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Resumo

Os m�etodos quase-Newton têm sido amplamente utilizados na resolu�~ao de

sistemas n~ao lineares que surgem nas mais diversas �areas de aplia�~oes, omo

na F��sia, na Engenharia, na Qu��mia e na Ind�ustria. Muitas vezes m�etodos

desta fam��lia s~ao desenvolvidos e analisados para a resolu�~ao de problemas

espe���os, omo �e o aso por exemplo, de problemas de omplementaridade

n~ao linear [8℄.

Neste trabalho nos propusemos a estudar v�arias aplia�~oes reentes de m�e-

todos quase-Newton para resolver sistemas de equa�~oes n~ao lineares.

�

E parte

fundamental do trabalho, uma minuiosa pesquisa bibliogr�a�a via Biblioteas

e tamb�em via Internet, para a esolha das aplia�~oes. Fazemos uma an�alise

r��tia das aplia�~oes enontradas e disutimos a e��aia dos m�etodos quase-

Newton utilizados.
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No �nal do trabalho, elaborarmos um diagn�ostio sobre o status dos m�etodos

quase-Newton na resolu�~ao de problemas pr�atios. Basiamente nos propomos

a responder perguntas do tipo: existem problemas, na pesquisa apliada, para

os quais os m�etodos quase-Newton s~ao realmente a melhor op�~ao? Quais? Por

que?

Abstrat

The quasi-Newton methods have been very used in the solution

of nonlinear systems that appear in the most applied areas, suh as

Physis, Engineering, Chemistry and Industry.

Many times some methods of this family are developed and analyzed

for a solution of partiular problems, for example as in the ase of

nonlinear omplementarity problems [8℄.

In this work we study several reent appliations of quasi-Newton

methods for solving nonlinear systems of equations. It is a fundamental

part of this work, a areful bibliographial researh via Libraries and

also via Internet, for a seletion of the appliations. We hope we have

made an understandable abstrat of the appliations hosen and of the

quasi-Newton methods used, in eah of them.

With this work we believe that we elaborated a diagnosis of the

status of the quasi-Newton methods in the solution of real life problems,

answering thus, questions like: (i) are there problems, in the applied

researh, for whih the quasi-Newton methods are the best option? (ii)

whih are they? (iii) why?
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1 Introdution

In reent years, quasi-Newton methods for solving square smooth nonlinear

systems have been out of the mainstream of numerial analysis researh. The

SIAM Journal on Numerial Analysis published 4 papers on the subjet before

1970, 10 between 1971 and 1980, 11 in the eighties and none from 1991 to

1999. Sometimes, researh in a family of numerial tehniques beomes out-

of-fashion after its inorporation to ordinary pratie of problem solvers in

Physis, Chemistry, Engineering and Industry. So, promising algorithms are

ompletely forgotten, both in researh and in appliations.

What is the real situation of quasi-Newton methods for solving nonlinear sys-

tems?. The lassial paper of Dennis and Mor�e [3℄ is ited in most works

onerning quasi-Newton methods for nonlinear systems. It had been ited

361 times in indexed sienti� journals. The last 100 itations go from 1992

to the present days. 42 of these itations ome from non-mathematial jour-

nals. It must be warned that, frequently, the Dennis-Mor�e paper [3℄ is ited in

onnetion to quasi-Newton methods for minimization problems, and not for

nonlinear systems.

Sine the everyday pratie in Physis, Chemistry and Engineering inludes

the solution of nonlinear systems using Newton's method, one is tempted to

onlude that the penetration of the quasi-Newton tehnology in appliations,

although existing, has not been as intense as the potentiality of the tehnique

deserves. But, our bibliographial researh shows that atually the quasi-

methods are used very often for solving real problems in the areas above men-

tioned.

In the introdution of most quasi-Newton papers, it is stressed that the main

motivation to use them avoid omputation of umbersome derivatives. How-

ever, even before the boom of automati di�erentiation, pratitioners found

that, for many of their problems, omputing derivatives was not as diÆult or

ostly as stated in the quasi-Newton literature. They also veri�ed that begin-

ning a quasi-Newton proess with B

0

= I; or some other arbitrary matrix, very

often auses disastrous results and, so, the omputation of an initial Jaobian

is almost always neessary. Moreover, the programming e�ort of omputing
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the initial Jaobian is the same as the one neessary for omputing all the Jao-

bians, so the tendeny of many pratitioners has been to use Newton's method

or its stationary variation with re�nements. Quasi-Newton methods for solv-

ing large-sale nonlinear systems are largely used in appliations when both,

numerial analysts and potential users, are onsious of their real advantages

and limitations. Besides the fat that, in general, quasi-Newton methods do

not alulate derivatives, most of them update the iteration matrix in a very

simple way.

We onsider nonlinear systems of equations

F (x) = 0; (1)

where F : IR

n

! IR

n

has ontinuous �rst partial derivatives. We denote

F = (f

1

; � � � ; f

n

) and J(x) = F

0

(x) for all x 2 IR

n

: All pratial algorithms for

solving (1) are iterative.

Given an initial approximation x

0

2 IR

n

; Newton's method generate a sequene

fx

k

g of approximations of a solution to (1) by

x

k+1

= x

k

� J(x

k

)

�1

F (x

k

): (2)

The Newton iteration an be ostly, sine partial derivatives must be om-

puted and the linear system (2) must be solved at every iteration. This fat

motivated the development of quasi-Newton methods, whih are de�ned as

the generalization of (2) given by

x

k+1

= x

k

� B

�1

k

F (x

k

): (3)

In quasi-Newton methods, the matries B

k

are intended to be approximations

of J(x

k

): In many methods, the omputation of (3) does not involve omputing

derivatives at all. Moreover, in many partiular methods, B

�1

k+1

is obtained

from B

�1

k

using simple proedures thanks to whih the linear algebra ost

involved in (3) is muh less than the one involved in (2).

The name \quasi-Newton" was used after 1965 to desribe also methods of

the form (3) suh that the equation below is satis�ed

B

k+1

s

k

= y

k

= F (x

k+1

)� F (x

k

): (4)
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Following [2℄, most authors all quasi-Newton all the methods of the form (3),

whereas the lass of methods that satisfy (4) are alled \seant methods".

Aordingly, (4) is alled \seant equation".

Among the seant methods, we have Broyden's method [1℄ and the Inverse

Column Update Method (ICUM) [12℄ [9℄. In the �rst one, the updating of B

k

matrix, is made by

B

k+1

= B

k

+

(y

k

�B

k

s

k

)s

T

k

s

T

k

s

k

;

and the seond one, the matrix B

�1

k

is updated by

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)e

T

j

k

e

T

j

k

y

k

;

where, je

T

j

k

y

k

j = ky

k

k

1

:

We also intend, in a future work, to implement ICUM to solve some of the

nonlinear systems that appear in the papers that we hose in our researh. The

main motivation for doing it is the reent results [10℄ about the appliation of

this method in the solution of large-sale nonlinear systems.

2 Appliations

The initial part of our work was a bibliographial revision via Internet. For

this we used the eletroni library program assoiated to the State University

of Campinas, SP, Brazil, named ProBE, whih permit a rapid and updated

eletronial researh to the omplete text of some international journals by

the Aademi Network of S~ao Paulo. The other eletroni tool used was the

Web of Siene, that it is a database made by the Institute for Sienti�

Information (ISI), with the information about papers published sine 1945, in

more than 8.400 speialized journals, indexed by ISI, in all areas of knowledge.

We also used the non virtual UNICAMP's libraries: BIMECC (Bibliotea

do Instituto de Matem�atia, Estat��stia e Computa�~ao Cient���a) and BAE

(Bibliotea da

�

Area de Engenharia).
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We started our eletroni searh using the term Broyden. In the ProBE

library it appears in 195 artiles and in the Web of Siene we found 100

artiles, in both ases published after 1995. These douments inlude theory

development and real appliations whih deal with this quasi-Newton method.

The papers found use Broyden's method, not only for solving nonlinear systems

of equations but also for solving minimization problems.

We have two main reasons to have stopped our searh with Broyden's method.

The �rst one is that we already had a suÆient number of interesting appli-

ations and the seond was our interest in omparing the performane of Broy-

den's method with the Inverse Column Update Method (ICUM) [12℄ [9℄, on-

sidered by Luk�san and Vl�ek [10℄ as the most eÆient quasi-Newton method

for large-sale problems. In this diretion we are already in touh with some

of the authors as Luia Medina [13℄ and Klaus Werner [17℄. We are trying to

work together and test the eÆieny of the ICUM for their problems.

We hose nine appliations among the most interesting in the reent real ap-

pliations of quasi-Newton methods for solving nonlinear systems of equations

that were published between 1999 and 2001. In what follows we present these

appliations.

2.1 Multiple Target 3D Loation Airborne Ultrasoni

System (2001) [13℄

This work is onerned with extend the air-oupled ultrasoni system

1

whih

provides 2D measurement of target position, to provide 3D measurement by

using an area array.

In order to alulate 3D position of targets, a nonlinear system has to be

solved. The authors hose to use Broyden's method in onjuntion with oarse

beam forming proess [13℄.The latest is used to loate the targets and obtain

approximate values of their positions. The Broyden algorithm is then used to

get more preise measurements.

1

Developed at Nottingham University [13℄
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If a target is present in the volume, an eho is produed after the target has

being struk by the transmitted pulse, and is reeived as a delayed version of

the transmitted signal by the reeivers. The time of ight, �; at eah reeiver

is measured as the time where the maximum value of the envelope of the eho

amplitude is found. Thus, at nth reeiver, �

n

is given by

�

n

=

r

n



;

where ; the veloity of the medium, is known and r

n

is the nth round trip

distane of the transmitted pulse: it is the distane transmitter-target, z

T

;

plus distane target-nth reeiving element, R

n

; i.e.,

r

n

= z

t

+R

n

= z

t

+

q

(x

t

� x

n

)

2

+ (y

t

� y

n

)

2

+ z

2

t

; (5)

where x

t

; y

t

and z

t

are the unknown target o-ordinates, (x

n

; y

n

) are the known

reeiving elements position, loated in a plane.

Equation (5) represents a nonlinear system whih has three nonlinear unknown

variables: the target o-ordinates. Thus, for the nth reeiver, it is possible to

de�ne the funtion F

n

by

F

n

(x

t

; y

t

; z

t

) = z

t

+

q

(x

t

� x

n

)

2

+ (y

t

� y

n

)

2

+ z

2

t

� r

n

:

If the nonlinear system

F

n

(x

t

; y

t

; z

t

) = 0

is solved, it gives both the range and angular position of the target [13℄.

The minimum number of reeiving elements needed to alulate the unknown

are three whih gives N !=[3! (N�3)!℄ possible ombinations for an N elements

planar array.

About the results of omposite algorithm for solving the nonlinear system (5),

the authors notied that the 3D measurements auray are inreased when

Broyden's method is applied using the initial values given by the envelope

beam-forming algorithm. They also observed that the proessing time of the

oarse envelope beam forming is redue drastially.
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2.2 Equation-based SPYRO model and solver for the

simulation of the steam raking proess (2001) [4℄

SPYRO, Tehnips's proprietary yield predition program for the steam rak-

ing proess. It features the aurate steady-state simulation of omplex steam

pyrolysis of feedstok ranging from gases to gasoils in all known oil designs.

The ore of the SPYRO model is the kineti reation sheme

2

and the omplete

SPYRO model is a system that ontain a total of 175 ordinary di�erential

equations and 50 algebrai equations.

The exibility nowadays required of proess models initiated the development

of the so-alled Open Spyro program. In this, all model equations are written

in the open or residual form whih allows exibility and the formulation of the

basi equations in their natural form, reduing oding errors. This exibility

and the natural form are reated by dividing the SPYRO model into several

sub-models.

The ordinary di�erential equations in the Spyro model

3

have the following

general form:

dy

dz

� f(y; z) = 0;

and for solving it, the original SPYRO uses a shooting tehnique. The solution

of the ordinary di�erential equations in the Open Spyro model is approximated

with the olloation tehnique. The method used is that of Orthogonal Collo-

ation on Finite Elements.

A separated nonlinear solver approximates the solution of the Open Spyro

model. Indeed, the authors implemented a fast and globally onverging quasi-

Newton method based on the update proposed by Broyden

4

in order to solve

the Open Spyro model. The idea of the method used is ombining the damped

Newton method with a seant method. This strategy is used to redue the

2

It onsists of several types of reations:radial hain inition, radial deomposition,

radial addition, radial hain termination, radial isomerisation and purely moleular.

3

It is boundary value problem

4

The authors adapted the method proposed by Broyden itebroy, suh that it an be

used eÆiently for large sparse systems.

8



omputational e�ort whih result to use only the damped Newton method. [4℄

The results of the original SPYRO program have proven over the years, to be

aurate and reliable. The authors have ompared the simulation results of

the Open Spyro program to validate the orretness of the implemented model

and to test the solving method. For this, they implemented the Open Spyro

program with a exible system of sub-models for the simulation of the steam

raking proess. The same reliable results as those for the original SPYRO

program are obtained.

2.3 A numerial algorithm for ame propagation in pre-

mixed gases (2001) [6℄

In this paper, the author take a hyperboli system of onservation laws as a

governing system of equations for reating gases and propose and algorithm to

determinate a wave propagation speed uniquely. The wave speed and states

around a ame are omputed by solving a Riemann problem near a ame

in the phase spae. The deagration wave is a traveling wave solution of

paraboli equations and admissible as a solution of hyperboli onservation

laws. Its wave speed is omputed based on the fat that the admissible solu-

tions are onneting orbits of ritial points in the dynamial system derived

from paraboli equations.

He onsider the governing equations for reating gas in one dimension and they

redue this system to hyperboli onservation laws with a soure term. [6℄ To

be admissible as physial solutions of orresponding hyperboli onservation

laws equations, the traveling waves must have visous pro�les. For this they

manipulated the equations until they obtain the following ordinary di�erential

equations for the visous pro�le of a ombustion wave:

�u

x

= �m (u� u

0

)�m

�

T

u� s

�

T

u� s

�

;

�u

x

= �m

p

(T � T

0

) +

m

2

(u� u

0

)

2

�mq (Z � Z

0

)

+mR (u� s)

�

T

u� s

�

T

u� s

�

;
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DY

x

= (u� s) (Y � Z);

Z

x

= �k

Y �(T )

u� s

:

With �m = (u� s)�; Z = Y + �DY

x

=m and �(T ) is given by Arrhenius term

[6℄. The variables �; u; p; T; and Y are, respetively, the mass density, veloity,

pressure, temperature, and reatant mass frition of the gas. The onstants

�; � and D are the visosity, heat ondutivity, and di�usion onstants, re-

spetively.

To understand the solution of system (6), the author examine its equilibria.

Let the state variables be denoted U = (u; T; Y; Z); setting the right-hand

sides of (6) to zero, they �nd the initial state U

0

and the �nal state U

1

are

related by the jump ondition. [6℄

Beause of a deagration wave has fewer impinging harateristis on it, it

is neessary additional information to determine the evolution of the wave.

Taking an experimental ame speed law for the additional information, the

approah in this paper onsist on to onstrut the Riemann solution from the

exat information oming from the internal struture of the ame.

Solving a Riemann problem near a deagration wave means �nding the ame

speed s and the two states U

M

and U

N

for given Riemann initial data U

L

and U

R

. He onsider the dynamial system (6) and let the right side of the

dynamial system be a vetor funtion G: Then U

M

and U

N

are equilibrim

points of the dynamial system whih is

U

0

= G(U; s; U

N

);

and these equilibria are onneted by a solution orbit. Sine the dynamial

system is autonomous, its easy to obtain a new solution. To �x the solution

uniquely, he imposes the phase ondition [6℄, whih requires that

Z

1

�1

< G(U)�G(U

ref

); G(U) �G(U) > d� = 0;

for some referene solution U

ref

: The author disretize the integral using the

trapezoid rule. Now he has a omplete set of equations, whih he solves using

a damped Newton method with Broyden update of the Jaobian, to obtain

the solution of the Riemann problem, partiularity U

M

; U

N

; and s:
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2.4 Comparison of Simulation Algorithms for Aele-

rated Determination of Periodi Steady State of

Swithed Networks (2000) [7℄

It is the aim of this the paper [7℄ to implement a wide range of general numeri-

al methods to solve the aelerated steady-state problem in power eletronis,

and ompare them on a ommon basis.

A power eletroni iruit an be desribed by a general nonlinear di�erential

equation

dx(t)

dt

= g (x(t) ; t); x(t

0

) = x

0

; t > t

0

: (6)

where x is the state vetor and the nonlinear funtion g(�; �) an be dison-

tinuous on time. From an initial state x

0

; and given a suÆiently long time

interval, the iruit reahes a periodial steady state when

x(t + T ) = x(t); 8 t: (7)

where T is the period.

The problem of �nding steady state for the system desribed by (6) is to solve

(6) for a nontrivial solution x(t) subjet to the onstraint given by (7). This

problem an be redued to �nding the initial value x

0

= X

ss

and a period T

satisfying both (6) and (7). Let an error funtion f(�) be de�ned as

f(x(t)) = x(t+ T ) � x(t): (8)

The problem an then be solved by �nding the roots of f(x(t)); whih are a

set of initial values of the state variables, satisfying both (6) and (7).

The methods addressed in [7℄ are the following: Newton's method with ana-

lytially determined Jaobian; Newton's method with numerially determined

Jaobian; Broyden's method; Newton's method with a globally onvergent

strategy; Bukowski's method and Skelboe's method.

The results on several swithing onverters suggest that the analytial New-

ton's method is the most aurate and the fastest. When analytial derivatives

are not avaliable, both Broyden's and Skelboe's methods are ompetitive.
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2.5 EÆient Bifuration Analysis of Periodially-Fored

Distributed Parameter Systems (2000) [5℄

Changes in the qualitative features of the bifuration diagrams or the dynami

features or fored periodi systems our at singular points, whih satisfy er-

tain de�ning onditions. This work presents a new, eÆient numerial method

for the onstrution of the loi of these singular points. The proedure uses

Fr�ehet di�erentiation to simplify the determination of the de�ning onditions

and the Broyden inverse update method to aelerate the iterative steps in-

volved in the shooting method. [5℄

A fored periodi system satis�es the following set of equations:

F (u

0

) = u

0

� u(u

0

; �) = 0: (9)

where the �xed point u

0

is the spatially disretized state vetor at t = 0 and

u(u

0

; �) is the set of state variables after one period �:

A Monodromy matrix at the �xed point u

0

is de�ned as

M(u

0

; �) =

du(�)

du

0

;

where u(�) desribes the state vetor after one period � with initial ondition

u

0

:

The de�ning onditions for a saddle-node point

5

and period doubling point

6

are, respetively

Saddle node

F (u

0

; �) = 0

J(u

0

; �) v = 0

< v ; v > = 1

Period doubling

F (u

0

; �) = 0

M(u

0

; �) v = �v

< v ; v > = 1

5

In this node, the number of periodi solutions hanges, in general by two. The Jaobian

matrix of (9) has a zero eigenvalue.

6

The monodromy matrix has an eigenvalue � = �1: Following this point the solution

returs to the �xed point only after two periods.
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The numerial solution proedure of this problem onsists of four steps:

� Disretization of the spatial derivatives.

� Evaluation of the disretized onditions using a time integration routine.

� Implementation of a ontinuation proedure.

� Solution to the nonlinear algebrai equation system using a quasi-Newton

method.

For example, the nonlinear algebrai system of equations de�ning the hystere-

sis variety [5℄ is

G(X) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

�

F (u

0

; �)

Lv

0

L

�

y

0

< y

0

; D

2

uu

F (u

0

; v

0

) >

< v

0

; y

0

> �1

s

2

� jY � Y

old

j

2

� (�� �

old

)

2

�

P

2

i=1

(p

i

� p

i;old

)

2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= 0:

where Y = (u

0

; v

0

; y

0

)

T

; X = (Y ; � ; p

1

; p

2

)

T

: Here, Y is the vetor of all

spatially disretized variables, � is the bifuration parameter end p

1

and p

2

are the ontinuation parameters. The subsript `old' denotes the previous

ontinuation step.

The numerial proedure is illustrated �rst by the onstrution of a map of

parameters regions with qualitatively di�erent bifuration diagrams for an

reverse-ow reator

7

, the diretion of feed to whih is hanged periodially.

After, they onstrut a map of parameters regions in whih a ooled reverse-

ow reator has qualitatively di�erent dynami features. Both maps revel

surprising features. Thus, it an provide useful information needed to avoid

pitfalls in the design and/or operation of various periodi proesses.

7

An reverse-ow reator is a paked-bed atalyti reator, in whih the ow diretion is

periodially reversed to trap a hot zone within the reator.
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The authors onlude that the suess of their numerial proedure is due to

the use of Fr�ehet di�erentiation, to simplify the de�ning onditions and the

use of Broyden's inverse method, to avoid the repetitive omputation of the

inverse of the Jaobian.

2.6 Finding all Periodi Orbits of Maps Using Newton

Methods: sizes of basins (2000) [14℄

The motivation of paper [14℄ is to �nd periodi orbits of dynamial systems.

Let F : IR

n

! IR

n

be a C

2

map. Their primary fous is on �nding periodi

orbits of maps on the plane. A k�period poin of F is a point p suh that

F

k

(p) = p: Newton type methods an be used to �nd the periodi k point of

F by letting G = F

k

� I; where I is the identity mapping, and solving the

system G(x) = 0:

One of the maps that they study is the H�enon map, H : IR

2

! IR

2

; de�ned by

H

 

x

y

!

=

 

2:12� x

2

� 0:3y

x

!

:

They atually use variants of Newton's methods that are more robust than the

traditional one. For an initial point x; they iterate Newton's method many

times. If the proess onverges to a point p whih is a periodi point of F;

they say x is in the Newton basin of p for period k: They also investigate the

size of the Newton basin and how it depends on p and k:

2.7 The Classial Stellar Atmosphere Problem (1999)

[17℄

Mathematially, the lassial stellar atmosphere problem onsists on the

radiation transfer equations simultaneously with the equations for hydrostati

and radiative equilibrium, together with the statistial equilibrium, or rate

equations. [17℄
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These equations are:

� The radiation transfer equations whih are solved for the (angular) mean

intensities J

i

; i = 1; � � � ; NF on a pre-hosen frequeny grid omprising

NF points.

� The hydrostati equilibrium equation whih determines the total partile

density N:

� The radiative equilibrium equation from whih the temperature T fol-

lows.

� The statistial equilibrium equations whih are solved for the population

densities n

i

; i = 1; � � � ; NL of the atomi levels allowed to depart from

\loal thermodynami equilibrium" (NLTE levels).

� The partile onservation equation, determining the eletron density n

e

:

� The de�nition equation for a �titious massive partile density n

h

whih

is introdued for a onvenient representation of the solution proedure.

This set of equations has to be solved at eah point d of a grid omprising ND

depth points. Thus, they are looking for solutions vetors

	

0

d

= (n

i

; n

e

; T; n

h

; N; J

r

);

Using the ALI method [17℄ they eliminate at the outset the expliit our-

rene of the mean intensities J

i

from the solution sheme by expressing these

variables by the urrent, yet to be determined, oupation densities and tem-

perature,

	

d

= (n

i

; n

e

; T; n

h

; N):

The resulting set of equations for the redued solution vetors is of ourse non-

linear. The solution is obtained by linearization and the iteration is performed

either with Newton's iteration or by other methods, muh faster than Newton

methods, like quasi-Newton variants.

The linearized system may be writing as

	

d

= 	

0

d

+ Æ	

d

:
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where 	

0

is the urrent estimate for the solution vetor at depth d and Æ	

d

is

the orretion vetor to be omputed.

Using a loal operator the resulting system for Æ	

d

is

Æ	

d

= �

�1



d

;

where � is (NN � NN) matrix where NN is the total number of physial

variables, that is, NN = NL+4; and 

d

is the residual error in the equations.

If �

�1

k

is the kth iterate of the inverse Jaobian, then an update an be found

from

�

�1

k+1

= �

�1

k

+

(s

k

� �

�1

k

y

k

)(s

T

k

�

�1

k

)

s

T

k

�

�1

k

y

k

;

where

s

k

� Æ	

k

solution vetor of preeding linearization,

y

k

� 

k+1

� 

k

di�erene of atual and preeding residuum.

The authors also mention another numerial variant, the Kantorovih method.

They onsider it more simple and straightforward to implement. This method

keeps the Jaobian �xed during the linearization yle. In fat, it turns out to

be even more stable than Broyden's method in some ases.

At this moment, we are in ontat with Professor Klaus Werner. He told us

that in their stellar atmosphere ode they implemented Broyden's method but

hardly used it. Instead, they used Kantorovih's method, as we had pointed

out previously.

We asked him some data about funtions, initial points, expeted solution,

and initial approximation to the Jaobian. He thinks that, it is diÆult to

give simple answers to these questions, and based on our interest to hek

how the ICUM works in their \real life" problem, he proposed us to make

the implementation of the Inverse Column Updating Method (ICUM) in their

stellar atmosphere ode.

We onsider very interesting for our objetives this joint work. So we sent him

the ICUM algorithm and are waiting for his answers.
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2.8 Power System Parallel Computation by a Trans-

puter Network (1999) [16℄

Load ow and transient stability study are two of the most elementary prob-

lems in eletri power system omputation. Normally, before starting transient

stability studies, the load ow program must be run to provide the steady-state

operation points. [16℄

The load ow problem is desribed by a system of nonlinear algebrai equations

F (X) = 0; (10)

where X is a variable vetor of bus voltages. For an n-bus system without the

slak bus, (10) an be reformulated as:

F

i

(X

1

X

2

; � � � ; X

n

) = 0; i = 1; 2; � � � ; n: (11)

where

F

i

= (�p

i

; �q

i

)

T

; F

i

= (f

i

; e

i

)

and

�p

i

= p

is

� Re

0

�

V

i

n

X

j=1

�

Y

ij

�

V

j

1

A

�q

i

= q

is

� Im

0

�

V

i

n

X

j=1

�

Y

ij

�

V

j

1

A

In the above equations, V

i

= e

i

+ jf

i

represents the omplex node voltage, and

S

i

= p

is

+ jq

is

the injeted power.

Newton's method is widely used for the solution of load ow problem beause

of their onvergene harateristis but it is more time-onsuming beause it

needs a new information and fatorization of the Jaobian matrix. For this

reason, in many ases it is adequately substituted by Broyden's method.

In this work, the authors present uni�ed parallel algorithm with the oinident

parallel transputer system for both load ow and transient stability studies.
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2.9 Aeleration of Self Consistent Eletroni Struture

Calulations: storage saving and multiple-seant im-

plementation of the Broyden method (1999) [15℄

In this paper, on the basis of Broyden's method to solve simultaneous nonlin-

ear equations,the authors present eÆient omputational shemes for aeler-

ation of self-onsistent eletroni-struture alulations. For this, they hoose

a Si(011)

8

surfae model as the test problem, beause it is easy to imple-

ment the omputational shemes whih appear in their study into an existing

eletroni-struture ode.

They adopt the traditional self-onsisteny strategy where the self-onsistent

solution is sought in terms of the one-eletron potential. They assume that

they have an initial guess for the one-eletron potential as the input quantity

V

in

:

The self-onsistent solution V

s

an be de�ned as the initial potential, V

in

whih

satis�es that the funtional derivative of theKohn-Sham (KS) energy is zero

[15℄,

Æ E

KS

Æ V

in

= �

0

V

diff

= 0;

where, �

0

is an independent-partile polarizability operator and V

diff

is de�ned

to by the di�erene between the out potential V

out

and the initial potential V

in

:

Sine it is omputationally demanding to evaluate �

0

and thus the derivative

of the KS energy, in pratie, the self-onsistent solution, V

s

; is de�ned as a

initial potential V

in

suh that

V

diff

= V

out

� V

in

= 0 (12)

is satis�ed. Thus the self-onsistent alulation is redued to solve the nonlin-

ear system of equations

9

(12).

8

The Si (011) model is a retangular superell ontaining �ve (011) and three empty

layers, and thus ten Si atoms.

9

The equation (12) is impliitly de�ned as a set of six equations [15℄.
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If the Jaobian operator A, impliitly de�ned by

V

diff

= �AV

in

;

is available, the Newton-type iterative proedure,

V

n+1

in

= V

n

in

+ [A

n

℄

�1

V

n

diff

will lead to a vetor sequene fV

1

in

; V

2

in

; � � � ; V

n

in

g rapidly approahing V

in

:

However, sine expliit evaluation and handling of A are as demanding as those

of �

0

; when the inverse Jaobian [A

n

℄

�1

is reursively approximated by B

n

;

using Broyden's updating formula

B

n

= B

n�1

�

n

ÆV

n�1

in

+B

n�1

ÆV

n�1

diff

o

ÆV

n�1

diff

kÆV

n�1

diff

k

2

with

ÆV

n�1

in

= ÆV

n

in

� ÆV

n�1

in

;

and

ÆV

n�1

diff

= ÆV

n

diff

� ÆV

n�1

diff

;

then input potential for the next yle predited by

V

n+1

in

= V

n

in

+B

n

V

n

diff

onverges toward the solution V

s

in fewer iterations than that generated by a

simple relaxation formula,

V

n+1

in

= V

n

in

+ �V

n

diff

where � is a mixing parameter.

In this work, they investigate the omputational shemes, whih are variants

of Broyden's method, for aeleration of self-onsistent eletroni struture

alulations. In partiular, they have foused on the storage-saving shemes

and they propose two storage-saving shemes where iteration data are partially

disarded after a presribed storage limit is reahed.
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3 Conlusions

At the end of the bibliographial researh about the reent appliations of

quasi-Newton methods for solving nonlinear systems, we hose nine ap-

pliations to real problems in di�erent areas of knowledge. The analysis

of them turned out to be a little diÆult for us beause, as mathemati-

ians, our knowledge in these applied areas is quite limited.

In the appliations, the authors prefer Broyden's method to Newton's

method, essentially beause of its omputational ost.

We are very happy with the results obtained by our researh in terms of

answering our initial questions:

(i) Yes, there are many problems in applied researh for whih the

quasi-Newton methods (Broyden's method ) are the best option.

(ii) In setions 2.1 to 2.9 we presented appliations of them in the

Physis, Chemial Engineering, Eletroni Engineering, Astrophy-

sis, Eletri Engineering and Mehanial Engineering areas.

(iii) Broyden's method is hosen beause of low omputational ost.

Motivated by the fat that the ICUM [12℄ [9℄ was onsidered reently

as the most eÆient quasi-Newton method for solving large-sale non-

linear systems [10℄, we are motivated to implement it with some of the

appliations hosen. Atually, we have already started its appliation to

another real problem.

In order to do the implementation of the ICUM to solve the nonlinear

systems that appear in the papers, we wrote to the authors of some of

the hosen papers, asking them about initial points used, the funtions

(in some ases), an expeted solution, et. Until now we have reeived

the answers of Professors Luia Medina [13℄ and Klaus Werner [17℄. In

the �rst ase, we reeived some data and in the seond ase the author

explained us about the diÆulty in giving us the answers. Both of them

have onsidered implementation of ICUM in their \real problems" a very

interesting idea. So, the natural ontinuation of this work is trying to

make a joint work with them.

20



Referenes

[1℄ BROYDEN, C. G., Luss, D. [1965℄ A lass of methods for solving

nonlinear simultaneus equations. Mathematis of Computations 19,

577-593 .

[2℄ DENNIS, Jr. J. E., Shnabel R. B. [1983℄ numerial methods for

unonstrained optimization and nolinear equations. Prentie-Hall.

[3℄ DENNIS, Jr. J. E., More J. J. [1977℄ Quasi-Newton methods, mo-

tivation and theory. SIAM Review 19, 46-89.

[4℄ GOETHEM, M. W. M., Kleinendorst, F. I., and Leeuwen, C. van. [2001℄

Equation-based SPYRO model and solver for the simulation of

the steam raking proess . Computers and Chemial Engineering

25, 905-911.

[5℄ KHINAST, J. G., Luss, D. [2000℄ EÆient bifuration analysis of

periodially-fored distributed parameter systems. Computers and

Chemial Engineering 24, 139-152 .

[6℄ HWANG, H. C. [2001℄ A numerial algorithm for ame propa-

gation in premixed gases. Applied Mathematis Letters 14, 487-493.

[7℄ LI, D., Tymersky, R. [2000℄ Comparison of simulation algo-

rithms for aelerated determination of periodi steady state of

swithed networks. IEEE Transations on Industrial Eletronis 47,

(6) 1278-1285.

[8℄ LOPES, V. L. R, Mart��nez , J. M. and P�erez, R. [1999℄ On the lo-

al onvergene of quase-Newton methods for nonlinear omple-

mentarity problems, Applied Numerial Mathematis 30, 3-22.

21



[9℄ LOPES, V. L. R. ; Mart��nez, J. M. [1995℄ Convergene properties of

the inverse Column-Updating method, Optimization Methods and

Software 6, 127-144.

[10℄ LUK

�

SAN, L., Vl�ek, J. [1998℄ Computational experiene with glob-

ally onvergent desent methods for large sparse systems of non-

lineal equations, Optimization Methods and Software 8, 185-199.

[11℄ MARTINEZ, J. M. [2000℄ Pratial quasi-Newton methods for

solving nonlinear systems, Journal of Computational and Applied

Mathematis 124, 97-121.

[12℄ MARTINEZ, J. M., Zambaldi, M. C. [1992℄ An inverse olumn-

updating method for solving large-sale nonlinear systems of

Equations, Optimization Methods and Software 1, 129-140.

[13℄ MEDINA, L., Wykes, C. [2001℄ Multiple target 3D loation air-

borne ultrasoni system. Ultrasonis 39, 19-25.

[14℄ MILLER, J. R., Yorke, J. A. [2000℄ Finding all periodi orbits

of maps using Newton methods: sizes of basins. Physia D 135,

195-211.

[15℄ SAWAMURA, A., Kohyama, M., Keishi, T., and Kaji, M. [1999℄ Ael-

eration of self onsistent eletroni struture alulations: stor-

age saving and multiple-seant implementation of the Broyden

method. Materials Transations, JIM 40, (11) 1186-1192.

[16℄ WANG, F. Z., Hadjsaid, N., and Sabonnadi�ere, J. D. [1999℄ Power

system parallel omputation by a transputer network. Eletri

Power Systems Researh 52, 1-7.

[17℄ WERNER, K., Dreizler, S. [1999℄ The lassial stellar atmosphere

problem. Journal of Computational and Applied Mathematis 109, 65-

93.

22


