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Abstract

In a previous work, the minimization of a differentiable function
subject to box constraints was proposed as a strategy to solve the
generalized nonlinear complementarity problem (GNCP) defined on a
polyhedral cone. Theoretical results that relate stationary points of
the function that is minimized to the solutions of the GNCP were
presented. These theoretical results show that local methods for box
constrained optimization applied to the associated problem are effi-
cient tools for solving the GNCP. In this work, numerical experiments
are presented that encourage the use of this approach.
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1 Introduction

The Generalized Nonlinear Complementarity Problem (GNCP) is to find
z € IR™ such that

F(z) €K, G(z) € k°, F(z)TG(z) =0, (1)

where F' and G are continuous functions from IR™ to IR", K is a nonempty
closed convex cone in IR", and K° denotes the polar cone of K.

We consider the case n = m, F,G € C' and K a polyhedral cone in R"
that is, given A € IRP*™ and B € IR**", we have

K={veR"| Av >0, Bv=0}

and
K°={ue R"|u=A"X\ + BTXy, A\ >0}.

This problem has many interesting applications and its solution using
special techniques has been considered extensively in the literature. See
8,9, 14] among others. If € = R = {x € R™ | © >0}, G(z) = 2 — F(x)
and F' : R™ — IR™, the GNCP(F, G, K) reduces to the so-called implicit
complementarity problem [11, 12]. In particular, if G(z) = z, the GNCP
reduces to the nonlinear complementarity problem, denoted by NCP.

Our approach in this paper is to solve the GNCP by means of an equiv-
alent box-constrained smooth optimization problem. Differentiable bound-
constrained minimization is a well developed area of practical optimization
and many methods and reliable software are available for large-scale prob-
lems. See, for example, [3, 4, 6, 16].

Any efficient algorithm for smooth box-constrained minimization can be
used, in particular, algorithms that do not rest upon matrix factorizations
at all, allowing us to deal with large-scale problems. Unlike the formula-
tions in [13, 15], the computation of the objective function of the equivalent
minimization problem is straightforward and projections on convex sets are
not necessary to compute neither the objective function nor the derivatives.

Our set of experiments contains four families: randomly generated prob-
lems in the positive orthant; implicit complementarity problems from Out-
rata & Zowe [10]; problems with general polyhedral cones in IR™ and prob-
lems in 3D-cones with control of generated faces.

For the first family of problems, functions F' and G are affine and both
cones are the positive orthant. Although quite simple, these problems con-
tain essential elements to start the investigation. By varying dimensions and
features of the matrices that define F' and G, we have produced an extensive
set of tests for which the theoretical hypothesis of equivalence might hold
or not.



In the second family our main objective was to solve problems already
addressed in the literature. We also extended the family of implicit com-
plementarity problems proposed in [10] to variable dimension, producing
large-scale tests. For such problems, however, the cones are the positive
orthant as well.

General polyhedral cones were treated in the third and fourth families of
problems. In the third one, functions F' and G are affine and matrices A and
B that define the cones are generated to accomplish well defined problemms,
but whithout any specific control. In the fourth family, we produced three
dimensional tests, so that geometrical features of the cone, like control of
edges and number of faces, were exploited in great extent.

The paper is organized as follows: the equivalent formulation which al-
lows turning the GNCP into a nonlinear programming problem is given in
Section 2. Numerical experiments are presented in Section 3. Conclusions
and lines for future research are discussed in Section 4.

Notation. We denote by (-,-) the Euclidean inner product in IR"™ and by
|- || the norm induced by this inner product and its corresponding matricial
norm. If B is a real n x n matrix, B > 0 (B > 0) means that B is positive
semidefinite (positive definite).

2 Equivalent formulation

The following minimization problem with simple bounds is associated to the
GNCP(F,G,K) defined in (1):

min f(x,z,\)
subject to { i ig: @
where
f(@,2,2) = |RF(z) = 2|” + |G (z) — R"AlI” + (2", A1)?
and

A 21 " s _ AL » s
i (8). o= (3 ) ne () carae

The next theorem, proved in [1], states that solving problem GNCP(F, G, K)
is equivalent to finding the global minimizer of the optimization problem (2).



Theorem 1. If (24,2, As) @5 a global minimizer of problem (2) with
f(@uy 24y Ai) = 0, then x. is a solution of the GNCP(F,G,K). Conversely,
if T« is a solution of the GNCP(F,G,K), then there exist z., A« such that
(Txy 24y Ax) 18 a global minimizer of (2) with f(z«,z., A\s) = 0.

For completeness, we include in the following a result (proved in [1])
concerning solution of problem GNCP(F, G, K) and stationary points of (2)
whenever F(z),G(x) are affine functions. The theoretical hypothesis about
matrix G’F'~! will be exploited in the numerical experiments.

Theorem 2. Let F(x),G(z) be affine, G'F'~! positive semidefinite in the
null space of B and GNCP(F,G,K) feasible. If (x4, 2z, Ax) is a stationary
point of (2) then, x, is a solution of GNCP(F,G,K).

3 Computational experiments

The equivalent minimization problems (2), with simple bounded variables,
were solved using BOX-QUACAN, a software developed by our research group
at the State University of Campinas. It is based on the trust-region approach
for solving large-scale bound constrained minimization, and uses the infinity
norm to define the trust-region, so that the quadratic subproblems have
also simple bounded variables. The subproblems are solved by combining
conjugate gradients with projected gradients and a mild active set strategy
(see [2, 6] or [5, p.459]).

The code was developed in Fortran 77 double precision (Microsoft Pow-
erStation) and run on a Pentium 64MB RAM. The stopping criteria used is
tolerance for the objective function value €y = 10710 and tolerance for the
norm of the continuous projected gradient £, = 1075, We set p = 1 for all
the tests.

3.1 Randomly generated problems in the positive orthant

In our first set of experiments we considered the problem of finding z € IR"
such that Mz +¢ > 0, Pz +d > 0 and (Mz + ¢)! (Pz + d) = 0, where
matrices M, P € IR™*" and vectors ¢,d € IR" are given.

The problems were randomly generated as follows: first we obtained two
vectors y,z € IR™, y,z > 0 such that y'2 = 0. Using a function rnd(a, b)
that randomly generates a real value between a and b, for ¢« = 1,2,...,n
we computed o = rnd(0,1); if « < 0.5, we set y; = rnd(1,10) and z; = 0,
otherwise, y; = 0 and z; = rnd(1,10). We also generated a vector x, € IR"
with components [z.]; = rnd(—10,10),7 = 1,2,...,n. Matrices M and P



have the pattern M = QunrDyQumr, P = QprDpQpr, where Dy and
Dp are diagonal matrices and ()., are orthogonal Householder matrices

T
defined by Q) = I — 22;)28, with vector u() € IR" with components

generated by rnd(—1, 1). Hence, only three vectors are used to define and are
stored for each matrix M (upsr, dpr, uprr) and P(upr, dp,upr), since we just
need to compute their products by a vector. To generate positive definite
matrices, the elements of Dy, and/or Dp were generated by rnd(1,10). To
generate singular matrices we forced 20% of the elements of the diagonal to
be identically zero. To generate indefinite matrices P, each element of Dp
was multiplied by the signal of rnd(—1,1). Finally, vectors ¢ and d were
computed by c =2 — Mz, and d = y — Px..

We started with a randomly generated initial approximation as follows:
[0]; = rnd(—10,10), [20]; = rnd(1,10) and [Ao]; = rnd(1,10),i =1,...,n.

According to the features of matrices M and P, we divided the set of
tests in fourteen families: M and P may be identical or not, M and P may
be symmetric or not and matrices M and P may be regular or singular.
M is either positive definite or positive semidefinite, whereas P might be
positive definite, positive semidefinite or indefinite (but regular). Whenever
M or P is invertible, the theoretical hypotheses of the equivalence results
of Section 2 can be checked by analysing properties of matrices PM~! or
MpP~

For each family, four values for the dimension n were used (5, 50, 500
and 5000). For each dimension, three problems were solved, with different
seeds. The arithmetic means of the results are reported in Tables 1-14,
where we inform the number of iterations (INNER) and matrix-vector prod-
ucts (MVP) performed by the inner (quadratic) solver, and the number of
iterations (OUTER) and functional evaluations (FE) performed by the outer
(trust-region) algorithm.

| n || INNER | MVP | OUTER | FE |

5 90.0 148.0 8.0 9.0
50 211.7 | 409.7 10.0 | 11.0
500 || 336.0 | 962.0 12.7 | 13.7
5000 || 484.3 | 2038.0 | 16.0 | 17.3

Table 1: Average results: M = P, M = M™, M positive definite
(PM~L = MP~'=1).




| n || INNER | MVP |[OUTER | FE |
5 114.7 | 199.0 9.0 | 10.0
50 247.3 | 501.3 10.3 | 11.3
500 || 344.7 | 894.3 | 12.3 | 11.3
5000 || 355.3 | 1312.0 | 13.7 | 14.7

Table 2: Average results: M = P, M = M*, M regular indefinite
(PM~t=MP~t=1).

| n || INNER | MVP | OUTER | FE |
5 106.3 [ 169.7 | 83 | 9.3
50 || 220.3 | 419.7 | 10.7 | 11.7
500 340.7 | 849.0 13.0 14.0
5000 || 379.3 | 1258.7 | 14.3 15.3

Table 3: Average results: M = P, M = M*, M singular (positive semidefinite).

| n || INNER | MVP |[OUTER | FE |
5 102.3 161.0 8.7 9.7
50 224.7 | 385.3 10.3 | 11.3
500 337.7 | 965.0 12.7 13.7
5000 || 564.7 | 2771.0 15.7 17.0
Table 4: Average results: M = P, M # M™, M positive definite
(PM~'=MP'=1).

| n || INNER | MVP |[OUTER | FE |
5 100.0 | 153.0 8.3 9.3
50 236.0 | 433.3 9.7 10.7
500 291.7 | 723.3 12.0 | 13.0
5000 || 453.3 | 1846.3 16.0 | 18.0

Table 5: Average results: M = P, M # MT, M regular indefinite
(PM~=MP1=1).

| n || INNER | MVP |[OUTER | FE |
5 121.7 | 207.7 | 9.3 |10.3
50 224.7 | 397.0 10.0 | 11.0
500 336.3 | 854.7 13.3 | 14.3
5000 || 392.7 | 1256.0 | 14.7 | 16.0

Table 6: Average results: M = P, M # M*, M singular (positive semidefinite).




| n | INNER | MVP | OUTER | FE |

) 165.7 | 232.7 10.0 | 11.0

50 660.7 | 1042.7 | 15.7 | 16.7

500 | 1207.0 | 2533.3 | 18.7 | 20.0

5000 || 1480.7 | 3928.3 | 26.7 | 28.7

Table 7: Average results: M # P, M = M*, P = PT,
M and P positive definite.

| n | INNER | MVP | OUTER | FE |

5 172.3 | 235.7 9.7 11.0
50 local | local | local | local

500 local | local | local | local
5000 local | local | local | local

Table 8: Average results: M # P, M = MT, P = PT, M positive definite, P
regular indefinite.

| n || INNER | MVP | OUTER| FE |

5 134.7 188.3 9.7 10.7

50 1026.7 | 1308.3 17.7 18.7

500 2596.7 | 3520.7 37.3 38.3

5000 || 13555.7 | 20585.7 | 214.0 | 215.0

Table 9: Average results: M # P, M = MT, P = PT, M positive definite, P
singular (positive semidefinite).

| n | INNER | MVP | OUTER | FE |

5 203.3 | 268.0 10.7 | 11.7

50 825.3 | 1096.3 | 15.3 | 16.7

500 || 1178.0 | 2130.0 | 18.7 | 19.7

5000 || 1473.7 | 4151.3 | 25.7 | 26.7

Table 10: Average results:M # P, M = M, P = PT,
M and P singular (positive semidefinite).

| n | INNER | MVP | OUTER | FE |

5 209.7 294.0 11.3 | 13.0

50 2493.7 | 2977.3 24.3 | 25.3

500 6774.0 | 7625.0 29.0 | 30.7

5000 || 17119.7 | 19131.3 | 50.0 | 51.7

Table 11: Average results: M # P, M # M, P £ PT,
M and P positive definite.




| n | INNER | MVP | OUTER | FE |

5 120.0 | 286.7 8.7 9.7

50 local | local | local | local

500 local | local | local | local

5000 || local | local | local | local

Table 12: Average results: M # P, M # M, P £ PT,
M positive definite, P regular indefinite.

| n || INNER | MVP | OUTER| FE |

5 local local local | local
50 1143.7 | 1398.3 15.7 16.7
500 3919.3 | 4762.0 39.0 40.0
5000 || 23520.7 | 31786.3 | 233.3 | 234.3
Table 13: Average results: M # P, M # MY, P # P*,
M positive definite, P singular (positive semidefinite).

| n || INNER | MVP | OUTER | FE |

) 163.3 240.7 10.0 | 11.0

50 1057.0 | 1359.3 15.7 | 16.7

500 || 4094.7 | 5037.7 26.7 | 27.7

5000 || 8300.3 | 10061.3 | 29.7 | 30.7

Table 14: Average results: M # P, M # MT, P # PT,
M and P singular (positive semidefinite).

There were some problems, the results of which are reported in Ta-
bles 8, 12 and 13, that converged to local non-global minimizers of (2), with
merit function value greater than 10~!. For problems reported in Tables 1,
2, 4 and 5 the theoretical hypotheses hold, representing 28.5% of the to-
tal number of tests. For Tables 1, 2, 4, 5 and 7, the algorithm computed
the same solution that was generated for assembling the problem data. In
Tables 3, 6, 10 and 14, since both matrices M and P are singular, the theo-
retical hypotheses fail, representing 28.5% of tests. For these tests, however,
the global solution of (2) was always obtained. There is no guarantee that
the theoretical hypotheses are valid for the test problems of Tables 7, 8,
9, 11, 12 and 13, which represent 43% of tests. In fact, in 18 out of the
60 problems of these last six tables, at least one of the values u! PM lu
or v’ MP~', where u = Mz + ¢ — z and v = Pz + d — \, was negative.
In the total of 168 problems solved, the hypotheses fail for 66 (39%), but
only 16 converged to local solutions of (2), which correspond to 24% of the
candidates for failure, and to 9.5% of the total of tests.

Denoting figures of Tables 1-14 by Tl’;, k=1,2,...,14,9=1,2,3,4 (rows
n = 5,50,500 and 5000, respec.), j = 1,2,3,4 (columns INNER, MVP, OUTER



and FE, respec.), we define average values to guide our analysis. Concerning
the effort spent by the algorithm, there are two aspects we would like to
address: how is such effort related to the problem dimension and how is
it related to the problem features? In order to do so, considering each
dimension separately, we start by defining two cost measures: per inner
iteration (MVP/INNER) and global (INNER/OUTER), as follows:

1 Tk 1 Tk
mei(i) = —=> =2 and mey(i) = =y &,
K27k K 2T
fort=1,2,3,4, where K =13 ift =1 and K =12 if s = 2, 3,4, to exclude
the local solutions.
To allow a better understanding of the average values represented by

these two measures, we also computed the minimum and maximum values:

k Tk Tk Tk
mi(i) = min—f, M, (i) = max —f, ma(i) = min—lkl, and Ms(i) = max —Zkl
ko Th ko Th kT kT

Results are reported in Table 15, where the triples contain
(my(2), mey (7), M1 (i) and  (mg(i), mey (i), Ma(i)),

for + = 1,2,3,4. We observe that, in the average, less than three matrix-
vector products are required per inner iteration, and this inner effort grows
quite slowly as n increases. The global effort, however, increases with n, as
well as the dispersion between the average, minimum and maximum values.

Dimension
(n) (ml,mel,Ml) (mz,mez,Mg)
5 (1.32, 1.58, 2.39) | (11.25, 14.58, 19.00)
50 (1.19, 1.59, 2.03) | (20.59, 44.27, 102.62)
500 (1.13, 2.06, 2.86) | (24.31, 70.12, 233.59)
5000 (1.12, 2.84, 4.91) | (25.93, 89.38, 342.39)

Table 15: Measures of effort per problem dimension.

With the aim of analyzing results according to the family of generated
problems, we define two additional measures for each one of Tables 1 to 14.
The weights In(n) and +/In(n) were introduced to filter dependence of di-

mension and somehow uniformize the computed values:

mes(k) = % Z

Oy () i

Tk 1 Tk
2 and mey(k) = T Z 1073'1197
ln( 2 ) T




for k =1,2,...,14, k # 8, k # 12, where T = 3 if k =13 and T = 4
otherwise, to exclude results corresponding to local solutions. We stress
that for ¢ = 1,2, 3,4, the values 1701 are the dimensions 5, 50, 500 and 5000
used in the tests.

| Table | Problem features | mes | mey |
1 M=P,M=M"M>0 1.85 | 11.64
2 M =P, M =MT, M indef. 1.78 | 12.44
3 M=PM=M"M>0 1.65 | 11.83
4 M=P,M#MT M>0 1.87 | 12.30
5 M =P,M # MT, M indef. 1.72 | 12.06
6 M=P,M+#MT,M>0 1.65 | 12.13
7| ampp, MEMEOM>0T a0 e

P=PT > P>0
M=MT M>0
M+£P local | local
8 7P b pT o pinder. | 10 | loca

M=M" M>0

O | MAP LT hr s o, | 107 | 2423
10 | M#P, A]f i fTT , ]‘]f;? 1.29 | 24.44
1 | M#P, A]{ i fTT , ]‘Ifjoo 0.96 | 66.52
12 M # P, Z\Ii z fTT , ]iwinfie(;. local | local
13 | M#P, ]‘]f : fTT , ]\]f;? 0.79 | 35.79
14 | agp, MAME M0 e

P£Pl' " P>0

Table 16: Measures of effort per problem features.

Results are presented in Table 16, for which some observations are perti-
nent. First, whenever matrices M and P are equal (k from 1 to 6) results are
pretty much similar. In fact, taking minimum, average and maximum values
for both columns of Table 16, for £ = 1 to 6 we obtain (1.65, 1.75, 1.87)
and (11.64, 12.07, 12.44), respectively. Although for problems the results of
which are given in Tables 3 and 6 do not satisfy the theoretical hypotheses,
since M and P are both singular, this aspect does not seem to interfere in
the results.

Now, if M # P (k from 7 to 14), symmetric and non symmetric prob-
lems behave slightly different. When symmetry takes place, a little more
matrix-vector products are performed, whereas the global effort is signifi-
cantly reduced. Comparing results for k£ = 7 against £ = 11, 8 against 12,

10



9 against 13 and 10 against 14, we can see that the effort for symmetric
problems is about one third of the effort for non-symmetric ones, for posi-
tive definite matrices M and P, and about one half when the matrices are
positive semidefinite. Taking minimum, average and maximum values for
both columns of Table 16 for k = 7 to 14 we obtain (0.79, 1.09, 1.39) and
(21.85, 36.94, 65.52). Comparatively with the figures computed for k£ = 1
to 6, we observe a much larger dispersion of the values. Moreover, the inner
effort is smaller, whereas the global one increases.

3.2 Implicit complementarity problems
from Outrata and Zowe

In the second set of experiments we solved implicit complementarity prob-
lems (see [10]) of the form:
Find y € IR" such that

y—m(y) >0, F(y)>0 and (F(y),y—m(y)) =0,

where m; : IR" - IR,1=1,...,n,
-1 0 0 1
2 -1 0 1
0 0 -1 2 1

and m(y) = ¢(Ay+b), with ¢ : IR™ — IR" twice continuously differentiable.
As in examples 4.3 and 4.4 of [10], the following choices for function ¢
defined our test problems:

POZ1: ¢;(A) = —0.5 — ;i =1,2,3,4 and
POZ2: p;(A) = —0.5 — 1.5)\; + 0.25)2,i = 1,2, 3,4.

For each problem, three starting vectors were used, namely,

(a) (0.0,0.0,0.0,0.0)T
(b) (=0.5,-0.5,—0.5,—0.5)"
(¢) (=1.0,-1.0,-1.0,—1.0)T.

In [10] Newtonian strategies were adopted to solve problems POZ1 and
POZ2. In the first approach, the iterative scheme to compute fixed points
of an operator S was

ka1 =Yk — (B = VE) " ye — S(yr)),

11



where V¥ € 9S(yx). In the second approach, a Newton variant scheme was
applied to the semismooth operator

H(y) := min{y — m(y), F(y)} =0,

where min denotes the componentwise minimum of the two vectors in brack-
ets.

Problems POZ1 and POZ2 were also solved in [8], with a trust-region
approach for solving the GNCP(F,G,R"}) using the merit function @ :
IR" — R defined by

The function ¢(a,b) = vVa? + b? — a — b is the Fischer-Burmeister one, with
the property ¢(a,b) =0< a > 0,b > 0,ab = 0.

In Tables 17 and 18 we present, for comparative purposes, numerical
results of [10] and [8] for problems POZ1 and POZ2, respectively. Our
results are reported in Table 19, where the notation of Tables 1-14 is used.
We also included the final value of our merit function f(z,z, ), together
with the norm of the projected gradient ||g,|| at the final approximation.

The results of our approach compared quite well with [8] and were by
far superior than the results of [10]. For problem POZ1, starting points (a)
and (b) provide similar results in terms of effort spent, although point (b)
generates a solution with slightly better quality. For this problem, starting
with point (c), on the other hand, requires twice as much inner iterations and
matrix-vector products than starting with (a) or (b). For problem POZ2,
the starting point that generated higher cost was (b).

| 0795 | JFQS98 |
first approach second approach
start ITER ITER ITER | FE d
(a) 2 14 5 17 | 7.65D—18
(b) 2 41 14 |16 ]9.71D-15
(c) V? singular 56 5 11 | 3.43D—24
Table 17: Previous results - Problem 1 (POZ1 - n = 4).
| 0795 | JFQS98 |
first approach second approach
start ITER ITER ITER | FE ®
(a) 3 15 5 17 | 1.05D—18
(b) V7 singular 15 4 |16 | 4.89D—15
(c) V? singular no convergence 5 11 | 7.05D-22

Table 18: Previous results - Problem 2 (POZ2 - n = 4).
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| Problem | start | OUTER | FE | INNER | MVP | f(z,2,A) | gl |
POZ1 | (a) 4 5] 24 | 30 |231D-10 | 8.61D—06
(b) 4 5| 22 | 39 |1.55D—-14 | 7.03D—08
(c) 4 5| 45 | 68 | 6.63D—11 | 7.77D—06
POZ2 | (a) 5 6 | 48 | 74 | 4.25D-12 | 2.33D—06
(b) 6 8 | 104 | 171 | 1.15D—14 | 8.25D—08
(c) 3 4| 31 | 60 | 943D—11 | 2.25D—05

To assess the performance of our approach, we enlarged the dimension
n of problems POZ1 and POZ2, allowing n = 40, n = 400 and n = 4000.
Matrix A € IR™*™ and vector b € IR" are the natural extensions of (3), as
are the starting vectors (a), (b) and (c). Results are presented in Table 20,
where one can see that the computational effort grows very slowly as n
increases. The greatest difference happens between n = 4 and n = 40, but
from 40 to 400 and from 400 to 4000 the cost does not grow as much as
in the first case. Such differences in the increasing factors can be better

Table 19: Results using our approach (n = 4).

appreciated by the average values shown in Table 21.

| Problem | start | OUTER | FE [ INNER | MVP | f(z,2,A) | [lg,ll

POZ1 | (a) 7 10| 125 | 236 | 1.26D—11 | 5.48D—06
n=40 | (b) 6 8 | 102 | 313 | 3.16D—13 | 4.52D—07
(c) 5 7| 8 | 176 | 1.11D-10 | 6.62D—06

POZ1 | (a) 8 |12] 146 | 205 | 2.42D-12 | 8.69D—07
n =400 | (b) 7 | 10| 126 | 201 | 5.66D—12 | 1.59D—06
(c) 6 8 | 94 | 206 | 1.44D-11 | 2.32D—06

POZ1 | (a) 9 [14] 143 [ 311 [ 1.59D-12 [ 7.79D—07
n =4000 | (b) 8 | 12| 123 | 377 | 7.43D-12 | 2.26D—06
(c) 7 9 | 99 |289]1.96D—11 | 2.91D—06

POZ2 | (a) 7 [ 11| 127 | 248 | 4.36D—12 | 2.45D—06
n=40 | (b) 6 9 | 116 | 201 | 1.89D—11 | 2.56D—06
(c) 6 8 | 104 | 176 | 6.90D—13 | 7.44D—07

POZ2 | (a) 9 |[14] 143 | 227 | 6.64D-13 | 5.35D—07
n =400 | (b) 7 | 11| 135 | 367 | 1.75D—11 | 2.74D—06
(c) 7 10| 120 | 203 | 6.30D—13 | 4.93D—07

POZ2 | (a) 10 [ 15| 157 | 394 2.98D-12 | 9.12D—07
n =4000 | (b) 9 | 14| 161 | 385 | 7.84D—11 | 5.18D—06
(c) 8 |12] 161 | 309 | 1.21D—12 | 4.94D—07

Table 20: Additional tests with larger dimensions.
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| Problem | n | OUTER | FE | INNER | MVP |

POZ1 4 4.0 5.0 30.3 45.7
40 6.0 8.3 | 103.7 | 241.7
400 7.0 10.0 | 122.0 | 204.0
4000 8.0 11.7 | 121.7 | 325.7
POZ2 4 4.7 6.0 61.0 | 101.7
40 6.3 9.3 | 115.7 | 208.3
400 7.7 11.7 | 132.7 | 265.7
4000 9.0 13.7 | 159.7 | 362.7

Table 21: Average results of our approach.

3.3 Problems with general polyhedral cones in IR"

In this third set of experiments we address the problem of finding z € IR"
such that Mz +c € K, Pr+d € K° and (Mx + ¢)! (Px +d) = 0, where the
sets IC, K° are defined by

K={veR"|Av >0, Bv =0},

K ={ue R"|u=A"X\ +B");, A >0},

with A € IRP*", B € IR**" given. Matrices M, P € IR"*"™ and vectors
c,d € IR"™ are also given.

The problems were randomly generated quite similarly to our first set of
experiments. We started by generating matrices M and P with the pattern
M = QMLDMQMRa P = QPLDPQPR, where DM and Dp are dia,gonal
matrices and ()(.) are orthogonal Householder matrices defined by Q) = I —

T
Zu;)u(') , with vector u(.y € IR" with components generated by rnd(—1,1). To

generate singular matrices we forced 20% of the elements of the diagonal to
be identically zero. To generate indefinite matrices, each element of diagonal
D(.y was multiplied by the signal of rnd(—1,1). Next, vectors z. and ¢ were
computed with components generated by rnd(—10,10). Then, we calculated
Y« = Mz, + c and generated matrix B such that By, = 0. This was
accomplished by applying the modified Gram-Schmidt algorithm (see, e.g.
[7]) to obtain the QR factorization of matrix

(y* %)zQRz( s ‘BT)R.

1yl
and the rows of matrix B are defined by the s last columns of the @ factor.
Matrix A was defined by the product A = SAQArLDAQ AR, with Sy € IRP
diagonal with 1 or —1 so that Ay, > 0. Orthogonal matrices Q4 € IRP*P
and Qag € IR™*"™ are as matrices Q(.) above. Matrix Dy € IRP*™ is diago-
nal, without any prior assumption about p and n. We generated its elements
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(D4); € rnd[—0.1,0.1],% = 1, min{p,n}. To complete the problem data, we
generated A] such that A} L 2z, = Ay, A5 € rnd[—10,10] and computed
d = AT\t + BT )5 — Pu..

The initial approximation was randomly generated as follows: [z¢]; =
rnd(—10,10), i = 1,...,n, [2]; = m™d(1,10) and [\Y]; = rnd(1,10),i
I,...,pand [\); =0,i=1,...,s.

According to the features of matrices M and P, we divided the set of
tests in three families: 1) M = P, indefinite and non symmetric; 2) M = P,
indefinite and symmetric; 3) M # P, indefinite, non symmetric and singular.
For families 1) and 2) the theoretical hypotheses of the equivalence results
hold since PM ! = 1.

For each family, six sets for the dimensions (7, p, s) were considered: (10,
5, 1); (10, 10, 1); (10, 15, 1); (100, 50, 5); (100, 100, 5) and (100, 150, 5).
For each set of dimensions, three problems were generated, with different
seeds. The arithmetic means of the results are reported in Tables 22-23,
where we inform the number of iterations (INNER) and matrix-vector prod-
ucts (MVP) performed by the inner (quadratic) solver, and the number of
iterations (OUTER) and functional evaluations (FE) performed by the outer
(trust-region) algorithm.

| p | family [ INNER | MVP | OUTER | FE |

) 1 136.7 | 170.3 9.0 10.0
10 184.0 | 257.0 | 11.3 | 123
15 309.0 | 436.7 | 18.0 | 19.0
) 2 168.0 | 213.0 | 11.3 | 12.3
10 168.7 | 232.3 | 11.8 | 12.8
15 208.3 | 282.3 | 12.7 | 13.7
) 3 208.7 | 253.3 | 10.0 | 11.0
10 278.7 | 371.7 | 13.0 | 14.0
15 485.7 | 640.7 | 19.7 | 20.7

Table 22: Average results - problems with n = 10,5 = 1.

| p [family | INNER | MVP [ OUTER | FE |
50 1 1021.0 1373.0 35.7 36.7
100 2199.3 2971.3 72.0 73.0
150 3946.3 5103.0 | 113.3 | 114.0
50 2 1064.7 1421.0 37.0 38.0
100 2167.7 2833.0 67.3 68.3
150 4291.3 5720.3 | 124.3 | 125.3
50 3 7397.7 7922.0 | 101.0 | 102.0
100 160724.0 | 166259.0 | 1856.0 | 1857.0
150 102189.0 | 112886.0 | 957.3 | 963.0

Table 23: Average results - problems with n = 100, s = 5.
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We denote the figures of Tables 22 and 23 by T, l], where k£ € {1,2,3}
represents each family, ¢ € {1,2,3} corresponds to rows with p = 5,10,15
(Table 22), 7 € {4,5,6} corresponds to rows with p = 50,100, 150 (Table 23),
and j € {1,2,3,4} is the corresponding column with the values INNER,
MVP, OUTER and FE. Based on these values, and similarly to the first set of
tests, we define two cost measures to guide our analysis, per inner iteration
(MVP/INNER) and global (INNER/OUTER), as follows:

1 —TF 1Tk
mei(i) = = —= and mex(i) =2 ) —,
T T

fori=1,2,3,4,5,6.
For a better understanding of the average values represented by these
two measures, we also computed the minimum and maximum values:

mi(i) = min —=, M;(i) = max —= k, ma(i) = mln—, and Ms(i) = max —Zkl
k Tzl ko Th kTh kT

Results are reported in Table 24, where the triples contain

(ma (), mex (i), My (1)) and  (mg(i), mez (i), M2(7)),

fori=1,...,6.
With the aim of analyzing results according to the family of generated
problems, we define two additional measures for each one of sets 1 to 3.

The weights In(n + 2p + s) and /In(n + 2p + s) were introduced to filter
dependence of dimension and somehow uniformize the computed values:

L (s T} - Th
k) = - l
mes(k) = G (Z (1l + 1007k Z In(100i — 195)Ti’“1>

tl 1=

and

T} T}
me
o (Z VIn(11 + 10)) Tk Z < /(100 — 195)7%

for k =1,2,3. We stress that the values 11+107,2 = 1, 2,3 and 100:—195,7 =
4,5,6 are, respectively, the dimensions 21, 31, 41 and 205, 305, 405 used in
the tests. Results are shown in Table 25, where we also include minimum
(m3,my4) and maximum values (Ms, My).

16



Dimension

) (mq,mey, M) (ma, mey, My)

5 (1.22, 1.24, 1.26) | (14.69, 16.54, 20.03)

10 (1.34, 1.36, 1.38) | (14.79, 17.50, 21.34)

15 (1.33, 1.37, 1.42) | (16.49, 19.28, 24.11)

50 (1.09, 1.25, 1.34) | (28.24, 41.04, 66.12)

100 (1.06, 1.24, 1.35) | (30.49, 48.74, 83.55)
)

150 (1.09, 1.24, 1.34) | (34.24, 54.99, 95.91

Table 24: Measures of effort per problem dimension.

Family | (s, mes, Ms3) | (a4, meq, My) |
1 (0.50, 0.54, 0.58) | (23.08, 37.16, 54.70)
2 | (0.5, 0.54, 0.56) | (23.19, 37.02, 53.86)
3 (0.43, 0.48, 0.54) | (31.34, 81.58, 151.38)

Table 25: Measures of effort per problem family.

Observing Table 24 one can see that the effort of the inner solver is always
inferior to 1.5 matrix-vector products per iteration. Moreover, it is slightly
larger for smaller problems (dimensions n + 2p + s € {21,31,41} than for
larger ones (n + 2p + s € {205, 305,405}), although the dispersion between
minimum and maximum values grows with increasing p. This last comment
also applies to the global effort measure mes, that grows as p increases,
together with the length of intervals [my, Ms]. Although dimension differs
from a factor of ten for the two sets of problems, figures of (mgy, mey, My)
are about twice as large when the two sets are compared.

Concerning Table 25, the main conclusions are that symmetry of ma-
trices M and P does not seem to interfere in the performance of our ap-
proach, since families 1 and 2 produced quite similar results for both triples
(ms3, mes, M3) and (mg4,meyq, My). Singularity of matrices M and P, on
the other hand, showed significative effects, especially as far as the global
performance is concerned.

This set of experiments contains a total of 54 tests. For the 27 problems
of smaller dimension, the final objective function value was always inferior
to 1075, Considering the 27 larges ones, for 8 problems of the third family
the final objective function values were greater than 10~2, indicating con-
vergence to a local non-global solution. This amounts to 55.6% of success
among problems for which the theoretical condition of equivalence does not
hold. We stress, however, that whenever such hypothesis is valid, a global
solution was reached.
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3.4 Problems in 3D-cones with control of generated faces

In the fourth set of experiments we addressed the problem of finding z € I =
{v € R" | Av > 0} such that Tz + ¢ € K° = {v € R" | ATX\ = v, X > 0}.
We generated the polyhedral cones K with p faces, such that their edges
were the lines

8

T COS %ﬂk
rsin 277% t, teR, k=1,...,p.
1

N <
|

Therefore, K was defined by computing the rows of matrix A as the normal
vectors to the support planes to the faces of the cone. In other words, the
vector that defines the i—th row of matrix A (i = 1,...,p) is given by the
cross product:

The problems were generated as follows. Once defined the values of the
radius 7 and of the dimension p (number of faces of cone K), we built matrix
A and created two types of z,, at the border and in the interior of /C, re-
spectively. Next we generated matrix 1" using the pattern T' = Q7 DrQrrR,
where Dr is diagonal and Q7r, QTr are orthogonal Householder matrices
defined as in the first and third set of tests. We kept 1" symmetric, and
produced four families of problems, namely 1) T indefinite; 2) T positive
definite; 3) T positive semidefinite and 4) T" negative semidefinite. We built
0 <\ L Az, = z,. Finally we computed ¢ = AT\, — T'z,.

The tests were produced by varying r € {0.1,1,10}, p € {3,4,5,6,9,12},
the four families of matrices 7" and the two kinds of generated solution
T4, which amounted to 144 problems. Three distinct seeds were chosen to
generate problems for each selection of r,p,T" and z,. Tables 26-33 contain
average values of the results obtained with the three seeds. To present the
results we have separated information concerning number of inner iterations,
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of matrix-vector products, of outer iterations and of functional evaluations
in distinct tables, in order to keep together variation of dimension p, radius
r and features of matrix 7.

To analyse the robustness of the proposed approach, since half of the
generated problems do not satisfy the hypothesis of the equivalence result
(families 1 and 4, with matrices T indefinite and negative semidefinite, re-
spectively), we observed that for the 72 problems with x, generated at the
boundary of the cone, 29 out of the 72 x 3 tests stopped at local non global
solutions. This corresponds to success for 86.6% of the total and 73.2% of
the candidates for failure. For problems with z, generated in the interior of
the cone, there were six problems that converged to local non-global solu-
tions, in a total of 72 x 3 problems. In this case, the measures of success are
97.2% of the total and 94.4% of the problems without theoretical guarantee
of convergence. Summing up the two blocks of tests, there were 35 failures,
representing success in 91.9% of total and 83.8% of the universe of problems
that do not satisfy the hypothesis of equivalence result.

There are some salient features that emerge from Tables 26-33. First,
the computational cost of the inner solver grows with problem dimension,
reaching its maximum for p = 9 and p = 5 if x, is generated at the boundary
and in the interior of I, respectively.

It is also evident that the degree of difficulty of the generated problems
grows as the radius r decreases: r = 10 produces the easiest problems
whereas 7 = 0.1 generates the most difficult ones. Recall that in this set of
experiments our problem is to find z € K = {v € IR" | Av > 0} such that
Tr+qe K ={velR"| AT\ =v,\ > 0}, so the requirements for X and
K° are different.

family | r INNER
p=3|p=4[p=5|p=6[p=9]p=12
1 1 62.0 75.3 | 120.3 | 120.0 | 261.7 | 216.7

10 | 118.0 | 139.3 | 155.0 | 340.7 | 363.3 | 377.3
0.1 | 743 | 107.0 | 255.3 | 210.3 | 768.0 | 593.3
2 1 70.3 | 110.7 | 160.3 | 134.0 | 228.7 | 252.7
10 | 88.0 | 110.3 | 161.7 | 191.3 | 357.0 | 300.7
0.1 | 60.3 | 101.3 | 158.7 | 188.0 | 502.0 | 585.0
3 1 70.0 | 118.7 | 190.0 | 220.0 | 207.3 | 220.7
10 | 75.0 | 61.3 | 223.7 | 140.3 | 307.0 | 391.0
0.1 | 88.0 | 149.7 | 190.3 | 182.3 | 402.3 | 722.0
4 1 66.7 | 114.7 | 116.7 | 158.7 | 380.7 | 339.0
10 | 58.0 | 81.0 | 120.7 | 139.0 | 264.7 | 300.0
0.1 | 78.7 | 167.3 | 240.0 | 172.7 | 970.3 | 163.7

Table 26: Average number of inner iterations (INNER) for problems with .,

generated at the boundary of cone K.
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family | r MVP

p=3|p=4]p=5]p=6] p=9 [p=12
1 1 84.7 | 105.0 | 172.7 | 171.7 | 364.0 344.3
10 | 176.3 | 197.3 | 227.0 | 430.7 | 542.0 558.3
0.1 99.3 | 141.7 | 343.7 | 307.0 | 1010.3 | 811.0
2 1 98.7 | 158.0 | 223.0 | 187.0 | 301.0 345.3
10 | 119.0 | 158.0 | 256.3 | 297.7 | 612.0 505.7
0.1 76.3 | 138.7 | 206.7 | 250.0 | 647.0 770.7
3 1 97.0 | 166.3 | 272.7 | 313.0 | 254.0 303.7
10 | 100.3 | 86.0 | 332.0 | 209.3 | 468.3 654.7
0.1 | 120.7 | 192.7 | 252.7 | 253.3 | 544.7 950.0
4 1 90.0 | 155.7 | 182.7 | 215.7 | 521.3 477.3
10 75.3 | 108.3 | 160.0 | 194.7 | 371.3 482.0
0.1 | 111.3 | 224.7 | 294.3 | 257.7 | 1281.3 | 263.0

Table 27: Average number of matrix vector products (MVP) for problems with .

generated at the boundary of cone K.

family | r OUTER
p=3|p=4[p=5]p=6[p=9]p=12
1 1 5.3 6.0 7.3 7.7 10.3 10.7
10 6.3 7.7 8.0 10.0 11.7 12.7
0.1 5.7 7.3 9.3 9.7 21.3 20.0
2 1 6.3 7.3 8.0 7.0 10.0 12.0
10 5.7 6.7 8.0 7.3 10.7 11.7
0.1 6.0 7.0 9.0 11.0 16.7 23.0
3 1 6.0 6.7 8.3 8.3 10.0 10.3
10 5.0 3.7 7.0 6.7 10.7 12.7
0.1 6.0 7.0 8.7 8.3 15.3 24.3
4 1 5.7 7.3 6.7 7.3 10.3 10.3
10 6.0 6.0 9.3 8.7 10.7 9.7
0.1 6.7 8.3 9.3 8.7 18.3 7.3

Table 28: Average number of outer iterations (OUTER) for problems with .

generated at the boundary of cone K.
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family | r FE
p=3|p=4[p=5|p=6[p=9]p=12
1 1 6.3 7.0 8.3 8.7 11.3 11.7
10 7.3 8.7 9.0 11.0 13.3 15.7
0.1 6.7 8.3 10.3 10.7 23.0 21.3
2 1 7.3 8.3 9.0 8.0 11.0 13.0
10 7.0 7.7 9.0 8.3 12.3 12.7
0.1 7.0 8.0 10.0 12.0 17.7 24.0
3 1 7.0 7.7 9.7 9.3 11.7 11.3
10 6.0 4.7 8.0 7.7 11.7 14.3
0.1 7.0 8.0 9.7 9.3 16.3 25.3
4 1 6.7 8.3 7.7 8.3 11.3 11.3
10 7.0 7.0 10.3 9.7 12.3 11.7
0.1 7.7 9.3 10.3 9.7 19.3 8.3

Table 29: Average number of functional evaluations (FE) for problems with .,

generated at the boundary of cone K.

family | r INNER
p=3|p=4]p=5]p=6[p=9]p=12
1 1 107.0 | 137.7 99.0 109.7 | 217.7 | 257.3
10 77.3 89.7 139.0 | 157.0 | 133.3 | 227.3
0.1 | 144.3 | 485.7 | 211.3 | 371.3 | 947.3 | 1380.3
2 1 84.7 92.0 95.0 104.7 | 113.0 | 113.3
10 | 52.7 63.3 78.3 66.7 33.7 134.0
0.1 | 146.7 | 299.7 | 434.0 | 479.3 | 471.3 | 492.7
3 1 81.0 90.3 142.0 | 107.3 | 106.3 | 129.3
10 | 43.0 | 100.3 77.0 59.0 | 154.7 | 233.0
0.1 | 214.0 | 393.3 | 368.0 | 409.0 | 574.7 | 814.0
4 1 73.3 57.3 122.7 87.3 | 150.7 | 197.0
10 | 96.3 | 189.0 | 177.0 | 132.0 | 71.3 45.3
0.1 | 197.7 | 391.0 | 1993.3 | 274.7 | 483.7 | 228.3

Table 30: Average number of inner iterations (INNER) for problems with .

generated in the interior of cone K.
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family | r MVP
p=3|p=4]p=5|p=6]p=9[p=12
1 1 138.3 | 175.7 | 140.7 | 158.3 | 319.0 344.7
10 | 107.3 | 129.7 | 203.7 | 255.7 | 239.7 374.3
0.1 | 174.7 | 654.3 | 283.7 | 476.7 | 1248.3 | 1778.3
2 1 108.0 | 126.0 | 139.7 | 156.0 | 179.0 178.7
10 73.3 88.3 128.3 | 104.7 58.0 241.3
0.1 | 188.3 | 378.7 | 560.3 | 623.0 | 637.0 664.0
3 1 115.0 | 128.3 | 225.0 | 166.7 | 176.3 229.0
10 61.0 141.7 | 116.3 92.0 285.7 433.0
0.1 | 298.3 | 505.7 | 474.0 | 552.0 | 775.7 | 1126.3
4 1 99.7 79.0 175.0 | 137.3 | 248.3 309.7
10 | 135.0 | 283.0 | 2783 | 211.7 | 136.0 86.7
0.1 | 270.0 | 548.7 | 2666.7 | 356.0 | 657.0 339.7

Table 31: Average number of matrix vector products (MVP) for problems with .

generated in the interior of cone K.

family | r OUTER
p=3|p=4[p=5]p=6[p=9]p=12
1 1 7.3 8.0 7.3 7.7 9.7 10.0
10 4.7 4.7 6.3 6.3 5.3 8.0
0.1 7.3 15.3 10.0 13.0 27.0 28.0
2 1 6.7 7.3 7.3 7.3 6.7 7.0
10 4.0 4.7 4.3 4.7 3.3 6.3
0.1 10.3 13.3 13.7 14.0 16.3 19.7
3 1 7.0 6.3 8.0 7.0 7.0 7.7
10 3.0 4.7 4.3 4.0 5.7 7.7
0.1 9.7 11.7 12.7 11.7 15.3 18.3
4 1 6.0 4.3 7.3 6.3 7.3 9.3
10 5.7 6.7 8.0 6.7 4.0 4.0
0.1 8.0 13.3 27.2 10.0 10.0 11.7

Table 32: Average number of outer iterations (OUTER) for problems with .

generated in the interior of cone K.
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family | r FE
p=3|p=4[p=5|p=6[p=9]p=12
1 1 8.3 9.0 8.3 8.7 11.3 11.0
10 5.7 5.7 7.3 7.3 6.3 9.0
0.1 8.3 16.3 11.0 15.3 28.0 29.0
2 1 7.7 8.3 8.3 8.3 7.7 8.0
10 5.0 5.7 5.3 5.7 4.7 7.3
0.1 11.3 14.3 14.7 16.0 19.0 21.0
3 1 8.0 7.3 9.0 8.0 8.0 8.7
10 4.0 5.7 5.3 5.0 6.7 8.7
0.1 ] 10.7 12.7 13.7 12.7 16.3 19.3
4 1 7.0 5.3 8.3 7.3 8.3 10.3
10 6.7 7.7 9.0 7.7 5.0 5.0
0.1 9.0 14.3 28.7 11.0 11.0 12.7

Table 33: Average number of functional evaluations (FE) for problems with .,
generated in the interior of cone K.

Grouping problems according to the features of matrix 7', there are 36
problems for each family (6 dimensions p, 3 values for r and 2 types of
generated z,). We have computed the ratios INNER/n; and OUTER/n;, where
ny = n + 2p is the dimension of problem (1) and calculated average values,
presented in Table 34, together with minimum and maximum values.

family INNER/n OUTER/n;
minimum | average | maximum [| minimum | average | maximum
1 6.3 15.6 51.1 0.3 0.6 14
2 1.6 12.2 33.4 0.2 0.6 1.2
3 3.9 13.6 35.8 0.3 0.6 1.1
4 1.7 16.4 153.3 0.1 0.6 2.1

Table 34: Measures of effort per problem features.

Observing the figures of Table 34, one can see that families 1 and 4
(T indefinite and negative semidefinite, respectively) demand more effort to
be solved than those from families 2 and 3 (7" positive definite and positive
semidefinite, respectively). The largest dispersion, that is the largest interval
[minimum, maximum] occurs for the fourth family, because of an outlier.
Removing this discrepant value, the triples become (1.7, 14.5, 46.2) and
(0.1, 0.7, 1.2), with dispersions similar to the ones of the first family.

4 Conclusions

We have used a smooth box constrained minimization reformulation of the
GNCP(F, G, K), assuming that I is a polyhedral cone. Any efficient mini-
mization algorithm for solving this kind of problems may be used. Compu-
tational experiments are presented which encourage the use of our approach.
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Four groups of problems were addressed: randomly generated problems in
the positive orthant; implicit complementarity problems from Outrata &
Zowe; problems with general cones in IR"™ and problems in 3D-cones with
control of generated faces.

The numerical results showed that the solution of the GNCP using (2)
was found in the majority of the tests, even without accomplishment of
theoretical hypothesis, meaning that the behavior of the method does not
depend strongly on the sufficient conditions that guarantee the equivalence.

Quantifying this robustness, considering only the universe of problems
without theoretical support for convergence, for the first set of experiments
the amount of failure was 24%. In the third and fourth sets, local non-
global solutions were reached in 44% and 16% of the tests, respectively. No
doubt, in the absence of theoretical support, the convergence to global so-
lutions is more frequent for problems of smaller dimensions. The second set
of problems, included for comparative purposes, formed by implicit com-
plementarity problems, contained large-scale experiments (dimension up to
3 x 4000 = 12000) for which our approach had a very good performance.
The third set of experiments revealed that general polyhedral cones might
produce quite difficult problems, especially as the dimension increases. The
fourth group of tests was created to investigate geometrical features of the
cone K. Besides noticing that, for the generated 3D-problems, thinner cones
need more effort than wider ones, we observed that the increasing number of
edges and faces did not substantially augment the amount of effort needed
to solve the problems. As a natural extension of this work we would like to
investigate the possibility of approximating a general cone by a polyhedral
one. This leads us to look for further connections between theory and prac-
tice concerning geometrical and algebraic properties of general cones and
their relationship with GNCP defined in such sets. We are also interested in
studying the behavior of our approach applied to problems with nonlinear
functions F' and G and polyhedral cones.
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