in the identity �

t

�

�1

t

= Id

M

one easily �nds the Stratonovih

equation for the inverse �

�1

t

in A(M):

d�

�1

t

= �

m

X

j=0

[D�

�1

t

(X

j

)℄

a

�

�1

t

Æ dW

j

t

:

Now, write �

t

= �

�1

t

Æ '

t

. At the level of the group of di�eomorphism

on M , by Itô formula again, we have the following equation for �

t

:

d�

t

= D�

�1

(Æd'

t

) + (Æd�

�1

t

)'

t

=

m

X

j=0

fD�

�1

t

(X

j

('))� [D�

�1

t

(X

j

)℄

a

�

t

g Æ dW

j

t

=

m

X

j=0

fD�

�1

t

X

j

� [D�

�1

t

(X

j

)℄

a

g(�

t

) Æ dW

j

t

: (8)

In the last line we use the fat that, in a Lie group, the derivative of the left

ation L

g

(X)(h) = L

g

(X(g

�1

h)).

By de�nition of X

a

and equation (8) we have that, not only d�

t

(x

0

) = 0

but also that ÆfD�

�1

t

X

j

� [D�

�1

t

(X

j

)℄

a

g(�

t

) = 0, hene the derivative

proess dD�

t

(u) = 0. This establishes the properties of eah omponent

of the fatorization of '

t

= �

t

Æ �

t

stated in the theorem. Note that, in

general, �

t

is not a di�usion in Di�(M) one its equation involves random

and time dependent vetor �elds.

It only remains to prove the uniqueness of the deomposition. Sup-

pose that �

0

t

Æ �

0

t

= �

t

Æ �

t

where �

0

t

and �

0

t

also satisfy the properties

stated. It implies that �

�1

t

�

0

t

(x

0

) = x

0

for all t � 0. Besides, the derivative

D

x

0

(�

�1

t

�

0

t

) = Id, hene the natural lift to GL(M) satis�es the di�erential

equation dD(�

�1

t

�

0

t

) = 0 . One the map i

1

is injetive, it follows that

�

�1

t

Æ�

0

t

= Id

M

, whih guarantees the uniqueness of the deomposition.
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�

Note that the aÆne transformation proess �

t

depends on the hoie of

the initial frame u. In the proof of the theorem, this dependene appears in

the seletion of the unique X

a

2 a(M) suh that ÆX

a

(u) = ÆX(u).

Now, �x an element u 2 OM . M. Liao [9℄ onsider the following hypoth-

esis on the vetor �elds X

1

; : : : ;X

m

of the sde (1):

H2) [ÆD�(X

i

)(u)℄

?

2 ÆI(u) for every isometry � 2 I(M).

Theorem 3.2 (M. Liao [9℄, Thm. 1) Suppose that for a ertain frame

u 2 GL(M), with x

0

= �

o

(u), the vetor �elds X

0

; : : : ;X

m

of the sde (1)

satisfy the hypothesis (H2). Then, the assoiated stohasti ow '

t

has a

unique deomposition:

'

t

= �

t

Æ	

t

;

where �

t

is a di�usion in the group of isometries I(M), 	

t

(x

0

) = x

0

and

D

x

0

	

t

(u) = u s

t

for all t � 0, where s

t

is a proess in the group of upper

triangular matries.

Proof:

For details, see [9℄, we just reall the equation for the di�usion �

t

, whih

is the omponent whose asymptoti behaviour we are going to explore in

the next setion.

One the linear map i

2

of equation (6) is injetive, we an take X

i

, the

unique in�nitesimal isometry whih satis�es ÆX

i

(u) = (ÆX)

?

(u). Hene,

obviously, X

i

(x

0

) = X(x

0

).

The isometry proess �

t

satis�es the following equation in the group

I(M), with �

0

= Id

M

:

d�

t

=

n

X

j=0

�

t

[D�

�1

t

(X

j

)℄

i

Æ dW

j

t

; (9)

where the elements in the Lie algebra I(M) ats on the right in I(M).

The uniqueness follows easily also from the fat that the map i

2

is inje-

tive (f. proof of uniqueness in Theorem 3.1).

�

We remark that his proof holds for non-ompat manifolds as well. We

also emphasise that the deomposition depends on the initial orthonormal

frame u 2 OM .

Now, juxtaposing the deompositions established by Theorems 3.1 and

3.2, we have the following fatorization of '

t

in three omponents:
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Corollary 3.3 Suppose the vetor �elds X

0

; : : : ;X

m

in the sde (1) satisfy

onditions (H1) and (H2) for a ertain frame u 2 OM , with x

0

= �

o

(u).

Then, the assoiated stohasti ow '

t

has a unique deomposition:

' = �

t

Æ	

t

Æ�

t

;

where eah of the omponents �

t

, 	

t

, �

t

have the properties stated in The-

orems 3.1 and 3.2. Moreover, (�

t

Æ	

t

) is a di�usion in the group of aÆne

transformations.

Proof:

By Theorem 3.1, let '

t

= �

t

Æ �

t

be the unique deomposition where

�

t

is a di�usion in the group of aÆne transformations A(M), �

t

(x

0

) = x

0

and D�

t

= Id

T

x

0

M

for all t � 0.

On the other hand, by Theorem 3.2, let '

t

= �

t

Æ

~

	

t

be the unique

deomposition where �

t

is the di�usion in the group of isometries I(M),

~

	

t

(x

0

) = x

0

and D

x

0

~

	

t

(u) = u ~s

t

for a ertain proess ~s

t

in the group of

upper triangular matries.

Take the proess �

t

and �

t

of the statement of this orollary as de�ned

above. De�ne the proess 	

t

= �

�1

t

�

t

. These assignments de�ne the de-

omposition.

It only remains to prove the derivative property of 	

t

, namely, that

there exists a proess on the group of upper triangular matries suh that

D	

t

(u) = u s

t

. By the properties asserted:

D'

t

(u) = D�

t

ÆD	

t

(u)

= D�

t

ÆD

~

	

t

(u)

= D�

t

(u)~s

t

:

Hene, the upper triangular matrix proess s

t

= ~s

t

. Whih on�rms the

expeted fat that although, in general 	

t

is di�erent from

~

	

t

, they have

the same derivative behaviour (whih arries the Lyapunov information of

the system).

�

3.1 Geometrial onditions on M instead of on the vetor

�elds:

In Liao [9℄ he presents an example of appliation of his deomposition in

the sphere S

n

. The purpose of this setion is to haraterise the spaes

whose vetor �elds will always satisfy the onditions for the deompositions

9



desribed above. It turn out that the Liao deomposition exists for any sde

on M only if M has onstant urvature; in partiular, the further deom-

position of Corollary 3.3 exists for any sde only if M is a at spae. More

preisely, we have the following:

Theorem 3.4 If M is simply onneted with onstant urvature (or their

quotient by disrete groups) then for every sde (1) and every orthonormal

frame u

0

2 OM , the assoiated stohasti ow '

t

has a unique Liao deom-

position '

t

= �

t

Æ 	

t

. Conversely, if every ow '

t

on M has this deompo-

sition then the spae M has onstant urvature.

Proof:

If M has onstant urvature and is simply onneted one heks diretly

that the dimension of I(M) is maximal n(n + 1)=2. Hene the linear map

i

2

de�ned in equation (6) is bijetive. Therefore, hypothesis (H2) is always

satis�ed for any set of vetor �elds.

Conversely, assume that for all vetor �eld X and for every orthonormal

frame u 2 OM , the orresponding ow �

t

has the Liao deomposition �

t

=

�

t

Æ	

t

. Then, the trajetory u

t

in OM indued by �

t

satis�es:

u

t

:= [D � (u)℄

?

= [D�

t

ÆD	

t

(u)℄

?

= D�

t

(u):

We reall that

d

dt

(D�

t

(u)) j

t=0

= (ÆX)

?

(u) (10)

For any �xed u 2 GL(M), the linear map X ! T

u

GL(M) given by

X 7! ÆX(u) is surjetive beause it onerns only loal behaviour of X

on M . Hene, the projetion of its image by ?: T

u

GL(M) ! T

u

?

OM is

also surjetive. In other words, if now u 2 OM , then X 7! (ÆX)

?

(u) is

surjetive. If there exists the deomposition, equality (10) shows that the

dimension of I(M) equals n(n + 1)=2 whih implies that M has onstant

urvature (see, e.g. Kobayashi and Nomizu [5, Thm. VI.3.3℄).

�

As a partiular ase of the theorem above, we have the following on-

ditions on M whih guarantee that every sde on it will have a ow whih

fatorizes in the three omponents stated in Corollary 3.3.

Corollary 3.5 If M is at, simply onneted (or their quotient by disrete

groups) then for every sde (1) and every orthonormal frame u 2 OM , the

10



assoiated stohasti ow '

t

has a unique deomposition ' = �

t

Æ	

t

Æ�

t

as

desribed in Corollary 3.3. Conversely, if every ow '

t

have this deompo-

sition then M is at.

Proof:

If M is at and simply onneted then, heking diretly, we have that

the dimensions of the groups I(M) and A(M) are n(n+ 1)=2 and n(n+ 1)

respetively. This implies that the injetive maps i

1

and i

2

are bijetive,

hene hypotheses (H1) and (H2) are satis�ed for any set of vetor �elds on

M .

Conversely, assume that for all vetor �eld X and for every orthonormal

frame u 2 OM the orresponding ow �

t

has the deomposition �

t

= �

t

Æ

	

t

Æ �

t

with the properties asserted. Then, the trajetory u

t

in GL(M)

indued by �

t

satis�es:

u

t

= D�

t

(u);

where �

t

= �

t

Æ	

t

. We reall that

d

dt

(D�

t

(u)) j

t=0

= ÆX(u): (11)

Again, for a �xed u 2 GL(M), the linear map X 7! ÆX(u) is surjetive

beause it onerns only loal struture of X on M . Hene, equality (11)

implies that the dimension of the group of aÆne transformations A(M)

equals n(n + 1), whih implies that M is at (see, e.g. Kobayashi and

Nomizu [5, Thm. VI.2.3℄).

�

3.2 Examples

Liao [9℄ illustrates his deomposition working out with a unique example

in the sphere S

n

. The results above enlarge the lass of examples to many

well known manifolds inluding projetive spaes, hyperboli manifolds, at

torus and many others non-ompat manifolds. In this setion we shall fous

on the other two simply-onneted ase, namely the at and hyperboli

spaes. We shall onentrate mainly on the isometri part �

t

one this is the

omponent whih we are going to study the long time behaviour in the next

setion.

The Eulidean ase is rather trivial, we just reall that A(R

d

), the group

of aÆne transformations in R

d

(or any of its quotient spae by disrete

11



subgroup) an be represented as a subgroup of Gl(d+ 1;R):

A(R

d

) =

��

1 0

v g

�

with g 2 Gl(d;R) and v is a olumn vetor

�

:

It ats on the left in R

d

through its natural embedding on R

d+1

given by

x 7! (1; x). Given a vetor �eld X and an aÆne frame u, the alulations of

the unique elements X

a

(u) 2 a(R

d

) and X

i

(u) 2 I(R

d

) introdued in the

proofs of Theorems 3.1 and 3.2 are straightforward.

Now, we shall onsider a hyperboli manifold obtained as a homogeneous

spae of the Lorentz group. For other examples (inluding hyperboli spaes

whih do not satisfy our hypotheses) one an have a look in Ratli�e [10℄ and

the referenes therein. Let S =

�

�1 0

0 I

n

�

. The Lorentz group O(1; n) is

the linear group of transformations of R

n+1

whih preserves the quadrati

form < Sx; x >, where < �; � > is the salar produt in R

n+1

. One we are

dealing with ows, we an restrit ourselves to the onneted omponent of

the identity whih will be denoted by:

G = fA 2 O(1; n); det A = 1 and A

11

� 1g:

Its Lie algebra is o(n; 1) = fA;n � n-matrix: A

t

S + SA = 0g whih turns

out to be:

o(n; 1) =

�

0 v

t

v B

�

where v is a olumn vetor and B is in the Lie algebra so(n) of the orthog-

onal group O(n). Our hyperboli spae will be H

n

= G=SO(n) whih is

di�eomorphi to:

H

n

= fx 2 R

d+1

;< Sx; x >= �1 and x

1

� 1g:

The form < v;w >

M

=< Sv;w > de�nes a Riemannian metri on H

n

by

restriting it to its tangent spaes. With this metri, H

n

is a hyperboli

manifold with onstant urvature �1. Naturally, by onstrution, the ation

of G on H

n

preserves this metri (see e.g. Klingenberg [4℄). Given a vetor

�eld X on H

n

, this example will desribe the unique in�nitesimal isometry

X

i

suh that ÆX

i

(u) = (ÆX)

?

(u).

Consider the point N = (1; 0; : : : ; 0) 2 H

n

and an orthonormal frame

u in T

N

M . Denote �

k

= (�=�

k

). A vetor �eld X(x) = a

1

(x) �

1

+

: : : + a

n+1

(x) �

n+1

is tangent to T

x

H

n

at x = (x

1

; : : : ; x

n+1

) if and only

if < SX(x); x >= 0. From this expression one �nds that a

1

(N) = 0 and

�

k

a

1

(N) = a

k

(N), for k = 2; : : : ; n+1. We reall that the map p : G! H

n

given by gN determines a prinipal bundle with strutural group SO(n),

12



hene, there is a natural identi�ation of the oriented orthonormal bundle

SOH

n

with G, see e.g. Elworthy [3℄.

A onvenient (global) parametrisation entred at N is given by the

graphi of the map x

1

=

q

1 +

P

n+1

j=2

(x

j

)

2

. One heks that with respet to

this parametrization, the new basis for the tangent bundle is given by

�

0

k

=

�

x

k

x

1

�

�

1

+ �

k

;

with k = 2; : : : ; n+1. It is easy to verify that the entries of the metri tensor

with respet to this parametrization is:

g

ij

= Æ

ij

�

x

i

x

j

(x

1

)

2

;

where Æ

ij

are the Kroneker symbols. From this formula one sees that the

Christo�el symbols vanishes at N . Moreover, for a vetor �eld desribed

with respet to the anonial basis in R

n+1

as: X(x) = a

1

(x) �

1

+ : : : +

a

n+1

(x) �

n+1

, in the basis indued by the parametrization it has the same

oeÆients, but a

1

:

X(x) = a

2

(x) �

0

2

+ : : :+ a

n+1

(x) �

0

n+1

:

We onlude that the ovariant derivative of X(x) at N with respet to

these bases (whih oinide at N) is simply rX = (�

j

a

i

(N))

2�i;j�n+1

.

The in�nitesimal isometry X

i

(x) whih we are looking for an be repre-

sented by an element A in the Lie algebra so(1; n) suh that X

i

(x) =

~

A(x),

where

~

A is the vetor �eld on H

n

indued by A. In what regards the hori-

zontal omponent, A has to satisfy:

d

dt

(e

At

N) j

t=0

= X(N): (12)

And for the vertial omponent, it has to satisfy:

d

dt

�

e

A

t

�

0

u

��

t=0

=

�

�

(rX(u))

?

u

�

: (13)

Therefore, from equations (12) and (13) we have:

A =

0

B

B

B

�

0 a

2

(N) : : : a

n+1

(N)

a

2

(N)

.

.

.

a

n+1

(N)

([�

j

a

i

℄(u))

?

1

C

C

C

A

:

Note that, if u is the anonial basis in T

N

M them ([�

j

a

i

℄(u))

?

is simply

[(�

j

a

i

)℄

K

.
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4 Rotation matrix

Many relevant results onerning the asymptoti exponential radial be-

haviour of linearised random systems have been ahieved sine the introdu-

tion of the onept of Lyapunov exponents. In partiular, the multipliative

ergodi theorem have been playing a fundamental role on the study of sta-

bility. There are hundreds of papers on the topi (we apologise in advane

for omitting many outstanding ontributions), I would rather suggest the

reader to have a look, for example, in the omprehensive bibliography in the

book of L. Arnold [1℄.

In ontrast with the radial omponent, but omplementing its infor-

mation, in this setion we study the asymptoti behaviour of the angular

part: we shall onsider the long time behaviour of the indued ow in the

orthogonal bundle. Although it is easier to study this indued proess us-

ing the deomposition of ows presented in the previous setion (simply

u

t

= D�

t

(u)), we will be working with this proess, independently of the

existene of this fatorization.

As before, let '

t

be the solution of the sde (1). We reall that for an

initial orthonormal frame u 2 OM with �

o

(u) = x

0

, the indued trajetory

u

t

in OM is given by the uneasing Gram-Shmidt orthonormalization of

the linearised trajetory on GL(M), that is u

t

= (D'

t

(u))

?

. Lemma 2.1

provides a diret way to verify that (D'

t

(�))

?

is indeed a ow in OM .

Considering the right ation of

~

X(u) and the Itô formula, the proess u

t

is the di�usion in OM assoiated to the following Stratonovih sde:

d u

t

=

m

X

j=0

fHÆX

j

(u

t

) + u [

~

X

j

(u)℄

K

g Æ dW

j

t

The matrix of rotation of a given initial orthonormal frame is the asymp-

toti average of the anonial left invariant so(d)-value 1-form in the stru-

tural group O(d) integrated along the trajetories in OM . For non-linear

systems, we parallel transport bak the frame u

t

to the same initial �bre of

u

0

. In other words, onsidering only the vertial omponent of the proess

u

t

, we have the following ovariant sde:

Du

t

=

m

X

j=0

u [

~

X

j

(u)℄

K

Æ dW

j

t

;

where Du

t

means the ovariant derivative ==

�1

t

d==

t

u

t

, with ==

t

: T

x

0

M !

T

x

t

M denoting the parallel transport along the trajetories. (Along this

setion \D" will stand for the ovariant derivative, from the ontext it will
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be lear the distintion between its two denotations). Then, the matrix of

rotation is de�ned by the limit

R(u) = lim

T!1

1

T

Z

T

0

u

�

t

ÆDu

t

;

when the limit exists. Still, in other words, this matrix measures the average

rotation that the indued proess u

t

performs with respet to the parallel

transport of the initial frame ==

t

(u

0

) inside the same tangent bundle T

x

t

M .

Before we arry on with the alulations of the matrix of rotation, note

that if Y is a vetor �eld in OM , then the derivative

Y [

~

X

j

(u)℄

K

=

d

dt

[

~

X

j

(e

uY t

)℄

K

j

t=0

= [

d

dt

e

�Y t

~

X

j

(u) e

Y t

j

t=0

℄

K

= [Y;

~

X

j

(u)℄

K

where the last expression is the projetion into the K Cartan omponent of

the Lie braket. Therefore, by Itô formula, the matrix of rotation satis�es

R(u) = lim

T!1

1

T

8

<

:

Z

T

0

[

~

X

0

(u

t

)℄

K

+

1

2

m

X

j=1

[[

~

X

j

(u

t

)℄

K

;

~

X

j

(u

t

)℄

K

dt+M(t)

9

=

;

where M(t) is an Itô integral of bounded integrands. It is well known that

the average of this omponent vanishes. Therefore, by the ergodi theorem

for Markov proess we have:

Theorem 4.1 If � is an ergodi invariant probability measure on OM for

the indued ow on this spae then, for �-almost all u 2 OM :

R(u) =

Z

OM

[

~

X

0

(k)℄

K

+

1

2

m

X

j=1

[[

~

X

j

(k)℄

K

;

~

X

j

(k)℄

K

d�(k)

.

In partiular, (2; 1)-the entry of the rotation matrix of the frame u =

(u

1

; : : : ; u

d

) orresponds to the rotation number of the vetor u

1

inside the

plane spanned by the 2-frames (u

1

t

; u

2

t

) (see e.g. [11℄ or Arnold and Imkeller

[2℄). In two-dimensional systems, due to the ommutativity of the orthogonal

group SO(2), the rotation matrix is independent of the initial orthonormal

frame, besides, the rotation number measures the asymptoti average angu-

lar rotation of the stable/unstable sub-manifolds along trajetories, where

the rotation is measured with respet to parallel transport, see [11, Setion

6℄.
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When, instead of taking the ation of

~

X(u) on the right, we use the

desription of the vertial omponent V (ÆX)

?

(u) in terms of the left ation

of the skew-symmetri matrix (rX(u))

?

(desribed in Lemma 2.2), we an

work oordinate-wise in eah entry of the matrix of rotation. The equation

of the proess is:

Du

t

=

m

X

j=0

(rX

j

(u))

?

(u) Æ dW

j

t

:

For a ertain ergodi invariant probability measure � on OM , the entries of

the matrix of rotation turn out to be

R(u)

i;j

=

Z

OM

r

ij

(k) d�(k): (14)

where the funtions r

ij

(k) are given in [12, eqn. (10)℄, see also the appendix.

Appendix:

When we work with the vertial vetor �eld ating on the left (repre-

sented by (rX)

?

), we have to overome the diÆulty that the Iwasawa

deomposition of the produt of matries is di�erent from the produts of

the Iwasawa deompositions in this partiular ase (f. Lemma 2.1). This

is the reason for the formulation beoming so tortuous. For example, the

formulae for the entries of the rotation matrix as presented in equation (14)

are, for 1 � i 6= j � d:

r

ij

(k) = < rX

0

(k

j

); k

i

>

+

1

2

m

X

l=1

�

< r

2

X

l

(X

l

; k

j

); k

i

> � < rX

l

(k

j

); k

j

>< rX

l

(k

i

); k

j

>

+ < rX

l

(rX

l

(k

j

)); k

i

> �2 < rX

l

(k

j

); k

j

>< rX

l

(k

j

); k

i

>

+

X

r<j

h

< rX

l

(k

r

); k

j

>< rX

l

(k

i

); k

r

> � < rX

l

(k

j

); k

r

>< rX

l

(k

r

); k

i

>

i

�

X

j<r<i

h

< rX

l

(k

j

); k

r

>< rX

l

(k

r

); k

i

> + < rX

l

(k

i

); k

r

>

i

+ < rX

l

(k

j

);rX

l

(k

i

) > � < rX

l

(k

j

); k

i

>< rX

l

(k

i

); k

i

>

�

:
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