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1. Introduction

Micropolar fluid theory was introduced by Eringen [7] in order to describe some
physical systems which do not satisfy the Navier-Stokes equations. These fluids
are able to describe the behavior of colloidal solutions, suspension solutions, liquid
crystal, animal blood, etc. The equations governing the flow of a micropolar fluid
involve a spin vector and a microinertia tensor in addition to the velocity vector.

Over the past years, many existence (weak and strong), uniqueness results has
been done for the micropolar fluids. The Dirichlet problem in a bounded domain
was investigated in [13], [14] (see also [15]), [19], [20], [16], [17], in an exterior
domains see [6], [18], and in an unbounded domain [4].

We observe that the Cauchy problem for micropolar fluid equations has not
been studied, thus it is the aim of this paper to construct strong solutions for the
Cauchy problem for the micropolar fluids.
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The governing system of Cauchy problem for equations of micropolar fluids is
the following

| a8_1751Jr(u-V)u—(VnLl/r)AujL Vp=2v, rot w1, in IR x (0,T),

divu=0in R* x (0,7),

— + (0 V)W — (¢4 + ca) AW — (cg + ¢4 — ¢,)V div w (1.1)
+4v,w =2v, ot u+ g in IR? x (0,7),

u— 0and w— 0 as |x| = oo,

[ u(x,0) = a(x) and w(x,0) = b(x) in R?

where u = (uq, us, us) is the velocity field, p is the pressure, and w = (wy, wy, ws)
is the microrotational interpreted as the angular velocity field of rotational of
particles. The fields f = (fi, fo, f3) and g = (g1, g2, g3) are external forces
and moments respectively. Positive constants v, v,, ¢y, ¢4, ¢q represent viscosity
coefficients, v is the usual Newtonian viscosity and v, is called the microrotational
viscosity.

We observe that the classical Navier-Stokes equations is a special case of the
system (1.1). To the authors knowledge the first work the existence for the Cauchy
problem for the Navier-Stokes equations is due to Leray (see the Ladyzhenskaya’
book [10])

Recently, He [9] prove the local and global existence and the asymptotic be-
haviours of strong solutions to the Cauchy problem for the Navier-Stokes equa-
tions.

Our purpose, roughly speaking, is to extend the previous work to the microp-
olar fluid equations. In fact, we observe that, with the results of this paper, our
knowledge about strong solutions of the micropolar fluid equations approaches a
level similar to that of the classical Navier-Stokes equations.

The structure of this paper is as follows. In Section 2, we give the notations,
results that we will used in this article and we state the results. In Section 3, we
discuss the linearized problem for (1.1) and finally in Section 4 we give the proofs
of theorems.



2. Statements and notations

Let WhP(IR?), | € IN,1 < p < 400, be the usual Sobolev space over IR such
that WOP(IR?) = LP(IR*). We denote by |||, the norm of L”(IR?) and that of
(LP(IR?)), (-, ) denotes the usual inner product in L*(IR*). Let Cg, (IR*) denote
the set of all C* real vector fields v with compact support in IR® such that
div v =0. By H we denote the completion of Cg%(IR?) in L*(IR®) and by V' the
completion C§% (IR®) in W?(IR*) = H'(IR?).

If X is a Banach space, with norm |-||, we denote by LP(0,7;X), 1 <
p < 400, for the space of functions v on (0,7") with values in X such that the
real valued function ¢ — |lv(¢)|| belongs to LP(0,7"). The space of continuous
functions from [0, 7] into X is denoted by C([0,7T)], X).

We will consider the following space Wy (Qr) = {u /u€eL?0,T; HI(IR?’)),‘Z—‘;EB(QT)}
and QT = IR? x [O,T)

We adopted of definition in, given for Navier-Stokes equation, then we give
the respective for micropolar fluids equations.

Definition 2.1. The pair (u(x,t), w(x,t)) is called a strong solution of microp-
olar fluids equations with initial values a,b, if u € L*>(0,T;H N L%(IR*)) N

L*(0,T;V) and w € L>*(0,T; L*(IR*) N LS(IR?)) N L*(0,T; HY(IR?)), for T > 0
and it satisfy the identities

oTo{(u, v) = (V) (Vu, Vo) + ((u- Ve, u)}dt — (0, 9(0)) =

To

| rot w+£.6), ¥ 0 € WNQr)

To 1 1
w0 = (Liw, L) + (u- V)6, w) — dv, (w, 6) bt = (b,6(0)) =

To

| v rotutg.0) ¥ e W (@)

with p(T) = ¢(T') = 0.
The main Theorems of this paper are the following.

Theorem 2.2. Let the initial values a € HN LS(IR®), b € L?(IR?) N L°(IR®), and
the external forces f and g in L*(IR*; L?(IR%)) N L*/3(IR*; L°(IR®)). Then on a



time interval [0, Ty], Ty < T exist a unique solution (u, w) of Cauchy problem for
micropolar equations. (1.1), such that

u e L0, Ty; HN L°(IR?)) and w € L™(0, Ty; L*(IR*) N L°(IR?))
u e L*0,Ty; V) and w € L*(0,Ty; Hy (IR?)),

and
Ou € L*(0,Ty; V') and ow € L*(0, To; H™H(IR?)).
ot ot
and
u(t) » a and w(t) - b ast — 0.
And

Theorem 2.3. Let the initial values a € HN Lé(IR®), b € L?(IR?) N L°(IR?), and
the external forces f and g in L*(IR*; L*(IR®)) N L*3(IR*; L5(IR?)). Then exist
positives constants
A= Ai(llallz, [[bll2, [Jall, [[£]]z2 (r+sp2mey), (1] 4 (LS () gl e (w2 ey )
A2 = Aa((lallz, [[0]l2, [|E]] L2 (m ;22 (me)), 18] L2522 (m2)))
such that if ~
HM@+HW§+A (IEOIIE + lg (D3 dr < A,

or

g+ 1015+ 1ol + e + 21E sy + NS g o <

then the solution of Theorem 1 is global, i.e., Ty = +00. Moreover
u € L™®(0,4+o0; HN L*(IR?)) and w € L*°(0, +oo; L*(IR?) N L°(IR?)).

Furthermore, if

£ + [E@)]ls < CL+1)7% a >0, (2.1)
lg(@lle <CA+1)"%, a>0,
then
lu@®)]|§ < CA+t)7° for t > 1, (2.3)
Iw@)||E <O +t)" for t >1, (2.4)
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with # = min{3, %a}. Especially, if f = g = 0, then

lu@®)|lg < C(1+1t)° fort > 1,
[w(®)|s < C(1L+1¢)7° fort > 1.

Finally, we would like to say that, as it usual in this context, to simplify the
notation we will denote by C generic finite positive constants depending only on
Sobolev embedding, other fixed parameters of the problem, etc., that may have
different values in different expressions. Sometimes, to emphasize the fact that
the constants are different, we use C', (5, ..., and so on.

3. Linearized Problems
We define the approximate solution, in order to establish some basic estimates.

Let a € HNLS(IR?), b € L*(IR?) N LS(IR?). We choose o € V, and V¥ € H}(IR?)
such that a* — a in H N L5(IR?®) and b* — b in L?(IR?) N L%(IR?), and

la®]l2 < Cllalla,  lla®lls < Cllalls,
1612 < Cllbll, N16°lls < Clblls,

We now consider the Cauchy problem for linearized of the micropolar fluid
equations in IR? inspired in the process iterative given in [17].

(u) — (v+v,)Au’ + Vp’ =f in R x (0,7),
divu’ =0in R? x (0,7,
w) — (¢ + ca) AW — (co + cq — ¢,)V( div w°) + 4v,w® = g in R? x (0,7,

u’ — 0 and w® — 0 as |[x| — oo,

[ u’(x,0) = a’(x) and w(x,0) = °(x) in IR?
(3.1)



and

,

uf — (v 4 v,)Auf + (U1 - V)ub + VpF = 2u, rot wF +f in IR? x (0,7),
div u* =0 in IR?* x (0,7),

WP — (o + ca) AWF — (co + cq — ¢,)V( div wF) + (u*=1 - V)wF
+4v,wk = 2v, rot uf + g in IR® x (0,7),

u” — 0 and w* — 0 as |x| — oo,

| u*(x,0) = aF(x) and w*(x,0) = b¥(x) in IR?
(3.2)
for £ > 1.
If f,g € L*(IRT; L?(IR?)) is easily to prove (see [17] or [10]) that there exist a
k
);

unique solution (u*, w¥), (k > 0) to (3.1) and (3.2) satisfying

ou* o9*uf ouF opF owkt o*wh owt

2 3

and
ut, wh € L*(0,T; L*(IR?)) (3.4)

fori,j =1,2,3,k=0,1,... .
Utilizing the Sobolev embedding theorem (see [11])
HY(IR?) C L°(IR?), (3.5)

and
H*(IR?) C Cp(IR?),

here B means bounded.
We define the operator L : D(L) — L?*(IR?) with the Dirichlet boundary
conditions with domain D(L) = H*(IR*) N H} (IR?) by

Lw = —(co + cg) AW — (co + ¢q — )V div w.

We give the next Lemma, analogously to Lemma 3.1 of [9].



Lemma 3.1. Let the initial values a* € H, b* € L?(IR3), and the external forces
f and g in L'(IR"; L*(IR?)) N L?>(IR"; L*(IR?)). Then the solution (u*,w*) of
(3.1)-(3.2) satisty

t t 1
||u’“(1t)||§+||W’“(7f)||3+(V+Vr)/0 IIVu’“(T)H%dTJr/0 12w () [3d7

< K(|la]lz + ||b||3+/0 (£ + llg(r)[12)dr)
= A% = A(llallz, 1Bll2, €122 ey, 8l 2 segmsy) - (3-6)

for every t > 0 and k > 0.

Proof. Multiplying the equations (3.2) by u* and w* respectively, and using
equivalence of norm between rot and V, we obtain,

Ld
2dt
W@ + IL2w @15 + dv W @1 < llg@)la- W @)l + 200 (rot u®(2), wh(1)).

@13 + @+ ) Ve @Ol < €@z [0 (@)l + 20, ( rot u(t), wh (1)),

1d
2dt
Adding the above equalities and applying Young inequality, we have
1d
2dt

1 I 1
CelE @i + eV @13 + 51871 + SIL2wE B)]l2 + v l[wE B + v [ Vu* (B)]]3

(la* @13 + W O113) + (v + v IVa @113 + |12 wF @3 + 4vr Wk ()13

IN

using the injection L? < H~! after taking K = max {2C.,1,C} ,we get

d d 1
%Iluk(t)llg + @Ilwk(t)llg + (v + ) |Va* (7)]5dr + | L2 w"(7)||5dr
< K(IE()5 + llg(r)l3)dr. (3.7)

Now integrating in [0,7"), we obtain
t t
[ @)I5 + [w* ()3 + (V+Vr)/0 ||V11'“(T)||3d7+/0 IL2w*(7)||3dr
t
< ||ak||§+||bk||§+K/0(||f(T)||§+||g(T)||§)dT) (3-8)

finally we observe that



[ U+ 1e@IB) < [T UEIE + IR
and

lall: < Cllall.,
1"l < Cllbllo-

Because of (3.3) and (3.4) from (3.2), it follows that
~ApF = div (0" V)uF —f)

<
<

for £ > 1. Since p* is unique up to the addition of a constant, without loss of
generality, analogously to [9], we assume the pressure pf(x,t) is determined by
the supplementary condition

lim p*(x,t) = 0.

|| — 400
Let p* = pV + ph, with p¥ satisfying
~ApF = div ((uf! - V)ub)
~Apt = divf.

Thus if p € L?(IR?), has Calderon-Zygmund theory (see [22]) on singular
integrals yields the estimates of the following lemma.

Lemma 3.2. Let p* € L*(IR?), and uF satisfy (3.3) then for k > 1 the estimates
hold

i, = cfut ] = offut ] et (3.9)
[, < clEl.. (3.10)

IN

Analogously to [9], we establish the key estimate for u* and w*.

Lemma 3.3. Let the initial values a € H N L°(IR3), b € L?(IR*) N L%(IR?), and
the external forces f and g in L*(IR*; L?(IR?)) N L*3(IR*; L5(IR%)). Then the
differential inequalities
1d _ _
s I+ CAZ I < Clla® gl IE + ClEEI s (3.11)

1
+I£]ls u]ls + ClLLEw*|[3][uls.
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and
1d
6 dt

hold uniformly for k > 1.

IWE (I + CAZIWEIE + v w15 < llgllsllw® (g + ClIVut(Sfuflls.  (3.12)

Proof. The i equation of (3.2) is

d k k op* owy
d _ ouf
£wf + Lwf + (0" V)w! + dvwf = g + 2Vr§ijla—xlj
4 4
We now multiply both sides of the above equations by ‘uf‘ K wk| wk,

respectively, and integrate in IR3. Because of (3.3) and (3.4), it follows that

4 2
6dt||u’“||6+5<u+ur> /. Jut \Vuf
ou 0 4
= 5/3pk ul d,ﬁL‘—i—/ fz kd.ﬁL‘+2Vr/ é-z]l wl uk de.%‘
IR
a 1 Ouk

<5 ’“\ ut]' axzd:r+5 axzdx+|lf||6IIUf||2

+2VT||€ljl uf“ﬁ

5 2 4 2 4
< —V/ ul ’1/ k‘ ul da:+5u71/ k‘ uf| du

2 IR3 IR3 IR3

1

+Ellellu®(I5 + C2v || L2 w51V (|uf| uf) 2

5 4 2 2 4
< oo fut] vt N R 1 R CRE)

2 Jms R?

1
+H[Elol[u® 1§ + Cel|LEw* 3] [u® 1§ i lI2-

here was used in the last term Sobolev embedding H' < L%, and Young inequality.
Taking € = 3(v + v,) in the above estimate, we have

2
de = 5V_1/
R3

HEllsl (1§ + CLIZZw 3] 1§ + Cslug® 6.

1d 5 4 20 4
o llaf 8+ S v) [ fub o] [t

da + 507 |p5 5] 1u* g




Now by (3.6), we obtain

6 5

4
6 + §(l/+l/r)/1R3

uf| dx (3.14)

k 2
)

4
‘Vuf

Py

k
Uy

1d
[

6 dt

2
de = 51/’1/
IRS

#5071 8 o+ el .
1 2 4
+C e ut]

Using the Ladyzhenskaya inequality (see [10]) and estimate (3.6), the first term
at the right hand side can be estimated by

2 4
N A R A

2 4

= IpEIR o] 2
4 2
< Clt RIS fl] k] ded
IR
< 2 Bk de + Olla =1 a8
< 47/ 5 | Wi ‘ ui| do + Cllu™|[s|[a”[[g.
IR

Substituting the above estimate it follows that

Ld, ko (2 .0 AR IR
b8+ (Gv 4+ svn) [ Jul] [Vul] do
< Ol il + C el (3.15)

1
I£[l6 a5 + CllL2w* 3] [u 5.

Newly by the Sobolev inequality (see [1])

41 42
‘Vui dz

k
Uy

Cllufis < [ |
Using the interpolation inequality and estimate (3.6) we see that
k k||, k|
lwille < Jluill2 luz ll1s-

So

4 2
C’A_2||uf||§ §/3 uf ‘Vuf dx
R

10



substituting the above inequality into (3.16), adding for ¢ from 1 to 3, it follows
that

ld k|16 -2 ’ k(18
g g R+ A7 S
< Ol Lt +
1
Il + CILA w3l |

By the Holder inequality

3 3
3
la®ll§ = > [luf I < 343 [l [I5) -
i=1 i=1

Thus ,
> lufll§ = Cllu®[fg-
i=1
So
Ld, e —20..k[8 k—104|,.k|6 201 k|14
gaﬂu [¢ + CAT7([u"|ls < Cllu™ [g][u®[[g + ClIE[l5]|a"[|s

1
+Ellsl[u®(I5 + CllLLzw* (5]l 5.
of analogous form we obtain

1d
6 dt
< llgllsllw*lIs + ClIVa* I5]1w* I3,

IWE (I + CAZ[[WI§ + vy [ wlg

these last inequalities correspond to (3.12) and (3.13) respectively.

Lemma 3.4. Suppose the conditions of Lemma 3.3 hold. Then there exists Ty >
0, such that
|uf|ls < C, Vtelo,Tyl, (3.16)

and
[wklle < C, Yt e[0Ty, (3.17)

holds uniformly for k > 1.

11



Proof. Here we follow the paper [9], then we work with (3.12), but the procedure
is analogous for equation (3.13).
Using the Young inequality, from (3.12) and using (3.7), it follows that

I < Cllut 2+ OO + 6+ A )
Integrating the above inequality from 0 to s, and using (3.7), we get
Il <l +C [ (2 4+ C [ LE w3+ 1 + A% g0 ar,
< lallg+ € [ (a2 + A2+ ¢ [(IEIE + AR )ar,
applying Gronwall’s inequality, we conclude that

k2 < €t It

s 5 4
lalfd + 42+ [ (1613 + AFel )]
Analogously for equation (3.13) we have,

s 4
w12 < € bl + A2 + [ A el ar

Let Yi(t) = [i [|[u!||édr then

s 5 4 2
Vi < Ce0 lalld + 4% + [T(IE1E + AFIEdr | v

By a similar calculation, we deduce from (3.1)
0 2 4
Vooo) = [ Wt < © [alld + AT I8 o |
= OCM.
Thus, we take 1 such that

T 4 2
cee (lall+ a2+ [ (181 + A3l yar| 7o < o

Then by induction we obtain estimates (3.17).
Analogously
< CM.

To 2 4
Iwhll3 < C {113 + 4% + [ AFlglliar

Then we obtain estimative (3.18).

12



Lemma 3.5. Let the assumption of Lemma 3.3 hold. If there exist constants C'y
and Cy independent of a and f, which satisfy

2 4
Cr A% M [lalls + A + ||f||%2(R+;L2(IR3)) + As ||f||24/3(m+;,;s(m3)) <M,

then the following estimates are true

Juflls < C, V>0, (3.18)

IwHls < C, V>0, (319)
and

e < o (3.20)

[ Il < c (3.21)

uniformly for k > 1.
Proof. From (3.12), (resp. (3.13)),

d . .
e+ CA7 [t < Cllu™ 5 ]utE

+C (L2 w15 + [I£]13 + [[a®[ls/I£]ls).

By using the Young inequality, apply to last term, we have
d _ _
ZtlE+ AT s < Clla® 5] lufg
1 2 4
+O(ILEWH |15+ [[£]15 + 1A= [I£]]3).

Let Y (s) = ¢ CJo M*7"847) |4k |12, Then

Ly 4 a2 C 5 I iary 2
dt

. B 4
< Cer ORI | dwk g3+ A3 |

Integrating the last inequality over [0,¢], ¢ > 0, we get
t s _
Y +CA™? / (O Ji I dry 2 g (3.22)
0

2 é
< C [llaH% + A%+ D 2 ey + A° “fHE%(mL%W»] '

13



So

t t —1
/||uk||§dt§CAZeCfo<llu’° (Mllgdr (3.23)
0

2 2 2 Tk
||a||6 + A+ ||f||L2(R+;L2(lR3)) + As ||f||z%(ﬂz+;L6(R3))

Analogously to lemma before
Yoloo) = [ ulidt < M
utilizing assumption (3.19), by induction, from (3.26), we obtain
| i < c.
Analogously for w, form (3.13) we obtain
W+ ca [ wHi < o {pi + 22+ [ adlglifar)
Then . . \
ca [Cwks < e {oll + 42 + [~ ARlgliiar} < ©

taking liminf as ¢ — oo we conclude that

| I lia < c.

Then, combining (3.23) and (3.25), we obtain estimates (3.21). Analogously
from (3.13), we obtain the estimates (3.25) and (3.26), and using the assumption
(3.24).

Lemma 3.6. Suppose the conditions of Lemma 3.3 hold. If ||f||2 + ||f]|s < C(1+
t)=% (resp. ||lglls < C(1+t)~*) (o > 0), then
[EulF

I 1g

< C(1+t)P, vix>1,
< C(14+H)7F vix>1,

with § = min{3, %a}. Especially, if f = 0 (respect. if g =0), then

Wbl < c+t)3 Vix1,
[whls < C(1+1t)3, Vi1,

14



Proof. Let now Y (t) = e CJo H“k”‘b’l‘]”||uk||g. From (3.12) and (3.21) we deduce
that

d 1 1 2
ZY OV < CIL w5+ [E13)Y 5 + 1£]l6Y ¢
< CLEwE3 + IS + NIElls)Y e,

since ||f||2 + ||f]l¢ < C(1+1¢) *and , also [} (||f]|2 + [|f|ls)dt < C(1+1¢)"*" then we
can suppose that |L2w#||2 + ||£]|2 + ||f]|le < C(1 +¢)~® from Lemma 3.1 follows

t ¢ ,
[ ULtwtae + [ 113 + gllodt < A* + CL+ )

Then p
Y+ CY'5 < C(1+1) Y.

Because of (3.21) we now suppose Y (t) < Cy,(1+1t)Pm with C,,, > 0, 3,, > 0,
m € IN. By Lemma 3.6 of [9], we conclude that

Y(t) < Conn (14 )P

with 3,,,, = min{3, %m:ﬂ}, and C,4, = yC/?
Let m — o0, §,, — min{3, 2a}, and limsup C;,, < 7*. So

t —
T e 40
4
7260.[(:”“]9_1 ||6dT(]_ + t)*/B

Cl+t)77 Vi>1,

(VAN VAN VAN

with 4 = min{3, 2a}.
Analogously setting Z(t) = ||w"||¢, from (3.13) we deduce that
d

ZZ+CZ% < O(IVutBY S + llglleY )

AN

2
C(IVu®ll; + llglle)Y 3.

Since [|g|l; < C(1+t)~“, then we can suppose that ||[Vu*||3+||g|ls < C(1+¢)~,
thus

%Z +CZY3 < C(L+1t)Z5.

15



Because of (3.22) we now suppose Z(t) < Cp,(1+1t)~Pm with C,,, >0, 3,, > 0,
m € IN. By Lemma 3.6 of [9], we conclude that

Z(t) < Cppar (L + £) Pt

with £,,,; = min{3, 2,8,%304}’ and Cp,yy = yOL2,
Let m — oo, 3, = min{3, 3}, and limsup C,, <% So

Iw*lls < Z(2)
<Y1 41)7P
<CA+t)P vix>1,

with 4 = min{3, 2a}.
If f, g = 0 we conclude easily by using of Lemma 3.6 of [9], with 5 = 3.

4. PROOFS OF THEOREMS

Analogously to [9], we proof the main Theorems.

4.1. Proof of Theorem 1

Proof. The uniqueness of the strong solutions follows from Theorem 2 of [19] or
[18]. In the following, we prove the existence of the solution. Since the approxima-
tion of u* and w* of micropolar equations (1.1) constructed in Section 3 satisfies
(3.22) , then we obtain estimates (3.6) and (3.12). Applying these estimates, we
easily deduce that

ouk
15 e organ, <€ (4.1)
and ook
A%%
||W||L2(O,TO;H—1(R3)) S C (42)

holds uniformly for £ > 1.
The estimates (3.6), (3.7), (3.12), (4.1), (3.8), (3.9), (3.13) and (4.2) enable us
to assert the existence of an element

u € L>(0,Ty; HN L°(IR?)) and w € L*°(0, Ty; L*(IR*) N L°(IR?)),
Vu,Vw € L0, Ty; L*(IR*)

16



and

ou 9 ow 9 1/ 3
e e L*(0,7y; V') and 5 € L*(0,Ty; H(IR”)),

and a subsequences of u* and w* that we denote of the same form (in fact, the
sequence itself converges because of the uniqueness) such that

u® — u, in L®(0,Ty; H N LS(IR?)) weak-start ,
wh — w, in L>®(0, Ty; L*(IR*) N L°(IR?)) weak ,
du* 0
8—‘; ~ 8—;‘, in L2(0,T;; V') weak | (4.3)
Owk 0
a—“; - a—vtv, in L2(0,Ty; H™'(IR%)) weak |
Vu® — Vu, in L*(0,Ty; L*(IR?)

VwF — Vw, in L>(0, Ty; L*(IR?)

) weak |
) weak .

For arbitrary ¢ € C*°([0,Ty]; C5%,) with ¢(Ty) = 0, let supp ¢(Tp) = 0, let
supp ¢ C € x [0, Tp] for some bounded set 2. By th Sobolev compact Theorem

HY(Q) C L*(Q).
Applying a compact result ([11] or [23]) and (4.1) (respect. (4.2)), we have

u* — u, in L™(0,Ty; H N L°(IR?)), (4.4)
wh  —  w, in L®(0, Ty; L*(IR*) N LS (IR?))

We now multiply both sides of (3.2) by ¢, (resp. ¢) and integrate over IR® X
(0,Tp) to get

/oTO{(uk, ) = (v + ;) (Vuh, Vo) + (0" V), uf)}dt — (a,9(0))

To
= /0 (2v, rot w* 4+ £, ),

TO{(W'“, 6,) — (L2wF, L2g) + ((u* - V), wF) — dv,(wh, ¢) }dt + (wi, $(0))
- /0T°(2yr rot u* + g", ¢).
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Because C([0,Ty); H) is dense in Wy (Qg,), using (4.1) and (4.4) and pro-
cedures standard we conclude that the limit (u, w) of (u*, w*) is the unique gen-
eralized solution of (3.2) and, u(-,¢) — a and w(-,¢) = b in L*(IR*) as t — 07,

4.2. Proof of Theorem 2.
Proof. If ||a||6 + ||f||3

L3 (IR+;L5(IR?)) L3 (R+;L5(IR?))’
given, we let A < 1. In order to obtain (3.19) (respect. (3.20)), we only need

+ €172 (5.2 (o> and ||g||

—02(||a||2+||f||3 +C:B)
A? < A% = C’l_le 3 (RT;LE(R3)) %

3
Jall2+ €13y o

2
||a||6 + A% + ||f||L2 IR*;L2(IR3)) + || ||z3 (IR+;LS(IR3))

so we take A\ = min{l, Ao}

If ||a||? + ||f||z3 R (respect. ||g||z3 - LG(JRB))) are given, we take
A = min{1, O7(|[al + [1£]]%, )%™ 2},

L3 (IR+;L5(IR?))

where Cy, C; are constants independent of uy and f, in (3.19). Then the assump-
tions of Theorem 2 guarantee that (3.19), is valid. Thus, we hold global estimate
(3.21)-(3.24) instead of local estimates (3.17),(3.18). Then proof of Theorem 2 is
similar to that of Theorem 1, considering ¢ € IR", so we omit the details. Since

norm is weak lower-semicontinuos, by Lemma 3.6, we obtain decay estimates (2.1)
and (2.4).
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