STRONGLY INDEFINITE FUNCTIONALS AND
MULTIPLE SOLUTIONS OF ELLIPTIC SYSTEMS

D.G. DE FiGUEIREDO* AND Y.H. DING**

ABSTRACT. We study existence and multiplicity of solutions of the elliptic system
—Au = Hy(z,u,v) inQ
—Av = —Hy(z,u,v) inQ
u(z) =v(z) =0 on 92

where Q@ C RV, N > 3, is a smooth bounded domain and H € C1(Q x R2,R). We
assume that the nonlinear term

R(Iz u, U) _

H(z,u,v) ~ |ulP + |v|? + R(z,u,v) with m =
[(u,v)| =00 |ulP + |v|2

where p € (1, 2*), 2* :=2N/(N —2), and ¢q € (1, o0). So some supercritical systems
are included. Nontrivial solutions are obtained. When H(z,u,v) is even in (u,v), we
show that the system possesses a sequence of solutions associated with a sequence of
positive energies (resp. negative energies) going toward infinity (resp. zero) if p > 2
(resp. p < 2). All results are proved using variational methods. Some new critical
point theorems for strongly indefinite functionals are proved.

1. INTRODUCTION AND MAIN RESULTS

Consider the following elliptic system

—Au = Hy(z,u,v) in
(E) —Av=—Hy(z,u,v) in

u(z) =v(r) =0 on 0N
where 0 C RN, N > 3, is a smooth bounded domain and H : 2 x R*> — Ris a C'-
function. Here H, denotes the partial derivative of H with respect to the variable
u. Writing z := (u,v), we suppose H(z,0) =0 and H,(z,0) =0. Then z =0is a
trivial solution of the system. In this paper we discuss the existence of nontrivial
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solutions. Roughly speaking, we are mainly interested in the class of Hamiltoneans

H, such that

R
H(z,u,v) ~ |u|’ + |v|? + R(x,u,v) with lim Bz, u,v) =0,
|z| =00 |'U,|p + |’U|q

where 1 < p < 2* := 2N/(N — 2) and ¢ > 1. The most interesting results ob-
tained here refer to the case when ¢ > 2*, which correspond to critical and su-
percritical problems. The case when ¢ < 2* has been studied in Costa-Magalhaes
[CM1], [CM2] and Benci-Rabinowitz [BR]. See also Bartsch-De Figueiredo [BD], De
Figueiredo-Magalhdes [DM], De Figueiredo-Felmer [DF] and Hulshof-vanderVorst
[HV], where similar systems also leading to strongly indefinite functionals have been
studied. However, only subcritical systems have been considered in those papers.

Letting 2, = 2*/(2* — 1) = 2N/(N + 2), we assume that H(z,z) satisfies the
following condition

(Hp) therearep € (1, 2*), ¢ € (1, 00) and 7 € (1, 14¢/2,) such that, for all (z, z),
| Hu(z,u,0)] < yo(L+[ufP~ +[o]™") and |Hy (2, u,v)| < yo(L1+]ulP~ +]v]*7h).

In all hypotheses on H(z, z) the ;’s denote positive constants independent of (x, z).
We note that if ¢ < 2%, then 2, < ¢/(¢—1),1. e., ¢—1 < q/2.. Hence, it is possible
that ¢ < 7 < 1+ ¢/2.. However, if ¢ > 2*, then 7 < ¢q. Furthermore, we remark
that 7 can be very large, if ¢ is sufficiently large.

In addition, we need distinct conditions on H corresponding to the cases when
p>2, p<2orp=2.

First, consider the case when p > 2. In this case, we assume the following three
conditions:

(Hy) there are p > 2, v > 1 and Ry > 0 such that
1 1
—H,(z,2)u+ —H,(z,z)v > H(z,z) whenever |z| > Ry,
] v

with the provision that v = p if ¢ > 2;
(H2) there are 2,(p — 1) < a < p and 2.(r — 1) < 8, such that

H(z,2) > (Jul* + |[v]°) =7 for all (z,2),
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and 8 = qif ¢ > 2%;
(Hs) H(z,0,v) >0 and Hy(z,u,0) = o(Ju|) as w — 0 uniformly in z.

We prove the following results.

Theorem 1.1. Let (Hy) be satisfied with p > 2. If (H,) — (H3) hold, then (E)

has at least one nontrivial solution.

Theorem 1.2. Let (Hy) be satisfied with p > 2. If H(z, ) is even in z and satisfies
(Hl) — (Hz), then (E
fQ (%(|Vun|2 - |V1}n|2

) has a sequence (z,) of solutions with energies I(z,) =
) — H(z,2,)) going to co,as n — 0o.

In order to describe the other results, let o(—A) denote the set of all eigenvalues
of (—A,H&(Q)) )\1 < AQ S Ag S

We now consider the case when p < 2. We make the following assumptions:

(H,) there are p € (1, 2), v > 2and v3 >0 (73 =0, if ¢ > 2*) such that

1 1
H(z,u,v) > —Hy(z,u,v)u + ;Hv(;v,u,v)v — s for all (z, 2);

=

(Hs) there are a € (1, 2) and & € (0, 1/2) such that H(z,u,v) > v4|u|* — §A10?
for all (z, z);
(Hg) if ¢ > 2* then H,(z,2)v > v5|v|? — v6(|v]| + u?) for all (z,2).

With these assumptions we have the following three results, for the case when p < 2

Theorem 1.3. Suppose that (Hp) holds with p < 2 and q¢ > 2. If H(z,z) also

satisfies (H,) — (Hg), then (E) has at least one nontrivial solution.

Theorem 1.4. Suppose that H(x,z) is even in z and (Hyp) holds with p < 2 and
q > 2. If H(z, z) also satisties (H4) — (Hg), then (E) has a sequence (z,,) of solutions

with negative energies I(z,) going to 0 as n — 0.

Theorem 1.5. Let (Hy), with p,q € (1, 2), and (Hs) be satisfied. Then (E) has
at least one nontrivial solution. If, in addition, H(z, z) is even in z, then (E) has a

sequence (z,) of solutions with negative energies I(z,) going to 0 as n — co.

Finally, we consider the case when p = 2, which presents some sort of resonance.

Assume
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(H7) there exist by < 0 < ag such that Ro(z,z) := H(z,2)— 5 (aou?+bov?) = o(|z|?)
as z — 0 uniformly in z;
(Hs) there exist o € (1, 2), as € [ag, 00)\o(—A), such that R (z,2) := H(x,z)—
Lasou? satisfies |0y Roo (%, 2)| < y7(14]ul” "t +]v|") and R (2, 2) > ys|v|?—
Yo (1 + [ul?).
The position of the numbers ag, aoo, bo with respect to the spectrum o(—A) plays
a very essential role in the next result. For that matter, let ¢, 7, k be nonnegative
integers such that A\; = min{\ € o(=A) : A > ap}, \; = max{\ € o(-A): A <
—bo}, A =max{\ € 0(—A): XA <ax}, and set

[ — ] ifaoo:ao
j+k—i+1 ifayx >agp.

Now we can state our last result.

Theorem 1.6. Let (Hy) be satisfied with p = 2 and 7 < 1+ ¢/2. Assume that
H(z,z) is even in z and satisfies (H7) — (Hg). Then (E) has at least one pair of

nontrivial solutions if £ = 1, and infinitely many solutions if { > 2.

The cases covered in Theorem 1.6 include some asymptotically linear systems.
This type of systems have been studied in [CM1], [CM2] and Silva [S]. However
their results are not comparable with the ones obtained here.

We organize the paper as follows. In order to establish multiplicity of solutions we
need some new abstract propositions on Critical Point Theory for Stongly Indefinite
Functionals, which will be provided in Section 2. These propositions are based on
certain Galerkin approximations, and we emphasize that the functionals do not
satisfy the usual Palais-Smale condition. In Section 3 we study systems which are
superlinear in the variable u, and prove Theorems 1.1 and 1.2. In Section 4 we
consider systems which are sublinear in the variable u, and prove Theorems 1.3, 1.4
and 1.5. In both Sections 3 and 4, the variable v can have subcritical growth as well
as supercritical growth. Finally, in Section 5, we consider a special asymptotically

linear system and prove existence of multiple solutions.
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2. CRITICAL POINTS FOR STRONGLY INDEFINITE FUNCTIONALS

Let E be a Banach space with norm || - ||. Suppose that E has a direct sum
decomposition E = E* @ E? with both E' and E? being infinite dimensional. Let
P! denote the projection from E onto E'. Assume (el) (resp. (¢2)) is a basis for

E! (resp. E?). Set
X, :=span{ef,--- et} @ E*, X™:= E' ®span{ei, - e},

and let (X™)1 denote the complement of X™ in E. For a functional I € C'(E,R)
we set [, := I|x,, the restriction of I on X,,. Recall that a sequence (z;) C E is
said to be a (PS); sequence if z; € X, nj = o0, I(z;) = c and I}, (z;) = 0 as
j — oo. If any (PS)% sequence has a convergent subsequence, then we say that I
satisfies (PS)% condition.

Denote the upper and lower level sets, respectively, by I, = {z € E : I(z) >
at, I"={z€ E: I(z) <b} and I? = I, N I* (denote similarly (I,,),, (I,)’ and
(I,)%). We alsoset K ={z€ E: I'(z) =0}, K. = Knl, K°=KnNI® and
Kb =K, NKP.

Proposition 2.1. Let E be as above and let I € C*(E,R) be even with I1(0) = 0.

In addition, suppose that, for each m € N, the conditions below hold

(I1) there is Ry, > 0 such that I(z) <0 for all z € X™ with ||z|| > Rn;

(Iy) there are r,, > 0 and a,, — oo such that I(z) > a,, for all z € (X™ 1)+ with
121l = 7m;

(I3) I is bounded from above on bounded sets of X™;

(I4) ifc > 0, any (PS)? sequence (z,) has a subsequence along which z, — z € K..

Then the functional I has a sequence (cy,) of critical values, with the property that

Cp — 00.

Remark 2.1. This proposition is more or less known if the condition (I4) is replaced
by the (PS)* condition (cf. [B], [D]), or by the usual Palais-Smale condition :
Any sequence (z;) C E such that |I(z;)| < ¢ and I'(2;) — 0 has a convergent
subsequence (cf. [BR]).
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Proof of Proposition 2.1. We only sketch the proof. Fix m € N, and set X" =
X, NX", D" =Bg, NX]*, foralln € N. Let

Iy ={yel(D;,Xy,): visodd and y|spm = id},

and define
el = ig?maXI(W(DZI))-

Using (I1) — ({3) and the Borsuk-Ulam theorem we obtain
am <t < B :=max I(D).

A standard deformation argument, via a negative pseudo-gradient flow, shows that

there is a sequence ("), with 27 € X,, satisfying

n n

1
(1) =l < = ()l <

Going to a subsequence if necessary we can assume that ¢ = ¢, I(2]') = cm

and I) (z7) — 0 as n — co. Remark that ap, < ¢ < B By (Is), 2" — zp, as
n — oo with I'(z,,) = 0 and I(zy,) > ¢, Finally, since a,,, — 00, we conclude that

I(zpy) > am — 0. O

Proposition 2.2. Let E be as above and let I € C*(E,R) be even. Assume that

I(0) = 0 and that, for each m € N, the two conditions below hold

(Is) there are r,, > 0 and a, > 0 such that I(z) > a,, for all z € X™ with
[EE.

(I) there is by, > 0 with b,, — 0 such that I(z) < b,, for all z € (X™1)*.

Moreover, suppose that either I satisfies the (PS)* condition for all ¢ > 0, or that

the condition below holds

(I7) inf I(K) = 0, and, for all ¢ > 0,any (PS)% sequence (z,) has a subsequence
along which z, = z € K¢ with z =0 only if ¢ = 0.

Then I has a sequence (cy) of positive critical values satisfying c, — 0.

Proof. Let ¥ be the family of symmetric, closed subsets of E\{0}, and let v : ¥ —

NU {0,000} denote the Krasnoselski genus map. Set

eyt = sup inf I(z) where Y :={Ae¥: ACX, and y(4) >n+m}.
Aexm z€A
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Fix m € N. The Borsuk-Ulam theorem implies that A N (X™ 1)L #£ @, for each
A e T, It follows from (Ig) that

inf I(2) < sup  I(z) < by

Z€A ze(Xm-1)L
On the other hand, since v(0B,, N X)) = n+m, one has S* := 0B, NX" € ¥,
and so, by (I5), we obtain

i > Q.
A 1B 2

Therefore,

(2.1) A <€) < by

A standard deformation argument, using a positive pseudo-gradient flow, yields the

existence of a sequence (z)52,, with 2/ € X, satisfying

1
[1(z") — el < — and [|1,(z;)]| <
n

S+

We can assume that (z,') = ¢y, as n — 00. So, (2') is a (PS)} sequence with

(2.2) am < cm < b

Now, if we assume that I satisfies the (PS)* condition for ¢ > 0, then the conclusion
follows. Next, suppose instead that (I7) holds. Then, along a subsequence, z* —

Zm as n — 0o with I'(2y,) =0 and 0 < I(2y,) < ¢y, Finally, by (2.2)
I(zm) < by — 0

and the proof is complete. |

Proposition 2.3. Let E be as above and let I € C*(E,R) be even with 1(0) = 0.
Suppose, in addition, that the three conditions below hold

(Is) there are ¢ € N and r, a > 0 such that I(z) > a for all z € X* with ||z|| = ;
(Iy) there is b > 0 such that sup I(E?) < b;

(Iio) any (PS)%, ¢ >0, sequence (zy) has a subsequence along which z, — z € K,

c?

and P'z, - P'z.
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Then I has at least one pair of nontrivial critical points if £ = 1 and infinitely many

critical points if £ > 1, with positive critical values.

Proof. Let X, 7, ¥ and ¢ be the notations as in the proof of Proposition 2.2.
As before, by (Ig) — (Iy), we obtain

a<cl<b foralneNandm=1,--- ¢,

and we find sequences 2, € X, such that, going to subsequences if necessary,

I(zI") = ¢y, and I, (277) — 0 as n — oo with

Using (I19) we can assume furthermore that z* — z,, € K., form =1,--- £, as
n — oo. If £ =1 the proof is complete.

Consider ¢ > 1. Let FF = {z € K : I(z) > 0}. We are going to prove that F
is an infinite set. Arguing by contradiction, we suppose that F' is finite. Choose

0 < p < a<b< v satisfying
pu < inf I(F) <sup I(F) < v.

Let k¥ € N be so large that 0 ¢ A := QFF where Q¥ : E — X* denotes the
projection. Then A is also finite and y(A) = 1. By the continuity of v, for all
§ > 0 small, y(NF(A)) = y(A4) where NF(A) = {z € X* . dist(z,4) < 6}. Set
Cs = NF(A)®(X*)*. Since NF(A) C Cs5 and QF : C5 — NE(A), it follows from the
properties of y that v(Cs) = y(NF(A4)). We remark that Q¥ = P! + (Q* — P1) and
that the range of Q¥ — P! is k-dimensional. So in virtue of (I;4), we conclude that,
for all ¢ > 0, any (PS)} sequence (z,) has a subsequence, along which z, = z € K,

and Q*z, — Q*z. Hence there are ng € N and o > 0 such that for all n > ng
I, (w)|]| > o forallw e (L) \ C§

where Cj = CsNX,,. By a standard deformation argument, we can then construct

a sequence of odd homeomorphisms 7, : X,, = X, such that

Min ((In)u \ C(?) C (In)y
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(cf. [R]). For ng sufficiently large, we can suppose that
u<cf;§cf;*1 S-'-SC%<V for all n > ny.
Let G € Xf, be such that inf I(G) > (u + cf,)/2. One then has
1 (G\C§) C (In)y

and
Y (G\CF)) = 7(G\CF') =2 7(G) —v(C5)
>n+Ll—vy(C§)>n+€—1.
Thus 7,(G\C}) € ¥4 and v < inf I(n,(G\C})) < c&~t. One finally comes to

v < ¢!7! < v, which is a contradiction. O

Form now on we turn to the system (E). We denote by |-|; the usual L!(2) norm
for all t € [1, oo]. For ¢ > 1let V, = H}(Q) if ¢ < 2* and V, = H}(Q) N LY(Q), the
Banach space equipped with the norm ||v|ly, = (|[Vv|} + |v|3)1/2, if ¢ > 2*. Let E,
be the product space Hg () x V, with elements denoted by z = (u,v). We denote

the norm in E, by ||z||, = (|Vu|3+ ||v||%,q)1/2. E, has the direct sum decomposition
E,=E; @ E", z=2z"+2z" where E; = {0} xV,, ET = Hj(Q) x {0}.

For convenience, we will write 27 = u and 2~ = v. Recall that by (A,)nen we
denote the sequence of eigenvalues of (—A, H}(Q)). Let e, |enl2 = 1, be the
eigenfunction corresponding to A, for each n € N. Clearly, e} := (e,,0), n € N, is
a basis for £, and e;; = (0,e,,),n € N, is a basis for £

Suppose that the assumption (Hp) holds. Then
(2.3) H(z,2) < c(1+[ul* +v]?) for all (z,2).

So the functional

(2.4) I(z) = %/Q(WUF— Vo) —/QH(I,Z)

is well defined in E,. Moreover I € C*(E,,R) and the critical points of I are the

solutions of (E).
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Lemma 2.1. If (Hy) holds, then I' is weak sequentially continuous, that is,
I'(z,) = I'(z) provided z,, — z.

Proof. If ¢ < 2* this statement is well known. Assume now that ¢ > 2*. Let z,, — 2

in E,. Clearly, for all w = (p,v) € E,;, we have

/ (Vu, Vo — Vo, V) — / (VuVp — VoVi).
Q Q

So it remains to show that

(2.5) /Hu(a:,zn)go — /Hu(a:,z)go for all p € H ()
Q Q
and
(2.6) /Hv(m,zn)zp — /Hv(m,z)w for all ¥ € V.
Q Q

By the Sobolev embedding theorem and using interpolation, we obtain that
up, — uwin L' for t € [1, 2*) and v, — v in L for ¢ € [1, ¢). Noting that
|Hy(z,u,0)] < (1 + |ulP~t + |v]7 1) with 2.(1 — 1) < ¢, (2.5) follows easily since
U, = win LP, v, — v in L*~Y and p € H}(Q) C L?". Next we see that (2.6)
is clearly true when ¢ € L*. In general, for a ¢y € V, we proceed as follows. Let

Y € L% with ¢, — 1 in L as m — 0. So

JRCACSAE o= [ (oo 20) = B )G+ 0= D))
and using (Hp) we see that this expression is less than
| 20 = Hola, 2Bl ealo= o+l =5+ ol 1= 1)

Since (zp,) is bounded in E; and L™ is dense in L?, we obtain the estimates below,

which proves (2.6)

| / (&, 20) — Ho(@, 2))m] + & (1t — Yl + [ — 1la)-

Thus I'(z,)w — I'(2)w for all w € E,. O
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3. THE CASE p > 2

Throughout this section let (Hp) be satisfied with p > 2 and assume that (H;) —
(H2) hold. Remark that, by (Hz), there exists R > 0 such that H(z,z) > 0,

whenever |z| > R. This, jointly with (H;), implies

(3.1) H(z,z) > ci(Jul* + |v]") —c2  for all (z, 2)
(see, [F]). This, together with (2.3) and (Hz), shows

(3.2) v<q and (3 <gq.

Moreover, in virtue of (3.1) and (H), we may assume, without loss of generality,

that (since p > 2)
(3.3) o> 2.

Now we set E' = E,

E, = E1 @ E,. Consider the functional defined by (2.4), which has the properties

E? = ET and e, = e, €2 = ¢} foralln € N. So

no n

stated in Section 2.
Lemma 3.1. Any (PS)’ sequence is bounded.

Proof. Let z, € X, be such that
I(z,) = ¢ and I (z,) = 0.

Case 1: q < 2. In this case E, = (H}(2))?. By (H), for w, := (%un, Lv,), we

have
I(z) — I (zn)wy,
1 1 1 1
= (5 - _)|Vun|§ + (= - §)|an|§
(3.4) 1
+ —H,(z,zp)un + —Hy(x,2p)v,, — H(z,2,) | — 1
Q \H
1 1 1 1
> (5 - ;)IVunlg + (; - §)|an|§ —Ca.
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If ¢ < 2 then (3.2) shows that v < 2, and so [|z,]|2 < ¢3(1 + ||2n]|;) Wwhich implies
that (z,,) is bounded in E,. Assume ¢ = 2. Invoking (3.2), v < 2, and so |Vu,|3 <

c(1 4+ ||znllq) by (3.4). Since H(z,z) > 0 for all || large, and
1o 1
§|V1}n|2 + o H(x,zn) = —1(zn) + §|v“n|2 < (1 + [[zallg),

one sees that ||z,]|2 < ¢(1+ ||znll)- Hence, (z,) is bounded.

Case 2: ¢ > 2. Note that in this case v =y > 2 in (H;). So
1, 1

I(zn) - §In(zn)zn = (in(I:Zn)Zn - H(I,Zn))
Q

(3.5)

> (G- [ Hm) -
2 Q

which, together with (Hs), yields

(3.6) Junl + [onl < e(1+ |12ally)-

Using (Ho),
(3.7)
(Va2 = T (2) (i, 0) + / Ho (2, 20)tum < c1lzally + 2 / ([tnl? + o] utn]).
Q Q

Next we estimate the integrals in the right side of (3.7). Since 2.(p — 1) < a < p,
we have that 6 := a/(1 + o — p) < 2*. Using the Holder inequality, the Sobolev

embedding theorem and (3.6), we obtain
[ lunl? < a2l < 1+ el 0
Similarly, since 7 — 1 < 3/2,, we have 1 < w:= /(1 + 8 —7) < 2* and hence
/Q|vn|T71|un| < |vn|gil|un|w <a +02||Zn||;+(T71)/6-
Therefore, using the estimate in (3.7) we obtain
(3.8) Vanl3 < e+ lzally 7707 4 Izl 077).

Since

|an|§ = _I;L(zn)(oavn)_/{;HZ(Iazn)zn"'/QHu(xazn)un:
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and using (3.5) and the above arguments we obtain
(3.9) Voaly < e(1+ llzally P70/ 4 flzally D77

Recall that, in view of our assumptions, (p — 1)/a < 1/2,, (1 —1)/8 < 1/2,, and
B8 = q,if ¢ > 2*. Hence, it follows from (3.6) and (3.8)-(3.9) that (z,) is bounded
in E,. O

Lemma 3.2. Let z, € X,, be a (PS)! sequence. If ¢ < 2* then (z,) contains
a convergent subsequence. If ¢ > 2* then there is a z € E, such that, along a

subsequence, z, — z and I'(z) =0 and I(z) > c.

Proof. By Lemma 3.1 (2,,) is bounded. We can assume that z, — z in E,, z, = z
in (L*())% for all 1 < s < 2* and z,(z) = z(z) a.e. on Q. It follows from
the weakly sequentially continuity of I’ (see Lemma 2.1) that I'(z) = 0. Since

I,(z,) — 0 we obtain
(Vtn, Vuy, — Vu)pz = I (z5) (un — u,0) + / Hy(x, z0) (uy — u)
Q
=o(1) + / Hy,(z, zp)(up — u).
Q
Using (Hp) and Holder inequality, we obtain the estimate

< c(lun —uf + |Un|£71|un —ulp+ |Un|2?_1|un —uly) = o(1),

A}uuxmwn—w

where w is as in the proof of Lemma 3.1. Hence |Vu,|3 — |Vu|3 which implies
un, — uin H}(Q). Let P, : E, — X,, denote the projection. Remark that P,z — z

in E, for all z € E;. Moreover, using again (Hy) and Holder inequality we estimate

< c(|o=Proly+|un 5™ v = Pav|p+ v o — Pavlg) — 0.

/Q Hoy(, 20) (v — Pav)

On the other hand,

(Von, Vo — Von) gz = o(1) + I'. (20) (0, vn — Pav) + /Q Hoy(w, 20) (0n — Pyo)
= o)+ [ Hule2)(0n ~0)
—o(1) + /Q He (2, 20) (2 — 2) — /QHU(;U, o
—o(1) + /Q He (2, 20) 20 — /Q H. (2, 20).
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Lebesgue theorem and the weakly sequentially continuity of H.(z,-) (see the proof

of Lemma, 2.1) yield

|Vv|3 — lim sup | Vv, |3 = lim inf (/ H.(z,zn)2n —/ Hz(m,zn)z) >0,
n— 0o n—00 Q Q

ie., |Vul3 > limsup,,_, . |Vun|3. This together with the weakly lower semicontinu-
ity of norms, |Vuy|as — |[Vulz2. So v, — v in H ().
Therefore, if ¢ < 2*, we obtain that, along a subsequence, z, — z in E; and

consequently I(z) = ¢. Next assume that g > 2*. Observe that

)= 1) = 5Vl = [Vunf) = 50508 = (V0. B) + | w2 = [ He2),

DN | =

hence

Lebesgue theorem then yields

I(z)—czliminf/QH(x,zn)—/QH(I,Z) >0,

n—o0
that is, I(z) > c. O
Lemma 3.3. If (H3) also holds, there are r,p > 0 such that inf I(0B,E*) > p.

Proof. By (Hy) and (Hs3), for any € > 0, there is ¢. > 0 such that
H(z,u,0) <elu* + c|u*.

Hence

I(w) > 5|Vul3 = elul3 = celul3-,

N | =

and the conclusion follows easily. d

Let e € ET with |Ve|3 = 1, and set

Q ={(se,v) : 0<s <ry,lolly <2}
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Lemma 3.4. If (Hs) also holds, there are ri,ro > 0, with r; > 7, such that
I(z) <0 for all z € 0Q).

Proof. By (H3), I(z) <0 for all z € E. By (H>),

2

S 1
(se,0) < 5 = 590 — 1 [ (el + o) + o
Q

The conclusion follows since o > 2. O
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Lemmas 3.3 and 3.4 say that I has the linking geometry.
Let @, := @ N X,, and define

Cp = ,Ylenl’fn max I(V(Qn)):

where Iy, := {y € C(Qn,Xn) : 7]og, = id}. Then p < ¢, < k :=sup I(Q). A
standard deformation argument shows that there is z,, € X,, such that |I(z,)—c,| <
1/n and |I](z,)|| < 1/n. So we obtain a (PS)} sequence (z,) with ¢ € [p, &].

Lemma 3.2 implies z, — z with I'(z) = 0 and I(z) > ¢. The proof is complete. O
We now consider the multiplicity of solutions using Proposition 2.1.
Lemma 3.5. I satisfies (I1).
Proof. Using (Hs) we obtain
1 s 1 .
1) < 51Vulg = 51Vo =1 [ (ul” +10l") + ez

Since all norms in span{es, - ,e,,} are equivalent, we obtain

. 1 1
I(z) < — <03|Vu|32 - 5) |Vul3 — <§|Vv|§ -I-cl|v|g> + co,

for all z = (u,v) € X™ ~span{eq,- - ,em} x V.

So (1) follows easily. O
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Lemma 3.6. [ satisfies (I2).

Proof. Since (X™)+ C H(Q) and H{ () embeds compactly in LP(€), we have

that 7, > 0 and 7, — 0 as m — oo, where

|ulp
(3.12) T 1= sup ,
we(xmyt\foy 1Vul2

see Lemma 3.8 in [W]. For z = (u,0) € (X™)~, it follows from (Hy) that

1 . 1 .
1) = 51Vult = [ Hiz,u.0) 2 3190 - alulf -,
1 2 P p
§|VU|2 —anp|Vuly — .

2

- —cz we come to the conclusion.[

Setting 7, = (pﬁ’}%)l/(z_p) and am, = (% - %)T

Proof of Theorem 1.2. Since H(zx,z) is even in z, I is even. Lemma 3.2 shows that
I satisfies the assumption (I;) of Proposition 2.1. Lemmas 3.5 — 3.6 show that
(Iy) = (I2) hold. Clearly (I3) is also true. Therefore by Proposition 2.1, there is a

sequence (z,) C Eq satisfying I'(z,) = 0 and I(z,) — oo. The proof is complete.0]

4. THE CASE p < 2

Throughout this section we assume that (Hp) is satisfied with p € (1, 2). We
also suppose that (H4) — (Hg) hold.

Let E, = E' @ E? be as in Section 3. Consider the functional
1 , 1 9
J(z)=—-1(2) = | H(z,2z)+ = |Vv|3 — =|Vul3.

Q 2 2

Lemma 4.1. Any (PS)! sequence (zy)has a subsequence converging weakly to a

critical point z of J with J(z) < ¢ and z =0 only if z, = 0 in E,.

Proof. Part I: The sequence (z,) is bounded in E,

By (H,) it follows

, 11 11
- Sy, =) >
J(zn) Jn(zn)(uum ~vn) 2 (5

v

1 1
Vol + (- FIVuals —c.
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Hence |Vu,|3 < c(1+ ||znllq). v > 2, we also get |[Vv,|3 < c(1+]za]ly)- v =2,

we use (Hjs) and the fact that |Vou|3 > A1|v]3 in order to obtain

1 1 1
<— — 6) |an|§ < —|an|§ +/ H(z,z,) = J(z,) + —|Vun|§.
2 2 o 2

Hence, |V, |3 < ¢(1 + ||znll4), and we get
|Vun|§ + |an|§ < (L4 lznllg)-

Thus, if ¢ < 2* , then (2y,) is bounded in E,. Assume next that ¢ > 2*. It follows
from (Hg) that

(4.1) T (20)(0,0n) > crlvnlf + [Vonl3 = c2(Jonlt + [ual3)-

Thus [Vua|3 + [Vun|3 + [va]? < ¢(1 + [|24ll4), which implies that (z,) is bounded
in E,;, also in the case when g > 2*.

Part II. We can now suppose that z, = z in E,, 2, — 2 in (L*(Q2))? for all
1 <s< 2" and z,(x) = z(z) a.e. in x € Q. It follows that z is a critical point of

J. As in the proof of Lemma 3.2, using (Hp) and
J) (zn)(up — u,0) = /QHu(x,zn)(un —u) — (Vup, V(uy, —u))pe
we obtain that
|(Vn, V(up—u)) 2] < o(1)+e(lun—uli+unlh ™" [un—ulp+|vn| 5™ un—ulw) = o(1)

and so u,, — u in H} (). Let P, : E, — X, be the projection as in the proof of
Lemma 3.2. So we obtain

(Von, V(0 = vn)) 12 = o(1) + (Vup, V(Prv = vn)) 12

=o(l) + /Q Hy(z, 2,) (v, — Pov) — J) (20)(0, v, — Pyo)
=o(l) + /Q H,(z, z,) (v, —v) + /Q H,(z,z,)(v — P,v).
Using (Hp) we have

< el + [unl3e + [va]T)[jo = Pyolly = 0.

/QHU(m,zn)(v — P,v)
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Consequently,
(4.2) (Vu,, V(v —vy,))r2 = /QHv(m,zn)(vn —v) +o(1)

Thus if ¢ < 2%, it follows from (4.2) that |Vup|2 — |Vv|2, which implies v, — v,
and so z, — z. This proves that J satisfies the (PS)* condition in this case, and
that J(z) =

Consider next g > 2*. The weak sequential continuity of H,(z, -) (see the proof of
Lemma 2.1) yields [, Hy (2, zn)v = [, Ho(2, 2)v. By (Hg), fn(®) := Hy(x, 2n)vn +
Y6 (|vn| + |un|?) > 0. Using the fact that |v,|1 — |v]1 and |uyla — |ul2, and
applying Fatou’s lemma to the sequence (f,), we get liminf, fQ (x, 2p)0n >
Jo Hy(z, z)v. Using this estimate in (4.2) we obtain that V|3 > limsup,, ., |Vua|3]}
which implies that v, — v in Hg(2). In order to conclude that J(z) < ¢, we use

the estimate
J(za) = J(2) = /Q (H(x, 20) — H(x, 2)) + o(1),

(Hy) and Fatou’s lemma. Finally, if z = 0 then 2, — 0 in (H}(Q2))?. Using (4.1),
[onl§ < (1) + c(|vnly + [unl3) — 0

and so z, — 0. [l

Remark 4.1. In a similar way, using even simpler arguments, one checks that, if

(Hp) holds with p,q € (1, 2), J satisfies the (PS)% condition for all c.

Remark 4.2. Let jm = J|xm denote the restriction of J on X™. Like in Lemma
4.1, it is not difficult to check that, if the sequence (z,) C E,, with z, € X™,
satisfies J(zp) — ¢ and J' () — 0 as m — oo, then it possesses a subsequence
converging weakly to a critical point z of J with J(2) < ¢, and z =0 only if z,, = 0
in E,. We also have as in Remark 4.1 that, if (Hp) holds with p,q € (1, 2), then

any such sequence has a convergent subsequence.

Lemma 4.2. There is R > 0 such that J(z) <0 for all z = (u,0) with ||z|| > R.
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Proof. By (Hyp), we have H(z,u,0) < ¢(1 + |u|?). Hence
1 1
J((w,0)) = | H(z,u,0) = 5|Vul; <er +efuly = 5| Vul;
Q
1 2—p P
<c — §|Vu|2 —c3 | |Vul5,
and the lemma follows, since p < 2. |

Lemma 4.3. For € > 0 small there is p > 0 such that J((ee1,v)) > p for all
v € V,, where e, is the eigenfunction corresponding to the first eigenvalue \; of

(—A, Hp(2)).

Proof. By (Hs), for € > 0 small H(z,ce;,v) > v4e%ef — 6\ v, hence
1 2 1 2 [e% 1 2—a) .«
J((ee1,v)) = A H(z,ecep,v) + §|Vv|2 - 5)\15 > (yalerls — 5/\15 )e<.

The conclusion follows. O
We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Recall that X™ ~ span{ei, - ,en} X V;, and consider the
restrictions J,, as defined in Remark 4.2. Set Dr = BRNE? = BrN(HL(Q) x {0})

and D,, = Dr N X™, where R > 0 comes from Lemma 4.2. Define

m = inf Dy,)),
Om = _inf max J(v(Dm))

where 'y, :={y € C(Dy,, X™) : v(2) = z for all z € OD,,}. It is well-known that
V(D )NW # 0 for all y € 'y, where W = {(ee1,0)} xV, with € > 0 small. Invoking
Lemma 4.3 we fix an € > 0 so small that there is p > 0 satisfying inf J(W) > p.
Then we have

p < c¢pm <b:=max J(Dg).

The well known Saddle Point Theorem (cf. [R] or [Ch], [W]) implies that there is
Zm € X™ satisfying |J(2,m) — ¢m| < 1/m and ||J/,(2m)]] < 1/m. Now by virtue of
Remark 4.2, along a subsequence, z,, — z with J'(z) = 0 and z # 0, ending the

proof. O

We now turn to the proof of Theorems 1.4 and 1.5.
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Lemma 4.4. If, in addition, y3 = 0 in (Hy), then J satisfies (I5).

Proof. Tt follows from (Hs) that
a 1 2 1 2
J(z) 2 erlulg + {5 =9 ) [Volz = 5|Vul;

(4.3) ) .
> <02 - §|Vu|2_°‘> [Vul§ + <§ - 5) |Vol3,

Since a < 2, the result follows in the case when ¢ < 2*. Next consider g > 2*.
Suppose (I5) does not hold. Then for any r > 0 there is a sequence z; € X™
such that ||zj]| = r and J(z;) — 0. It follows from (4.3) with z = z;, and for r
small, that [Vujl, — 0 and [Vvjls — 0. All this implies that [, H(z,2;) — 0. From
assumption (Hy) and the fact that (u;) lies in a finite dimensional subspace it follows
that [, Hu(x,2z;)u; — 0. Consequently, by (Hy) with v3 = 0, [, Hu(, zj)v; — 0.
This, jointly with (Hs), yields

o1t < / Hy (i, 205 + ex(Ju 1 + [uj[2) = 0.
Q

Hence, z; — 0 in E,, which is a contradiction. |
Lemma 4.5. J verifies (Is).
Proof. By (Hp), H(z,u,0) < c¢(Ju| + |u|P), and so, for u € (X™~1)L one has
T(@,0)) < exfuly +Jult) - 3 Va3

< (erluly — 31Vul) + (alulf — 71Vl

< (cvm = 41 Vula) [Vl + (canf, — §IVul3™)|Vul}
where 7, was defined by (3.12). Let by, := (c17m)? +(1—p/2)can?, (2pein®, )P/ =P,
Then 0 < by, — 0 and J((u,0)) < by, for all (u,0) € (X™ 1)L, ad

Proof of Theorem 1.4. Since H(x,z) is even in z, J is even. If ¢ < 2* then J
satisfies the (PS)% condition for all ¢ (see the proof of Lemma 4.1). If ¢ > 2*, then

using assumption (Hy) applied to a critical point z, we obtain

Ie) = I:) = ) ) 2 (5 = PIVo + (5 = PIVul 2 0.
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This, jointly with Lemma 4.1, shows that (I7) is satisfied. It follows from Lemmas
4.4 and 4.5 that J satisfies (I5) and (). Therefore, the desired conclusion follows.[

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. The proof of the existence of one nontrivial solution is similar
to that of Theorem 1.3 using Remark 4.2 and Lemmas 4.2 and 4.3. The other
conclusion can be obtained along the lines of the proof of Theorem 1.4, using

Remark 4.1 and Lemmas 4.4-4.5. O

5. THE CASE p = 2

In this section we always assume that (Hp) holds with p = 2 and 7 < 1 + ¢/2.
We also suppose that (H7) — (Hg) are satisfied. We will apply Proposition 2.3 in

order to prove Theorem 1.6. Thus, set

E? = span{ef, - -- ,ez} ® B, ~spanfey, - ,ex} XV, E'=E,o F?,

and
¢ 1 - -
X' = E' @ span{e], - ,e;:,el € }.
One may arrange the bases as e}, = ek++n for n € N, and e? = ezﬂ-_l for1 <n<

{—7, e%:en4+jfor€—j<n§€, efl:e;7£f0r€<n§€+i—1ande%=e;ﬁk

for n > ¢+ i — 1. Consider the functional I given by (2.4).

Lemma 5.1. [ satisfies (Ig), that is, there exist r,a > 0 such that I(z) > a for all

z € X* with ||z]|, = .

Proof. Let z = (u,v) € X*. Since v € span{e;,- - ,e;} we have v € L*. By (Hp)
and (Hy), for any & > 0, there exists c. > 0 such that Ro(z,z) < e|z|*> + c-(Ju|*” +
|v|?). Thus

1 . . 1 . .
1) = 5(Vulf = aoluf) = 590 =l - | Rofa.2)

1 a —bo

. 1 . .
> 5(1 - =) |Vul; + E(A—j = 1)|Vol3 —€lz]3 — co(|u

0 e
y 2+ [o]d).

Now the conclusion follows easily. d
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Lemma 5.2. [ satisfies (Iy), that is, sup I(E?) < cc.

Proof. For z € E? we have, using (Hg), that

1 1
1) = 5(Vul — anful}) = 51Vo = [ Ruolo2)

1 as . 1 . -
< —3 (3= — 1)Vl = 19083 +ulg = alolg + 2019
< (R )T — e ) [Vulg — (2T +slolt ) + e
= 2 Ak 1 2 D) 2 T V8|Vl 2
which implies that I(z) < 0 for all z € E? with ||z||, large. ad

Lemma 5.3. Let ¢ > 0. Then any (PS). sequence is bounded.

Proof. We decompose H{ (2) as
Hy(Q)=U"oU", u=u" +u"

where U~ = span{ey,--- ,e;} and U™ is the orthogonal complement of U~ in
Hy(92).

Let (z5,) be a (PS)% sequence. Using the expression of I,
n)uf = [Vl = sl = [ 0okl zn)uf
Q

(Hg) and Holder inequality we obtain

a < _ _
(1= 52 ) IVt <l o7 (o ksl + oy ]

where r = ¢/(1 + ¢ — 7). By assumptions, 1 < r < 2. It then follows from the

Sobolev embedding theorems that

a — -
<1— o ) Va3 < eo (14 Jualg™ + |oal;h) [Veid o
k+1

Similarly, we deduce that

oo .y o . _
(5= 1) Dl < e (1 s+ ouly ) [Vl

The two previous inequalities imply the estimate

(5.1) |Vun|3 < c3 (1 + |un|;2,(‘771) + |vn|§(771)) .
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Using the expression of H given in (Hg), and recalling that I(z,) > 0 for large n,

we obtain

1 1 0o 1
(5.2) §|an|3 "'/ Roo(z,2,) = §|Vun|§ - %Wn@ —1I(zn) < §|Vun|§
Q
Next using (5.2), assumption Hg and (5.1) we obtain
(5.3) Vual3 + calval? < c5 (1 + unl% + [un]20D + |vn|g<f—1>) .

The combination of (5.1) and (5.3) implies
[Vznf3 + oald < e (14 [unlg + o270 .

Since 0 < 2 and 2(7 — 1) < ¢, we see that (z,) is bounded.

Lemma 5.4. [ satisfies (I1p).

Proof. Let (z,) be a (PS) sequence with ¢ > 0. Using Lemma 5.3, an argument

similar to that of Lemma 3.2 shows that along a subsequence z, = z € K., u, = u

in HJ(Q). Since E' C Hj(Q) we have Pz, — Plz.

O

Proof of Theorem 1.6. Since H(z,z) is even in z, I is even. By assumption, I(0) =

0. Lemmas 5.1, 5.2 and 5.4 show that I satisfies (Ig) — (I10)- Now Proposition 2.3

applies and the proof is complete.
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