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Resumo

Os métodos quase-Newton tém sido amplamente utilizados na resolucao de
sistemas nao lineares que surgem nas mais diversas areas de aplicagoes, como
na Fisica, na Engenharia, na Quimica e na Industria. Muitas vezes métodos
desta familia sao desenvolvidos e analisados para a resolucao de problemas
especificos, como é o caso por exemplo, de problemas de complementaridade
nao linear [8].

Neste trabalho nos propusemos a estudar varias aplicacoes recentes de mé-
todos quase-Newton para resolver sistemas de equacgoes nao lineares. E parte
fundamental do trabalho, uma minuciosa pesquisa bibliografica via Bibliotecas
e também via Internet, para a escolha das aplicacoes. Fazemos uma analise
critica das aplicagoes encontradas e discutimos a eficiacia dos métodos quase-
Newton utilizados.
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No final do trabalho, elaborarmos um diagnéstico sobre o status dos métodos
quase-Newton na resolucao de problemas praticos. Basicamente nos propomos
a responder perguntas do tipo: existem problemas, na pesquisa aplicada, para
0s quais os métodos quase-Newton sao realmente a melhor opcao? Quais? Por
que?

Abstract

The quasi-Newton methods have been very used in the solution
of nonlinear systems that appear in the most applied areas, such as
Physics, Engineering, Chemistry and Industry.

Many times some methods of this family are developed and analyzed
for a solution of particular problems, for example as in the case of
nonlinear complementarity problems [8].

In this work we study several recent applications of quasi-Newton
methods for solving nonlinear systems of equations. It is a fundamental
part of this work, a careful bibliographical research via Libraries and
also via Internet, for a selection of the applications. We hope we have
made an understandable abstract of the applications chosen and of the
quasi-Newton methods used, in each of them.

With this work we believe that we elaborated a diagnosis of the
status of the quasi-Newton methods in the solution of real life problems,
answering thus, questions like: (i) are there problems, in the applied
research, for which the quasi-Newton methods are the best option? (ii)
which are they? (iii) why?



1 Introduction

In recent years, quasi-Newton methods for solving square smooth nonlinear
systems have been out of the mainstream of numerical analysis research. The
SIAM Journal on Numerical Analysis published 4 papers on the subject before
1970, 10 between 1971 and 1980, 11 in the eighties and none from 1991 to
1999. Sometimes, research in a family of numerical techniques becomes out-
of-fashion after its incorporation to ordinary practice of problem solvers in
Physics, Chemistry, Engineering and Industry. So, promising algorithms are
completely forgotten, both in research and in applications.

What is the real situation of quasi-Newton methods for solving nonlinear sys-
tems?. The classical paper of Dennis and Moré [3] is cited in most works
concerning quasi-Newton methods for nonlinear systems. It had been cited
361 times in indexed scientific journals. The last 100 citations go from 1992
to the present days. 42 of these citations come from non-mathematical jour-
nals. It must be warned that, frequently, the Dennis-Moré paper [3] is cited in
connection to quasi-Newton methods for minimization problems, and not for
nonlinear systems.

Since the everyday practice in Physics, Chemistry and Engineering includes
the solution of nonlinear systems using Newton’s method, one is tempted to
conclude that the penetration of the quasi-Newton technology in applications,
although existing, has not been as intense as the potentiality of the technique
deserves. But, our bibliographical research shows that actually the quasi-
methods are used very often for solving real problems in the areas above men-
tioned.

In the introduction of most quasi-Newton papers, it is stressed that the main
motivation to use them avoid computation of cumbersome derivatives. How-
ever, even before the boom of automatic differentiation, practitioners found
that, for many of their problems, computing derivatives was not as difficult or
costly as stated in the quasi-Newton literature. They also verified that begin-
ning a quasi-Newton process with By = I, or some other arbitrary matrix, very
often causes disastrous results and, so, the computation of an initial Jacobian
is almost always necessary. Moreover, the programming effort of computing



the initial Jacobian is the same as the one necessary for computing all the Jaco-
bians, so the tendency of many practitioners has been to use Newton’s method
or its stationary variation with refinements. Quasi-Newton methods for solv-
ing large-scale nonlinear systems are largely used in applications when both,
numerical analysts and potential users, are conscious of their real advantages
and limitations. Besides the fact that, in general, quasi-Newton methods do
not calculate derivatives, most of them update the iteration matrix in a very
simple way.

We consider nonlinear systems of equations
F(z) =0, (1)

where F' : IR™ — IR" has continuous first partial derivatives. We denote
F=(f1,-+, fa) and J(z) = F'(x) for all z € IR". All practical algorithms for
solving (1) are iterative.

Given an initial approximation xy € IR", Newton’s method generate a sequence
{zx} of approximations of a solution to (1) by

Tl = T — J(!L‘k)_lF(Q?k) (2)

The Newton iteration can be costly, since partial derivatives must be com-
puted and the linear system (2) must be solved at every iteration. This fact
motivated the development of quasi-Newton methods, which are defined as
the generalization of (2) given by

Tyl = T — BIZIF(ZU]C) (3)

In quasi-Newton methods, the matrices B, are intended to be approximations
of J(z). In many methods, the computation of (3) does not involve computing
derivatives at all. Moreover, in many particular methods, B, jl is obtained
from B, ' using simple procedures thanks to which the linear algebra cost
involved in (3) is much less than the one involved in (2).

The name “quasi-Newton” was used after 1965 to describe also methods of
the form (3) such that the equation below is satisfied

Biyisk = yr = F(xp11) — F(xg). (4)

4



Following [2], most authors call quasi-Newton all the methods of the form (3),
whereas the class of methods that satisfy (4) are called “secant methods”.
Accordingly, (4) is called “secant equation”.

Among the secant methods, we have Broyden’s method [1] and the Inverse
Column Update Method (ICUM) [12] [9]. In the first one, the updating of B
matrix, is made by

(y& — Brsi)si

Byy1 = By, + 7

and the second one, the matrix B, ' is updated by

(Sk — Bk_lyk)eg;

T
€5, Yk

Byl =B;' +

Y

where, |e] yi| = [|yi/loo-

We also intend, in a future work, to implement ICUM to solve some of the
nonlinear systems that appear in the papers that we chose in our research. The
main motivation for doing it is the recent results [10] about the application of
this method in the solution of large-scale nonlinear systems.

2 Applications

The initial part of our work was a bibliographical revision via Internet. For
this we used the electronic library program associated to the State University
of Campinas, SP, Brazil, named ProBE, which permit a rapid and updated
electronical research to the complete text of some international journals by
the Academic Network of Sao Paulo. The other electronic tool used was the
Web of Science, that it is a database made by the Institute for Scientific
Information (ISI), with the information about papers published since 1945, in
more than 8.400 specialized journals, indexed by ISI, in all areas of knowledge.
We also used the non virtual UNICAMP’s libraries: BIMECC (Biblioteca
do Instituto de Matemética, Estatistica e Computagao Cientifica) and BAE
(Biblioteca da Area de Engenharia).



We started our electronic search using the term Broyden. In the ProBE
library it appears in 195 articles and in the Web of Science we found 100
articles, in both cases published after 1995. These documents include theory
development and real applications which deal with this quasi-Newton method.
The papers found use Broyden’s method, not only for solving nonlinear systems
of equations but also for solving minimization problems.

We have two main reasons to have stopped our search with Broyden’s method.
The first one is that we already had a sufficient number of interesting appli-
cations and the second was our interest in comparing the performance of Broy-
den’s method with the Inverse Column Update Method (ICUM) [12] [9], con-
sidered by Luksan and Vlcek [10] as the most efficient quasi-Newton method
for large-scale problems. In this direction we are already in touch with some
of the authors as Lucia Medina [13] and Klaus Werner [17]. We are trying to
work together and test the efficiency of the ICUM for their problems.

We chose nine applications among the most interesting in the recent real ap-
plications of quasi-Newton methods for solving nonlinear systems of equations
that were published between 1999 and 2001. In what follows we present these
applications.

2.1 Multiple Target 3D Location Airborne Ultrasonic
System (2001) [13]

This work is concerned with extend the air-coupled ultrasonic system' which
provides 2D measurement of target position, to provide 3D measurement by
using an area array.

In order to calculate 3D position of targets, a nonlinear system has to be
solved. The authors chose to use Broyden’s method in conjunction with coarse
beam forming process [13].The latest is used to locate the targets and obtain
approximate values of their positions. The Broyden algorithm is then used to
get more precise measurements.

!Developed at Nottingham University [13]



If a target is present in the volume, an echo is produced after the target has
being struck by the transmitted pulse, and is received as a delayed version of
the transmitted signal by the receivers. The time of flight, 7, at each receiver
is measured as the time where the maximum value of the envelope of the echo
amplitude is found. Thus, at nth receiver, 7, is given by

Th = —)
c
where ¢, the velocity of the medium, is known and r, is the nth round trip
distance of the transmitted pulse: it is the distance transmitter-target, zr,
plus distance target-nth receiving element, R,, i.e.,

Fn = 2+ R = 2+ /(10— )2 + (4 — yn)? + 22, (5)

where x4, y; and z; are the unknown target co-ordinates, (1, y,) are the known
receiving elements position, located in a plane.

Equation (5) represents a nonlinear system which has three nonlinear unknown
variables: the target co-ordinates. Thus, for the nth receiver, it is possible to
define the function F,, by

Fol@e, e, 2) = 2+ \/(xt — )2+ (Yr = Yn)? + 27 — T

If the nonlinear system
Fn(xta Yt Zt) =0

is solved, it gives both the range and angular position of the target [13].

The minimum number of receiving elements needed to calculate the unknown
are three which gives N!/[3! (N —3)!] possible combinations for an N elements
planar array.

About the results of composite algorithm for solving the nonlinear system (5),
the authors noticed that the 3D measurements accuracy are increased when
Broyden’s method is applied using the initial values given by the envelope
beam-forming algorithm. They also observed that the processing time of the
coarse envelope beam forming is reduce drastically.



2.2 Equation-based SPYRO model and solver for the
simulation of the steam cracking process (2001) [4]

SPYRO, Technips’s proprietary yield prediction program for the steam crack-
ing process. It features the accurate steady-state simulation of complex steam
pyrolysis of feedstock ranging from gases to gasoils in all known coil designs.

The core of the SPYRO model is the kinetic reaction scheme? and the complete
SPYRO model is a system that contain a total of 175 ordinary differential
equations and 50 algebraic equations.

The flexibility nowadays required of process models initiated the development
of the so-called Open Spyro program. In this, all model equations are written
in the open or residual form which allows flexibility and the formulation of the
basic equations in their natural form, reducing coding errors. This flexibility
and the natural form are created by dividing the SPYRO model into several
sub-models.

The ordinary differential equations in the Spyro model® have the following
general form:

% - (ya Z) - 07
and for solving it, the original SPYRO uses a shooting technique. The solution
of the ordinary differential equations in the Open Spyro model is approximated
with the collocation technique. The method used is that of Orthogonal Collo-
cation on Finite Elements.

A separated nonlinear solver approximates the solution of the Open Spyro
model. Indeed, the authors implemented a fast and globally converging quasi-
Newton method based on the update proposed by Broyden * in order to solve
the Open Spyro model. The idea of the method used is combining the damped
Newton method with a secant method. This strategy is used to reduce the

2Tt consists of several types of reactions:radical chain inition, radical decomposition,
radical addition, radical chain termination, radical isomerisation and purely molecular.

3Tt is boundary value problem

4The authors adapted the method proposed by Broyden citebroy, such that it can be
used efficiently for large sparse systems.



computational effort which result to use only the damped Newton method. [4]

The results of the original SPYRO program have proven over the years, to be
accurate and reliable. The authors have compared the simulation results of
the Open Spyro program to validate the correctness of the implemented model
and to test the solving method. For this, they implemented the Open Spyro
program with a flexible system of sub-models for the simulation of the steam
cracking process. The same reliable results as those for the original SPYRO
program are obtained.

2.3 A numerical algorithm for flame propagation in pre-
mixed gases (2001) [6]

In this paper, the author take a hyperbolic system of conservation laws as a
governing system of equations for reacting gases and propose and algorithm to
determinate a wave propagation speed uniquely. The wave speed and states
around a flame are computed by solving a Riemann problem near a flame
in the phase space. The deflagration wave is a traveling wave solution of
parabolic equations and admissible as a solution of hyperbolic conservation
laws. Its wave speed is computed based on the fact that the admissible solu-
tions are connecting orbits of critical points in the dynamical system derived
from parabolic equations.

He consider the governing equations for reacting gas in one dimension and they
reduce this system to hyperbolic conservation laws with a source term. [6] To
be admissible as physical solutions of corresponding hyperbolic conservation
laws equations, the traveling waves must have viscous profiles. For this they
manipulated the equations until they obtain the following ordinary differential
equations for the viscous profile of a combustion wave:

T T
iy = —m(u—uo)—m< - )
u—s u-—s
m 2
pty = —mcp(T—T0)+3(u—u0) —mq (Z — Zp)
T T
+mR(u—s)< - ),
u—s u-—Ss

9



DY, = (u—3s)(Y —-2),
PR

With —m = (u—s)p, Z =Y + pDY,/m and ¢(T') is given by Arrhenius term
[6]. The variables p,u,p, T, and Y are, respectively, the mass density, velocity,
pressure, temperature, and reactant mass friction of the gas. The constants
i, A and D are the viscosity, heat conductivity, and diffusion constants, re-
spectively.

To understand the solution of system (6), the author examine its equilibria.
Let the state variables be denoted U = (u,T,Y, Z); setting the right-hand
sides of (6) to zero, they find the initial state Uy and the final state U; are
related by the jump condition. [6]

Because of a deflagration wave has fewer impinging characteristics on it, it
is necessary additional information to determine the evolution of the wave.
Taking an experimental flame speed law for the additional information, the
approach in this paper consist on to construct the Riemann solution from the
exact information coming from the internal structure of the flame.

Solving a Riemann problem near a deflagration wave means finding the flame
speed s and the two states Up; and Uy for given Riemann initial data Up
and Ugp. He consider the dynamical system (6) and let the right side of the
dynamical system be a vector function G. Then U, and Uy are equilibrim
points of the dynamical system which is

U' = G(U,s,Uy),

and these equilibria are connected by a solution orbit. Since the dynamical
system is autonomous, its easy to obtain a new solution. To fix the solution
uniquely, he imposes the phase condition [6], which requires that

/ < GU) = G(Urep), GU) - G(U) > d€ =0,
for some reference solution U,.;. The author discretize the integral using the
trapezoid rule. Now he has a complete set of equations, which he solves using

a damped Newton method with Broyden update of the Jacobian, to obtain
the solution of the Riemann problem, particularity Uy, Uy, and s.
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2.4 Comparison of Simulation Algorithms for Accele-
rated Determination of Periodic Steady State of
Switched Networks (2000) [7]

It is the aim of this the paper [7] to implement a wide range of general numeri-
cal methods to solve the accelerated steady-state problem in power electronics,
and compare them on a common basis.

A power electronic circuit can be described by a general nonlinear differential
equation
dx(t)
dt
where z is the state vector and the nonlinear function ¢(-,) can be discon-

tinuous on time. From an initial state z(, and given a sufficiently long time
interval, the circuit reaches a periodical steady state when

st +T) = 2(t), VYt (7)

=g(=(), 1),  wx(to) = w0, t>to. (6)

where T' is the period.

The problem of finding steady state for the system described by (6) is to solve
(6) for a nontrivial solution z(¢) subject to the constraint given by (7). This
problem can be reduced to finding the initial value zqg = X,; and a period T
satisfying both (6) and (7). Let an error function f(-) be defined as

fx(t) = =t +T) — x(t). (8)

The problem can then be solved by finding the roots of f(z(t)), which are a
set of initial values of the state variables, satisfying both (6) and (7).

The methods addressed in [7] are the following: Newton’s method with ana-
lytically determined Jacobian; Newton’s method with numerically determined
Jacobian; Broyden’s method; Newton’s method with a globally convergent
strategy; Bukowski’s method and Skelboe’s method.

The results on several switching converters suggest that the analytical New-

ton’s method is the most accurate and the fastest. When analytical derivatives
are not avaliable, both Broyden’s and Skelboe’s methods are competitive.
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2.5 Efficient Bifurcation Analysis of Periodically-Forced
Distributed Parameter Systems (2000) [5]

Changes in the qualitative features of the bifurcation diagrams or the dynamic
features or forced periodic systems occur at singular points, which satisfy cer-
tain defining conditions. This work presents a new, efficient numerical method
for the construction of the loci of these singular points. The procedure uses
Fréchet differentiation to simplify the determination of the defining conditions
and the Broyden inverse update method to accelerate the iterative steps in-
volved in the shooting method. [5]

A forced periodic system satisfies the following set of equations:
F(up) = up —u(ug, 7) = 0. 9)

where the fixed point ug is the spatially discretized state vector at ¢ = 0 and
u(ug, 7) is the set of state variables after one period 7.

A Monodromy matrix at the fixed point uq is defined as

du(t
M(“Oa)\) = d’lso)’

where u(7) describes the state vector after one period 7 with initial condition
Uop-

The defining conditions for a saddle-node point® and period doubling point®
are, respectively

Saddle node Period doubling
F(ug,A) =0 F(up,A) = 0
J(ug,\)v = 0 M(ug, \)v = —v
<v,v> = 1 <v,v> = 1

°In this node, the number of periodic solutions changes, in general by two. The Jacobian
matrix of (9) has a zero eigenvalue.

6The monodromy matrix has an eigenvalue p = —1. Following this point the solution
returs to the fixed point only after two periods.
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The numerical solution procedure of this problem consists of four steps:

Discretization of the spatial derivatives.

Evaluation of the discretized conditions using a time integration routine.

e Implementation of a continuation procedure.

Solution to the nonlinear algebraic equation system using a quasi-Newton
method.

For example, the nonlinear algebraic system of equations defining the hystere-
sis variety [5] is
F(ug, \)
L
L*yq
<o, D?, F(ug,vp) >
<y, Yo > —1

s2 =Y = Yyal? = (A= Aoa)® — X7y (i — Piota)?

where Y = (ug, vo, y0)T, X = (Y, X, p1, po)T. Here, Y is the vector of all
spatially discretized variables, A is the bifurcation parameter end p; and ps
are the continuation parameters. The subscript ‘old’ denotes the previous
continuation step.

The numerical procedure is illustrated first by the construction of a map of
parameters regions with qualitatively different bifurcation diagrams for an
reverse-flow reactor”, the direction of feed to which is changed periodically.
After, they construct a map of parameters regions in which a cooled reverse-
flow reactor has qualitatively different dynamic features. Both maps revel
surprising features. Thus, it can provide useful information needed to avoid
pitfalls in the design and/or operation of various periodic processes.

" An reverse-flow reactor is a packed-bed catalytic reactor, in which the flow direction is
periodically reversed to trap a hot zone within the reactor.
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The authors conclude that the success of their numerical procedure is due to
the use of Fréchet differentiation, to simplify the defining conditions and the
use of Broyden’s inverse method, to avoid the repetitive computation of the
inverse of the Jacobian.

2.6 Finding all Periodic Orbits of Maps Using Newton
Methods: sizes of basins (2000) [14]

The motivation of paper [14] is to find periodic orbits of dynamical systems.

Let F': IR™ — IR™ be a C?> map. Their primary focus is on finding periodic
orbits of maps on the plane. A k—period poin of F' is a point p such that
F¥(p) = p. Newton type methods can be used to find the periodic & point of
F by letting G = F* — I, where I is the identity mapping, and solving the
system G(x) = 0.

One of the maps that they study is the Hénon map, H : IR?> — IR?, defined by

_ 2
H<x>:<2.12 x 0.3y>.
Y A

They actually use variants of Newton’s methods that are more robust than the
traditional one. For an initial point x, they iterate Newton’s method many
times. If the process converges to a point p which is a periodic point of F)|
they say x is in the Newton basin of p for period k. They also investigate the
size of the Newton basin and how it depends on p and k.

2.7 The Classical Stellar Atmosphere Problem (1999)
[17]

Mathematically, the classical stellar atmosphere problem consists on the
radiation transfer equations simultaneously with the equations for hydrostatic
and radiative equilibrium, together with the statistical equilibrium, or rate
equations. [17]
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These equations are:

e The radiation transfer equations which are solved for the (angular) mean
intensities J;, © = 1,---, NF on a pre-chosen frequency grid comprising
NF points.

e The hydrostatic equilibrium equation which determines the total particle
density N.

e The radiative equilibrium equation from which the temperature 1" fol-
lows.

e The statistical equilibrium equations which are solved for the population
densities n;, ¢ = 1,---, NL of the atomic levels allowed to depart from
“local thermodynamic equilibrium” (NLTE levels).

e The particle conservation equation, determining the electron density n..

e The definition equation for a fictitious massive particle density n; which
is introduced for a convenient representation of the solution procedure.

This set of equations has to be solved at each point d of a grid comprising ND
depth points. Thus, they are looking for solutions vectors

\Ijii - (nianeaTa Np, N; Jr)a

Using the ALI method [17] they eliminate at the outset the explicit occur-
rence of the mean intensities J; from the solution scheme by expressing these
variables by the current, yet to be determined, occupation densities and tem-
perature,

\I’d = (ni, Ne, T, np, N)

The resulting set of equations for the reduced solution vectors is of course non-
linear. The solution is obtained by linearization and the iteration is performed
either with Newton’s iteration or by other methods, much faster than Newton
methods, like quasi-Newton variants.

The linearized system may be writing as

Uy =0+ 60,
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where U is the current estimate for the solution vector at depth d and 0¥, is
the correction vector to be computed.

Using a local operator the resulting system for W, is
oW, = 671 Cd,
where 3 is (NN x NN) matrix where NN is the total number of physical

variables, that is, NN = NL + 4, and ¢, is the residual error in the equations.

If 5,;1 is the kth iterate of the inverse Jacobian, then an update can be found

from . S
Bl =gt 4 (sk — Bi yr) (s8¢ )
k+1 = Pk -
* sk By "y
where
s~ o0V, solution vector of preceding linearization,

Yr ~ crye1 —c difference of actual and preceding residuum.

The authors also mention another numerical variant, the Kantorovich method.
They consider it more simple and straightforward to implement. This method
keeps the Jacobian fixed during the linearization cycle. In fact, it turns out to
be even more stable than Broyden’s method in some cases.

At this moment, we are in contact with Professor Klaus Werner. He told us
that in their stellar atmosphere code they implemented Broyden’s method but
hardly used it. Instead, they used Kantorovich’s method, as we had pointed
out previously.

We asked him some data about functions, initial points, expected solution,
and initial approximation to the Jacobian. He thinks that, it is difficult to
give simple answers to these questions, and based on our interest to check
how the ICUM works in their “real life” problem, he proposed us to make
the implementation of the Inverse Column Updating Method (ICUM) in their
stellar atmosphere code.

We consider very interesting for our objectives this joint work. So we sent him
the ICUM algorithm and are waiting for his answers.
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2.8 Power System Parallel Computation by a Trans-
puter Network (1999) [16]

Load flow and transient stability study are two of the most elementary prob-
lems in electric power system computation. Normally, before starting transient
stability studies, the load flow program must be run to provide the steady-state
operation points. [16]

The load flow problem is described by a system of nonlinear algebraic equations

F(X) =0, (10)

where X is a variable vector of bus voltages. For an n-bus system without the
slack bus, (10) can be reformulated as:

F(X) Xo, -+, X,) = 0, i=1,2,--+,n. (11)

where

and

In the above equations, V; = e; + j f; represents the complex node voltage, and
Si = pis + jqis the injected power.

Newton’s method is widely used for the solution of load flow problem because
of their convergence characteristics but it is more time-consuming because it
needs a new information and factorization of the Jacobian matrix. For this
reason, in many cases it is adequately substituted by Broyden’s method.

In this work, the authors present unified parallel algorithm with the coincident
parallel transputer system for both load flow and transient stability studies.
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2.9 Acceleration of Self Consistent Electronic Structure
Calculations: storage saving and multiple-secant im-
plementation of the Broyden method (1999) [15]

In this paper, on the basis of Broyden’s method to solve simultaneous nonlin-
ear equations,the authors present efficient computational schemes for acceler-
ation of self-consistent electronic-structure calculations. For this, they choose
a Si(011)® surface model as the test problem, because it is easy to imple-
ment the computational schemes which appear in their study into an existing
electronic-structure code.

They adopt the traditional self-consistency strategy where the self-consistent
solution is sought in terms of the one-electron potential. They assume that

they have an initial guess for the one-electron potential as the input quantity
Vin.

The self-consistent solution V. can be defined as the initial potential, V;,, which
satisfies that the functional derivative of the Kohn-Sham (KS) energy is zero
15),
0 Exs
0 Vin
where, xo is an independent-particle polarizability operator and Vy; s is defined
to by the difference between the out potential V,,; and the initial potential V;,,.

= Xo Vaigr = 0,

Since it is computationally demanding to evaluate x( and thus the derivative
of the KS energy, in practice, the self-consistent solution, V., is defined as a
initial potential V;, such that

Vairr = Vour = Vin = 0 (12)

is satisfied. Thus the self-consistent calculation is reduced to solve the nonlin-
ear system of equations® (12).

8The Si (011) model is a rectangular supercell containing five (011) and three empty
layers, and thus ten Si atoms.
9The equation (12) is implicitly defined as a set of six equations [15].
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If the Jacobian operator A, implicitly defined by
Viigr = — AVin,
is available, the Newton-type iterative procedure,
Vit = Vi (A",

will lead to a vector sequence {V;! , V2 V1 rapidly approaching V;,.

ind Vino )

However, since explicit evaluation and handling of A are as demanding as those
of xo0, when the inverse Jacobian [A™]"! is recursively approximated by B",
using Broyden’s updating formula

n—1 n— n—1 n—1
{(51/;-n + Bn-1§ diff}(svdiff
16Vt 112

Bn — anl o
with
Vi~ = 0V — oV,
and
Vizs = Vi — 6Vars,
then input potential for the next cycle predicted by
Vit = Vin + B Vg

converges toward the solution Vj, in fewer iterations than that generated by a
simple relaxation formula,

Vit = Vi + BViirs
where 3 is a mixing parameter.

In this work, they investigate the computational schemes, which are variants
of Broyden’s method, for acceleration of self-consistent electronic structure
calculations. In particular, they have focused on the storage-saving schemes
and they propose two storage-saving schemes where iteration data are partially
discarded after a prescribed storage limit is reached.
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Conclusions

At the end of the bibliographical research about the recent applications of
quasi-Newton methods for solving nonlinear systems, we chose nine ap-
plications to real problems in different areas of knowledge. The analysis
of them turned out to be a little difficult for us because, as mathemati-
cians, our knowledge in these applied areas is quite limited.

In the applications, the authors prefer Broyden’s method to Newton’s
method, essentially because of its computational cost.

We are very happy with the results obtained by our research in terms of
answering our initial questions:

i) Yes, there are many problems in applied research for which the
i) Yes, th y bl i lied h f hich th
quasi-Newton methods (Broyden’s method ) are the best option.

(ii) In sections 2.1 to 2.9 we presented applications of them in the
Physics, Chemical Engineering, Electronic Engineering, Astrophy-
sics, Electric Engineering and Mechanical Engineering areas.

(iii) Broyden’s method is chosen because of low computational cost.

Motivated by the fact that the ICUM [12][9] was considered recently
as the most efficient quasi-Newton method for solving large-scale non-
linear systems [10], we are motivated to implement it with some of the
applications chosen. Actually, we have already started its application to
another real problem.

In order to do the implementation of the ICUM to solve the nonlinear
systems that appear in the papers, we wrote to the authors of some of
the chosen papers, asking them about initial points used, the functions
(in some cases), an expected solution, etc. Until now we have received
the answers of Professors Lucia Medina [13] and Klaus Werner [17]. In
the first case, we received some data and in the second case the author
explained us about the difficulty in giving us the answers. Both of them
have considered implementation of ICUM in their “real problems” a very
interesting idea. So, the natural continuation of this work is trying to
make a joint work with them.
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