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Abstract

We present versions of Hartman-Grobman theorems for random dynamical systems
(RDS) in the discrete and continuous case. We apply the same random norm used
by Wanner [23], but instead of using difference equations, we perform an apropriate
generalization of the deterministic arguments in an adequate space of measurable
homeomorphisms to extend his result with weaker hypotheses and simpler argu-
ments.
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1. Introduction

The celebrated Hartman-Grobman theorems play a fundamental rule in the theory of
dynamical systems once one can obtain properties of a certain deterministic system
around a hyperbolic fixed point via a conjugation with a linearised system. Precisely,
consider the dynamical system in R” generated by the following differential equation:

z= f(z), (1.1)

where f is a C! vector field with a singularity at p € R™. Let (,)icr, be the solution
flow of this equation. Counsider the system generated by the linearization of the vector
field f at p, i.e., calling A = Df(p), take the linear equation:
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o= Aw (1.2)

and denote by ®; = eA! its fundamental linear solution. Hartman [12] and Grobman
[11] have proved that if the singularity p is a hyperbolic fixed point of the system,
that is, if the eigenvalues of A have non-vanishing real part then there exists an open
neighbourhood U C R™ of p and a homeomorphism s : U — h(U) C R™ with h(p) =0
which is a topological conjugacy of the trajectories of these systems. Namely, for all
x € U we have that:

eMh(x) = ho g, (z).

The proof is obtained performing first a demonstration to the discrete case for local
diffeomorphisms in the following sense, let f be a C''-diffeomorphism in R™ such that p €
R™ is a hyperbolic fixed point (the modulo of the eigenvalues of A = D f(p) are different
from one), then there exists an open neighbourhood U of p and a homeomorphism
h : U — h(U) C R™ with h(p) = 0, such that for z in U we have the following
conjugacy:

Aoh(z) =ho f(x).

Later, in 1960, Hartman [13] proved that if f has continuous second derivative and
the real part of the eigenvalues have all the same sign (all positive or all negative), then
the trajectories can be conjugated by a C'-diffeomorphism (cf. Section 4).

The main motivation for this article is to find a version of the Hartman-Grobman
theorem for continuous random dynamical systems, particularly for stochastic flows
generated by an Stratonovich stochastic differential equation (SDE):

n
dx; = fo(zi) dt+ ) fi(w:) odBj (1.3)
i=1
where (B}, ..., BP) is a Brownian motion in R” based on a certain complete probability

space (2, F,P) and f; : R™ — R™ i =0,1,...,n, are smooth vector fields such that
there exists a stochastic solution flow of diffeomorphisms ¢ : R x Q@ x R™ — R™ (see
e.g. Kunita [16] or [17]).

We shall assume that all vector fields f; have a singularity at p € R" | hence
o(t,w,p) = p for all (t,w) € RxQ. We say that p is a stochastic hyperbolic fixed point
of ¢ if the Lyapunov spectrum of the system at point p does not contain zero (see e.g.
Arnold [1] or Carverhill [5], [6]).

Let ®(t,w) = Dy(t,w,p) be the solution flow of the linearized SDE:

n
dzy = Dfo(p)z dt + Z Dfi(p)z o dBy.
=1



In this context, we are looking for a random measurable local homeomorphism h(w)
such that

O(t,w) o h(w,x) = h(fi(w),") o p(t,w, x); (1.4)

for  in a neighbourhood of p, t in a certain interval containing zero and 6y : Q — Q is
the canonical shift on the Wiener space.

One of the first results concerning this kind of generalisation of the Hartman-
Grobman theorems was given by T. Wanner [23], where the arguments were based
in random difference equation to get initially the discrete generalised version w-wise.
His proof is completed showing that the random homeomorphism is in fact measurable.
Our approach in this article is a proper random adaptation of the well-known deter-
ministic proof, which here is extended to an appropriate Banach space of measurable
homeomorphisms Homeo(2, R™), with respect to an adequate norm (see next section).
We shall follow mainly the deterministic arguments presented in Palis and Melo [19]
and Sternberg [21].

Our hypothesis turn out to be weaker than Wanner’s hypothesis in [23], basically:
integrability instead of boundedness. Nevertheless, like him, we also could not disregard
the random norm in the Euclidean space. We emphasise that, although apparently this
norm leads to artificial hypotheses, it is rather an intrinsic parameter for this problem; it
comes directly from the multiplicative ergodic theorem, which one has to deal whenever
dealing with linearised random systems.

The article is organised in the following way: in Section 2 we introduce the ba-
sic spaces, the norms and properties which we are going to work with in the following
sections. In Section 3 we present global and local versions of the Hartman-Grobman the-
orem for random diffeomorphisms. Roughly speaking: let f be an element of C3 (2, R™),
the space of measurable C'*-maps f(-,-) : @ x R™ — R™ which fix the origin. Suppose
that the origin is a hyperbolic point, i.e. the Lyapunov exponents

1
A= lim —log|®(n,w)v]

n—too n,

are all different from zero, for all v € R™,v # 0, where

A(Op—1w)...A(w), n >0,
O(n,w) =< 1, n =0,
A Y Ow)... A (0_1w), n<O,

and A(w) = Df(w,0). We present necessary conditions on the non-linear component
¥(w,z) := f(w,z) — Df(w,0)z, which guarantees that for almost every w € 2 there
exists a random neighbourhood U (w) of the origin and a map h € Homeo(Q2, R") with
h(w,0) = 0, such that if z € U(w) then



Df(w,0)h(w)(z) = h(61w)(:) o f(w,z). (1.5)
In the Section 4, motivated by the mentioned regularity results of Hartman [13],
we study the differentiability of the homeomorphism A which performs the conjugation.
In Section 5 we show a random global version of the Hartman-Grobman theorem for a
continuous C''-random dynamical systems. The local case was explored for SDE. The
existence of the conjugation does not depend directly on the vector fields of the SDE,
but rather on the parameter B.(w) (defined in the Proposition 2.1) which establishes
the equivalence between the random and the Euclidean norm.
Finally, in the appendix we show how to extend our results to hyperbolic random
fixed point.

2. Basic Framework

Consider (2, F,P) a complete probability space. For T = R or T = Z we shall denote
a group of ergodic transformations on €2 by 6; : Q& — Q, for all t € T (in the discrete
case sometimes we will find the notation 6% clearer than 6;). We shall recall some basic
structures and results (for details, see e.g. L. Arnold [1]).

Definition 2.1 A measurable map ¢ : T x Q@ x R® — R™, (t,w,z) — @(t,w,z) is
called a random dynamical system or (cocycle) of C*-maps, k > 1, on R™ (abbreviated
C*k — RDS) over 0, if there exists a measurable subset Qy C Q, P(Qg) = 1 which is
0-invariant for allt € T and such that for w € Qg the following properties are satisfied:

i) o(,w,-) is continuous;

ii) ¢(t,w,-) is a C*—diffeomorphisms for all t € T.;

iii) Fort,s € T, z € R™; o(t + s,w, ) = p(s,0w,.) o p(t,w,x) (cocycle property).
If (t,w,-) is linear, the structure (p,0) is called a linear cocycle.

We introduce the well known Osseledec’s multiplicative ergodic theorem (MET), a
crucial result on the linear algebra of RDS.

Theorem 2.1 (MET) Let ® a linear RDS on R™ over the ergodic group of ergodic
transformations (0;)ier and assume the following integrability conditions:

log™ sup [|®(¢,-)]| + logt sup H<I>_1(t,-)H GLI(Q,}",P).
0<t<1 0<t<1
Then, there ezists a Oy—invariant set Qy € F with P(Qy) = 1, and real numbers

A1 > Ao > ... >\, (the Lyapunov exponents) with multiplicities d;, ¥, d; = m, such
that for every w € Qg the following holds:



i) There is a splitting of R™ into random subspaces E;(w)

R" = Bi(w) ® - & By(w),

where each F;(w) depends measurably on w, with non-random dimensions dim E;(w) =

d; and

O(t,w)Ej(w) = Ei(0iw) (2.1)
fort € T and i = 1,2,---,p (the subspaces E;(w) are called the Oseledec’s sub-
spaces);

ii) for every v € R™ we have:
.1
tllinoo n log ||®(t,w)v|| = Ai <= v € E;j(w)\ {0}.

Proof: See, e.g., Osseledts [20], Ruelle [22] or L. Arnold [1] and the references therein.
g

Definition 2.2 In the situation of MET, we say that the linear RDS ® is hyperbolic if
none of the Lyapunov exponents is zero.
In the hyperbolic case, for each w € Qy we can define the stable and unstable

subspaces: E;(w) and E,(w) respectively by:

Eiw):= @ Ejw) and E,(w):=@ Ejw).
Ai<0 Ai>0

Hence, for every ¢t € T and every w € {2y we have the splitting of the Euclidean space:
Rm = ES(Ht(U) D Eu (0,5(4)),

For each z € R™ we will write 2 = z4(w) + 2, (w); where z4(w) = 7y, (x), with 7y, :
R™ — E4(w) a projection on Es(w) along Ey(w). Analogously, z,(w) = my . ().

We introduce a random norm which satisfies the same nice properties (with respect
to a linear RDS) of the Euclidean norm (with respect to a deterministic linear system):

Definition 2.3 (Random scalar product) Fiz an arbitrary constant a > 0. In the
same contezt of the MET, for w € Qg and for x = ®_ z; and y = ®Y_ y; with z;,y; €
E;(w) define

p
(z,y), = Z (T3, vi)y, 5

=1
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where for u;,v; € Eij(w) we set

/Oo (@(t,w)ui,@(t,w)vi>dt

o2(\it+al])

for T =R,
—00
(u’HU’L)w =

<¢(n7w)ui7¢(n7w)vi> _
ZneZ eZ(Ain+a|n\) ? fOT‘ T= Z’

and (u;,v;), = 0 if u; € Ej(w) and vj € Ej(w) for i # j. For w & Qo we set (z,y),, =
(z,y).

Proposition 2.1 The following properties hold:

a) (z,y), is a random scalar product in R™ which depends measurably on w;

b) For each € > 0 there exists a measurable map B.(.) : Q@ — [1,400) such that for all
zeR™:

1
Be(w)

and B.(0;w) < B.(w)e!l"l where ||:1:||i = (z, z)

]l < flzll, < Be(w) ||z (2.2)

»: 8 the random norm;

¢) For each w € Qq, i = 1...,p,, z; € Bj(w) and t € T:

erit—alt| Hxl“w < ||‘I>(t7w)$i“0tw < hittalt] ||£U1,||u) (2.3)

Proof: See L. Arnold [1, Thm. 3.7.4] or P. Boxler [4]. O
The following inequalities come straightforward from equation (2.3). They will play
an essential rule in the prove of the main results of next section.

Corollary 2.2 Fiz a constant a such that the intervals [\; — a, \; + a] are disjoint and
0¢[Ni—a,Ai+a] foralli=1,---,p.

1) Let Ay = max{\; <0}, A\, = min{)\; >0} and § any number in the interval
(0, min {—As — a, Ay — a}) then:

1@ (t,w)zslg,, < e lasll,  for allt >0, (2.4)

and
H@(t,w)_lquw <e Pt |Zullg,, forallt>0. (2.5)



2) Taking A := max {\;,—\,} we have that

e~ fzll, < N0t w)zly,, < MM lall, forteT,  (26)

and

e~ (AFa)lt] Hx”ﬂtw < ‘|<I)(t7w)_1$Hw < e(Ata)lt] ||$||0tw forteT. (2.7)

The following definitions will introduce the spaces and norms which we are going
to work with along this article. Next definition states the natural ambient where the
conjugacy which we are looking for lives.

Definition 2.3 Homeo(2, R™) is the space of random homeomorphisms given by mea-
surables h(-,-) : @ x R™ — R™ such that for each w € Q, h(w,) : R™ — R™ is a
homeomorphism.

Definition 2.4 Let k be a positive integer. CF(Q, R™) is the space of random C*-maps
given by measurables u(-,-) : QxR™ — R™, such that for each w € Q, u(w,-) € CK(R™).
In particular, C(2,R™) := C°(2,R™) is the space of random continuous maps. The
notation C(])“(Q,Rm) will refer to the subspace such that all w in this subspace fix the
origin, i.e. u(w,0) =0 for almost all w € 2.

It will be convenient to establish the following decomposition in the space C§ (2, R™).
Consider, as before, the projections on the stable and unstable subspace 7, : R™ —
Es(w) and my,, : R™ — E,(w) respectively, each random Cf§-map u has a unique
decomposition:

u(w) = us(w) + uy(w)
where ug(w) = 7y, 0 u(w) and wu,(w) = 7y, © u(w). We shall denote this direct sum

decomposition by
O(I)C(Qv Rm) = O(I)C,s(Qv Rm) ©® C[]iu(Qv R™ )

Definition 2.5
a) Cp(2,R™) is the space of random bounded continuous maps u(w,-) such that:

Hﬁummg=ES@H%WJWJ+EFWH%WJWW<+W-
TER™ TEeR™

Note that ||| ¢, rmy s @ norm.

b) Cp,(2,R™) is the subspace of random bounded continuous maps which fix the origin,
i.e. u € Cop(Q,R™) C Cp(2,R™) if u(w,0) =0 for almost all w. We shall denote
the norm in Cy(§2, R™) restricted to this subspace by ||-[|c, , o rm)-
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c) C&,b(Q,Rm) is the space of random bounded differentiable maps which fix the origin
given by u(w,-) such that:

sup sup H(DU(w,fﬁ)v)sllw]

lulloz@rmy = lull my +E
Gy (Q,R™) Co,b(S2,R™) TER™ [y, <1

+E | sup sup [[(Du(w,z)v)],| < +oo.

TER™ [[of], <1

The last space stated in item (c¢) will be used in section 4, where we will discuss
regularity of the conjugation. The decomposition mentioned above of C¥(2,R™) re-
stricts naturally to a direct sum decomposition of each of these spaces according to
the projection on stable and unstable random subspace. Hence we shall denote by
Cps(,R™), Cop,s(2,R™) and C(},b,s(Q’ R™) the stable components and by Cp (€2, R™),
Co,p,u (2, R™) and C&,b,u(ﬂ, R™) the unstable component of each of the three spaces of
Definition 2.5.

Proposition 2.4 The spaces Cp(Q, R™), Cy (2, R™) and C&,b(Q, R™) are Banach spaces
in theirs respective norms.

Proof: We prove the result for Cp(€2,R™). One easily checks that Cp,(©2,R™) C
Cy(2,R™) is a closed subspace. For C&’b(Q, R™) the proof goes with the same arguments,
only adapting to the norm in C} (R™)

Let {hi},—; C Cp(2,R™) be a sequence whose series converges absolutely. We have
to prove that the series itself converges in C, (€2, R™). We have, by definition, that

. _
DB sup [l(he)s(w, ), | < oo

and

ZE sup ||(hk:)u(w7 )“w < +oo
k=1 LR -

To fix the ideas, we concentrate the calculations on the stable component. Let
Gn(w)s = Dkt sup ()5 (), and Glw)s = 352, Sup 1(hk)s()ll,, then, by the

Beppo-Levi convergence theorem G(w)s < +oo for all w € Q! C Q such that P(Q!) = 1.
Moreover, by Proposition 2.1:

Z sup ||(hg)s(w, )|l < B(w {Z sup [(hk)s(w, ), }
k=1 K™



Since Cp(R™) is a Banach space with the supremum norm , there exists H(w,-) €
Cy(R™) for each w € Q' and Y32, (hg)s(w, ) = H(w,-), moreover H(w,-) is measurable
since this is a limit of measurable map (assume without lost of generality that H(w) =0
if w ¢ Q). Since
n

Y ()s(w,) — H(w,")

k=1

< B(w)

> ()s(w, ) — H(%')H

w k=1

then, fixed w, we have that » ;_,(ht)s(w,-) = H(w,) in the sup ||-||,, norm. Thus
Rm

n

Z(hk)s()

k=1

sup
Rm

< ZSHP 1(he)s ()l »
k=1 K™

w

therefore, when n — oo we have that sup ||H(w,")||,, < G(w)s, moreover
Rm

n

H(wv ) - Z(hk)s(wv )

k=1

< 2G(w)s,

J-

We claim that H(w,-) € Csu(Q,R™). In fact, if w € Q' C Q, and z € R™, we have
that >y, (hi)s(w,z) € Eg(w) for all n; since > _; (h)s(w, ) = H(w, ) then H(w,z)
€ Ey(w) = Ey(w). For w ¢ Q! we have H(w,z) =0 € E,(w).

Analogously, for the unstable part, there exists a random continuous map K €
Cp,u (2, R™) such that

sup
Rm

w

then, by the dominated convergence theorem

H - Z(hk)s(wa )

k=1

lim E

n—o0

sup
Rm

n
nli{goE Slél,-,ll) K(wa ) - kz_l(hk)u(wa ) w] =
The proof finishes taking h = H + K . a

In what follows, in order to assure the existent of the Lyapunov exponents for the
linear cocycle @, we shall always assume the hypothesis of the MET that log™ ||A]|,
log™ HA_IH € L'(Q).

3. Discrete Case

In this section we show a global and a local version of the Hartman-Grobman theorem
(HGT) for a random map f € C3(2, R™). We start with the global version.



3.1. Global version in R™

Let f € Dif§(Q,R™), the space of random global diffeomorphisms of R™. We shall
denote by ¥(w,z) the non-linear part of f, i.e.:

U(w,z) := f(w,z) — A(w)z,

where A(w) = D f(w,0).
Besides assuming that the origin is a hyperbolic fix point, we shall assume the
following hypotheses on the non-linear part W:

1—e B

(H1) (Globally Lipschitz in the random norm): there exists a constant L < TVoekTa

such that for a.a. w € 2, and all z,y € R™ we have

Ws(w, z) = Ws(w,y)llg, < Lllz=yl,,

Wy (w, ) = Volw,y)llg, < Lz —yll,,
where (3, A, a are chosen as in Corollary 2.2.

(H2) (Integrability of the supremum in the random norm): there exists a constant
M > 0 such that

Blsup | %4(6) () + Bl 50 | 9.(0) (o) < M.
We recall that Wanner [23, Thm 3.3] assumes, besides (H1), the almost sure bounded
hypothesis:
s (@) (@)llg, <M and o (W) (@) g, < M;

Our technique consists basically in decomposing the homeomorphism h(w,-) which we
are looking for into A = (I +u), then find v in Cj (2, R™) using a fixed point argument.

Theorem 3.1 (HGT, global discrete case) Let f € Dif}(w, R™) such that the ori-
gin is a hyperbolic fized point. Assume that the non-linear part V satisfies (H1) and
(H2). Then there exists a unique h € Homeo (2, R™) such that

AW)() = h(bw) ™ o f(w,") o h(w, ).

Proof: Write h(w,-) = I + u(w,-) with u € Cpp(Q2,R™) where I(w,z) = = for all
(w,z) € Q x R™. The first step is to solve the following equation:

(I + u(fw))A(w) = f(w)(I + u(w))

10



which is equivalent to:

Alw)u(w) — u(fw)A(w) = =T (w)(I + u(w)). (3.1)

The second step is to prove that its unique solution (I + u(w,-)) is invertible with
continuous inverse. We split the proof into the following five lemmas.

Lemma 3.1 There exists a unique solution u of equation (8.1) in Cpp(€2, R™).

Proof: Define the linear operator £ : Cy (2, R™) — Cj (€2, R™) given by
Lu(w) := A0 ' w)u(@tw) — u(w)A(0 lw).

We claim that £ is well defined and is invertible. Factorize £ =A o £* where A, L* :
Cop(,R™) — Cop(2,R™) are given by

Au(w) = A0 w)u(0~ w),

and
Lru(w) := u(w) — A(w) tu(fw)A(w).

Now, we shall work separately with the operators A and £* to show that they are
well defined and invertible. We recall the invariance of the stable and unstable subspaces
Ei(w) and E,(w) from the MET, equation (2.1):

A0 w) : By (07 'w) = By u(w).
By the inequalities (2.4) and (2.6) in Corollary (2.2) we have that:
Al ooy = B [supl| @], +sup [ (A ()],

= E -sup H(Zus)(w)Hw + sup H(Zuu)(w)Hw]
L R™ Rm™

E | sup HA(H_lw)us(G_lw) Hw + sup HA(H_lw)uu(H_lw) Hw]
L R™ Rm

IN

8 sup s (0710) -, | + ¢ sup (010 )

IN

clluley@mm)

where c is a positive constant. Hence A is a continuous operator.

11



Onme easily checks that the inverse of A is given by (A) lu(w) = A(w) lu(bw).
Moreover we have that H(Z)_IH < M in fact, let u € Cpp(€2, R™) then:

I sy = E|sup o) ), + s 46) w6,

IN

4 [sup (0Ol | + <8 [sup s 0,
< M lullgy o mm

since, by definition in Corollary 2.2, 0 < 8 < A + a.
Analogously, for £*, by inequalities (2.5), (2.7) and using again the invariance of the
subspaces: A(w)™!: B, ,(0w) — Es,(w), we have that:

€ ey = E|sup €@l +sup ||(£*u>u(w>uw]
< B |sup )+ sup ) w040 |
Rm™ Rm™
HE [sup @), + 509 [A(0) 0 (00) A

IN

& [sup o)1, +e+8 fsup uus(ew)A(w)new]

+E [%p ||uu(w>||w] P [ﬁ?p ||uu<ew>A<w>||aw]
< “’U’HCO,b(Q,Rm)’

for some constant ¢/, hence £* is continuous. Now, we show that £* is invertible.
Initially note that

[us(w) — A(w)*lus(ew)A(w)x] € Es(w) (3.2)
and
[uy (W) — A(w) " uy (Bw) A(w)z] € Ey(w) (3.3)

for all z € R™, hence L* preserves each component of the decomposition Cp (€2, R™) =
Co,p,s(2,R™) @ Cp . (2, R™). We shall consider the decomposition £* = L3 @ L}, where

L3 = £ |y 0em) and L] 1= L£°

Co,p,u ($2,R™) -

Going further in the decomposition, we will write £ = (I +7) and L = (I + S),
where 7 : Cpps(,R™) = Cops(,R™) and S : Cpp (2, R™) = Cpp (2, R™) are
given by

Tus(w) := —A(w) ™ us(fw) A(w)

12



and

Sty (w) = —A(w)  uy, (fw) A(w).

Equations (3.2) and (3.3) guarantee that the operators S and 7 are well defined. One
easily checks that 7 is invertible with

T lus(w) = —A0 ' w)us (07 w) A0 w) ™t
Moreover, by the inequalities (2.5) and (2.7) of Corollary 2.2 we have:
17 = s [T us(w)]

llusll=1

~ s E[supHAe w)us (607 w)A(e—lwrle]
[lusl|=1

IN

e sup E[supHus (0~ w)A(H_lw)_lHalw]
lJus (=1

= ¢ sup E[supHus 0 lw Ha 1 ]

llus ll=1
= 6_/8’
Therefore, —7 ! is a contraction, and by the von Neumann theorem (see e.g. Hutson
e Pym [14, p. 86]) £; = I+ T is invertible with ||(1 +7)7!|| < £ 53

Considering the unstable component, the same argument shows that ||S| < e .
Therefore, £ = (I+8) isan 1som0rphlsm with ||(£;)7!|| < L= Hence, L* = Li&L;;

is invertible with H (L") IH < 176_5.
Going back to the original operator £ = A o L* we have that

A+a
1—eh
Consider the operator Py : Cp (2, R™) = Cp (2, R™) given by

Pyu(w) := =T (07 ' w)(I + u) (0 'w).

1™ =

The integrability hypothesis (H2) is used to guarantee that the operator Py is well
defined, in fact:

E[sup 12,0 w) (I +u) (0 'w))z|| | SE|sup [|T,(0 'w)z| | <M,
TER™ i LzeR™ i

and

E[sup | a0~ Lo) (I 4 u) (0 w))z Hw <E| sup |[Wu(6~ L)z H < M.
TrER™ J LzeR™ .
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Finally, consider the operator u : Cp (€2, R™) — Cp (€2, R™) given by the composi-
tion:

p(u) == L7 o Py (u).
Note that a fixed point of p satisfies

A0 w)u(@ 1 w) — u(w) A0 w) = =T (0 tw) (I + u)(0 lw)

which is equivalent to the conjugation equation (3.1).
The Lipschitz hypothesis (H1) is used in this proof exclusively to guarantee that u
is a contraction. In fact: Let u; and uy be arbitrary elements in Cp (2, R™), then:

lpe(ur) — M(U2)“co,b(Q,Rm) < Hﬁ_IH [P (u1) — P\I’(UZ)HCO,b(Q,Rm) :

The second factor on the right hand side is:

E [Sup [Py (u1) = Py (u2))s(@)ll,, + sup [|(Pe(u1) - 7’\IJ(Uz))u(c‘))llw]
Rm Rm™

< E [sup H—\I/s(ﬁ_lw)(f + 1) (07 w) + Ty (07 w) (I + up) (0 w) Hw]

Rm

+E [sup |00 ) +01)(00) + B0 T + )00
Rm
< LE [sup H—ul(e_lw) + u2(0_1w)Hg,1w + sup H—ul(G_lw) + uy (07 w) Hﬂlw:|
Rm Rm
< 2V2L Jur — U2HC’0,b(Q,Rm) )
hence
eA+a
[(u1) = p(u2)ll ey, mm) < mhﬁL lur = u2llgy , (mm) -

Therefore, by hypothesis (H1), the map p is a contraction. The proof is completed by
the Banach fixed point theorem. a

Lemma 3.2 There exists a unique v € Cy (2, R™) such that
A@)((I + (@) = (I +0(0w)) (Aw) + ().
Proof: This equation is equivalent to
Aw)v(w) —v(fw)(A + ¥)(w) = ¥(w).
Define the linear operator H : Cy (2, R™) — Cy (2, R™) by
H(0) (@) = A0~ w)o(0w) — o(w)(A + )(0w).

14



Using the same kind of calculations which we did with the operator £ of the last lemma,
we conclude that A is continuous and invertible with

1 ehta

e
]
We define the operator D in the space of random applications by Dv(w) = v(6w).
Hypothesis (H2) says that D(¥) € Cyp(2,R™). Hence, there exists a unique v €
Cop(Q2,R™) such that v = H 1 o D(T). O

We remark that Hypothesis (H1) does not appear in the proof of Lemma 3.2. We
will refer to this lemma again in the proof of Theorem 5.2.

Lemma 3.3 There exists a unique solution w € Cp (2, R™) to the equation
(I +w)(fw)(A+ V) (w) =(A+9)(w)(I +w)(w),
which s the trivial w =0 a.s..
Proof: The equation is equivalent to
Aw)w(w) —w(bw)(A + V) (w) = -V (w)w(w).
Define the operator Qg : Cp (2, R™) — Cp (2, R™) by
Qu(w)(w) := =T (0 tw)w(d 'w).
Hypothesis (H2) over ¥ guarantees that Qg is well defined. Consider the map [ :
Cop(,R™) — Cp (2, R™) given by
Blw) :==H ™" o Qu(w),

where H is the operator defined in the proof of Lemma 3.2. We show that (§ is a
contraction. Let ui,uy € Cpp(€2, R™), from Hypothesis (H1) we have

18(u1) = B(u2) gy yommy < [[H7H[1Quun (w) — Quuz(w)ll ¢, ,(m)
6A+a,

S 1ot [?13}? =507 ) (wn) (07 w) + \Ifs(e—lw)(w)(e—lw)\lw]

+E [?;n? H—\Ilu(eflw)(ul)(eflw) + \I/u(elw)(UQ)(le)Hw]

eA+a . .
< . e—,BL(]E [?R?WP H—u1(6' w) + ug(f w)Hglw]
+E [sup H—ul(ﬁ_lw) + up (0™ w) He—lw]
Rm
< L2y/2eM e
S {8 w1 — U2||Co,b(Q,Rm) .
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Hence f is a contraction. Therefore there exists a unique fixed point f(w) = w which
implies that w = 0 a.s. a

Lemma 3.4 There exists a unique solution z € Cy (2, R™) to the equation
(I+ z)(fw)A(w) = A(w)(I + 2)(w),
which is the trivial z =0 a.s..

Proof: It is a particular case of Lemma 3.3 with ¥ = 0. a

Lemma 3.5 Consider the elements u and v from Lemmas 3.1 and 3.2. Then (I +u) €
Homeo(£2, R™) moreover (I +u)~' = (I +v).

Proof: In fact, from Lemmas 3.1 and 3.2 we have that

(I +u(w))(I +v(fw))(A(w) + ¥V (w)) = (I + u(fw)A(w)(I+v(w))

= (Aw) + ¥(w) +uw)( +v(w)),

and by Lemma 3.3 we find (I 4+ u)(I +v) = 1.
On the other hand:

(I +v(0w))(I +u(fw)A(w) = (I+v(lw))(A+ P)(w)( + u(w))

= AW)(I +v(w))I +u(w)),

and by Lemma 3.4 we find (I +v)(I +u) = I. It concludes the proof of the theorem. O
The next example illustrates a simple application of this result.

Example 3.1. Consider a map f € C*(2, R?) given by

h(z) )
eB(w)?”’

flw,z,y) = (c(w)z, dw)y +

where h € C*(R) is bounded and such that h(0) = h'(0) = 0. Assume that h is Lipschitz

with constant L < (%)_1. The random variable B(w) is given by Proposition
2.1 with € = 1 and the constants 8, A and a are chosen as in Corollary 2.2. We shall
assume that the random variables ¢, d :  — R are such that log |c|, log |d| are in L!(Q)
and c(w) # 0, d(w) # 0 a.a.. Call v:= Elog|c| and 0 := Elog |d|. The linearization of

f at the origin is given by



and the Lyapunov exponents are given by A\; = v and Ay = §. Assume that A; > 0 >
A2, i.e. the origin is a hyperbolic fixed point. The Osseledec’s subspaces are simply
Es(w) =R(ey) and Ey(w) = R(ez). Note that f is invertible with

z y—h@#dWD)
c(w)’ ed(w)B(w)?
In our notation, the non-linear part of f is given by:

h(z) )
"eB(w)?”

We claim that U satisfies the global Lipschitz in the random norm (Hypothesis (H1)).
In fact, given (z1,y1), (z2,y2) € R?:

fHw,z,y) = (

U(w,z,y) = (0

h(z1)  h(z2)
eB(w)? eB(w)?

“\Ilu(waxlayl) _\Ilu(waz27y2)||0w < GB(LL))

S
< sl y) — ()]
= Bw) L1, Y1 L2,Y2
< Li[(z1,91) — (z2,92)|l, -
Hypothesis (H2) also holds once:
h(z)
¥, < e0) |0 | < sup (o)

Analogous estimate also holds for the stable component ;. Hence, by Theorem 3.1
there exists a random global homeomorphism h = (I 4+ u) with u € Cj,(2, R?) such
that

diaglc(w) d(w)] = (I +u(0w))™ f (w) (I + u(w)).

In some simple cases it is possible to calculate explicitly the random homeomorphism
h(w, ).

Example 3.2. Counsider the discrete probability space 2 = {a, b} with P(a) = P(b) = %

and the ergodic transformation 6 : Q — Q given by 0(a) = b, (b) = a. We shall consider
the mapping
1
f(w7 Z, y) = (Oé((/.)){L‘ +tey — y27 §y)

where c is a constant in R and « is defined by

() = 2 ,ifw=a
A= —2 L ifw=0b

17



Therefore,

alw) ¢
prtan =[5 5]
2
In this case the random conjugation is performed by H : Q@ — Homeo(RR?) given by
28 28
H(G,I,y) = ($+ %yQJy) with inverse Hil(aﬂxuy) = (LE— %y27y)7

and

36 36
H(b,z,y) = (x — —=y*,y) with inverse H '(b,z,y) = (z + —v¢>

65 oY V)

One easily checks the conjugation property, for all w €  and (z,y) € R?. As in
Arnold [1, Example 3.6.1] or in Furstenberg and Kifer [9], the Lyapunov exponents are
A1 =log2 > A9 = —log2 and the Osseledets spaces are £y =R - e; and

1
with - .
u(w) = —cz )"
k=0 g1 (w)
One checks that u(a) = —5¢ and u(b) = 0.

3.2. Local discrete version

The approach for the local version of the HGT will start with a result which again
extends the deterministic arguments (see, e.g. Palis and Melo [19, Lemma 11.4.4]).

Lemma 3.6 Let f be in € C1(Q2,R™) and consider the mapping A, and ¥ as defined
above. If the origin is a hyperbolic fized point of the systems (f,0) then for P-almost all
w € Q there exists a neighbourhood U(w) of the origin and a function S CH(Q,R™)
which satisfies Hypothesis (H1) and (H2) such that f(w,-) = A(w)(-) + ¥(w,-) is in
Dif} (2, R™) and if x € U(w) then,

f(wvx) = f(wvx)'

Proof: Consider a C* function « : R — R such that
L <
=14 1]

18



and |o/(t)] < k with k > 2. Let L be a positive constant and B(l(w)) a ball with centre
at the origin and radius /(w). The random variable [(w) will be defined such that
L

eB(w)?2k

for all ||z < I(w) where the term B(w) is the same of Proposition 2.1 with e = 1. We
have, for z,y € B(l(w)) that:

[1DWsu(w, 2| <

L
— < - = —
1 (r0) = ¥l < g e =l

and

Mol € el

Let [(w) = min {l~(w), 1}. The function in the statement of this lemma ¥ € C!(Q, R™)

can be defined now by:
o ]l
Y = Y .
(w,z) =« <l(w) (w, x)

Moreover, the neighbourhood of the statement can be defined by

o5 (1)

Then, naturally, ¥(w,z) = U(w,z) if z € U(w). We claim that ¥ satisfies Hypothesis
(H1). In fact, considering first the unstable part, by Proposition 2.1:

|Fu(@.m) — Fuw,)]| < BOw) | Fulw,2) - ulw,y)|

< B(w)el||¥Yy(w,z) — \Ilu(w,y)H .

If z,y € B(l(w)), by Proposition 2.1 again we have:

< B(w>e{‘a(%>—a 2y \nw w,9)]

T a(%) 100w, 2) — %(au,y)n}

k L
B(W)G@ |z —yll eB()2%k B4

“@u(w,x) — ¥y (w,y)

Ow

k L
< ol
~ Bl

19



Suppose now that € B(l(w)) and y ¢ B(l(w)), then

B)e{ o) - a1 o, o001}
< Blle{ g ool e e}

<

IN

|Fuw,2) = Tuw )|

L
—ull < Llle —
55y 1o~ v < Dl =yl

Finally, if 2,y ¢ B(l(w)) the Lipschitz property is trivial once
|Fulw,2) = Tuw,p)||, =0.
Ow

The Lipschitz property for the stable part is proved using the same kind of arguments.
Now we show that U satisfies Hypothesis (H2), more specifically we will show that, by
our construction, its random norm for the stable or unstable component (at fibre fw) is
bounded by positive constant (which coincides with the Lipschitz constant L). In fact,
if z € B(l(w)) we have:

= [kl k L
U, (w, H < B v <B
[#tw.n],, < B@eal) 19w o)l < B ol gy el
L L
< —_— < — < L.
And if z ¢ B(I(w)) then H\I/s(w,:v)Ha = 0.
w
The proof for the unstable part follows using the same arguments. O

Theorem 3.2 (HGT: local discrete case) Let f be in C3(Q,R™) and consider the
mapping A, and ¥ as defined above. If the origin is a hyperbolic fixed point of the
systems (f,0) then for P-almost all w € Q there exists a neighbourhood U(w) of the
origin and a local homeomorphism h € Homeo (2, U (w); h(U(w))) such that:

flw, ) = ™ (0w) A(w)h(w)(2),
for all © in the domain of the composition.

Proof: Define f(w,z) = A(w,z) + q/(w r) as in Lemma 3.6. By Theorem 3.1
there exists a global homeomorphlsm h € Homeo(Q R™) such that h(fw)f(w, ) =
Df(w,0)h(w)(-). Take the restriction h = h|U O
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We finish this section presenting the natural extension of the discrete random ver-
sion of the Hartman-Grobman theorem to mappings on a differentiable manifold M of
dimension m. Here C'(Q, M) is the space of measurable applications f : Q x M — M,
with f(w) € C1(M) a.s..

Corollary 3.2 Let f € C(Q, M) where M is a differentiable manifold. Let p € M be
a hyperbolic fized point for the random dynamical system generated by (f,0). Calling
Aw) = Tpf(w) : TyM — T,M, then, for each w € §Q there exists a neighbourhood
V(w,p) C M of p and U(w) C T,M, a neighbourhood of the origin and a homeomor-
phism h(w) : U(w) = V(w,p) such that:

h(Bw) A(w)(x) = f(w)h(w)(x).

for all x in the domain of the composition.

Proof: Consider a local chart 1 : W C M — Z C R™ with p € W such that ¢(p) = 0.
Consider the random map f(w,z) =t o f(w,-) o1 : Z — R™. The result follows by
the HGT, local discrete case. a

4. Regularity of the conjugation

In this section we are going to extend the results of Hartman [13]. We establish a
theorem which guarantees the existence of a random diffeomorphism which perform the
conjugation between a discrete random dynamical systems and its linearization. We
shall deal now with random mappings f € C?(R™) and we keep the same notations and
hypotheses as before: the origin is a hyperbolic fixed point and f(w, ) = A(w) + ¥(w, )
where A(w) = D f(w,0). We shall assume, besides the hypothesis (H1) and (H2) of last
section, the following extra conditions:

(H3) There exist constants k, k; > 1 such that ke ™? < 1, ke P < <1,

3 —2e B

1 < ke=h
1—kie B ~1—ke B’

and for all v € R™, w € Q we have

a) [A(w)vllg, <killvll, and  [[A(w)"tol|, < Elvlly,;
b) [[(A(w) + T(w))vllg, < kr[lvll, and [[(A(w) + (w)) tol|, <K lvl,

Here, the constant 3 is the same which appears in Corollary 2.2.
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(H4) (The derivative is Lipschitz) There exists a constant L > 0 such that

1—ke P

1—e P +av2elrten « = 7
e-l—\/_e <2ke_5’

and for all x € R, v € R, w € 2 we have:

(DY (w, z) — DY (w,y))v)sllg, < Lllz = yll,;
(DY (w, z) = DY (w,y))0)ullg, < Lz =yl

(H5) (The derivative is bounded in the random norm) There exists a constant L; > 0

1 —ke P
with L; < T Where A, a are the constants which appear in Corollary
4eray/2ke—b

2.2, such that for all z,v € R™ and w € ) we have:

(D¥(w,z)v)sllg, < Lalloll,,  I(D¥(w,2)v)ully, < L lvll,

Remark 4.1

a) In the Hypothesis (H3), the restriction on ki is given only by inequality kie™® < 1,
once we already know that || A(w)vl|,, < AT, ;

b) Again, in the Hypothesis (H3), the restriction on k is given only by the inequality

—L — < ke P, once we already know that HA(w)*lvuw < M loflp;

271618_6
c) In Hypothesis (H}), the set of possibilities for the constant L is non-empty once k
1 — ke P
ti l—ef < —0—r
satisfies e e B

Theorem 4.1 (HGT, differentiable global discrete case) Let f € Dif3(Q, R™) such
that the origin is a hyperbolic fized point. Writing f(w) = A(w) + ¥(w), with A(w) =
Df(w,0), assume that its non-linear part satisfies the Hypothesis (H1) till (H5). Then,
there exists a unique random diffeomorphism h € Dif(l)(Q,Rm) such that

h(fw) o A(w) = f(w) © h(w).

Proof: The technique is exactly the same as in the proof of Theorem 3.1, but with
longer calculations. We shall only show the main steps.

Again, we are looking for a solution of the form h = (I + u) with u € C&yb(Q, R™).
The proof is performed by the following two lemmas:
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Lemma 4.1 In the conditions of Theorem 4.1 there exists a unique homeomorphism
h € C}(Q,R™) N Homeo(£2, R™) such that

h(fw) o A(w) = f(w) o h(w).
Proof: Imitating Lemma 3.1, define the linear operators:
L*: C&’b(Q,Rm) — C&’b(Q,R’n)
u (w) — Lfu(w) = u(w) — A(w) tu(fw)A(w)
and the non-linear operator:

(A)toPy: Ciy(QR™) — Cj,(QR")

u (w) — (A7 Pyu(w) = —A(w) T (W) (1 + u)(w).

Applying Hypothesis (H3), following similarly the calculations of Lemma 3.1 one
finds that £* and (A)~! o Py are well defined. Again we consider the decomposition:

Li=rr

and L, =L"

1 m
of  (@R™)

1 m
Cb,s(Q’R )

Next step is to show that £: and L are invertible. We define T :Cj, (2, R™) —
C&ybys(Q,Rm) and S :C&,b,u(Q,Rm) — C&,b,u(Qva) operators like in Lemma 3.1. With
similar calculations in the norm of C''(R™) eventually one concludes that £* is invertible
with

ey < max{

by Hypothesis (H3).
Finally we introduce the non-linear operator p : C&yb(Q,Rm) — C&yb(Q,Rm) given
by

1 ke=# _ ke=#
l—ke B’ 1l—ke B[ 1—keb’

p(w) = (L) o (A) 7 o Py (u).

We claim that p is a contraction. In fact, given ui,us € C&yb(Q, R™) then, by straight-
forward calculations we have:

listun) = w2l ey

ke B — —
1_ ke P H(A) o Py (ur) — (4) "o P‘I’(UZ)HC&I,(Q,RW)



S (]. — 6—5 + 4€A + CLL\/§“U1 — uZHCo,b(Q,Rm)

4 (eMeL2V2)E | sup sup |[(Dg () (w)v — Dy(us)(w)v)s]|

TER™ lu]] <1 ¢
+ sup sup [[(De(u1)(w)v — Do (u2)(w)v)ull, | -
zeR™ [|v]|, <1
i i -8 A+ 1 —ke”
Hence, by Hypothesis (H4) L is such that (1 — e + 4212 Ly/2) < “She—F and by
e
1 — ke P
Hypothesis (H5) L; < —————=——. Therefore u is a contraction. The result follows
P (H5) Ly 4eAtar/2ke P :
by Banach fixed point theorem. a

Lemma 4.2 In the conditions of Theorem 4.1, there exists a unique homeomorphism
g € C1(Q,R™) N Homeo(Q, R™) such that

A(w) 0 g(fw) = g(bw) o f(w).

Proof: We repeat the same arguments as in Lemma 3.2. Note that in the previous
Lemma 4.1 we only used the Hypotesis (H3.a). For the proof of this lemma one will
need to assume Hypothesis (H3.b) instead. The calculations are again straightforward.

[
End of the Proof of Theorem 4.1: Considering the homeomorfisms h and g of the
previous two lemmas, the result follows by Lemma 3.5, which guarantees that h = ¢g~".
[

4.1. Local version

For the local version, we shall first introduce the following lemma (similarly to the
approach of last section):

Lemma 4.3 Let f be in € C*(Q,R™) and consider the mapping A, and ¥ as defined
aboved. Assume the the second derivative D*¥(z) is bounded and vanishes at x = 0. If
the origin is a hyperbolic fized point of the systems (f,0) then for P-almost all w € Q
there ezists a neighbourhood U(w) of the origin and a function ¥ € C1(Q, R™) which
satisfies Hypothesis (H1), till (H5) such that f(w,-) = Aw)(-) + U(w,-) is invertible
and if z € U(w) then,

V(w,z) = ¥(w, x).
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Proof: Take the same function « of the proof of Lemma 3.6. Let [;(w) be defined such
that

L
Dy < ———
T e
for all ||z|| < 1. And let l3(w) be defined such that

L

Define l(w) = min{l:(w),l;(w), 1}. Then, as in Lemma 3.6 the function of the
statement can be defined by

U(w,z) = a (%) U(w, x).
And the neighbourhood can be defined by

Ulw) = B(@).
O

Theorem 4.2 (HGT: differentiable local discrete case) Let f € C*(Q, R™) with
the mapping A, and U as defined aboved. Assume that the second derivative D*¥(x) is
bounded and vanishes at x = 0. If the origin is a hyperbolic fixed point of the systems
(f,0) then for P-almost all w € § there exists a neighbourhood U(w) of the origin and
a local diffeomorphism h € Dif}(Q, U(w); h(U(w))) such that:

f(w,z) = ™ (Bw) A(w)h(w)(2)
for all x in the domain of the composition.

Proof: Define f(w z) = Alw,z) + ¥(w,z) like in the Lemma 4.3. By Theorem 4.1
there exists a global random diffeomorphism he leo(Q R™) such that h(fw)f(w,-) =
Df(w 0) (w)(+). Take the restriction h = h|U |

Before we close this section we mention that the results presented here can be ex-
tended to higher degrees of differentiability, just adapting the norms in each appropriate
space.
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5. Continuous versions

In this section we deal with continuous random dynamical systems, more specifically,
we will concern mainly with systems generated by stochastic differential equations.
Particularly, the local version will be proved for this last case. We shall deal with
perfect cocycles once in this case every crude cocycle is indistinguishable from a perfect
cocycle (see Arnold and Scheutzow [3]).

Let ¢(t,w) be an stochastic flow such that p = 0 is a hyperbolic fixed point. As
before, we separate the linear and non-linear part:

o(t,w,) = P(t,w,-) + V(t,w,-)

where
O (t,w) := Dyp(t,w)

and ¥(¢,w,-) is the corresponding non-linear part.

5.1. Global version

The assumptions for the following global version of HGT rest only upon the time-one
random diffeomorphism ¢(1,w,); essentially it has to satisfy the hypotheses (H1) and
(H2) stated for the global discrete HGT in section 3.

Theorem 5.1 (HGT, global continuous case) Assume that the time-one non-linear
part ¥(1,w,-) satisfies the hypotheses (H1) and (H2). Hence, there exists a unique
H € Homeo(Q2, R™) such that for all t € R

p(t,w,") = H(Ow) ' (t,w) H (w) ().
Proof: By Theorem 3.1 there exists a unique h € Homeo(£2, R") such that
W0w) (L, w, ) = B(1,w)h(w)()
Let k € Z, then, by induction:
h(Orw)(-) = @(k, w)h(w)p(=Fk, Okw, -).

The proof follows essentially as a random adaptation of the deterministic arguments.
We follow S. Sternberg [21, Lemma 4]. Define:

1
H(w,z) :/0 O(—s,0,w)h(0sw)p(s,w, z)ds. (5.1)
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Before we show that H is in fact the homeomorphism of the statement, we prove the
existence of the integral. Initially, note that ®(—s,6fsw) is continuous in s once it
corresponds to the inverse ®(s,w) . Secondly, using the continuity of ¢ and the
fact that h(fsw) = I + u(f,w) with u € Cpp(2,R™), it only remains to proof that
O(—s,0;w)u(fsw)p(s,w,z) is integrable in the interval s € [0,1]. By Proposition 2.1
and its corollary we have that

12(s,w, Ju(@sw, )| < B(w)e* [u@sw, )y,

for all s € [0,1]. Finally, by P-invariance of 65 and Tonelli-Fubini Theorem:
1 1
E/ sup [|u(0sw, -)|ly,., ds :/ E [sup ||u(w,)||w] ds < +oo0.
0 Rm 0 RmM
Hence, for a.a. w the integral of equation 5.1 makes sense.

Now, we show that H conjugates the flows ® and ¢ for ¢ in the interval [—1,1]. One
sees by the definition that

1
Bt HW)(e) = [ Bt = 5. 0)h(Bw)els — 80w, )ds plt,w,2).
0
With the change of variable r = s — ¢, we have:

1t
O(t,w)H (w)(z) = / O(—r, 0, 1 w)h (0, w)e(r, Qw, )dr p(t,w, )

—t

0
- / B(—r, Oy 4 100) (O 4 10) ol O, ) (1, )
—t

+ /Olt D(—r, 0, 1 w)h (0, w)e(r, Oiw, )dr ¢(t,w, x).
The first integral is:
S, @ (=7, 0, 110) (0, 4 1) p (1, B0, ) dr
= fgt O(—r — 1,011 11w) (1, 01 rw) M (Or 1 iw) (=1, 0 11w, - )o(r + 1, Oyw, -)dr

= fgt (I)(_T - 17 9r+t+1W)h(0(9,n+tW))(,0(T + ]-7 otwa ')dT‘,
once by Theorem 3.1, we have that

O(1, 0, w)h(0rw)p(—1, 0, 11w, .) = h(0(0,1w)). (5.2)
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Now, changing the variable s = r 4+ 1, we have:
1
| @ b)), b, ).
1—t

Hence,
1
B(t,w) Hw)(x) = [ [ a0 h0. ), 000, s

1t
—i—/ O(—r, 0,4 w)h (0, w)e(r, Ow, -)dr] o(t,w, )
0

= [/01@(—s,05+tw)h(95+tw))<p(s,0tw, ')ds] o(t, w, z)

= H(Ow)pltw,1).
Finally, let ¢t € R and write t = k + s with k € Z and s € [—1,1]. Then

O(t,w)H(w) = @(k+s,w)H(w)
= &k, 0,w)H(Osw)p(s,w,.)
= HOw)e(t,w,.).

Note that by the uniqueness established by Theorem 3.1, H(w) = h(w) a.s. hence
it is guaranteed the invertibility of H.
a

We remark that for a fixed w and © € R™ the map ¢t — H (0w, z) is continuous once
H(0w, z) = ©(t,w) o H(w) o (p(t,w,)) " ().
5.2. Local version for SDE

In this section we present a local version of the Hartman-Grobman theorem for stochastic
dynamical systems generated by stochastic Stratonovich differential equations. In order
to fix our terminology, consider the following SDE in R™:

k

dz; = fo(ze)dt + ) filwi) o dBj (5.3)
i=1
where (B}, ---, BF) is a Brownian motion in R¥ fo, ..., fx : R™ — R™ are C'-vector

fields. We shall denote by ¢(t,w,-) the solution flow. Negative time is obtained consid-
ering independent copies of Brownian motions for ¢ > 0 and for ¢t < 0, as in Boxler [4]
or Arnold and Imkeller [2]. We assume that the origin is a hyperbolic fixed point.
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We shall denote the linearised vector fields at the origin by L; = D f;(0), for i =
0,1,...,k. As before, ®(¢,w) will denote the linear part of the flow ¢, it is the solution
of the linear SDE

k
dv; = Lo(vy)dt + Y Li(v;) o dB;.
i=1
As before, the non-linear part of the flow will be called ¥ = ¢ — ®.

The localisation argument starts fixing a positive radius [ > 0. Take the C'-vector
fields f; which satisfies the conditions: f;j(z) = f;(z) for all € B(0,1/2), the ball of
centre in the origin and radius [/2 and f;(z) = L;(x) for # ¢ B(0,1), withi = 0,1,...,k.
We shall denote by ¢(t,w,z) the solution flow of the SDE

k
dz; = folwy)dt + Zﬁ(mt) o dB!. (5.4)
i=1

Obviously the linear part of ¢ and @ coincides to ®. The non-linear part of the flow
@ we shall denote by ¥(t,w, z) = ¢(t,w, z) — B(t, w)z.

As before, in the next theorem the random variable B(w) denotes the variable B,
with ¢ = 1 defined in Proposition 2.1.

Theorem 5.2 (HGT, local case for SDE) Let ¢ be the C'-RDS generated by the
SDE (5.8) such that the origin is a hyperbolic fized point. If B(w) € L*(Q2) then there
exists a random homeomorphism H(w) : V(w) — W (w) , where V(w) and W (w) are
random neighbourhoods of the origin, such that:

H(Ow)p(t,w,z) = ¢(t,w)H (w, z)

for P-almost all w and t = t(x) in a random interval containing zero, such that  is in
the domain of the composition.

Proof: The proof is based mainly in the discrete arguments of section 3. Let z €
B(0,1/2) and consider the following stopping times:

T(w,z) = inf{t>0,p(t,w,z) ¢ B(0,1/2)},
S(w,z) = sup{t <0,p(t,w,z) ¢ B(0,1/2)};

Once ¢ and @ coincide in B(0,1/2) in the random interval ¢t € (S,T'), we only have
to prove that there exists a local conjugation H(w) such that for P-almost all w € Q we
have H(0,w)p(t,w,z) = ®(t,w)H (w)(x).

The time-one diffeomorphism ¢ (1, w, -) (or more precisely, its nonlinear part ¥(1,w, -))
satisfies the hypothesis (H2) of section 3. That is, we claim that there exists a constant
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M > 0 such that

E \I/S(l,w,:r:)H ] <M, and E \ils(l,w,:r:)H ] < M.
Ow Ow

sup
TERF

sup
TERF

First, with a fixed w € €, assume that € R™ is far enough from the origin, more

precisely, assume that:
el > e Blw) 1
where A and a are defined as in Corollary 2.2. Hence, by Proposition 2.1 and its
Corollary again, for 0 < ¢ < 1 we have:
12(t w)zllgy  e” O ],
B(0w) —  B(bw)
Hence [|p(t,w,z)|| > for all 0 < < 1. Since @ and @ coincide outside B(0,1), we have

that, in this case ¥(1,w,z) = 0.
Secondly, assume that

(¢, w)zl| = > 1

lll, < €@ B(w) 1.
In this case the trajectory of x by ¢ can pass through the ball B(0,l), and can not
follow the linear trajectory of ® anymore. Moreover, one can not estimate the last exit
time from B(0,[) because it is not a stopping time. Nevertheless, in any case, one can
guarantee that, for 0 <t < 1:

1@5(L,w, 2)[lg, < sup  sup [|@y(r, O1w)

$||0 w?
0<t,r<1 ||z||=t Tt

and since || ®(r, 0tw)$||gr+tw < 6(1+A+a)B(W) llz|| with 0 < ¢, <1, we conclude that:
1@(1,w, @)y, < EMFITIBW) L.

On the other hand || ®;(1,w)z]|,, < et ||z|| , < e2A+DF1B(w) I. Therefore:

“ijs(lawa )

E [sup ] < 22 AT BIB(W)] 1 < 400.

Rk Ow

Analogously to the unstable part one finds that:

E [sup
Rk

‘\ifu(l,w,-)H ] < XM+ ([BB(w)] + e E[B(w)] 1) | < +00.

Ow

Now, applying Lemma 3.2 to the random (discrete in time) C'-diffeomorphism @(1,w, -)
we conclude that there exists a unique continuous application h = I + u, with u €
Co (2, R¥) (h is not necessarily invertible) such that

h(0w)p(l,w,z) = (1, w)h(w)(z). (5.5)
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The continuous dynamics are obtained applying the same calculations we did in the
proof of Theorem 5.1 defining:

1
H(w,z) =/0 O(—s,0,w)h(0sw)p(s,w, z)ds.

We point out that although at this point we can not guarantee the invertibility of h
(neither of H), the property of Lemma 3.2 stated in equation (5.5) is enough to carry
on the calculations we did with H in the proof of Theorem 5.1, particularly equation
(5.2).

The local invertibility of H(w) follows by uniqueness of the conjugacy and the local
invertibility of A(w) in some neighbourhood U (w) of the origin, guaranteed by Theorem
3.2. Finally, define the neighbourhood stated in the theorem by V(w) = U(w)NB(0,1/2).
O

Before we present an example, we show that it is possible to weaken the hypothesis
of the last theorem substituting the random variable B(w) by another variable which
would satisfies the same basic properties of B(w). Precisely, assume that there exists
a strictly positive real random variable C € L?*(Q) such that |||, < C(w) || and
C(Oyw) < eFltln(t,w)C(w) where k is a positive constant and 7 is a continuous process
such that supy<,<; n(t,w) € L2(9).

Corollary 5.1 In the context of the last theorem, the local conjugacy described still
holds if instead of integrability of B(w) we assume that there exists a random variable
C(w) as described above.

Proof: It is enough to prove that we still have ¥(1,w, ) satisfying hypothesis (H2) of
section 3.
Firstly, assume that € R™ is far enough from the origin, precisely:

), > 1 AT Clw) sup n(t,w).

0<t<1
Then 1®(t, w)e] (Atatk)
t’w €T 0w e ¢ ||$||
Q(t,w)z| = =2 o)
|2 (¢, w)z|| C(0yw) C(w) SUPp<¢<1 n(t,w)

for all 0 < ¢ < 1, hence ¢(1,w,z) = 0.
Now, consider the case

Iz, <1 M Clw) sup n(t,w).
0<t<1
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As in the proof of the last theorem, either if the trajectory of @(z) passes through
the ball B(0,1/2) or not,

“gbs(l?wvx)“ewg sup sup ||<I)5(T70tw7$)

||0 w?
0<t,r<1 ||z||=t .

and for 0 <t,r <1
1@ (r, 00, 2)lg,, . < G(AM)(T)GMOi‘iEln(t’”)C(‘”) ]|

AT qup n(t,w)C (w)l.
0<t<1

IN

Hence

1P5(L,w, @)l g, < EMTOTR C(w) 1 sup n(t,w),
0<t<1

and
141, w,)|lg, < AT C(w) 1 sup n(t,w).
0<t<1

Therefore,

E sup n(t,w)|| - [C(w)llg: -

0<t<1

sup
TERF

y(L,w,9)| ] < 2e2(Ata)+k
Ow

12
For the unstable part one calculates an analogous estimate. O

We present an example which illustrates this last corollary.

Example 5.1. Consider the following SDE in R?

d(ze, ) = folx,y) dt + fi(z,y) dB} + fo(z,y) dB} (5.6)

where (B}, B?) is a Brownian motion on R?,

[+ B 51— 0?) B (1 a?)
f0($7y) = ) fl($7y) = )
[ oo+ 53 y(1 - y?) 0

and
0

f2($,y) = )
| A5 (1—y?)

with o; and 3;, ¢ = 1,2, real constants such that o, # 0, and 8522 < a, where a is
the constant of Proposition 2.1.
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Note that the points {(1,1),(1,—1),(—1,1),(—1,—1)} are singularities of the vector
fields fy, f1 and fo. We shall focus our attention at the point zy = (—1,—1). The solu-
tion of equation (5.6) is given by the decoupled flow ¢ (t,w, x,y) = (¢ (t,w, z,y), ps(t,w, z,y))

where
(14 z)exp(—2a1t +26,B) + = — 1

(1 +z)exp(—2a1t+26,B;) +1 —x

(pl(t7w7x7y) =

and
(1 +y)exp(—2aot +265B) +y — 1

(1+y)exp(—2ast +26,B;) + 1 —y°
(See Kloeden and Platen [15, Pag. 124]). The linearization at our point xy is given by

902(t7w,$,y) =

oy | exp(—2a1t+26,B}) 0
do(t,w,(—1,-1)) = 0 exp(—2a0t +26,B7) |

The Osseledet’s subspaces are deterministic and correspond to the canonical axes
Ei(w) =R-e; fori =1,2. If z € E;(w) then the Lyapunov exponent \; are

.1
Ai = tlgglo n log ||dy(t, w, (=1, —1))z|| = —2a; # 0,

hence (—1,—1) is hyperbolic. Let x = (z1,22) € R?, by the very definition of the
random norm (Definition 2.3):

dt

ol — 00 (1) 2ed(—aat+ 5 BY) . 00 ()2 (a2t 46, BY)
w e2(A1t-+alt]) e2(Rat+alt])

—00 — 00

+00 1 +oo 5
— / (1-1)264/813t —2alt] dt 'l‘/ (1-2)264/82Bt —2alt| dt.

—o0 —o0
Define
+00 1
1 (w) ::/ etBLBi—2altl gy
—o0

and
+oo 5
co(w) ::/ 1P Bi —2alt] gy
—0oQ

We claim that the measurable functions c¢;, ¢y are square integrable. In fact

+00 2 +00
E [/ exp (48, B} — 2a |t|)dt] = E [/ exp (48, B} — 2at)dt
0

—00

0 2
+ I( / exp(4B3,B} +2at)dt| . (5.7
—o0
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We show that each integral in the right hand side is in L?(£2). In fact,

+00 2
E [ / exp(46, B} — 2at)dt]
0

+o00 +o00
= E [/ / exp (46, B — 2as)ds exp (43, B} — 2at)dt]
0 0

+00 +00
= / E [/ exp(483, B} — 2as)ds exp(48,B} — Zat)dt]
0 0

/0 o (IE [ /0 = exp(483, B} — 2at)ds] 2)

. (]E [exp(48, Bt — 2at)] 2) Y2

1/2

IN

. o\ 1/2
= M (IE |:/0 exp(48, B} — 2a8)d8] ) )

1/2
where M = f0+°° (IE [exp(483, B} — 2at)]2> dt. Sumarizing, we have that:

+o0 2\ 1/2
<IE [ / exp(43,B} — 2at)dt] ) < M.
0

Note that the integrand in the definition of M is a martingale, hence E [exp (83, B})| =
exp(3267%t) for all t > 0, so,

+oo
M = / exp 2t(83% — a)dt
0

which converges once 8ﬂ% —a < 0 Analogously for the second integral of equation (5.7),
one finds:

0 2 0

]E[ / exp (40, B} +2at)dt] < / exp 2t(83% + a)dt

—00 —00
which converges once 8ﬂ% +a > 0. By our calculations and Cauchy- Schwarz in-
equality we have ¢; € L?(Q). In the same way one checks that co € L?(f2), hence
2], < kC(w) ||z|| where k is a constant and C(w) = max {c;(w),c2(w)} € L%(2). By
construction, we have ¢; (iw) < e 418t e20l!l¢, (w). To fulfill the hypotheses of Corol-
lary 5.1 it only remains to prove that a;(w) = supy<,;<; e~40B1 is square integrable. By
Ito formula: o

t t
e 10iBl =1 483, / e 101B: gBL 4 832 / e 401Bs g,
0 0
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hence, by the Burkholder-Doob inequality:

2 1
IE[ sup 6_4’81Btl:| < k [1 +16 (2 IE[/ e~ B dB} ?
0<t<1 0

1
+64 G (/ (E [68%3;})1/%3)2]
0
r 1 1
< k 1+165%1E[/ e4ﬁ13idB§]2+64ﬂ%(/ (elﬁﬁlsczs)?]
L 0 0

r 1 1
< k|14 1662E] / e 801B: 4] + 648%( / elﬁﬂ?Sds)Z]
L 0 0

r 1 1
< k|14 166%/ 325%5 4s 4 645‘11(/ elﬁﬂ%sds)Z] .
I 0 0
Analogously, one checks that
e (Oyw) < 6_4’823362“”'02(w)
and the random variable ay(w) = supy<;<; e~42B is square integrable as well. Hence,
C(Ow) < elly(w,t)C(w)

where n(w,t) = max {6*45133,6*45233} and supg<;<1 N(w,t) € L?(Q). Tt follows by
Corollary 5.1 that indeed there exists a local random conjugation of the system (5.6)
with its linearization.
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