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Abstrat

In a previous work, the minimization of a di�erentiable funtion

subjet to box onstraints was proposed as a strategy to solve the

generalized nonlinear omplementarity problem (GNCP) de�ned on a

polyhedral one. Theoretial results that relate stationary points of

the funtion that is minimized to the solutions of the GNCP were

presented. These theoretial results show that loal methods for box

onstrained optimization applied to the assoiated problem are eÆ-

ient tools for solving the GNCP. In this work, numerial experiments

are presented that enourage the use of this approah.

Keywords. Box onstrained optimization, omplementarity.

AMS: 65H10, 90C33, 90C30

�

Department of Computer Siene and Statistis, University of the State of S. Paulo

(UNESP), CP 136, CEP 15054-000, S~ao Jos�e do Rio Preto-SP, Brazil. This author was

supported by FAPESP, CNPq. E-mail: andreani�nimitz.de.ibile.unesp.br

y

Department of Applied Mathematis, IMECC-UNICAMP, University of Campinas,

CP 6065, 13081-970 Campinas SP, Brazil. This author was supported by FAPESP, CNPq,

FINEP and FAEP-UNICAMP. E-mail: friedlan�ime.uniamp.br

z

Department of Applied Mathematis, IMECC-UNICAMP, University of Campinas,

CP 6065, 13081-970 Campinas SP, Brazil. This author was supported by FAPESP, CNPq,

FINEP and FAEP-UNICAMP. E-mail: sandra�ime.uniamp.br

1



1 Introdution

The Generalized Nonlinear Complementarity Problem (GNCP) is to �nd

x 2 IR

m

suh that

F (x) 2 K; G(x) 2 K

Æ

; F (x)

T

G(x) = 0; (1)

where F and G are ontinuous funtions from IR

m

to IR

n

, K is a nonempty

losed onvex one in IR

n

, and K

Æ

denotes the polar one of K.

We onsider the ase n = m, F;G 2 C

1

and K a polyhedral one in R

n

that is, given A 2 IR

p�n

and B 2 IR

s�n

, we have

K = fv 2 IR

n

j Av � 0; Bv = 0g

and

K

Æ

= fu 2 IR

n

j u = A

T

�

1

+B

T

�

2

; �

1

� 0g:

This problem has many interesting appliations and its solution using

speial tehniques has been onsidered extensively in the literature. See

[8, 9, 14℄ among others. If K = IR

m

+

� fx 2 IR

m

j x � 0g, G(x) = x�F (x)

and F : IR

m

! IR

m

, the GNCP(F;G;K) redues to the so-alled impliit

omplementarity problem [11, 12℄. In partiular, if G(x) = x, the GNCP

redues to the nonlinear omplementarity problem, denoted by NCP.

Our approah in this paper is to solve the GNCP by means of an equiv-

alent box-onstrained smooth optimization problem. Di�erentiable bound-

onstrained minimization is a well developed area of pratial optimization

and many methods and reliable software are available for large-sale prob-

lems. See, for example, [3, 4, 6, 16℄.

Any eÆient algorithm for smooth box-onstrained minimization an be

used, in partiular, algorithms that do not rest upon matrix fatorizations

at all, allowing us to deal with large-sale problems. Unlike the formula-

tions in [13, 15℄, the omputation of the objetive funtion of the equivalent

minimization problem is straightforward and projetions on onvex sets are

not neessary to ompute neither the objetive funtion nor the derivatives.

Our set of experiments ontains four families: randomly generated prob-

lems in the positive orthant; impliit omplementarity problems from Out-

rata & Zowe [10℄; problems with general polyhedral ones in IR

n

and prob-

lems in 3D-ones with ontrol of generated faes.

For the �rst family of problems, funtions F and G are aÆne and both

ones are the positive orthant. Although quite simple, these problems on-

tain essential elements to start the investigation. By varying dimensions and

features of the matries that de�ne F and G, we have produed an extensive

set of tests for whih the theoretial hypothesis of equivalene might hold

or not.
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In the seond family our main objetive was to solve problems already

addressed in the literature. We also extended the family of impliit om-

plementarity problems proposed in [10℄ to variable dimension, produing

large-sale tests. For suh problems, however, the ones are the positive

orthant as well.

General polyhedral ones were treated in the third and fourth families of

problems. In the third one, funtions F and G are aÆne and matries A and

B that de�ne the ones are generated to aomplish well de�ned problems,

but whithout any spei� ontrol. In the fourth family, we produed three

dimensional tests, so that geometrial features of the one, like ontrol of

edges and number of faes, were exploited in great extent.

The paper is organized as follows: the equivalent formulation whih al-

lows turning the GNCP into a nonlinear programming problem is given in

Setion 2. Numerial experiments are presented in Setion 3. Conlusions

and lines for future researh are disussed in Setion 4.

Notation. We denote by h�; �i the Eulidean inner produt in IR

n

and by

k � k the norm indued by this inner produt and its orresponding matriial

norm. If B is a real n� n matrix, B � 0 (B > 0) means that B is positive

semide�nite (positive de�nite).

2 Equivalent formulation

The following minimization problem with simple bounds is assoiated to the

GNCP(F;G;K) de�ned in (1):

min f(x; z; �)

subjet to

(

z

1

� 0;

�

1

� 0;

(2)

where

f(x; z; �) = kRF (x)� zk

2

+ kG(x)�R

T

�k

2

+ �hz

1

; �

1

i

2

and

R =

 

A

B

!

; z =

 

z

1

0

!

2 IR

p

� IR

s

; � =

 

�

1

�

2

!

2 IR

p

� IR

s

:

The next theorem, proved in [1℄, states that solving problemGNCP(F;G;K)

is equivalent to �nding the global minimizer of the optimization problem (2).
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Theorem 1. If (x

�

; z

�

; �

�

) is a global minimizer of problem (2) with

f(x

�

; z

�

; �

�

) = 0, then x

�

is a solution of the GNCP(F;G;K). Conversely,

if x

�

is a solution of the GNCP(F;G;K), then there exist z

�

; �

�

suh that

(x

�

; z

�

; �

�

) is a global minimizer of (2) with f(x

�

; z

�

; �

�

) = 0.

For ompleteness, we inlude in the following a result (proved in [1℄)

onerning solution of problem GNCP(F;G;K) and stationary points of (2)

whenever F (x); G(x) are aÆne funtions. The theoretial hypothesis about

matrix G

0

F

0�1

will be exploited in the numerial experiments.

Theorem 2. Let F (x); G(x) be aÆne, G

0

F

0�1

positive semide�nite in the

null spae of B and GNCP(F;G;K) feasible. If (x

�

; z

�

; �

�

) is a stationary

point of (2) then, x

�

is a solution of GNCP(F;G;K).

3 Computational experiments

The equivalent minimization problems (2), with simple bounded variables,

were solved using BOX-QUACAN, a software developed by our researh group

at the State University of Campinas. It is based on the trust-region approah

for solving large-sale bound onstrained minimization, and uses the in�nity

norm to de�ne the trust-region, so that the quadrati subproblems have

also simple bounded variables. The subproblems are solved by ombining

onjugate gradients with projeted gradients and a mild ative set strategy

(see [2, 6℄ or [5, p.459℄).

The ode was developed in Fortran 77 double preision (Mirosoft Pow-

erStation) and run on a Pentium 64MB RAM. The stopping riteria used is

tolerane for the objetive funtion value "

f

= 10

�10

and tolerane for the

norm of the ontinuous projeted gradient "

g

= 10

�6

. We set � = 1 for all

the tests.

3.1 Randomly generated problems in the positive orthant

In our �rst set of experiments we onsidered the problem of �nding x 2 IR

n

suh that Mx +  � 0, Px + d � 0 and (Mx + )

T

(Px + d) = 0, where

matries M;P 2 IR

n�n

and vetors ; d 2 IR

n

are given.

The problems were randomly generated as follows: �rst we obtained two

vetors y; z 2 IR

n

, y; z � 0 suh that y

T

z = 0. Using a funtion rnd(a; b)

that randomly generates a real value between a and b, for i = 1; 2; : : : ; n

we omputed � = rnd(0; 1); if � < 0:5, we set y

i

= rnd(1; 10) and z

i

= 0,

otherwise, y

i

= 0 and z

i

= rnd(1; 10). We also generated a vetor x

�

2 IR

n

with omponents [x

�

℄

i

= rnd(�10; 10); i = 1; 2; : : : ; n. Matries M and P
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have the pattern M = Q

ML

D

M

Q

MR

, P = Q

PL

D

P

Q

PR

, where D

M

and

D

P

are diagonal matries and Q

(�)

are orthogonal Householder matries

de�ned by Q

(�)

= I � 2

u

(�)

u

T

(�)

u

T

(�)

u

(�)

, with vetor u

(�)

2 IR

n

with omponents

generated by rnd(�1; 1). Hene, only three vetors are used to de�ne and are

stored for eah matrixM(u

ML

; d

M

; u

MR

) and P (u

PL

; d

P

; u

PR

), sine we just

need to ompute their produts by a vetor. To generate positive de�nite

matries, the elements of D

M

and/or D

P

were generated by rnd(1; 10). To

generate singular matries we fored 20% of the elements of the diagonal to

be identially zero. To generate inde�nite matries P , eah element of D

P

was multiplied by the signal of rnd(�1; 1). Finally, vetors  and d were

omputed by  = z �Mx

�

and d = y � Px

�

.

We started with a randomly generated initial approximation as follows:

[x

0

℄

i

= rnd(�10; 10), [z

0

℄

i

= rnd(1; 10) and [�

0

℄

i

= rnd(1; 10); i = 1; : : : ; n.

Aording to the features of matries M and P , we divided the set of

tests in fourteen families: M and P may be idential or not, M and P may

be symmetri or not and matries M and P may be regular or singular.

M is either positive de�nite or positive semide�nite, whereas P might be

positive de�nite, positive semide�nite or inde�nite (but regular). Whenever

M or P is invertible, the theoretial hypotheses of the equivalene results

of Setion 2 an be heked by analysing properties of matries PM

�1

or

MP

�1

.

For eah family, four values for the dimension n were used (5, 50, 500

and 5000). For eah dimension, three problems were solved, with di�erent

seeds. The arithmeti means of the results are reported in Tables 1-14,

where we inform the number of iterations (INNER) and matrix-vetor prod-

uts (MVP) performed by the inner (quadrati) solver, and the number of

iterations (OUTER) and funtional evaluations (FE) performed by the outer

(trust-region) algorithm.

n INNER MVP OUTER FE

5 90.0 148.0 8.0 9.0

50 211.7 409.7 10.0 11.0

500 336.0 962.0 12.7 13.7

5000 484.3 2038.0 16.0 17.3

Table 1: Average results: M = P , M =M

T

, M positive de�nite

(PM

�1

=MP

�1

= I).
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n INNER MVP OUTER FE

5 114.7 199.0 9.0 10.0

50 247.3 501.3 10.3 11.3

500 344.7 894.3 12.3 11.3

5000 355.3 1312.0 13.7 14.7

Table 2: Average results: M = P , M =M

T

, M regular inde�nite

(PM

�1

=MP

�1

= I).

n INNER MVP OUTER FE

5 106.3 169.7 8.3 9.3

50 220.3 419.7 10.7 11.7

500 340.7 849.0 13.0 14.0

5000 379.3 1258.7 14.3 15.3

Table 3: Average results: M = P , M =M

T

, M singular (positive semide�nite).

n INNER MVP OUTER FE

5 102.3 161.0 8.7 9.7

50 224.7 385.3 10.3 11.3

500 337.7 965.0 12.7 13.7

5000 564.7 2771.0 15.7 17.0

Table 4: Average results: M = P , M 6=M

T

, M positive de�nite

(PM

�1

=MP

�1

= I).

n INNER MVP OUTER FE

5 100.0 153.0 8.3 9.3

50 236.0 433.3 9.7 10.7

500 291.7 723.3 12.0 13.0

5000 453.3 1846.3 16.0 18.0

Table 5: Average results: M = P , M 6=M

T

, M regular inde�nite

(PM

�1

=MP

�1

= I).

n INNER MVP OUTER FE

5 121.7 207.7 9.3 10.3

50 224.7 397.0 10.0 11.0

500 336.3 854.7 13.3 14.3

5000 392.7 1256.0 14.7 16.0

Table 6: Average results: M = P , M 6=M

T

, M singular (positive semide�nite).
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n INNER MVP OUTER FE

5 165.7 232.7 10.0 11.0

50 660.7 1042.7 15.7 16.7

500 1207.0 2533.3 18.7 20.0

5000 1480.7 3928.3 26.7 28.7

Table 7: Average results: M 6= P , M =M

T

, P = P

T

,

M and P positive de�nite.

n INNER MVP OUTER FE

5 172.3 235.7 9.7 11.0

50 loal loal loal loal

500 loal loal loal loal

5000 loal loal loal loal

Table 8: Average results: M 6= P , M =M

T

, P = P

T

, M positive de�nite, P

regular inde�nite.

n INNER MVP OUTER FE

5 134.7 188.3 9.7 10.7

50 1026.7 1308.3 17.7 18.7

500 2596.7 3520.7 37.3 38.3

5000 13555.7 20585.7 214.0 215.0

Table 9: Average results: M 6= P , M =M

T

, P = P

T

, M positive de�nite, P

singular (positive semide�nite).

n INNER MVP OUTER FE

5 203.3 268.0 10.7 11.7

50 825.3 1096.3 15.3 16.7

500 1178.0 2130.0 18.7 19.7

5000 1473.7 4151.3 25.7 26.7

Table 10: Average results:M 6= P , M =M

T

, P = P

T

,

M and P singular (positive semide�nite).

n INNER MVP OUTER FE

5 209.7 294.0 11.3 13.0

50 2493.7 2977.3 24.3 25.3

500 6774.0 7625.0 29.0 30.7

5000 17119.7 19131.3 50.0 51.7

Table 11: Average results: M 6= P , M 6=M

T

, P 6= P

T

,

M and P positive de�nite.
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n INNER MVP OUTER FE

5 120.0 286.7 8.7 9.7

50 loal loal loal loal

500 loal loal loal loal

5000 loal loal loal loal

Table 12: Average results: M 6= P , M 6=M

T

, P 6= P

T

,

M positive de�nite, P regular inde�nite.

n INNER MVP OUTER FE

5 loal loal loal loal

50 1143.7 1398.3 15.7 16.7

500 3919.3 4762.0 39.0 40.0

5000 23520.7 31786.3 233.3 234.3

Table 13: Average results: M 6= P , M 6=M

T

, P 6= P

T

,

M positive de�nite, P singular (positive semide�nite).

n INNER MVP OUTER FE

5 163.3 240.7 10.0 11.0

50 1057.0 1359.3 15.7 16.7

500 4094.7 5037.7 26.7 27.7

5000 8300.3 10061.3 29.7 30.7

Table 14: Average results: M 6= P , M 6=M

T

, P 6= P

T

,

M and P singular (positive semide�nite).

There were some problems, the results of whih are reported in Ta-

bles 8, 12 and 13, that onverged to loal non-global minimizers of (2), with

merit funtion value greater than 10

�1

. For problems reported in Tables 1,

2, 4 and 5 the theoretial hypotheses hold, representing 28.5% of the to-

tal number of tests. For Tables 1, 2, 4, 5 and 7, the algorithm omputed

the same solution that was generated for assembling the problem data. In

Tables 3, 6, 10 and 14, sine both matries M and P are singular, the theo-

retial hypotheses fail, representing 28.5% of tests. For these tests, however,

the global solution of (2) was always obtained. There is no guarantee that

the theoretial hypotheses are valid for the test problems of Tables 7, 8,

9, 11, 12 and 13, whih represent 43% of tests. In fat, in 18 out of the

60 problems of these last six tables, at least one of the values u

T

PM

�1

u

or v

T

MP

�1

v, where u = Mx +  � z and v = Px + d � �, was negative.

In the total of 168 problems solved, the hypotheses fail for 66 (39%), but

only 16 onverged to loal solutions of (2), whih orrespond to 24% of the

andidates for failure, and to 9.5% of the total of tests.

Denoting �gures of Tables 1-14 by T

k

ij

, k = 1; 2; : : : ; 14, i = 1; 2; 3; 4 (rows

n = 5; 50; 500 and 5000, respe.), j = 1; 2; 3; 4 (olumns INNER, MVP, OUTER

8



and FE, respe.), we de�ne average values to guide our analysis. Conerning

the e�ort spent by the algorithm, there are two aspets we would like to

address: how is suh e�ort related to the problem dimension and how is

it related to the problem features? In order to do so, onsidering eah

dimension separately, we start by de�ning two ost measures: per inner

iteration (MVP/INNER) and global (INNER/OUTER), as follows:

me

1

(i) =

1

K

X

k

T

k

i2

T

k

i1

and me

2

(i) =

1

K

X

k

T

k

i1

T

k

i3

;

for i = 1; 2; 3; 4, where K = 13 if i = 1 and K = 12 if i = 2; 3; 4, to exlude

the loal solutions.

To allow a better understanding of the average values represented by

these two measures, we also omputed the minimum and maximum values:

m

1

(i) = min

k

T

k

i2

T

k

i1

; M

1

(i) = max

k

T

k

i2

T

k

i1

; m

2

(i) = min

k

T

k

i1

T

k

i3

; and M

2

(i) = max

k

T

k

i1

T

k

i3

:

Results are reported in Table 15, where the triples ontain

(m

1

(i);me

1

(i);M

1

(i)) and (m

2

(i);me

2

(i);M

2

(i));

for i = 1; 2; 3; 4. We observe that, in the average, less than three matrix-

vetor produts are required per inner iteration, and this inner e�ort grows

quite slowly as n inreases. The global e�ort, however, inreases with n, as

well as the dispersion between the average, minimum and maximum values.

Dimension

(n)

(m

1

;me

1

;M

1

) (m

2

;me

2

;M

2

)

5 (1.32, 1.58, 2.39) (11.25, 14.58, 19.00)

50 (1.19, 1.59, 2.03) (20.59, 44.27, 102.62)

500 (1.13, 2.06, 2.86) (24.31, 70.12, 233.59)

5000 (1.12, 2.84, 4.91) (25.93, 89.38, 342.39)

Table 15: Measures of e�ort per problem dimension.

With the aim of analyzing results aording to the family of generated

problems, we de�ne two additional measures for eah one of Tables 1 to 14.

The weights ln(n) and

p

ln(n) were introdued to �lter dependene of di-

mension and somehow uniformize the omputed values:

me

3

(k) =

1

T

X

i

T

k

i2

r

ln

�

10

i

2

�

T

k

i1

and me

4

(k) =

1

T

X

i

T

k

i1

ln

�

10

i

2

�

T

k

i3

;

9



for k = 1; 2; : : : ; 14, k 6= 8, k 6= 12, where T = 3 if k = 13 and T = 4

otherwise, to exlude results orresponding to loal solutions. We stress

that for i = 1; 2; 3; 4, the values

10

i

2

are the dimensions 5, 50, 500 and 5000

used in the tests.

Table Problem features me

3

me

4

1 M = P;M =M

T

;M > 0 1.85 11.64

2 M = P;M =M

T

;M indef. 1.78 12.44

3 M = P;M =M

T

;M � 0 1.65 11.83

4 M = P;M 6=M

T

;M > 0 1.87 12.30

5 M = P;M 6=M

T

;M indef. 1.72 12.06

6 M = P;M 6=M

T

;M � 0 1.65 12.13

7 M 6= P ,

M =M

T

P = P

T

,

M > 0

P > 0

1.39 21.85

8 M 6= P ,

M =M

T

P = P

T

,

M > 0

P indef.

loal loal

9 M 6= P ,

M =M

T

P = P

T

,

M > 0

P � 0

1.07 24.23

10 M 6= P ,

M =M

T

P = P

T

,

M � 0

P � 0

1.29 24.44

11 M 6= P ,

M 6=M

T

P 6= P

T

,

M > 0

P > 0

0.96 66.52

12 M 6= P ,

M 6=M

T

P 6= P

T

,

M > 0

P indef.

loal loal

13 M 6= P ,

M 6=M

T

P 6= P

T

,

M > 0

P � 0

0.79 35.79

14 M 6= P ,

M 6=M

T

P 6= P

T

,

M � 0

P � 0

1.03 48.84

Table 16: Measures of e�ort per problem features.

Results are presented in Table 16, for whih some observations are perti-

nent. First, whenever matriesM and P are equal (k from 1 to 6) results are

pretty muh similar. In fat, taking minimum, average and maximum values

for both olumns of Table 16, for k = 1 to 6 we obtain (1.65, 1.75, 1.87)

and (11.64, 12.07, 12.44), respetively. Although for problems the results of

whih are given in Tables 3 and 6 do not satisfy the theoretial hypotheses,

sine M and P are both singular, this aspet does not seem to interfere in

the results.

Now, if M 6= P (k from 7 to 14), symmetri and non symmetri prob-

lems behave slightly di�erent. When symmetry takes plae, a little more

matrix-vetor produts are performed, whereas the global e�ort is signi�-

antly redued. Comparing results for k = 7 against k = 11, 8 against 12,

10



9 against 13 and 10 against 14, we an see that the e�ort for symmetri

problems is about one third of the e�ort for non-symmetri ones, for posi-

tive de�nite matries M and P , and about one half when the matries are

positive semide�nite. Taking minimum, average and maximum values for

both olumns of Table 16 for k = 7 to 14 we obtain (0.79, 1.09, 1.39) and

(21.85, 36.94, 65.52). Comparatively with the �gures omputed for k = 1

to 6, we observe a muh larger dispersion of the values. Moreover, the inner

e�ort is smaller, whereas the global one inreases.

3.2 Impliit omplementarity problems

from Outrata and Zowe

In the seond set of experiments we solved impliit omplementarity prob-

lems (see [10℄) of the form:

Find y 2 IR

n

suh that

y �m(y) � 0; F (y) � 0 and hF (y); y �m(y)i = 0;

where m

i

: IR

n

! IR; i = 1; : : : ; n,

F (y) = Ay + b =

2

6

6

6

4

2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 2

3

7

7

7

5

y +

2

6

6

6

4

1

1

1

1

3

7

7

7

5

(3)

and m(y) = '(Ay+b), with ' : IR

n

! IR

n

twie ontinuously di�erentiable.

As in examples 4.3 and 4.4 of [10℄, the following hoies for funtion '

de�ned our test problems:

POZ1: '

i

(�) = �0:5� �

i

; i = 1; 2; 3; 4 and

POZ2: '

i

(�) = �0:5� 1:5�

i

+ 0:25�

2

i

; i = 1; 2; 3; 4:

For eah problem, three starting vetors were used, namely,

(a) (0:0; 0:0; 0:0; 0:0)

T

(b) (�0:5;�0:5;�0:5;�0:5)

T

() (�1:0;�1:0;�1:0;�1:0)

T

.

In [10℄ Newtonian strategies were adopted to solve problems POZ1 and

POZ2. In the �rst approah, the iterative sheme to ompute �xed points

of an operator S was

y

k+1

= y

k

� (E � V

k

)

�1

(y

k

� S(y

k

));

11



where V

k

2 �S(y

k

). In the seond approah, a Newton variant sheme was

applied to the semismooth operator

H(y) := minfy �m(y); F (y)g = 0;

where min denotes the omponentwise minimum of the two vetors in brak-

ets.

Problems POZ1 and POZ2 were also solved in [8℄, with a trust-region

approah for solving the GNCP(F;G; IR

n

+

) using the merit funtion � :

IR

n

! R de�ned by

�(x) :=

1

2

n

X

i=1

�(F

i

(x); G

i

(x))

2

:

The funtion �(a; b) =

p

a

2

+ b

2

� a� b is the Fisher-Burmeister one, with

the property �(a; b) = 0, a � 0; b � 0; ab = 0.

In Tables 17 and 18 we present, for omparative purposes, numerial

results of [10℄ and [8℄ for problems POZ1 and POZ2, respetively. Our

results are reported in Table 19, where the notation of Tables 1-14 is used.

We also inluded the �nal value of our merit funtion f(x; z; �), together

with the norm of the projeted gradient kg

p

k at the �nal approximation.

The results of our approah ompared quite well with [8℄ and were by

far superior than the results of [10℄. For problem POZ1, starting points (a)

and (b) provide similar results in terms of e�ort spent, although point (b)

generates a solution with slightly better quality. For this problem, starting

with point (), on the other hand, requires twie as muh inner iterations and

matrix-vetor produts than starting with (a) or (b). For problem POZ2,

the starting point that generated higher ost was (b).

OZ95 JFQS98

start

�rst approah

ITER

seond approah

ITER

ITER FE �

(a) 2 14 5 17 7.65D�18

(b) 2 41 4 16 9.71D�15

() V

2

singular 56 5 11 3.43D�24

Table 17: Previous results - Problem 1 (POZ1 - n = 4).

OZ95 JFQS98

start

�rst approah

ITER

seond approah

ITER

ITER FE �

(a) 3 15 5 17 1.05D�18

(b) V

2

singular 15 4 16 4.89D�15

() V

2

singular no onvergene 5 11 7.05D�22

Table 18: Previous results - Problem 2 (POZ2 - n = 4).
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Problem start OUTER FE INNER MVP f(x; z; �) kg

p

k

POZ1 (a) 4 5 24 30 2.31D�10 8.61D�06

(b) 4 5 22 39 1.55D�14 7.03D�08

() 4 5 45 68 6.63D�11 7.77D�06

POZ2 (a) 5 6 48 74 4.25D�12 2.33D�06

(b) 6 8 104 171 1.15D�14 8.25D�08

() 3 4 31 60 9.43D�11 2.25D�05

Table 19: Results using our approah (n = 4).

To assess the performane of our approah, we enlarged the dimension

n of problems POZ1 and POZ2, allowing n = 40, n = 400 and n = 4000.

Matrix A 2 IR

n�n

and vetor b 2 IR

n

are the natural extensions of (3), as

are the starting vetors (a), (b) and (). Results are presented in Table 20,

where one an see that the omputational e�ort grows very slowly as n

inreases. The greatest di�erene happens between n = 4 and n = 40, but

from 40 to 400 and from 400 to 4000 the ost does not grow as muh as

in the �rst ase. Suh di�erenes in the inreasing fators an be better

appreiated by the average values shown in Table 21.

Problem start OUTER FE INNER MVP f(x; z; �) kg

p

k

POZ1 (a) 7 10 125 236 1.26D�11 5.48D�06

n = 40 (b) 6 8 102 313 3.16D�13 4.52D�07

() 5 7 84 176 1.11D�10 6.62D�06

POZ1 (a) 8 12 146 205 2.42D�12 8.69D�07

n = 400 (b) 7 10 126 201 5.66D�12 1.59D�06

() 6 8 94 206 1.44D�11 2.32D�06

POZ1 (a) 9 14 143 311 1.59D�12 7.79D�07

n = 4000 (b) 8 12 123 377 7.43D�12 2.26D�06

() 7 9 99 289 1.96D�11 2.91D�06

POZ2 (a) 7 11 127 248 4.36D�12 2.45D�06

n = 40 (b) 6 9 116 201 1.89D�11 2.56D�06

() 6 8 104 176 6.90D�13 7.44D�07

POZ2 (a) 9 14 143 227 6.64D�13 5.35D�07

n = 400 (b) 7 11 135 367 1.75D�11 2.74D�06

() 7 10 120 203 6.30D�13 4.93D�07

POZ2 (a) 10 15 157 394 2.98D�12 9.12D�07

n = 4000 (b) 9 14 161 385 7.84D�11 5.18D�06

() 8 12 161 309 1.21D�12 4.94D�07

Table 20: Additional tests with larger dimensions.
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Problem n OUTER FE INNER MVP

POZ1 4 4.0 5.0 30.3 45.7

40 6.0 8.3 103.7 241.7

400 7.0 10.0 122.0 204.0

4000 8.0 11.7 121.7 325.7

POZ2 4 4.7 6.0 61.0 101.7

40 6.3 9.3 115.7 208.3

400 7.7 11.7 132.7 265.7

4000 9.0 13.7 159.7 362.7

Table 21: Average results of our approah.

3.3 Problems with general polyhedral ones in IR

n

In this third set of experiments we address the problem of �nding x 2 IR

n

suh that Mx+  2 K, Px+ d 2 K

Æ

and (Mx+ )

T

(Px+ d) = 0, where the

sets K, K

Æ

are de�ned by

K = fv 2 IR

n

j Av � 0; Bv = 0g;

K

Æ

= fu 2 IR

n

j u = A

T

�

1

+B

T

�

2

; �

1

� 0g;

with A 2 IR

p�n

, B 2 IR

s�n

given. Matries M;P 2 IR

n�n

and vetors

; d 2 IR

n

are also given.

The problems were randomly generated quite similarly to our �rst set of

experiments. We started by generating matries M and P with the pattern

M = Q

ML

D

M

Q

MR

, P = Q

PL

D

P

Q

PR

, where D

M

and D

P

are diagonal

matries and Q

(�)

are orthogonal Householder matries de�ned by Q

(�)

= I�

2

u

(�)

u

T

(�)

u

T

(�)

u

(�)

, with vetor u

(�)

2 IR

n

with omponents generated by rnd(�1; 1). To

generate singular matries we fored 20% of the elements of the diagonal to

be identially zero. To generate inde�nite matries, eah element of diagonal

D

(�)

was multiplied by the signal of rnd(�1; 1). Next, vetors x

�

and  were

omputed with omponents generated by rnd(�10; 10). Then, we alulated

y

�

= Mx

�

+  and generated matrix B suh that By

�

= 0. This was

aomplished by applying the modi�ed Gram-Shmidt algorithm (see, e.g.

[7℄) to obtain the QR fatorization of matrix

 

y

�

�

�

�

�

�

I

s

0

!

= QR =

�

y

�

ky

�

k

2

�

�

�

B

T

�

R:

and the rows of matrix B are de�ned by the s last olumns of the Q fator.

Matrix A was de�ned by the produt A = S

A

Q

AL

D

A

Q

AR

, with S

A

2 IR

p

diagonal with 1 or �1 so that Ay

�

� 0. Orthogonal matries Q

AL

2 IR

p�p

and Q

AR

2 IR

n�n

are as matries Q

(�)

above. Matrix D

A

2 IR

p�n

is diago-

nal, without any prior assumption about p and n. We generated its elements
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(D

A

)

i

2 rnd[�0:1; 0:1℄; i = 1;minfp; ng. To omplete the problem data, we

generated �

�

1

suh that �

�

1

? z

�

= Ay

�

, �

�

2

2 rnd[�10; 10℄ and omputed

d = A

T

�

�

1

+B

T

�

�

2

� Px

�

.

The initial approximation was randomly generated as follows: [x

0

℄

i

=

rnd(�10; 10), i = 1; : : : ; n, [z

0

℄

i

= rnd(1; 10) and [�

0

1

℄

i

= rnd(1; 10); i =

1; : : : ; p and [�

0

2

℄

i

= 0; i = 1; : : : ; s.

Aording to the features of matries M and P , we divided the set of

tests in three families: 1) M = P , inde�nite and non symmetri; 2) M = P ,

inde�nite and symmetri; 3)M 6= P , inde�nite, non symmetri and singular.

For families 1) and 2) the theoretial hypotheses of the equivalene results

hold sine PM

�1

= I.

For eah family, six sets for the dimensions (n; p; s) were onsidered: (10,

5, 1); (10, 10, 1); (10, 15, 1); (100, 50, 5); (100, 100, 5) and (100, 150, 5).

For eah set of dimensions, three problems were generated, with di�erent

seeds. The arithmeti means of the results are reported in Tables 22-23,

where we inform the number of iterations (INNER) and matrix-vetor prod-

uts (MVP) performed by the inner (quadrati) solver, and the number of

iterations (OUTER) and funtional evaluations (FE) performed by the outer

(trust-region) algorithm.

p family INNER MVP OUTER FE

5 1 136.7 170.3 9.0 10.0

10 184.0 257.0 11.3 12.3

15 309.0 436.7 18.0 19.0

5 2 168.0 213.0 11.3 12.3

10 168.7 232.3 11.8 12.8

15 208.3 282.3 12.7 13.7

5 3 208.7 253.3 10.0 11.0

10 278.7 371.7 13.0 14.0

15 485.7 640.7 19.7 20.7

Table 22: Average results - problems with n = 10; s = 1.

p family INNER MVP OUTER FE

50 1 1021.0 1373.0 35.7 36.7

100 2199.3 2971.3 72.0 73.0

150 3946.3 5103.0 113.3 114.0

50 2 1064.7 1421.0 37.0 38.0

100 2167.7 2833.0 67.3 68.3

150 4291.3 5720.3 124.3 125.3

50 3 7397.7 7922.0 101.0 102.0

100 160724.0 166259.0 1856.0 1857.0

150 102189.0 112886.0 957.3 963.0

Table 23: Average results - problems with n = 100; s = 5.
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We denote the �gures of Tables 22 and 23 by T

k

ij

, where k 2 f1; 2; 3g

represents eah family, i 2 f1; 2; 3g orresponds to rows with p = 5; 10; 15

(Table 22), i 2 f4; 5; 6g orresponds to rows with p = 50; 100; 150 (Table 23),

and j 2 f1; 2; 3; 4g is the orresponding olumn with the values INNER,

MVP, OUTER and FE. Based on these values, and similarly to the �rst set of

tests, we de�ne two ost measures to guide our analysis, per inner iteration

(MVP/INNER) and global (INNER/OUTER), as follows:

me

1

(i) =

1

3

X

k

T

k

i2

T

k

i1

and me

2

(i) =

1

3

X

k

T

k

i1

T

k

i3

;

for i = 1; 2; 3; 4; 5; 6.

For a better understanding of the average values represented by these

two measures, we also omputed the minimum and maximum values:

m

1

(i) = min

k

T

k

i2

T

k

i1

; M

1

(i) = max

k

T

k

i2

T

k

i1

; m

2

(i) = min

k

T

k

i1

T

k

i3

; and M

2

(i) = max

k

T

k

i1

T

k

i3

:

Results are reported in Table 24, where the triples ontain

(m

1

(i);me

1

(i);M

1

(i)) and (m

2

(i);me

2

(i);M

2

(i));

for i = 1; : : : ; 6.

With the aim of analyzing results aording to the family of generated

problems, we de�ne two additional measures for eah one of sets 1 to 3.

The weights ln(n + 2p + s) and

p

ln(n+ 2p+ s) were introdued to �lter

dependene of dimension and somehow uniformize the omputed values:

me

3

(k) =

1

6

 

3

X

i=1

T

k

i2

ln(11 + 10i)T

k

i1

+

6

X

i=4

T

k

i2

ln(100i � 195)T

k

i1

!

and

me

4

(k) =

1

6

 

3

X

i=1

T

k

i2

p

ln(11 + 10i)T

k

i1

+

6

X

i=4

T

k

i2

p

ln(100i � 195)T

k

i1

!

for k = 1; 2; 3. We stress that the values 11+10i; i = 1; 2; 3 and 100i�195; i =

4; 5; 6 are, respetively, the dimensions 21, 31, 41 and 205, 305, 405 used in

the tests. Results are shown in Table 25, where we also inlude minimum

(m

3

;m

4

) and maximum values (M

3

;M

4

).
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Dimension

(p)

(m

1

;me

1

;M

1

) (m

2

;me

2

;M

2

)

5 (1.22, 1.24, 1.26) (14.69, 16.54, 20.03)

10 (1.34, 1.36, 1.38) (14.79, 17.50, 21.34)

15 (1.33, 1.37, 1.42) (16.49, 19.28, 24.11)

50 (1.09, 1.25, 1.34) (28.24, 41.04, 66.12)

100 (1.06, 1.24, 1.35) (30.49, 48.74, 83.55)

150 (1.09, 1.24, 1.34) (34.24, 54.99, 95.91)

Table 24: Measures of e�ort per problem dimension.

Family (m

3

;me

3

;M

3

) (m

4

;me

4

;M

4

)

1 (0.50, 0.54, 0.58) (23.08, 37.16, 54.70)

2 (0.51, 0.54, 0.56) (23.19, 37.02, 53.86)

3 (0.43, 0.48, 0.54) (31.34, 81.58, 151.38)

Table 25: Measures of e�ort per problem family.

Observing Table 24 one an see that the e�ort of the inner solver is always

inferior to 1.5 matrix-vetor produts per iteration. Moreover, it is slightly

larger for smaller problems (dimensions n + 2p + s 2 f21; 31; 41g than for

larger ones (n+ 2p+ s 2 f205; 305; 405g), although the dispersion between

minimum and maximum values grows with inreasing p. This last omment

also applies to the global e�ort measure me

2

, that grows as p inreases,

together with the length of intervals [m

2

;M

2

℄. Although dimension di�ers

from a fator of ten for the two sets of problems, �gures of (m

2

;me

2

;M

2

)

are about twie as large when the two sets are ompared.

Conerning Table 25, the main onlusions are that symmetry of ma-

tries M and P does not seem to interfere in the performane of our ap-

proah, sine families 1 and 2 produed quite similar results for both triples

(m

3

;me

3

;M

3

) and (m

4

;me

4

;M

4

). Singularity of matries M and P , on

the other hand, showed signi�ative e�ets, espeially as far as the global

performane is onerned.

This set of experiments ontains a total of 54 tests. For the 27 problems

of smaller dimension, the �nal objetive funtion value was always inferior

to 10

�5

. Considering the 27 larges ones, for 8 problems of the third family

the �nal objetive funtion values were greater than 10

�2

, indiating on-

vergene to a loal non-global solution. This amounts to 55.6% of suess

among problems for whih the theoretial ondition of equivalene does not

hold. We stress, however, that whenever suh hypothesis is valid, a global

solution was reahed.
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3.4 Problems in 3D-ones with ontrol of generated faes

In the fourth set of experiments we addressed the problem of �nding x 2 K =

fv 2 IR

n

j Av � 0g suh that Tx + q 2 K

Æ

= fv 2 IR

n

j A

T

� = v; � � 0g.

We generated the polyhedral ones K with p faes, suh that their edges

were the lines

0

B

�

x

y

z

1

C

A

=

0

B

B

�

r os

�

2�

p

k

�

r sin

�

2�

p

k

�

1

1

C

C

A

t; t 2 IR; k = 1; : : : ; p:

Therefore, K was de�ned by omputing the rows of matrix A as the normal

vetors to the support planes to the faes of the one. In other words, the

vetor that de�nes the i�th row of matrix A (i = 1; : : : ; p) is given by the

ross produt:

0

B

B

B

B

B

�

os

�

2�

p

(i� 1)

�

sin

�

2�

p

(i� 1)

�

1

r

1

C

C

C

C

C

A

�

0

B

B

B

B

B

�

r os

�

2�

p

i

�

r sin

�

2�

p

i

�

1

1

C

C

C

C

C

A

=

0

B

B

B

B

�

sin

�

2�

p

i

��

os

2�

p

� 1

�

� os

�

2�

p

i

�

sin

2�

p

os

�

2�

p

i

��

1� os

2�

p

�

� sin

�

2�

p

i

�

sin

2�

p

r sin

2�

p

1

C

C

C

C

A

The problems were generated as follows. One de�ned the values of the

radius r and of the dimension p (number of faes of one K), we built matrix

A and reated two types of x

�

, at the border and in the interior of K, re-

spetively. Next we generated matrix T using the pattern T = Q

TL

D

T

Q

TR

,

where D

T

is diagonal and Q

TL

, Q

TR

are orthogonal Householder matries

de�ned as in the �rst and third set of tests. We kept T symmetri, and

produed four families of problems, namely 1) T inde�nite; 2) T positive

de�nite; 3) T positive semide�nite and 4) T negative semide�nite. We built

0 � �

�

? Ax

�

� z

�

. Finally we omputed q = A

T

�

�

� Tx

�

.

The tests were produed by varying r 2 f0:1; 1; 10g, p 2 f3; 4; 5; 6; 9; 12g,

the four families of matries T and the two kinds of generated solution

x

�

, whih amounted to 144 problems. Three distint seeds were hosen to

generate problems for eah seletion of r; p; T and x

�

. Tables 26-33 ontain

average values of the results obtained with the three seeds. To present the

results we have separated information onerning number of inner iterations,
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of matrix-vetor produts, of outer iterations and of funtional evaluations

in distint tables, in order to keep together variation of dimension p, radius

r and features of matrix T .

To analyse the robustness of the proposed approah, sine half of the

generated problems do not satisfy the hypothesis of the equivalene result

(families 1 and 4, with matries T inde�nite and negative semide�nite, re-

spetively), we observed that for the 72 problems with x

�

generated at the

boundary of the one, 29 out of the 72� 3 tests stopped at loal non global

solutions. This orresponds to suess for 86.6% of the total and 73.2% of

the andidates for failure. For problems with x

�

generated in the interior of

the one, there were six problems that onverged to loal non-global solu-

tions, in a total of 72� 3 problems. In this ase, the measures of suess are

97.2% of the total and 94.4% of the problems without theoretial guarantee

of onvergene. Summing up the two bloks of tests, there were 35 failures,

representing suess in 91.9% of total and 83.8% of the universe of problems

that do not satisfy the hypothesis of equivalene result.

There are some salient features that emerge from Tables 26-33. First,

the omputational ost of the inner solver grows with problem dimension,

reahing its maximum for p = 9 and p = 5 if x

�

is generated at the boundary

and in the interior of K, respetively.

It is also evident that the degree of diÆulty of the generated problems

grows as the radius r dereases: r = 10 produes the easiest problems

whereas r = 0:1 generates the most diÆult ones. Reall that in this set of

experiments our problem is to �nd x 2 K = fv 2 IR

n

j Av � 0g suh that

Tx + q 2 K

Æ

= fv 2 IR

n

j A

T

� = v; � � 0g, so the requirements for K and

K

Æ

are di�erent.

family r INNER

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 62.0 75.3 120.3 120.0 261.7 216.7

10 118.0 139.3 155.0 340.7 363.3 377.3

0.1 74.3 107.0 255.3 210.3 768.0 593.3

2 1 70.3 110.7 160.3 134.0 228.7 252.7

10 88.0 110.3 161.7 191.3 357.0 300.7

0.1 60.3 101.3 158.7 188.0 502.0 585.0

3 1 70.0 118.7 190.0 220.0 207.3 220.7

10 75.0 61.3 223.7 140.3 307.0 391.0

0.1 88.0 149.7 190.3 182.3 402.3 722.0

4 1 66.7 114.7 116.7 158.7 380.7 339.0

10 58.0 81.0 120.7 139.0 264.7 300.0

0.1 78.7 167.3 240.0 172.7 970.3 163.7

Table 26: Average number of inner iterations (INNER) for problems with x

�

generated at the boundary of one K.
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family r MVP

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 84.7 105.0 172.7 171.7 364.0 344.3

10 176.3 197.3 227.0 430.7 542.0 558.3

0.1 99.3 141.7 343.7 307.0 1010.3 811.0

2 1 98.7 158.0 223.0 187.0 301.0 345.3

10 119.0 158.0 256.3 297.7 612.0 505.7

0.1 76.3 138.7 206.7 250.0 647.0 770.7

3 1 97.0 166.3 272.7 313.0 254.0 303.7

10 100.3 86.0 332.0 209.3 468.3 654.7

0.1 120.7 192.7 252.7 253.3 544.7 950.0

4 1 90.0 155.7 182.7 215.7 521.3 477.3

10 75.3 108.3 160.0 194.7 371.3 482.0

0.1 111.3 224.7 294.3 257.7 1281.3 263.0

Table 27: Average number of matrix vetor produts (MVP) for problems with x

�

generated at the boundary of one K.

family r OUTER

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 5.3 6.0 7.3 7.7 10.3 10.7

10 6.3 7.7 8.0 10.0 11.7 12.7

0.1 5.7 7.3 9.3 9.7 21.3 20.0

2 1 6.3 7.3 8.0 7.0 10.0 12.0

10 5.7 6.7 8.0 7.3 10.7 11.7

0.1 6.0 7.0 9.0 11.0 16.7 23.0

3 1 6.0 6.7 8.3 8.3 10.0 10.3

10 5.0 3.7 7.0 6.7 10.7 12.7

0.1 6.0 7.0 8.7 8.3 15.3 24.3

4 1 5.7 7.3 6.7 7.3 10.3 10.3

10 6.0 6.0 9.3 8.7 10.7 9.7

0.1 6.7 8.3 9.3 8.7 18.3 7.3

Table 28: Average number of outer iterations (OUTER) for problems with x

�

generated at the boundary of one K.

20



family r FE

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 6.3 7.0 8.3 8.7 11.3 11.7

10 7.3 8.7 9.0 11.0 13.3 15.7

0.1 6.7 8.3 10.3 10.7 23.0 21.3

2 1 7.3 8.3 9.0 8.0 11.0 13.0

10 7.0 7.7 9.0 8.3 12.3 12.7

0.1 7.0 8.0 10.0 12.0 17.7 24.0

3 1 7.0 7.7 9.7 9.3 11.7 11.3

10 6.0 4.7 8.0 7.7 11.7 14.3

0.1 7.0 8.0 9.7 9.3 16.3 25.3

4 1 6.7 8.3 7.7 8.3 11.3 11.3

10 7.0 7.0 10.3 9.7 12.3 11.7

0.1 7.7 9.3 10.3 9.7 19.3 8.3

Table 29: Average number of funtional evaluations (FE) for problems with x

�

generated at the boundary of one K.

family r INNER

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 107.0 137.7 99.0 109.7 217.7 257.3

10 77.3 89.7 139.0 157.0 133.3 227.3

0.1 144.3 485.7 211.3 371.3 947.3 1380.3

2 1 84.7 92.0 95.0 104.7 113.0 113.3

10 52.7 63.3 78.3 66.7 33.7 134.0

0.1 146.7 299.7 434.0 479.3 471.3 492.7

3 1 81.0 90.3 142.0 107.3 106.3 129.3

10 43.0 100.3 77.0 59.0 154.7 233.0

0.1 214.0 393.3 368.0 409.0 574.7 814.0

4 1 73.3 57.3 122.7 87.3 150.7 197.0

10 96.3 189.0 177.0 132.0 71.3 45.3

0.1 197.7 391.0 1993.3 274.7 483.7 228.3

Table 30: Average number of inner iterations (INNER) for problems with x

�

generated in the interior of one K.
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family r MVP

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 138.3 175.7 140.7 158.3 319.0 344.7

10 107.3 129.7 203.7 255.7 239.7 374.3

0.1 174.7 654.3 283.7 476.7 1248.3 1778.3

2 1 108.0 126.0 139.7 156.0 179.0 178.7

10 73.3 88.3 128.3 104.7 58.0 241.3

0.1 188.3 378.7 560.3 623.0 637.0 664.0

3 1 115.0 128.3 225.0 166.7 176.3 229.0

10 61.0 141.7 116.3 92.0 285.7 433.0

0.1 298.3 505.7 474.0 552.0 775.7 1126.3

4 1 99.7 79.0 175.0 137.3 248.3 309.7

10 135.0 283.0 278.3 211.7 136.0 86.7

0.1 270.0 548.7 2666.7 356.0 657.0 339.7

Table 31: Average number of matrix vetor produts (MVP) for problems with x

�

generated in the interior of one K.

family r OUTER

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 7.3 8.0 7.3 7.7 9.7 10.0

10 4.7 4.7 6.3 6.3 5.3 8.0

0.1 7.3 15.3 10.0 13.0 27.0 28.0

2 1 6.7 7.3 7.3 7.3 6.7 7.0

10 4.0 4.7 4.3 4.7 3.3 6.3

0.1 10.3 13.3 13.7 14.0 16.3 19.7

3 1 7.0 6.3 8.0 7.0 7.0 7.7

10 3.0 4.7 4.3 4.0 5.7 7.7

0.1 9.7 11.7 12.7 11.7 15.3 18.3

4 1 6.0 4.3 7.3 6.3 7.3 9.3

10 5.7 6.7 8.0 6.7 4.0 4.0

0.1 8.0 13.3 27.2 10.0 10.0 11.7

Table 32: Average number of outer iterations (OUTER) for problems with x

�

generated in the interior of one K.
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family r FE

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 8.3 9.0 8.3 8.7 11.3 11.0

10 5.7 5.7 7.3 7.3 6.3 9.0

0.1 8.3 16.3 11.0 15.3 28.0 29.0

2 1 7.7 8.3 8.3 8.3 7.7 8.0

10 5.0 5.7 5.3 5.7 4.7 7.3

0.1 11.3 14.3 14.7 16.0 19.0 21.0

3 1 8.0 7.3 9.0 8.0 8.0 8.7

10 4.0 5.7 5.3 5.0 6.7 8.7

0.1 10.7 12.7 13.7 12.7 16.3 19.3

4 1 7.0 5.3 8.3 7.3 8.3 10.3

10 6.7 7.7 9.0 7.7 5.0 5.0

0.1 9.0 14.3 28.7 11.0 11.0 12.7

Table 33: Average number of funtional evaluations (FE) for problems with x

�

generated in the interior of one K.

Grouping problems aording to the features of matrix T , there are 36

problems for eah family (6 dimensions p, 3 values for r and 2 types of

generated x

�

). We have omputed the ratios INNER=n

t

and OUTER=n

t

, where

n

t

= n+ 2p is the dimension of problem (1) and alulated average values,

presented in Table 34, together with minimum and maximum values.

family INNER=n

t

OUTER=n

t

minimum average maximum minimum average maximum

1 6.3 15.6 51.1 0.3 0.6 1.4

2 1.6 12.2 33.4 0.2 0.6 1.2

3 3.9 13.6 35.8 0.3 0.6 1.1

4 1.7 16.4 153.3 0.1 0.6 2.1

Table 34: Measures of e�ort per problem features.

Observing the �gures of Table 34, one an see that families 1 and 4

(T inde�nite and negative semide�nite, respetively) demand more e�ort to

be solved than those from families 2 and 3 (T positive de�nite and positive

semide�nite, respetively). The largest dispersion, that is the largest interval

[minimum, maximum℄ ours for the fourth family, beause of an outlier.

Removing this disrepant value, the triples beome (1.7, 14.5, 46.2) and

(0.1, 0.7, 1.2), with dispersions similar to the ones of the �rst family.

4 Conlusions

We have used a smooth box onstrained minimization reformulation of the

GNCP(F;G;K), assuming that K is a polyhedral one. Any eÆient mini-

mization algorithm for solving this kind of problems may be used. Compu-

tational experiments are presented whih enourage the use of our approah.
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Four groups of problems were addressed: randomly generated problems in

the positive orthant; impliit omplementarity problems from Outrata &

Zowe; problems with general ones in IR

n

and problems in 3D-ones with

ontrol of generated faes.

The numerial results showed that the solution of the GNCP using (2)

was found in the majority of the tests, even without aomplishment of

theoretial hypothesis, meaning that the behavior of the method does not

depend strongly on the suÆient onditions that guarantee the equivalene.

Quantifying this robustness, onsidering only the universe of problems

without theoretial support for onvergene, for the �rst set of experiments

the amount of failure was 24%. In the third and fourth sets, loal non-

global solutions were reahed in 44% and 16% of the tests, respetively. No

doubt, in the absene of theoretial support, the onvergene to global so-

lutions is more frequent for problems of smaller dimensions. The seond set

of problems, inluded for omparative purposes, formed by impliit om-

plementarity problems, ontained large-sale experiments (dimension up to

3 � 4000 = 12000) for whih our approah had a very good performane.

The third set of experiments revealed that general polyhedral ones might

produe quite diÆult problems, espeially as the dimension inreases. The

fourth group of tests was reated to investigate geometrial features of the

one K. Besides notiing that, for the generated 3D-problems, thinner ones

need more e�ort than wider ones, we observed that the inreasing number of

edges and faes did not substantially augment the amount of e�ort needed

to solve the problems. As a natural extension of this work we would like to

investigate the possibility of approximating a general one by a polyhedral

one. This leads us to look for further onnetions between theory and pra-

tie onerning geometrial and algebrai properties of general ones and

their relationship with GNCP de�ned in suh sets. We are also interested in

studying the behavior of our approah applied to problems with nonlinear

funtions F and G and polyhedral ones.
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