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�

and Y.H. Ding

��

Abstrat. We study existene and multipliity of solutions of the ellipti system

8

>

<

>

:

��u = H

u

(x; u; v) in 


��v = �H

v

(x; u; v) in 


u(x) = v(x) = 0 on �


where 
 � R

N

; N � 3, is a smooth bounded domain and H 2 C

1

(

�


 � R

2

;R). We

assume that the nonlinear term

H(x; u; v) � juj

p

+ jvj

q

+R(x; u; v) with lim

j(u;v)j!1

R(x; u; v)

juj

p

+ jvj

q

= 0;

where p 2 (1; 2

�

), 2

�

:= 2N=(N � 2), and q 2 (1; 1). So some superritial systems

are inluded. Nontrivial solutions are obtained. When H(x; u; v) is even in (u; v), we

show that the system possesses a sequene of solutions assoiated with a sequene of

positive energies (resp. negative energies) going toward in�nity (resp. zero) if p > 2

(resp. p < 2). All results are proved using variational methods. Some new ritial

point theorems for strongly inde�nite funtionals are proved.

1. Introdution and main results

Consider the following ellipti system

(E)

8

>

<

>

:

��u = H

u

(x; u; v) in 


��v = �H

v

(x; u; v) in 


u(x) = v(x) = 0 on �


where 
 � R

N

; N � 3, is a smooth bounded domain and H :

�


� R

2

! R is a C

1

-

funtion. Here H

u

denotes the partial derivative of H with respet to the variable

u. Writing z := (u; v), we suppose H(x; 0) � 0 and H

z

(x; 0) � 0. Then z = 0 is a

trivial solution of the system. In this paper we disuss the existene of nontrivial
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2 D.G. DE FIGUEIREDO AND Y.H. DING

solutions. Roughly speaking, we are mainly interested in the lass of Hamiltoneans

H , suh that

H(x; u; v) � juj

p

+ jvj

q

+R(x; u; v) with lim

jzj!1

R(x; u; v)

juj

p

+ jvj

q

= 0;

where 1 < p < 2

�

:= 2N=(N � 2) and q > 1. The most interesting results ob-

tained here refer to the ase when q � 2

�

, whih orrespond to ritial and su-

perritial problems. The ase when q < 2

�

has been studied in Costa-Magalh~aes

[CM1℄, [CM2℄ and Beni-Rabinowitz [BR℄. See also Bartsh-De Figueiredo [BD℄, De

Figueiredo-Magalh~aes [DM℄, De Figueiredo-Felmer [DF℄ and Hulshof-vanderVorst

[HV℄, where similar systems also leading to strongly inde�nite funtionals have been

studied. However, only subritial systems have been onsidered in those papers.

Letting 2

�

= 2

�

=(2

�

� 1) = 2N=(N + 2), we assume that H(x; z) satis�es the

following ondition

(H

0

) there are p 2 (1; 2

�

); q 2 (1; 1) and � 2 (1; 1+q=2

�

) suh that, for all (x; z),

jH

u

(x; u; v)j � 

0

(1+juj

p�1

+jvj

��1

) and jH

v

(x; u; v)j � 

0

(1+juj

p�1

+jvj

q�1

):

In all hypotheses onH(x; z) the 

i

's denote positive onstants independent of (x; z).

We note that if q < 2

�

, then 2

�

< q=(q�1), i. e., q�1 < q=2

�

. Hene, it is possible

that q � � < 1 + q=2

�

. However, if q � 2

�

, then � < q. Furthermore, we remark

that � an be very large, if q is suÆiently large.

In addition, we need distint onditions on H orresponding to the ases when

p > 2; p < 2 or p = 2.

First, onsider the ase when p > 2. In this ase, we assume the following three

onditions:

(H

1

) there are � > 2, � > 1 and R

1

� 0 suh that

1

�

H

u

(x; z)u+

1

�

H

v

(x; z)v � H(x; z) whenever jzj � R

1

;

with the provision that � = � if q > 2;

(H

2

) there are 2

�

(p� 1) � � � p and 2

�

(� � 1) < �, suh that

H(x; z) � 

1

�

juj

�

+ jvj

�

�

� 

2

for all (x; z);
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and � = q if q > 2

�

;

(H

3

) H(x; 0; v) � 0 and H

u

(x; u; 0) = o(juj) as u! 0 uniformly in x.

We prove the following results.

Theorem 1.1. Let (H

0

) be satis�ed with p > 2. If (H

1

) � (H

3

) hold, then (E)

has at least one nontrivial solution.

Theorem 1.2. Let (H

0

) be satis�ed with p > 2. If H(x; z) is even in z and satis�es

(H

1

) � (H

2

), then (E) has a sequene (z

n

) of solutions with energies I(z

n

) :=

R




�

1

2

(jru

n

j

2

� jrv

n

j

2

)�H(x; z

n

)

�

going to 1, as n!1.

In order to desribe the other results, let �(��) denote the set of all eigenvalues

of (��; H

1

0

(
)): �

1

< �

2

� �

3

� � � � .

We now onsider the ase when p < 2. We make the following assumptions:

(H

4

) there are � 2 (1; 2), � � 2 and 

3

� 0 (

3

= 0, if q > 2

�

) suh that

H(x; u; v) �

1

�

H

u

(x; u; v)u+

1

�

H

v

(x; u; v)v � 

3

for all (x; z);

(H

5

) there are � 2 (1; 2) and Æ 2 (0; 1=2) suh that H(x; u; v) � 

4

juj

�

� Æ�

1

v

2

for all (x; z);

(H

6

) if q � 2

�

then H

v

(x; z)v � 

5

jvj

q

� 

6

(jvj+ u

2

) for all (x; z).

With these assumptions we have the following three results, for the ase when p < 2

Theorem 1.3. Suppose that (H

0

) holds with p < 2 and q � 2. If H(x; z) also

satis�es (H

4

)� (H

6

), then (E) has at least one nontrivial solution.

Theorem 1.4. Suppose that H(x; z) is even in z and (H

0

) holds with p < 2 and

q � 2. If H(x; z) also satis�es (H

4

)�(H

6

), then (E) has a sequene (z

n

) of solutions

with negative energies I(z

n

) going to 0 as n!1.

Theorem 1.5. Let (H

0

), with p; q 2 (1; 2), and (H

5

) be satis�ed. Then (E) has

at least one nontrivial solution. If, in addition, H(x; z) is even in z, then (E) has a

sequene (z

n

) of solutions with negative energies I(z

n

) going to 0 as n!1.

Finally, we onsider the ase when p = 2, whih presents some sort of resonane.

Assume
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(H

7

) there exist b

0

� 0 < a

0

suh that R

0

(x; z) := H(x; z)�

1

2

(a

0

u

2

+b

0

v

2

) = o(jzj

2

)

as z ! 0 uniformly in x;

(H

8

) there exist � 2 (1; 2); a

1

2 [a

0

; 1)n�(��), suh that R

1

(x; z) := H(x; z)�

1

2

a

1

u

2

satis�es j�

u

R

1

(x; z)j � 

7

(1+juj

��1

+jvj

��1

) and R

1

(x; z) � 

8

jvj

q

�



9

(1 + juj

�

).

The position of the numbers a

0

; a

1

; b

0

with respet to the spetrum �(��) plays

a very essential role in the next result. For that matter, let i; j; k be nonnegative

integers suh that �

i

= minf� 2 �(��) : � > a

0

g; �

j

= maxf� 2 �(��) : � <

�b

0

g, �

k

= maxf� 2 �(��) : � < a

1

g, and set

` =

�

j if a

1

= a

0

j + k � i+ 1 if a

1

> a

0

:

Now we an state our last result.

Theorem 1.6. Let (H

0

) be satis�ed with p = 2 and � < 1 + q=2. Assume that

H(x; z) is even in z and satis�es (H

7

) � (H

8

). Then (E) has at least one pair of

nontrivial solutions if ` = 1, and in�nitely many solutions if ` � 2.

The ases overed in Theorem 1.6 inlude some asymptotially linear systems.

This type of systems have been studied in [CM1℄, [CM2℄ and Silva [S℄. However

their results are not omparable with the ones obtained here.

We organize the paper as follows. In order to establish multipliity of solutions we

need some new abstrat propositions on Critial Point Theory for Stongly Inde�nite

Funtionals, whih will be provided in Setion 2. These propositions are based on

ertain Galerkin approximations, and we emphasize that the funtionals do not

satisfy the usual Palais-Smale ondition. In Setion 3 we study systems whih are

superlinear in the variable u, and prove Theorems 1.1 and 1.2. In Setion 4 we

onsider systems whih are sublinear in the variable u, and prove Theorems 1.3, 1.4

and 1.5. In both Setions 3 and 4, the variable v an have subritial growth as well

as superritial growth. Finally, in Setion 5, we onsider a speial asymptotially

linear system and prove existene of multiple solutions.
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2. Critial points for strongly indefinite funtionals

Let E be a Banah spae with norm k � k. Suppose that E has a diret sum

deomposition E = E

1

�E

2

with both E

1

and E

2

being in�nite dimensional. Let

P

1

denote the projetion from E onto E

1

. Assume (e

1

n

) (resp. (e

2

n

)) is a basis for

E

1

(resp. E

2

). Set

X

n

:= spanfe

1

1

; � � � ; e

1

n

g �E

2

; X

m

:= E

1

� spanfe

2

1

; � � � ; e

2

m

g;

and let (X

m

)

?

denote the omplement of X

m

in E. For a funtional I 2 C

1

(E;R)

we set I

n

:= I j

X

n

, the restrition of I on X

n

. Reall that a sequene (z

j

) � E is

said to be a (PS)

�



sequene if z

j

2 X

n

j

; n

j

! 1; I(z

j

) !  and I

0

n

j

(z

j

) ! 0 as

j ! 1. If any (PS)

�



sequene has a onvergent subsequene, then we say that I

satis�es (PS)

�



ondition.

Denote the upper and lower level sets, respetively, by I

a

= fz 2 E : I(z) �

ag; I

b

= fz 2 E : I(z) � bg and I

b

a

= I

a

\ I

b

(denote similarly (I

n

)

a

; (I

n

)

b

and

(I

n

)

b

a

). We also set K = fz 2 E : I

0

(z) = 0g; K



= K \ I



; K



= K \ I



and

K

b

a

= K

a

\ K

b

.

Proposition 2.1. Let E be as above and let I 2 C

1

(E;R) be even with I(0) = 0.

In addition, suppose that, for eah m 2 N, the onditions below hold

(I

1

) there is R

m

> 0 suh that I(z) � 0 for all z 2 X

m

with kzk � R

m

;

(I

2

) there are r

m

> 0 and a

m

!1 suh that I(z) � a

m

for all z 2 (X

m�1

)

?

with

kzk = r

m

;

(I

3

) I is bounded from above on bounded sets of X

m

;

(I

4

) if  � 0, any (PS)

�



sequene (z

n

) has a subsequene along whih z

n

* z 2 K



.

Then the funtional I has a sequene (

k

) of ritial values, with the property that



k

!1.

Remark 2.1. This proposition is more or less known if the ondition (I

4

) is replaed

by the (PS)

�

ondition (f. [B℄, [D℄), or by the usual Palais-Smale ondition :

Any sequene (z

k

) � E suh that jI(z

k

)j �  and I

0

(z

k

) ! 0 has a onvergent

subsequene (f. [BR℄).
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Proof of Proposition 2.1. We only sketh the proof. Fix m 2 N, and set X

m

n

=

X

n

\X

m

; D

m

n

= B

R

m

\X

m

n

, for all n 2 N. Let

�

m

n

= f 2 C(D

m

n

; X

n

) :  is odd and j

�D

m

n

= idg;

and de�ne



m

n

:= inf

2�

max I((D

m

n

)):

Using (I

1

)� (I

3

) and the Borsuk-Ulam theorem we obtain

a

m

� 

m

n

� �

m

:= max I(D

m

n

):

A standard deformation argument, via a negative pseudo-gradient ow, shows that

there is a sequene (z

m

n

)

1

n=1

, with z

m

n

2 X

n

satisfying

jI(z

m

n

)� 

m

n

j �

1

n

; kI

0

n

(z

m

n

)k �

1

n

:

Going to a subsequene if neessary we an assume that 

m

n

! 

m

; I(z

m

n

) ! 

m

and I

0

n

(z

m

n

) ! 0 as n ! 1. Remark that a

m

� 

m

� �

m

. By (I

4

), z

m

n

* z

m

as

n!1 with I

0

(z

m

) = 0 and I(z

m

) � 

m

. Finally, sine a

m

!1, we onlude that

I(z

m

) � a

m

!1. �

Proposition 2.2. Let E be as above and let I 2 C

1

(E;R) be even. Assume that

I(0) = 0 and that, for eah m 2 N, the two onditions below hold

(I

5

) there are r

m

> 0 and a

m

> 0 suh that I(z) � a

m

for all z 2 X

m

with

kzk = r

m

;

(I

6

) there is b

m

> 0 with b

m

! 0 suh that I(z) � b

m

for all z 2 (X

m�1

)

?

.

Moreover, suppose that either I satis�es the (PS)

�



ondition for all  > 0, or that

the ondition below holds

(I

7

) inf I(K) = 0, and, for all  � 0,any (PS)

�



sequene (z

n

) has a subsequene

along whih z

n

* z 2 K



with z = 0 only if  = 0.

Then I has a sequene (

k

) of positive ritial values satisfying 

k

! 0.

Proof. Let � be the family of symmetri, losed subsets of Enf0g, and let  : �!

N [ f0;1g denote the Krasnoselski genus map. Set



m

n

:= sup

A2�

m

n

inf

z2A

I(z) where �

m

n

:= fA 2 � : A � X

n

and (A) � n+mg:
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Fix m 2 N. The Borsuk-Ulam theorem implies that A \ (X

m�1

)

?

6= ;, for eah

A 2 �

m

n

. It follows from (I

6

) that

inf

z2A

I(z) � sup

z2(X

m�1

)

?

I(z) � b

m

:

On the other hand, sine (�B

r

m

\X

m

n

) = n+m, one has S

m

n

:= �B

r

m

\X

m

n

2 �

m

n

,

and so, by (I

5

), we obtain

inf

z2S

m

n

I(z) � a

m

:

Therefore,

(2.1) a

m

� 

m

n

� b

m

:

A standard deformation argument, using a positive pseudo-gradient ow, yields the

existene of a sequene (z

m

n

)

1

n=1

, with z

m

n

2 X

n

satisfying

jI(z

m

n

)� 

m

n

j �

1

n

and kI

0

n

(z

m

n

)k �

1

n

:

We an assume that I(z

m

n

)! 

m

as n!1. So, (z

m

n

) is a (PS)

�



m

sequene with

(2.2) a

m

� 

m

� b

m

:

Now, if we assume that I satis�es the (PS)

�



ondition for  > 0, then the onlusion

follows. Next, suppose instead that (I

7

) holds. Then, along a subsequene, z

m

n

*

z

m

as n!1 with I

0

(z

m

) = 0 and 0 < I(z

m

) � 

m

. Finally, by (2.2)

I(z

m

) � b

m

! 0

and the proof is omplete. �

Proposition 2.3. Let E be as above and let I 2 C

1

(E;R) be even with I(0) = 0.

Suppose, in addition, that the three onditions below hold

(I

8

) there are ` 2 N and r; a > 0 suh that I(z) � a for all z 2 X

`

with kzk = r;

(I

9

) there is b > 0 suh that sup I(E

2

) � b;

(I

10

) any (PS)

�



,  > 0, sequene (z

n

) has a subsequene along whih z

n

* z 2 K



and P

1

z

n

! P

1

z.
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Then I has at least one pair of nontrivial ritial points if ` = 1 and in�nitely many

ritial points if ` > 1, with positive ritial values.

Proof. Let �; ; �

m

n

and 

m

n

be the notations as in the proof of Proposition 2.2.

As before, by (I

8

)� (I

9

), we obtain

a � 

m

n

� b for all n 2 N and m = 1; � � � ; `;

and we �nd sequenes z

m

n

2 X

n

suh that, going to subsequenes if neessary,

I(z

m

n

)! 

m

and I

0

n

(z

m

n

)! 0 as n!1 with

b � 

1

� 

2

� � � � � 

`

� a:

Using (I

10

) we an assume furthermore that z

m

n

* z

m

2 K



m

for m = 1; � � � ; `, as

n!1. If ` = 1 the proof is omplete.

Consider ` > 1. Let F = fz 2 K : I(z) > 0g. We are going to prove that F

is an in�nite set. Arguing by ontradition, we suppose that F is �nite. Choose

0 < � < a � b < � satisfying

� < inf I(F ) � sup I(F ) < �:

Let k 2 N be so large that 0 62 A := Q

k

F where Q

k

: E ! X

k

denotes the

projetion. Then A is also �nite and (A) = 1. By the ontinuity of , for all

Æ > 0 small, (N

k

Æ

(A)) = (A) where N

k

Æ

(A) = fz 2 X

k

: dist(z; A) � Æg. Set

C

Æ

= N

k

Æ

(A)�(X

k

)

?

. Sine N

k

Æ

(A) � C

Æ

and Q

k

: C

Æ

! N

k

Æ

(A), it follows from the

properties of  that (C

Æ

) = (N

k

Æ

(A)). We remark that Q

k

= P

1

+(Q

k

�P

1

) and

that the range of Q

k

�P

1

is k-dimensional. So in virtue of (I

10

), we onlude that,

for all  � 0, any (PS)

�



sequene (z

n

) has a subsequene, along whih z

n

* z 2 K



and Q

k

z

n

! Q

k

z. Hene there are n

0

2 N and � > 0 suh that for all n � n

0

kI

0

n

(w)k � � for all w 2 (I

n

)

�

�

nC

n

Æ

where C

n

Æ

= C

Æ

\X

n

. By a standard deformation argument, we an then onstrut

a sequene of odd homeomorphisms �

n

: X

n

! X

n

suh that

�

n

((I

n

)

�

nC

n

Æ

) � (I

n

)

�
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(f. [R℄). For n

0

suÆiently large, we an suppose that

� < 

`

n

� 

`�1

n

� � � � � 

1

n

< � for all n � n

0

:

Let G 2 �

`

n

be suh that inf I(G) > (�+ 

`

n

)=2. One then has

�

n

(GnC

n

Æ

) � (I

n

)

�

and

(�

n

(GnC

n

Æ

)) = (GnC

n

Æ

) � (G)� (C

n

Æ

)

� n+ `� (C

n

Æ

) � n+ `� 1:

Thus �

n

(GnC

n

Æ

) 2 �

`�1

n

and � � inf I(�

n

(GnC

n

Æ

)) � 

`�1

n

. One �nally omes to

� � 

`�1

n

< �, whih is a ontradition. �

Form now on we turn to the system (E). We denote by j � j

t

the usual L

t

(
) norm

for all t 2 [1; 1℄. For q > 1 let V

q

= H

1

0

(
) if q � 2

�

and V

q

= H

1

0

(
)\L

q

(
), the

Banah spae equipped with the norm kvk

V

q

=

�

jrvj

2

2

+ jvj

2

q

�

1=2

, if q > 2

�

. Let E

q

be the produt spae H

1

0

(
)� V

q

with elements denoted by z = (u; v). We denote

the norm in E

q

by kzk

q

= (jruj

2

2

+kvk

2

V

q

)

1=2

. E

q

has the diret sum deomposition

E

q

= E

�

q

�E

+

; z = z

�

+ z

+

where E

�

q

= f0g � V

q

; E

+

= H

1

0

(
)� f0g:

For onveniene, we will write z

+

= u and z

�

= v. Reall that by (�

n

)

n2N

we

denote the sequene of eigenvalues of (��; H

1

0

(
)). Let e

n

; je

n

j

2

= 1, be the

eigenfuntion orresponding to �

n

for eah n 2 N. Clearly, e

+

n

:= (e

n

; 0); n 2 N, is

a basis for E

+

, and e

�

n

= (0; e

n

); n 2 N, is a basis for E

�

q

.

Suppose that the assumption (H

0

) holds. Then

(2.3) H(x; z) � (1 + juj

2

�

+ jvj

q

) for all (x; z):

So the funtional

(2.4) I(z) :=

1

2

Z




(jruj

2

� jrvj

2

)�

Z




H(x; z)

is well de�ned in E

q

. Moreover I 2 C

1

(E

q

;R) and the ritial points of I are the

solutions of (E).
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Lemma 2.1. If (H

0

) holds, then I

0

is weak sequentially ontinuous, that is,

I

0

(z

n

)* I

0

(z) provided z

n

* z.

Proof. If q < 2

�

this statement is well known. Assume now that q � 2

�

. Let z

n

* z

in E

q

. Clearly, for all w = (';  ) 2 E

q

, we have

Z




(ru

n

r'�rv

n

r )!

Z




(rur'�rvr ) :

So it remains to show that

(2.5)

Z




H

u

(x; z

n

)' !

Z




H

u

(x; z)' for all ' 2 H

1

0

(
)

and

(2.6)

Z




H

v

(x; z

n

) !

Z




H

v

(x; z) for all  2 V

q

:

By the Sobolev embedding theorem and using interpolation, we obtain that

u

n

! u in L

t

for t 2 [1; 2

�

) and v

n

! v in L

t

for t 2 [1; q). Noting that

jH

u

(x; u; v)j � 

0

(1 + juj

p�1

+ jvj

��1

) with 2

�

(� � 1) < q, (2.5) follows easily sine

u

n

! u in L

p

, v

n

! v in L

2

�

(��1)

and ' 2 H

1

0

(
) � L

2

�

. Next we see that (2.6)

is learly true when  2 L

1

. In general, for a  2 V

q

we proeed as follows. Let

~

 

m

2 L

1

with

~

 

m

!  in L

q

as m!1. So

j

Z




(H

v

(x; z

n

)�H

v

(x; z)) j = j

Z




(H

v

(x; z

n

)�H

v

(x; z))(

~

 

m

+ ( �

~

 

m

))j;

and using (H

0

) we see that this expression is less than

j

Z




(H

v

(x; z

n

)�H

v

(x; z))

~

 

m

j+

1

(j �

~

 

m

j

1

+ ju

n

j

p�1

p

j

~

 

m

� j

p

+ jv

n

j

q�1

q

j

~

 

m

� j

q

):

Sine (z

n

) is bounded in E

q

and L

1

is dense in L

q

, we obtain the estimates below,

whih proves (2.6)

j

Z




(H

v

(x; z

n

)�H

v

(x; z))

~

 

m

j+ 

2

(j

~

 

m

�  j

p

+ j

~

 

m

�  j

q

):

Thus I

0

(z

n

)w ! I

0

(z)w for all w 2 E

q

. �
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3. The ase p > 2

Throughout this setion let (H

0

) be satis�ed with p > 2 and assume that (H

1

)�

(H

2

) hold. Remark that, by (H

2

), there exists R > 0 suh that H(x; z) > 0,

whenever jzj � R. This, jointly with (H

1

), implies

(3.1) H(x; z) � 

1

(juj

�

+ jvj

�

)� 

2

for all (x; z)

(see, [F℄). This, together with (2.3) and (H

2

), shows

(3.2) � � q and � � q:

Moreover, in virtue of (3.1) and (H

2

), we may assume, without loss of generality,

that (sine � > 2)

(3.3) � > 2 :

Now we set E

1

= E

�

q

; E

2

= E

+

and e

1

n

= e

�

n

; e

2

n

= e

+

n

for all n 2 N. So

E

q

= E

1

L

E

2

. Consider the funtional de�ned by (2.4), whih has the properties

stated in Setion 2.

Lemma 3.1. Any (PS)

�



sequene is bounded.

Proof. Let z

n

2 X

n

be suh that

I(z

n

)!  and I

0

n

(z

n

)! 0:

Case 1: q � 2. In this ase E

q

= (H

1

0

(
))

2

. By (H

1

), for w

n

:= (

1

�

u

n

;

1

�

v

n

), we

have

(3.4)

I(z

n

)� I

0

n

(z

n

)w

n

=(

1

2

�

1

�

)jru

n

j

2

2

+ (

1

�

�

1

2

)jrv

n

j

2

2

+

Z




�

1

�

H

u

(x; z

n

)u

n

+

1

�

H

v

(x; z

n

)v

n

�H(x; z

n

)

�

� 

1

� (

1

2

�

1

�

)jru

n

j

2

2

+ (

1

�

�

1

2

)jrv

n

j

2

2

� 

2

:
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If q < 2 then (3.2) shows that � < 2, and so kz

n

k

2

q

� 

3

(1 + kz

n

k

q

) whih implies

that (z

n

) is bounded in E

q

. Assume q = 2. Invoking (3.2), � � 2, and so jru

n

j

2

2

�

(1 + kz

n

k

q

) by (3.4). Sine H(x; z) > 0 for all jzj large, and

1

2

jrv

n

j

2

2

+

Z




H(x; z

n

) = �I(z

n

) +

1

2

jru

n

j

2

2

� (1 + kz

n

k

q

);

one sees that kz

n

k

2

q

� (1 + kz

n

k

q

). Hene, (z

n

) is bounded.

Case 2: q > 2. Note that in this ase � = � > 2 in (H

1

). So

(3.5)

I(z

n

)�

1

2

I

0

n

(z

n

)z

n

=

Z




(

1

2

H

z

(x; z

n

)z

n

�H(x; z

n

))

� (

�

2

� 1)

Z




H(x; z

n

)� 

whih, together with (H

2

), yields

(3.6) ju

n

j

�

�

+ jv

n

j

�

�

� (1 + kz

n

k

q

):

Using (H

0

),

(3.7)

jru

n

j

2

2

= I

0

n

(z

n

)(u

n

; 0) +

Z




H

u

(x; z

n

)u

n

� 

1

kz

n

k

q

+ 

2

Z




(ju

n

j

p

+ jv

n

j

��1

ju

n

j):

Next we estimate the integrals in the right side of (3.7). Sine 2

�

(p � 1) � � � p,

we have that � := �=(1 + � � p) � 2

�

. Using the H�older inequality, the Sobolev

embedding theorem and (3.6), we obtain

Z




ju

n

j

p

� ju

n

j

p�1

�

ju

n

j

�

� 

1

+ 

2

kz

n

k

1+(p�1)=�

q

:

Similarly, sine � � 1 < �=2

�

, we have 1 < ! := �=(1 + � � �) < 2

�

and hene

Z




jv

n

j

��1

ju

n

j � jv

n

j

��1

�

ju

n

j

!

� 

1

+ 

2

kz

n

k

1+(��1)=�

q

:

Therefore, using the estimate in (3.7) we obtain

(3.8) jru

n

j

2

2

� (1 + kz

n

k

1+(p�1)=�

q

+ kz

n

k

1+(��1)=�

q

):

Sine

jrv

n

j

2

2

= �I

0

n

(z

n

)(0; v

n

)�

Z




H

z

(x; z

n

)z

n

+

Z




H

u

(x; z

n

)u

n

;
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and using (3.5) and the above arguments we obtain

(3.9) jrv

n

j

2

2

� (1 + kz

n

k

1+(p�1)=�

q

+ kz

n

k

1+(��1)=�

q

):

Reall that, in view of our assumptions, (p� 1)=� � 1=2

�

; (� � 1)=� < 1=2

�

, and

� = q, if q > 2

�

. Hene, it follows from (3.6) and (3.8)-(3.9) that (z

n

) is bounded

in E

q

. �

Lemma 3.2. Let z

n

2 X

n

be a (PS)

�



sequene. If q � 2

�

then (z

n

) ontains

a onvergent subsequene. If q > 2

�

then there is a z 2 E

q

suh that, along a

subsequene, z

n

* z and I

0

(z) = 0 and I(z) � .

Proof. By Lemma 3.1 (z

n

) is bounded. We an assume that z

n

* z in E

q

, z

n

! z

in (L

s

(
))

2

for all 1 � s < 2

�

and z

n

(x) ! z(x) a.e. on 
. It follows from

the weakly sequentially ontinuity of I

0

(see Lemma 2.1) that I

0

(z) = 0. Sine

I

0

n

(z

n

)! 0 we obtain

(ru

n

;ru

n

�ru)

L

2
= I

0

n

(z

n

)(u

n

� u; 0) +

Z




H

u

(x; z

n

)(u

n

� u)

= o(1) +

Z




H

u

(x; z

n

)(u

n

� u):

Using (H

0

) and H�older inequality, we obtain the estimate

�

�

�

�

Z




H

u

(x; z

n

)(u

n

� u)

�

�

�

�

� (ju

n

� uj

1

+ ju

n

j

p�1

p

ju

n

� uj

p

+ jv

n

j

��1

�

ju

n

� uj

!

) = o(1);

where ! is as in the proof of Lemma 3.1. Hene jru

n

j

2

2

! jruj

2

2

whih implies

u

n

! u in H

1

0

(
). Let P

n

: E

q

! X

n

denote the projetion. Remark that P

n

z ! z

in E

q

for all z 2 E

q

. Moreover, using again (H

0

) and H�older inequality we estimate

�

�

�

�

Z




H

v

(x; z

n

)(v � P

n

v)

�

�

�

�

� (jv�P

n

vj

1

+ ju

n

j

p�1

p

jv�P

n

vj

p

+ jv

n

j

q�1

q

jv�P

n

vj

q

)! 0:

On the other hand,

(rv

n

;rv �rv

n

)

L

2

= o(1) + I

0

n

(z

n

)(0; v

n

� P

n

v) +

Z




H

v

(x; z

n

)(v

n

� P

n

v)

= o(1) +

Z




H

v

(x; z

n

)(v

n

� v)

= o(1) +

Z




H

z

(x; z

n

)(z

n

� z)�

Z




H

u

(x; z

n

)(u

n

� u)

= o(1) +

Z




H

z

(x; z

n

)z

n

�

Z




H

z

(x; z

n

)z:



14 D.G. DE FIGUEIREDO AND Y.H. DING

Lebesgue theorem and the weakly sequentially ontinuity of H

z

(x; �) (see the proof

of Lemma 2.1) yield

jrvj

2

2

� lim sup

n!1

jrv

n

j

2

2

= lim inf

n!1

�

Z




H

z

(x; z

n

)z

n

�

Z




H

z

(x; z

n

)z

�

� 0;

i.e., jrvj

2

2

� lim sup

n!1

jrv

n

j

2

2

. This together with the weakly lower semiontinu-

ity of norms, jrv

n

j

2

! jrvj

2

. So v

n

! v in H

1

0

(
).

Therefore, if q � 2

�

, we obtain that, along a subsequene, z

n

! z in E

q

and

onsequently I(z) = . Next assume that q > 2

�

. Observe that

I(z)� I(z

n

) =

1

2

(jruj

2

2

� jru

n

j

2

2

)�

1

2

(jrvj

2

2

� jrv

n

j

2

2

) +

Z




H(x; z

n

)�

Z




H(x; z);

hene

I(z)�  = o(1) +

Z




H(x; z

n

)�

Z




H(x; z):

Lebesgue theorem then yields

I(z)�  = lim inf

n!1

Z




H(x; z

n

)�

Z




H(x; z) � 0;

that is, I(z) � . �

Lemma 3.3. If (H

3

) also holds, there are r; � > 0 suh that inf I(�B

r

E

+

) � �.

Proof. By (H

0

) and (H

3

), for any " > 0, there is 

"

> 0 suh that

H(x; u; 0) � "juj

2

+ 

"

juj

2

�

:

Hene

I(u) �

1

2

jruj

2

2

� "juj

2

2

� 

"

juj

2

�

2

�

;

and the onlusion follows easily. �

Let e 2 E

+

with jrej

2

2

= 1, and set

Q = f(se; v) : 0 � s � r

1

; kvk

q

� r

2

g:
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Lemma 3.4. If (H

3

) also holds, there are r

1

; r

2

> 0, with r

1

> r, suh that

I(z) � 0 for all z 2 �Q.

Proof. By (H

3

); I(z) � 0 for all z 2 E

�

q

. By (H

2

),

I((se; v)) �

s

2

2

�

1

2

jrvj

2

2

� 

1

Z




(jsej

�

+ jvj

�

) + 

2

:

The onlusion follows sine � > 2. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Lemmas 3.3 and 3.4 say that I has the linking geometry.

Let Q

n

:= Q \X

n

and de�ne



n

:= inf

2�

n

max I((Q

n

));

where �

n

:= f 2 C(Q

n

; X

n

) : j

�Q

n

= idg. Then � � 

n

� � := sup I(Q). A

standard deformation argument shows that there is z

n

2 X

n

suh that jI(z

n

)�

n

j �

1=n and kI

0

n

(z

n

)k � 1=n. So we obtain a (PS)

�



sequene (z

n

) with  2 [�; �℄.

Lemma 3.2 implies z

n

* z with I

0

(z) = 0 and I(z) � . The proof is omplete. �

We now onsider the multipliity of solutions using Proposition 2.1.

Lemma 3.5. I satis�es (I

1

).

Proof. Using (H

2

) we obtain

I(z) �

1

2

jruj

2

2

�

1

2

jrvj

2

2

� 

1

Z




(juj

�

+ jvj

�

) + 

2

:

Sine all norms in spanfe

1

; � � � ; e

m

g are equivalent, we obtain

I(z) � �

�



3

jruj

��2

2

�

1

2

�

jruj

2

2

�

�

1

2

jrvj

2

2

+ 

1

jvj

�

�

�

+ 

2

;

for all z = (u; v) 2 X

m

' spanfe

1

; � � � ; e

m

g � V

q

.

So (I

1

) follows easily. �
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Lemma 3.6. I satis�es (I

2

).

Proof. Sine (X

m

)

?

� H

1

0

(
) and H

1

0

(
) embeds ompatly in L

p

(
), we have

that �

m

> 0 and �

m

! 0 as m!1, where

(3.12) �

m

:= sup

u2(X

m

)

?

nf0g

juj

p

jruj

2

;

see Lemma 3.8 in [W℄. For z = (u; 0) 2 (X

m

)

?

, it follows from (H

0

) that

I(z) =

1

2

jruj

2

2

�

Z




H(x; u; 0) �

1

2

jruj

2

2

� 

1

juj

p

p

� 

2

�

1

2

jruj

2

2

� 

1

�

p

m

jruj

p

2

� 

2

:

Setting r

m

= (p

1

�

p

m

)

1=(2�p)

and a

m

= (

1

2

�

1

p

)r

2

m

� 

2

we ome to the onlusion.�

Proof of Theorem 1.2. Sine H(x; z) is even in z, I is even. Lemma 3.2 shows that

I satis�es the assumption (I

4

) of Proposition 2.1. Lemmas 3.5 { 3.6 show that

(I

1

) � (I

2

) hold. Clearly (I

3

) is also true. Therefore by Proposition 2.1, there is a

sequene (z

n

) � E

q

satisfying I

0

(z

n

) = 0 and I(z

n

)!1. The proof is omplete.�

4. The ase p < 2

Throughout this setion we assume that (H

0

) is satis�ed with p 2 (1; 2). We

also suppose that (H

4

)� (H

6

) hold.

Let E

q

= E

1

�E

2

be as in Setion 3. Consider the funtional

J(z) = �I(z) =

Z




H(x; z) +

1

2

jrvj

2

2

�

1

2

jruj

2

2

:

Lemma 4.1. Any (PS)

�



sequene (z

n

)has a subsequene onverging weakly to a

ritial point z of J with J(z) �  and z = 0 only if z

n

! 0 in E

q

.

Proof. Part I: The sequene (z

n

) is bounded in E

q

By (H

4

) it follows

J(z

n

)� J

0

n

(z

n

)(

1

�

u

n

;

1

�

v

n

) � (

1

2

�

1

�

)jrv

n

j

2

2

+ (

1

�

�

1

2

)jru

n

j

2

2

� :



MULTIPLE SOLUTIONS OF ELLIPTIC SYSTEMS 17

Hene jru

n

j

2

2

� (1+ kz

n

k

q

). If � > 2, we also get jrv

n

j

2

2

� (1+ kz

n

k

q

). If � = 2,

we use (H

5

) and the fat that jrvj

2

2

� �

1

jvj

2

2

in order to obtain

�

1

2

� Æ

�

jrv

n

j

2

2

�

1

2

jrv

n

j

2

2

+

Z




H(x; z

n

) = J(z

n

) +

1

2

jru

n

j

2

2

:

Hene, jrv

n

j

2

2

� (1 + kz

n

k

q

), and we get

jru

n

j

2

2

+ jrv

n

j

2

2

� (1 + kz

n

k

q

):

Thus, if q � 2

�

, then (z

n

) is bounded in E

q

. Assume next that q > 2

�

. It follows

from (H

6

) that

(4.1) J

0

n

(z

n

)(0; v

n

) � 

1

jv

n

j

q

q

+ jrv

n

j

2

2

� 

2

(jv

n

j

1

+ ju

n

j

2

2

):

Thus jru

n

j

2

2

+ jrv

n

j

2

2

+ jv

n

j

q

q

� (1 + kz

n

k

q

), whih implies that (z

n

) is bounded

in E

q

, also in the ase when q > 2

�

.

Part II. We an now suppose that z

n

* z in E

q

, z

n

! z in (L

s

(
))

2

for all

1 � s < 2

�

and z

n

(x) ! z(x) a.e. in x 2 
. It follows that z is a ritial point of

J . As in the proof of Lemma 3.2, using (H

0

) and

J

0

n

(z

n

)(u

n

� u; 0) =

Z




H

u

(x; z

n

)(u

n

� u)� (ru

n

;r(u

n

� u))

L

2

we obtain that

j(ru

n

;r(u

n

�u))

L

2

j � o(1)+(ju

n

�uj

1

+ju

n

j

p�1

p

ju

n

�uj

p

+jv

n

j

��1

�

ju

n

�uj

!

) = o(1)

and so u

n

! u in H

1

0

(
). Let P

n

: E

q

! X

n

be the projetion as in the proof of

Lemma 3.2. So we obtain

(rv

n

;r(v � v

n

))

L

2

= o(1) + (rv

n

;r(P

n

v � v

n

))

L

2

= o(1) +

Z




H

v

(x; z

n

)(v

n

� P

n

v)� J

0

n

(z

n

)(0; v

n

� P

n

v)

= o(1) +

Z




H

v

(x; z

n

)(v

n

� v) +

Z




H

v

(x; z

n

)(v � P

n

v):

Using (H

0

) we have

�

�

�

�

Z




H

v

(x; z

n

)(v � P

n

v)

�

�

�

�

� (1 + ju

n

j

2

�

2

�

+ jv

n

j

q�1

q

)kv � P

n

vk

q

! 0:
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Consequently,

(4.2) (rv

n

;r(v � v

n

))

L

2

=

Z




H

v

(x; z

n

)(v

n

� v) + o(1)

Thus if q < 2

�

, it follows from (4.2) that jrv

n

j

2

! jrvj

2

, whih implies v

n

! v,

and so z

n

! z. This proves that J satis�es the (PS)

�



ondition in this ase, and

that J(z) = .

Consider next q � 2

�

. The weak sequential ontinuity ofH

v

(x; �) (see the proof of

Lemma 2.1) yields

R




H

v

(x; z

n

)v !

R




H

v

(x; z)v. By (H

6

), f

n

(x) := H

v

(x; z

n

)v

n

+



6

(jv

n

j + ju

n

j

2

) � 0. Using the fat that jv

n

j

1

! jvj

1

and ju

n

j

2

! juj

2

, and

applying Fatou's lemma to the sequene (f

n

), we get lim inf

n!1

R




H

v

(x; z

n

)v

n

�

R




H

v

(x; z)v. Using this estimate in (4.2) we obtain that jrvj

2

2

� lim sup

n!1

jrv

n

j

2

2

whih implies that v

n

! v in H

1

0

(
). In order to onlude that J(z) � , we use

the estimate

J(z

n

)� J(z) =

Z




(H(x; z

n

)�H(x; z)) + o(1);

(H

4

) and Fatou's lemma. Finally, if z = 0 then z

n

! 0 in (H

1

0

(
))

2

. Using (4.1),

jv

n

j

q

q

� o(1) + (jv

n

j

1

+ ju

n

j

2

2

)! 0;

and so z

n

! 0. �

Remark 4.1. In a similar way, using even simpler arguments, one heks that, if

(H

0

) holds with p; q 2 (1; 2), J satis�es the (PS)

�



ondition for all .

Remark 4.2. Let

~

J

m

= J j

X

m

denote the restrition of J on X

m

. Like in Lemma

4.1, it is not diÆult to hek that, if the sequene (z

m

) � E

q

, with z

m

2 X

m

,

satis�es J(z

m

) !  and

~

J

0

m

(z

m

) ! 0 as m ! 1, then it possesses a subsequene

onverging weakly to a ritial point z of J with J(z) � , and z = 0 only if z

n

! 0

in E

q

. We also have as in Remark 4.1 that, if (H

0

) holds with p; q 2 (1; 2), then

any suh sequene has a onvergent subsequene.

Lemma 4.2. There is R > 0 suh that J(z) � 0 for all z = (u; 0) with kzk � R.
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Proof. By (H

0

), we have H(x; u; 0) � (1 + juj

p

). Hene

J((u; 0)) =

Z




H(x; u; 0)�

1

2

jruj

2

2

� 

1

+ 

2

juj

p

p

�

1

2

jruj

2

2

� 

1

�

�

1

2

jruj

2�p

2

� 

3

�

jruj

p

2

;

and the lemma follows, sine p < 2. �

Lemma 4.3. For " > 0 small there is � > 0 suh that J(("e

1

; v)) � � for all

v 2 V

q

, where e

1

is the eigenfuntion orresponding to the �rst eigenvalue �

1

of

(��; H

1

0

(
)).

Proof. By (H

5

), for " > 0 small H(x; "e

1

; v) � 

4

"

�

e

�

1

� Æ�

1

v

2

, hene

J(("e

1

; v)) =

Z




H(x; "e

1

; v) +

1

2

jrvj

2

2

�

1

2

�

1

"

2

� (

4

je

1

j

�

�

�

1

2

�

1

"

2��

)"

�

:

The onlusion follows. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Reall that X

m

' spanfe

1

; � � � ; e

m

g � V

q

, and onsider the

restritions

~

J

m

as de�ned in Remark 4.2. Set D

R

= B

R

\E

2

= B

R

\ (H

1

0

(
)�f0g)

and D

m

= D

R

\X

m

, where R > 0 omes from Lemma 4.2. De�ne



m

:= inf

2�

m

max J((D

m

));

where �

m

:= f 2 C(D

m

; X

m

) : (z) = z for all z 2 �D

m

g. It is well-known that

(D

m

)\W 6= ; for all  2 �

m

whereW = f("e

1

; 0)g�V

q

with " > 0 small. Invoking

Lemma 4.3 we �x an " > 0 so small that there is � > 0 satisfying inf J(W ) � �.

Then we have

� � 

m

� b := max J(D

R

):

The well known Saddle Point Theorem (f. [R℄ or [Ch℄, [W℄) implies that there is

z

m

2 X

m

satisfying jJ(z

m

) � 

m

j � 1=m and k

~

J

0

m

(z

m

)k � 1=m. Now by virtue of

Remark 4.2, along a subsequene, z

m

* z with J

0

(z) = 0 and z 6= 0, ending the

proof. �

We now turn to the proof of Theorems 1.4 and 1.5.
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Lemma 4.4. If, in addition, 

3

= 0 in (H

4

), then J satis�es (I

5

).

Proof. It follows from (H

5

) that

(4.3)

J(z) � 

1

juj

�

�

+

�

1

2

� Æ

�

jrvj

2

2

�

1

2

jruj

2

2

�

�



2

�

1

2

jruj

2��

�

jruj

�

2

+

�

1

2

� Æ

�

jrvj

2

2

;

Sine � < 2, the result follows in the ase when q � 2

�

. Next onsider q > 2

�

.

Suppose (I

5

) does not hold. Then for any r > 0 there is a sequene z

j

2 X

m

suh that kz

j

k = r and J(z

j

) ! 0. It follows from (4.3) with z = z

j

, and for r

small, that jru

j

j

2

! 0 and jrv

j

j

2

! 0. All this implies that

R




H(x; z

j

)! 0. From

assumption (H

0

) and the fat that (u

j

) lies in a �nite dimensional subspae it follows

that

R




H

u

(x; z

j

)u

j

! 0. Consequently, by (H

4

) with 

3

= 0,

R




H

v

(x; z

j

)v

j

! 0.

This, jointly with (H

6

), yields

jv

j

j

q

q

� 

1

Z




H

v

(x; z

j

)v

j

+ 

2

(jv

j

j

1

+ ju

j

j

2

2

) ! 0:

Hene, z

j

! 0 in E

q

, whih is a ontradition. �

Lemma 4.5. J veri�es (I

6

).

Proof. By (H

0

), H(x; u; 0) � (juj+ juj

p

), and so, for u 2 (X

m�1

)

?

, one has

J((u; 0)) � 

1

(juj

p

+ juj

p

p

)�

1

2

jruj

2

2

� (

1

juj

p

�

1

4

jruj

2

2

) + (

1

juj

p

p

�

1

4

jruj

2

2

)

� (

1

�

m

�

1

4

jruj

2

)jruj

2

+ (

1

�

p

m

�

1

4

jruj

2�p

2

)jruj

p

2

where �

m

was de�ned by (3.12). Let b

m

:= (

1

�

m

)

2

+(1�p=2)

1

�

p

m

(2p

1

�

p

m

)

p=(2�p)

.

Then 0 < b

m

! 0 and J((u; 0)) � b

m

for all (u; 0) 2 (X

m�1

)

?

. �

Proof of Theorem 1.4. Sine H(x; z) is even in z, J is even. If q � 2

�

then J

satis�es the (PS)

�



ondition for all  (see the proof of Lemma 4.1). If q > 2

�

, then

using assumption (H

4

) applied to a ritial point z, we obtain

J(z) = J(z)� J

0

n

(z)(

1

�

u;

1

�

v) � (

1

2

�

1

�

)jrvj

2

2

+ (

1

�

�

1

2

)jruj

2

2

� 0:
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This, jointly with Lemma 4.1, shows that (I

7

) is satis�ed. It follows from Lemmas

4.4 and 4.5 that J satis�es (I

5

) and (I

6

). Therefore, the desired onlusion follows.�

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. The proof of the existene of one nontrivial solution is similar

to that of Theorem 1.3 using Remark 4.2 and Lemmas 4.2 and 4.3. The other

onlusion an be obtained along the lines of the proof of Theorem 1.4, using

Remark 4.1 and Lemmas 4.4{4.5. �

5. The ase p = 2

In this setion we always assume that (H

0

) holds with p = 2 and � < 1 + q=2.

We also suppose that (H

7

) � (H

8

) are satis�ed. We will apply Proposition 2.3 in

order to prove Theorem 1.6. Thus, set

E

2

= spanfe

+

1

; � � � ; e

+

k

g �E

�

q

' spanfe

1

; � � � ; e

k

g � V

q

; E

1

= E

q

	E

2

;

and

X

`

= E

1

� spanfe

+

i

; � � � ; e

+

k

; e

�

1

; � � � ; e

�

j

g:

One may arrange the bases as e

1

n

= e

+

k+n

for n 2 N, and e

2

n

= e

+

n+i�1

for 1 � n �

`� j; e

2

n

= e

�

n�`+j

for `� j < n � `; e

2

n

= e

+

n�`

for ` < n � `+ i� 1 and e

2

n

= e

�

n�k

for n > `+ i� 1. Consider the funtional I given by (2.4).

Lemma 5.1. I satis�es (I

8

), that is, there exist r; a > 0 suh that I(z) � a for all

z 2 X

`

with kzk

q

= r.

Proof. Let z = (u; v) 2 X

`

. Sine v 2 spanfe

1

; � � � ; e

j

g we have v 2 L

1

. By (H

0

)

and (H

7

), for any " > 0, there exists 

"

> 0 suh that R

0

(x; z) � "jzj

2

+ 

"

(juj

2

�

+

jvj

q

). Thus

I(z) =

1

2

(jruj

2

2

� a

0

juj

2

2

)�

1

2

(jrvj

2

2

� b

0

jvj

2

2

)�

Z




R

0

(x; z)

�

1

2

(1�

a

0

�

i

)jruj

2

2

+

1

2

(

�b

0

�

j

� 1)jrvj

2

2

� "jzj

2

2

� 

"

(juj

2

�

2

�

+ jvj

q

q

):

Now the onlusion follows easily. �



22 D.G. DE FIGUEIREDO AND Y.H. DING

Lemma 5.2. I satis�es (I

9

), that is, sup I(E

2

) <1.

Proof. For z 2 E

2

we have, using (H

8

), that

I(z) =

1

2

(jruj

2

2

� a

1

juj

2

2

)�

1

2

jrvj

2

2

�

Z




R

1

(x; z)

� �

1

2

(

a

1

�

k

� 1)jruj

2

2

�

1

2

jrvj

2

2

+ 

9

juj

�

�

� 

8

jvj

q

q

+ 

9

j
j

� �

�

1

2

(

a

1

�

k

� 1)jruj

2��

� 

1

�

jruj

�

2

�

�

1

2

jrvj

2

2

+ 

8

jvj

q

q

�

+ 

2

whih implies that I(z) � 0 for all z 2 E

2

with kzk

q

large. �

Lemma 5.3. Let  > 0. Then any (PS)



sequene is bounded.

Proof. We deompose H

1

0

(
) as

H

1

0

(
) = U

�

� U

+

; u = u

�

+ u

+

where U

�

= spanfe

1

; � � � ; e

k

g and U

+

is the orthogonal omplement of U

�

in

H

1

0

(
).

Let (z

n

) be a (PS)

�



sequene. Using the expression of I

0

n

I

0

n

(z

n

)u

+

n

= jru

+

n

j

2

2

� a

1

ju

+

n

j

2

2

�

Z




�

u

R

1

(x; z

n

)u

+

n

;

(H

8

) and H�older inequality we obtain

�

1�

a

1

�

k+1

�

jru

+

n

j

2

2

� 

1

jru

+

n

j

2

+ 

7

�

ju

+

n

j

1

+ ju

n

j

��1

�

ju

+

n

j

�

+ jv

n

j

��1

q

ju

+

n

j

r

�

where r = q=(1 + q � �). By assumptions, 1 < r < 2. It then follows from the

Sobolev embedding theorems that

�

1�

a

1

�

k+1

�

jru

+

n

j

2

2

� 

2

�

1 + ju

n

j

��1

�

+ jv

n

j

��1

q

�

jru

+

n

j

2

:

Similarly, we dedue that

�

a

1

�

k

� 1

�

jru

�

n

j

2

2

� 

2

�

1 + ju

n

j

��1

�

+ jv

n

j

��1

q

�

jru

�

n

j

2

:

The two previous inequalities imply the estimate

(5.1) jru

n

j

2

2

� 

3

�

1 + ju

n

j

2(��1)

�

+ jv

n

j

2(��1)

q

�

:
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Using the expression of H given in (H

8

), and realling that I(z

n

) > 0 for large n,

we obtain

(5.2)

1

2

jrv

n

j

2

2

+

Z




R

1

(x; z

n

) =

1

2

jru

n

j

2

2

�

a

1

2

ju

n

j

2

2

� I(z

n

) �

1

2

jru

n

j

2

2

:

Next using (5.2), assumption H

8

and (5.1) we obtain

(5.3) jrv

n

j

2

2

+ 

4

jv

n

j

q

q

� 

5

�

1 + ju

n

j

�

�

+ ju

n

j

2(��1)

�

+ jv

n

j

2(��1)

q

�

:

The ombination of (5.1) and (5.3) implies

jrz

n

j

2

2

+ jv

n

j

q

q

� 

6

�

1 + ju

n

j

�

2

+ jv

n

j

2(��1)

q

�

:

Sine � < 2 and 2(� � 1) < q, we see that (z

n

) is bounded. �

Lemma 5.4. I satis�es (I

10

).

Proof. Let (z

n

) be a (PS)

�



sequene with  > 0. Using Lemma 5.3, an argument

similar to that of Lemma 3.2 shows that along a subsequene z

n

* z 2 K



, u

n

! u

in H

1

0

(
). Sine E

1

� H

1

0

(
) we have P

1

z

n

! P

1

z. �

Proof of Theorem 1.6. Sine H(x; z) is even in z, I is even. By assumption, I(0) =

0. Lemmas 5.1, 5.2 and 5.4 show that I satis�es (I

8

)� (I

10

). Now Proposition 2.3

applies and the proof is omplete. �
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