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Abstra
t

We present versions of Hartman-Grobman theorems for random dynami
al systems

(RDS) in the dis
rete and 
ontinuous 
ase. We apply the same random norm used

by Wanner [23℄, but instead of using di�eren
e equations, we perform an apropriate

generalization of the deterministi
 arguments in an adequate spa
e of measurable

homeomorphisms to extend his result with weaker hypotheses and simpler argu-

ments.
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1. Introdu
tion

The 
elebrated Hartman-Grobman theorems play a fundamental rule in the theory of

dynami
al systems on
e one 
an obtain properties of a 
ertain deterministi
 system

around a hyperboli
 �xed point via a 
onjugation with a linearised system. Pre
isely,


onsider the dynami
al system in R

m

generated by the following di�erential equation:

:

x

= f(x); (1.1)

where f is a C

1

ve
tor �eld with a singularity at p 2 R

m

. Let ('

t

)

t2R

, be the solution


ow of this equation. Consider the system generated by the linearization of the ve
tor

�eld f at p, i.e., 
alling A = Df(p), take the linear equation:
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:

x

= Ax (1.2)

and denote by �

t

= e

At

its fundamental linear solution. Hartman [12℄ and Grobman

[11℄ have proved that if the singularity p is a hyperboli
 �xed point of the system,

that is, if the eigenvalues of A have non-vanishing real part then there exists an open

neighbourhood U � R

m

of p and a homeomorphism h : U ! h(U) � R

m

with h(p) = 0

whi
h is a topologi
al 
onjuga
y of the traje
tories of these systems. Namely, for all

x 2 U we have that:

e

At

h(x) = h Æ '

t

(x):

The proof is obtained performing �rst a demonstration to the dis
rete 
ase for lo
al

di�eomorphisms in the following sense, let f be a C

1

-di�eomorphism in R

m

su
h that p 2

R

m

is a hyperboli
 �xed point (the modulo of the eigenvalues of A = Df(p) are di�erent

from one), then there exists an open neighbourhood U of p and a homeomorphism

h : U ! h(U) � R

m

with h(p) = 0; su
h that for x in U we have the following


onjuga
y:

A Æ h(x) = h Æ f(x):

Later, in 1960, Hartman [13℄ proved that if f has 
ontinuous se
ond derivative and

the real part of the eigenvalues have all the same sign (all positive or all negative), then

the traje
tories 
an be 
onjugated by a C

1

-di�eomorphism (
f. Se
tion 4).

The main motivation for this arti
le is to �nd a version of the Hartman-Grobman

theorem for 
ontinuous random dynami
al systems, parti
ularly for sto
hasti
 
ows

generated by an Stratonovi
h sto
hasti
 di�erential equation (SDE):

dx

t

= f

0

(x

t

) dt+

n

X

i=1

f

i

(x

t

) Æ dB

i

t

(1.3)

where (B

1

t

; : : : ; B

n

t

) is a Brownian motion in R

n

based on a 
ertain 
omplete probability

spa
e (
;F ;P) and f

i

: R

m

! R

m

, i = 0; 1; : : : ; n, are smooth ve
tor �elds su
h that

there exists a sto
hasti
 solution 
ow of di�eomorphisms ' : R � 
 � R

m

! R

m

(see

e.g. Kunita [16℄ or [17℄).

We shall assume that all ve
tor �elds f

i

have a singularity at p 2 R

m

, hen
e

'(t; !; p) = p for all (t; !) 2 R�
. We say that p is a sto
hasti
 hyperboli
 �xed point

of ' if the Lyapunov spe
trum of the system at point p does not 
ontain zero (see e.g.

Arnold [1℄ or Carverhill [5℄, [6℄).

Let �(t; !) = D'(t; !; p) be the solution 
ow of the linearized SDE:

dx

t

= Df

0

(p)x dt+

n

X

i=1

Df

i

(p)x Æ dB

t

:

2



In this 
ontext, we are looking for a random measurable lo
al homeomorphism h(!)

su
h that

�(t; !) Æ h(!; x) = h(�

t

(!); �) Æ '(t; !; x); (1.4)

for x in a neighbourhood of p, t in a 
ertain interval 
ontaining zero and �

t

: 
! 
 is

the 
anoni
al shift on the Wiener spa
e.

One of the �rst results 
on
erning this kind of generalisation of the Hartman-

Grobman theorems was given by T. Wanner [23℄, where the arguments were based

in random di�eren
e equation to get initially the dis
rete generalised version !-wise.

His proof is 
ompleted showing that the random homeomorphism is in fa
t measurable.

Our approa
h in this arti
le is a proper random adaptation of the well-known deter-

ministi
 proof, whi
h here is extended to an appropriate Bana
h spa
e of measurable

homeomorphisms Homeo(
;R

m

), with respe
t to an adequate norm (see next se
tion).

We shall follow mainly the deterministi
 arguments presented in Palis and Melo [19℄

and Sternberg [21℄.

Our hypothesis turn out to be weaker than Wanner's hypothesis in [23℄, basi
ally:

integrability instead of boundedness. Nevertheless, like him, we also 
ould not disregard

the random norm in the Eu
lidean spa
e. We emphasise that, although apparently this

norm leads to arti�
ial hypotheses, it is rather an intrinsi
 parameter for this problem; it


omes dire
tly from the multipli
ative ergodi
 theorem, whi
h one has to deal whenever

dealing with linearised random systems.

The arti
le is organised in the following way: in Se
tion 2 we introdu
e the ba-

si
 spa
es, the norms and properties whi
h we are going to work with in the following

se
tions. In Se
tion 3 we present global and lo
al versions of the Hartman-Grobman the-

orem for random di�eomorphisms. Roughly speaking: let f be an element of C

1

0

(
;R

m

),

the spa
e of measurable C

1

-maps f(�; �) : 
� R

m

! R

m

whi
h �x the origin. Suppose

that the origin is a hyperboli
 point, i.e. the Lyapunov exponents

� = lim

n!�1

1

n

log k�(n; !)vk

are all di�erent from zero, for all v 2 R

m

; v 6= 0, where

�(n; !) =

8

<

:

A(�

n�1

!):::A(!); n > 0;

I; n = 0;

A

�1

(�

n

!):::A

�1

(�

�1

!); n < 0;

and A(!) = Df(!; 0). We present ne
essary 
onditions on the non-linear 
omponent

	(!; x) := f(!; x) � Df(!; 0)x; whi
h guarantees that for almost every ! 2 
 there

exists a random neighbourhood U(!) of the origin and a map h 2 Homeo(
;R

m

) with

h(!; 0) = 0; su
h that if x 2 U(!) then

3



Df(!; 0)h(!)(x) = h(�

1

!)(�) Æ f(!; x): (1.5)

In the Se
tion 4, motivated by the mentioned regularity results of Hartman [13℄,

we study the di�erentiability of the homeomorphism h whi
h performs the 
onjugation.

In Se
tion 5 we show a random global version of the Hartman-Grobman theorem for a


ontinuous C

1

-random dynami
al systems. The lo
al 
ase was explored for SDE. The

existen
e of the 
onjugation does not depend dire
tly on the ve
tor �elds of the SDE,

but rather on the parameter B

�

(!) (de�ned in the Proposition 2.1) whi
h establishes

the equivalen
e between the random and the Eu
lidean norm.

Finally, in the appendix we show how to extend our results to hyperboli
 random

�xed point.

2. Basi
 Framework

Consider (
;F ;P) a 
omplete probability spa
e. For T = R or T = Z we shall denote

a group of ergodi
 transformations on 
 by �

t

: 
 ! 
, for all t 2 T (in the dis
rete


ase sometimes we will �nd the notation �

k


learer than �

k

). We shall re
all some basi


stru
tures and results (for details, see e.g. L. Arnold [1℄).

De�nition 2.1 A measurable map ' : T � 
 � R

m

! R

m

, (t; !; x) 7! '(t; !; x) is


alled a random dynami
al system or (
o
y
le) of C

k

-maps, k � 1, on R

m

(abbreviated

C

k

� RDS) over �

t

if there exists a measurable subset 


0

� 
; P(


0

) = 1 whi
h is

�

t

-invariant for all t 2 T and su
h that for ! 2 


0

the following properties are satis�ed:

i) '(�; !; �) is 
ontinuous;

ii) '(t; !; �) is a C

k

�di�eomorphisms for all t 2 T:;

iii) For t; s 2 T; x 2 R

m

; '(t+ s; !; x) = '(s; �

t

!; :) Æ '(t; !; x) (
o
y
le property).

If '(t; !; �) is linear, the stru
ture ('; �) is 
alled a linear 
o
y
le.

We introdu
e the well known Osselede
's multipli
ative ergodi
 theorem (MET), a


ru
ial result on the linear algebra of RDS.

Theorem 2.1 (MET) Let � a linear RDS on R

m

over the ergodi
 group of ergodi


transformations (�

t

)

t2T

and assume the following integrability 
onditions:

log

+

sup

0�t�1

k�(t; �)k + log

+

sup

0�t�1







�

�1

(t; �)







2 L

1

(
;F ;P):

Then, there exists a �

t

�invariant set 


0

2 F with P(


0

) = 1, and real numbers

�

1

> �

2

> : : : > �

p

(the Lyapunov exponents) with multipli
ities d

i

;

P

p

i=1

d

i

= m; su
h

that for every ! 2 


0

the following holds:
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i) There is a splitting of R

m

into random subspa
es E

i

(!)

R

m

= E

1

(!)� � � � �E

p

(!);

where ea
h E

i

(!) depends measurably on !, with non-random dimensions dimE

i

(!) =

d

i

and

�(t; !)E

i

(!) = E

i

(�

t

!) (2.1)

for t 2 T and i = 1; 2; � � � ; p (the subspa
es E

i

(!) are 
alled the Oselede
's sub-

spa
es);

ii) for every v 2 R

m

we have:

lim

t!�1

1

t

log k�(t; !)vk = �

i

() v 2 E

i

(!)n f0g :

Proof: See, e.g., Osseledts [20℄, Ruelle [22℄ or L. Arnold [1℄ and the referen
es therein.

2

De�nition 2.2 In the situation of MET, we say that the linear RDS � is hyperboli
 if

none of the Lyapunov exponents is zero.

In the hyperboli
 
ase, for ea
h ! 2 


0

we 
an de�ne the stable and unstable

subspa
es: E

s

(!) and E

u

(!) respe
tively by:

E

s

(!) := �

�

i

<0

E

i

(!) and E

u

(!) := �

�

i

>0

E

i

(!):

Hen
e, for every t 2 T and every ! 2 


0

we have the splitting of the Eu
lidean spa
e:

R

m

= E

s

(�

t

!)�E

u

(�

t

!);

For ea
h x 2 R

m

we will write x = x

s

(!) + x

u

(!); where x

s

(!) = �

s;!

(x); with �

s;!

:

R

m

! E

s

(!) a proje
tion on E

s

(!) along E

u

(!). Analogously, x

u

(!) = �

u;!

(x).

We introdu
e a random norm whi
h satis�es the same ni
e properties (with respe
t

to a linear RDS) of the Eu
lidean norm (with respe
t to a deterministi
 linear system):

De�nition 2.3 (Random s
alar produ
t) Fix an arbitrary 
onstant a > 0. In the

same 
ontext of the MET, for ! 2 


0

and for x = �

p

i=1

x

i

and y = �

p

i=1

y

i

with x

i

; y

i

2

E

i

(!) de�ne

hx; yi

!

:=

p

X

i=1

hx

i

; y

i

i

!

;

5



where for u

i

; v

i

2 E

i

(!) we set

hu

i

; v

i

i

!

:=

8

>

>

>

<

>

>

>

:

Z

1

�1

h�(t; !)u

i

;�(t; !)v

i

i

e

2(�

i

t+ajtj)

dt; for T = R ;

X

n2Z

h�(n; !)u

i

;�(n; !)v

i

i

e

2(�

i

n+ajnj)

; for T = Z;

and hu

i

; v

j

i

!

:= 0 if u

i

2 E

i

(!) and v

j

2 E

j

(!) for i 6= j: For ! =2 


0

we set hx; yi

!

:=

hx; yi.

Proposition 2.1 The following properties hold:

a) hx; yi

!

is a random s
alar produ
t in R

m

whi
h depends measurably on !;

b) For ea
h " > 0 there exists a measurable map B

"

(:) : 
! [1;+1) su
h that for all

x 2 R

m

:

1

B

"

(!)

kxk � kxk

!

� B

"

(!) kxk (2.2)

and B

"

(�

t

!) � B

"

(!)e

"jtj

where kxk

2

!

= hx; xi

!

, is the random norm;


) For ea
h ! 2 


0

, i = 1:::; p;, x

i

2 E

i

(!) and t 2 T:

e

�

i

t�ajtj

kx

i

k

!

� k�(t; !)x

i

k

�

t

!

� e

�

i

t+ajtj

kx

i

k

!

: (2.3)

Proof: See L. Arnold [1, Thm. 3.7.4℄ or P. Boxler [4℄. 2

The following inequalities 
ome straightforward from equation (2.3). They will play

an essential rule in the prove of the main results of next se
tion.

Corollary 2.2 Fix a 
onstant a su
h that the intervals [�

i

� a; �

i

+ a℄ are disjoint and

0 =2 [�

i

� a; �

i

+ a℄ for all i = 1; � � � ; p.

1) Let �

s

= max f�

i

< 0g, �

u

= min f�

i

> 0g and � any number in the interval

(0;min f��

s

� a; �

u

� ag) then:

k�(t; !)x

s

k

�

t

!

� e

��t

kx

s

k

!

for all t � 0; (2.4)

and







�(t; !)

�1

x

u







!

� e

��t

kx

u

k

�

t

!

for all t � 0: (2.5)
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2) Taking � := max f�

1

;��

p

g we have that

e

�(�+a)jtj

kxk

!

� k�(t; !)xk

�

t

!

� e

(�+a)jtj

kxk

!

for t 2 T; (2.6)

and

e

�(�+a)jtj

kxk

�

t

!

�







�(t; !)

�1

x







!

� e

(�+a)jtj

kxk

�

t

!

for t 2 T: (2.7)

The following de�nitions will introdu
e the spa
es and norms whi
h we are going

to work with along this arti
le. Next de�nition states the natural ambient where the


onjuga
y whi
h we are looking for lives.

De�nition 2.3 Homeo(
;R

m

) is the spa
e of random homeomorphisms given by mea-

surables h(�; �) : 
 � R

m

! R

m

su
h that for ea
h ! 2 
, h(!; �) : R

m

! R

m

is a

homeomorphism.

De�nition 2.4 Let k be a positive integer. C

k

(
;R

m

) is the spa
e of random C

k

-maps

given by measurables u(�; �) : 
�R

m

! R

m

, su
h that for ea
h ! 2 
, u(!; �) 2 C

k

(R

m

).

In parti
ular, C(
;R

m

) := C

0

(
;R

m

) is the spa
e of random 
ontinuous maps. The

notation C

k

0

(
;R

m

) will refer to the subspa
e su
h that all u in this subspa
e �x the

origin, i.e. u(!; 0) = 0 for almost all ! 2 
.

It will be 
onvenient to establish the following de
omposition in the spa
e C

k

0

(
;R

m

).

Consider, as before, the proje
tions on the stable and unstable subspa
e �

s;!

: R

m

!

E

s

(!) and �

u;!

: R

m

! E

u

(!) respe
tively, ea
h random C

k

0

-map u has a unique

de
omposition:

u(!) = u

s

(!) + u

u

(!)

where u

s

(!) = �

s;!

Æ u(!) and u

u

(!) = �

u;!

Æ u(!). We shall denote this dire
t sum

de
omposition by

C

k

0

(
;R

m

) = C

k

0;s

(
;R

m

)� C

k

0;u

(
;R

m

):

De�nition 2.5

a) C

b

(
;R

m

) is the spa
e of random bounded 
ontinuous maps u(!; �) su
h that:

kuk

C

b

(
;R

m

)

= E

�

sup

x2R

m

ku

s

(!; x)k

!

�

+ E

�

sup

x2R

m

ku

u

(!; x)k

!

�

< +1:

Note that k�k

C

b

(
;R

m

)

is a norm.

b) C

0;b

(
;R

m

) is the subspa
e of random bounded 
ontinuous maps whi
h �x the origin,

i.e. u 2 C

0;b

(
;R

m

) � C

b

(
;R

m

) if u(!; 0) = 0 for almost all !. We shall denote

the norm in C

b

(
;R

m

) restri
ted to this subspa
e by k�k

C

0;b

(
;R

m

)

.

7




) C

1

0;b

(
;R

m

) is the spa
e of random bounded di�erentiable maps whi
h �x the origin

given by u(!; �) su
h that:

kuk

C

1

b

(
;R

m

)

= kuk

C

0;b

(
;R

m

)

+ E

"

sup

x2R

m

sup

kvk

!

�1

k(Du(!; x)v)

s

k

!

#

+E

"

sup

x2R

m

sup

kvk

!

�1

k(Du(!; x)v)

u

k

!

#

< +1:

The last spa
e stated in item (
) will be used in se
tion 4, where we will dis
uss

regularity of the 
onjugation. The de
omposition mentioned above of C

k

(
;R

m

) re-

stri
ts naturally to a dire
t sum de
omposition of ea
h of these spa
es a

ording to

the proje
tion on stable and unstable random subspa
e. Hen
e we shall denote by

C

b;s

(
;R

m

), C

0;b;s

(
;R

m

) and C

1

0;b;s

(
;R

m

) the stable 
omponents and by C

b;u

(
;R

m

),

C

0;b;u

(
;R

m

) and C

1

0;b;u

(
;R

m

) the unstable 
omponent of ea
h of the three spa
es of

De�nition 2.5.

Proposition 2.4 The spa
es C

b

(
;R

m

), C

0;b

(
;R

m

) and C

1

0;b

(
;R

m

) are Bana
h spa
es

in theirs respe
tive norms.

Proof: We prove the result for C

b

(
;R

m

). One easily 
he
ks that C

0;b

(
;R

m

) �

C

b

(
;R

m

) is a 
losed subspa
e. For C

1

0;b

(
;R

m

) the proof goes with the same arguments,

only adapting to the norm in C

1

b

(R

m

)

Let fh

k

g

k=1

� C

b

(
;R

m

) be a sequen
e whose series 
onverges absolutely. We have

to prove that the series itself 
onverges in C

b

(
;R

m

). We have, by de�nition, that

1

X

k=1

E

�

sup

R

m

k(h

k

)

s

(!; �)k

!

�

< +1

and

1

X

k=1

E

�

sup

R

m

k(h

k

)

u

(!; �)k

!

�

< +1

To �x the ideas, we 
on
entrate the 
al
ulations on the stable 
omponent. Let

G

n

(!)

s

=

P

n

k=1

sup

R

m

k(h

k

)

s

(�)k

!

, and G(!)

s

=

P

1

k=1

sup

R

m

k(h

k

)

s

(�)k

!

, then, by the

Beppo-Levi 
onvergen
e theorem G(!)

s

< +1 for all ! 2 


1

� 
 su
h that P(


1

) = 1.

Moreover, by Proposition 2.1:

1

X

k=1

sup

R

m

k(h

k

)

s

(!; �)k � B(!)

(

1

X

k=1

sup

R

m

k(h

k

)

s

(!; �)k

!

)
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Sin
e C

b

(R

m

) is a Bana
h spa
e with the supremum norm , there exists H(!; �) 2

C

b

(R

m

) for ea
h ! 2 


1

and

P

1

k=1

(h

k

)

s

(!; �)! H(!; �), moreover H(!; �) is measurable

sin
e this is a limit of measurable map (assume without lost of generality that H(!) = 0

if ! =2 


1

). Sin
e
















n

X

k=1

(h

k

)

s

(!; �)�H(!; �)
















!

� B(!)
















n

X

k=1

(h

k

)

s

(!; �)�H(!; �)
















then, �xed !, we have that

P

n

k=1

(h

k

)

s

(!; �)! H(!; �) in the sup

R

m

k�k

!

norm. Thus

sup

R

m
















n

X

k=1

(h

k

)

s

(�)
















!

�

n

X

k=1

sup

R

m

k(h

k

)

s

(�)k

!

;

therefore, when n!1 we have that sup

R

m

kH(!; �)k

!

� G(!)

s

, moreover

sup

R

m
















H(!; �) �

n

X

k=1

(h

k

)

s

(!; �)
















!

� 2G(!)

s

;

then, by the dominated 
onvergen
e theorem

lim

n!1

E

"

sup

R

m
















H �

n

X

k=1

(h

k

)

s

(!; �)
















!

#

= 0:

We 
laim that H(!; �) 2 C

s;b

(
;R

m

). In fa
t, if ! 2 


1

� 
, and x 2 R

m

; we have

that

P

n

k=1

(h

k

)

s

(!; x) 2 E

s

(!) for all n; sin
e

P

n

k=1

(h

k

)

s

(!; x)! H(!; x) then H(!; x)

2 E

s

(!) = E

s

(!). For ! =2 


1

we have H(!; x) = 0 2 E

s

(!).

Analogously, for the unstable part, there exists a random 
ontinuous map K 2

C

b;u

(
;R

m

) su
h that

lim

n!1

E

"

sup

R

m
















K(!; �)�

n

X

k=1

(h

k

)

u

(!; �)
















!

#

= 0:

The proof �nishes taking h = H +K . 2

In what follows, in order to assure the existent of the Lyapunov exponents for the

linear 
o
y
le �, we shall always assume the hypothesis of the MET that log

+

kAk ;

log

+







A

�1







2 L

1

(
).

3. Dis
rete Case

In this se
tion we show a global and a lo
al version of the Hartman-Grobman theorem

(HGT) for a random map f 2 C

1

0

(
;R

m

). We start with the global version.
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3.1. Global version in R

m

Let f 2 Dif

1

0

(
;R

m

), the spa
e of random global di�eomorphisms of R

m

. We shall

denote by 	(!; x) the non-linear part of f , i.e.:

	(!; x) := f(!; x)�A(!)x;

where A(!) = Df(!; 0).

Besides assuming that the origin is a hyperboli
 �x point, we shall assume the

following hypotheses on the non-linear part 	:

(H1) (Globally Lips
hitz in the random norm): there exists a 
onstant L <

1�e

��

2

p

2e

�+a

su
h that for a.a. ! 2 
; and all x; y 2 R

m

we have

8

<

:

k	

s

(!; x)�	

s

(!; y)k

�!

� L kx� yk

!

;

k	

u

(!; x)�	

u

(!; y)k

�!

� L kx� yk

!

;

where �;�; a are 
hosen as in Corollary 2.2.

(H2) (Integrability of the supremum in the random norm): there exists a 
onstant

M > 0 su
h that

E (sup

R

m

k	

s

(!)(:)k

�!

) + E( sup

R

m

k	

u

(!)(:)k

�!

) �M:

We re
all that Wanner [23, Thm 3.3℄ assumes, besides (H1), the almost sure bounded

hypothesis:

k	

s

(!)(x)k

�!

�M and k	

u

(!)(x)k

�!

�M ;

Our te
hnique 
onsists basi
ally in de
omposing the homeomorphism h(!; �) whi
h we

are looking for into h = (I+u), then �nd u in C

0;b

(
;R

m

) using a �xed point argument.

Theorem 3.1 (HGT, global dis
rete 
ase) Let f 2 Dif

1

0

(!;R

m

) su
h that the ori-

gin is a hyperboli
 �xed point. Assume that the non-linear part 	 satis�es (H1) and

(H2). Then there exists a unique h 2 Homeo(
;R

m

) su
h that

A(!)(�) = h(�!)

�1

Æ f(!; �) Æ h(!; �):

Proof: Write h(!; �) = I + u(!; �) with u 2 C

0;b

(
;R

m

) where I(!; x) = x for all

(!; x) 2 
� R

m

. The �rst step is to solve the following equation:

(I + u(�!))A(!) = f(!)(I + u(!))

10



whi
h is equivalent to:

A(!)u(!)� u(�!)A(!) = �	(!)(I + u(!)): (3.1)

The se
ond step is to prove that its unique solution (I + u(!; �)) is invertible with


ontinuous inverse. We split the proof into the following �ve lemmas.

Lemma 3.1 There exists a unique solution u of equation (3.1) in C

0;b

(
;R

m

).

Proof: De�ne the linear operator L : C

0;b

(
;R

m

)! C

0;b

(
;R

m

) given by

Lu(!) := A(�

�1

!)u(�

�1

!)� u(!)A(�

�1

!):

We 
laim that L is well de�ned and is invertible. Fa
torize L =A Æ L

�

where A;L

�

:

C

0;b

(
;R

m

)! C

0;b

(
;R

m

) are given by

Au(!) := A(�

�1

!)u(�

�1

!);

and

L

�

u(!) := u(!)�A(!)

�1

u(�!)A(!):

Now, we shall work separately with the operators A and L

�

to show that they are

well de�ned and invertible. We re
all the invarian
e of the stable and unstable subspa
es

E

s

(!) and E

u

(!) from the MET, equation (2.1):

A(�

�1

!) : E

s;u

(�

�1

!)! E

s;u

(!):

By the inequalities (2.4) and (2.6) in Corollary (2.2) we have that:







Au







C

0;b

(
;R

m

)

= E

�

sup

R

m







(Au)

s

(!)







!

+ sup

R

m







(Au)

u

(!)







!

�

= E

�

sup

R

m







(Au

s

)(!)







!

+ sup

R

m







(Au

u

)(!)







!

�

= E

�

sup

R

m







A(�

�1

!)u

s

(�

�1

!)







!

+ sup

R

m







A(�

�1

!)u

u

(�

�1

!)







!

�

� e

��

E

�

sup

R

m







u

s

(�

�1

!)







�

�1

!

�

+ e

�+a

E

�

sup

R

m







u

u

(�

�1

!; �)







�

�1

!

�

� 
 kuk

C

0;b

(
;R

m

)

;

where 
 is a positive 
onstant. Hen
e A is a 
ontinuous operator.
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One easily 
he
ks that the inverse of A is given by (A)

�1

u(!) = A(!)

�1

u(�!).

Moreover we have that







(A)

�1







� e

�+a

; in fa
t, let u 2 C

0;b

(
;R

m

) then:







(A)

�1

u







C

0;b

(
;R

m

)

= E

�

sup

R

m







A(!)

�1

u

s

(�!)







!

+ sup

R

m







A(!)

�1

u

u

(�!)







!

�

� e

�+a

E

�

sup

R

m

ku

s

(�!)(�)k

�!

�

+ e

��

E

�

sup

R

m

ku

u

(�!; �)k

�!

�

� e

�+a

kuk

C

0;b

(
;R

m

)

:

sin
e, by de�nition in Corollary 2.2, 0 < � < � + a.

Analogously, for L

�

, by inequalities (2.5), (2.7) and using again the invarian
e of the

subspa
es: A(!)

�1

: E

s;u

(�!)! E

s;u

(!), we have that:

kL

�

uk

C

0;b

(
;R

m

)

= E

�

sup

R

m

k(L

�

u)

s

(!)k

!

+ sup

R

m

k(L

�

u)

u

(!)k

!

�

� E

�

sup

R

m

ku

s

(!)k

!

+ sup

R

m







A(!)

�1

u

s

(�!)A(!)







!

�

+E

�

sup

R

m

ku

u

(!)k

!

+ sup

R

m







A(!)

�1

u

u

(�!)A(!)







!

�

� E

�

sup

R

m

ku

s

(!)k

!

�

+ e

(�+a)

E

�

sup

R

m

ku

s

(�!)A(!)k

�!

�

+E

�

sup

R

m

ku

u

(!)k

!

�

+ e

��

E

�

sup

R

m

ku

u

(�!)A(!)k

�!

�

� 


0

kuk

C

0;b

(
;R

m

)

;

for some 
onstant 


0

, hen
e L

�

is 
ontinuous. Now, we show that L

�

is invertible.

Initially note that

�

u

s

(!)�A(!)

�1

u

s

(�!)A(!)x

�

2 E

s

(!) (3.2)

and

�

u

u

(!)�A(!)

�1

u

u

(�!)A(!)x

�

2 E

u

(!) (3.3)

for all x 2 R

m

, hen
e L

�

preserves ea
h 
omponent of the de
omposition C

0;b

(
;R

m

) =

C

0;b;s

(
;R

m

)�C

0;b;u

(
;R

m

). We shall 
onsider the de
omposition L

�

= L

�

s

�L

�

u

where

L

�

s

:= L

�

�

�

�

C

0;b;s

(
;R

m

)

and L

�

u

:= L

�

�

�

�

C

0;b;u

(
;R

m

)

.

Going further in the de
omposition, we will write L

�

s

= (I + T ) and L

�

u

= (I + S),

where T : C

0;b;s

(
;R

m

) ! C

0;b;s

(
;R

m

) and S : C

0;b;u

(
;R

m

) ! C

0;b;u

(
;R

m

) are

given by

T u

s

(!) := �A(!)

�1

u

s

(�!)A(!)

12



and

Su

u

(!) := �A(!)

�1

u

u

(�!)A(!):

Equations (3.2) and (3.3) guarantee that the operators S and T are well de�ned. One

easily 
he
ks that T is invertible with

T

�1

u

s

(!) := �A(�

�1

!)u

s

(�

�1

!)A(�

�1

!)

�1

:

Moreover, by the inequalities (2.5) and (2.7) of Corollary 2.2 we have:







T

�1







= sup

ku

s

k=1







T

�1

u

s

(!)







= sup

ku

s

k=1

E

�

sup

R

m







A(�

�1

!)u

s

(�

�1

!)A(�

�1

!)

�1







!

�

� e

��

sup

ku

s

k=1

E

�

sup

R

m







u

s

(�

�1

!)A(�

�1

!)

�1







�

�1

!

�

= e

��

sup

ku

s

k=1

E

�

sup

R

m







u

s

(�

�1

!)







�

�1

!

�

= e

��

;

Therefore, �T

�1

is a 
ontra
tion, and by the von Neumann theorem (see e.g. Hutson

e Pym [14, p. 86℄) L

�

s

= I + T is invertible with







(I + T )

�1







�

e

��

1�e

��

.

Considering the unstable 
omponent, the same argument shows that kSk � e

��

.

Therefore, L

�

u

= (I+S) is an isomorphism with







(L

�

u

)

�1







�

1

1�e

��

. Hen
e, L

�

= L

�

s

�L

�

u

is invertible with







(L

�

)

�1







�

1

1�e

��

.

Going ba
k to the original operator L = A Æ L

�

we have that







L

�1







�

e

�+a

1� e

��

:

Consider the operator P

	

: C

0;b

(
;R

m

)! C

0;b

(
;R

m

) given by

P

	

u(!) := �	(�

�1

!)(I + u)(�

�1

!):

The integrability hypothesis (H2) is used to guarantee that the operator P

	

is well

de�ned, in fa
t:

E

�

sup

x2R

m







	

s

(�

�1

!)(I + u)(�

�1

!))x







!

�

� E

�

sup

x2R

m







	

s

(�

�1

!)x







!

�

�M;

and

E

�

sup

x2R

m







	

u

(�

�1

!)(I + u)(�

�1

!))x







!

�

� E

�

sup

x2R

m







	

u

(�

�1

!)x







!

�

�M:
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Finally, 
onsider the operator � : C

0;b

(
;R

m

)! C

0;b

(
;R

m

) given by the 
omposi-

tion:

�(u) := L

�1

Æ P

	

(u):

Note that a �xed point of � satis�es

A(�

�1

!)u(�

�1

!)� u(!)A(�

�1

!) = �	(�

�1

!)(I + u)(�

�1

!)

whi
h is equivalent to the 
onjugation equation (3.1).

The Lips
hitz hypothesis (H1) is used in this proof ex
lusively to guarantee that �

is a 
ontra
tion. In fa
t: Let u

1

and u

2

be arbitrary elements in C

0;b

(
;R

m

), then:

k�(u

1

)� �(u

2

)k

C

0;b

(
;R

m

)

�







L

�1







kP

	

(u

1

)�P

	

(u

2

)k

C

0;b

(
;R

m

)

:

The se
ond fa
tor on the right hand side is:

E

�

sup

R

m

kP

	

(u

1

)�P

	

(u

2

))

s

(!)k

!

+ sup

R

m

k(P

	

(u

1

)�P

	

(u

2

))

u

(!)k

!

�

� E

�

sup

R

m







�	

s

(�

�1

!)(I + u

1

)(�

�1

!) + 	

s

(�

�1

!)(I + u

2

)(�

�1

!)







!

�

+ E

�

sup

R

m







�	

u

(�

�1

!)(I + u

1

)(�

�1

!) + 	

u

(�

�1

!)(I + u

2

)(�

�1

!)







!

�

� LE

�

sup

R

m







�u

1

(�

�1

!) + u

2

(�

�1

!)







�

�1

!

+ sup

R

m







�u

1

(�

�1

!) + u

2

(�

�1

!)







�

�1

!

�

� 2

p

2L ku

1

� u

2

k

C

0;b

(
;R

m

)

;

hen
e

k�(u

1

)� �(u

2

)k

C

0;b

(
;R

m

)

�

e

�+a

1� e

��

2

p

2L ku

1

� u

2

k

C

0;b

(
;R

m

)

:

Therefore, by hypothesis (H1), the map � is a 
ontra
tion. The proof is 
ompleted by

the Bana
h �xed point theorem. 2

Lemma 3.2 There exists a unique v 2 C

0;b

(
;R

m

) su
h that

A(!)((I + v(!)) = (I + v(�!))(A(!) + 	(!)):

Proof: This equation is equivalent to

A(!)v(!)� v(�!)(A+	)(!) = 	(!):

De�ne the linear operator H : C

0;b

(
;R

m

)! C

0;b

(
;R

m

) by

H(v)(!) = A(�

�1

!)v(�

�1

!)� v(!)(A+	)(�

�1

!):
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Using the same kind of 
al
ulations whi
h we did with the operator L of the last lemma,

we 
on
lude that H is 
ontinuous and invertible with







H

�1







�

e

�+a

1� e

��

:

We de�ne the operator D in the spa
e of random appli
ations by Dv(!) := v(�!).

Hypothesis (H2) says that D(	) 2 C

0;b

(
;R

m

). Hen
e, there exists a unique v 2

C

0;b

(
;R

m

) su
h that v = H

�1

Æ D(	). 2

We remark that Hypothesis (H1) does not appear in the proof of Lemma 3.2. We

will refer to this lemma again in the proof of Theorem 5.2.

Lemma 3.3 There exists a unique solution w 2 C

0;b

(
;R

m

) to the equation

(I +w)(�!)(A+	)(!) = (A+	)(!)(I + w)(!);

whi
h is the trivial w � 0 a.s..

Proof: The equation is equivalent to

A(!)w(!)�w(�!)(A+	)(!) = �	(!)w(!):

De�ne the operator Q

	

: C

0;b

(
;R

m

)! C

0;b

(
;R

m

) by

Q

	

(w)(!) := �	(�

�1

!)w(�

�1

!):

Hypothesis (H2) over 	 guarantees that Q

	

is well de�ned. Consider the map � :

C

0;b

(
;R

m

)! C

0;b

(
;R

m

) given by

�(w) := H

�1

Æ Q

	

(w);

where H is the operator de�ned in the proof of Lemma 3.2. We show that � is a


ontra
tion. Let u

1

; u

2

2 C

0;b

(
;R

m

), from Hypothesis (H1) we have

k�(u

1

)� �(u

2

)k

C

0;b

(
;R

m

)

�







H

�1







kQ

	

u

1

(!)�Q

	

u

2

(!)k

C

0;b

(
;R

m

)

�

e

�+a

1� e

��

E

�

sup

R

m







�	

s

(�

�1

!)(u

1

)(�

�1

!) + 	

s

(�

�1

!)(u

2

)(�

�1

!)







!

�

+E

�

sup

R

m







�	

u

(�

�1

!)(u

1

)(�

�1

!) + 	

u

(�

�1

!)(u

2

)(�

�1

!)







!

�

�

e

�+a

1� e

��

L(E

�

sup

R

m







�u

1

(�

�1

!) + u

2

(�

�1

!)







�

�1

!

�

+E

�

sup

R

m







�u

1

(�

�1

!) + u

2

(�

�1

!)







�

�1

!

�

�

L2

p

2e

�+a

1� e

��

ku

1

� u

2

k

C

0;b

(
;R

m

)

:
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Hen
e � is a 
ontra
tion. Therefore there exists a unique �xed point �(w) = w whi
h

implies that w � 0 a.s. 2

Lemma 3.4 There exists a unique solution z 2 C

0;b

(
;R

m

) to the equation

(I + z)(�!)A(!) = A(!)(I + z)(!);

whi
h is the trivial z � 0 a.s..

Proof: It is a parti
ular 
ase of Lemma 3.3 with 	 � 0. 2

Lemma 3.5 Consider the elements u and v from Lemmas 3.1 and 3.2. Then (I+u) 2

Homeo(
; R

m

) moreover (I + u)

�1

= (I + v).

Proof: In fa
t, from Lemmas 3.1 and 3.2 we have that

(I + u(�!))(I + v(�!))(A(!) + 	(!)) = (I + u(�!)A(!)(I + v(!))

= (A(!) + 	(!))(I + u(!))(I + v(!));

and by Lemma 3.3 we �nd (I + u)(I + v) = I.

On the other hand:

(I + v(�!))(I + u(�!))A(!) = (I + v(�!))(A+	)(!)(I + u(!))

= A(!)(I + v(!))(I + u(!));

and by Lemma 3.4 we �nd (I + v)(I +u) = I. It 
on
ludes the proof of the theorem. 2

The next example illustrates a simple appli
ation of this result.

Example 3.1. Consider a map f 2 C

1

(
;R

2

) given by

f(!; x; y) = (
(!)x; d(!)y +

h(x)

eB(!)

2

);

where h 2 C

1

(R) is bounded and su
h that h(0) = h

0

(0) = 0. Assume that h is Lips
hitz

with 
onstant L < (

2

p

2 exp(�+a)

1�e

��

)

�1

. The random variable B(!) is given by Proposition

2.1 with " = 1 and the 
onstants �, � and a are 
hosen as in Corollary 2.2. We shall

assume that the random variables 
; d : 
! R are su
h that log j
j, log jdj are in L

1

(
)

and 
(!) 6= 0; d(!) 6= 0 a.a.. Call 
 := E log j
j and Æ := E log jdj. The linearization of

f at the origin is given by

Df(!; 0) =

�


(!) 0

0 d(!)

�

;
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and the Lyapunov exponents are given by �

1

= 
 and �

2

= Æ. Assume that �

1

> 0 >

�

2

, i.e. the origin is a hyperboli
 �xed point. The Osselede
's subspa
es are simply

E

s

(!) = R(e

1

) and E

u

(!) = R(e

2

). Note that f is invertible with

f

�1

(!; x; y) = (

x


(!)

;

y � h(x=
(!))

ed(!)B(!)

2

):

In our notation, the non-linear part of f is given by:

	(!; x; y) = (0;

h(x)

eB(!)

2

):

We 
laim that 	 satis�es the global Lips
hitz in the random norm (Hypothesis (H1)).

In fa
t, given (x

1

; y

1

); (x

2

; y

2

) 2 R

2

:

k	

u

(!; x

1

; y

1

)�	

u

(!; x

2

; y

2

)k

�!

� eB(!)

�

�

�

�

h(x

1

)

eB(!)

2

�

h(x

2

)

eB(!)

2

�

�

�

�

�

L

B(!)

jx

1

� x

2

j

�

L

B(!)

k(x

1

; y

1

)� (x

2

; y

2

)k

� L k(x

1

; y

1

)� (x

2

; y

2

)k

!

:

Hypothesis (H2) also holds on
e:

k	

u

(!; x; y)k

�!

� eB(!)

�

�

�

�

h(x)

eB(!)

2

�

�

�

�

� sup

R

jh(x)j :

Analogous estimate also holds for the stable 
omponent 	

s

. Hen
e, by Theorem 3.1

there exists a random global homeomorphism h = (I + u) with u 2 C

0;b

(
;R

2

) su
h

that

diag[
(!) d(!)℄ = (I + u(�!))

�1

f(!)(I + u(!)):

In some simple 
ases it is possible to 
al
ulate expli
itly the random homeomorphism

h(!; �).

Example 3.2. Consider the dis
rete probability spa
e 
 = fa; bg with P(a) = P(b) =

1

2

and the ergodi
 transformation � : 
! 
 given by �(a) = b; �(b) = a. We shall 
onsider

the mapping

f(!; x; y) = (�(!)x+ 
y � y

2

;

1

2

y)

where 
 is a 
onstant in R and � is de�ned by

�(!) :=

�

2 ; if ! = a

�2 ; if ! = b:

17



Therefore,

Df(!; 0) =

�

�(!) 


0

1

2

�

:

In this 
ase the random 
onjugation is performed by H : 
! Homeo(R

2

) given by

H(a; x; y) = (x+

28

65

y

2

; y) with inverse H

�1

(a; x; y) = (x�

28

65

y

2

; y);

and

H(b; x; y) = (x�

36

65

y

2

; y) with inverse H

�1

(b; x; y) = (x+

36

65

y

2

; y):

One easily 
he
ks the 
onjugation property, for all ! 2 
 and (x; y) 2 R

2

. As in

Arnold [1, Example 3.6.1℄ or in Furstenberg and Kifer [9℄, the Lyapunov exponents are

�

1

= log 2 > �

2

= � log 2 and the Osseledets spa
es are E

1

= R � e

1

and

E

2

(!) = R

�

u(!)

1

�

with

u(!) = �


1

X

k=0

(

1

2

)

k

�

k+1

(!)

:

One 
he
ks that u(a) = �

6


17

and u(b) =

10


17

.

3.2. Lo
al dis
rete version

The approa
h for the lo
al version of the HGT will start with a result whi
h again

extends the deterministi
 arguments (see, e.g. Palis and Melo [19, Lemma II.4.4℄).

Lemma 3.6 Let f be in 2 C

1

(
;R

m

) and 
onsider the mapping A; and 	 as de�ned

above. If the origin is a hyperboli
 �xed point of the systems (f; �) then for P-almost all

! 2 
 there exists a neighbourhood U(!) of the origin and a fun
tion

e

	 2 C

1

(
;R

m

)

whi
h satis�es Hypothesis (H1) and (H2) su
h that

e

f(!; �) :� A(!)(�) +

e

	(!; �) is in

Dif

1

0

(
;R

m

) and if x 2 U(!) then,

f(!; x) =

e

f(!; x):

Proof: Consider a C

1

fun
tion � : R ! R su
h that

�(t) =

�

1; jtj �

1

2

0; jtj � 1

18



and j�

0

(t)j � k with k > 2. Let L be a positive 
onstant and B(

e

l(!)) a ball with 
entre

at the origin and radius

e

l(!). The random variable

e

l(!) will be de�ned su
h that

kD	

s;u

(!; x)k �

L

eB(!)

2

2k

for all kxk �

e

l(!) where the term B(!) is the same of Proposition 2.1 with " = 1. We

have, for x; y 2 B(

e

l(!)) that:

k	(!; x)�	(!; y)k �

L

eB(!)

2

2k

kx� yk

and

k	(!; x)k �

L

eB(!)

2

2k

kxk :

Let l(!) = min

n

e

l(!); 1

o

. The fun
tion in the statement of this lemma

e

	 2 C

1

(
;R

m

)


an be de�ned now by:

e

	(!; x) = �

�

kxk

l(!)

�

	(!; x):

Moreover, the neighbourhood of the statement 
an be de�ned by

U(!) = B

�

l(!)

2

�

:

Then, naturally, 	(!; x) =

e

	(!; x) if x 2 U(!). We 
laim that

e

	 satis�es Hypothesis

(H1). In fa
t, 
onsidering �rst the unstable part, by Proposition 2.1:










e

	

u

(!; x)�

e

	

u

(!; y)










�!

� B(�!)










e

	

u

(!; x)�

e

	

u

(!; y)










� B(!)e










e

	

u

(!; x)�

e

	

u

(!; y)










:

If x; y 2 B(l(!)), by Proposition 2.1 again we have:










e

	

u

(!; x)�

e

	

u

(!; y)










�!

� B(!)e

�

�

�

�

�

�(

kxk

l(!)

)� �(

kyk

l(!)

)

�

�

�

�

k	

u

(!; x)k

+ �(

kyk

l(!)

) k	

u

(!; x)�	

u

(!; y)k

�

� B(!)e

k

l(!)

kx� yk

L

eB(!)

2

2k

kxk

+

k

l(!)

kyk

L

eB(!)

2

2k

kx� yk

�

L

B(!)

kx� yk � L kx� yk

!

:
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Suppose now that x 2 B(l(!)) and y =2 B(l(!)), then










e

	

u

(!; x)�

e

	

u

(!; y)










�!

� B(!)e

�

�

�

�

�

�(

kxk

l(!)

)� �(

kyk

l(!)

)

�

�

�

�

k	

u

(!; x)k

�

� B(!)e

�

k

l(!)

kx� yk

L

eB(!)

2

2k

kxk

�

�

L

2B(!)

kx� yk � L kx� yk

!

:

Finally, if x; y =2 B(l(!)) the Lips
hitz property is trivial on
e










e

	

u

(!; x)�

e

	

u

(!; y)










�!

= 0:

The Lips
hitz property for the stable part is proved using the same kind of arguments.

Now we show that

e

	 satis�es Hypothesis (H2), more spe
i�
ally we will show that, by

our 
onstru
tion, its random norm for the stable or unstable 
omponent (at �bre �!) is

bounded by positive 
onstant (whi
h 
oin
ides with the Lips
hitz 
onstant L). In fa
t,

if x 2 B(l(!)) we have:










e

	

s

(!; x)










�!

� B(!)e�(

kxk

l(!)

) k	

s

(!; x)k � B(!)e

k

l(!)

kxk

L

eB(!)

2

2k

kxk

�

L

2B(!)

kxk �

L

2B(!)

l(!) � L:

And if x =2 B(l(!)) then










e

	

s

(!; x)










�!

= 0.

The proof for the unstable part follows using the same arguments. 2

Theorem 3.2 (HGT: lo
al dis
rete 
ase) Let f be in C

1

0

(
;R

m

) and 
onsider the

mapping A; and 	 as de�ned above. If the origin is a hyperboli
 �xed point of the

systems (f; �) then for P-almost all ! 2 
 there exists a neighbourhood U(!) of the

origin and a lo
al homeomorphism h 2 Homeo(
; U(!);h(U(!))) su
h that:

f(!; x) = h

�1

(�!)A(!)h(!)(x);

for all x in the domain of the 
omposition.

Proof: De�ne

e

f(!; x) := A(!; x) +

e

	(!; x) as in Lemma 3.6. By Theorem 3.1

there exists a global homeomorphism

e

h 2 Homeo(
;R

m

) su
h that

e

h(�!)

e

f(!; �) =

D

e

f(!; 0)

e

h(!)(�). Take the restri
tion h =

e

hj

U(!)

. 2
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We �nish this se
tion presenting the natural extension of the dis
rete random ver-

sion of the Hartman-Grobman theorem to mappings on a di�erentiable manifold M of

dimension m. Here C

1

(
;M) is the spa
e of measurable appli
ations f : 
�M !M ,

with f(!) 2 C

1

(M) a.s..

Corollary 3.2 Let f 2 C

1

(
;M) where M is a di�erentiable manifold. Let p 2 M be

a hyperboli
 �xed point for the random dynami
al system generated by (f; �). Calling

A(!) = T

p

f(!) : T

p

M ! T

p

M , then, for ea
h ! 2 
 there exists a neighbourhood

V (!; p) � M of p and U(!) � T

p

M , a neighbourhood of the origin and a homeomor-

phism h(!) : U(!)! V (!; p) su
h that:

h(�!)A(!)(x) = f(!)h(!)(x):

for all x in the domain of the 
omposition.

Proof: Consider a lo
al 
hart  : W �M ! Z � R

m

with p 2W su
h that  (p) = 0.

Consider the random map

e

f(!; x) =  Æ f(!; �) Æ  

�1

: Z ! R

m

. The result follows by

the HGT, lo
al dis
rete 
ase. 2

4. Regularity of the 
onjugation

In this se
tion we are going to extend the results of Hartman [13℄. We establish a

theorem whi
h guarantees the existen
e of a random di�eomorphism whi
h perform the


onjugation between a dis
rete random dynami
al systems and its linearization. We

shall deal now with random mappings f 2 C

2

(R

m

) and we keep the same notations and

hypotheses as before: the origin is a hyperboli
 �xed point and f(!; �) = A(!)+	(!; �)

where A(!) = Df(!; 0). We shall assume, besides the hypothesis (H1) and (H2) of last

se
tion, the following extra 
onditions:

(H3) There exist 
onstants k; k

1

> 1 su
h that k

1

e

��

< 1, ke

��

<

1

3� 2e

��

< 1,

1

1� k

1

e

��

<

ke

��

1� ke

��

;

and for all v 2 R

m

, ! 2 
 we have

a) kA(!)vk

�!

� k

1

kvk

!

and







A(!)

�1

v







!

� k kvk

�!

;

b) k(A(!) + 	(!))vk

�!

� k

1

kvk

!

and







(A(!) + 	(!))

�1

v







!

� k kvk

�!

.

Here, the 
onstant � is the same whi
h appears in Corollary 2.2.
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(H4) (The derivative is Lips
hitz) There exists a 
onstant L > 0 su
h that

1� e

��

+ 4

p

2e

�+a

L <

1� ke

��

2ke

��

;

and for all x 2 R

m

; v 2 R

m

, ! 2 
 we have:

8

<

:

k((D	(!; x)�D	(!; y))v)

s

k

�!

� L kx� yk

!

;

k((D	(!; x)�D	(!; y))v)

u

k

�!

� L kx� yk

!

:

(H5) (The derivative is bounded in the random norm) There exists a 
onstant L

1

> 0

with L

1

<

1� ke

��

4e

�+a

p

2ke

��

where �; a are the 
onstants whi
h appear in Corollary

2.2, su
h that for all x; v 2 R

m

and ! 2 
 we have:

k(D	(!; x)v)

s

k

�!

� L

1

kvk

!

; k(D	(!; x)v)

u

k

�!

� L

1

kvk

!

Remark 4.1

a) In the Hypothesis (H3), the restri
tion on k

1

is given only by inequality k

1

e

��

< 1,

on
e we already know that kA(!)vk

�!

� e

�+a

kvk

!

;

b) Again, in the Hypothesis (H3), the restri
tion on k is given only by the inequality

1

2�k

1

e

��

< ke

��

; on
e we already know that







A(!)

�1

v







!

� e

�+a

kvk

�!

;


) In Hypothesis (H4), the set of possibilities for the 
onstant L is non-empty on
e k

satis�es 1� e

��

<

1� ke

��

2ke

��

.

Theorem 4.1 (HGT, di�erentiable global dis
rete 
ase) Let f 2 Dif

2

0

(
;R

m

) su
h

that the origin is a hyperboli
 �xed point. Writing f(!) = A(!) + 	(!), with A(!) =

Df(!; 0), assume that its non-linear part satis�es the Hypothesis (H1) till (H5). Then,

there exists a unique random di�eomorphism h 2 Dif

1

0

(
;R

m

) su
h that

h(�!) Æ A(!) = f(!) Æ h(!):

Proof: The te
hnique is exa
tly the same as in the proof of Theorem 3.1, but with

longer 
al
ulations. We shall only show the main steps.

Again, we are looking for a solution of the form h = (I + u) with u 2 C

1

0;b

(
;R

m

).

The proof is performed by the following two lemmas:
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Lemma 4.1 In the 
onditions of Theorem 4.1 there exists a unique homeomorphism

h 2 C

1

0

(
;R

m

) \Homeo(
;R

m

) su
h that

h(�!) Æ A(!) = f(!) Æ h(!):

Proof: Imitating Lemma 3.1, de�ne the linear operators:

L

�

: C

1

0;b

(
;R

m

) �! C

1

0;b

(
;R

m

)

u (!) 7�! L

�

u(!) = u(!)�A(!)

�1

u(�!)A(!)

and the non-linear operator:

(A)

�1

Æ P

	

: C

1

0;b

(
;R

m

) �! C

1

0;b

(
;R

m

)

u (!) 7�! (A)

�1

P

	

u(!) = �A(!)

�1

	(!)(I + u)(!):

Applying Hypothesis (H3), following similarly the 
al
ulations of Lemma 3.1 one

�nds that L

�

and (A)

�1

Æ P

	

are well de�ned. Again we 
onsider the de
omposition:

L

�

s

= L

�

�

�

�

�

C

1

b;s

(
;R

m

)

and L

�

u

= L

�

�

�

�

�

C

1

b;u

(
;R

m

)

Next step is to show that L

�

s

and L

�

u

are invertible. We de�ne T :C

1

0;b;s

(
;R

m

) !

C

1

0;b;s

(
;R

m

) and S :C

1

0;b;u

(
;R

m

)! C

1

0;b;u

(
;R

m

) operators like in Lemma 3.1. With

similar 
al
ulations in the norm of C

1

(R

m

) eventually one 
on
ludes that L

�

is invertible

with







(L

�

)

�1







� max

�

1

1� k

1

e

��

;

ke

��

1� ke

��

�

=

ke

��

1� ke

��

;

by Hypothesis (H3).

Finally we introdu
e the non-linear operator � : C

1

0;b

(
;R

m

) ! C

1

0;b

(
;R

m

) given

by

�(u) = (L

�

)

�1

Æ (A)

�1

Æ P

	

(u):

We 
laim that � is a 
ontra
tion. In fa
t, given u

1

; u

2

2 C

1

0;b

(
;R

m

) then, by straight-

forward 
al
ulations we have:

k�(u

1

)� �(u

2

)k

C

1

0;b

(
;R

m

)

�

ke

��

1� ke

��







(A)

�1

Æ P

	

(u

1

)� (A)

�1

Æ P

	

(u

2

)







C

1

0;b

(
;R

m

)
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� (1 � e�� + 4e� + aL

p

2ku

1

� u

2

k

C

0;b

(
;R

m

)

+ (e

�+a

L

1

2

p

2)E

"

sup

x2R

m

sup

kvk

!

�1

k(D

x

(u

1

)(!)v �D

x

(u

2

)(!)v)

s

k

!

+ sup

x2R

m

sup

kvk

!

�1

k(D

x

(u

1

)(!)v �D

x

(u

2

)(!)v)

u

k

!

#

:

Hen
e, by Hypothesis (H4) L is su
h that (1 � e

��

+ 4e

�+a

L

p

2) <

1� ke

��

2ke

��

and by

Hypothesis (H5) L

1

<

1� ke

��

4e

�+a

p

2ke

��

. Therefore � is a 
ontra
tion. The result follows

by Bana
h �xed point theorem. 2

Lemma 4.2 In the 
onditions of Theorem 4.1, there exists a unique homeomorphism

g 2 C

1

(
;R

m

) \Homeo(
;R

m

) su
h that

A(!) Æ g(�!) = g(�!) Æ f(!):

Proof: We repeat the same arguments as in Lemma 3.2. Note that in the previous

Lemma 4.1 we only used the Hypotesis (H3.a). For the proof of this lemma one will

need to assume Hypothesis (H3.b) instead. The 
al
ulations are again straightforward.

2

End of the Proof of Theorem 4.1: Considering the homeomor�sms h and g of the

previous two lemmas, the result follows by Lemma 3.5, whi
h guarantees that h = g

�1

.

2

4.1. Lo
al version

For the lo
al version, we shall �rst introdu
e the following lemma (similarly to the

approa
h of last se
tion):

Lemma 4.3 Let f be in 2 C

2

(
;R

m

) and 
onsider the mapping A; and 	 as de�ned

aboved. Assume the the se
ond derivative D

2

	(x) is bounded and vanishes at x = 0. If

the origin is a hyperboli
 �xed point of the systems (f; �) then for P-almost all ! 2 


there exists a neighbourhood U(!) of the origin and a fun
tion

e

	 2 C

1

(
;R

m

) whi
h

satis�es Hypothesis (H1), till (H5) su
h that

e

f(!; �) :� A(!)(�) +

e

	(!; �) is invertible

and if x 2 U(!) then,

	(!; x) =

e

	(!; x):
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Proof: Take the same fun
tion � of the proof of Lemma 3.6. Let

e

l

1

(!) be de�ned su
h

that

kD	(!; x)k �

L

eB(!)

2

2k

for all kxk �

e

l

1

. And let

e

l

2

(!) be de�ned su
h that







D

2

	(!; x)







�

L

eB(!)

2

2k

De�ne l(!) = min

n

e

l

1

(!);

e

l

2

(!); 1

o

. Then, as in Lemma 3.6 the fun
tion of the

statement 
an be de�ned by

e

	(!; x) = �

�

kxk

l(!)

�

	(!; x):

And the neighbourhood 
an be de�ned by

U(!) = B(

l(!)

2

):

2

Theorem 4.2 (HGT: di�erentiable lo
al dis
rete 
ase) Let f 2 C

2

(
;R

m

) with

the mapping A; and 	 as de�ned aboved. Assume that the se
ond derivative D

2

	(x) is

bounded and vanishes at x = 0. If the origin is a hyperboli
 �xed point of the systems

(f; �) then for P-almost all ! 2 
 there exists a neighbourhood U(!) of the origin and

a lo
al di�eomorphism h 2 Dif

1

0

(
; U(!);h(U(!))) su
h that:

f(!; x) = h

�1

(�!)A(!)h(!)(x)

for all x in the domain of the 
omposition.

Proof: De�ne

e

f(!; x) := A(!; x) +

e

	(!; x) like in the Lemma 4.3. By Theorem 4.1

there exists a global random di�eomorphism

e

h 2 Dif

1

0

(
;R

m

) su
h that

e

h(�!)

e

f(!; �) =

D

e

f(!; 0)

e

h(!)(�). Take the restri
tion h =

e

hj

U(!)

. 2

Before we 
lose this se
tion we mention that the results presented here 
an be ex-

tended to higher degrees of di�erentiability, just adapting the norms in ea
h appropriate

spa
e.
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5. Continuous versions

In this se
tion we deal with 
ontinuous random dynami
al systems, more spe
i�
ally,

we will 
on
ern mainly with systems generated by sto
hasti
 di�erential equations.

Parti
ularly, the lo
al version will be proved for this last 
ase. We shall deal with

perfe
t 
o
y
les on
e in this 
ase every 
rude 
o
y
le is indistinguishable from a perfe
t


o
y
le (see Arnold and S
heutzow [3℄).

Let '(t; !) be an sto
hasti
 
ow su
h that p = 0 is a hyperboli
 �xed point. As

before, we separate the linear and non-linear part:

'(t; !; �) = �(t; !; �) + 	(t; !; �)

where

�(t; !) := D

0

'(t; !)

and 	(t; !; �) is the 
orresponding non-linear part.

5.1. Global version

The assumptions for the following global version of HGT rest only upon the time-one

random di�eomorphism '(1; !; �); essentially it has to satisfy the hypotheses (H1) and

(H2) stated for the global dis
rete HGT in se
tion 3.

Theorem 5.1 (HGT, global 
ontinuous 
ase) Assume that the time-one non-linear

part 	(1; !; �) satis�es the hypotheses (H1) and (H2). Hen
e, there exists a unique

H 2 Homeo(
;R

m

) su
h that for all t 2 R

'(t; !; �) = H(�

t

!)

�1

�(t; !)H(!)(�):

Proof: By Theorem 3.1 there exists a unique h 2 Homeo(
;R

m

) su
h that

h(�!)'(1; !; �) = �(1; !)h(!)(�):

Let k 2 Z, then, by indu
tion:

h(�

k

!)(�) = �(k; !)h(!)'(�k; �

k

!; �):

The proof follows essentially as a random adaptation of the deterministi
 arguments.

We follow S. Sternberg [21, Lemma 4℄. De�ne:

H(!; x) =

Z

1

0

�(�s; �

s

!)h(�

s

!)'(s; !; x)ds: (5.1)
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Before we show that H is in fa
t the homeomorphism of the statement, we prove the

existen
e of the integral. Initially, note that �(�s; �

s

!) is 
ontinuous in s on
e it


orresponds to the inverse �(s; !)

�1

. Se
ondly, using the 
ontinuity of ' and the

fa
t that h(�

s

!) = I + u(�

s

!) with u 2 C

0;b

(
;R

m

), it only remains to proof that

�(�s; �

s

!)u(�

s

!)'(s; !; x) is integrable in the interval s 2 [0; 1℄. By Proposition 2.1

and its 
orollary we have that

k�(s; !; �)u(�

s

!; �)k � B(!)e

�+a

ku(�

s

!; �)k

�

s

!

;

for all s 2 [0; 1℄. Finally, by P-invarian
e of �

s

and Tonelli-Fubini Theorem:

E

Z

1

0

sup

R

m

ku(�

s

!; �)k

�

s

!

ds =

Z

1

0

E

�

sup

R

m

ku(!; �)k

!

�

ds < +1:

Hen
e, for a.a. ! the integral of equation 5.1 makes sense.

Now, we show that H 
onjugates the 
ows � and ' for t in the interval [�1; 1℄. One

sees by the de�nition that

�(t; !)H(!)(x) =

Z

1

0

�(t� s; �

s

!)h(�

s

!)'(s� t; �

t

!; �)ds '(t; !; x):

With the 
hange of variable r = s� t, we have:

�(t; !)H(!)(x) =

Z

1�t

�t

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; :)dr '(t; !; x)

=

Z

0

�t

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; �)dr '(t; !; x)

+

Z

1�t

0

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; �)dr '(t; !; x):

The �rst integral is:

R

0

�t

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; �)dr

=

R

0

�t

�(�r � 1; �

r+t+1

!)�(1; �

t+r

!)h(�

r+t

!)'(�1; �

r+t+1

!; �)'(r + 1; �

t

!; �)dr

=

R

0

�t

�(�r � 1; �

r+t+1

!)h(�(�

r+t

!))'(r + 1; �

t

!; �)dr;

on
e by Theorem 3.1, we have that

�(1; �

t+r

!)h(�

r+t

!)'(�1; �

r+t+1

!; :) = h(�(�

r+t

!)): (5.2)
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Now, 
hanging the variable s = r + 1, we have:

Z

1

1�t

�(�s; �

s+t

!)h(�

s+t

!))'(s; �

t

!; �)ds:

Hen
e,

�(t; !)H(!)(x) =

�

Z

1

1�t

�(�s; �

s+t

!)h(�

s+t

!)'(s; �

t

!; �)ds

+

Z

1�t

0

�(�r; �

r+t

!)h(�

r+t

!)'(r; �

t

!; �)dr

�

'(t; !; x)

=

�

Z

1

0

�(�s; �

s+t

!)h(�

s+t

!))'(s; �

t

!; �)ds

�

'(t; !; x)

= H(�

t

!)'(t; !; x):

Finally, let t 2 R and write t = k + s with k 2 Z and s 2 [�1; 1℄. Then

�(t; !)H(!) = �(k + s; !)H(!)

= �(k; �

s

!)H(�

s

!)'(s; !; :)

= H(�

t

!)'(t; !; :):

Note that by the uniqueness established by Theorem 3.1, H(!) = h(!) a.s. hen
e

it is guaranteed the invertibility of H.

2

We remark that for a �xed ! and x 2 R

m

the map t 7! H(�

t

!; x) is 
ontinuous on
e

H(�

t

!; x) = �(t; !) ÆH(!) Æ ('(t; !; �))

�1

(x).

5.2. Lo
al version for SDE

In this se
tion we present a lo
al version of the Hartman-Grobman theorem for sto
hasti


dynami
al systems generated by sto
hasti
 Stratonovi
h di�erential equations. In order

to �x our terminology, 
onsider the following SDE in R

m

:

dx

t

= f

0

(x

t

)dt+

k

X

i=1

f

i

(x

t

) Æ dB

i

t

(5.3)

where (B

1

t

; � � � ; B

k

t

) is a Brownian motion in R

k

, f

0

; : : : ; f

k

: R

m

! R

m

are C

1

-ve
tor

�elds. We shall denote by '(t; !; �) the solution 
ow. Negative time is obtained 
onsid-

ering independent 
opies of Brownian motions for t � 0 and for t � 0; as in Boxler [4℄

or Arnold and Imkeller [2℄. We assume that the origin is a hyperboli
 �xed point.
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We shall denote the linearised ve
tor �elds at the origin by L

i

= Df

i

(0), for i =

0; 1; : : : ; k. As before, �(t; !) will denote the linear part of the 
ow ', it is the solution

of the linear SDE

dv

t

= L

0

(v

t

)dt+

k

X

i=1

L

i

(v

t

) Æ dB

i

t

:

As before, the non-linear part of the 
ow will be 
alled 	 = '� �.

The lo
alisation argument starts �xing a positive radius l � 0. Take the C

1

-ve
tor

�elds

~

f

i

whi
h satis�es the 
onditions:

~

f

i

(x) = f

i

(x) for all x 2 B(0; l=2), the ball of


entre in the origin and radius l=2 and

~

f

i

(x) = L

i

(x) for x =2 B(0; l), with i = 0; 1; : : : ; k.

We shall denote by ~'(t; !; x) the solution 
ow of the SDE

dx

t

=

~

f

0

(x

t

)dt+

k

X

i=1

~

f

i

(x

t

) Æ dB

i

t

: (5.4)

Obviously the linear part of ' and ~' 
oin
ides to �. The non-linear part of the 
ow

~' we shall denote by

~

	(t; !; x) = ~'(t; !; x)� �(t; w)x.

As before, in the next theorem the random variable B(!) denotes the variable B

"

with " = 1 de�ned in Proposition 2.1.

Theorem 5.2 (HGT, lo
al 
ase for SDE) Let ' be the C

1

-RDS generated by the

SDE (5.3) su
h that the origin is a hyperboli
 �xed point. If B(!) 2 L

1

(
) then there

exists a random homeomorphism H(!) : V (!) ! W (!) , where V (!) and W (!) are

random neighbourhoods of the origin, su
h that:

H(�

t

!)'(t; !; x) = �(t; !)H(!; x)

for P-almost all ! and t = t(x) in a random interval 
ontaining zero, su
h that x is in

the domain of the 
omposition.

Proof: The proof is based mainly in the dis
rete arguments of se
tion 3. Let x 2

B(0; l=2) and 
onsider the following stopping times:

T (!; x) := inf ft � 0; '(t; !; x) =2 B(0; l=2)g ;

S(!; x) := sup ft � 0; '(t; !; x) =2 B(0; l=2)g ;

On
e ' and ~' 
oin
ide in B(0; l=2) in the random interval t 2 (S; T ), we only have

to prove that there exists a lo
al 
onjugation H(!) su
h that for P-almost all ! 2 
 we

have H(�

t

!)~'(t; !; x) = �(t; !)H(!)(x).

The time-one di�eomorphism ~'(1; !; �) (or more pre
isely, its nonlinear part

~

	(1; !; �))

satis�es the hypothesis (H2) of se
tion 3. That is, we 
laim that there exists a 
onstant
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M > 0 su
h that

E

"

sup

x2R

k










~

	

s

(1; !; x)










�!

#

�M; and E

"

sup

x2R

k










~

	

s

(1; !; x)










�!

#

�M:

First, with a �xed ! 2 
, assume that x 2 R

m

is far enough from the origin, more

pre
isely, assume that:

kxk

!

> e

(1+�+a)

B(!) l

where � and a are de�ned as in Corollary 2.2. Hen
e, by Proposition 2.1 and its

Corollary again, for 0 � t � 1 we have:

k�(t; !)xk �

k�(t; !)xk

�

t

!

B(�

t

!)

�

e

�(�+a)

kxk

!

B(�

t

!)

> l

Hen
e k~'(t; !; x)k > l for all 0 � t � 1. Sin
e ~' and � 
oin
ide outside B(0; l), we have

that, in this 
ase

~

	(1; !; x) = 0.

Se
ondly, assume that

kxk

!

� e

(1+�+a)

B(!) l:

In this 
ase the traje
tory of x by ~' 
an pass through the ball B(0; l), and 
an not

follow the linear traje
tory of � anymore. Moreover, one 
an not estimate the last exit

time from B(0; l) be
ause it is not a stopping time. Nevertheless, in any 
ase, one 
an

guarantee that, for 0 � t � 1:

k~'

s

(1; !; x)k

�!

� sup

0�t;r�1

sup

kxk=l

k�

s

(r; �

t

!)xk

�

r+t

!

;

and sin
e k�

s

(r; �

t

!)xk

�

r+t

!

� e

(1+�+a)

B(!) kxk with 0 � t; r � 1, we 
on
lude that:

k~'

s

(1; !; x)k

�!

� e

2(�+a)+1

B(!) l:

On the other hand k�

s

(1; !)xk

�!

� e

(�+a)

kxk

!

� e

2(�+a)+1

B(!) l. Therefore:

E

�

sup

R

k










~

	

s

(1; !; �)










�!

�

� 2e

2(�+a)+1

E [B(!)℄ l < +1:

Analogously to the unstable part one �nds that:

E

�

sup

R

k










~

	

u

(1; !; �)










�!

�

� e

2(�+a)+1

(E [B(!)℄ + e E [B(!)℄ l) l < +1:

Now, applying Lemma 3.2 to the random (dis
rete in time) C

1

-di�eomorphism ~'(1; !; �)

we 
on
lude that there exists a unique 
ontinuous appli
ation h = I + u, with u 2

C

0;b

(
;R

k

) (h is not ne
essarily invertible) su
h that

h(�!)~'(1; !; x) = �(1; !)h(!)(x): (5.5)
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The 
ontinuous dynami
s are obtained applying the same 
al
ulations we did in the

proof of Theorem 5.1 de�ning:

H(!; x) =

Z

1

0

�(�s; �

s

!)h(�

s

!)~'(s; !; x)ds:

We point out that although at this point we 
an not guarantee the invertibility of h

(neither of H), the property of Lemma 3.2 stated in equation (5.5) is enough to 
arry

on the 
al
ulations we did with H in the proof of Theorem 5.1, parti
ularly equation

(5.2).

The lo
al invertibility of H(!) follows by uniqueness of the 
onjuga
y and the lo
al

invertibility of h(!) in some neighbourhood U(!) of the origin, guaranteed by Theorem

3.2. Finally, de�ne the neighbourhood stated in the theorem by V (!) = U(!)\B(0; l=2).

2

Before we present an example, we show that it is possible to weaken the hypothesis

of the last theorem substituting the random variable B(!) by another variable whi
h

would satis�es the same basi
 properties of B(!). Pre
isely, assume that there exists

a stri
tly positive real random variable C 2 L

2

(
) su
h that k�k

!

� C(!) k�k and

C(�

t

!) � e

kjtj

�(t; !)C(!) where k is a positive 
onstant and � is a 
ontinuous pro
ess

su
h that sup

0�t�1

�(t; !) 2 L

2

(
).

Corollary 5.1 In the 
ontext of the last theorem, the lo
al 
onjuga
y des
ribed still

holds if instead of integrability of B(!) we assume that there exists a random variable

C(!) as des
ribed above.

Proof: It is enough to prove that we still have

~

	(1; !; �) satisfying hypothesis (H2) of

se
tion 3.

Firstly, assume that x 2 R

m

is far enough from the origin, pre
isely:

kxk

!

> l e

�+a+k

C(!) sup

0�t�1

�(t; !):

Then

k�(t; !)xk �

k�(t; !)xk

�

t

!

C(�

t

!)

�

e

�(�+a+k)

kxk

!

C(!) sup

0�t�1

�(t; !)

> l;

for all 0 � t � 1, hen
e ~'(1; !; x) = 0.

Now, 
onsider the 
ase

kxk

!

� l e

�+a+k

C(!) sup

0�t�1

�(t; !):
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As in the proof of the last theorem, either if the traje
tory of ~'(x) passes through

the ball B(0; l=2) or not,

k~'

s

(1; !; x)k

�!

� sup

0�t;r�1

sup

kxk=l

k�

s

(r; �

t

!; x)k

�

t+r

!

;

and for 0 � t; r � 1

k�

s

(r; �

t

!; x)k

�

r+t

!

� e

(�+a)(r)

e

kt

sup

0�t�1

�(t; !)C(!) kxk

� e

2(�+a)+k

sup

0�t�1

�(t; !)C(!)l:

Hen
e

k~'

s

(1; !; x)k

�!

� e

2(�+a)+k

C(!) l sup

0�t�1

�(t; !);

and

k�

s

(1; !; x)k

�!

� e

2(�+a)+k

C(!) l sup

0�t�1

�(t; !):

Therefore,

E

"

sup

x2R

k










~

	

s

(1; !; x)










�!

#

� 2e

2(�+a)+k













sup

0�t�1

�(t; !)













L

2

� kC(!)k

L

2

:

For the unstable part one 
al
ulates an analogous estimate. 2

We present an example whi
h illustrates this last 
orollary.

Example 5.1. Consider the following SDE in R

2

d(x

t

; y

t

) = f

0

(x; y) dt+ f

1

(x; y) dB

1

t

+ f

2

(x; y) dB

2

t

(5.6)

where (B

1

t

; B

2

t

) is a Brownian motion on R

2

,

f

0

(x; y) =

2

4

��

1

+ �

2

1

x(1� x

2

)

��

2

+ �

2

2

y(1� y

2

)

3

5

; f

1

(x; y) =

2

4

��

2

1

(1� x

2

)

0

3

5

;

and

f

2

(x; y) =

2

4

0

��

2

2

(1� y

2

)

3

5

;

with �

i

and �

i

, i = 1; 2, real 
onstants su
h that �

1

; �

2

6= 0; and 8�

2

i

< a, where a is

the 
onstant of Proposition 2.1.
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Note that the points f(1; 1); (1;�1); (�1; 1); (�1;�1)g are singularities of the ve
tor

�elds f

0

; f

1

and f

2

. We shall fo
us our attention at the point x

0

= (�1;�1). The solu-

tion of equation (5.6) is given by the de
oupled 
ow '(t; !; x; y) = ('

1

(t; !; x; y); '

2

(t; !; x; y))

where

'

1

(t; !; x; y) =

(1 + x) exp(�2�

1

t+ 2�

1

B

t

) + x� 1

(1 + x) exp(�2�

1

t+ 2�

1

B

t

) + 1� x

and

'

2

(t; !; x; y) =

(1 + y) exp(�2�

2

t+ 2�

2

B

t

) + y � 1

(1 + y) exp(�2�

2

t+ 2�

2

B

t

) + 1� y

:

(See Kloeden and Platen [15, Pag. 124℄). The linearization at our point x

0

is given by

d'(t; !; (�1;�1)) =

�

exp(�2�

1

t+ 2�

1

B

1

t

) 0

0 exp(�2�

2

t+ 2�

2

B

2

t

)

�

:

The Osseledet's subspa
es are deterministi
 and 
orrespond to the 
anoni
al axes

E

i

(!) = R � e

i

for i = 1; 2. If x 2 E

i

(!) then the Lyapunov exponent �

i

are

�

i

= lim

t!1

1

t

log kd'(t; !; (�1;�1))xk = �2�

i

6= 0;

hen
e (�1;�1) is hyperboli
. Let x = (x

1

; x

2

) 2 R

2

, by the very de�nition of the

random norm (De�nition 2.3):

kxk

2

!

=

Z

+1

�1

(x
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)

2

e

4(��
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t+�

1
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e

2(�

1

t+ajtj)

dt+

Z

+1
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(x

2

)

2

e

4(��

2
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2

B

2

t

)

e

2(�

2

t+ajtj)

dt

=

Z

+1

�1

(x

1

)

2

e

4�

1

B

1

t

�2ajtj

dt+

Z

+1

�1

(x

2

)

2

e

4�

2

B

2

t

�2ajtj

dt:

De�ne




1

(!) :=

Z

+1

�1

e

4�

1

B

1

t

�2ajtj

dt;

and




2

(!) :=

Z

+1

�1

e

4�

2

B

2

t

�2ajtj

dt:

We 
laim that the measurable fun
tions 


1

; 


2

are square integrable. In fa
t

E

�

Z

+1

�1

exp(4�

1

B

1

t

� 2a jtj)dt

�

2

= E

�

Z

+1

0

exp(4�

1

B

1

t

� 2at)dt

+ E (

Z

0

�1

exp(4�

1

B

1

t

+ 2at)dt

�

2

: (5.7)
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We show that ea
h integral in the right hand side is in L

2

(
). In fa
t,

E

�

Z

+1

0

exp(4�

1

B

1

t

� 2at)dt

�
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�

Z
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0
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1

t
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�

=
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0

E

�

Z
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B

1

s
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1

B

1

t

� 2at)dt

�

�

Z

+1

0

 

E

�

Z

+1

0

exp(4�

1

B

1

s

� 2at)ds

�

2

!
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�

�

E

�
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1
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1

t
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�
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�
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dt

= M

 

E

�

Z
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0

exp(4�

1

B

1

s

� 2as)ds

�

2

!
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;

where M =

R

+1

0

�

E

�

exp(4�

1

B

1

t

� 2at)

�

2

�

1=2

dt. Sumarizing, we have that:

 

E

�

Z

+1

0

exp(4�

1

B

1

t

� 2at)dt

�

2

!

1=2

�M:

Note that the integrand in the de�nition ofM is a martingale, hen
e E

�

exp(8�

1

B

1

t

)

�

=

exp(32�

2

1

t) for all t � 0, so,

M =

Z

+1

0

exp 2t(8�

2

1

� a)dt

whi
h 
onverges on
e 8�

2

1

�a < 0 Analogously for the se
ond integral of equation (5.7),

one �nds:

E

�

Z

0

�1

exp(4�

1

B

1

t

+ 2at)dt

�

2

�

Z

0

�1

exp 2t(8�

2

1

+ a)dt

whi
h 
onverges on
e 8�

2

1

+ a > 0. By our 
al
ulations and Cau
hy- S
hwarz in-

equality we have 


1

2 L

2

(
). In the same way one 
he
ks that 


2

2 L

2

(
), hen
e

kxk

!

� kC(!) kxk where k is a 
onstant and C(!) = max f


1

(!); 


2

(!)g 2 L

2

(
). By


onstru
tion, we have 


1

(�

t

!) � e

�4�

1

B

1

t

e
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1

(!). To ful�ll the hypotheses of Corol-

lary 5.1 it only remains to prove that a

1

(!) = sup

0�t�1

e

�4�B

1

t

is square integrable. By

Ito formula:
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B

1

s
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hen
e, by the Burkholder-Doob inequality:
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:

Analogously, one 
he
ks that




2

(�

t

!) � e

�4�

2

B

2

t

e

2ajtj




2

(!)

and the random variable a

2

(!) = sup

0�t�1

e

�4�

2

B

2

t

is square integrable as well. Hen
e,

C(�

t

!) � e

jtj

�(!; t)C(!)

where �(!; t) = max

n

e

�4�

1

B

1

t

; e

�4�

2

B

2

t

o

and sup

0�t�1

�(!; t) 2 L

2

(
). It follows by

Corollary 5.1 that indeed there exists a lo
al random 
onjugation of the system (5.6)

with its linearization.
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