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Resumo

Os m�etodos quase-Newton têm sido amplamente utilizados na resolu�
~ao de

sistemas n~ao lineares que surgem nas mais diversas �areas de apli
a�
~oes, 
omo

na F��si
a, na Engenharia, na Qu��mi
a e na Ind�ustria. Muitas vezes m�etodos

desta fam��lia s~ao desenvolvidos e analisados para a resolu�
~ao de problemas

espe
���
os, 
omo �e o 
aso por exemplo, de problemas de 
omplementaridade

n~ao linear [8℄.

Neste trabalho nos propusemos a estudar v�arias apli
a�
~oes re
entes de m�e-

todos quase-Newton para resolver sistemas de equa�
~oes n~ao lineares.

�

E parte

fundamental do trabalho, uma minu
iosa pesquisa bibliogr�a�
a via Bibliote
as

e tamb�em via Internet, para a es
olha das apli
a�
~oes. Fazemos uma an�alise


r��ti
a das apli
a�
~oes en
ontradas e dis
utimos a e�
�a
ia dos m�etodos quase-

Newton utilizados.
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No �nal do trabalho, elaborarmos um diagn�osti
o sobre o status dos m�etodos

quase-Newton na resolu�
~ao de problemas pr�ati
os. Basi
amente nos propomos

a responder perguntas do tipo: existem problemas, na pesquisa apli
ada, para

os quais os m�etodos quase-Newton s~ao realmente a melhor op�
~ao? Quais? Por

que?

Abstra
t

The quasi-Newton methods have been very used in the solution

of nonlinear systems that appear in the most applied areas, su
h as

Physi
s, Engineering, Chemistry and Industry.

Many times some methods of this family are developed and analyzed

for a solution of parti
ular problems, for example as in the 
ase of

nonlinear 
omplementarity problems [8℄.

In this work we study several re
ent appli
ations of quasi-Newton

methods for solving nonlinear systems of equations. It is a fundamental

part of this work, a 
areful bibliographi
al resear
h via Libraries and

also via Internet, for a sele
tion of the appli
ations. We hope we have

made an understandable abstra
t of the appli
ations 
hosen and of the

quasi-Newton methods used, in ea
h of them.

With this work we believe that we elaborated a diagnosis of the

status of the quasi-Newton methods in the solution of real life problems,

answering thus, questions like: (i) are there problems, in the applied

resear
h, for whi
h the quasi-Newton methods are the best option? (ii)

whi
h are they? (iii) why?
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1 Introdu
tion

In re
ent years, quasi-Newton methods for solving square smooth nonlinear

systems have been out of the mainstream of numeri
al analysis resear
h. The

SIAM Journal on Numeri
al Analysis published 4 papers on the subje
t before

1970, 10 between 1971 and 1980, 11 in the eighties and none from 1991 to

1999. Sometimes, resear
h in a family of numeri
al te
hniques be
omes out-

of-fashion after its in
orporation to ordinary pra
ti
e of problem solvers in

Physi
s, Chemistry, Engineering and Industry. So, promising algorithms are


ompletely forgotten, both in resear
h and in appli
ations.

What is the real situation of quasi-Newton methods for solving nonlinear sys-

tems?. The 
lassi
al paper of Dennis and Mor�e [3℄ is 
ited in most works


on
erning quasi-Newton methods for nonlinear systems. It had been 
ited

361 times in indexed s
ienti�
 journals. The last 100 
itations go from 1992

to the present days. 42 of these 
itations 
ome from non-mathemati
al jour-

nals. It must be warned that, frequently, the Dennis-Mor�e paper [3℄ is 
ited in


onne
tion to quasi-Newton methods for minimization problems, and not for

nonlinear systems.

Sin
e the everyday pra
ti
e in Physi
s, Chemistry and Engineering in
ludes

the solution of nonlinear systems using Newton's method, one is tempted to


on
lude that the penetration of the quasi-Newton te
hnology in appli
ations,

although existing, has not been as intense as the potentiality of the te
hnique

deserves. But, our bibliographi
al resear
h shows that a
tually the quasi-

methods are used very often for solving real problems in the areas above men-

tioned.

In the introdu
tion of most quasi-Newton papers, it is stressed that the main

motivation to use them avoid 
omputation of 
umbersome derivatives. How-

ever, even before the boom of automati
 di�erentiation, pra
titioners found

that, for many of their problems, 
omputing derivatives was not as diÆ
ult or


ostly as stated in the quasi-Newton literature. They also veri�ed that begin-

ning a quasi-Newton pro
ess with B

0

= I; or some other arbitrary matrix, very

often 
auses disastrous results and, so, the 
omputation of an initial Ja
obian

is almost always ne
essary. Moreover, the programming e�ort of 
omputing
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the initial Ja
obian is the same as the one ne
essary for 
omputing all the Ja
o-

bians, so the tenden
y of many pra
titioners has been to use Newton's method

or its stationary variation with re�nements. Quasi-Newton methods for solv-

ing large-s
ale nonlinear systems are largely used in appli
ations when both,

numeri
al analysts and potential users, are 
ons
ious of their real advantages

and limitations. Besides the fa
t that, in general, quasi-Newton methods do

not 
al
ulate derivatives, most of them update the iteration matrix in a very

simple way.

We 
onsider nonlinear systems of equations

F (x) = 0; (1)

where F : IR

n

! IR

n

has 
ontinuous �rst partial derivatives. We denote

F = (f

1

; � � � ; f

n

) and J(x) = F

0

(x) for all x 2 IR

n

: All pra
ti
al algorithms for

solving (1) are iterative.

Given an initial approximation x

0

2 IR

n

; Newton's method generate a sequen
e

fx

k

g of approximations of a solution to (1) by

x

k+1

= x

k

� J(x

k

)

�1

F (x

k

): (2)

The Newton iteration 
an be 
ostly, sin
e partial derivatives must be 
om-

puted and the linear system (2) must be solved at every iteration. This fa
t

motivated the development of quasi-Newton methods, whi
h are de�ned as

the generalization of (2) given by

x

k+1

= x

k

� B

�1

k

F (x

k

): (3)

In quasi-Newton methods, the matri
es B

k

are intended to be approximations

of J(x

k

): In many methods, the 
omputation of (3) does not involve 
omputing

derivatives at all. Moreover, in many parti
ular methods, B

�1

k+1

is obtained

from B

�1

k

using simple pro
edures thanks to whi
h the linear algebra 
ost

involved in (3) is mu
h less than the one involved in (2).

The name \quasi-Newton" was used after 1965 to des
ribe also methods of

the form (3) su
h that the equation below is satis�ed

B

k+1

s

k

= y

k

= F (x

k+1

)� F (x

k

): (4)
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Following [2℄, most authors 
all quasi-Newton all the methods of the form (3),

whereas the 
lass of methods that satisfy (4) are 
alled \se
ant methods".

A

ordingly, (4) is 
alled \se
ant equation".

Among the se
ant methods, we have Broyden's method [1℄ and the Inverse

Column Update Method (ICUM) [12℄ [9℄. In the �rst one, the updating of B

k

matrix, is made by

B

k+1

= B

k

+

(y

k

�B

k

s

k

)s

T

k

s

T

k

s

k

;

and the se
ond one, the matrix B

�1

k

is updated by

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)e

T

j

k

e

T

j

k

y

k

;

where, je

T

j

k

y

k

j = ky

k

k

1

:

We also intend, in a future work, to implement ICUM to solve some of the

nonlinear systems that appear in the papers that we 
hose in our resear
h. The

main motivation for doing it is the re
ent results [10℄ about the appli
ation of

this method in the solution of large-s
ale nonlinear systems.

2 Appli
ations

The initial part of our work was a bibliographi
al revision via Internet. For

this we used the ele
troni
 library program asso
iated to the State University

of Campinas, SP, Brazil, named ProBE, whi
h permit a rapid and updated

ele
troni
al resear
h to the 
omplete text of some international journals by

the A
ademi
 Network of S~ao Paulo. The other ele
troni
 tool used was the

Web of S
ien
e, that it is a database made by the Institute for S
ienti�


Information (ISI), with the information about papers published sin
e 1945, in

more than 8.400 spe
ialized journals, indexed by ISI, in all areas of knowledge.

We also used the non virtual UNICAMP's libraries: BIMECC (Bibliote
a

do Instituto de Matem�ati
a, Estat��sti
a e Computa�
~ao Cient���
a) and BAE

(Bibliote
a da

�

Area de Engenharia).
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We started our ele
troni
 sear
h using the term Broyden. In the ProBE

library it appears in 195 arti
les and in the Web of S
ien
e we found 100

arti
les, in both 
ases published after 1995. These do
uments in
lude theory

development and real appli
ations whi
h deal with this quasi-Newton method.

The papers found use Broyden's method, not only for solving nonlinear systems

of equations but also for solving minimization problems.

We have two main reasons to have stopped our sear
h with Broyden's method.

The �rst one is that we already had a suÆ
ient number of interesting appli-


ations and the se
ond was our interest in 
omparing the performan
e of Broy-

den's method with the Inverse Column Update Method (ICUM) [12℄ [9℄, 
on-

sidered by Luk�san and Vl�
ek [10℄ as the most eÆ
ient quasi-Newton method

for large-s
ale problems. In this dire
tion we are already in tou
h with some

of the authors as Lu
ia Medina [13℄ and Klaus Werner [17℄. We are trying to

work together and test the eÆ
ien
y of the ICUM for their problems.

We 
hose nine appli
ations among the most interesting in the re
ent real ap-

pli
ations of quasi-Newton methods for solving nonlinear systems of equations

that were published between 1999 and 2001. In what follows we present these

appli
ations.

2.1 Multiple Target 3D Lo
ation Airborne Ultrasoni


System (2001) [13℄

This work is 
on
erned with extend the air-
oupled ultrasoni
 system

1

whi
h

provides 2D measurement of target position, to provide 3D measurement by

using an area array.

In order to 
al
ulate 3D position of targets, a nonlinear system has to be

solved. The authors 
hose to use Broyden's method in 
onjun
tion with 
oarse

beam forming pro
ess [13℄.The latest is used to lo
ate the targets and obtain

approximate values of their positions. The Broyden algorithm is then used to

get more pre
ise measurements.

1

Developed at Nottingham University [13℄
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If a target is present in the volume, an e
ho is produ
ed after the target has

being stru
k by the transmitted pulse, and is re
eived as a delayed version of

the transmitted signal by the re
eivers. The time of 
ight, �; at ea
h re
eiver

is measured as the time where the maximum value of the envelope of the e
ho

amplitude is found. Thus, at nth re
eiver, �

n

is given by

�

n

=

r

n




;

where 
; the velo
ity of the medium, is known and r

n

is the nth round trip

distan
e of the transmitted pulse: it is the distan
e transmitter-target, z

T

;

plus distan
e target-nth re
eiving element, R

n

; i.e.,

r

n

= z

t

+R

n

= z

t

+

q

(x

t

� x

n

)

2

+ (y

t

� y

n

)

2

+ z

2

t

; (5)

where x

t

; y

t

and z

t

are the unknown target 
o-ordinates, (x

n

; y

n

) are the known

re
eiving elements position, lo
ated in a plane.

Equation (5) represents a nonlinear system whi
h has three nonlinear unknown

variables: the target 
o-ordinates. Thus, for the nth re
eiver, it is possible to

de�ne the fun
tion F

n

by

F

n

(x

t

; y

t

; z

t

) = z

t

+

q

(x

t

� x

n

)

2

+ (y

t

� y

n

)

2

+ z

2

t

� r

n

:

If the nonlinear system

F

n

(x

t

; y

t

; z

t

) = 0

is solved, it gives both the range and angular position of the target [13℄.

The minimum number of re
eiving elements needed to 
al
ulate the unknown

are three whi
h gives N !=[3! (N�3)!℄ possible 
ombinations for an N elements

planar array.

About the results of 
omposite algorithm for solving the nonlinear system (5),

the authors noti
ed that the 3D measurements a

ura
y are in
reased when

Broyden's method is applied using the initial values given by the envelope

beam-forming algorithm. They also observed that the pro
essing time of the


oarse envelope beam forming is redu
e drasti
ally.
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2.2 Equation-based SPYRO model and solver for the

simulation of the steam 
ra
king pro
ess (2001) [4℄

SPYRO, Te
hnips's proprietary yield predi
tion program for the steam 
ra
k-

ing pro
ess. It features the a

urate steady-state simulation of 
omplex steam

pyrolysis of feedsto
k ranging from gases to gasoils in all known 
oil designs.

The 
ore of the SPYRO model is the kineti
 rea
tion s
heme

2

and the 
omplete

SPYRO model is a system that 
ontain a total of 175 ordinary di�erential

equations and 50 algebrai
 equations.

The 
exibility nowadays required of pro
ess models initiated the development

of the so-
alled Open Spyro program. In this, all model equations are written

in the open or residual form whi
h allows 
exibility and the formulation of the

basi
 equations in their natural form, redu
ing 
oding errors. This 
exibility

and the natural form are 
reated by dividing the SPYRO model into several

sub-models.

The ordinary di�erential equations in the Spyro model

3

have the following

general form:

dy

dz

� f(y; z) = 0;

and for solving it, the original SPYRO uses a shooting te
hnique. The solution

of the ordinary di�erential equations in the Open Spyro model is approximated

with the 
ollo
ation te
hnique. The method used is that of Orthogonal Collo-


ation on Finite Elements.

A separated nonlinear solver approximates the solution of the Open Spyro

model. Indeed, the authors implemented a fast and globally 
onverging quasi-

Newton method based on the update proposed by Broyden

4

in order to solve

the Open Spyro model. The idea of the method used is 
ombining the damped

Newton method with a se
ant method. This strategy is used to redu
e the

2

It 
onsists of several types of rea
tions:radi
al 
hain inition, radi
al de
omposition,

radi
al addition, radi
al 
hain termination, radi
al isomerisation and purely mole
ular.

3

It is boundary value problem

4

The authors adapted the method proposed by Broyden 
itebroy, su
h that it 
an be

used eÆ
iently for large sparse systems.
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omputational e�ort whi
h result to use only the damped Newton method. [4℄

The results of the original SPYRO program have proven over the years, to be

a

urate and reliable. The authors have 
ompared the simulation results of

the Open Spyro program to validate the 
orre
tness of the implemented model

and to test the solving method. For this, they implemented the Open Spyro

program with a 
exible system of sub-models for the simulation of the steam


ra
king pro
ess. The same reliable results as those for the original SPYRO

program are obtained.

2.3 A numeri
al algorithm for 
ame propagation in pre-

mixed gases (2001) [6℄

In this paper, the author take a hyperboli
 system of 
onservation laws as a

governing system of equations for rea
ting gases and propose and algorithm to

determinate a wave propagation speed uniquely. The wave speed and states

around a 
ame are 
omputed by solving a Riemann problem near a 
ame

in the phase spa
e. The de
agration wave is a traveling wave solution of

paraboli
 equations and admissible as a solution of hyperboli
 
onservation

laws. Its wave speed is 
omputed based on the fa
t that the admissible solu-

tions are 
onne
ting orbits of 
riti
al points in the dynami
al system derived

from paraboli
 equations.

He 
onsider the governing equations for rea
ting gas in one dimension and they

redu
e this system to hyperboli
 
onservation laws with a sour
e term. [6℄ To

be admissible as physi
al solutions of 
orresponding hyperboli
 
onservation

laws equations, the traveling waves must have vis
ous pro�les. For this they

manipulated the equations until they obtain the following ordinary di�erential

equations for the vis
ous pro�le of a 
ombustion wave:

�u

x

= �m (u� u

0

)�m

�

T

u� s

�

T

u� s

�

;

�u

x

= �m


p

(T � T

0

) +

m

2

(u� u

0

)

2

�mq (Z � Z

0

)

+mR (u� s)

�

T

u� s

�

T

u� s

�

;

9



DY

x

= (u� s) (Y � Z);

Z

x

= �k

Y �(T )

u� s

:

With �m = (u� s)�; Z = Y + �DY

x

=m and �(T ) is given by Arrhenius term

[6℄. The variables �; u; p; T; and Y are, respe
tively, the mass density, velo
ity,

pressure, temperature, and rea
tant mass fri
tion of the gas. The 
onstants

�; � and D are the vis
osity, heat 
ondu
tivity, and di�usion 
onstants, re-

spe
tively.

To understand the solution of system (6), the author examine its equilibria.

Let the state variables be denoted U = (u; T; Y; Z); setting the right-hand

sides of (6) to zero, they �nd the initial state U

0

and the �nal state U

1

are

related by the jump 
ondition. [6℄

Be
ause of a de
agration wave has fewer impinging 
hara
teristi
s on it, it

is ne
essary additional information to determine the evolution of the wave.

Taking an experimental 
ame speed law for the additional information, the

approa
h in this paper 
onsist on to 
onstru
t the Riemann solution from the

exa
t information 
oming from the internal stru
ture of the 
ame.

Solving a Riemann problem near a de
agration wave means �nding the 
ame

speed s and the two states U

M

and U

N

for given Riemann initial data U

L

and U

R

. He 
onsider the dynami
al system (6) and let the right side of the

dynami
al system be a ve
tor fun
tion G: Then U

M

and U

N

are equilibrim

points of the dynami
al system whi
h is

U

0

= G(U; s; U

N

);

and these equilibria are 
onne
ted by a solution orbit. Sin
e the dynami
al

system is autonomous, its easy to obtain a new solution. To �x the solution

uniquely, he imposes the phase 
ondition [6℄, whi
h requires that

Z

1

�1

< G(U)�G(U

ref

); G(U) �G(U) > d� = 0;

for some referen
e solution U

ref

: The author dis
retize the integral using the

trapezoid rule. Now he has a 
omplete set of equations, whi
h he solves using

a damped Newton method with Broyden update of the Ja
obian, to obtain

the solution of the Riemann problem, parti
ularity U

M

; U

N

; and s:
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2.4 Comparison of Simulation Algorithms for A

ele-

rated Determination of Periodi
 Steady State of

Swit
hed Networks (2000) [7℄

It is the aim of this the paper [7℄ to implement a wide range of general numeri-


al methods to solve the a

elerated steady-state problem in power ele
troni
s,

and 
ompare them on a 
ommon basis.

A power ele
troni
 
ir
uit 
an be des
ribed by a general nonlinear di�erential

equation

dx(t)

dt

= g (x(t) ; t); x(t

0

) = x

0

; t > t

0

: (6)

where x is the state ve
tor and the nonlinear fun
tion g(�; �) 
an be dis
on-

tinuous on time. From an initial state x

0

; and given a suÆ
iently long time

interval, the 
ir
uit rea
hes a periodi
al steady state when

x(t + T ) = x(t); 8 t: (7)

where T is the period.

The problem of �nding steady state for the system des
ribed by (6) is to solve

(6) for a nontrivial solution x(t) subje
t to the 
onstraint given by (7). This

problem 
an be redu
ed to �nding the initial value x

0

= X

ss

and a period T

satisfying both (6) and (7). Let an error fun
tion f(�) be de�ned as

f(x(t)) = x(t+ T ) � x(t): (8)

The problem 
an then be solved by �nding the roots of f(x(t)); whi
h are a

set of initial values of the state variables, satisfying both (6) and (7).

The methods addressed in [7℄ are the following: Newton's method with ana-

lyti
ally determined Ja
obian; Newton's method with numeri
ally determined

Ja
obian; Broyden's method; Newton's method with a globally 
onvergent

strategy; Bukowski's method and Skelboe's method.

The results on several swit
hing 
onverters suggest that the analyti
al New-

ton's method is the most a

urate and the fastest. When analyti
al derivatives

are not avaliable, both Broyden's and Skelboe's methods are 
ompetitive.
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2.5 EÆ
ient Bifur
ation Analysis of Periodi
ally-For
ed

Distributed Parameter Systems (2000) [5℄

Changes in the qualitative features of the bifur
ation diagrams or the dynami


features or for
ed periodi
 systems o

ur at singular points, whi
h satisfy 
er-

tain de�ning 
onditions. This work presents a new, eÆ
ient numeri
al method

for the 
onstru
tion of the lo
i of these singular points. The pro
edure uses

Fr�e
het di�erentiation to simplify the determination of the de�ning 
onditions

and the Broyden inverse update method to a

elerate the iterative steps in-

volved in the shooting method. [5℄

A for
ed periodi
 system satis�es the following set of equations:

F (u

0

) = u

0

� u(u

0

; �) = 0: (9)

where the �xed point u

0

is the spatially dis
retized state ve
tor at t = 0 and

u(u

0

; �) is the set of state variables after one period �:

A Monodromy matrix at the �xed point u

0

is de�ned as

M(u

0

; �) =

du(�)

du

0

;

where u(�) des
ribes the state ve
tor after one period � with initial 
ondition

u

0

:

The de�ning 
onditions for a saddle-node point

5

and period doubling point

6

are, respe
tively

Saddle node

F (u

0

; �) = 0

J(u

0

; �) v = 0

< v ; v > = 1

Period doubling

F (u

0

; �) = 0

M(u

0

; �) v = �v

< v ; v > = 1

5

In this node, the number of periodi
 solutions 
hanges, in general by two. The Ja
obian

matrix of (9) has a zero eigenvalue.

6

The monodromy matrix has an eigenvalue � = �1: Following this point the solution

returs to the �xed point only after two periods.
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The numeri
al solution pro
edure of this problem 
onsists of four steps:

� Dis
retization of the spatial derivatives.

� Evaluation of the dis
retized 
onditions using a time integration routine.

� Implementation of a 
ontinuation pro
edure.

� Solution to the nonlinear algebrai
 equation system using a quasi-Newton

method.

For example, the nonlinear algebrai
 system of equations de�ning the hystere-

sis variety [5℄ is

G(X) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

�

F (u

0

; �)

Lv

0

L

�

y

0

< y

0

; D

2

uu

F (u

0

; v

0

) >

< v

0

; y

0

> �1

s

2

� jY � Y

old

j

2

� (�� �

old

)

2

�

P

2

i=1

(p

i

� p

i;old

)

2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= 0:

where Y = (u

0

; v

0

; y

0

)

T

; X = (Y ; � ; p

1

; p

2

)

T

: Here, Y is the ve
tor of all

spatially dis
retized variables, � is the bifur
ation parameter end p

1

and p

2

are the 
ontinuation parameters. The subs
ript `old' denotes the previous


ontinuation step.

The numeri
al pro
edure is illustrated �rst by the 
onstru
tion of a map of

parameters regions with qualitatively di�erent bifur
ation diagrams for an

reverse-
ow rea
tor

7

, the dire
tion of feed to whi
h is 
hanged periodi
ally.

After, they 
onstru
t a map of parameters regions in whi
h a 
ooled reverse-


ow rea
tor has qualitatively di�erent dynami
 features. Both maps revel

surprising features. Thus, it 
an provide useful information needed to avoid

pitfalls in the design and/or operation of various periodi
 pro
esses.

7

An reverse-
ow rea
tor is a pa
ked-bed 
atalyti
 rea
tor, in whi
h the 
ow dire
tion is

periodi
ally reversed to trap a hot zone within the rea
tor.
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The authors 
on
lude that the su

ess of their numeri
al pro
edure is due to

the use of Fr�e
het di�erentiation, to simplify the de�ning 
onditions and the

use of Broyden's inverse method, to avoid the repetitive 
omputation of the

inverse of the Ja
obian.

2.6 Finding all Periodi
 Orbits of Maps Using Newton

Methods: sizes of basins (2000) [14℄

The motivation of paper [14℄ is to �nd periodi
 orbits of dynami
al systems.

Let F : IR

n

! IR

n

be a C

2

map. Their primary fo
us is on �nding periodi


orbits of maps on the plane. A k�period poin of F is a point p su
h that

F

k

(p) = p: Newton type methods 
an be used to �nd the periodi
 k point of

F by letting G = F

k

� I; where I is the identity mapping, and solving the

system G(x) = 0:

One of the maps that they study is the H�enon map, H : IR

2

! IR

2

; de�ned by

H

 

x

y

!

=

 

2:12� x

2

� 0:3y

x

!

:

They a
tually use variants of Newton's methods that are more robust than the

traditional one. For an initial point x; they iterate Newton's method many

times. If the pro
ess 
onverges to a point p whi
h is a periodi
 point of F;

they say x is in the Newton basin of p for period k: They also investigate the

size of the Newton basin and how it depends on p and k:

2.7 The Classi
al Stellar Atmosphere Problem (1999)

[17℄

Mathemati
ally, the 
lassi
al stellar atmosphere problem 
onsists on the

radiation transfer equations simultaneously with the equations for hydrostati


and radiative equilibrium, together with the statisti
al equilibrium, or rate

equations. [17℄
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These equations are:

� The radiation transfer equations whi
h are solved for the (angular) mean

intensities J

i

; i = 1; � � � ; NF on a pre-
hosen frequen
y grid 
omprising

NF points.

� The hydrostati
 equilibrium equation whi
h determines the total parti
le

density N:

� The radiative equilibrium equation from whi
h the temperature T fol-

lows.

� The statisti
al equilibrium equations whi
h are solved for the population

densities n

i

; i = 1; � � � ; NL of the atomi
 levels allowed to depart from

\lo
al thermodynami
 equilibrium" (NLTE levels).

� The parti
le 
onservation equation, determining the ele
tron density n

e

:

� The de�nition equation for a �
titious massive parti
le density n

h

whi
h

is introdu
ed for a 
onvenient representation of the solution pro
edure.

This set of equations has to be solved at ea
h point d of a grid 
omprising ND

depth points. Thus, they are looking for solutions ve
tors

	

0

d

= (n

i

; n

e

; T; n

h

; N; J

r

);

Using the ALI method [17℄ they eliminate at the outset the expli
it o

ur-

ren
e of the mean intensities J

i

from the solution s
heme by expressing these

variables by the 
urrent, yet to be determined, o

upation densities and tem-

perature,

	

d

= (n

i

; n

e

; T; n

h

; N):

The resulting set of equations for the redu
ed solution ve
tors is of 
ourse non-

linear. The solution is obtained by linearization and the iteration is performed

either with Newton's iteration or by other methods, mu
h faster than Newton

methods, like quasi-Newton variants.

The linearized system may be writing as

	

d

= 	

0

d

+ Æ	

d

:

15



where 	

0

is the 
urrent estimate for the solution ve
tor at depth d and Æ	

d

is

the 
orre
tion ve
tor to be 
omputed.

Using a lo
al operator the resulting system for Æ	

d

is

Æ	

d

= �

�1




d

;

where � is (NN � NN) matrix where NN is the total number of physi
al

variables, that is, NN = NL+4; and 


d

is the residual error in the equations.

If �

�1

k

is the kth iterate of the inverse Ja
obian, then an update 
an be found

from

�

�1

k+1

= �

�1

k

+

(s

k

� �

�1

k

y

k

)(s

T

k

�

�1

k

)

s

T

k

�

�1

k

y

k

;

where

s

k

� Æ	

k

solution ve
tor of pre
eding linearization,

y

k

� 


k+1

� 


k

di�eren
e of a
tual and pre
eding residuum.

The authors also mention another numeri
al variant, the Kantorovi
h method.

They 
onsider it more simple and straightforward to implement. This method

keeps the Ja
obian �xed during the linearization 
y
le. In fa
t, it turns out to

be even more stable than Broyden's method in some 
ases.

At this moment, we are in 
onta
t with Professor Klaus Werner. He told us

that in their stellar atmosphere 
ode they implemented Broyden's method but

hardly used it. Instead, they used Kantorovi
h's method, as we had pointed

out previously.

We asked him some data about fun
tions, initial points, expe
ted solution,

and initial approximation to the Ja
obian. He thinks that, it is diÆ
ult to

give simple answers to these questions, and based on our interest to 
he
k

how the ICUM works in their \real life" problem, he proposed us to make

the implementation of the Inverse Column Updating Method (ICUM) in their

stellar atmosphere 
ode.

We 
onsider very interesting for our obje
tives this joint work. So we sent him

the ICUM algorithm and are waiting for his answers.

16



2.8 Power System Parallel Computation by a Trans-

puter Network (1999) [16℄

Load 
ow and transient stability study are two of the most elementary prob-

lems in ele
tri
 power system 
omputation. Normally, before starting transient

stability studies, the load 
ow program must be run to provide the steady-state

operation points. [16℄

The load 
ow problem is des
ribed by a system of nonlinear algebrai
 equations

F (X) = 0; (10)

where X is a variable ve
tor of bus voltages. For an n-bus system without the

sla
k bus, (10) 
an be reformulated as:

F

i

(X

1

X

2

; � � � ; X

n

) = 0; i = 1; 2; � � � ; n: (11)

where

F

i

= (�p

i

; �q

i

)

T

; F

i

= (f

i

; e

i

)

and

�p

i

= p

is

� Re

0

�

V

i

n

X

j=1

�

Y

ij

�

V

j

1

A

�q

i

= q

is

� Im

0

�

V

i

n

X

j=1

�

Y

ij

�

V

j

1

A

In the above equations, V

i

= e

i

+ jf

i

represents the 
omplex node voltage, and

S

i

= p

is

+ jq

is

the inje
ted power.

Newton's method is widely used for the solution of load 
ow problem be
ause

of their 
onvergen
e 
hara
teristi
s but it is more time-
onsuming be
ause it

needs a new information and fa
torization of the Ja
obian matrix. For this

reason, in many 
ases it is adequately substituted by Broyden's method.

In this work, the authors present uni�ed parallel algorithm with the 
oin
ident

parallel transputer system for both load 
ow and transient stability studies.
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2.9 A

eleration of Self Consistent Ele
troni
 Stru
ture

Cal
ulations: storage saving and multiple-se
ant im-

plementation of the Broyden method (1999) [15℄

In this paper, on the basis of Broyden's method to solve simultaneous nonlin-

ear equations,the authors present eÆ
ient 
omputational s
hemes for a

eler-

ation of self-
onsistent ele
troni
-stru
ture 
al
ulations. For this, they 
hoose

a Si(011)

8

surfa
e model as the test problem, be
ause it is easy to imple-

ment the 
omputational s
hemes whi
h appear in their study into an existing

ele
troni
-stru
ture 
ode.

They adopt the traditional self-
onsisten
y strategy where the self-
onsistent

solution is sought in terms of the one-ele
tron potential. They assume that

they have an initial guess for the one-ele
tron potential as the input quantity

V

in

:

The self-
onsistent solution V

s



an be de�ned as the initial potential, V

in

whi
h

satis�es that the fun
tional derivative of theKohn-Sham (KS) energy is zero

[15℄,

Æ E

KS

Æ V

in

= �

0

V

diff

= 0;

where, �

0

is an independent-parti
le polarizability operator and V

diff

is de�ned

to by the di�eren
e between the out potential V

out

and the initial potential V

in

:

Sin
e it is 
omputationally demanding to evaluate �

0

and thus the derivative

of the KS energy, in pra
ti
e, the self-
onsistent solution, V

s


; is de�ned as a

initial potential V

in

su
h that

V

diff

= V

out

� V

in

= 0 (12)

is satis�ed. Thus the self-
onsistent 
al
ulation is redu
ed to solve the nonlin-

ear system of equations

9

(12).

8

The Si (011) model is a re
tangular super
ell 
ontaining �ve (011) and three empty

layers, and thus ten Si atoms.

9

The equation (12) is impli
itly de�ned as a set of six equations [15℄.
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If the Ja
obian operator A, impli
itly de�ned by

V

diff

= �AV

in

;

is available, the Newton-type iterative pro
edure,

V

n+1

in

= V

n

in

+ [A

n

℄

�1

V

n

diff

will lead to a ve
tor sequen
e fV

1

in

; V

2

in

; � � � ; V

n

in

g rapidly approa
hing V

in

:

However, sin
e expli
it evaluation and handling of A are as demanding as those

of �

0

; when the inverse Ja
obian [A

n

℄

�1

is re
ursively approximated by B

n

;

using Broyden's updating formula

B

n

= B

n�1

�

n

ÆV

n�1

in

+B

n�1

ÆV

n�1

diff

o

ÆV

n�1

diff

kÆV

n�1

diff

k

2

with

ÆV

n�1

in

= ÆV

n

in

� ÆV

n�1

in

;

and

ÆV

n�1

diff

= ÆV

n

diff

� ÆV

n�1

diff

;

then input potential for the next 
y
le predi
ted by

V

n+1

in

= V

n

in

+B

n

V

n

diff


onverges toward the solution V

s


in fewer iterations than that generated by a

simple relaxation formula,

V

n+1

in

= V

n

in

+ �V

n

diff

where � is a mixing parameter.

In this work, they investigate the 
omputational s
hemes, whi
h are variants

of Broyden's method, for a

eleration of self-
onsistent ele
troni
 stru
ture


al
ulations. In parti
ular, they have fo
used on the storage-saving s
hemes

and they propose two storage-saving s
hemes where iteration data are partially

dis
arded after a pres
ribed storage limit is rea
hed.
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3 Con
lusions

At the end of the bibliographi
al resear
h about the re
ent appli
ations of

quasi-Newton methods for solving nonlinear systems, we 
hose nine ap-

pli
ations to real problems in di�erent areas of knowledge. The analysis

of them turned out to be a little diÆ
ult for us be
ause, as mathemati-


ians, our knowledge in these applied areas is quite limited.

In the appli
ations, the authors prefer Broyden's method to Newton's

method, essentially be
ause of its 
omputational 
ost.

We are very happy with the results obtained by our resear
h in terms of

answering our initial questions:

(i) Yes, there are many problems in applied resear
h for whi
h the

quasi-Newton methods (Broyden's method ) are the best option.

(ii) In se
tions 2.1 to 2.9 we presented appli
ations of them in the

Physi
s, Chemi
al Engineering, Ele
troni
 Engineering, Astrophy-

si
s, Ele
tri
 Engineering and Me
hani
al Engineering areas.

(iii) Broyden's method is 
hosen be
ause of low 
omputational 
ost.

Motivated by the fa
t that the ICUM [12℄ [9℄ was 
onsidered re
ently

as the most eÆ
ient quasi-Newton method for solving large-s
ale non-

linear systems [10℄, we are motivated to implement it with some of the

appli
ations 
hosen. A
tually, we have already started its appli
ation to

another real problem.

In order to do the implementation of the ICUM to solve the nonlinear

systems that appear in the papers, we wrote to the authors of some of

the 
hosen papers, asking them about initial points used, the fun
tions

(in some 
ases), an expe
ted solution, et
. Until now we have re
eived

the answers of Professors Lu
ia Medina [13℄ and Klaus Werner [17℄. In

the �rst 
ase, we re
eived some data and in the se
ond 
ase the author

explained us about the diÆ
ulty in giving us the answers. Both of them

have 
onsidered implementation of ICUM in their \real problems" a very

interesting idea. So, the natural 
ontinuation of this work is trying to

make a joint work with them.
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