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Abstra
t

We provide geometri
al 
onditions on the manifold for the exis-

ten
e of the Liao's fa
torization of sto
hasti
 
ows [9℄. If M is simply


onne
ted and has 
onstant 
urvature then this de
omposition holds

for any sto
hasti
 
ow, 
onversely, if every 
ow on M has this de
om-

position then M has 
onstant 
urvature. Under 
ertain 
onditions,

it is possible to go further on the fa
torization: '

t

= �

t

Æ 	

t

Æ �

t

,

where �

t

and 	

t

have the same properties of Liao's de
omposition and

(�

t

Æ 	

t

) are aÆne transformations on M . We study the asymptoti


behaviour of the isometri
 
omponent �

t

via rotation matrix, providing

a Furstenberg-Khasminskii formula for this skew-symmetri
 matrix.
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1 Introdu
tion

Fa
torization of non-linear 
ows in a Riemannian manifold into 
omponents

whi
h lies in spe
i�
 subgroups of the group of di�eomorphisms is not only

interesting by itself, but also relevant in many aspe
ts. In parti
ular, in the

study of the long time behaviour of systems: some interesting asymptoti


parameters arise from the long time behaviour of ea
h of these 
omponents.

This is the 
ontend of Ming Liao's paper [9℄ where he establishes a de
ompo-

sition of the 
ow on 
ompa
t manifolds with fo
us on Lyapunov exponents.

Here, 
omplementing this asymptoti
 radial analysis, we go further on his

de
omposition, but with fo
us on the asymptoti
 behaviour of the angular

(isometri
) 
omponent.
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Liao's de
omposition is a kind of Iwasawa de
omposition for 
ows in

the following sense: Let '

t

be the sto
hasti
 
ow asso
iated to a 
ertain

sto
hasti
 di�erential equation (sde) on a Riemannian manifold M . Fixed

an orthonormal frame u in the tangent spa
e at x

o

, if the ve
tor �elds

involved in the sde satis�es 
ertain geometri
al properties, then there exists

a (unique) de
omposition '

t

= �

t

Æ	

t

, where �

t

lies in the group of isometries,

	

t

(x

0

) � x

0

and the derivative D	(u) = u s

t

where s

t

is an upper triangular

matrix pro
ess.

In this paper we 
onsider global geometri
al 
onditions on the manifold

instead of on the ve
tor �elds of the sde. We show that if the manifold

M is simply 
onne
ted and has 
onstant 
urvature then Liao's de
ompo-

sition holds for any sto
hasti
 
ow. Conversely, if every 
ow on M has a

Liao's de
omposition then M has 
onstant 
urvature. We also prove that

under 
ertain hypothesis it is possible to go further on his de
omposition,

fa
torizing the 
ow into three 
omponents:

'

t

= �

t

Æ	

t

Æ�

t

;

with �

t

as above, 	

t

satisfying the same derivative property as above, (�

t

Æ	

t

)

is a pro
ess in the group of aÆne transformations of M , �

t

(x

0

) � x

0

and

the derivative D�

t

� Id

(T

x

0

M)

.

Along this arti
le we shall 
onsider the following Stratonovi
h sde on a


onne
ted 
omplete Riemannian manifold M :

d x

t

=

m

X

j=0

X

j

(x

t

) Æ dW

j

t

(1)

where X

0

; : : : ;X

m

are (smooth) ve
tor �elds, W

0

t

= dt and (W

1

; : : : ;W

n

)

is a Brownian motion on R

n

with respe
t to a probability spa
e (
;F ;P)

and a �ltration F

t

. The asso
iated sto
hasti
 
ow will be denoted by '

t

.

On
e we deal with asymptoti
 properties of this 
ow, in order to avoid �nite

explosion time, we shall assume that the derivatives of the ve
tor �elds are

bounded (see e.g. Kunita [6℄ or [7℄).

Next se
tion provides basi
 results whi
h are going to be mentioned

in the following se
tions. Se
tion 3 presents the de
ompositions of 
ows

we mention above. The main results of this se
tion 
on
ern geometri
al


onditions on the manifold instead of on the ve
tor �elds of the sde. We


lose this se
tion with an example in the hyperboli
 spa
e H

n

. Finally, in

Se
tion 4 we present the 
on
ept of rotation matrix and �nd a Furstenberg-

Hasminskii formula for this skew-symmetri
 matrix (rather neat, 
ompare

to the one in [12℄).
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2 Geometri
 preliminaries

We shall denote the linear frame bundle over a d-dimensional smooth man-

ifold M by GL(M). It is a prin
ipal bundle over M with stru
tural group

Gl(n;R). A Riemannian stru
ture on M is determined by a 
hoi
e of a sub-

bundle of orthonormal frames OM with stru
tural subgroup O(n;R). We

shall denote by � : GL(M)!M and by �

o

: O(M)!M the proje
tions of

these frame bundles onto M . The 
anoni
al Iwasawa de
omposition estab-

lished by the Gram-S
hmidt orthonormalization in the elements of a frame

u = (u

1

; : : : ; u

d

) de�nes a proje
tion ?: u ! u

?

2 OM su
h that GL(M)

is again a prin
ipal bundle over OM with stru
tural group S � Gl(d;R),

the subgroup of upper triangular matri
es. The prin
ipal bundles des
ribed

above fa
torize as � = �

o

Æ ?.

We shall 
onsider the Levi-Civita 
onne
tion. We re
all that for a frame

u in GL(M) a 
onne
tion � determines a dire
t sum de
omposition of the

tangent spa
es at u into a horizontal and verti
al subspa
es whi
h will be

denoted by T

u

GL(M) = HT

u

GL(M)�V T

u

GL(M). Analogous de
omposi-

tion holds in the tangent bundle TOM � T GL(M). For k 2 OM , we have

that HT

k

OM = HT

k

GL(M). Given a ve
tor �eld X on M , we denote its

horizontal lift to GL(M) by HX(u) 2 T

u

GL(M).

The 
ovariant derivative of a ve
tor �eld X at x denoted by rX(x) :

T

x

M ! T

x

M will be written simplyrX(Y ) or r

Y

X for a ve
tor Y 2 T

x

M .

Via adjoint, we 
an asso
iate torX an element in the stru
tural groupGl(n)

of the prin
ipal bundle GL(M) given by the matrix

~

X(u) = ad(u

�1

)rX,

whi
h a
ts on the right su
h that rX(u) = u

~

X(u). Note that, di�erent

from rX, the right a
tion matrix

~

X(u) does depend on u.

The natural lift of X to GL(M) is the unique ve
tor �eld ÆX in GL(M)

su
h that L

ÆX(u)

� = 0, where � is the 
anoni
al R

d

-valued form on GL(M)

de�ned by �(Hu(�)) = � for all � 2 R

d

. This natural lift is given by:

ÆX(u) =

d

dt

[D �

t

(u)℄j

t=0

:

where D�

t

is the derivative of the lo
al 1-parameter group of di�eomor-

phisms �

t

asso
iated to the ve
tor �eld X. Naturally, ÆX is equivariant by

the right a
tion of Gl(d;R) in the �bres.

Lemma 2.1 The proje
tion ?: GL(M) ! OM is invariant for the lin-

earised 
ow, in the sense that, for all u 2 GL(M),

(D�

t

(u))

?

= (D�

t

(u

?

))

?

: (2)

Proof:
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This is a 
onsequen
e of the 
ommutativity of the right a
tion of Gl(d;R)

(in parti
ular, in this 
ase, the a
tion of S) on GL(M) with any other linear

left a
tions (in parti
ular, in this 
ase, the linearised 
ow). In fa
t, 
onsider

the Iwasawa de
omposition u = u

?

� s

(u)

for some s

(u)

2 S. Hen
e,

D�

t

(u

?

� s

(u)

) = (D�

t

u

?

) � s

(u)

= (D�

t

(u))

?

� s

(D�

t

(u))

:

Equality (2) follows by the uniqueness of the Iwasawa de
omposition.

�

The verti
al 
omponent of V ÆX(u) at u 2 �

�1

(x

0

) is given by the 
o-

variant derivative rX(u) (see e.g. Elworthy [3℄, or Kobayashi and Nomizu

[5℄). At the Lie algebra level, 
onsider the 
anoni
al Cartan de
omposition

of matri
es G = K� S into a skew-symmetri
 and upper triangular 
ompo-

nent respe
tively. By proje
ting in ea
h of these two 
omponents, we write

~

X(u) = [

~

X(u)℄

K

+ [

~

X(u)℄

S

. With this notation, the verti
al 
omponent

splits into:

V ÆX(u) = u[

~

X(u)℄

K

+ u[

~

X(u)℄

S

: (3)

The natural lift of X to OM , denoted by (ÆX)

?

is the proje
tion of ÆX

onto OM , i.e. for k 2 OM ,

(ÆX)

?

(k) :=

d

dt

[D �

t

(k)℄

?

j

t=0

:

Again, we have the de
omposition of (ÆX)

?

(k) into horizontal and verti
al


omponents: (ÆX)

?

(k) = HÆX(k)+V (ÆX)

?

(k). In terms of the right a
tion

of

~

X(k), the verti
al 
omponent is simply V (ÆX)

?

(k) = k[

~

X(k)℄

K

. In terms

of the left a
tion of (rX) we shall denote V (ÆX)

?

(k) = (rX(k))

?

k, where

(rX(k))

?

is a skew-symmetri
 matrix. The 
hara
terisation of (rX(k))

?

is the 
ontend of the following lemma.

Lemma 2.2 Let k = (k

1

; : : : ; k

d

) 2 OM with �

o

(k) = x. The image of the

j-th 
omponent k

j

by the matrix (rX(k))

?

is given by:

(rX(k))

?

k

j

= rX(k

j

)�hrX(k

j

); k

j

ik

j

�

X

r<j

�

hrX(k

r

); k

j

i+ hrX(k

j

); k

r

i

�

k

r

:

Proof:

It is the non-linear version of [12, Prop. 2.1 ℄. For reader's 
onvenien
e

we re-write the main steps of the proof. If t 2 R 7�! V

t

2 R

d

is di�erentiable

with V

t

6= 0 for all t 2 (��; �), then:

d

dt

�

V

t

kV

t

k

�

t

=

_

V

t

kV

t

k

�

h

_

V

t

; V

t

i

kV

t

k

3

V

t

; (4)
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where

_

V

t

is the derivative of V

t

.

For sake of simpli
ity, �x a basis in T

x

M and denote by A the matrix

whi
h represents the linear transformation rX(x). Now, use formula (4)

with t = 0 in ea
h 
oordinate of

(e

At

(k))

?

=

�

V

1

t

kV

1

t

k

; : : : ;

V

n

t

kV

n

t

k

�

;

where ea
h 
omponent of the orthogonalisation pro
ess is given by:

V

j

t

= e

At

(k

j

)�

X

r<j

he

At

(k

j

) ; e

At

(k

r

)i

he

At

(k

r

) ; e

At

(k

r

)i

e

At

(k

r

) :

The derivatives satisfy:

dV

j

t

dt

�

�

�

�

�

t=0

= A(k

j

)�

X

r<j

�

hA(k

j

); k

r

i+ hA(k

r

); k

j

i

�

k

r

;

whi
h gives, by formula (4):

d

dt

 

V

j

t

kV

t

k

!

t=0

= A(k

j

)� hA(k

j

); k

j

ik

j

�

X

r<j

�

hA(k

r

); k

j

i+ hA(k

j

); k

r

i

�

k

r

:

�

One sees the skew-symmetry of (rX(k))

?


he
king that

< (rX(k))

?

k

j

; k

i

>= � < (rX(k))

?

k

i

; k

j

> :

2.1 AÆne transformations and isometries

Let Di�(M) be the group of di�eomorphisms of the Riemannian manifold

M given by the exponential of the Lie algebra X (M) of smooth, bounded

derivative ve
tor �elds. We shall denote by A(M) the Lie group of aÆne

transformations of M whose elements are given by maps � 2 Di�(M) su
h

that their derivatives D� preserve horizontal traje
tories in TM . Its Lie

algebra a(M) is the set of in�nitesimal aÆne transformations 
hara
terised

by ve
tor �elds X su
h that the Lie derivative of the 
onne
tion form ! on

GL(M) satis�es L

ÆX

! = 0. Yet, X is an in�nitesimal transformation if for

all ve
tors �elds Y :

rA

X

(Y ) = R(X;Y );

where the tensor A

X

= L

X

�r

X

and R is the 
urvature (see e.g. Kobayashi

and Nomizu [5, Chap. VI℄).
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For a �xed u 2 GL(M), the linear map

i

1

: a(M) ! T

u

GL(M)

X 7! ÆX(u) (5)

is inje
tive, see e.g. Kobayashi and Nomizu [5, Thm VI.2.3℄. Denote by

Æa(u) its image in T

u

GL(M).

We shall denote by I(M) the Lie group of isometries of M , I(M) �

A(M). Its Lie algebra I(M) is the spa
e of Killing ve
tor �elds or in-

�nitesimal isometries, 
hara
terised by the skew-symmetry of the 
ovariant

derivative, i.e.,

< rX(Z);W >= � < Z;rX(W ) >;

for all ve
tors Z;W in a tangent spa
e T

x

M . Note that, in this 
ase, by

Lemma 2.2 (up to 
hange of basis), for any orthonormal frame u we have

that (rX(u))

?

= rX and (ÆX)

?

(u) = ÆX(u).

For a �xed u 2 OM , the linear map

i

2

: I(M) ! T

u

OM

X 7! ÆX(u) (6)

is just a restri
tion of the map i

1

de�ned above, hen
e it is also inje
tive.

Denote by ÆI(u) its image in T

u

OM .

3 De
ompositions of Sto
hasti
 Flows

Next theorem presents a fa
torization of the sto
hasti
 
ow '

t

asso
iated to

the sde (1) into a 
omponent �

t

whi
h is a di�usion on the aÆne transfor-

mation group and a 
omponent �

t

whi
h �x the initial point and has trivial

derivative. Fix an element u 2 GL(M) with �(u) = x

0

, we shall assume the

following hypothesis on the ve
tor �elds X

i

, i = 0; 1; : : : ;m involved in the

sde (1):

H1) ÆD�(X

i

)(u) 2 Æa(u), for all aÆne transformation � 2 I(M).

Theorem 3.1 Suppose the ve
tor �elds X

1

; : : : ;X

m

in the sde (1) satisfy

the hypothesis (H1) for a 
ertain frame u 2 GL(M), with x

0

= �

o

(u). Then,

the asso
iated sto
hasti
 
ow '

t

has a unique de
omposition:

'

t

= �

t

Æ�

t

;

where �

t

is a di�usion in the group of aÆne transformations A(M), �

t

(x

0

) =

x

0

and D�

t

= Id

(T

x

0

M)

for all t � 0.
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Proof:

The proof goes in a similar way of the proof of the M. Liao de
omposition

[9, Thm. 1℄ or see Theorem 3.2 below. On
e the linear map i

1

of equation

(5) is inje
tive, let X

a

be the unique in�nitesimal aÆne transformation

whi
h satis�es ÆX

a

(u) = ÆX(u). Hen
e, obviously, X

a

(x

0

) = X(x

0

) and

rX

a

(x

0

) = rX(x

0

).

Let �

t

be the solution of the following equation in the group A(M), with

�

0

= Id

M

:

d�

t

=

n

X

j=0

�

t

[D�

�1

t

(X

j

)℄

a

Æ dW

j

t

; (7)

where the elements in the Lie algebra a(M) a
ts on the right in A(M). By

Itô formula in the identity �

t

�

�1

t

= Id

M

one easily �nds the Stratonovi
h

equation for the inverse �

�1

t

in A(M):

d�

�1

t

= �

m

X

j=0

[D�

�1

t

(X

j

)℄

a

�

�1

t

Æ dW

j

t

:

Now, write �

t

= �

�1

t

Æ '

t

. At the level of the group of di�eomorphism

on M , by Itô formula again, we have the following equation for �

t

:

d�

t

= D�

�1

(Æd'

t

) + (Æd�

�1

t

)'

t

=

m

X

j=0

fD�

�1

t

(X

j

('))� [D�

�1

t

(X

j

)℄

a

�

t

g Æ dW

j

t

=

m

X

j=0

fD�

�1

t

X

j

� [D�

�1

t

(X

j

)℄

a

g(�

t

) Æ dW

j

t

: (8)

In the last line we use the fa
t that, in a Lie group, the derivative of the left

a
tion L

g

(X)(h) = L

g

(X(g

�1

h)).

By de�nition of X

a

and equation (8) we have that, not only d�

t

(x

0

) = 0

but also that ÆfD�

�1

t

X

j

� [D�

�1

t

(X

j

)℄

a

g(�

t

) = 0, hen
e the derivative

pro
ess dD�

t

(u) = 0. This establishes the properties of ea
h 
omponent

of the fa
torization of '

t

= �

t

Æ �

t

stated in the theorem. Note that, in

general, �

t

is not a di�usion in Di�(M) on
e its equation involves random

and time dependent ve
tor �elds.

It only remains to prove the uniqueness of the de
omposition. Sup-

pose that �

0

t

Æ �

0

t

= �

t

Æ �

t

where �

0

t

and �

0

t

also satisfy the properties

stated. It implies that �

�1

t

�

0

t

(x

0

) = x

0

for all t � 0. Besides, the derivative

D

x

0

(�

�1

t

�

0

t

) = Id, hen
e the natural lift to GL(M) satis�es the di�erential

equation dD(�

�1

t

�

0

t

) = 0 . On
e the map i

1

is inje
tive, it follows that

�

�1

t

Æ�

0

t

= Id

M

, whi
h guarantees the uniqueness of the de
omposition.

7



�

Note that the aÆne transformation pro
ess �

t

depends on the 
hoi
e of

the initial frame u. In the proof of the theorem, this dependen
e appears in

the sele
tion of the unique X

a

2 a(M) su
h that ÆX

a

(u) = ÆX(u).

Now, �x an element u 2 OM . M. Liao [9℄ 
onsider the following hypoth-

esis on the ve
tor �elds X

1

; : : : ;X

m

of the sde (1):

H2) [ÆD�(X

i

)(u)℄

?

2 ÆI(u) for every isometry � 2 I(M).

Theorem 3.2 (M. Liao [9℄, Thm. 1) Suppose that for a 
ertain frame

u 2 GL(M), with x

0

= �

o

(u), the ve
tor �elds X

0

; : : : ;X

m

of the sde (1)

satisfy the hypothesis (H2). Then, the asso
iated sto
hasti
 
ow '

t

has a

unique de
omposition:

'

t

= �

t

Æ	

t

;

where �

t

is a di�usion in the group of isometries I(M), 	

t

(x

0

) = x

0

and

D

x

0

	

t

(u) = u s

t

for all t � 0, where s

t

is a pro
ess in the group of upper

triangular matri
es.

Proof:

For details, see [9℄, we just re
all the equation for the di�usion �

t

, whi
h

is the 
omponent whose asymptoti
 behaviour we are going to explore in

the next se
tion.

On
e the linear map i

2

of equation (6) is inje
tive, we 
an take X

i

, the

unique in�nitesimal isometry whi
h satis�es ÆX

i

(u) = (ÆX)

?

(u). Hen
e,

obviously, X

i

(x

0

) = X(x

0

).

The isometry pro
ess �

t

satis�es the following equation in the group

I(M), with �

0

= Id

M

:

d�

t

=

n

X

j=0

�

t

[D�

�1

t

(X

j

)℄

i

Æ dW

j

t

; (9)

where the elements in the Lie algebra I(M) a
ts on the right in I(M).

The uniqueness follows easily also from the fa
t that the map i

2

is inje
-

tive (
f. proof of uniqueness in Theorem 3.1).

�

We remark that his proof holds for non-
ompa
t manifolds as well. We

also emphasise that the de
omposition depends on the initial orthonormal

frame u 2 OM .

Now, juxtaposing the de
ompositions established by Theorems 3.1 and

3.2, we have the following fa
torization of '

t

in three 
omponents:

8



Corollary 3.3 Suppose the ve
tor �elds X

0

; : : : ;X

m

in the sde (1) satisfy


onditions (H1) and (H2) for a 
ertain frame u 2 OM , with x

0

= �

o

(u).

Then, the asso
iated sto
hasti
 
ow '

t

has a unique de
omposition:

' = �

t

Æ	

t

Æ�

t

;

where ea
h of the 
omponents �

t

, 	

t

, �

t

have the properties stated in The-

orems 3.1 and 3.2. Moreover, (�

t

Æ	

t

) is a di�usion in the group of aÆne

transformations.

Proof:

By Theorem 3.1, let '

t

= �

t

Æ �

t

be the unique de
omposition where

�

t

is a di�usion in the group of aÆne transformations A(M), �

t

(x

0

) = x

0

and D�

t

= Id

T

x

0

M

for all t � 0.

On the other hand, by Theorem 3.2, let '

t

= �

t

Æ

~

	

t

be the unique

de
omposition where �

t

is the di�usion in the group of isometries I(M),

~

	

t

(x

0

) = x

0

and D

x

0

~

	

t

(u) = u ~s

t

for a 
ertain pro
ess ~s

t

in the group of

upper triangular matri
es.

Take the pro
ess �

t

and �

t

of the statement of this 
orollary as de�ned

above. De�ne the pro
ess 	

t

= �

�1

t

�

t

. These assignments de�ne the de-


omposition.

It only remains to prove the derivative property of 	

t

, namely, that

there exists a pro
ess on the group of upper triangular matri
es su
h that

D	

t

(u) = u s

t

. By the properties asserted:

D'

t

(u) = D�

t

ÆD	

t

(u)

= D�

t

ÆD

~

	

t

(u)

= D�

t

(u)~s

t

:

Hen
e, the upper triangular matrix pro
ess s

t

= ~s

t

. Whi
h 
on�rms the

expe
ted fa
t that although, in general 	

t

is di�erent from

~

	

t

, they have

the same derivative behaviour (whi
h 
arries the Lyapunov information of

the system).

�

3.1 Geometri
al 
onditions on M instead of on the ve
tor

�elds:

In Liao [9℄ he presents an example of appli
ation of his de
omposition in

the sphere S

n

. The purpose of this se
tion is to 
hara
terise the spa
es

whose ve
tor �elds will always satisfy the 
onditions for the de
ompositions

9



des
ribed above. It turn out that the Liao de
omposition exists for any sde

on M only if M has 
onstant 
urvature; in parti
ular, the further de
om-

position of Corollary 3.3 exists for any sde only if M is a 
at spa
e. More

pre
isely, we have the following:

Theorem 3.4 If M is simply 
onne
ted with 
onstant 
urvature (or their

quotient by dis
rete groups) then for every sde (1) and every orthonormal

frame u

0

2 OM , the asso
iated sto
hasti
 
ow '

t

has a unique Liao de
om-

position '

t

= �

t

Æ 	

t

. Conversely, if every 
ow '

t

on M has this de
ompo-

sition then the spa
e M has 
onstant 
urvature.

Proof:

If M has 
onstant 
urvature and is simply 
onne
ted one 
he
ks dire
tly

that the dimension of I(M) is maximal n(n + 1)=2. Hen
e the linear map

i

2

de�ned in equation (6) is bije
tive. Therefore, hypothesis (H2) is always

satis�ed for any set of ve
tor �elds.

Conversely, assume that for all ve
tor �eld X and for every orthonormal

frame u 2 OM , the 
orresponding 
ow �

t

has the Liao de
omposition �

t

=

�

t

Æ	

t

. Then, the traje
tory u

t

in OM indu
ed by �

t

satis�es:

u

t

:= [D � (u)℄

?

= [D�

t

ÆD	

t

(u)℄

?

= D�

t

(u):

We re
all that

d

dt

(D�

t

(u)) j

t=0

= (ÆX)

?

(u) (10)

For any �xed u 2 GL(M), the linear map X ! T

u

GL(M) given by

X 7! ÆX(u) is surje
tive be
ause it 
on
erns only lo
al behaviour of X

on M . Hen
e, the proje
tion of its image by ?: T

u

GL(M) ! T

u

?

OM is

also surje
tive. In other words, if now u 2 OM , then X 7! (ÆX)

?

(u) is

surje
tive. If there exists the de
omposition, equality (10) shows that the

dimension of I(M) equals n(n + 1)=2 whi
h implies that M has 
onstant


urvature (see, e.g. Kobayashi and Nomizu [5, Thm. VI.3.3℄).

�

As a parti
ular 
ase of the theorem above, we have the following 
on-

ditions on M whi
h guarantee that every sde on it will have a 
ow whi
h

fa
torizes in the three 
omponents stated in Corollary 3.3.

Corollary 3.5 If M is 
at, simply 
onne
ted (or their quotient by dis
rete

groups) then for every sde (1) and every orthonormal frame u 2 OM , the

10



asso
iated sto
hasti
 
ow '

t

has a unique de
omposition ' = �

t

Æ	

t

Æ�

t

as

des
ribed in Corollary 3.3. Conversely, if every 
ow '

t

have this de
ompo-

sition then M is 
at.

Proof:

If M is 
at and simply 
onne
ted then, 
he
king dire
tly, we have that

the dimensions of the groups I(M) and A(M) are n(n+ 1)=2 and n(n+ 1)

respe
tively. This implies that the inje
tive maps i

1

and i

2

are bije
tive,

hen
e hypotheses (H1) and (H2) are satis�ed for any set of ve
tor �elds on

M .

Conversely, assume that for all ve
tor �eld X and for every orthonormal

frame u 2 OM the 
orresponding 
ow �

t

has the de
omposition �

t

= �

t

Æ

	

t

Æ �

t

with the properties asserted. Then, the traje
tory u

t

in GL(M)

indu
ed by �

t

satis�es:

u

t

= D�

t

(u);

where �

t

= �

t

Æ	

t

. We re
all that

d

dt

(D�

t

(u)) j

t=0

= ÆX(u): (11)

Again, for a �xed u 2 GL(M), the linear map X 7! ÆX(u) is surje
tive

be
ause it 
on
erns only lo
al stru
ture of X on M . Hen
e, equality (11)

implies that the dimension of the group of aÆne transformations A(M)

equals n(n + 1), whi
h implies that M is 
at (see, e.g. Kobayashi and

Nomizu [5, Thm. VI.2.3℄).

�

3.2 Examples

Liao [9℄ illustrates his de
omposition working out with a unique example

in the sphere S

n

. The results above enlarge the 
lass of examples to many

well known manifolds in
luding proje
tive spa
es, hyperboli
 manifolds, 
at

torus and many others non-
ompa
t manifolds. In this se
tion we shall fo
us

on the other two simply-
onne
ted 
ase, namely the 
at and hyperboli


spa
es. We shall 
on
entrate mainly on the isometri
 part �

t

on
e this is the


omponent whi
h we are going to study the long time behaviour in the next

se
tion.

The Eu
lidean 
ase is rather trivial, we just re
all that A(R

d

), the group

of aÆne transformations in R

d

(or any of its quotient spa
e by dis
rete

11



subgroup) 
an be represented as a subgroup of Gl(d+ 1;R):

A(R

d

) =

��

1 0

v g

�

with g 2 Gl(d;R) and v is a 
olumn ve
tor

�

:

It a
ts on the left in R

d

through its natural embedding on R

d+1

given by

x 7! (1; x). Given a ve
tor �eld X and an aÆne frame u, the 
al
ulations of

the unique elements X

a

(u) 2 a(R

d

) and X

i

(u) 2 I(R

d

) introdu
ed in the

proofs of Theorems 3.1 and 3.2 are straightforward.

Now, we shall 
onsider a hyperboli
 manifold obtained as a homogeneous

spa
e of the Lorentz group. For other examples (in
luding hyperboli
 spa
es

whi
h do not satisfy our hypotheses) one 
an have a look in Rat
li�e [10℄ and

the referen
es therein. Let S =

�

�1 0

0 I

n

�

. The Lorentz group O(1; n) is

the linear group of transformations of R

n+1

whi
h preserves the quadrati


form < Sx; x >, where < �; � > is the s
alar produ
t in R

n+1

. On
e we are

dealing with 
ows, we 
an restri
t ourselves to the 
onne
ted 
omponent of

the identity whi
h will be denoted by:

G = fA 2 O(1; n); det A = 1 and A

11

� 1g:

Its Lie algebra is o(n; 1) = fA;n � n-matrix: A

t

S + SA = 0g whi
h turns

out to be:

o(n; 1) =

�

0 v

t

v B

�

where v is a 
olumn ve
tor and B is in the Lie algebra so(n) of the orthog-

onal group O(n). Our hyperboli
 spa
e will be H

n

= G=SO(n) whi
h is

di�eomorphi
 to:

H

n

= fx 2 R

d+1

;< Sx; x >= �1 and x

1

� 1g:

The form < v;w >

M

=< Sv;w > de�nes a Riemannian metri
 on H

n

by

restri
ting it to its tangent spa
es. With this metri
, H

n

is a hyperboli


manifold with 
onstant 
urvature �1. Naturally, by 
onstru
tion, the a
tion

of G on H

n

preserves this metri
 (see e.g. Klingenberg [4℄). Given a ve
tor

�eld X on H

n

, this example will des
ribe the unique in�nitesimal isometry

X

i

su
h that ÆX

i

(u) = (ÆX)

?

(u).

Consider the point N = (1; 0; : : : ; 0) 2 H

n

and an orthonormal frame

u in T

N

M . Denote �

k

= (�=�

k

). A ve
tor �eld X(x) = a

1

(x) �

1

+

: : : + a

n+1

(x) �

n+1

is tangent to T

x

H

n

at x = (x

1

; : : : ; x

n+1

) if and only

if < SX(x); x >= 0. From this expression one �nds that a

1

(N) = 0 and

�

k

a

1

(N) = a

k

(N), for k = 2; : : : ; n+1. We re
all that the map p : G! H

n

given by gN determines a prin
ipal bundle with stru
tural group SO(n),

12



hen
e, there is a natural identi�
ation of the oriented orthonormal bundle

SOH

n

with G, see e.g. Elworthy [3℄.

A 
onvenient (global) parametrisation 
entred at N is given by the

graphi
 of the map x

1

=

q

1 +

P

n+1

j=2

(x

j

)

2

. One 
he
ks that with respe
t to

this parametrization, the new basis for the tangent bundle is given by

�

0

k

=

�

x

k

x

1

�

�

1

+ �

k

;

with k = 2; : : : ; n+1. It is easy to verify that the entries of the metri
 tensor

with respe
t to this parametrization is:

g

ij

= Æ

ij

�

x

i

x

j

(x

1

)

2

;

where Æ

ij

are the Krone
ker symbols. From this formula one sees that the

Christo�el symbols vanishes at N . Moreover, for a ve
tor �eld des
ribed

with respe
t to the 
anoni
al basis in R

n+1

as: X(x) = a

1

(x) �

1

+ : : : +

a

n+1

(x) �

n+1

, in the basis indu
ed by the parametrization it has the same


oeÆ
ients, but a

1

:

X(x) = a

2

(x) �

0

2

+ : : :+ a

n+1

(x) �

0

n+1

:

We 
on
lude that the 
ovariant derivative of X(x) at N with respe
t to

these bases (whi
h 
oin
ide at N) is simply rX = (�

j

a

i

(N))

2�i;j�n+1

.

The in�nitesimal isometry X

i

(x) whi
h we are looking for 
an be repre-

sented by an element A in the Lie algebra so(1; n) su
h that X

i

(x) =

~

A(x),

where

~

A is the ve
tor �eld on H

n

indu
ed by A. In what regards the hori-

zontal 
omponent, A has to satisfy:

d

dt

(e

At

N) j

t=0

= X(N): (12)

And for the verti
al 
omponent, it has to satisfy:

d

dt

�

e

A

t

�

0

u

��

t=0

=

�

�

(rX(u))

?

u

�

: (13)

Therefore, from equations (12) and (13) we have:

A =

0

B

B

B

�

0 a

2

(N) : : : a

n+1

(N)

a

2

(N)

.

.

.

a

n+1

(N)

([�

j

a

i

℄(u))

?

1

C

C

C

A

:

Note that, if u is the 
anoni
al basis in T

N

M them ([�

j

a

i

℄(u))

?

is simply

[(�

j

a

i

)℄

K

.

13



4 Rotation matrix

Many relevant results 
on
erning the asymptoti
 exponential radial be-

haviour of linearised random systems have been a
hieved sin
e the introdu
-

tion of the 
on
ept of Lyapunov exponents. In parti
ular, the multipli
ative

ergodi
 theorem have been playing a fundamental role on the study of sta-

bility. There are hundreds of papers on the topi
 (we apologise in advan
e

for omitting many outstanding 
ontributions), I would rather suggest the

reader to have a look, for example, in the 
omprehensive bibliography in the

book of L. Arnold [1℄.

In 
ontrast with the radial 
omponent, but 
omplementing its infor-

mation, in this se
tion we study the asymptoti
 behaviour of the angular

part: we shall 
onsider the long time behaviour of the indu
ed 
ow in the

orthogonal bundle. Although it is easier to study this indu
ed pro
ess us-

ing the de
omposition of 
ows presented in the previous se
tion (simply

u

t

= D�

t

(u)), we will be working with this pro
ess, independently of the

existen
e of this fa
torization.

As before, let '

t

be the solution of the sde (1). We re
all that for an

initial orthonormal frame u 2 OM with �

o

(u) = x

0

, the indu
ed traje
tory

u

t

in OM is given by the un
easing Gram-S
hmidt orthonormalization of

the linearised traje
tory on GL(M), that is u

t

= (D'

t

(u))

?

. Lemma 2.1

provides a dire
t way to verify that (D'

t

(�))

?

is indeed a 
ow in OM .

Considering the right a
tion of

~

X(u) and the Itô formula, the pro
ess u

t

is the di�usion in OM asso
iated to the following Stratonovi
h sde:

d u

t

=

m

X

j=0

fHÆX

j

(u

t

) + u [

~

X

j

(u)℄

K

g Æ dW

j

t

The matrix of rotation of a given initial orthonormal frame is the asymp-

toti
 average of the 
anoni
al left invariant so(d)-value 1-form in the stru
-

tural group O(d) integrated along the traje
tories in OM . For non-linear

systems, we parallel transport ba
k the frame u

t

to the same initial �bre of

u

0

. In other words, 
onsidering only the verti
al 
omponent of the pro
ess

u

t

, we have the following 
ovariant sde:

Du

t

=

m

X

j=0

u [

~

X

j

(u)℄

K

Æ dW

j

t

;

where Du

t

means the 
ovariant derivative ==

�1

t

d==

t

u

t

, with ==

t

: T

x

0

M !

T

x

t

M denoting the parallel transport along the traje
tories. (Along this

se
tion \D" will stand for the 
ovariant derivative, from the 
ontext it will
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be 
lear the distin
tion between its two denotations). Then, the matrix of

rotation is de�ned by the limit

R(u) = lim

T!1

1

T

Z

T

0

u

�

t

ÆDu

t

;

when the limit exists. Still, in other words, this matrix measures the average

rotation that the indu
ed pro
ess u

t

performs with respe
t to the parallel

transport of the initial frame ==

t

(u

0

) inside the same tangent bundle T

x

t

M .

Before we 
arry on with the 
al
ulations of the matrix of rotation, note

that if Y is a ve
tor �eld in OM , then the derivative

Y [

~

X

j

(u)℄

K

=

d

dt

[

~

X

j

(e

uY t

)℄

K

j

t=0

= [

d

dt

e

�Y t

~

X

j

(u) e

Y t

j

t=0

℄

K

= [Y;

~

X

j

(u)℄

K

where the last expression is the proje
tion into the K Cartan 
omponent of

the Lie bra
ket. Therefore, by Itô formula, the matrix of rotation satis�es

R(u) = lim

T!1

1

T

8

<

:

Z

T

0

[

~

X

0

(u

t

)℄

K

+

1

2

m

X

j=1

[[

~

X

j

(u

t

)℄

K

;

~

X

j

(u

t

)℄

K

dt+M(t)

9

=

;

where M(t) is an Itô integral of bounded integrands. It is well known that

the average of this 
omponent vanishes. Therefore, by the ergodi
 theorem

for Markov pro
ess we have:

Theorem 4.1 If � is an ergodi
 invariant probability measure on OM for

the indu
ed 
ow on this spa
e then, for �-almost all u 2 OM :

R(u) =

Z

OM

[

~

X

0

(k)℄

K

+

1

2

m

X

j=1

[[

~

X

j

(k)℄

K

;

~

X

j

(k)℄

K

d�(k)

.

In parti
ular, (2; 1)-the entry of the rotation matrix of the frame u =

(u

1

; : : : ; u

d

) 
orresponds to the rotation number of the ve
tor u

1

inside the

plane spanned by the 2-frames (u

1

t

; u

2

t

) (see e.g. [11℄ or Arnold and Imkeller

[2℄). In two-dimensional systems, due to the 
ommutativity of the orthogonal

group SO(2), the rotation matrix is independent of the initial orthonormal

frame, besides, the rotation number measures the asymptoti
 average angu-

lar rotation of the stable/unstable sub-manifolds along traje
tories, where

the rotation is measured with respe
t to parallel transport, see [11, Se
tion

6℄.
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When, instead of taking the a
tion of

~

X(u) on the right, we use the

des
ription of the verti
al 
omponent V (ÆX)

?

(u) in terms of the left a
tion

of the skew-symmetri
 matrix (rX(u))

?

(des
ribed in Lemma 2.2), we 
an

work 
oordinate-wise in ea
h entry of the matrix of rotation. The equation

of the pro
ess is:

Du

t

=

m

X

j=0

(rX

j

(u))

?

(u) Æ dW

j

t

:

For a 
ertain ergodi
 invariant probability measure � on OM , the entries of

the matrix of rotation turn out to be

R(u)

i;j

=

Z

OM

r

ij

(k) d�(k): (14)

where the fun
tions r

ij

(k) are given in [12, eqn. (10)℄, see also the appendix.

Appendix:

When we work with the verti
al ve
tor �eld a
ting on the left (repre-

sented by (rX)

?

), we have to over
ome the diÆ
ulty that the Iwasawa

de
omposition of the produ
t of matri
es is di�erent from the produ
ts of

the Iwasawa de
ompositions in this parti
ular 
ase (
f. Lemma 2.1). This

is the reason for the formulation be
oming so tortuous. For example, the

formulae for the entries of the rotation matrix as presented in equation (14)

are, for 1 � i 6= j � d:

r

ij

(k) = < rX

0

(k

j

); k

i

>

+

1

2

m

X

l=1

�

< r

2

X

l

(X

l

; k

j

); k

i

> � < rX

l

(k

j

); k

j

>< rX

l

(k

i

); k

j

>

+ < rX

l

(rX

l

(k

j

)); k

i

> �2 < rX

l

(k

j

); k

j

>< rX

l

(k

j

); k

i

>

+

X

r<j

h

< rX

l

(k

r

); k

j

>< rX

l

(k

i

); k

r

> � < rX

l

(k

j

); k

r

>< rX

l

(k

r

); k

i

>

i

�

X

j<r<i

h

< rX

l

(k

j

); k

r

>< rX

l

(k

r

); k

i

> + < rX

l

(k

i

); k

r

>

i

+ < rX

l

(k

j

);rX

l

(k

i

) > � < rX

l

(k

j

); k

i

>< rX

l

(k

i

); k

i

>

�

:
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