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Abstrat

We present versions of Hartman-Grobman theorems for random dynamial systems

(RDS) in the disrete and ontinuous ase. We apply the same random norm used

by Wanner [23℄, but instead of using di�erene equations, we perform an apropriate

generalization of the deterministi arguments in an adequate spae of measurable

homeomorphisms to extend his result with weaker hypotheses and simpler argu-

ments.
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1. Introdution

The elebrated Hartman-Grobman theorems play a fundamental rule in the theory of

dynamial systems one one an obtain properties of a ertain deterministi system

around a hyperboli �xed point via a onjugation with a linearised system. Preisely,

onsider the dynamial system in R

m

generated by the following di�erential equation:

:

x

= f(x); (1.1)

where f is a C

1

vetor �eld with a singularity at p 2 R

m

. Let ('

t

)

t2R

, be the solution

ow of this equation. Consider the system generated by the linearization of the vetor

�eld f at p, i.e., alling A = Df(p), take the linear equation:
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:

x

= Ax (1.2)

and denote by �

t

= e

At

its fundamental linear solution. Hartman [12℄ and Grobman

[11℄ have proved that if the singularity p is a hyperboli �xed point of the system,

that is, if the eigenvalues of A have non-vanishing real part then there exists an open

neighbourhood U � R

m

of p and a homeomorphism h : U ! h(U) � R

m

with h(p) = 0

whih is a topologial onjugay of the trajetories of these systems. Namely, for all

x 2 U we have that:

e

At

h(x) = h Æ '

t

(x):

The proof is obtained performing �rst a demonstration to the disrete ase for loal

di�eomorphisms in the following sense, let f be a C

1

-di�eomorphism in R

m

suh that p 2

R

m

is a hyperboli �xed point (the modulo of the eigenvalues of A = Df(p) are di�erent

from one), then there exists an open neighbourhood U of p and a homeomorphism

h : U ! h(U) � R

m

with h(p) = 0; suh that for x in U we have the following

onjugay:

A Æ h(x) = h Æ f(x):

Later, in 1960, Hartman [13℄ proved that if f has ontinuous seond derivative and

the real part of the eigenvalues have all the same sign (all positive or all negative), then

the trajetories an be onjugated by a C

1

-di�eomorphism (f. Setion 4).

The main motivation for this artile is to �nd a version of the Hartman-Grobman

theorem for ontinuous random dynamial systems, partiularly for stohasti ows

generated by an Stratonovih stohasti di�erential equation (SDE):

dx

t

= f

0

(x

t

) dt+

n

X

i=1

f

i

(x

t

) Æ dB

i

t

(1.3)

where (B

1

t

; : : : ; B

n

t

) is a Brownian motion in R

n

based on a ertain omplete probability

spae (
;F ;P) and f

i

: R

m

! R

m

, i = 0; 1; : : : ; n, are smooth vetor �elds suh that

there exists a stohasti solution ow of di�eomorphisms ' : R � 
 � R

m

! R

m

(see

e.g. Kunita [16℄ or [17℄).

We shall assume that all vetor �elds f

i

have a singularity at p 2 R

m

, hene

'(t; !; p) = p for all (t; !) 2 R�
. We say that p is a stohasti hyperboli �xed point

of ' if the Lyapunov spetrum of the system at point p does not ontain zero (see e.g.

Arnold [1℄ or Carverhill [5℄, [6℄).

Let �(t; !) = D'(t; !; p) be the solution ow of the linearized SDE:

dx

t

= Df

0

(p)x dt+

n

X

i=1

Df

i

(p)x Æ dB

t

:
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In this ontext, we are looking for a random measurable loal homeomorphism h(!)

suh that

�(t; !) Æ h(!; x) = h(�

t

(!); �) Æ '(t; !; x); (1.4)

for x in a neighbourhood of p, t in a ertain interval ontaining zero and �

t

: 
! 
 is

the anonial shift on the Wiener spae.

One of the �rst results onerning this kind of generalisation of the Hartman-

Grobman theorems was given by T. Wanner [23℄, where the arguments were based

in random di�erene equation to get initially the disrete generalised version !-wise.

His proof is ompleted showing that the random homeomorphism is in fat measurable.

Our approah in this artile is a proper random adaptation of the well-known deter-

ministi proof, whih here is extended to an appropriate Banah spae of measurable

homeomorphisms Homeo(
;R

m

), with respet to an adequate norm (see next setion).

We shall follow mainly the deterministi arguments presented in Palis and Melo [19℄

and Sternberg [21℄.

Our hypothesis turn out to be weaker than Wanner's hypothesis in [23℄, basially:

integrability instead of boundedness. Nevertheless, like him, we also ould not disregard

the random norm in the Eulidean spae. We emphasise that, although apparently this

norm leads to arti�ial hypotheses, it is rather an intrinsi parameter for this problem; it

omes diretly from the multipliative ergodi theorem, whih one has to deal whenever

dealing with linearised random systems.

The artile is organised in the following way: in Setion 2 we introdue the ba-

si spaes, the norms and properties whih we are going to work with in the following

setions. In Setion 3 we present global and loal versions of the Hartman-Grobman the-

orem for random di�eomorphisms. Roughly speaking: let f be an element of C

1

0

(
;R

m

),

the spae of measurable C

1

-maps f(�; �) : 
� R

m

! R

m

whih �x the origin. Suppose

that the origin is a hyperboli point, i.e. the Lyapunov exponents

� = lim

n!�1

1

n

log k�(n; !)vk

are all di�erent from zero, for all v 2 R

m

; v 6= 0, where

�(n; !) =

8

<

:

A(�

n�1

!):::A(!); n > 0;

I; n = 0;

A

�1

(�

n

!):::A

�1

(�

�1

!); n < 0;

and A(!) = Df(!; 0). We present neessary onditions on the non-linear omponent

	(!; x) := f(!; x) � Df(!; 0)x; whih guarantees that for almost every ! 2 
 there

exists a random neighbourhood U(!) of the origin and a map h 2 Homeo(
;R

m

) with

h(!; 0) = 0; suh that if x 2 U(!) then
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Df(!; 0)h(!)(x) = h(�

1

!)(�) Æ f(!; x): (1.5)

In the Setion 4, motivated by the mentioned regularity results of Hartman [13℄,

we study the di�erentiability of the homeomorphism h whih performs the onjugation.

In Setion 5 we show a random global version of the Hartman-Grobman theorem for a

ontinuous C

1

-random dynamial systems. The loal ase was explored for SDE. The

existene of the onjugation does not depend diretly on the vetor �elds of the SDE,

but rather on the parameter B

�

(!) (de�ned in the Proposition 2.1) whih establishes

the equivalene between the random and the Eulidean norm.

Finally, in the appendix we show how to extend our results to hyperboli random

�xed point.

2. Basi Framework

Consider (
;F ;P) a omplete probability spae. For T = R or T = Z we shall denote

a group of ergodi transformations on 
 by �

t

: 
 ! 
, for all t 2 T (in the disrete

ase sometimes we will �nd the notation �

k

learer than �

k

). We shall reall some basi

strutures and results (for details, see e.g. L. Arnold [1℄).

De�nition 2.1 A measurable map ' : T � 
 � R

m

! R

m

, (t; !; x) 7! '(t; !; x) is

alled a random dynamial system or (oyle) of C

k

-maps, k � 1, on R

m

(abbreviated

C

k

� RDS) over �

t

if there exists a measurable subset 


0

� 
; P(


0

) = 1 whih is

�

t

-invariant for all t 2 T and suh that for ! 2 


0

the following properties are satis�ed:

i) '(�; !; �) is ontinuous;

ii) '(t; !; �) is a C

k

�di�eomorphisms for all t 2 T:;

iii) For t; s 2 T; x 2 R

m

; '(t+ s; !; x) = '(s; �

t

!; :) Æ '(t; !; x) (oyle property).

If '(t; !; �) is linear, the struture ('; �) is alled a linear oyle.

We introdue the well known Osselede's multipliative ergodi theorem (MET), a

ruial result on the linear algebra of RDS.

Theorem 2.1 (MET) Let � a linear RDS on R

m

over the ergodi group of ergodi

transformations (�

t

)

t2T

and assume the following integrability onditions:

log

+

sup

0�t�1

k�(t; �)k + log

+

sup

0�t�1





�

�1

(t; �)





2 L

1

(
;F ;P):

Then, there exists a �

t

�invariant set 


0

2 F with P(


0

) = 1, and real numbers

�

1

> �

2

> : : : > �

p

(the Lyapunov exponents) with multipliities d

i

;

P

p

i=1

d

i

= m; suh

that for every ! 2 


0

the following holds:
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i) There is a splitting of R

m

into random subspaes E

i

(!)

R

m

= E

1

(!)� � � � �E

p

(!);

where eah E

i

(!) depends measurably on !, with non-random dimensions dimE

i

(!) =

d

i

and

�(t; !)E

i

(!) = E

i

(�

t

!) (2.1)

for t 2 T and i = 1; 2; � � � ; p (the subspaes E

i

(!) are alled the Oselede's sub-

spaes);

ii) for every v 2 R

m

we have:

lim

t!�1

1

t

log k�(t; !)vk = �

i

() v 2 E

i

(!)n f0g :

Proof: See, e.g., Osseledts [20℄, Ruelle [22℄ or L. Arnold [1℄ and the referenes therein.

2

De�nition 2.2 In the situation of MET, we say that the linear RDS � is hyperboli if

none of the Lyapunov exponents is zero.

In the hyperboli ase, for eah ! 2 


0

we an de�ne the stable and unstable

subspaes: E

s

(!) and E

u

(!) respetively by:

E

s

(!) := �

�

i

<0

E

i

(!) and E

u

(!) := �

�

i

>0

E

i

(!):

Hene, for every t 2 T and every ! 2 


0

we have the splitting of the Eulidean spae:

R

m

= E

s

(�

t

!)�E

u

(�

t

!);

For eah x 2 R

m

we will write x = x

s

(!) + x

u

(!); where x

s

(!) = �

s;!

(x); with �

s;!

:

R

m

! E

s

(!) a projetion on E

s

(!) along E

u

(!). Analogously, x

u

(!) = �

u;!

(x).

We introdue a random norm whih satis�es the same nie properties (with respet

to a linear RDS) of the Eulidean norm (with respet to a deterministi linear system):

De�nition 2.3 (Random salar produt) Fix an arbitrary onstant a > 0. In the

same ontext of the MET, for ! 2 


0

and for x = �

p

i=1

x

i

and y = �

p

i=1

y

i

with x

i

; y

i

2

E

i

(!) de�ne

hx; yi

!

:=

p

X

i=1

hx

i

; y

i

i

!

;
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where for u

i

; v

i

2 E

i

(!) we set

hu

i

; v

i

i

!

:=

8

>

>

>

<

>

>

>

:

Z

1

�1

h�(t; !)u

i

;�(t; !)v

i

i

e

2(�

i

t+ajtj)

dt; for T = R ;

X

n2Z

h�(n; !)u

i

;�(n; !)v

i

i

e

2(�

i

n+ajnj)

; for T = Z;

and hu

i

; v

j

i

!

:= 0 if u

i

2 E

i

(!) and v

j

2 E

j

(!) for i 6= j: For ! =2 


0

we set hx; yi

!

:=

hx; yi.

Proposition 2.1 The following properties hold:

a) hx; yi

!

is a random salar produt in R

m

whih depends measurably on !;

b) For eah " > 0 there exists a measurable map B

"

(:) : 
! [1;+1) suh that for all

x 2 R

m

:

1

B

"

(!)

kxk � kxk

!

� B

"

(!) kxk (2.2)

and B

"

(�

t

!) � B

"

(!)e

"jtj

where kxk

2

!

= hx; xi

!

, is the random norm;

) For eah ! 2 


0

, i = 1:::; p;, x

i

2 E

i

(!) and t 2 T:

e

�

i

t�ajtj

kx

i

k

!

� k�(t; !)x

i

k

�

t

!

� e

�

i

t+ajtj

kx

i

k

!

: (2.3)

Proof: See L. Arnold [1, Thm. 3.7.4℄ or P. Boxler [4℄. 2

The following inequalities ome straightforward from equation (2.3). They will play

an essential rule in the prove of the main results of next setion.

Corollary 2.2 Fix a onstant a suh that the intervals [�

i

� a; �

i

+ a℄ are disjoint and

0 =2 [�

i

� a; �

i

+ a℄ for all i = 1; � � � ; p.

1) Let �

s

= max f�

i

< 0g, �

u

= min f�

i

> 0g and � any number in the interval

(0;min f��

s

� a; �

u

� ag) then:

k�(t; !)x

s

k

�

t

!

� e

��t

kx

s

k

!

for all t � 0; (2.4)

and





�(t; !)

�1

x

u





!

� e

��t

kx

u

k

�

t

!

for all t � 0: (2.5)
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2) Taking � := max f�

1

;��

p

g we have that

e

�(�+a)jtj

kxk

!

� k�(t; !)xk

�

t

!

� e

(�+a)jtj

kxk

!

for t 2 T; (2.6)

and

e

�(�+a)jtj

kxk

�

t

!

�





�(t; !)

�1

x





!

� e

(�+a)jtj

kxk

�

t

!

for t 2 T: (2.7)

The following de�nitions will introdue the spaes and norms whih we are going

to work with along this artile. Next de�nition states the natural ambient where the

onjugay whih we are looking for lives.

De�nition 2.3 Homeo(
;R

m

) is the spae of random homeomorphisms given by mea-

surables h(�; �) : 
 � R

m

! R

m

suh that for eah ! 2 
, h(!; �) : R

m

! R

m

is a

homeomorphism.

De�nition 2.4 Let k be a positive integer. C

k

(
;R

m

) is the spae of random C

k

-maps

given by measurables u(�; �) : 
�R

m

! R

m

, suh that for eah ! 2 
, u(!; �) 2 C

k

(R

m

).

In partiular, C(
;R

m

) := C

0

(
;R

m

) is the spae of random ontinuous maps. The

notation C

k

0

(
;R

m

) will refer to the subspae suh that all u in this subspae �x the

origin, i.e. u(!; 0) = 0 for almost all ! 2 
.

It will be onvenient to establish the following deomposition in the spae C

k

0

(
;R

m

).

Consider, as before, the projetions on the stable and unstable subspae �

s;!

: R

m

!

E

s

(!) and �

u;!

: R

m

! E

u

(!) respetively, eah random C

k

0

-map u has a unique

deomposition:

u(!) = u

s

(!) + u

u

(!)

where u

s

(!) = �

s;!

Æ u(!) and u

u

(!) = �

u;!

Æ u(!). We shall denote this diret sum

deomposition by

C

k

0

(
;R

m

) = C

k

0;s

(
;R

m

)� C

k

0;u

(
;R

m

):

De�nition 2.5

a) C

b

(
;R

m

) is the spae of random bounded ontinuous maps u(!; �) suh that:

kuk

C

b

(
;R

m

)

= E

�

sup

x2R

m

ku

s

(!; x)k

!

�

+ E

�

sup

x2R

m

ku

u

(!; x)k

!

�

< +1:

Note that k�k

C

b

(
;R

m

)

is a norm.

b) C

0;b

(
;R

m

) is the subspae of random bounded ontinuous maps whih �x the origin,

i.e. u 2 C

0;b

(
;R

m

) � C

b

(
;R

m

) if u(!; 0) = 0 for almost all !. We shall denote

the norm in C

b

(
;R

m

) restrited to this subspae by k�k

C

0;b

(
;R

m

)

.
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) C

1

0;b

(
;R

m

) is the spae of random bounded di�erentiable maps whih �x the origin

given by u(!; �) suh that:

kuk

C

1

b

(
;R

m

)

= kuk

C

0;b

(
;R

m

)

+ E

"

sup

x2R

m

sup

kvk

!

�1

k(Du(!; x)v)

s

k

!

#

+E

"

sup

x2R

m

sup

kvk

!

�1

k(Du(!; x)v)

u

k

!

#

< +1:

The last spae stated in item () will be used in setion 4, where we will disuss

regularity of the onjugation. The deomposition mentioned above of C

k

(
;R

m

) re-

strits naturally to a diret sum deomposition of eah of these spaes aording to

the projetion on stable and unstable random subspae. Hene we shall denote by

C

b;s

(
;R

m

), C

0;b;s

(
;R

m

) and C

1

0;b;s

(
;R

m

) the stable omponents and by C

b;u

(
;R

m

),

C

0;b;u

(
;R

m

) and C

1

0;b;u

(
;R

m

) the unstable omponent of eah of the three spaes of

De�nition 2.5.

Proposition 2.4 The spaes C

b

(
;R

m

), C

0;b

(
;R

m

) and C

1

0;b

(
;R

m

) are Banah spaes

in theirs respetive norms.

Proof: We prove the result for C

b

(
;R

m

). One easily heks that C

0;b

(
;R

m

) �

C

b

(
;R

m

) is a losed subspae. For C

1

0;b

(
;R

m

) the proof goes with the same arguments,

only adapting to the norm in C

1

b

(R

m

)

Let fh

k

g

k=1

� C

b

(
;R

m

) be a sequene whose series onverges absolutely. We have

to prove that the series itself onverges in C

b

(
;R

m

). We have, by de�nition, that

1

X

k=1

E

�

sup

R

m

k(h

k

)

s

(!; �)k

!

�

< +1

and

1

X

k=1

E

�

sup

R

m

k(h

k

)

u

(!; �)k

!

�

< +1

To �x the ideas, we onentrate the alulations on the stable omponent. Let

G

n

(!)

s

=

P

n

k=1

sup

R

m

k(h

k

)

s

(�)k

!

, and G(!)

s

=

P

1

k=1

sup

R

m

k(h

k

)

s

(�)k

!

, then, by the

Beppo-Levi onvergene theorem G(!)

s

< +1 for all ! 2 


1

� 
 suh that P(


1

) = 1.

Moreover, by Proposition 2.1:

1

X

k=1

sup

R

m

k(h

k

)

s

(!; �)k � B(!)

(

1

X

k=1

sup

R

m

k(h

k

)

s

(!; �)k

!

)

8



Sine C

b

(R

m

) is a Banah spae with the supremum norm , there exists H(!; �) 2

C

b

(R

m

) for eah ! 2 


1

and

P

1

k=1

(h

k

)

s

(!; �)! H(!; �), moreover H(!; �) is measurable

sine this is a limit of measurable map (assume without lost of generality that H(!) = 0

if ! =2 


1

). Sine











n

X

k=1

(h

k

)

s

(!; �)�H(!; �)











!

� B(!)











n

X

k=1

(h

k

)

s

(!; �)�H(!; �)











then, �xed !, we have that

P

n

k=1

(h

k

)

s

(!; �)! H(!; �) in the sup

R

m

k�k

!

norm. Thus

sup

R

m











n

X

k=1

(h

k

)

s

(�)











!

�

n

X

k=1

sup

R

m

k(h

k

)

s

(�)k

!

;

therefore, when n!1 we have that sup

R

m

kH(!; �)k

!

� G(!)

s

, moreover

sup

R

m











H(!; �) �

n

X

k=1

(h

k

)

s

(!; �)











!

� 2G(!)

s

;

then, by the dominated onvergene theorem

lim

n!1

E

"

sup

R

m











H �

n

X

k=1

(h

k

)

s

(!; �)











!

#

= 0:

We laim that H(!; �) 2 C

s;b

(
;R

m

). In fat, if ! 2 


1

� 
, and x 2 R

m

; we have

that

P

n

k=1

(h

k

)

s

(!; x) 2 E

s

(!) for all n; sine

P

n

k=1

(h

k

)

s

(!; x)! H(!; x) then H(!; x)

2 E

s

(!) = E

s

(!). For ! =2 


1

we have H(!; x) = 0 2 E

s

(!).

Analogously, for the unstable part, there exists a random ontinuous map K 2

C

b;u

(
;R

m

) suh that

lim

n!1

E

"

sup

R

m











K(!; �)�

n

X

k=1

(h

k

)

u

(!; �)











!

#

= 0:

The proof �nishes taking h = H +K . 2

In what follows, in order to assure the existent of the Lyapunov exponents for the

linear oyle �, we shall always assume the hypothesis of the MET that log

+

kAk ;

log

+





A

�1





2 L

1

(
).

3. Disrete Case

In this setion we show a global and a loal version of the Hartman-Grobman theorem

(HGT) for a random map f 2 C

1

0

(
;R

m

). We start with the global version.
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3.1. Global version in R

m

Let f 2 Dif

1

0

(
;R

m

), the spae of random global di�eomorphisms of R

m

. We shall

denote by 	(!; x) the non-linear part of f , i.e.:

	(!; x) := f(!; x)�A(!)x;

where A(!) = Df(!; 0).

Besides assuming that the origin is a hyperboli �x point, we shall assume the

following hypotheses on the non-linear part 	:

(H1) (Globally Lipshitz in the random norm): there exists a onstant L <

1�e

��

2

p

2e

�+a

suh that for a.a. ! 2 
; and all x; y 2 R

m

we have

8

<

:

k	

s

(!; x)�	

s

(!; y)k

�!

� L kx� yk

!

;

k	

u

(!; x)�	

u

(!; y)k

�!

� L kx� yk

!

;

where �;�; a are hosen as in Corollary 2.2.

(H2) (Integrability of the supremum in the random norm): there exists a onstant

M > 0 suh that

E (sup

R

m

k	

s

(!)(:)k

�!

) + E( sup

R

m

k	

u

(!)(:)k

�!

) �M:

We reall that Wanner [23, Thm 3.3℄ assumes, besides (H1), the almost sure bounded

hypothesis:

k	

s

(!)(x)k

�!

�M and k	

u

(!)(x)k

�!

�M ;

Our tehnique onsists basially in deomposing the homeomorphism h(!; �) whih we

are looking for into h = (I+u), then �nd u in C

0;b

(
;R

m

) using a �xed point argument.

Theorem 3.1 (HGT, global disrete ase) Let f 2 Dif

1

0

(!;R

m

) suh that the ori-

gin is a hyperboli �xed point. Assume that the non-linear part 	 satis�es (H1) and

(H2). Then there exists a unique h 2 Homeo(
;R

m

) suh that

A(!)(�) = h(�!)

�1

Æ f(!; �) Æ h(!; �):

Proof: Write h(!; �) = I + u(!; �) with u 2 C

0;b

(
;R

m

) where I(!; x) = x for all

(!; x) 2 
� R

m

. The �rst step is to solve the following equation:

(I + u(�!))A(!) = f(!)(I + u(!))

10



whih is equivalent to:

A(!)u(!)� u(�!)A(!) = �	(!)(I + u(!)): (3.1)

The seond step is to prove that its unique solution (I + u(!; �)) is invertible with

ontinuous inverse. We split the proof into the following �ve lemmas.

Lemma 3.1 There exists a unique solution u of equation (3.1) in C

0;b

(
;R

m

).

Proof: De�ne the linear operator L : C

0;b

(
;R

m

)! C

0;b

(
;R

m

) given by

Lu(!) := A(�

�1

!)u(�

�1

!)� u(!)A(�

�1

!):

We laim that L is well de�ned and is invertible. Fatorize L =A Æ L

�

where A;L

�

:

C

0;b

(
;R

m

)! C

0;b

(
;R

m

) are given by

Au(!) := A(�

�1

!)u(�

�1

!);

and

L

�

u(!) := u(!)�A(!)

�1

u(�!)A(!):

Now, we shall work separately with the operators A and L

�

to show that they are

well de�ned and invertible. We reall the invariane of the stable and unstable subspaes

E

s

(!) and E

u

(!) from the MET, equation (2.1):

A(�

�1

!) : E

s;u

(�

�1

!)! E

s;u

(!):

By the inequalities (2.4) and (2.6) in Corollary (2.2) we have that:





Au





C

0;b

(
;R

m

)

= E

�

sup

R

m





(Au)

s

(!)





!

+ sup

R

m





(Au)

u

(!)





!

�

= E

�

sup

R

m





(Au

s

)(!)





!

+ sup

R

m





(Au

u

)(!)





!

�

= E

�

sup

R

m





A(�

�1

!)u

s

(�

�1

!)





!

+ sup

R

m





A(�

�1

!)u

u

(�

�1

!)





!

�

� e

��

E

�

sup

R

m





u

s

(�

�1

!)





�

�1

!

�

+ e

�+a

E

�

sup

R

m





u

u

(�

�1

!; �)





�

�1

!

�

�  kuk

C

0;b

(
;R

m

)

;

where  is a positive onstant. Hene A is a ontinuous operator.
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One easily heks that the inverse of A is given by (A)

�1

u(!) = A(!)

�1

u(�!).

Moreover we have that





(A)

�1





� e

�+a

; in fat, let u 2 C

0;b

(
;R

m

) then:





(A)

�1

u





C

0;b

(
;R

m

)

= E

�

sup

R

m





A(!)

�1

u

s

(�!)





!

+ sup

R

m





A(!)

�1

u

u

(�!)





!

�

� e

�+a

E

�

sup

R

m

ku

s

(�!)(�)k

�!

�

+ e

��

E

�

sup

R

m

ku

u

(�!; �)k

�!

�

� e

�+a

kuk

C

0;b

(
;R

m

)

:

sine, by de�nition in Corollary 2.2, 0 < � < � + a.

Analogously, for L

�

, by inequalities (2.5), (2.7) and using again the invariane of the

subspaes: A(!)

�1

: E

s;u

(�!)! E

s;u

(!), we have that:

kL

�

uk

C

0;b

(
;R

m

)

= E

�

sup

R

m

k(L

�

u)

s

(!)k

!

+ sup

R

m

k(L

�

u)

u

(!)k

!

�

� E

�

sup

R

m

ku

s

(!)k

!

+ sup

R

m





A(!)

�1

u

s

(�!)A(!)





!

�

+E

�

sup

R

m

ku

u

(!)k

!

+ sup

R

m





A(!)

�1

u

u

(�!)A(!)





!

�

� E

�

sup

R

m

ku

s

(!)k

!

�

+ e

(�+a)

E

�

sup

R

m

ku

s

(�!)A(!)k

�!

�

+E

�

sup

R

m

ku

u

(!)k

!

�

+ e

��

E

�

sup

R

m

ku

u

(�!)A(!)k

�!

�

� 

0

kuk

C

0;b

(
;R

m

)

;

for some onstant 

0

, hene L

�

is ontinuous. Now, we show that L

�

is invertible.

Initially note that

�

u

s

(!)�A(!)

�1

u

s

(�!)A(!)x

�

2 E

s

(!) (3.2)

and

�

u

u

(!)�A(!)

�1

u

u

(�!)A(!)x

�

2 E

u

(!) (3.3)

for all x 2 R

m

, hene L

�

preserves eah omponent of the deomposition C

0;b

(
;R

m

) =

C

0;b;s

(
;R

m

)�C

0;b;u

(
;R

m

). We shall onsider the deomposition L

�

= L

�

s

�L

�

u

where

L

�

s

:= L

�

�

�

�

C

0;b;s

(
;R

m

)

and L

�

u

:= L

�

�

�

�

C

0;b;u

(
;R

m

)

.

Going further in the deomposition, we will write L

�

s

= (I + T ) and L

�

u

= (I + S),

where T : C

0;b;s

(
;R

m

) ! C

0;b;s

(
;R

m

) and S : C

0;b;u

(
;R

m

) ! C

0;b;u

(
;R

m

) are

given by

T u

s

(!) := �A(!)

�1

u

s

(�!)A(!)
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and

Su

u

(!) := �A(!)

�1

u

u

(�!)A(!):

Equations (3.2) and (3.3) guarantee that the operators S and T are well de�ned. One

easily heks that T is invertible with

T

�1

u

s

(!) := �A(�

�1

!)u

s

(�

�1

!)A(�

�1

!)

�1

:

Moreover, by the inequalities (2.5) and (2.7) of Corollary 2.2 we have:





T

�1





= sup

ku

s

k=1





T

�1

u

s

(!)





= sup

ku

s

k=1

E

�

sup

R

m





A(�

�1

!)u

s

(�

�1

!)A(�

�1

!)

�1





!

�

� e

��

sup

ku

s

k=1

E

�

sup

R

m





u

s

(�

�1

!)A(�

�1

!)

�1





�

�1

!

�

= e

��

sup

ku

s

k=1

E

�

sup

R

m





u

s

(�

�1

!)





�

�1

!

�

= e

��

;

Therefore, �T

�1

is a ontration, and by the von Neumann theorem (see e.g. Hutson

e Pym [14, p. 86℄) L

�

s

= I + T is invertible with





(I + T )

�1





�

e

��

1�e

��

.

Considering the unstable omponent, the same argument shows that kSk � e

��

.

Therefore, L

�

u

= (I+S) is an isomorphism with





(L

�

u

)

�1





�

1

1�e

��

. Hene, L

�

= L

�

s

�L

�

u

is invertible with





(L

�

)

�1





�

1

1�e

��

.

Going bak to the original operator L = A Æ L

�

we have that





L

�1





�

e

�+a

1� e

��

:

Consider the operator P

	

: C

0;b

(
;R

m

)! C

0;b

(
;R

m

) given by

P

	

u(!) := �	(�

�1

!)(I + u)(�

�1

!):

The integrability hypothesis (H2) is used to guarantee that the operator P

	

is well

de�ned, in fat:

E

�

sup

x2R

m





	

s

(�

�1

!)(I + u)(�

�1

!))x





!

�

� E

�

sup

x2R

m





	

s

(�

�1

!)x





!

�

�M;

and

E

�

sup

x2R

m





	

u

(�

�1

!)(I + u)(�

�1

!))x





!

�

� E

�

sup

x2R

m





	

u

(�

�1

!)x





!

�

�M:

13



Finally, onsider the operator � : C

0;b

(
;R

m

)! C

0;b

(
;R

m

) given by the omposi-

tion:

�(u) := L

�1

Æ P

	

(u):

Note that a �xed point of � satis�es

A(�

�1

!)u(�

�1

!)� u(!)A(�

�1

!) = �	(�

�1

!)(I + u)(�

�1

!)

whih is equivalent to the onjugation equation (3.1).

The Lipshitz hypothesis (H1) is used in this proof exlusively to guarantee that �

is a ontration. In fat: Let u

1

and u

2

be arbitrary elements in C

0;b

(
;R

m

), then:

k�(u

1

)� �(u

2

)k

C

0;b

(
;R

m

)

�





L

�1





kP

	

(u

1

)�P

	

(u

2

)k

C

0;b

(
;R

m

)

:

The seond fator on the right hand side is:

E

�

sup

R

m

kP

	

(u

1

)�P

	

(u

2

))

s

(!)k

!

+ sup

R

m

k(P

	

(u

1

)�P

	

(u

2

))

u

(!)k

!

�

� E

�

sup

R

m





�	

s

(�

�1

!)(I + u

1

)(�

�1

!) + 	

s

(�

�1

!)(I + u

2

)(�

�1

!)





!

�

+ E

�

sup

R

m





�	

u

(�

�1

!)(I + u

1

)(�

�1

!) + 	

u

(�

�1

!)(I + u

2

)(�

�1

!)





!

�

� LE

�

sup

R

m





�u

1

(�

�1

!) + u

2

(�

�1

!)





�

�1

!

+ sup

R

m





�u

1

(�

�1

!) + u

2

(�

�1

!)





�

�1

!

�

� 2

p

2L ku

1

� u

2

k

C

0;b

(
;R

m

)

;

hene

k�(u

1

)� �(u

2

)k

C

0;b

(
;R

m

)

�

e

�+a

1� e

��

2

p

2L ku

1

� u

2

k

C

0;b

(
;R

m

)

:

Therefore, by hypothesis (H1), the map � is a ontration. The proof is ompleted by

the Banah �xed point theorem. 2

Lemma 3.2 There exists a unique v 2 C

0;b

(
;R

m

) suh that

A(!)((I + v(!)) = (I + v(�!))(A(!) + 	(!)):

Proof: This equation is equivalent to

A(!)v(!)� v(�!)(A+	)(!) = 	(!):

De�ne the linear operator H : C

0;b

(
;R

m

)! C

0;b

(
;R

m

) by

H(v)(!) = A(�

�1

!)v(�

�1

!)� v(!)(A+	)(�

�1

!):

14



Using the same kind of alulations whih we did with the operator L of the last lemma,

we onlude that H is ontinuous and invertible with





H

�1





�

e

�+a

1� e

��

:

We de�ne the operator D in the spae of random appliations by Dv(!) := v(�!).

Hypothesis (H2) says that D(	) 2 C

0;b

(
;R

m

). Hene, there exists a unique v 2

C

0;b

(
;R

m

) suh that v = H

�1

Æ D(	). 2

We remark that Hypothesis (H1) does not appear in the proof of Lemma 3.2. We

will refer to this lemma again in the proof of Theorem 5.2.

Lemma 3.3 There exists a unique solution w 2 C

0;b

(
;R

m

) to the equation

(I +w)(�!)(A+	)(!) = (A+	)(!)(I + w)(!);

whih is the trivial w � 0 a.s..

Proof: The equation is equivalent to

A(!)w(!)�w(�!)(A+	)(!) = �	(!)w(!):

De�ne the operator Q

	

: C

0;b

(
;R

m

)! C

0;b

(
;R

m

) by

Q

	

(w)(!) := �	(�

�1

!)w(�

�1

!):

Hypothesis (H2) over 	 guarantees that Q

	

is well de�ned. Consider the map � :

C

0;b

(
;R

m

)! C

0;b

(
;R

m

) given by

�(w) := H

�1

Æ Q

	

(w);

where H is the operator de�ned in the proof of Lemma 3.2. We show that � is a

ontration. Let u

1

; u

2

2 C

0;b

(
;R

m

), from Hypothesis (H1) we have

k�(u

1

)� �(u

2

)k

C

0;b

(
;R

m

)

�





H

�1





kQ

	

u

1

(!)�Q

	

u

2

(!)k

C

0;b

(
;R

m

)

�

e

�+a

1� e

��

E

�

sup

R

m





�	

s

(�

�1

!)(u

1

)(�

�1

!) + 	

s

(�

�1

!)(u

2

)(�

�1

!)





!

�

+E

�

sup

R

m





�	

u

(�

�1

!)(u

1

)(�

�1

!) + 	

u

(�

�1

!)(u

2

)(�

�1

!)





!

�

�

e

�+a

1� e

��

L(E

�

sup

R

m





�u

1

(�

�1

!) + u

2

(�

�1

!)





�

�1

!

�

+E

�

sup

R

m





�u

1

(�

�1

!) + u

2

(�

�1

!)





�

�1

!

�

�

L2

p

2e

�+a

1� e

��

ku

1

� u

2

k

C

0;b

(
;R

m

)

:
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Hene � is a ontration. Therefore there exists a unique �xed point �(w) = w whih

implies that w � 0 a.s. 2

Lemma 3.4 There exists a unique solution z 2 C

0;b

(
;R

m

) to the equation

(I + z)(�!)A(!) = A(!)(I + z)(!);

whih is the trivial z � 0 a.s..

Proof: It is a partiular ase of Lemma 3.3 with 	 � 0. 2

Lemma 3.5 Consider the elements u and v from Lemmas 3.1 and 3.2. Then (I+u) 2

Homeo(
; R

m

) moreover (I + u)

�1

= (I + v).

Proof: In fat, from Lemmas 3.1 and 3.2 we have that

(I + u(�!))(I + v(�!))(A(!) + 	(!)) = (I + u(�!)A(!)(I + v(!))

= (A(!) + 	(!))(I + u(!))(I + v(!));

and by Lemma 3.3 we �nd (I + u)(I + v) = I.

On the other hand:

(I + v(�!))(I + u(�!))A(!) = (I + v(�!))(A+	)(!)(I + u(!))

= A(!)(I + v(!))(I + u(!));

and by Lemma 3.4 we �nd (I + v)(I +u) = I. It onludes the proof of the theorem. 2

The next example illustrates a simple appliation of this result.

Example 3.1. Consider a map f 2 C

1

(
;R

2

) given by

f(!; x; y) = ((!)x; d(!)y +

h(x)

eB(!)

2

);

where h 2 C

1

(R) is bounded and suh that h(0) = h

0

(0) = 0. Assume that h is Lipshitz

with onstant L < (

2

p

2 exp(�+a)

1�e

��

)

�1

. The random variable B(!) is given by Proposition

2.1 with " = 1 and the onstants �, � and a are hosen as in Corollary 2.2. We shall

assume that the random variables ; d : 
! R are suh that log jj, log jdj are in L

1

(
)

and (!) 6= 0; d(!) 6= 0 a.a.. Call  := E log jj and Æ := E log jdj. The linearization of

f at the origin is given by

Df(!; 0) =

�

(!) 0

0 d(!)

�

;
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and the Lyapunov exponents are given by �

1

=  and �

2

= Æ. Assume that �

1

> 0 >

�

2

, i.e. the origin is a hyperboli �xed point. The Osselede's subspaes are simply

E

s

(!) = R(e

1

) and E

u

(!) = R(e

2

). Note that f is invertible with

f

�1

(!; x; y) = (

x

(!)

;

y � h(x=(!))

ed(!)B(!)

2

):

In our notation, the non-linear part of f is given by:

	(!; x; y) = (0;

h(x)

eB(!)

2

):

We laim that 	 satis�es the global Lipshitz in the random norm (Hypothesis (H1)).

In fat, given (x

1

; y

1

); (x

2

; y

2

) 2 R

2

:

k	

u

(!; x

1

; y

1

)�	

u

(!; x

2

; y

2

)k

�!

� eB(!)

�

�

�

�

h(x

1

)

eB(!)

2

�

h(x

2

)

eB(!)

2

�

�

�

�

�

L

B(!)

jx

1

� x

2

j

�

L

B(!)

k(x

1

; y

1

)� (x

2

; y

2

)k

� L k(x

1

; y

1

)� (x

2

; y

2

)k

!

:

Hypothesis (H2) also holds one:

k	

u

(!; x; y)k

�!

� eB(!)

�

�

�

�

h(x)

eB(!)

2

�

�

�

�

� sup

R

jh(x)j :

Analogous estimate also holds for the stable omponent 	

s

. Hene, by Theorem 3.1

there exists a random global homeomorphism h = (I + u) with u 2 C

0;b

(
;R

2

) suh

that

diag[(!) d(!)℄ = (I + u(�!))

�1

f(!)(I + u(!)):

In some simple ases it is possible to alulate expliitly the random homeomorphism

h(!; �).

Example 3.2. Consider the disrete probability spae 
 = fa; bg with P(a) = P(b) =

1

2

and the ergodi transformation � : 
! 
 given by �(a) = b; �(b) = a. We shall onsider

the mapping

f(!; x; y) = (�(!)x+ y � y

2

;

1

2

y)

where  is a onstant in R and � is de�ned by

�(!) :=

�

2 ; if ! = a

�2 ; if ! = b:

17



Therefore,

Df(!; 0) =

�

�(!) 

0

1

2

�

:

In this ase the random onjugation is performed by H : 
! Homeo(R

2

) given by

H(a; x; y) = (x+

28

65

y

2

; y) with inverse H

�1

(a; x; y) = (x�

28

65

y

2

; y);

and

H(b; x; y) = (x�

36

65

y

2

; y) with inverse H

�1

(b; x; y) = (x+

36

65

y

2

; y):

One easily heks the onjugation property, for all ! 2 
 and (x; y) 2 R

2

. As in

Arnold [1, Example 3.6.1℄ or in Furstenberg and Kifer [9℄, the Lyapunov exponents are

�

1

= log 2 > �

2

= � log 2 and the Osseledets spaes are E

1

= R � e

1

and

E

2

(!) = R

�

u(!)

1

�

with

u(!) = �

1

X

k=0

(

1

2

)

k

�

k+1

(!)

:

One heks that u(a) = �

6

17

and u(b) =

10

17

.

3.2. Loal disrete version

The approah for the loal version of the HGT will start with a result whih again

extends the deterministi arguments (see, e.g. Palis and Melo [19, Lemma II.4.4℄).

Lemma 3.6 Let f be in 2 C

1

(
;R

m

) and onsider the mapping A; and 	 as de�ned

above. If the origin is a hyperboli �xed point of the systems (f; �) then for P-almost all

! 2 
 there exists a neighbourhood U(!) of the origin and a funtion

e

	 2 C

1

(
;R

m

)

whih satis�es Hypothesis (H1) and (H2) suh that

e

f(!; �) :� A(!)(�) +

e

	(!; �) is in

Dif

1

0

(
;R

m

) and if x 2 U(!) then,

f(!; x) =

e

f(!; x):

Proof: Consider a C

1

funtion � : R ! R suh that

�(t) =

�

1; jtj �

1

2

0; jtj � 1

18



and j�

0

(t)j � k with k > 2. Let L be a positive onstant and B(

e

l(!)) a ball with entre

at the origin and radius

e

l(!). The random variable

e

l(!) will be de�ned suh that

kD	

s;u

(!; x)k �

L

eB(!)

2

2k

for all kxk �

e

l(!) where the term B(!) is the same of Proposition 2.1 with " = 1. We

have, for x; y 2 B(

e

l(!)) that:

k	(!; x)�	(!; y)k �

L

eB(!)

2

2k

kx� yk

and

k	(!; x)k �

L

eB(!)

2

2k

kxk :

Let l(!) = min

n

e

l(!); 1

o

. The funtion in the statement of this lemma

e

	 2 C

1

(
;R

m

)

an be de�ned now by:

e

	(!; x) = �

�

kxk

l(!)

�

	(!; x):

Moreover, the neighbourhood of the statement an be de�ned by

U(!) = B

�

l(!)

2

�

:

Then, naturally, 	(!; x) =

e

	(!; x) if x 2 U(!). We laim that

e

	 satis�es Hypothesis

(H1). In fat, onsidering �rst the unstable part, by Proposition 2.1:







e

	

u

(!; x)�

e

	

u

(!; y)







�!

� B(�!)







e

	

u

(!; x)�

e

	

u

(!; y)







� B(!)e







e

	

u

(!; x)�

e

	

u

(!; y)







:

If x; y 2 B(l(!)), by Proposition 2.1 again we have:







e

	

u

(!; x)�

e

	

u

(!; y)







�!

� B(!)e

�

�

�

�

�

�(

kxk

l(!)

)� �(

kyk

l(!)

)

�

�

�

�

k	

u

(!; x)k

+ �(

kyk

l(!)

) k	

u

(!; x)�	

u

(!; y)k

�

� B(!)e

k

l(!)

kx� yk

L

eB(!)

2

2k

kxk

+

k

l(!)

kyk

L

eB(!)

2

2k

kx� yk

�

L

B(!)

kx� yk � L kx� yk

!

:
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Suppose now that x 2 B(l(!)) and y =2 B(l(!)), then







e

	

u

(!; x)�

e

	

u

(!; y)







�!

� B(!)e

�

�

�

�

�

�(

kxk

l(!)

)� �(

kyk

l(!)

)

�

�

�

�

k	

u

(!; x)k

�

� B(!)e

�

k

l(!)

kx� yk

L

eB(!)

2

2k

kxk

�

�

L

2B(!)

kx� yk � L kx� yk

!

:

Finally, if x; y =2 B(l(!)) the Lipshitz property is trivial one







e

	

u

(!; x)�

e

	

u

(!; y)







�!

= 0:

The Lipshitz property for the stable part is proved using the same kind of arguments.

Now we show that

e

	 satis�es Hypothesis (H2), more spei�ally we will show that, by

our onstrution, its random norm for the stable or unstable omponent (at �bre �!) is

bounded by positive onstant (whih oinides with the Lipshitz onstant L). In fat,

if x 2 B(l(!)) we have:







e

	

s

(!; x)







�!

� B(!)e�(

kxk

l(!)

) k	

s

(!; x)k � B(!)e

k

l(!)

kxk

L

eB(!)

2

2k

kxk

�

L

2B(!)

kxk �

L

2B(!)

l(!) � L:

And if x =2 B(l(!)) then







e

	

s

(!; x)







�!

= 0.

The proof for the unstable part follows using the same arguments. 2

Theorem 3.2 (HGT: loal disrete ase) Let f be in C

1

0

(
;R

m

) and onsider the

mapping A; and 	 as de�ned above. If the origin is a hyperboli �xed point of the

systems (f; �) then for P-almost all ! 2 
 there exists a neighbourhood U(!) of the

origin and a loal homeomorphism h 2 Homeo(
; U(!);h(U(!))) suh that:

f(!; x) = h

�1

(�!)A(!)h(!)(x);

for all x in the domain of the omposition.

Proof: De�ne

e

f(!; x) := A(!; x) +

e

	(!; x) as in Lemma 3.6. By Theorem 3.1

there exists a global homeomorphism

e

h 2 Homeo(
;R

m

) suh that

e

h(�!)

e

f(!; �) =

D

e

f(!; 0)

e

h(!)(�). Take the restrition h =

e

hj

U(!)

. 2
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We �nish this setion presenting the natural extension of the disrete random ver-

sion of the Hartman-Grobman theorem to mappings on a di�erentiable manifold M of

dimension m. Here C

1

(
;M) is the spae of measurable appliations f : 
�M !M ,

with f(!) 2 C

1

(M) a.s..

Corollary 3.2 Let f 2 C

1

(
;M) where M is a di�erentiable manifold. Let p 2 M be

a hyperboli �xed point for the random dynamial system generated by (f; �). Calling

A(!) = T

p

f(!) : T

p

M ! T

p

M , then, for eah ! 2 
 there exists a neighbourhood

V (!; p) � M of p and U(!) � T

p

M , a neighbourhood of the origin and a homeomor-

phism h(!) : U(!)! V (!; p) suh that:

h(�!)A(!)(x) = f(!)h(!)(x):

for all x in the domain of the omposition.

Proof: Consider a loal hart  : W �M ! Z � R

m

with p 2W suh that  (p) = 0.

Consider the random map

e

f(!; x) =  Æ f(!; �) Æ  

�1

: Z ! R

m

. The result follows by

the HGT, loal disrete ase. 2

4. Regularity of the onjugation

In this setion we are going to extend the results of Hartman [13℄. We establish a

theorem whih guarantees the existene of a random di�eomorphism whih perform the

onjugation between a disrete random dynamial systems and its linearization. We

shall deal now with random mappings f 2 C

2

(R

m

) and we keep the same notations and

hypotheses as before: the origin is a hyperboli �xed point and f(!; �) = A(!)+	(!; �)

where A(!) = Df(!; 0). We shall assume, besides the hypothesis (H1) and (H2) of last

setion, the following extra onditions:

(H3) There exist onstants k; k

1

> 1 suh that k

1

e

��

< 1, ke

��

<

1

3� 2e

��

< 1,

1

1� k

1

e

��

<

ke

��

1� ke

��

;

and for all v 2 R

m

, ! 2 
 we have

a) kA(!)vk

�!

� k

1

kvk

!

and





A(!)

�1

v





!

� k kvk

�!

;

b) k(A(!) + 	(!))vk

�!

� k

1

kvk

!

and





(A(!) + 	(!))

�1

v





!

� k kvk

�!

.

Here, the onstant � is the same whih appears in Corollary 2.2.
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(H4) (The derivative is Lipshitz) There exists a onstant L > 0 suh that

1� e

��

+ 4

p

2e

�+a

L <

1� ke

��

2ke

��

;

and for all x 2 R

m

; v 2 R

m

, ! 2 
 we have:

8

<

:

k((D	(!; x)�D	(!; y))v)

s

k

�!

� L kx� yk

!

;

k((D	(!; x)�D	(!; y))v)

u

k

�!

� L kx� yk

!

:

(H5) (The derivative is bounded in the random norm) There exists a onstant L

1

> 0

with L

1

<

1� ke

��

4e

�+a

p

2ke

��

where �; a are the onstants whih appear in Corollary

2.2, suh that for all x; v 2 R

m

and ! 2 
 we have:

k(D	(!; x)v)

s

k

�!

� L

1

kvk

!

; k(D	(!; x)v)

u

k

�!

� L

1

kvk

!

Remark 4.1

a) In the Hypothesis (H3), the restrition on k

1

is given only by inequality k

1

e

��

< 1,

one we already know that kA(!)vk

�!

� e

�+a

kvk

!

;

b) Again, in the Hypothesis (H3), the restrition on k is given only by the inequality

1

2�k

1

e

��

< ke

��

; one we already know that





A(!)

�1

v





!

� e

�+a

kvk

�!

;

) In Hypothesis (H4), the set of possibilities for the onstant L is non-empty one k

satis�es 1� e

��

<

1� ke

��

2ke

��

.

Theorem 4.1 (HGT, di�erentiable global disrete ase) Let f 2 Dif

2

0

(
;R

m

) suh

that the origin is a hyperboli �xed point. Writing f(!) = A(!) + 	(!), with A(!) =

Df(!; 0), assume that its non-linear part satis�es the Hypothesis (H1) till (H5). Then,

there exists a unique random di�eomorphism h 2 Dif

1

0

(
;R

m

) suh that

h(�!) Æ A(!) = f(!) Æ h(!):

Proof: The tehnique is exatly the same as in the proof of Theorem 3.1, but with

longer alulations. We shall only show the main steps.

Again, we are looking for a solution of the form h = (I + u) with u 2 C

1

0;b

(
;R

m

).

The proof is performed by the following two lemmas:
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Lemma 4.1 In the onditions of Theorem 4.1 there exists a unique homeomorphism

h 2 C

1

0

(
;R

m

) \Homeo(
;R

m

) suh that

h(�!) Æ A(!) = f(!) Æ h(!):

Proof: Imitating Lemma 3.1, de�ne the linear operators:

L

�

: C

1

0;b

(
;R

m

) �! C

1

0;b

(
;R

m

)

u (!) 7�! L

�

u(!) = u(!)�A(!)

�1

u(�!)A(!)

and the non-linear operator:

(A)

�1

Æ P

	

: C

1

0;b

(
;R

m

) �! C

1

0;b

(
;R

m

)

u (!) 7�! (A)

�1

P

	

u(!) = �A(!)

�1

	(!)(I + u)(!):

Applying Hypothesis (H3), following similarly the alulations of Lemma 3.1 one

�nds that L

�

and (A)

�1

Æ P

	

are well de�ned. Again we onsider the deomposition:

L

�

s

= L

�

�

�

�

�

C

1

b;s

(
;R

m

)

and L

�

u

= L

�

�

�

�

�

C

1

b;u

(
;R

m

)

Next step is to show that L

�

s

and L

�

u

are invertible. We de�ne T :C

1

0;b;s

(
;R

m

) !

C

1

0;b;s

(
;R

m

) and S :C

1

0;b;u

(
;R

m

)! C

1

0;b;u

(
;R

m

) operators like in Lemma 3.1. With

similar alulations in the norm of C

1

(R

m

) eventually one onludes that L

�

is invertible

with





(L

�

)

�1





� max

�

1

1� k

1

e

��

;

ke

��

1� ke

��

�

=

ke

��

1� ke

��

;

by Hypothesis (H3).

Finally we introdue the non-linear operator � : C

1

0;b

(
;R

m

) ! C

1

0;b

(
;R

m

) given

by

�(u) = (L

�

)

�1

Æ (A)

�1

Æ P

	

(u):

We laim that � is a ontration. In fat, given u

1

; u

2

2 C

1

0;b

(
;R

m

) then, by straight-

forward alulations we have:

k�(u

1

)� �(u

2

)k

C

1

0;b

(
;R

m

)

�

ke

��

1� ke

��





(A)

�1

Æ P

	

(u

1

)� (A)

�1

Æ P

	

(u

2

)





C

1

0;b

(
;R

m

)

23



� (1 � e�� + 4e� + aL

p

2ku

1

� u

2

k

C

0;b

(
;R

m

)

+ (e

�+a

L

1

2

p

2)E

"

sup

x2R

m

sup

kvk

!

�1

k(D

x

(u

1

)(!)v �D

x

(u

2

)(!)v)

s

k

!

+ sup

x2R

m

sup

kvk

!

�1

k(D

x

(u

1

)(!)v �D

x

(u

2

)(!)v)

u

k

!

#

:

Hene, by Hypothesis (H4) L is suh that (1 � e

��

+ 4e

�+a

L

p

2) <

1� ke

��

2ke

��

and by

Hypothesis (H5) L

1

<

1� ke

��

4e

�+a

p

2ke

��

. Therefore � is a ontration. The result follows

by Banah �xed point theorem. 2

Lemma 4.2 In the onditions of Theorem 4.1, there exists a unique homeomorphism

g 2 C

1

(
;R

m

) \Homeo(
;R

m

) suh that

A(!) Æ g(�!) = g(�!) Æ f(!):

Proof: We repeat the same arguments as in Lemma 3.2. Note that in the previous

Lemma 4.1 we only used the Hypotesis (H3.a). For the proof of this lemma one will

need to assume Hypothesis (H3.b) instead. The alulations are again straightforward.

2

End of the Proof of Theorem 4.1: Considering the homeomor�sms h and g of the

previous two lemmas, the result follows by Lemma 3.5, whih guarantees that h = g

�1

.

2

4.1. Loal version

For the loal version, we shall �rst introdue the following lemma (similarly to the

approah of last setion):

Lemma 4.3 Let f be in 2 C

2

(
;R

m

) and onsider the mapping A; and 	 as de�ned

aboved. Assume the the seond derivative D

2

	(x) is bounded and vanishes at x = 0. If

the origin is a hyperboli �xed point of the systems (f; �) then for P-almost all ! 2 


there exists a neighbourhood U(!) of the origin and a funtion

e

	 2 C

1

(
;R

m

) whih

satis�es Hypothesis (H1), till (H5) suh that

e

f(!; �) :� A(!)(�) +

e

	(!; �) is invertible

and if x 2 U(!) then,

	(!; x) =

e

	(!; x):
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Proof: Take the same funtion � of the proof of Lemma 3.6. Let

e

l

1

(!) be de�ned suh

that

kD	(!; x)k �

L

eB(!)

2

2k

for all kxk �

e

l

1

. And let

e

l

2

(!) be de�ned suh that





D

2

	(!; x)





�

L

eB(!)

2

2k

De�ne l(!) = min

n

e

l

1

(!);

e

l

2

(!); 1

o

. Then, as in Lemma 3.6 the funtion of the

statement an be de�ned by

e

	(!; x) = �

�

kxk

l(!)

�

	(!; x):

And the neighbourhood an be de�ned by

U(!) = B(

l(!)

2

):

2

Theorem 4.2 (HGT: di�erentiable loal disrete ase) Let f 2 C

2

(
;R

m

) with

the mapping A; and 	 as de�ned aboved. Assume that the seond derivative D

2

	(x) is

bounded and vanishes at x = 0. If the origin is a hyperboli �xed point of the systems

(f; �) then for P-almost all ! 2 
 there exists a neighbourhood U(!) of the origin and

a loal di�eomorphism h 2 Dif

1

0

(
; U(!);h(U(!))) suh that:

f(!; x) = h

�1

(�!)A(!)h(!)(x)

for all x in the domain of the omposition.

Proof: De�ne

e

f(!; x) := A(!; x) +

e

	(!; x) like in the Lemma 4.3. By Theorem 4.1

there exists a global random di�eomorphism

e

h 2 Dif

1

0

(
;R

m

) suh that

e

h(�!)

e

f(!; �) =

D

e

f(!; 0)

e

h(!)(�). Take the restrition h =

e

hj

U(!)

. 2

Before we lose this setion we mention that the results presented here an be ex-

tended to higher degrees of di�erentiability, just adapting the norms in eah appropriate

spae.
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5. Continuous versions

In this setion we deal with ontinuous random dynamial systems, more spei�ally,

we will onern mainly with systems generated by stohasti di�erential equations.

Partiularly, the loal version will be proved for this last ase. We shall deal with

perfet oyles one in this ase every rude oyle is indistinguishable from a perfet

oyle (see Arnold and Sheutzow [3℄).

Let '(t; !) be an stohasti ow suh that p = 0 is a hyperboli �xed point. As

before, we separate the linear and non-linear part:

'(t; !; �) = �(t; !; �) + 	(t; !; �)

where

�(t; !) := D

0

'(t; !)

and 	(t; !; �) is the orresponding non-linear part.

5.1. Global version

The assumptions for the following global version of HGT rest only upon the time-one

random di�eomorphism '(1; !; �); essentially it has to satisfy the hypotheses (H1) and

(H2) stated for the global disrete HGT in setion 3.

Theorem 5.1 (HGT, global ontinuous ase) Assume that the time-one non-linear

part 	(1; !; �) satis�es the hypotheses (H1) and (H2). Hene, there exists a unique

H 2 Homeo(
;R

m

) suh that for all t 2 R

'(t; !; �) = H(�

t

!)

�1

�(t; !)H(!)(�):

Proof: By Theorem 3.1 there exists a unique h 2 Homeo(
;R

m

) suh that

h(�!)'(1; !; �) = �(1; !)h(!)(�):

Let k 2 Z, then, by indution:

h(�

k

!)(�) = �(k; !)h(!)'(�k; �

k

!; �):

The proof follows essentially as a random adaptation of the deterministi arguments.

We follow S. Sternberg [21, Lemma 4℄. De�ne:

H(!; x) =

Z

1

0

�(�s; �

s

!)h(�

s

!)'(s; !; x)ds: (5.1)
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Before we show that H is in fat the homeomorphism of the statement, we prove the

existene of the integral. Initially, note that �(�s; �

s

!) is ontinuous in s one it

orresponds to the inverse �(s; !)

�1

. Seondly, using the ontinuity of ' and the

fat that h(�

s

!) = I + u(�

s

!) with u 2 C

0;b

(
;R

m

), it only remains to proof that

�(�s; �

s

!)u(�

s

!)'(s; !; x) is integrable in the interval s 2 [0; 1℄. By Proposition 2.1

and its orollary we have that

k�(s; !; �)u(�

s

!; �)k � B(!)e

�+a

ku(�

s

!; �)k

�

s

!

;

for all s 2 [0; 1℄. Finally, by P-invariane of �

s

and Tonelli-Fubini Theorem:

E

Z

1

0

sup

R

m

ku(�

s

!; �)k

�

s

!

ds =

Z

1

0

E

�

sup

R

m

ku(!; �)k

!

�

ds < +1:

Hene, for a.a. ! the integral of equation 5.1 makes sense.

Now, we show that H onjugates the ows � and ' for t in the interval [�1; 1℄. One

sees by the de�nition that

�(t; !)H(!)(x) =

Z

1

0

�(t� s; �

s

!)h(�

s

!)'(s� t; �

t

!; �)ds '(t; !; x):

With the hange of variable r = s� t, we have:

�(t; !)H(!)(x) =

Z

1�t

�t

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; :)dr '(t; !; x)

=

Z

0

�t

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; �)dr '(t; !; x)

+

Z

1�t

0

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; �)dr '(t; !; x):

The �rst integral is:

R

0

�t

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; �)dr

=

R

0

�t

�(�r � 1; �

r+t+1

!)�(1; �

t+r

!)h(�

r+t

!)'(�1; �

r+t+1

!; �)'(r + 1; �

t

!; �)dr

=

R

0

�t

�(�r � 1; �

r+t+1

!)h(�(�

r+t

!))'(r + 1; �

t

!; �)dr;

one by Theorem 3.1, we have that

�(1; �

t+r

!)h(�

r+t

!)'(�1; �

r+t+1

!; :) = h(�(�

r+t

!)): (5.2)
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Now, hanging the variable s = r + 1, we have:

Z

1

1�t

�(�s; �

s+t

!)h(�

s+t

!))'(s; �

t

!; �)ds:

Hene,

�(t; !)H(!)(x) =

�

Z

1

1�t

�(�s; �

s+t

!)h(�

s+t

!)'(s; �

t

!; �)ds

+

Z

1�t

0

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; �)dr

�

'(t; !; x)

=

�

Z

1

0

�(�s; �

s+t

!)h(�

s+t

!))'(s; �

t

!; �)ds

�

'(t; !; x)

= H(�

t

!)'(t; !; x):

Finally, let t 2 R and write t = k + s with k 2 Z and s 2 [�1; 1℄. Then

�(t; !)H(!) = �(k + s; !)H(!)

= �(k; �

s

!)H(�

s

!)'(s; !; :)

= H(�

t

!)'(t; !; :):

Note that by the uniqueness established by Theorem 3.1, H(!) = h(!) a.s. hene

it is guaranteed the invertibility of H.

2

We remark that for a �xed ! and x 2 R

m

the map t 7! H(�

t

!; x) is ontinuous one

H(�

t

!; x) = �(t; !) ÆH(!) Æ ('(t; !; �))

�1

(x).

5.2. Loal version for SDE

In this setion we present a loal version of the Hartman-Grobman theorem for stohasti

dynamial systems generated by stohasti Stratonovih di�erential equations. In order

to �x our terminology, onsider the following SDE in R

m

:

dx

t

= f

0

(x

t

)dt+

k

X

i=1

f

i

(x

t

) Æ dB

i

t

(5.3)

where (B

1

t

; � � � ; B

k

t

) is a Brownian motion in R

k

, f

0

; : : : ; f

k

: R

m

! R

m

are C

1

-vetor

�elds. We shall denote by '(t; !; �) the solution ow. Negative time is obtained onsid-

ering independent opies of Brownian motions for t � 0 and for t � 0; as in Boxler [4℄

or Arnold and Imkeller [2℄. We assume that the origin is a hyperboli �xed point.
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We shall denote the linearised vetor �elds at the origin by L

i

= Df

i

(0), for i =

0; 1; : : : ; k. As before, �(t; !) will denote the linear part of the ow ', it is the solution

of the linear SDE

dv

t

= L

0

(v

t

)dt+

k

X

i=1

L

i

(v

t

) Æ dB

i

t

:

As before, the non-linear part of the ow will be alled 	 = '� �.

The loalisation argument starts �xing a positive radius l � 0. Take the C

1

-vetor

�elds

~

f

i

whih satis�es the onditions:

~

f

i

(x) = f

i

(x) for all x 2 B(0; l=2), the ball of

entre in the origin and radius l=2 and

~

f

i

(x) = L

i

(x) for x =2 B(0; l), with i = 0; 1; : : : ; k.

We shall denote by ~'(t; !; x) the solution ow of the SDE

dx

t

=

~

f

0

(x

t

)dt+

k

X

i=1

~

f

i

(x

t

) Æ dB

i

t

: (5.4)

Obviously the linear part of ' and ~' oinides to �. The non-linear part of the ow

~' we shall denote by

~

	(t; !; x) = ~'(t; !; x)� �(t; w)x.

As before, in the next theorem the random variable B(!) denotes the variable B

"

with " = 1 de�ned in Proposition 2.1.

Theorem 5.2 (HGT, loal ase for SDE) Let ' be the C

1

-RDS generated by the

SDE (5.3) suh that the origin is a hyperboli �xed point. If B(!) 2 L

1

(
) then there

exists a random homeomorphism H(!) : V (!) ! W (!) , where V (!) and W (!) are

random neighbourhoods of the origin, suh that:

H(�

t

!)'(t; !; x) = �(t; !)H(!; x)

for P-almost all ! and t = t(x) in a random interval ontaining zero, suh that x is in

the domain of the omposition.

Proof: The proof is based mainly in the disrete arguments of setion 3. Let x 2

B(0; l=2) and onsider the following stopping times:

T (!; x) := inf ft � 0; '(t; !; x) =2 B(0; l=2)g ;

S(!; x) := sup ft � 0; '(t; !; x) =2 B(0; l=2)g ;

One ' and ~' oinide in B(0; l=2) in the random interval t 2 (S; T ), we only have

to prove that there exists a loal onjugation H(!) suh that for P-almost all ! 2 
 we

have H(�

t

!)~'(t; !; x) = �(t; !)H(!)(x).

The time-one di�eomorphism ~'(1; !; �) (or more preisely, its nonlinear part

~

	(1; !; �))

satis�es the hypothesis (H2) of setion 3. That is, we laim that there exists a onstant

29



M > 0 suh that

E

"

sup

x2R

k







~

	

s

(1; !; x)







�!

#

�M; and E

"

sup

x2R

k







~

	

s

(1; !; x)







�!

#

�M:

First, with a �xed ! 2 
, assume that x 2 R

m

is far enough from the origin, more

preisely, assume that:

kxk

!

> e

(1+�+a)

B(!) l

where � and a are de�ned as in Corollary 2.2. Hene, by Proposition 2.1 and its

Corollary again, for 0 � t � 1 we have:

k�(t; !)xk �

k�(t; !)xk

�

t

!

B(�

t

!)

�

e

�(�+a)

kxk

!

B(�

t

!)

> l

Hene k~'(t; !; x)k > l for all 0 � t � 1. Sine ~' and � oinide outside B(0; l), we have

that, in this ase

~

	(1; !; x) = 0.

Seondly, assume that

kxk

!

� e

(1+�+a)

B(!) l:

In this ase the trajetory of x by ~' an pass through the ball B(0; l), and an not

follow the linear trajetory of � anymore. Moreover, one an not estimate the last exit

time from B(0; l) beause it is not a stopping time. Nevertheless, in any ase, one an

guarantee that, for 0 � t � 1:

k~'

s

(1; !; x)k

�!

� sup

0�t;r�1

sup

kxk=l

k�

s

(r; �

t

!)xk

�

r+t

!

;

and sine k�

s

(r; �

t

!)xk

�

r+t

!

� e

(1+�+a)

B(!) kxk with 0 � t; r � 1, we onlude that:

k~'

s

(1; !; x)k

�!

� e

2(�+a)+1

B(!) l:

On the other hand k�

s

(1; !)xk

�!

� e

(�+a)

kxk

!

� e

2(�+a)+1

B(!) l. Therefore:

E

�

sup

R

k







~

	

s

(1; !; �)







�!

�

� 2e

2(�+a)+1

E [B(!)℄ l < +1:

Analogously to the unstable part one �nds that:

E

�

sup

R

k







~

	

u

(1; !; �)







�!

�

� e

2(�+a)+1

(E [B(!)℄ + e E [B(!)℄ l) l < +1:

Now, applying Lemma 3.2 to the random (disrete in time) C

1

-di�eomorphism ~'(1; !; �)

we onlude that there exists a unique ontinuous appliation h = I + u, with u 2

C

0;b

(
;R

k

) (h is not neessarily invertible) suh that

h(�!)~'(1; !; x) = �(1; !)h(!)(x): (5.5)
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The ontinuous dynamis are obtained applying the same alulations we did in the

proof of Theorem 5.1 de�ning:

H(!; x) =

Z

1

0

�(�s; �

s

!)h(�

s

!)~'(s; !; x)ds:

We point out that although at this point we an not guarantee the invertibility of h

(neither of H), the property of Lemma 3.2 stated in equation (5.5) is enough to arry

on the alulations we did with H in the proof of Theorem 5.1, partiularly equation

(5.2).

The loal invertibility of H(!) follows by uniqueness of the onjugay and the loal

invertibility of h(!) in some neighbourhood U(!) of the origin, guaranteed by Theorem

3.2. Finally, de�ne the neighbourhood stated in the theorem by V (!) = U(!)\B(0; l=2).

2

Before we present an example, we show that it is possible to weaken the hypothesis

of the last theorem substituting the random variable B(!) by another variable whih

would satis�es the same basi properties of B(!). Preisely, assume that there exists

a stritly positive real random variable C 2 L

2

(
) suh that k�k

!

� C(!) k�k and

C(�

t

!) � e

kjtj

�(t; !)C(!) where k is a positive onstant and � is a ontinuous proess

suh that sup

0�t�1

�(t; !) 2 L

2

(
).

Corollary 5.1 In the ontext of the last theorem, the loal onjugay desribed still

holds if instead of integrability of B(!) we assume that there exists a random variable

C(!) as desribed above.

Proof: It is enough to prove that we still have

~

	(1; !; �) satisfying hypothesis (H2) of

setion 3.

Firstly, assume that x 2 R

m

is far enough from the origin, preisely:

kxk

!

> l e

�+a+k

C(!) sup

0�t�1

�(t; !):

Then

k�(t; !)xk �

k�(t; !)xk

�

t

!

C(�

t

!)

�

e

�(�+a+k)

kxk

!

C(!) sup

0�t�1

�(t; !)

> l;

for all 0 � t � 1, hene ~'(1; !; x) = 0.

Now, onsider the ase

kxk

!

� l e

�+a+k

C(!) sup

0�t�1

�(t; !):
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As in the proof of the last theorem, either if the trajetory of ~'(x) passes through

the ball B(0; l=2) or not,

k~'

s

(1; !; x)k

�!

� sup

0�t;r�1

sup

kxk=l

k�

s

(r; �

t

!; x)k

�

t+r

!

;

and for 0 � t; r � 1

k�

s

(r; �

t

!; x)k

�

r+t

!

� e

(�+a)(r)

e

kt

sup

0�t�1

�(t; !)C(!) kxk

� e

2(�+a)+k

sup

0�t�1

�(t; !)C(!)l:

Hene

k~'

s

(1; !; x)k

�!

� e

2(�+a)+k

C(!) l sup

0�t�1

�(t; !);

and

k�

s

(1; !; x)k

�!

� e

2(�+a)+k

C(!) l sup

0�t�1

�(t; !):

Therefore,

E

"

sup

x2R

k







~

	

s

(1; !; x)







�!

#

� 2e

2(�+a)+k









sup

0�t�1

�(t; !)









L

2

� kC(!)k

L

2

:

For the unstable part one alulates an analogous estimate. 2

We present an example whih illustrates this last orollary.

Example 5.1. Consider the following SDE in R

2

d(x

t

; y

t

) = f

0

(x; y) dt+ f

1

(x; y) dB

1

t

+ f

2

(x; y) dB

2

t

(5.6)

where (B

1

t

; B

2

t

) is a Brownian motion on R

2

,

f

0

(x; y) =

2

4

��

1

+ �

2

1

x(1� x

2

)

��

2

+ �

2

2

y(1� y

2

)

3

5

; f

1

(x; y) =

2

4

��

2

1

(1� x

2

)

0

3

5

;

and

f

2

(x; y) =

2

4

0

��

2

2

(1� y

2

)

3

5

;

with �

i

and �

i

, i = 1; 2, real onstants suh that �

1

; �

2

6= 0; and 8�

2

i

< a, where a is

the onstant of Proposition 2.1.
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Note that the points f(1; 1); (1;�1); (�1; 1); (�1;�1)g are singularities of the vetor

�elds f

0

; f

1

and f

2

. We shall fous our attention at the point x

0

= (�1;�1). The solu-

tion of equation (5.6) is given by the deoupled ow '(t; !; x; y) = ('

1

(t; !; x; y); '

2

(t; !; x; y))

where

'

1

(t; !; x; y) =

(1 + x) exp(�2�

1

t+ 2�

1

B

t

) + x� 1

(1 + x) exp(�2�

1

t+ 2�

1

B

t

) + 1� x

and

'

2

(t; !; x; y) =

(1 + y) exp(�2�

2

t+ 2�

2

B

t

) + y � 1

(1 + y) exp(�2�

2

t+ 2�

2

B

t

) + 1� y

:

(See Kloeden and Platen [15, Pag. 124℄). The linearization at our point x

0

is given by

d'(t; !; (�1;�1)) =

�

exp(�2�

1

t+ 2�

1

B

1

t

) 0

0 exp(�2�

2

t+ 2�

2

B

2

t

)

�

:

The Osseledet's subspaes are deterministi and orrespond to the anonial axes

E

i

(!) = R � e

i

for i = 1; 2. If x 2 E

i

(!) then the Lyapunov exponent �

i

are

�

i

= lim

t!1

1

t

log kd'(t; !; (�1;�1))xk = �2�

i

6= 0;

hene (�1;�1) is hyperboli. Let x = (x

1

; x

2

) 2 R

2

, by the very de�nition of the

random norm (De�nition 2.3):

kxk

2

!

=

Z

+1

�1

(x

1

)

2

e

4(��

1

t+�

1

B

1

t

)

e

2(�

1

t+ajtj)

dt+

Z

+1

�1

(x

2

)

2

e

4(��

2

t+�

2

B

2

t

)

e

2(�

2

t+ajtj)

dt

=

Z

+1

�1

(x

1

)

2

e

4�

1

B

1

t

�2ajtj

dt+

Z

+1

�1

(x

2

)

2

e

4�

2

B

2

t

�2ajtj

dt:

De�ne



1

(!) :=

Z

+1

�1

e

4�

1

B

1

t

�2ajtj

dt;

and



2

(!) :=

Z

+1

�1

e

4�

2

B

2

t

�2ajtj

dt:

We laim that the measurable funtions 

1

; 

2

are square integrable. In fat

E

�

Z

+1

�1

exp(4�

1

B

1

t

� 2a jtj)dt

�

2

= E

�

Z

+1

0

exp(4�

1

B

1

t

� 2at)dt

+ E (

Z

0

�1

exp(4�

1

B

1

t

+ 2at)dt

�

2

: (5.7)
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We show that eah integral in the right hand side is in L

2

(
). In fat,

E

�

Z

+1

0

exp(4�

1

B

1

t

� 2at)dt

�

2

= E

�

Z

+1

0

Z

+1

0

exp(4�

1

B

1

s

� 2as)ds exp(4�

1

B

1

t

� 2at)dt

�

=

Z

+1

0

E

�

Z

+1

0

exp(4�

1

B

1

s

� 2as)ds exp(4�

1

B

1

t

� 2at)dt

�

�

Z

+1

0

 

E

�

Z

+1

0

exp(4�

1

B

1

s

� 2at)ds

�

2

!

1=2

�

�

E

�

exp(4�

1

B

1

t

� 2at)

�

2

�

1=2

dt

= M

 

E

�

Z

+1

0

exp(4�

1

B

1

s

� 2as)ds

�

2

!

1=2

;

where M =

R

+1

0

�

E

�

exp(4�

1

B

1

t

� 2at)

�

2

�

1=2

dt. Sumarizing, we have that:

 

E

�

Z

+1

0

exp(4�

1

B

1

t

� 2at)dt

�

2

!

1=2

�M:

Note that the integrand in the de�nition ofM is a martingale, hene E

�

exp(8�

1

B

1

t

)

�

=

exp(32�

2

1

t) for all t � 0, so,

M =

Z

+1

0

exp 2t(8�

2

1

� a)dt

whih onverges one 8�

2

1

�a < 0 Analogously for the seond integral of equation (5.7),

one �nds:

E

�

Z

0

�1

exp(4�

1

B

1

t

+ 2at)dt

�

2

�

Z

0

�1

exp 2t(8�

2

1

+ a)dt

whih onverges one 8�

2

1

+ a > 0. By our alulations and Cauhy- Shwarz in-

equality we have 

1

2 L

2

(
). In the same way one heks that 

2

2 L

2

(
), hene

kxk

!

� kC(!) kxk where k is a onstant and C(!) = max f

1

(!); 

2

(!)g 2 L

2

(
). By

onstrution, we have 

1

(�

t

!) � e

�4�

1

B

1

t

e

2ajtj



1

(!). To ful�ll the hypotheses of Corol-

lary 5.1 it only remains to prove that a

1

(!) = sup

0�t�1

e

�4�B

1

t

is square integrable. By

Ito formula:

e

�4�

1

B

1

t

= 1� 4�

1

Z

t

0

e

�4�

1

B

1

s

dB

1

s

+ 8�

2

1

Z

t

0

e

�4�

1

B

1

s

ds;
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hene, by the Burkholder-Doob inequality:

E

�

sup

0�t�1

e

�4�

1

B

1

t

�

2

� k

�

1 + 16 �

2

1

E [

Z

1

0

e

�4�

1

B

1

s

dB

1

s

℄

2

+64 �

4

1

(

Z

1

0

(E

h

e

�8�

1

B

1

s

i

)

1=2

ds)

2

�

� k

�

1 + 16�

2

1

E [

Z

1

0

e

�4�

1

B

1

s

dB

1

s

℄

2

+ 64�

4

1

(

Z

1

0

(e

16�

1

s

ds)

2

�

� k

�

1 + 16�

2

1

E [

Z

1

0

e

�8�

1

B

1

s

ds℄ + 64�

4

1

(

Z

1

0

e

16�

2

1

s

ds)

2

�

� k

�

1 + 16�

2

1

Z

1

0

e

32�

2

1

s

ds+ 64�

4

1

(

Z

1

0

e

16�

2

1

s

ds)

2

�

:

Analogously, one heks that



2

(�

t

!) � e

�4�

2

B

2

t

e

2ajtj



2

(!)

and the random variable a

2

(!) = sup

0�t�1

e

�4�

2

B

2

t

is square integrable as well. Hene,

C(�

t

!) � e

jtj

�(!; t)C(!)

where �(!; t) = max

n

e

�4�

1

B

1

t

; e

�4�

2

B

2

t

o

and sup

0�t�1

�(!; t) 2 L

2

(
). It follows by

Corollary 5.1 that indeed there exists a loal random onjugation of the system (5.6)

with its linearization.
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