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�
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��

Abstra
t. We study existen
e and multipli
ity of solutions of the ellipti
 system

8

>

<

>

:

��u = H

u

(x; u; v) in 


��v = �H

v

(x; u; v) in 


u(x) = v(x) = 0 on �


where 
 � R

N

; N � 3, is a smooth bounded domain and H 2 C

1

(

�


 � R

2

;R). We

assume that the nonlinear term

H(x; u; v) � juj

p

+ jvj

q

+R(x; u; v) with lim

j(u;v)j!1

R(x; u; v)

juj

p

+ jvj

q

= 0;

where p 2 (1; 2

�

), 2

�

:= 2N=(N � 2), and q 2 (1; 1). So some super
riti
al systems

are in
luded. Nontrivial solutions are obtained. When H(x; u; v) is even in (u; v), we

show that the system possesses a sequen
e of solutions asso
iated with a sequen
e of

positive energies (resp. negative energies) going toward in�nity (resp. zero) if p > 2

(resp. p < 2). All results are proved using variational methods. Some new 
riti
al

point theorems for strongly inde�nite fun
tionals are proved.

1. Introdu
tion and main results

Consider the following ellipti
 system

(E)

8

>

<

>

:

��u = H

u

(x; u; v) in 


��v = �H

v

(x; u; v) in 


u(x) = v(x) = 0 on �


where 
 � R

N

; N � 3, is a smooth bounded domain and H :

�


� R

2

! R is a C

1

-

fun
tion. Here H

u

denotes the partial derivative of H with respe
t to the variable

u. Writing z := (u; v), we suppose H(x; 0) � 0 and H

z

(x; 0) � 0. Then z = 0 is a

trivial solution of the system. In this paper we dis
uss the existen
e of nontrivial
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2 D.G. DE FIGUEIREDO AND Y.H. DING

solutions. Roughly speaking, we are mainly interested in the 
lass of Hamiltoneans

H , su
h that

H(x; u; v) � juj

p

+ jvj

q

+R(x; u; v) with lim

jzj!1

R(x; u; v)

juj

p

+ jvj

q

= 0;

where 1 < p < 2

�

:= 2N=(N � 2) and q > 1. The most interesting results ob-

tained here refer to the 
ase when q � 2

�

, whi
h 
orrespond to 
riti
al and su-

per
riti
al problems. The 
ase when q < 2

�

has been studied in Costa-Magalh~aes

[CM1℄, [CM2℄ and Ben
i-Rabinowitz [BR℄. See also Barts
h-De Figueiredo [BD℄, De

Figueiredo-Magalh~aes [DM℄, De Figueiredo-Felmer [DF℄ and Hulshof-vanderVorst

[HV℄, where similar systems also leading to strongly inde�nite fun
tionals have been

studied. However, only sub
riti
al systems have been 
onsidered in those papers.

Letting 2

�

= 2

�

=(2

�

� 1) = 2N=(N + 2), we assume that H(x; z) satis�es the

following 
ondition

(H

0

) there are p 2 (1; 2

�

); q 2 (1; 1) and � 2 (1; 1+q=2

�

) su
h that, for all (x; z),

jH

u

(x; u; v)j � 


0

(1+juj

p�1

+jvj

��1

) and jH

v

(x; u; v)j � 


0

(1+juj

p�1

+jvj

q�1

):

In all hypotheses onH(x; z) the 


i

's denote positive 
onstants independent of (x; z).

We note that if q < 2

�

, then 2

�

< q=(q�1), i. e., q�1 < q=2

�

. Hen
e, it is possible

that q � � < 1 + q=2

�

. However, if q � 2

�

, then � < q. Furthermore, we remark

that � 
an be very large, if q is suÆ
iently large.

In addition, we need distin
t 
onditions on H 
orresponding to the 
ases when

p > 2; p < 2 or p = 2.

First, 
onsider the 
ase when p > 2. In this 
ase, we assume the following three


onditions:

(H

1

) there are � > 2, � > 1 and R

1

� 0 su
h that

1

�

H

u

(x; z)u+

1

�

H

v

(x; z)v � H(x; z) whenever jzj � R

1

;

with the provision that � = � if q > 2;

(H

2

) there are 2

�

(p� 1) � � � p and 2

�

(� � 1) < �, su
h that

H(x; z) � 


1

�

juj

�

+ jvj

�

�

� 


2

for all (x; z);
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and � = q if q > 2

�

;

(H

3

) H(x; 0; v) � 0 and H

u

(x; u; 0) = o(juj) as u! 0 uniformly in x.

We prove the following results.

Theorem 1.1. Let (H

0

) be satis�ed with p > 2. If (H

1

) � (H

3

) hold, then (E)

has at least one nontrivial solution.

Theorem 1.2. Let (H

0

) be satis�ed with p > 2. If H(x; z) is even in z and satis�es

(H

1

) � (H

2

), then (E) has a sequen
e (z

n

) of solutions with energies I(z

n

) :=

R




�

1

2

(jru

n

j

2

� jrv

n

j

2

)�H(x; z

n

)

�

going to 1, as n!1.

In order to des
ribe the other results, let �(��) denote the set of all eigenvalues

of (��; H

1

0

(
)): �

1

< �

2

� �

3

� � � � .

We now 
onsider the 
ase when p < 2. We make the following assumptions:

(H

4

) there are � 2 (1; 2), � � 2 and 


3

� 0 (


3

= 0, if q > 2

�

) su
h that

H(x; u; v) �

1

�

H

u

(x; u; v)u+

1

�

H

v

(x; u; v)v � 


3

for all (x; z);

(H

5

) there are � 2 (1; 2) and Æ 2 (0; 1=2) su
h that H(x; u; v) � 


4

juj

�

� Æ�

1

v

2

for all (x; z);

(H

6

) if q � 2

�

then H

v

(x; z)v � 


5

jvj

q

� 


6

(jvj+ u

2

) for all (x; z).

With these assumptions we have the following three results, for the 
ase when p < 2

Theorem 1.3. Suppose that (H

0

) holds with p < 2 and q � 2. If H(x; z) also

satis�es (H

4

)� (H

6

), then (E) has at least one nontrivial solution.

Theorem 1.4. Suppose that H(x; z) is even in z and (H

0

) holds with p < 2 and

q � 2. If H(x; z) also satis�es (H

4

)�(H

6

), then (E) has a sequen
e (z

n

) of solutions

with negative energies I(z

n

) going to 0 as n!1.

Theorem 1.5. Let (H

0

), with p; q 2 (1; 2), and (H

5

) be satis�ed. Then (E) has

at least one nontrivial solution. If, in addition, H(x; z) is even in z, then (E) has a

sequen
e (z

n

) of solutions with negative energies I(z

n

) going to 0 as n!1.

Finally, we 
onsider the 
ase when p = 2, whi
h presents some sort of resonan
e.

Assume
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(H

7

) there exist b

0

� 0 < a

0

su
h that R

0

(x; z) := H(x; z)�

1

2

(a

0

u

2

+b

0

v

2

) = o(jzj

2

)

as z ! 0 uniformly in x;

(H

8

) there exist � 2 (1; 2); a

1

2 [a

0

; 1)n�(��), su
h that R

1

(x; z) := H(x; z)�

1

2

a

1

u

2

satis�es j�

u

R

1

(x; z)j � 


7

(1+juj

��1

+jvj

��1

) and R

1

(x; z) � 


8

jvj

q

�




9

(1 + juj

�

).

The position of the numbers a

0

; a

1

; b

0

with respe
t to the spe
trum �(��) plays

a very essential role in the next result. For that matter, let i; j; k be nonnegative

integers su
h that �

i

= minf� 2 �(��) : � > a

0

g; �

j

= maxf� 2 �(��) : � <

�b

0

g, �

k

= maxf� 2 �(��) : � < a

1

g, and set

` =

�

j if a

1

= a

0

j + k � i+ 1 if a

1

> a

0

:

Now we 
an state our last result.

Theorem 1.6. Let (H

0

) be satis�ed with p = 2 and � < 1 + q=2. Assume that

H(x; z) is even in z and satis�es (H

7

) � (H

8

). Then (E) has at least one pair of

nontrivial solutions if ` = 1, and in�nitely many solutions if ` � 2.

The 
ases 
overed in Theorem 1.6 in
lude some asymptoti
ally linear systems.

This type of systems have been studied in [CM1℄, [CM2℄ and Silva [S℄. However

their results are not 
omparable with the ones obtained here.

We organize the paper as follows. In order to establish multipli
ity of solutions we

need some new abstra
t propositions on Criti
al Point Theory for Stongly Inde�nite

Fun
tionals, whi
h will be provided in Se
tion 2. These propositions are based on


ertain Galerkin approximations, and we emphasize that the fun
tionals do not

satisfy the usual Palais-Smale 
ondition. In Se
tion 3 we study systems whi
h are

superlinear in the variable u, and prove Theorems 1.1 and 1.2. In Se
tion 4 we


onsider systems whi
h are sublinear in the variable u, and prove Theorems 1.3, 1.4

and 1.5. In both Se
tions 3 and 4, the variable v 
an have sub
riti
al growth as well

as super
riti
al growth. Finally, in Se
tion 5, we 
onsider a spe
ial asymptoti
ally

linear system and prove existen
e of multiple solutions.
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2. Criti
al points for strongly indefinite fun
tionals

Let E be a Bana
h spa
e with norm k � k. Suppose that E has a dire
t sum

de
omposition E = E

1

�E

2

with both E

1

and E

2

being in�nite dimensional. Let

P

1

denote the proje
tion from E onto E

1

. Assume (e

1

n

) (resp. (e

2

n

)) is a basis for

E

1

(resp. E

2

). Set

X

n

:= spanfe

1

1

; � � � ; e

1

n

g �E

2

; X

m

:= E

1

� spanfe

2

1

; � � � ; e

2

m

g;

and let (X

m

)

?

denote the 
omplement of X

m

in E. For a fun
tional I 2 C

1

(E;R)

we set I

n

:= I j

X

n

, the restri
tion of I on X

n

. Re
all that a sequen
e (z

j

) � E is

said to be a (PS)

�




sequen
e if z

j

2 X

n

j

; n

j

! 1; I(z

j

) ! 
 and I

0

n

j

(z

j

) ! 0 as

j ! 1. If any (PS)

�




sequen
e has a 
onvergent subsequen
e, then we say that I

satis�es (PS)

�





ondition.

Denote the upper and lower level sets, respe
tively, by I

a

= fz 2 E : I(z) �

ag; I

b

= fz 2 E : I(z) � bg and I

b

a

= I

a

\ I

b

(denote similarly (I

n

)

a

; (I

n

)

b

and

(I

n

)

b

a

). We also set K = fz 2 E : I

0

(z) = 0g; K




= K \ I




; K




= K \ I




and

K

b

a

= K

a

\ K

b

.

Proposition 2.1. Let E be as above and let I 2 C

1

(E;R) be even with I(0) = 0.

In addition, suppose that, for ea
h m 2 N, the 
onditions below hold

(I

1

) there is R

m

> 0 su
h that I(z) � 0 for all z 2 X

m

with kzk � R

m

;

(I

2

) there are r

m

> 0 and a

m

!1 su
h that I(z) � a

m

for all z 2 (X

m�1

)

?

with

kzk = r

m

;

(I

3

) I is bounded from above on bounded sets of X

m

;

(I

4

) if 
 � 0, any (PS)

�




sequen
e (z

n

) has a subsequen
e along whi
h z

n

* z 2 K




.

Then the fun
tional I has a sequen
e (


k

) of 
riti
al values, with the property that




k

!1.

Remark 2.1. This proposition is more or less known if the 
ondition (I

4

) is repla
ed

by the (PS)

�


ondition (
f. [B℄, [D℄), or by the usual Palais-Smale 
ondition :

Any sequen
e (z

k

) � E su
h that jI(z

k

)j � 
 and I

0

(z

k

) ! 0 has a 
onvergent

subsequen
e (
f. [BR℄).



6 D.G. DE FIGUEIREDO AND Y.H. DING

Proof of Proposition 2.1. We only sket
h the proof. Fix m 2 N, and set X

m

n

=

X

n

\X

m

; D

m

n

= B

R

m

\X

m

n

, for all n 2 N. Let

�

m

n

= f
 2 C(D

m

n

; X

n

) : 
 is odd and 
j

�D

m

n

= idg;

and de�ne




m

n

:= inf


2�

max I(
(D

m

n

)):

Using (I

1

)� (I

3

) and the Borsuk-Ulam theorem we obtain

a

m

� 


m

n

� �

m

:= max I(D

m

n

):

A standard deformation argument, via a negative pseudo-gradient 
ow, shows that

there is a sequen
e (z

m

n

)

1

n=1

, with z

m

n

2 X

n

satisfying

jI(z

m

n

)� 


m

n

j �

1

n

; kI

0

n

(z

m

n

)k �

1

n

:

Going to a subsequen
e if ne
essary we 
an assume that 


m

n

! 


m

; I(z

m

n

) ! 


m

and I

0

n

(z

m

n

) ! 0 as n ! 1. Remark that a

m

� 


m

� �

m

. By (I

4

), z

m

n

* z

m

as

n!1 with I

0

(z

m

) = 0 and I(z

m

) � 


m

. Finally, sin
e a

m

!1, we 
on
lude that

I(z

m

) � a

m

!1. �

Proposition 2.2. Let E be as above and let I 2 C

1

(E;R) be even. Assume that

I(0) = 0 and that, for ea
h m 2 N, the two 
onditions below hold

(I

5

) there are r

m

> 0 and a

m

> 0 su
h that I(z) � a

m

for all z 2 X

m

with

kzk = r

m

;

(I

6

) there is b

m

> 0 with b

m

! 0 su
h that I(z) � b

m

for all z 2 (X

m�1

)

?

.

Moreover, suppose that either I satis�es the (PS)

�





ondition for all 
 > 0, or that

the 
ondition below holds

(I

7

) inf I(K) = 0, and, for all 
 � 0,any (PS)

�




sequen
e (z

n

) has a subsequen
e

along whi
h z

n

* z 2 K




with z = 0 only if 
 = 0.

Then I has a sequen
e (


k

) of positive 
riti
al values satisfying 


k

! 0.

Proof. Let � be the family of symmetri
, 
losed subsets of Enf0g, and let 
 : �!

N [ f0;1g denote the Krasnoselski genus map. Set




m

n

:= sup

A2�

m

n

inf

z2A

I(z) where �

m

n

:= fA 2 � : A � X

n

and 
(A) � n+mg:
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Fix m 2 N. The Borsuk-Ulam theorem implies that A \ (X

m�1

)

?

6= ;, for ea
h

A 2 �

m

n

. It follows from (I

6

) that

inf

z2A

I(z) � sup

z2(X

m�1

)

?

I(z) � b

m

:

On the other hand, sin
e 
(�B

r

m

\X

m

n

) = n+m, one has S

m

n

:= �B

r

m

\X

m

n

2 �

m

n

,

and so, by (I

5

), we obtain

inf

z2S

m

n

I(z) � a

m

:

Therefore,

(2.1) a

m

� 


m

n

� b

m

:

A standard deformation argument, using a positive pseudo-gradient 
ow, yields the

existen
e of a sequen
e (z

m

n

)

1

n=1

, with z

m

n

2 X

n

satisfying

jI(z

m

n

)� 


m

n

j �

1

n

and kI

0

n

(z

m

n

)k �

1

n

:

We 
an assume that I(z

m

n

)! 


m

as n!1. So, (z

m

n

) is a (PS)

�




m

sequen
e with

(2.2) a

m

� 


m

� b

m

:

Now, if we assume that I satis�es the (PS)

�





ondition for 
 > 0, then the 
on
lusion

follows. Next, suppose instead that (I

7

) holds. Then, along a subsequen
e, z

m

n

*

z

m

as n!1 with I

0

(z

m

) = 0 and 0 < I(z

m

) � 


m

. Finally, by (2.2)

I(z

m

) � b

m

! 0

and the proof is 
omplete. �

Proposition 2.3. Let E be as above and let I 2 C

1

(E;R) be even with I(0) = 0.

Suppose, in addition, that the three 
onditions below hold

(I

8

) there are ` 2 N and r; a > 0 su
h that I(z) � a for all z 2 X

`

with kzk = r;

(I

9

) there is b > 0 su
h that sup I(E

2

) � b;

(I

10

) any (PS)

�




, 
 > 0, sequen
e (z

n

) has a subsequen
e along whi
h z

n

* z 2 K




and P

1

z

n

! P

1

z.
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Then I has at least one pair of nontrivial 
riti
al points if ` = 1 and in�nitely many


riti
al points if ` > 1, with positive 
riti
al values.

Proof. Let �; 
; �

m

n

and 


m

n

be the notations as in the proof of Proposition 2.2.

As before, by (I

8

)� (I

9

), we obtain

a � 


m

n

� b for all n 2 N and m = 1; � � � ; `;

and we �nd sequen
es z

m

n

2 X

n

su
h that, going to subsequen
es if ne
essary,

I(z

m

n

)! 


m

and I

0

n

(z

m

n

)! 0 as n!1 with

b � 


1

� 


2

� � � � � 


`

� a:

Using (I

10

) we 
an assume furthermore that z

m

n

* z

m

2 K




m

for m = 1; � � � ; `, as

n!1. If ` = 1 the proof is 
omplete.

Consider ` > 1. Let F = fz 2 K : I(z) > 0g. We are going to prove that F

is an in�nite set. Arguing by 
ontradi
tion, we suppose that F is �nite. Choose

0 < � < a � b < � satisfying

� < inf I(F ) � sup I(F ) < �:

Let k 2 N be so large that 0 62 A := Q

k

F where Q

k

: E ! X

k

denotes the

proje
tion. Then A is also �nite and 
(A) = 1. By the 
ontinuity of 
, for all

Æ > 0 small, 
(N

k

Æ

(A)) = 
(A) where N

k

Æ

(A) = fz 2 X

k

: dist(z; A) � Æg. Set

C

Æ

= N

k

Æ

(A)�(X

k

)

?

. Sin
e N

k

Æ

(A) � C

Æ

and Q

k

: C

Æ

! N

k

Æ

(A), it follows from the

properties of 
 that 
(C

Æ

) = 
(N

k

Æ

(A)). We remark that Q

k

= P

1

+(Q

k

�P

1

) and

that the range of Q

k

�P

1

is k-dimensional. So in virtue of (I

10

), we 
on
lude that,

for all 
 � 0, any (PS)

�




sequen
e (z

n

) has a subsequen
e, along whi
h z

n

* z 2 K




and Q

k

z

n

! Q

k

z. Hen
e there are n

0

2 N and � > 0 su
h that for all n � n

0

kI

0

n

(w)k � � for all w 2 (I

n

)

�

�

nC

n

Æ

where C

n

Æ

= C

Æ

\X

n

. By a standard deformation argument, we 
an then 
onstru
t

a sequen
e of odd homeomorphisms �

n

: X

n

! X

n

su
h that

�

n

((I

n

)

�

nC

n

Æ

) � (I

n

)

�
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(
f. [R℄). For n

0

suÆ
iently large, we 
an suppose that

� < 


`

n

� 


`�1

n

� � � � � 


1

n

< � for all n � n

0

:

Let G 2 �

`

n

be su
h that inf I(G) > (�+ 


`

n

)=2. One then has

�

n

(GnC

n

Æ

) � (I

n

)

�

and


(�

n

(GnC

n

Æ

)) = 
(GnC

n

Æ

) � 
(G)� 
(C

n

Æ

)

� n+ `� 
(C

n

Æ

) � n+ `� 1:

Thus �

n

(GnC

n

Æ

) 2 �

`�1

n

and � � inf I(�

n

(GnC

n

Æ

)) � 


`�1

n

. One �nally 
omes to

� � 


`�1

n

< �, whi
h is a 
ontradi
tion. �

Form now on we turn to the system (E). We denote by j � j

t

the usual L

t

(
) norm

for all t 2 [1; 1℄. For q > 1 let V

q

= H

1

0

(
) if q � 2

�

and V

q

= H

1

0

(
)\L

q

(
), the

Bana
h spa
e equipped with the norm kvk

V

q

=

�

jrvj

2

2

+ jvj

2

q

�

1=2

, if q > 2

�

. Let E

q

be the produ
t spa
e H

1

0

(
)� V

q

with elements denoted by z = (u; v). We denote

the norm in E

q

by kzk

q

= (jruj

2

2

+kvk

2

V

q

)

1=2

. E

q

has the dire
t sum de
omposition

E

q

= E

�

q

�E

+

; z = z

�

+ z

+

where E

�

q

= f0g � V

q

; E

+

= H

1

0

(
)� f0g:

For 
onvenien
e, we will write z

+

= u and z

�

= v. Re
all that by (�

n

)

n2N

we

denote the sequen
e of eigenvalues of (��; H

1

0

(
)). Let e

n

; je

n

j

2

= 1, be the

eigenfun
tion 
orresponding to �

n

for ea
h n 2 N. Clearly, e

+

n

:= (e

n

; 0); n 2 N, is

a basis for E

+

, and e

�

n

= (0; e

n

); n 2 N, is a basis for E

�

q

.

Suppose that the assumption (H

0

) holds. Then

(2.3) H(x; z) � 
(1 + juj

2

�

+ jvj

q

) for all (x; z):

So the fun
tional

(2.4) I(z) :=

1

2

Z




(jruj

2

� jrvj

2

)�

Z




H(x; z)

is well de�ned in E

q

. Moreover I 2 C

1

(E

q

;R) and the 
riti
al points of I are the

solutions of (E).
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Lemma 2.1. If (H

0

) holds, then I

0

is weak sequentially 
ontinuous, that is,

I

0

(z

n

)* I

0

(z) provided z

n

* z.

Proof. If q < 2

�

this statement is well known. Assume now that q � 2

�

. Let z

n

* z

in E

q

. Clearly, for all w = (';  ) 2 E

q

, we have

Z




(ru

n

r'�rv

n

r )!

Z




(rur'�rvr ) :

So it remains to show that

(2.5)

Z




H

u

(x; z

n

)' !

Z




H

u

(x; z)' for all ' 2 H

1

0

(
)

and

(2.6)

Z




H

v

(x; z

n

) !

Z




H

v

(x; z) for all  2 V

q

:

By the Sobolev embedding theorem and using interpolation, we obtain that

u

n

! u in L

t

for t 2 [1; 2

�

) and v

n

! v in L

t

for t 2 [1; q). Noting that

jH

u

(x; u; v)j � 


0

(1 + juj

p�1

+ jvj

��1

) with 2

�

(� � 1) < q, (2.5) follows easily sin
e

u

n

! u in L

p

, v

n

! v in L

2

�

(��1)

and ' 2 H

1

0

(
) � L

2

�

. Next we see that (2.6)

is 
learly true when  2 L

1

. In general, for a  2 V

q

we pro
eed as follows. Let

~

 

m

2 L

1

with

~

 

m

!  in L

q

as m!1. So

j

Z




(H

v

(x; z

n

)�H

v

(x; z)) j = j

Z




(H

v

(x; z

n

)�H

v

(x; z))(

~

 

m

+ ( �

~

 

m

))j;

and using (H

0

) we see that this expression is less than

j

Z




(H

v

(x; z

n

)�H

v

(x; z))

~

 

m

j+


1

(j �

~

 

m

j

1

+ ju

n

j

p�1

p

j

~

 

m

� j

p

+ jv

n

j

q�1

q

j

~

 

m

� j

q

):

Sin
e (z

n

) is bounded in E

q

and L

1

is dense in L

q

, we obtain the estimates below,

whi
h proves (2.6)

j

Z




(H

v

(x; z

n

)�H

v

(x; z))

~

 

m

j+ 


2

(j

~

 

m

�  j

p

+ j

~

 

m

�  j

q

):

Thus I

0

(z

n

)w ! I

0

(z)w for all w 2 E

q

. �
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3. The 
ase p > 2

Throughout this se
tion let (H

0

) be satis�ed with p > 2 and assume that (H

1

)�

(H

2

) hold. Remark that, by (H

2

), there exists R > 0 su
h that H(x; z) > 0,

whenever jzj � R. This, jointly with (H

1

), implies

(3.1) H(x; z) � 


1

(juj

�

+ jvj

�

)� 


2

for all (x; z)

(see, [F℄). This, together with (2.3) and (H

2

), shows

(3.2) � � q and � � q:

Moreover, in virtue of (3.1) and (H

2

), we may assume, without loss of generality,

that (sin
e � > 2)

(3.3) � > 2 :

Now we set E

1

= E

�

q

; E

2

= E

+

and e

1

n

= e

�

n

; e

2

n

= e

+

n

for all n 2 N. So

E

q

= E

1

L

E

2

. Consider the fun
tional de�ned by (2.4), whi
h has the properties

stated in Se
tion 2.

Lemma 3.1. Any (PS)

�




sequen
e is bounded.

Proof. Let z

n

2 X

n

be su
h that

I(z

n

)! 
 and I

0

n

(z

n

)! 0:

Case 1: q � 2. In this 
ase E

q

= (H

1

0

(
))

2

. By (H

1

), for w

n

:= (

1

�

u

n

;

1

�

v

n

), we

have

(3.4)

I(z

n

)� I

0

n

(z

n

)w

n

=(

1

2

�

1

�

)jru

n

j

2

2

+ (

1

�

�

1

2

)jrv

n

j

2

2

+

Z




�

1

�

H

u

(x; z

n

)u

n

+

1

�

H

v

(x; z

n

)v

n

�H(x; z

n

)

�

� 


1

� (

1

2

�

1

�

)jru

n

j

2

2

+ (

1

�

�

1

2

)jrv

n

j

2

2

� 


2

:
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If q < 2 then (3.2) shows that � < 2, and so kz

n

k

2

q

� 


3

(1 + kz

n

k

q

) whi
h implies

that (z

n

) is bounded in E

q

. Assume q = 2. Invoking (3.2), � � 2, and so jru

n

j

2

2

�


(1 + kz

n

k

q

) by (3.4). Sin
e H(x; z) > 0 for all jzj large, and

1

2

jrv

n

j

2

2

+

Z




H(x; z

n

) = �I(z

n

) +

1

2

jru

n

j

2

2

� 
(1 + kz

n

k

q

);

one sees that kz

n

k

2

q

� 
(1 + kz

n

k

q

). Hen
e, (z

n

) is bounded.

Case 2: q > 2. Note that in this 
ase � = � > 2 in (H

1

). So

(3.5)

I(z

n

)�

1

2

I

0

n

(z

n

)z

n

=

Z




(

1

2

H

z

(x; z

n

)z

n

�H(x; z

n

))

� (

�

2

� 1)

Z




H(x; z

n

)� 


whi
h, together with (H

2

), yields

(3.6) ju

n

j

�

�

+ jv

n

j

�

�

� 
(1 + kz

n

k

q

):

Using (H

0

),

(3.7)

jru

n

j

2

2

= I

0

n

(z

n

)(u

n

; 0) +

Z




H

u

(x; z

n

)u

n

� 


1

kz

n

k

q

+ 


2

Z




(ju

n

j

p

+ jv

n

j

��1

ju

n

j):

Next we estimate the integrals in the right side of (3.7). Sin
e 2

�

(p � 1) � � � p,

we have that � := �=(1 + � � p) � 2

�

. Using the H�older inequality, the Sobolev

embedding theorem and (3.6), we obtain

Z




ju

n

j

p

� ju

n

j

p�1

�

ju

n

j

�

� 


1

+ 


2

kz

n

k

1+(p�1)=�

q

:

Similarly, sin
e � � 1 < �=2

�

, we have 1 < ! := �=(1 + � � �) < 2

�

and hen
e

Z




jv

n

j

��1

ju

n

j � jv

n

j

��1

�

ju

n

j

!

� 


1

+ 


2

kz

n

k

1+(��1)=�

q

:

Therefore, using the estimate in (3.7) we obtain

(3.8) jru

n

j

2

2

� 
(1 + kz

n

k

1+(p�1)=�

q

+ kz

n

k

1+(��1)=�

q

):

Sin
e

jrv

n

j

2

2

= �I

0

n

(z

n

)(0; v

n

)�

Z




H

z

(x; z

n

)z

n

+

Z




H

u

(x; z

n

)u

n

;
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and using (3.5) and the above arguments we obtain

(3.9) jrv

n

j

2

2

� 
(1 + kz

n

k

1+(p�1)=�

q

+ kz

n

k

1+(��1)=�

q

):

Re
all that, in view of our assumptions, (p� 1)=� � 1=2

�

; (� � 1)=� < 1=2

�

, and

� = q, if q > 2

�

. Hen
e, it follows from (3.6) and (3.8)-(3.9) that (z

n

) is bounded

in E

q

. �

Lemma 3.2. Let z

n

2 X

n

be a (PS)

�




sequen
e. If q � 2

�

then (z

n

) 
ontains

a 
onvergent subsequen
e. If q > 2

�

then there is a z 2 E

q

su
h that, along a

subsequen
e, z

n

* z and I

0

(z) = 0 and I(z) � 
.

Proof. By Lemma 3.1 (z

n

) is bounded. We 
an assume that z

n

* z in E

q

, z

n

! z

in (L

s

(
))

2

for all 1 � s < 2

�

and z

n

(x) ! z(x) a.e. on 
. It follows from

the weakly sequentially 
ontinuity of I

0

(see Lemma 2.1) that I

0

(z) = 0. Sin
e

I

0

n

(z

n

)! 0 we obtain

(ru

n

;ru

n

�ru)

L

2
= I

0

n

(z

n

)(u

n

� u; 0) +

Z




H

u

(x; z

n

)(u

n

� u)

= o(1) +

Z




H

u

(x; z

n

)(u

n

� u):

Using (H

0

) and H�older inequality, we obtain the estimate

�

�

�

�

Z




H

u

(x; z

n

)(u

n

� u)

�

�

�

�

� 
(ju

n

� uj

1

+ ju

n

j

p�1

p

ju

n

� uj

p

+ jv

n

j

��1

�

ju

n

� uj

!

) = o(1);

where ! is as in the proof of Lemma 3.1. Hen
e jru

n

j

2

2

! jruj

2

2

whi
h implies

u

n

! u in H

1

0

(
). Let P

n

: E

q

! X

n

denote the proje
tion. Remark that P

n

z ! z

in E

q

for all z 2 E

q

. Moreover, using again (H

0

) and H�older inequality we estimate

�

�

�

�

Z




H

v

(x; z

n

)(v � P

n

v)

�

�

�

�

� 
(jv�P

n

vj

1

+ ju

n

j

p�1

p

jv�P

n

vj

p

+ jv

n

j

q�1

q

jv�P

n

vj

q

)! 0:

On the other hand,

(rv

n

;rv �rv

n

)

L

2

= o(1) + I

0

n

(z

n

)(0; v

n

� P

n

v) +

Z




H

v

(x; z

n

)(v

n

� P

n

v)

= o(1) +

Z




H

v

(x; z

n

)(v

n

� v)

= o(1) +

Z




H

z

(x; z

n

)(z

n

� z)�

Z




H

u

(x; z

n

)(u

n

� u)

= o(1) +

Z




H

z

(x; z

n

)z

n

�

Z




H

z

(x; z

n

)z:
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Lebesgue theorem and the weakly sequentially 
ontinuity of H

z

(x; �) (see the proof

of Lemma 2.1) yield

jrvj

2

2

� lim sup

n!1

jrv

n

j

2

2

= lim inf

n!1

�

Z




H

z

(x; z

n

)z

n

�

Z




H

z

(x; z

n

)z

�

� 0;

i.e., jrvj

2

2

� lim sup

n!1

jrv

n

j

2

2

. This together with the weakly lower semi
ontinu-

ity of norms, jrv

n

j

2

! jrvj

2

. So v

n

! v in H

1

0

(
).

Therefore, if q � 2

�

, we obtain that, along a subsequen
e, z

n

! z in E

q

and


onsequently I(z) = 
. Next assume that q > 2

�

. Observe that

I(z)� I(z

n

) =

1

2

(jruj

2

2

� jru

n

j

2

2

)�

1

2

(jrvj

2

2

� jrv

n

j

2

2

) +

Z




H(x; z

n

)�

Z




H(x; z);

hen
e

I(z)� 
 = o(1) +

Z




H(x; z

n

)�

Z




H(x; z):

Lebesgue theorem then yields

I(z)� 
 = lim inf

n!1

Z




H(x; z

n

)�

Z




H(x; z) � 0;

that is, I(z) � 
. �

Lemma 3.3. If (H

3

) also holds, there are r; � > 0 su
h that inf I(�B

r

E

+

) � �.

Proof. By (H

0

) and (H

3

), for any " > 0, there is 


"

> 0 su
h that

H(x; u; 0) � "juj

2

+ 


"

juj

2

�

:

Hen
e

I(u) �

1

2

jruj

2

2

� "juj

2

2

� 


"

juj

2

�

2

�

;

and the 
on
lusion follows easily. �

Let e 2 E

+

with jrej

2

2

= 1, and set

Q = f(se; v) : 0 � s � r

1

; kvk

q

� r

2

g:
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Lemma 3.4. If (H

3

) also holds, there are r

1

; r

2

> 0, with r

1

> r, su
h that

I(z) � 0 for all z 2 �Q.

Proof. By (H

3

); I(z) � 0 for all z 2 E

�

q

. By (H

2

),

I((se; v)) �

s

2

2

�

1

2

jrvj

2

2

� 


1

Z




(jsej

�

+ jvj

�

) + 


2

:

The 
on
lusion follows sin
e � > 2. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Lemmas 3.3 and 3.4 say that I has the linking geometry.

Let Q

n

:= Q \X

n

and de�ne




n

:= inf


2�

n

max I(
(Q

n

));

where �

n

:= f
 2 C(Q

n

; X

n

) : 
j

�Q

n

= idg. Then � � 


n

� � := sup I(Q). A

standard deformation argument shows that there is z

n

2 X

n

su
h that jI(z

n

)�


n

j �

1=n and kI

0

n

(z

n

)k � 1=n. So we obtain a (PS)

�




sequen
e (z

n

) with 
 2 [�; �℄.

Lemma 3.2 implies z

n

* z with I

0

(z) = 0 and I(z) � 
. The proof is 
omplete. �

We now 
onsider the multipli
ity of solutions using Proposition 2.1.

Lemma 3.5. I satis�es (I

1

).

Proof. Using (H

2

) we obtain

I(z) �

1

2

jruj

2

2

�

1

2

jrvj

2

2

� 


1

Z




(juj

�

+ jvj

�

) + 


2

:

Sin
e all norms in spanfe

1

; � � � ; e

m

g are equivalent, we obtain

I(z) � �

�




3

jruj

��2

2

�

1

2

�

jruj

2

2

�

�

1

2

jrvj

2

2

+ 


1

jvj

�

�

�

+ 


2

;

for all z = (u; v) 2 X

m

' spanfe

1

; � � � ; e

m

g � V

q

.

So (I

1

) follows easily. �
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Lemma 3.6. I satis�es (I

2

).

Proof. Sin
e (X

m

)

?

� H

1

0

(
) and H

1

0

(
) embeds 
ompa
tly in L

p

(
), we have

that �

m

> 0 and �

m

! 0 as m!1, where

(3.12) �

m

:= sup

u2(X

m

)

?

nf0g

juj

p

jruj

2

;

see Lemma 3.8 in [W℄. For z = (u; 0) 2 (X

m

)

?

, it follows from (H

0

) that

I(z) =

1

2

jruj

2

2

�

Z




H(x; u; 0) �

1

2

jruj

2

2

� 


1

juj

p

p

� 


2

�

1

2

jruj

2

2

� 


1

�

p

m

jruj

p

2

� 


2

:

Setting r

m

= (p


1

�

p

m

)

1=(2�p)

and a

m

= (

1

2

�

1

p

)r

2

m

� 


2

we 
ome to the 
on
lusion.�

Proof of Theorem 1.2. Sin
e H(x; z) is even in z, I is even. Lemma 3.2 shows that

I satis�es the assumption (I

4

) of Proposition 2.1. Lemmas 3.5 { 3.6 show that

(I

1

) � (I

2

) hold. Clearly (I

3

) is also true. Therefore by Proposition 2.1, there is a

sequen
e (z

n

) � E

q

satisfying I

0

(z

n

) = 0 and I(z

n

)!1. The proof is 
omplete.�

4. The 
ase p < 2

Throughout this se
tion we assume that (H

0

) is satis�ed with p 2 (1; 2). We

also suppose that (H

4

)� (H

6

) hold.

Let E

q

= E

1

�E

2

be as in Se
tion 3. Consider the fun
tional

J(z) = �I(z) =

Z




H(x; z) +

1

2

jrvj

2

2

�

1

2

jruj

2

2

:

Lemma 4.1. Any (PS)

�




sequen
e (z

n

)has a subsequen
e 
onverging weakly to a


riti
al point z of J with J(z) � 
 and z = 0 only if z

n

! 0 in E

q

.

Proof. Part I: The sequen
e (z

n

) is bounded in E

q

By (H

4

) it follows

J(z

n

)� J

0

n

(z

n

)(

1

�

u

n

;

1

�

v

n

) � (

1

2

�

1

�

)jrv

n

j

2

2

+ (

1

�

�

1

2

)jru

n

j

2

2

� 
:
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Hen
e jru

n

j

2

2

� 
(1+ kz

n

k

q

). If � > 2, we also get jrv

n

j

2

2

� 
(1+ kz

n

k

q

). If � = 2,

we use (H

5

) and the fa
t that jrvj

2

2

� �

1

jvj

2

2

in order to obtain

�

1

2

� Æ

�

jrv

n

j

2

2

�

1

2

jrv

n

j

2

2

+

Z




H(x; z

n

) = J(z

n

) +

1

2

jru

n

j

2

2

:

Hen
e, jrv

n

j

2

2

� 
(1 + kz

n

k

q

), and we get

jru

n

j

2

2

+ jrv

n

j

2

2

� 
(1 + kz

n

k

q

):

Thus, if q � 2

�

, then (z

n

) is bounded in E

q

. Assume next that q > 2

�

. It follows

from (H

6

) that

(4.1) J

0

n

(z

n

)(0; v

n

) � 


1

jv

n

j

q

q

+ jrv

n

j

2

2

� 


2

(jv

n

j

1

+ ju

n

j

2

2

):

Thus jru

n

j

2

2

+ jrv

n

j

2

2

+ jv

n

j

q

q

� 
(1 + kz

n

k

q

), whi
h implies that (z

n

) is bounded

in E

q

, also in the 
ase when q > 2

�

.

Part II. We 
an now suppose that z

n

* z in E

q

, z

n

! z in (L

s

(
))

2

for all

1 � s < 2

�

and z

n

(x) ! z(x) a.e. in x 2 
. It follows that z is a 
riti
al point of

J . As in the proof of Lemma 3.2, using (H

0

) and

J

0

n

(z

n

)(u

n

� u; 0) =

Z




H

u

(x; z

n

)(u

n

� u)� (ru

n

;r(u

n

� u))

L

2

we obtain that

j(ru

n

;r(u

n

�u))

L

2

j � o(1)+
(ju

n

�uj

1

+ju

n

j

p�1

p

ju

n

�uj

p

+jv

n

j

��1

�

ju

n

�uj

!

) = o(1)

and so u

n

! u in H

1

0

(
). Let P

n

: E

q

! X

n

be the proje
tion as in the proof of

Lemma 3.2. So we obtain

(rv

n

;r(v � v

n

))

L

2

= o(1) + (rv

n

;r(P

n

v � v

n

))

L

2

= o(1) +

Z




H

v

(x; z

n

)(v

n

� P

n

v)� J

0

n

(z

n

)(0; v

n

� P

n

v)

= o(1) +

Z




H

v

(x; z

n

)(v

n

� v) +

Z




H

v

(x; z

n

)(v � P

n

v):

Using (H

0

) we have

�

�

�

�

Z




H

v

(x; z

n

)(v � P

n

v)

�

�

�

�

� 
(1 + ju

n

j

2

�

2

�

+ jv

n

j

q�1

q

)kv � P

n

vk

q

! 0:
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Consequently,

(4.2) (rv

n

;r(v � v

n

))

L

2

=

Z




H

v

(x; z

n

)(v

n

� v) + o(1)

Thus if q < 2

�

, it follows from (4.2) that jrv

n

j

2

! jrvj

2

, whi
h implies v

n

! v,

and so z

n

! z. This proves that J satis�es the (PS)

�





ondition in this 
ase, and

that J(z) = 
.

Consider next q � 2

�

. The weak sequential 
ontinuity ofH

v

(x; �) (see the proof of

Lemma 2.1) yields

R




H

v

(x; z

n

)v !

R




H

v

(x; z)v. By (H

6

), f

n

(x) := H

v

(x; z

n

)v

n

+




6

(jv

n

j + ju

n

j

2

) � 0. Using the fa
t that jv

n

j

1

! jvj

1

and ju

n

j

2

! juj

2

, and

applying Fatou's lemma to the sequen
e (f

n

), we get lim inf

n!1

R




H

v

(x; z

n

)v

n

�

R




H

v

(x; z)v. Using this estimate in (4.2) we obtain that jrvj

2

2

� lim sup

n!1

jrv

n

j

2

2

whi
h implies that v

n

! v in H

1

0

(
). In order to 
on
lude that J(z) � 
, we use

the estimate

J(z

n

)� J(z) =

Z




(H(x; z

n

)�H(x; z)) + o(1);

(H

4

) and Fatou's lemma. Finally, if z = 0 then z

n

! 0 in (H

1

0

(
))

2

. Using (4.1),

jv

n

j

q

q

� o(1) + 
(jv

n

j

1

+ ju

n

j

2

2

)! 0;

and so z

n

! 0. �

Remark 4.1. In a similar way, using even simpler arguments, one 
he
ks that, if

(H

0

) holds with p; q 2 (1; 2), J satis�es the (PS)

�





ondition for all 
.

Remark 4.2. Let

~

J

m

= J j

X

m

denote the restri
tion of J on X

m

. Like in Lemma

4.1, it is not diÆ
ult to 
he
k that, if the sequen
e (z

m

) � E

q

, with z

m

2 X

m

,

satis�es J(z

m

) ! 
 and

~

J

0

m

(z

m

) ! 0 as m ! 1, then it possesses a subsequen
e


onverging weakly to a 
riti
al point z of J with J(z) � 
, and z = 0 only if z

n

! 0

in E

q

. We also have as in Remark 4.1 that, if (H

0

) holds with p; q 2 (1; 2), then

any su
h sequen
e has a 
onvergent subsequen
e.

Lemma 4.2. There is R > 0 su
h that J(z) � 0 for all z = (u; 0) with kzk � R.
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Proof. By (H

0

), we have H(x; u; 0) � 
(1 + juj

p

). Hen
e

J((u; 0)) =

Z




H(x; u; 0)�

1

2

jruj

2

2

� 


1

+ 


2

juj

p

p

�

1

2

jruj

2

2

� 


1

�

�

1

2

jruj

2�p

2

� 


3

�

jruj

p

2

;

and the lemma follows, sin
e p < 2. �

Lemma 4.3. For " > 0 small there is � > 0 su
h that J(("e

1

; v)) � � for all

v 2 V

q

, where e

1

is the eigenfun
tion 
orresponding to the �rst eigenvalue �

1

of

(��; H

1

0

(
)).

Proof. By (H

5

), for " > 0 small H(x; "e

1

; v) � 


4

"

�

e

�

1

� Æ�

1

v

2

, hen
e

J(("e

1

; v)) =

Z




H(x; "e

1

; v) +

1

2

jrvj

2

2

�

1

2

�

1

"

2

� (


4

je

1

j

�

�

�

1

2

�

1

"

2��

)"

�

:

The 
on
lusion follows. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Re
all that X

m

' spanfe

1

; � � � ; e

m

g � V

q

, and 
onsider the

restri
tions

~

J

m

as de�ned in Remark 4.2. Set D

R

= B

R

\E

2

= B

R

\ (H

1

0

(
)�f0g)

and D

m

= D

R

\X

m

, where R > 0 
omes from Lemma 4.2. De�ne




m

:= inf


2�

m

max J(
(D

m

));

where �

m

:= f
 2 C(D

m

; X

m

) : 
(z) = z for all z 2 �D

m

g. It is well-known that


(D

m

)\W 6= ; for all 
 2 �

m

whereW = f("e

1

; 0)g�V

q

with " > 0 small. Invoking

Lemma 4.3 we �x an " > 0 so small that there is � > 0 satisfying inf J(W ) � �.

Then we have

� � 


m

� b := max J(D

R

):

The well known Saddle Point Theorem (
f. [R℄ or [Ch℄, [W℄) implies that there is

z

m

2 X

m

satisfying jJ(z

m

) � 


m

j � 1=m and k

~

J

0

m

(z

m

)k � 1=m. Now by virtue of

Remark 4.2, along a subsequen
e, z

m

* z with J

0

(z) = 0 and z 6= 0, ending the

proof. �

We now turn to the proof of Theorems 1.4 and 1.5.
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Lemma 4.4. If, in addition, 


3

= 0 in (H

4

), then J satis�es (I

5

).

Proof. It follows from (H

5

) that

(4.3)

J(z) � 


1

juj

�

�

+

�

1

2

� Æ

�

jrvj

2

2

�

1

2

jruj

2

2

�

�




2

�

1

2

jruj

2��

�

jruj

�

2

+

�

1

2

� Æ

�

jrvj

2

2

;

Sin
e � < 2, the result follows in the 
ase when q � 2

�

. Next 
onsider q > 2

�

.

Suppose (I

5

) does not hold. Then for any r > 0 there is a sequen
e z

j

2 X

m

su
h that kz

j

k = r and J(z

j

) ! 0. It follows from (4.3) with z = z

j

, and for r

small, that jru

j

j

2

! 0 and jrv

j

j

2

! 0. All this implies that

R




H(x; z

j

)! 0. From

assumption (H

0

) and the fa
t that (u

j

) lies in a �nite dimensional subspa
e it follows

that

R




H

u

(x; z

j

)u

j

! 0. Consequently, by (H

4

) with 


3

= 0,

R




H

v

(x; z

j

)v

j

! 0.

This, jointly with (H

6

), yields

jv

j

j

q

q

� 


1

Z




H

v

(x; z

j

)v

j

+ 


2

(jv

j

j

1

+ ju

j

j

2

2

) ! 0:

Hen
e, z

j

! 0 in E

q

, whi
h is a 
ontradi
tion. �

Lemma 4.5. J veri�es (I

6

).

Proof. By (H

0

), H(x; u; 0) � 
(juj+ juj

p

), and so, for u 2 (X

m�1

)

?

, one has

J((u; 0)) � 


1

(juj

p

+ juj

p

p

)�

1

2

jruj

2

2

� (


1

juj

p

�

1

4

jruj

2

2

) + (


1

juj

p

p

�

1

4

jruj

2

2

)

� (


1

�

m

�

1

4

jruj

2

)jruj

2

+ (


1

�

p

m

�

1

4

jruj

2�p

2

)jruj

p

2

where �

m

was de�ned by (3.12). Let b

m

:= (


1

�

m

)

2

+(1�p=2)


1

�

p

m

(2p


1

�

p

m

)

p=(2�p)

.

Then 0 < b

m

! 0 and J((u; 0)) � b

m

for all (u; 0) 2 (X

m�1

)

?

. �

Proof of Theorem 1.4. Sin
e H(x; z) is even in z, J is even. If q � 2

�

then J

satis�es the (PS)

�





ondition for all 
 (see the proof of Lemma 4.1). If q > 2

�

, then

using assumption (H

4

) applied to a 
riti
al point z, we obtain

J(z) = J(z)� J

0

n

(z)(

1

�

u;

1

�

v) � (

1

2

�

1

�

)jrvj

2

2

+ (

1

�

�

1

2

)jruj

2

2

� 0:
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This, jointly with Lemma 4.1, shows that (I

7

) is satis�ed. It follows from Lemmas

4.4 and 4.5 that J satis�es (I

5

) and (I

6

). Therefore, the desired 
on
lusion follows.�

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. The proof of the existen
e of one nontrivial solution is similar

to that of Theorem 1.3 using Remark 4.2 and Lemmas 4.2 and 4.3. The other


on
lusion 
an be obtained along the lines of the proof of Theorem 1.4, using

Remark 4.1 and Lemmas 4.4{4.5. �

5. The 
ase p = 2

In this se
tion we always assume that (H

0

) holds with p = 2 and � < 1 + q=2.

We also suppose that (H

7

) � (H

8

) are satis�ed. We will apply Proposition 2.3 in

order to prove Theorem 1.6. Thus, set

E

2

= spanfe

+

1

; � � � ; e

+

k

g �E

�

q

' spanfe

1

; � � � ; e

k

g � V

q

; E

1

= E

q

	E

2

;

and

X

`

= E

1

� spanfe

+

i

; � � � ; e

+

k

; e

�

1

; � � � ; e

�

j

g:

One may arrange the bases as e

1

n

= e

+

k+n

for n 2 N, and e

2

n

= e

+

n+i�1

for 1 � n �

`� j; e

2

n

= e

�

n�`+j

for `� j < n � `; e

2

n

= e

+

n�`

for ` < n � `+ i� 1 and e

2

n

= e

�

n�k

for n > `+ i� 1. Consider the fun
tional I given by (2.4).

Lemma 5.1. I satis�es (I

8

), that is, there exist r; a > 0 su
h that I(z) � a for all

z 2 X

`

with kzk

q

= r.

Proof. Let z = (u; v) 2 X

`

. Sin
e v 2 spanfe

1

; � � � ; e

j

g we have v 2 L

1

. By (H

0

)

and (H

7

), for any " > 0, there exists 


"

> 0 su
h that R

0

(x; z) � "jzj

2

+ 


"

(juj

2

�

+

jvj

q

). Thus

I(z) =

1

2

(jruj

2

2

� a

0

juj

2

2

)�

1

2

(jrvj

2

2

� b

0

jvj

2

2

)�

Z




R

0

(x; z)

�

1

2

(1�

a

0

�

i

)jruj

2

2

+

1

2

(

�b

0

�

j

� 1)jrvj

2

2

� "jzj

2

2

� 


"

(juj

2

�

2

�

+ jvj

q

q

):

Now the 
on
lusion follows easily. �
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Lemma 5.2. I satis�es (I

9

), that is, sup I(E

2

) <1.

Proof. For z 2 E

2

we have, using (H

8

), that

I(z) =

1

2

(jruj

2

2

� a

1

juj

2

2

)�

1

2

jrvj

2

2

�

Z




R

1

(x; z)

� �

1

2

(

a

1

�

k

� 1)jruj

2

2

�

1

2

jrvj

2

2

+ 


9

juj

�

�

� 


8

jvj

q

q

+ 


9

j
j

� �

�

1

2

(

a

1

�

k

� 1)jruj

2��

� 


1

�

jruj

�

2

�

�

1

2

jrvj

2

2

+ 


8

jvj

q

q

�

+ 


2

whi
h implies that I(z) � 0 for all z 2 E

2

with kzk

q

large. �

Lemma 5.3. Let 
 > 0. Then any (PS)




sequen
e is bounded.

Proof. We de
ompose H

1

0

(
) as

H

1

0

(
) = U

�

� U

+

; u = u

�

+ u

+

where U

�

= spanfe

1

; � � � ; e

k

g and U

+

is the orthogonal 
omplement of U

�

in

H

1

0

(
).

Let (z

n

) be a (PS)

�




sequen
e. Using the expression of I

0

n

I

0

n

(z

n

)u

+

n

= jru

+

n

j

2

2

� a

1

ju

+

n

j

2

2

�

Z




�

u

R

1

(x; z

n

)u

+

n

;

(H

8

) and H�older inequality we obtain

�

1�

a

1

�

k+1

�

jru

+

n

j

2

2

� 


1

jru

+

n

j

2

+ 


7

�

ju

+

n

j

1

+ ju

n

j

��1

�

ju

+

n

j

�

+ jv

n

j

��1

q

ju

+

n

j

r

�

where r = q=(1 + q � �). By assumptions, 1 < r < 2. It then follows from the

Sobolev embedding theorems that

�

1�

a

1

�

k+1

�

jru

+

n

j

2

2

� 


2

�

1 + ju

n

j

��1

�

+ jv

n

j

��1

q

�

jru

+

n

j

2

:

Similarly, we dedu
e that

�

a

1

�

k

� 1

�

jru

�

n

j

2

2

� 


2

�

1 + ju

n

j

��1

�

+ jv

n

j

��1

q

�

jru

�

n

j

2

:

The two previous inequalities imply the estimate

(5.1) jru

n

j

2

2

� 


3

�

1 + ju

n

j

2(��1)

�

+ jv

n

j

2(��1)

q

�

:
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Using the expression of H given in (H

8

), and re
alling that I(z

n

) > 0 for large n,

we obtain

(5.2)

1

2

jrv

n

j

2

2

+

Z




R

1

(x; z

n

) =

1

2

jru

n

j

2

2

�

a

1

2

ju

n

j

2

2

� I(z

n

) �

1

2

jru

n

j

2

2

:

Next using (5.2), assumption H

8

and (5.1) we obtain

(5.3) jrv

n

j

2

2

+ 


4

jv

n

j

q

q

� 


5

�

1 + ju

n

j

�

�

+ ju

n

j

2(��1)

�

+ jv

n

j

2(��1)

q

�

:

The 
ombination of (5.1) and (5.3) implies

jrz

n

j

2

2

+ jv

n

j

q

q

� 


6

�

1 + ju

n

j

�

2

+ jv

n

j

2(��1)

q

�

:

Sin
e � < 2 and 2(� � 1) < q, we see that (z

n

) is bounded. �

Lemma 5.4. I satis�es (I

10

).

Proof. Let (z

n

) be a (PS)

�




sequen
e with 
 > 0. Using Lemma 5.3, an argument

similar to that of Lemma 3.2 shows that along a subsequen
e z

n

* z 2 K




, u

n

! u

in H

1

0

(
). Sin
e E

1

� H

1

0

(
) we have P

1

z

n

! P

1

z. �

Proof of Theorem 1.6. Sin
e H(x; z) is even in z, I is even. By assumption, I(0) =

0. Lemmas 5.1, 5.2 and 5.4 show that I satis�es (I

8

)� (I

10

). Now Proposition 2.3

applies and the proof is 
omplete. �
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