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Abstra
t

In a previous work, the minimization of a di�erentiable fun
tion

subje
t to box 
onstraints was proposed as a strategy to solve the

generalized nonlinear 
omplementarity problem (GNCP) de�ned on a

polyhedral 
one. Theoreti
al results that relate stationary points of

the fun
tion that is minimized to the solutions of the GNCP were

presented. These theoreti
al results show that lo
al methods for box


onstrained optimization applied to the asso
iated problem are eÆ-


ient tools for solving the GNCP. In this work, numeri
al experiments

are presented that en
ourage the use of this approa
h.
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1 Introdu
tion

The Generalized Nonlinear Complementarity Problem (GNCP) is to �nd

x 2 IR

m

su
h that

F (x) 2 K; G(x) 2 K

Æ

; F (x)

T

G(x) = 0; (1)

where F and G are 
ontinuous fun
tions from IR

m

to IR

n

, K is a nonempty


losed 
onvex 
one in IR

n

, and K

Æ

denotes the polar 
one of K.

We 
onsider the 
ase n = m, F;G 2 C

1

and K a polyhedral 
one in R

n

that is, given A 2 IR

p�n

and B 2 IR

s�n

, we have

K = fv 2 IR

n

j Av � 0; Bv = 0g

and

K

Æ

= fu 2 IR

n

j u = A

T

�

1

+B

T

�

2

; �

1

� 0g:

This problem has many interesting appli
ations and its solution using

spe
ial te
hniques has been 
onsidered extensively in the literature. See

[8, 9, 14℄ among others. If K = IR

m

+

� fx 2 IR

m

j x � 0g, G(x) = x�F (x)

and F : IR

m

! IR

m

, the GNCP(F;G;K) redu
es to the so-
alled impli
it


omplementarity problem [11, 12℄. In parti
ular, if G(x) = x, the GNCP

redu
es to the nonlinear 
omplementarity problem, denoted by NCP.

Our approa
h in this paper is to solve the GNCP by means of an equiv-

alent box-
onstrained smooth optimization problem. Di�erentiable bound-


onstrained minimization is a well developed area of pra
ti
al optimization

and many methods and reliable software are available for large-s
ale prob-

lems. See, for example, [3, 4, 6, 16℄.

Any eÆ
ient algorithm for smooth box-
onstrained minimization 
an be

used, in parti
ular, algorithms that do not rest upon matrix fa
torizations

at all, allowing us to deal with large-s
ale problems. Unlike the formula-

tions in [13, 15℄, the 
omputation of the obje
tive fun
tion of the equivalent

minimization problem is straightforward and proje
tions on 
onvex sets are

not ne
essary to 
ompute neither the obje
tive fun
tion nor the derivatives.

Our set of experiments 
ontains four families: randomly generated prob-

lems in the positive orthant; impli
it 
omplementarity problems from Out-

rata & Zowe [10℄; problems with general polyhedral 
ones in IR

n

and prob-

lems in 3D-
ones with 
ontrol of generated fa
es.

For the �rst family of problems, fun
tions F and G are aÆne and both


ones are the positive orthant. Although quite simple, these problems 
on-

tain essential elements to start the investigation. By varying dimensions and

features of the matri
es that de�ne F and G, we have produ
ed an extensive

set of tests for whi
h the theoreti
al hypothesis of equivalen
e might hold

or not.
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In the se
ond family our main obje
tive was to solve problems already

addressed in the literature. We also extended the family of impli
it 
om-

plementarity problems proposed in [10℄ to variable dimension, produ
ing

large-s
ale tests. For su
h problems, however, the 
ones are the positive

orthant as well.

General polyhedral 
ones were treated in the third and fourth families of

problems. In the third one, fun
tions F and G are aÆne and matri
es A and

B that de�ne the 
ones are generated to a

omplish well de�ned problems,

but whithout any spe
i�
 
ontrol. In the fourth family, we produ
ed three

dimensional tests, so that geometri
al features of the 
one, like 
ontrol of

edges and number of fa
es, were exploited in great extent.

The paper is organized as follows: the equivalent formulation whi
h al-

lows turning the GNCP into a nonlinear programming problem is given in

Se
tion 2. Numeri
al experiments are presented in Se
tion 3. Con
lusions

and lines for future resear
h are dis
ussed in Se
tion 4.

Notation. We denote by h�; �i the Eu
lidean inner produ
t in IR

n

and by

k � k the norm indu
ed by this inner produ
t and its 
orresponding matri
ial

norm. If B is a real n� n matrix, B � 0 (B > 0) means that B is positive

semide�nite (positive de�nite).

2 Equivalent formulation

The following minimization problem with simple bounds is asso
iated to the

GNCP(F;G;K) de�ned in (1):

min f(x; z; �)

subje
t to

(

z

1

� 0;

�

1

� 0;

(2)

where

f(x; z; �) = kRF (x)� zk

2

+ kG(x)�R

T

�k

2

+ �hz

1

; �

1

i

2

and

R =

 

A

B

!

; z =

 

z

1

0

!

2 IR

p

� IR

s

; � =

 

�

1

�

2

!

2 IR

p

� IR

s

:

The next theorem, proved in [1℄, states that solving problemGNCP(F;G;K)

is equivalent to �nding the global minimizer of the optimization problem (2).
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Theorem 1. If (x

�

; z

�

; �

�

) is a global minimizer of problem (2) with

f(x

�

; z

�

; �

�

) = 0, then x

�

is a solution of the GNCP(F;G;K). Conversely,

if x

�

is a solution of the GNCP(F;G;K), then there exist z

�

; �

�

su
h that

(x

�

; z

�

; �

�

) is a global minimizer of (2) with f(x

�

; z

�

; �

�

) = 0.

For 
ompleteness, we in
lude in the following a result (proved in [1℄)


on
erning solution of problem GNCP(F;G;K) and stationary points of (2)

whenever F (x); G(x) are aÆne fun
tions. The theoreti
al hypothesis about

matrix G

0

F

0�1

will be exploited in the numeri
al experiments.

Theorem 2. Let F (x); G(x) be aÆne, G

0

F

0�1

positive semide�nite in the

null spa
e of B and GNCP(F;G;K) feasible. If (x

�

; z

�

; �

�

) is a stationary

point of (2) then, x

�

is a solution of GNCP(F;G;K).

3 Computational experiments

The equivalent minimization problems (2), with simple bounded variables,

were solved using BOX-QUACAN, a software developed by our resear
h group

at the State University of Campinas. It is based on the trust-region approa
h

for solving large-s
ale bound 
onstrained minimization, and uses the in�nity

norm to de�ne the trust-region, so that the quadrati
 subproblems have

also simple bounded variables. The subproblems are solved by 
ombining


onjugate gradients with proje
ted gradients and a mild a
tive set strategy

(see [2, 6℄ or [5, p.459℄).

The 
ode was developed in Fortran 77 double pre
ision (Mi
rosoft Pow-

erStation) and run on a Pentium 64MB RAM. The stopping 
riteria used is

toleran
e for the obje
tive fun
tion value "

f

= 10

�10

and toleran
e for the

norm of the 
ontinuous proje
ted gradient "

g

= 10

�6

. We set � = 1 for all

the tests.

3.1 Randomly generated problems in the positive orthant

In our �rst set of experiments we 
onsidered the problem of �nding x 2 IR

n

su
h that Mx + 
 � 0, Px + d � 0 and (Mx + 
)

T

(Px + d) = 0, where

matri
es M;P 2 IR

n�n

and ve
tors 
; d 2 IR

n

are given.

The problems were randomly generated as follows: �rst we obtained two

ve
tors y; z 2 IR

n

, y; z � 0 su
h that y

T

z = 0. Using a fun
tion rnd(a; b)

that randomly generates a real value between a and b, for i = 1; 2; : : : ; n

we 
omputed � = rnd(0; 1); if � < 0:5, we set y

i

= rnd(1; 10) and z

i

= 0,

otherwise, y

i

= 0 and z

i

= rnd(1; 10). We also generated a ve
tor x

�

2 IR

n

with 
omponents [x

�

℄

i

= rnd(�10; 10); i = 1; 2; : : : ; n. Matri
es M and P
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have the pattern M = Q

ML

D

M

Q

MR

, P = Q

PL

D

P

Q

PR

, where D

M

and

D

P

are diagonal matri
es and Q

(�)

are orthogonal Householder matri
es

de�ned by Q

(�)

= I � 2

u

(�)

u

T

(�)

u

T

(�)

u

(�)

, with ve
tor u

(�)

2 IR

n

with 
omponents

generated by rnd(�1; 1). Hen
e, only three ve
tors are used to de�ne and are

stored for ea
h matrixM(u

ML

; d

M

; u

MR

) and P (u

PL

; d

P

; u

PR

), sin
e we just

need to 
ompute their produ
ts by a ve
tor. To generate positive de�nite

matri
es, the elements of D

M

and/or D

P

were generated by rnd(1; 10). To

generate singular matri
es we for
ed 20% of the elements of the diagonal to

be identi
ally zero. To generate inde�nite matri
es P , ea
h element of D

P

was multiplied by the signal of rnd(�1; 1). Finally, ve
tors 
 and d were


omputed by 
 = z �Mx

�

and d = y � Px

�

.

We started with a randomly generated initial approximation as follows:

[x

0

℄

i

= rnd(�10; 10), [z

0

℄

i

= rnd(1; 10) and [�

0

℄

i

= rnd(1; 10); i = 1; : : : ; n.

A

ording to the features of matri
es M and P , we divided the set of

tests in fourteen families: M and P may be identi
al or not, M and P may

be symmetri
 or not and matri
es M and P may be regular or singular.

M is either positive de�nite or positive semide�nite, whereas P might be

positive de�nite, positive semide�nite or inde�nite (but regular). Whenever

M or P is invertible, the theoreti
al hypotheses of the equivalen
e results

of Se
tion 2 
an be 
he
ked by analysing properties of matri
es PM

�1

or

MP

�1

.

For ea
h family, four values for the dimension n were used (5, 50, 500

and 5000). For ea
h dimension, three problems were solved, with di�erent

seeds. The arithmeti
 means of the results are reported in Tables 1-14,

where we inform the number of iterations (INNER) and matrix-ve
tor prod-

u
ts (MVP) performed by the inner (quadrati
) solver, and the number of

iterations (OUTER) and fun
tional evaluations (FE) performed by the outer

(trust-region) algorithm.

n INNER MVP OUTER FE

5 90.0 148.0 8.0 9.0

50 211.7 409.7 10.0 11.0

500 336.0 962.0 12.7 13.7

5000 484.3 2038.0 16.0 17.3

Table 1: Average results: M = P , M =M

T

, M positive de�nite

(PM

�1

=MP

�1

= I).
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n INNER MVP OUTER FE

5 114.7 199.0 9.0 10.0

50 247.3 501.3 10.3 11.3

500 344.7 894.3 12.3 11.3

5000 355.3 1312.0 13.7 14.7

Table 2: Average results: M = P , M =M

T

, M regular inde�nite

(PM

�1

=MP

�1

= I).

n INNER MVP OUTER FE

5 106.3 169.7 8.3 9.3

50 220.3 419.7 10.7 11.7

500 340.7 849.0 13.0 14.0

5000 379.3 1258.7 14.3 15.3

Table 3: Average results: M = P , M =M

T

, M singular (positive semide�nite).

n INNER MVP OUTER FE

5 102.3 161.0 8.7 9.7

50 224.7 385.3 10.3 11.3

500 337.7 965.0 12.7 13.7

5000 564.7 2771.0 15.7 17.0

Table 4: Average results: M = P , M 6=M

T

, M positive de�nite

(PM

�1

=MP

�1

= I).

n INNER MVP OUTER FE

5 100.0 153.0 8.3 9.3

50 236.0 433.3 9.7 10.7

500 291.7 723.3 12.0 13.0

5000 453.3 1846.3 16.0 18.0

Table 5: Average results: M = P , M 6=M

T

, M regular inde�nite

(PM

�1

=MP

�1

= I).

n INNER MVP OUTER FE

5 121.7 207.7 9.3 10.3

50 224.7 397.0 10.0 11.0

500 336.3 854.7 13.3 14.3

5000 392.7 1256.0 14.7 16.0

Table 6: Average results: M = P , M 6=M

T

, M singular (positive semide�nite).
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n INNER MVP OUTER FE

5 165.7 232.7 10.0 11.0

50 660.7 1042.7 15.7 16.7

500 1207.0 2533.3 18.7 20.0

5000 1480.7 3928.3 26.7 28.7

Table 7: Average results: M 6= P , M =M

T

, P = P

T

,

M and P positive de�nite.

n INNER MVP OUTER FE

5 172.3 235.7 9.7 11.0

50 lo
al lo
al lo
al lo
al

500 lo
al lo
al lo
al lo
al

5000 lo
al lo
al lo
al lo
al

Table 8: Average results: M 6= P , M =M

T

, P = P

T

, M positive de�nite, P

regular inde�nite.

n INNER MVP OUTER FE

5 134.7 188.3 9.7 10.7

50 1026.7 1308.3 17.7 18.7

500 2596.7 3520.7 37.3 38.3

5000 13555.7 20585.7 214.0 215.0

Table 9: Average results: M 6= P , M =M

T

, P = P

T

, M positive de�nite, P

singular (positive semide�nite).

n INNER MVP OUTER FE

5 203.3 268.0 10.7 11.7

50 825.3 1096.3 15.3 16.7

500 1178.0 2130.0 18.7 19.7

5000 1473.7 4151.3 25.7 26.7

Table 10: Average results:M 6= P , M =M

T

, P = P

T

,

M and P singular (positive semide�nite).

n INNER MVP OUTER FE

5 209.7 294.0 11.3 13.0

50 2493.7 2977.3 24.3 25.3

500 6774.0 7625.0 29.0 30.7

5000 17119.7 19131.3 50.0 51.7

Table 11: Average results: M 6= P , M 6=M

T

, P 6= P

T

,

M and P positive de�nite.
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n INNER MVP OUTER FE

5 120.0 286.7 8.7 9.7

50 lo
al lo
al lo
al lo
al

500 lo
al lo
al lo
al lo
al

5000 lo
al lo
al lo
al lo
al

Table 12: Average results: M 6= P , M 6=M

T

, P 6= P

T

,

M positive de�nite, P regular inde�nite.

n INNER MVP OUTER FE

5 lo
al lo
al lo
al lo
al

50 1143.7 1398.3 15.7 16.7

500 3919.3 4762.0 39.0 40.0

5000 23520.7 31786.3 233.3 234.3

Table 13: Average results: M 6= P , M 6=M

T

, P 6= P

T

,

M positive de�nite, P singular (positive semide�nite).

n INNER MVP OUTER FE

5 163.3 240.7 10.0 11.0

50 1057.0 1359.3 15.7 16.7

500 4094.7 5037.7 26.7 27.7

5000 8300.3 10061.3 29.7 30.7

Table 14: Average results: M 6= P , M 6=M

T

, P 6= P

T

,

M and P singular (positive semide�nite).

There were some problems, the results of whi
h are reported in Ta-

bles 8, 12 and 13, that 
onverged to lo
al non-global minimizers of (2), with

merit fun
tion value greater than 10

�1

. For problems reported in Tables 1,

2, 4 and 5 the theoreti
al hypotheses hold, representing 28.5% of the to-

tal number of tests. For Tables 1, 2, 4, 5 and 7, the algorithm 
omputed

the same solution that was generated for assembling the problem data. In

Tables 3, 6, 10 and 14, sin
e both matri
es M and P are singular, the theo-

reti
al hypotheses fail, representing 28.5% of tests. For these tests, however,

the global solution of (2) was always obtained. There is no guarantee that

the theoreti
al hypotheses are valid for the test problems of Tables 7, 8,

9, 11, 12 and 13, whi
h represent 43% of tests. In fa
t, in 18 out of the

60 problems of these last six tables, at least one of the values u

T

PM

�1

u

or v

T

MP

�1

v, where u = Mx + 
 � z and v = Px + d � �, was negative.

In the total of 168 problems solved, the hypotheses fail for 66 (39%), but

only 16 
onverged to lo
al solutions of (2), whi
h 
orrespond to 24% of the


andidates for failure, and to 9.5% of the total of tests.

Denoting �gures of Tables 1-14 by T

k

ij

, k = 1; 2; : : : ; 14, i = 1; 2; 3; 4 (rows

n = 5; 50; 500 and 5000, respe
.), j = 1; 2; 3; 4 (
olumns INNER, MVP, OUTER

8



and FE, respe
.), we de�ne average values to guide our analysis. Con
erning

the e�ort spent by the algorithm, there are two aspe
ts we would like to

address: how is su
h e�ort related to the problem dimension and how is

it related to the problem features? In order to do so, 
onsidering ea
h

dimension separately, we start by de�ning two 
ost measures: per inner

iteration (MVP/INNER) and global (INNER/OUTER), as follows:

me

1

(i) =

1

K

X

k

T

k

i2

T

k

i1

and me

2

(i) =

1

K

X

k

T

k

i1

T

k

i3

;

for i = 1; 2; 3; 4, where K = 13 if i = 1 and K = 12 if i = 2; 3; 4, to ex
lude

the lo
al solutions.

To allow a better understanding of the average values represented by

these two measures, we also 
omputed the minimum and maximum values:

m

1

(i) = min

k

T

k

i2

T

k

i1

; M

1

(i) = max

k

T

k

i2

T

k

i1

; m

2

(i) = min

k

T

k

i1

T

k

i3

; and M

2

(i) = max

k

T

k

i1

T

k

i3

:

Results are reported in Table 15, where the triples 
ontain

(m

1

(i);me

1

(i);M

1

(i)) and (m

2

(i);me

2

(i);M

2

(i));

for i = 1; 2; 3; 4. We observe that, in the average, less than three matrix-

ve
tor produ
ts are required per inner iteration, and this inner e�ort grows

quite slowly as n in
reases. The global e�ort, however, in
reases with n, as

well as the dispersion between the average, minimum and maximum values.

Dimension

(n)

(m

1

;me

1

;M

1

) (m

2

;me

2

;M

2

)

5 (1.32, 1.58, 2.39) (11.25, 14.58, 19.00)

50 (1.19, 1.59, 2.03) (20.59, 44.27, 102.62)

500 (1.13, 2.06, 2.86) (24.31, 70.12, 233.59)

5000 (1.12, 2.84, 4.91) (25.93, 89.38, 342.39)

Table 15: Measures of e�ort per problem dimension.

With the aim of analyzing results a

ording to the family of generated

problems, we de�ne two additional measures for ea
h one of Tables 1 to 14.

The weights ln(n) and

p

ln(n) were introdu
ed to �lter dependen
e of di-

mension and somehow uniformize the 
omputed values:

me

3

(k) =

1

T

X

i

T

k

i2

r

ln

�

10

i

2

�

T

k

i1

and me

4

(k) =

1

T

X

i

T

k

i1

ln

�

10

i

2

�

T

k

i3

;

9



for k = 1; 2; : : : ; 14, k 6= 8, k 6= 12, where T = 3 if k = 13 and T = 4

otherwise, to ex
lude results 
orresponding to lo
al solutions. We stress

that for i = 1; 2; 3; 4, the values

10

i

2

are the dimensions 5, 50, 500 and 5000

used in the tests.

Table Problem features me

3

me

4

1 M = P;M =M

T

;M > 0 1.85 11.64

2 M = P;M =M

T

;M indef. 1.78 12.44

3 M = P;M =M

T

;M � 0 1.65 11.83

4 M = P;M 6=M

T

;M > 0 1.87 12.30

5 M = P;M 6=M

T

;M indef. 1.72 12.06

6 M = P;M 6=M

T

;M � 0 1.65 12.13

7 M 6= P ,

M =M

T

P = P

T

,

M > 0

P > 0

1.39 21.85

8 M 6= P ,

M =M

T

P = P

T

,

M > 0

P indef.

lo
al lo
al

9 M 6= P ,

M =M

T

P = P

T

,

M > 0

P � 0

1.07 24.23

10 M 6= P ,

M =M

T

P = P

T

,

M � 0

P � 0

1.29 24.44

11 M 6= P ,

M 6=M

T

P 6= P

T

,

M > 0

P > 0

0.96 66.52

12 M 6= P ,

M 6=M

T

P 6= P

T

,

M > 0

P indef.

lo
al lo
al

13 M 6= P ,

M 6=M

T

P 6= P

T

,

M > 0

P � 0

0.79 35.79

14 M 6= P ,

M 6=M

T

P 6= P

T

,

M � 0

P � 0

1.03 48.84

Table 16: Measures of e�ort per problem features.

Results are presented in Table 16, for whi
h some observations are perti-

nent. First, whenever matri
esM and P are equal (k from 1 to 6) results are

pretty mu
h similar. In fa
t, taking minimum, average and maximum values

for both 
olumns of Table 16, for k = 1 to 6 we obtain (1.65, 1.75, 1.87)

and (11.64, 12.07, 12.44), respe
tively. Although for problems the results of

whi
h are given in Tables 3 and 6 do not satisfy the theoreti
al hypotheses,

sin
e M and P are both singular, this aspe
t does not seem to interfere in

the results.

Now, if M 6= P (k from 7 to 14), symmetri
 and non symmetri
 prob-

lems behave slightly di�erent. When symmetry takes pla
e, a little more

matrix-ve
tor produ
ts are performed, whereas the global e�ort is signi�-


antly redu
ed. Comparing results for k = 7 against k = 11, 8 against 12,

10



9 against 13 and 10 against 14, we 
an see that the e�ort for symmetri


problems is about one third of the e�ort for non-symmetri
 ones, for posi-

tive de�nite matri
es M and P , and about one half when the matri
es are

positive semide�nite. Taking minimum, average and maximum values for

both 
olumns of Table 16 for k = 7 to 14 we obtain (0.79, 1.09, 1.39) and

(21.85, 36.94, 65.52). Comparatively with the �gures 
omputed for k = 1

to 6, we observe a mu
h larger dispersion of the values. Moreover, the inner

e�ort is smaller, whereas the global one in
reases.

3.2 Impli
it 
omplementarity problems

from Outrata and Zowe

In the se
ond set of experiments we solved impli
it 
omplementarity prob-

lems (see [10℄) of the form:

Find y 2 IR

n

su
h that

y �m(y) � 0; F (y) � 0 and hF (y); y �m(y)i = 0;

where m

i

: IR

n

! IR; i = 1; : : : ; n,

F (y) = Ay + b =

2

6

6

6

4

2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 2

3

7

7

7

5

y +

2

6

6

6

4

1

1

1

1

3

7

7

7

5

(3)

and m(y) = '(Ay+b), with ' : IR

n

! IR

n

twi
e 
ontinuously di�erentiable.

As in examples 4.3 and 4.4 of [10℄, the following 
hoi
es for fun
tion '

de�ned our test problems:

POZ1: '

i

(�) = �0:5� �

i

; i = 1; 2; 3; 4 and

POZ2: '

i

(�) = �0:5� 1:5�

i

+ 0:25�

2

i

; i = 1; 2; 3; 4:

For ea
h problem, three starting ve
tors were used, namely,

(a) (0:0; 0:0; 0:0; 0:0)

T

(b) (�0:5;�0:5;�0:5;�0:5)

T

(
) (�1:0;�1:0;�1:0;�1:0)

T

.

In [10℄ Newtonian strategies were adopted to solve problems POZ1 and

POZ2. In the �rst approa
h, the iterative s
heme to 
ompute �xed points

of an operator S was

y

k+1

= y

k

� (E � V

k

)

�1

(y

k

� S(y

k

));

11



where V

k

2 �S(y

k

). In the se
ond approa
h, a Newton variant s
heme was

applied to the semismooth operator

H(y) := minfy �m(y); F (y)g = 0;

where min denotes the 
omponentwise minimum of the two ve
tors in bra
k-

ets.

Problems POZ1 and POZ2 were also solved in [8℄, with a trust-region

approa
h for solving the GNCP(F;G; IR

n

+

) using the merit fun
tion � :

IR

n

! R de�ned by

�(x) :=

1

2

n

X

i=1

�(F

i

(x); G

i

(x))

2

:

The fun
tion �(a; b) =

p

a

2

+ b

2

� a� b is the Fis
her-Burmeister one, with

the property �(a; b) = 0, a � 0; b � 0; ab = 0.

In Tables 17 and 18 we present, for 
omparative purposes, numeri
al

results of [10℄ and [8℄ for problems POZ1 and POZ2, respe
tively. Our

results are reported in Table 19, where the notation of Tables 1-14 is used.

We also in
luded the �nal value of our merit fun
tion f(x; z; �), together

with the norm of the proje
ted gradient kg

p

k at the �nal approximation.

The results of our approa
h 
ompared quite well with [8℄ and were by

far superior than the results of [10℄. For problem POZ1, starting points (a)

and (b) provide similar results in terms of e�ort spent, although point (b)

generates a solution with slightly better quality. For this problem, starting

with point (
), on the other hand, requires twi
e as mu
h inner iterations and

matrix-ve
tor produ
ts than starting with (a) or (b). For problem POZ2,

the starting point that generated higher 
ost was (b).

OZ95 JFQS98

start

�rst approa
h

ITER

se
ond approa
h

ITER

ITER FE �

(a) 2 14 5 17 7.65D�18

(b) 2 41 4 16 9.71D�15

(
) V

2

singular 56 5 11 3.43D�24

Table 17: Previous results - Problem 1 (POZ1 - n = 4).

OZ95 JFQS98

start

�rst approa
h

ITER

se
ond approa
h

ITER

ITER FE �

(a) 3 15 5 17 1.05D�18

(b) V

2

singular 15 4 16 4.89D�15

(
) V

2

singular no 
onvergen
e 5 11 7.05D�22

Table 18: Previous results - Problem 2 (POZ2 - n = 4).
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Problem start OUTER FE INNER MVP f(x; z; �) kg

p

k

POZ1 (a) 4 5 24 30 2.31D�10 8.61D�06

(b) 4 5 22 39 1.55D�14 7.03D�08

(
) 4 5 45 68 6.63D�11 7.77D�06

POZ2 (a) 5 6 48 74 4.25D�12 2.33D�06

(b) 6 8 104 171 1.15D�14 8.25D�08

(
) 3 4 31 60 9.43D�11 2.25D�05

Table 19: Results using our approa
h (n = 4).

To assess the performan
e of our approa
h, we enlarged the dimension

n of problems POZ1 and POZ2, allowing n = 40, n = 400 and n = 4000.

Matrix A 2 IR

n�n

and ve
tor b 2 IR

n

are the natural extensions of (3), as

are the starting ve
tors (a), (b) and (
). Results are presented in Table 20,

where one 
an see that the 
omputational e�ort grows very slowly as n

in
reases. The greatest di�eren
e happens between n = 4 and n = 40, but

from 40 to 400 and from 400 to 4000 the 
ost does not grow as mu
h as

in the �rst 
ase. Su
h di�eren
es in the in
reasing fa
tors 
an be better

appre
iated by the average values shown in Table 21.

Problem start OUTER FE INNER MVP f(x; z; �) kg

p

k

POZ1 (a) 7 10 125 236 1.26D�11 5.48D�06

n = 40 (b) 6 8 102 313 3.16D�13 4.52D�07

(
) 5 7 84 176 1.11D�10 6.62D�06

POZ1 (a) 8 12 146 205 2.42D�12 8.69D�07

n = 400 (b) 7 10 126 201 5.66D�12 1.59D�06

(
) 6 8 94 206 1.44D�11 2.32D�06

POZ1 (a) 9 14 143 311 1.59D�12 7.79D�07

n = 4000 (b) 8 12 123 377 7.43D�12 2.26D�06

(
) 7 9 99 289 1.96D�11 2.91D�06

POZ2 (a) 7 11 127 248 4.36D�12 2.45D�06

n = 40 (b) 6 9 116 201 1.89D�11 2.56D�06

(
) 6 8 104 176 6.90D�13 7.44D�07

POZ2 (a) 9 14 143 227 6.64D�13 5.35D�07

n = 400 (b) 7 11 135 367 1.75D�11 2.74D�06

(
) 7 10 120 203 6.30D�13 4.93D�07

POZ2 (a) 10 15 157 394 2.98D�12 9.12D�07

n = 4000 (b) 9 14 161 385 7.84D�11 5.18D�06

(
) 8 12 161 309 1.21D�12 4.94D�07

Table 20: Additional tests with larger dimensions.
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Problem n OUTER FE INNER MVP

POZ1 4 4.0 5.0 30.3 45.7

40 6.0 8.3 103.7 241.7

400 7.0 10.0 122.0 204.0

4000 8.0 11.7 121.7 325.7

POZ2 4 4.7 6.0 61.0 101.7

40 6.3 9.3 115.7 208.3

400 7.7 11.7 132.7 265.7

4000 9.0 13.7 159.7 362.7

Table 21: Average results of our approa
h.

3.3 Problems with general polyhedral 
ones in IR

n

In this third set of experiments we address the problem of �nding x 2 IR

n

su
h that Mx+ 
 2 K, Px+ d 2 K

Æ

and (Mx+ 
)

T

(Px+ d) = 0, where the

sets K, K

Æ

are de�ned by

K = fv 2 IR

n

j Av � 0; Bv = 0g;

K

Æ

= fu 2 IR

n

j u = A

T

�

1

+B

T

�

2

; �

1

� 0g;

with A 2 IR

p�n

, B 2 IR

s�n

given. Matri
es M;P 2 IR

n�n

and ve
tors


; d 2 IR

n

are also given.

The problems were randomly generated quite similarly to our �rst set of

experiments. We started by generating matri
es M and P with the pattern

M = Q

ML

D

M

Q

MR

, P = Q

PL

D

P

Q

PR

, where D

M

and D

P

are diagonal

matri
es and Q

(�)

are orthogonal Householder matri
es de�ned by Q

(�)

= I�

2

u

(�)

u

T

(�)

u

T

(�)

u

(�)

, with ve
tor u

(�)

2 IR

n

with 
omponents generated by rnd(�1; 1). To

generate singular matri
es we for
ed 20% of the elements of the diagonal to

be identi
ally zero. To generate inde�nite matri
es, ea
h element of diagonal

D

(�)

was multiplied by the signal of rnd(�1; 1). Next, ve
tors x

�

and 
 were


omputed with 
omponents generated by rnd(�10; 10). Then, we 
al
ulated

y

�

= Mx

�

+ 
 and generated matrix B su
h that By

�

= 0. This was

a

omplished by applying the modi�ed Gram-S
hmidt algorithm (see, e.g.

[7℄) to obtain the QR fa
torization of matrix

 

y

�

�

�

�

�

�

I

s

0

!

= QR =

�

y

�

ky

�

k

2

�

�

�

B

T

�

R:

and the rows of matrix B are de�ned by the s last 
olumns of the Q fa
tor.

Matrix A was de�ned by the produ
t A = S

A

Q

AL

D

A

Q

AR

, with S

A

2 IR

p

diagonal with 1 or �1 so that Ay

�

� 0. Orthogonal matri
es Q

AL

2 IR

p�p

and Q

AR

2 IR

n�n

are as matri
es Q

(�)

above. Matrix D

A

2 IR

p�n

is diago-

nal, without any prior assumption about p and n. We generated its elements
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(D

A

)

i

2 rnd[�0:1; 0:1℄; i = 1;minfp; ng. To 
omplete the problem data, we

generated �

�

1

su
h that �

�

1

? z

�

= Ay

�

, �

�

2

2 rnd[�10; 10℄ and 
omputed

d = A

T

�

�

1

+B

T

�

�

2

� Px

�

.

The initial approximation was randomly generated as follows: [x

0

℄

i

=

rnd(�10; 10), i = 1; : : : ; n, [z

0

℄

i

= rnd(1; 10) and [�

0

1

℄

i

= rnd(1; 10); i =

1; : : : ; p and [�

0

2

℄

i

= 0; i = 1; : : : ; s.

A

ording to the features of matri
es M and P , we divided the set of

tests in three families: 1) M = P , inde�nite and non symmetri
; 2) M = P ,

inde�nite and symmetri
; 3)M 6= P , inde�nite, non symmetri
 and singular.

For families 1) and 2) the theoreti
al hypotheses of the equivalen
e results

hold sin
e PM

�1

= I.

For ea
h family, six sets for the dimensions (n; p; s) were 
onsidered: (10,

5, 1); (10, 10, 1); (10, 15, 1); (100, 50, 5); (100, 100, 5) and (100, 150, 5).

For ea
h set of dimensions, three problems were generated, with di�erent

seeds. The arithmeti
 means of the results are reported in Tables 22-23,

where we inform the number of iterations (INNER) and matrix-ve
tor prod-

u
ts (MVP) performed by the inner (quadrati
) solver, and the number of

iterations (OUTER) and fun
tional evaluations (FE) performed by the outer

(trust-region) algorithm.

p family INNER MVP OUTER FE

5 1 136.7 170.3 9.0 10.0

10 184.0 257.0 11.3 12.3

15 309.0 436.7 18.0 19.0

5 2 168.0 213.0 11.3 12.3

10 168.7 232.3 11.8 12.8

15 208.3 282.3 12.7 13.7

5 3 208.7 253.3 10.0 11.0

10 278.7 371.7 13.0 14.0

15 485.7 640.7 19.7 20.7

Table 22: Average results - problems with n = 10; s = 1.

p family INNER MVP OUTER FE

50 1 1021.0 1373.0 35.7 36.7

100 2199.3 2971.3 72.0 73.0

150 3946.3 5103.0 113.3 114.0

50 2 1064.7 1421.0 37.0 38.0

100 2167.7 2833.0 67.3 68.3

150 4291.3 5720.3 124.3 125.3

50 3 7397.7 7922.0 101.0 102.0

100 160724.0 166259.0 1856.0 1857.0

150 102189.0 112886.0 957.3 963.0

Table 23: Average results - problems with n = 100; s = 5.
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We denote the �gures of Tables 22 and 23 by T

k

ij

, where k 2 f1; 2; 3g

represents ea
h family, i 2 f1; 2; 3g 
orresponds to rows with p = 5; 10; 15

(Table 22), i 2 f4; 5; 6g 
orresponds to rows with p = 50; 100; 150 (Table 23),

and j 2 f1; 2; 3; 4g is the 
orresponding 
olumn with the values INNER,

MVP, OUTER and FE. Based on these values, and similarly to the �rst set of

tests, we de�ne two 
ost measures to guide our analysis, per inner iteration

(MVP/INNER) and global (INNER/OUTER), as follows:

me

1

(i) =

1

3

X

k

T

k

i2

T

k

i1

and me

2

(i) =

1

3

X

k

T

k

i1

T

k

i3

;

for i = 1; 2; 3; 4; 5; 6.

For a better understanding of the average values represented by these

two measures, we also 
omputed the minimum and maximum values:

m

1

(i) = min

k

T

k

i2

T

k

i1

; M

1

(i) = max

k

T

k

i2

T

k

i1

; m

2

(i) = min

k

T

k

i1

T

k

i3

; and M

2

(i) = max

k

T

k

i1

T

k

i3

:

Results are reported in Table 24, where the triples 
ontain

(m

1

(i);me

1

(i);M

1

(i)) and (m

2

(i);me

2

(i);M

2

(i));

for i = 1; : : : ; 6.

With the aim of analyzing results a

ording to the family of generated

problems, we de�ne two additional measures for ea
h one of sets 1 to 3.

The weights ln(n + 2p + s) and

p

ln(n+ 2p+ s) were introdu
ed to �lter

dependen
e of dimension and somehow uniformize the 
omputed values:

me

3

(k) =

1

6

 

3

X

i=1

T

k

i2

ln(11 + 10i)T

k

i1

+

6

X

i=4

T

k

i2

ln(100i � 195)T

k

i1

!

and

me

4

(k) =

1

6

 

3

X

i=1

T

k

i2

p

ln(11 + 10i)T

k

i1

+

6

X

i=4

T

k

i2

p

ln(100i � 195)T

k

i1

!

for k = 1; 2; 3. We stress that the values 11+10i; i = 1; 2; 3 and 100i�195; i =

4; 5; 6 are, respe
tively, the dimensions 21, 31, 41 and 205, 305, 405 used in

the tests. Results are shown in Table 25, where we also in
lude minimum

(m

3

;m

4

) and maximum values (M

3

;M

4

).
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Dimension

(p)

(m

1

;me

1

;M

1

) (m

2

;me

2

;M

2

)

5 (1.22, 1.24, 1.26) (14.69, 16.54, 20.03)

10 (1.34, 1.36, 1.38) (14.79, 17.50, 21.34)

15 (1.33, 1.37, 1.42) (16.49, 19.28, 24.11)

50 (1.09, 1.25, 1.34) (28.24, 41.04, 66.12)

100 (1.06, 1.24, 1.35) (30.49, 48.74, 83.55)

150 (1.09, 1.24, 1.34) (34.24, 54.99, 95.91)

Table 24: Measures of e�ort per problem dimension.

Family (m

3

;me

3

;M

3

) (m

4

;me

4

;M

4

)

1 (0.50, 0.54, 0.58) (23.08, 37.16, 54.70)

2 (0.51, 0.54, 0.56) (23.19, 37.02, 53.86)

3 (0.43, 0.48, 0.54) (31.34, 81.58, 151.38)

Table 25: Measures of e�ort per problem family.

Observing Table 24 one 
an see that the e�ort of the inner solver is always

inferior to 1.5 matrix-ve
tor produ
ts per iteration. Moreover, it is slightly

larger for smaller problems (dimensions n + 2p + s 2 f21; 31; 41g than for

larger ones (n+ 2p+ s 2 f205; 305; 405g), although the dispersion between

minimum and maximum values grows with in
reasing p. This last 
omment

also applies to the global e�ort measure me

2

, that grows as p in
reases,

together with the length of intervals [m

2

;M

2

℄. Although dimension di�ers

from a fa
tor of ten for the two sets of problems, �gures of (m

2

;me

2

;M

2

)

are about twi
e as large when the two sets are 
ompared.

Con
erning Table 25, the main 
on
lusions are that symmetry of ma-

tri
es M and P does not seem to interfere in the performan
e of our ap-

proa
h, sin
e families 1 and 2 produ
ed quite similar results for both triples

(m

3

;me

3

;M

3

) and (m

4

;me

4

;M

4

). Singularity of matri
es M and P , on

the other hand, showed signi�
ative e�e
ts, espe
ially as far as the global

performan
e is 
on
erned.

This set of experiments 
ontains a total of 54 tests. For the 27 problems

of smaller dimension, the �nal obje
tive fun
tion value was always inferior

to 10

�5

. Considering the 27 larges ones, for 8 problems of the third family

the �nal obje
tive fun
tion values were greater than 10

�2

, indi
ating 
on-

vergen
e to a lo
al non-global solution. This amounts to 55.6% of su

ess

among problems for whi
h the theoreti
al 
ondition of equivalen
e does not

hold. We stress, however, that whenever su
h hypothesis is valid, a global

solution was rea
hed.
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3.4 Problems in 3D-
ones with 
ontrol of generated fa
es

In the fourth set of experiments we addressed the problem of �nding x 2 K =

fv 2 IR

n

j Av � 0g su
h that Tx + q 2 K

Æ

= fv 2 IR

n

j A

T

� = v; � � 0g.

We generated the polyhedral 
ones K with p fa
es, su
h that their edges

were the lines

0

B

�

x

y

z

1

C

A

=

0

B

B

�

r 
os

�

2�

p

k

�

r sin

�

2�

p

k

�

1

1

C

C

A

t; t 2 IR; k = 1; : : : ; p:

Therefore, K was de�ned by 
omputing the rows of matrix A as the normal

ve
tors to the support planes to the fa
es of the 
one. In other words, the

ve
tor that de�nes the i�th row of matrix A (i = 1; : : : ; p) is given by the


ross produ
t:

0

B

B

B

B

B

�


os

�

2�

p

(i� 1)

�

sin

�

2�

p

(i� 1)

�

1

r

1

C

C

C

C

C

A

�

0

B

B

B

B

B

�

r 
os

�

2�

p

i

�

r sin

�

2�

p

i

�

1

1

C

C

C

C

C

A

=

0

B

B

B

B

�

sin

�

2�

p

i

��


os

2�

p

� 1

�

� 
os

�

2�

p

i

�

sin

2�

p


os

�

2�

p

i

��

1� 
os

2�

p

�

� sin

�

2�

p

i

�

sin

2�

p

r sin

2�

p

1

C

C

C

C

A

The problems were generated as follows. On
e de�ned the values of the

radius r and of the dimension p (number of fa
es of 
one K), we built matrix

A and 
reated two types of x

�

, at the border and in the interior of K, re-

spe
tively. Next we generated matrix T using the pattern T = Q

TL

D

T

Q

TR

,

where D

T

is diagonal and Q

TL

, Q

TR

are orthogonal Householder matri
es

de�ned as in the �rst and third set of tests. We kept T symmetri
, and

produ
ed four families of problems, namely 1) T inde�nite; 2) T positive

de�nite; 3) T positive semide�nite and 4) T negative semide�nite. We built

0 � �

�

? Ax

�

� z

�

. Finally we 
omputed q = A

T

�

�

� Tx

�

.

The tests were produ
ed by varying r 2 f0:1; 1; 10g, p 2 f3; 4; 5; 6; 9; 12g,

the four families of matri
es T and the two kinds of generated solution

x

�

, whi
h amounted to 144 problems. Three distin
t seeds were 
hosen to

generate problems for ea
h sele
tion of r; p; T and x

�

. Tables 26-33 
ontain

average values of the results obtained with the three seeds. To present the

results we have separated information 
on
erning number of inner iterations,
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of matrix-ve
tor produ
ts, of outer iterations and of fun
tional evaluations

in distin
t tables, in order to keep together variation of dimension p, radius

r and features of matrix T .

To analyse the robustness of the proposed approa
h, sin
e half of the

generated problems do not satisfy the hypothesis of the equivalen
e result

(families 1 and 4, with matri
es T inde�nite and negative semide�nite, re-

spe
tively), we observed that for the 72 problems with x

�

generated at the

boundary of the 
one, 29 out of the 72� 3 tests stopped at lo
al non global

solutions. This 
orresponds to su

ess for 86.6% of the total and 73.2% of

the 
andidates for failure. For problems with x

�

generated in the interior of

the 
one, there were six problems that 
onverged to lo
al non-global solu-

tions, in a total of 72� 3 problems. In this 
ase, the measures of su

ess are

97.2% of the total and 94.4% of the problems without theoreti
al guarantee

of 
onvergen
e. Summing up the two blo
ks of tests, there were 35 failures,

representing su

ess in 91.9% of total and 83.8% of the universe of problems

that do not satisfy the hypothesis of equivalen
e result.

There are some salient features that emerge from Tables 26-33. First,

the 
omputational 
ost of the inner solver grows with problem dimension,

rea
hing its maximum for p = 9 and p = 5 if x

�

is generated at the boundary

and in the interior of K, respe
tively.

It is also evident that the degree of diÆ
ulty of the generated problems

grows as the radius r de
reases: r = 10 produ
es the easiest problems

whereas r = 0:1 generates the most diÆ
ult ones. Re
all that in this set of

experiments our problem is to �nd x 2 K = fv 2 IR

n

j Av � 0g su
h that

Tx + q 2 K

Æ

= fv 2 IR

n

j A

T

� = v; � � 0g, so the requirements for K and

K

Æ

are di�erent.

family r INNER

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 62.0 75.3 120.3 120.0 261.7 216.7

10 118.0 139.3 155.0 340.7 363.3 377.3

0.1 74.3 107.0 255.3 210.3 768.0 593.3

2 1 70.3 110.7 160.3 134.0 228.7 252.7

10 88.0 110.3 161.7 191.3 357.0 300.7

0.1 60.3 101.3 158.7 188.0 502.0 585.0

3 1 70.0 118.7 190.0 220.0 207.3 220.7

10 75.0 61.3 223.7 140.3 307.0 391.0

0.1 88.0 149.7 190.3 182.3 402.3 722.0

4 1 66.7 114.7 116.7 158.7 380.7 339.0

10 58.0 81.0 120.7 139.0 264.7 300.0

0.1 78.7 167.3 240.0 172.7 970.3 163.7

Table 26: Average number of inner iterations (INNER) for problems with x

�

generated at the boundary of 
one K.
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family r MVP

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 84.7 105.0 172.7 171.7 364.0 344.3

10 176.3 197.3 227.0 430.7 542.0 558.3

0.1 99.3 141.7 343.7 307.0 1010.3 811.0

2 1 98.7 158.0 223.0 187.0 301.0 345.3

10 119.0 158.0 256.3 297.7 612.0 505.7

0.1 76.3 138.7 206.7 250.0 647.0 770.7

3 1 97.0 166.3 272.7 313.0 254.0 303.7

10 100.3 86.0 332.0 209.3 468.3 654.7

0.1 120.7 192.7 252.7 253.3 544.7 950.0

4 1 90.0 155.7 182.7 215.7 521.3 477.3

10 75.3 108.3 160.0 194.7 371.3 482.0

0.1 111.3 224.7 294.3 257.7 1281.3 263.0

Table 27: Average number of matrix ve
tor produ
ts (MVP) for problems with x

�

generated at the boundary of 
one K.

family r OUTER

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 5.3 6.0 7.3 7.7 10.3 10.7

10 6.3 7.7 8.0 10.0 11.7 12.7

0.1 5.7 7.3 9.3 9.7 21.3 20.0

2 1 6.3 7.3 8.0 7.0 10.0 12.0

10 5.7 6.7 8.0 7.3 10.7 11.7

0.1 6.0 7.0 9.0 11.0 16.7 23.0

3 1 6.0 6.7 8.3 8.3 10.0 10.3

10 5.0 3.7 7.0 6.7 10.7 12.7

0.1 6.0 7.0 8.7 8.3 15.3 24.3

4 1 5.7 7.3 6.7 7.3 10.3 10.3

10 6.0 6.0 9.3 8.7 10.7 9.7

0.1 6.7 8.3 9.3 8.7 18.3 7.3

Table 28: Average number of outer iterations (OUTER) for problems with x

�

generated at the boundary of 
one K.
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family r FE

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 6.3 7.0 8.3 8.7 11.3 11.7

10 7.3 8.7 9.0 11.0 13.3 15.7

0.1 6.7 8.3 10.3 10.7 23.0 21.3

2 1 7.3 8.3 9.0 8.0 11.0 13.0

10 7.0 7.7 9.0 8.3 12.3 12.7

0.1 7.0 8.0 10.0 12.0 17.7 24.0

3 1 7.0 7.7 9.7 9.3 11.7 11.3

10 6.0 4.7 8.0 7.7 11.7 14.3

0.1 7.0 8.0 9.7 9.3 16.3 25.3

4 1 6.7 8.3 7.7 8.3 11.3 11.3

10 7.0 7.0 10.3 9.7 12.3 11.7

0.1 7.7 9.3 10.3 9.7 19.3 8.3

Table 29: Average number of fun
tional evaluations (FE) for problems with x

�

generated at the boundary of 
one K.

family r INNER

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 107.0 137.7 99.0 109.7 217.7 257.3

10 77.3 89.7 139.0 157.0 133.3 227.3

0.1 144.3 485.7 211.3 371.3 947.3 1380.3

2 1 84.7 92.0 95.0 104.7 113.0 113.3

10 52.7 63.3 78.3 66.7 33.7 134.0

0.1 146.7 299.7 434.0 479.3 471.3 492.7

3 1 81.0 90.3 142.0 107.3 106.3 129.3

10 43.0 100.3 77.0 59.0 154.7 233.0

0.1 214.0 393.3 368.0 409.0 574.7 814.0

4 1 73.3 57.3 122.7 87.3 150.7 197.0

10 96.3 189.0 177.0 132.0 71.3 45.3

0.1 197.7 391.0 1993.3 274.7 483.7 228.3

Table 30: Average number of inner iterations (INNER) for problems with x

�

generated in the interior of 
one K.
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family r MVP

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 138.3 175.7 140.7 158.3 319.0 344.7

10 107.3 129.7 203.7 255.7 239.7 374.3

0.1 174.7 654.3 283.7 476.7 1248.3 1778.3

2 1 108.0 126.0 139.7 156.0 179.0 178.7

10 73.3 88.3 128.3 104.7 58.0 241.3

0.1 188.3 378.7 560.3 623.0 637.0 664.0

3 1 115.0 128.3 225.0 166.7 176.3 229.0

10 61.0 141.7 116.3 92.0 285.7 433.0

0.1 298.3 505.7 474.0 552.0 775.7 1126.3

4 1 99.7 79.0 175.0 137.3 248.3 309.7

10 135.0 283.0 278.3 211.7 136.0 86.7

0.1 270.0 548.7 2666.7 356.0 657.0 339.7

Table 31: Average number of matrix ve
tor produ
ts (MVP) for problems with x

�

generated in the interior of 
one K.

family r OUTER

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 7.3 8.0 7.3 7.7 9.7 10.0

10 4.7 4.7 6.3 6.3 5.3 8.0

0.1 7.3 15.3 10.0 13.0 27.0 28.0

2 1 6.7 7.3 7.3 7.3 6.7 7.0

10 4.0 4.7 4.3 4.7 3.3 6.3

0.1 10.3 13.3 13.7 14.0 16.3 19.7

3 1 7.0 6.3 8.0 7.0 7.0 7.7

10 3.0 4.7 4.3 4.0 5.7 7.7

0.1 9.7 11.7 12.7 11.7 15.3 18.3

4 1 6.0 4.3 7.3 6.3 7.3 9.3

10 5.7 6.7 8.0 6.7 4.0 4.0

0.1 8.0 13.3 27.2 10.0 10.0 11.7

Table 32: Average number of outer iterations (OUTER) for problems with x

�

generated in the interior of 
one K.
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family r FE

p = 3 p = 4 p = 5 p = 6 p = 9 p = 12

1 1 8.3 9.0 8.3 8.7 11.3 11.0

10 5.7 5.7 7.3 7.3 6.3 9.0

0.1 8.3 16.3 11.0 15.3 28.0 29.0

2 1 7.7 8.3 8.3 8.3 7.7 8.0

10 5.0 5.7 5.3 5.7 4.7 7.3

0.1 11.3 14.3 14.7 16.0 19.0 21.0

3 1 8.0 7.3 9.0 8.0 8.0 8.7

10 4.0 5.7 5.3 5.0 6.7 8.7

0.1 10.7 12.7 13.7 12.7 16.3 19.3

4 1 7.0 5.3 8.3 7.3 8.3 10.3

10 6.7 7.7 9.0 7.7 5.0 5.0

0.1 9.0 14.3 28.7 11.0 11.0 12.7

Table 33: Average number of fun
tional evaluations (FE) for problems with x

�

generated in the interior of 
one K.

Grouping problems a

ording to the features of matrix T , there are 36

problems for ea
h family (6 dimensions p, 3 values for r and 2 types of

generated x

�

). We have 
omputed the ratios INNER=n

t

and OUTER=n

t

, where

n

t

= n+ 2p is the dimension of problem (1) and 
al
ulated average values,

presented in Table 34, together with minimum and maximum values.

family INNER=n

t

OUTER=n

t

minimum average maximum minimum average maximum

1 6.3 15.6 51.1 0.3 0.6 1.4

2 1.6 12.2 33.4 0.2 0.6 1.2

3 3.9 13.6 35.8 0.3 0.6 1.1

4 1.7 16.4 153.3 0.1 0.6 2.1

Table 34: Measures of e�ort per problem features.

Observing the �gures of Table 34, one 
an see that families 1 and 4

(T inde�nite and negative semide�nite, respe
tively) demand more e�ort to

be solved than those from families 2 and 3 (T positive de�nite and positive

semide�nite, respe
tively). The largest dispersion, that is the largest interval

[minimum, maximum℄ o

urs for the fourth family, be
ause of an outlier.

Removing this dis
repant value, the triples be
ome (1.7, 14.5, 46.2) and

(0.1, 0.7, 1.2), with dispersions similar to the ones of the �rst family.

4 Con
lusions

We have used a smooth box 
onstrained minimization reformulation of the

GNCP(F;G;K), assuming that K is a polyhedral 
one. Any eÆ
ient mini-

mization algorithm for solving this kind of problems may be used. Compu-

tational experiments are presented whi
h en
ourage the use of our approa
h.
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Four groups of problems were addressed: randomly generated problems in

the positive orthant; impli
it 
omplementarity problems from Outrata &

Zowe; problems with general 
ones in IR

n

and problems in 3D-
ones with


ontrol of generated fa
es.

The numeri
al results showed that the solution of the GNCP using (2)

was found in the majority of the tests, even without a

omplishment of

theoreti
al hypothesis, meaning that the behavior of the method does not

depend strongly on the suÆ
ient 
onditions that guarantee the equivalen
e.

Quantifying this robustness, 
onsidering only the universe of problems

without theoreti
al support for 
onvergen
e, for the �rst set of experiments

the amount of failure was 24%. In the third and fourth sets, lo
al non-

global solutions were rea
hed in 44% and 16% of the tests, respe
tively. No

doubt, in the absen
e of theoreti
al support, the 
onvergen
e to global so-

lutions is more frequent for problems of smaller dimensions. The se
ond set

of problems, in
luded for 
omparative purposes, formed by impli
it 
om-

plementarity problems, 
ontained large-s
ale experiments (dimension up to

3 � 4000 = 12000) for whi
h our approa
h had a very good performan
e.

The third set of experiments revealed that general polyhedral 
ones might

produ
e quite diÆ
ult problems, espe
ially as the dimension in
reases. The

fourth group of tests was 
reated to investigate geometri
al features of the


one K. Besides noti
ing that, for the generated 3D-problems, thinner 
ones

need more e�ort than wider ones, we observed that the in
reasing number of

edges and fa
es did not substantially augment the amount of e�ort needed

to solve the problems. As a natural extension of this work we would like to

investigate the possibility of approximating a general 
one by a polyhedral

one. This leads us to look for further 
onne
tions between theory and pra
-

ti
e 
on
erning geometri
al and algebrai
 properties of general 
ones and

their relationship with GNCP de�ned in su
h sets. We are also interested in

studying the behavior of our approa
h applied to problems with nonlinear

fun
tions F and G and polyhedral 
ones.
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