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Abstrat

Let G be a topologial group and S � G a submonoid of G ating

on the topologial spaeM . Let J be a subset ofM . Our purpose here

is to study the subsets of M whih orrespond, under the ation of

S, to the relative (with respet to J) invariant ontrol sets for ontrol

systems [4℄. The relation x s y if y 2 l(Sx) and x 2 l(Sy) is an

equivalene relation and the lasses with respet to this relation with

nonempty interior in M are the ontrol sets for the ation of S. It is

given onditions for the existene and uniqueness of relative invariant

lasses. As it was done for the ontrol sets, we de�ne an order in

the lasses and relate it to the relative invariant lasses. We also show

under ertain ondition that the relative invariant lasses are relatively

losed in J .

1 Introdution

One of the prinipal dynamial onepts in ontrol theory is the study of

the ontrollability of the ontrol systems. Many questions about the ontrol
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system, espeially those related to its ontrollability depend, in fat, only on

the ation of the semigroup of the system, so that it an be abstrated to

arbitrary semigroup ations and solved in a more general setting. The regions

of the state spae where the ontrollability ours are alled ontrol sets:

The ontrol sets for ontrol systems were studied by Colonius and Kliemann

in [1℄,[2℄,[3℄ and [4℄. In partiular, Colonius and Kliemann introdued the

onept of a ontrol set whih is relatively invariant with respet to a subset

of the phase spae of the ontrol system. From a more general point of view,

the theory of ontrol sets for semigroup ations was developed by San Martin

and Tonelli (see [5℄,[6℄ and [7℄). Let S be a submonoid of a topologial group

G and suppose that S ats on a topologial spae M . Sine the ontrol

sets are the regions where S is approximate transitive it is natural to de�ne

an equivalene relation by saying that two points are equivalent if they are

approximate attainable by the ation of S. We onsider equivalene lasses in

M with respet to this relation. We show that a lass with nonempty interior

in M is a ontrol set for S. The purpose of this paper is to study the relative

invariant lasses in M . We de�ne relatively invariant lasses. In ase S is

the system semigroup of a ontrol system these relatively invariant lasses,

with nonempty interior in M , are the relative invariant ontrol sets de�ned

by Colonius and Kliemann in [4℄. We develop the theory of relative invariant

lasses. As it was done for the ontrol sets, we de�ne an order in the lasses

and relate it to the relative invariant lasses. We give onditions for the

existene and uniqueness of relative invariant lasses. Under the hypothesis

of aessibility, we show that a relative invariant lass is relatively losed.

2 Relative invariane

In this paper we assume that G is a topologial group and S is a submonoid

of G, i.e., S � G is a subsemigroup with 1 2 S. We also suppose that S ats

ontinuously on a topologial spae M . We de�ne a ontrol set.

De�nition 1 A ontrol set for S on M is a subset D �M whih satis�es

1. int(D) 6= ;;

2. 8x 2 D; D � l(Sx) and
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3. D is maximal with these properties.

The ation on M indues the pre-order relation de�ned by

x � y if y 2 l(Sx); x; y 2M:

We de�ne x � y if x � y and y � x. Therefore [x℄ = [y℄ if and only if

y 2 l(Sx) and x 2 l(Sy). Thus � is the equivalene relation assoiated

with �. The pre-order in M indues a partial order in the quotient spae

M= �. This order in the quotient spae is also denoted by �. We denote

by [x℄ 2 M= � the equivalene lass of x 2 M . From the ontrol theoreti

point of view a lass [x℄ with int

M

([x℄) 6= ; is a ontrol set for the ation of

the submonoid S.

Proposition 1 Let D = [x℄ be a lass with respet to the equivalene relation

s. Suppose that int

M

(D) 6= ;. Then D is a ontrol set for S on M .

Proof: We �rst show that D = [x℄ � l(Sy), for every y 2 [x℄. Take y 2 [x℄

then x s y. For z 2 [x℄, we have z s x. By the transitivity of the relation

s we have z s y and y � z. This implies that z 2 l(Sy). Now, suppose

D � D

0

with D

0

satisfying the ondition D

0

� l(Sz) for every z 2 D

0

. Take

y 2 D

0

. Then y 2 l(Sz), for every z 2 D

0

, in partiular for x 2 D. There-

fore y 2 l(Sx) and x � y. On the other hand, sine x 2 D � D

0

, we have

x 2 l(Sy) one y 2 D

0

and y � x. Hene x s y and y 2 [x℄ = D, showing

the maximality of D. 2

A lass [x℄ is saidmaximal if every lass [y℄ with [x℄ � [y℄ satis�es [x℄ = [y℄.

We will show later that a maximal lass with int

M

([x℄) 6= ; is an invariant

ontrol set for the submonoid S.

We observe that [x℄ � l(Sx) for every x 2M .

We say that a subset A � M is S-invariant, or invariant for the monoid

S, if for every y 2 A we have l(Sy) � A.

A S-invariant lass is always maximal. In fat, suppose [x℄ is S-invariant.

Then l(Sx) � [x℄. If we take [x℄ � [y℄ we have x � y and y 2 l(Sx) � [x℄.

Therefore x s y and [x℄ = [y℄, showing the maximality.

We de�ne O = fl(Sx) � M : x 2 Mg. Now, we relate maximality and

S-invariane.
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Lemma 1 For x 2M the following statements are equivalent:

1. [x℄ is maximal

2. l(Sx) is minimal in O with respet to the inlusion of sets

3. [x℄ = l(Sx)

4. [x℄ is losed and S-invariant

Proof: Let's assume that l(Sy) � l(Sx) for some y 2M . Take z 2 l(Sy).

By the ontinuity of the ation of S on M we have l(Sz) � l(Sy). Sine

z 2 l(Sx) the maximality of [x℄ implies that l(Sx) � l(Sz). Therefore

l(Sx) � l(Sy) showing that l(Sx) is minimal. Suppose that l(Sx) is

minimal in O. Then l(Sy) � l(Sx) for all y 2 l(Sx). By minimality

l(Sy) = l(Sx) for all y 2 l(Sx). This implies that l(Sx) is entirely on-

tained in an equivalene lass so that l(Sx) = [x℄. If [x℄ = l(Sx) it is

immediate that [x℄ is losed and S-invariant. Finally, a S-invariant lass is

maximal. 2

The maximal lasses with nonempty interior in M are the invariant on-

trol sets, more spei�ally, we have.

Corollary 1 Let D = [x℄ be a maximal lass with respet to the relation s.

Assume int

M

(D) 6= ;. Then D is an invariant ontrol set for S on M .

Proof: First we show that l(D) = l(Sy) for every y 2 D. Sine [x℄ is

maximal we have by the Lemma 1 that [x℄ = l(Sx). Hene D = l(D). For

y; z 2 [x℄ we have z 2 l(Sy). Conversely, take z 2 l(Sy), sine x s y we

have y 2 l(Sx). Therefore z 2 l(Sx) = [x℄. Now we will show the maximal-

ity of D. Suppose [x℄ = D � D

0

and D

0

satis�es the equality l(D

0

) = l(Sy)

for every y 2 D

0

. Take z 2 D

0

. Then l(D

0

) = l(Sz). Sine x 2 D � D

0

�

l(D

0

) we have x 2 l(Sz) and z � x. On the other hand, sine x 2 D � D

0

we have l(D

0

) = l(Sx). But, z 2 D

0

� l(D

0

) = l(Sx) and therefore x � z.

It follows that x s z and z 2 [x℄ = D, showing the maximality of D. 2

On the existene of maximal lasses we have the following proposition.
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Proposition 2 Let J be a S-invariant ompat subset of M . Then for every

x 2 J there exists a maximal equivalene lass [w℄ � l(Sx).

Proof: Fix x 2 J and onsider the family of subsets

O

x

= fl(Sy) : l(Sy) � l(Sx)g:

This family is not empty beause it ontains l(Sx). Let us order O

x

by

inlusion and show with the aid of Hausdor� 's maximality priniple that it

ontains minimal elements: Take a hain fl(Sy)g

y2I

of subsets in O

x

; where

I is an index set. Sine J is S-invariant l(Sx) � J . Therefore we have a

hain of losed subsets of J . Hene they are ompat whih implies that

the intersetion

T

y2I

l(Sy) is not empty. Take z 2

T

y2I

l(Sy). Then l(Sz)

belongs to O

x

and is ontained in l(Sy) for all y 2 I. These means that

l(Sz) is a lower bound of the hain. Applying the maximality priniple we

onlude that O

x

ontains a minimal element, say l(Sw). Any element of

O = fl(Sx) �M : x 2Mg ontained in l(Sw) is an element of O

x

beause

l(Sw) � l(Sx). Hene l(Sw) is also minimal in O so the proof follows

from Lemma 1. 2

We de�ne a maximal lass relatively to a subset J ontained in the man-

ifold M .

De�nition 2 Given a subset J � M a lass [x℄ � J is said to be J-maximal,

if every lass [y℄ � J with [x℄ � [y℄ satis�es [x℄ = [y℄.

For subsets J of the manifold M whih are ompat and S-invariant we

have.

Corollary 2 Suppose that J � M is ompat and S-invariant. Then there

are J-maximal lasses and they are the maximal lasses ontained in J .

Proof: Take x 2 J . Sine J is ompat and invariant under the a-

tion of S we have by the Lemma 2 that there exist a maximal lass, say,

[w℄ � l(Sx) � J . We also have that [w℄ is J-maximal. Conversely, a maxi-

mal lass ontained in J is J-maximal. 2

Now, we de�ne a lass whih is invariant with respet to a subset J in

M .
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De�nition 3 For a subset J � M a lass [x℄ � J is alled SJ-invariant, if

z 2 l(Sx) with z =2 [x℄ implies z =2 J .

Therefore, if a lass [x℄ � J is SJ-invariant it annot leave by the losure

of an orbit without leaving J .

If a lass [x℄ has nonempty interior in M then a SJ-invariant lass is

alled an SJ-invariant ontrol set. The relative invariant ontrol sets for

ontrol systems were studied in [4℄ by Colonius and Kliemann.

It follows immediately that a SJ-invariant lass is J-maximal. As a on-

sequene a SM -invariant lass is M -maximal and therefore it is a maximal

lass. Conversely, by the Lemma 1, a maximal lass is SM -invariant. There-

fore, if int

M

([x℄) 6= ; a lass [x℄ is an invariant ontrol set if and only if [x℄ is

SM -invariant.

On the existene of SJ-invariant lasses we have.

Corollary 3 Suppose that J � M is ompat and S-invariant. Then [x℄ is

SJ-invariant lass if and only if [x℄ is J-maximal. In this ase there exist

SJ-invariant lasses.

Proof: Suppose [x℄ is J-maximal. By the Corollary 2 [x℄ is an S-invariant

lass ontained in J . Therefore [x℄ is a SJ-invariant lass. 2

The no-return ondition de�ned bellow was introdued, in the ontext

of ontrol systems, by Colonius and Kliemann [4℄ in the study of relatively

invariant ontrol sets.

We say that a subset J � M satisfy the no-return ondition if z 2 l(Sx)

for some x 2 J and l(Sz) \ J 6= ;; then z 2 J . This ondition says that if

we leave J we annot go bak to J again thorough the losure of an orbit of

S.

Now, we translate the no-return ondition in terms of an union of equiv-

alene lasses.

Proposition 3 Suppose that J � M satisfy the no-return ondition. Then

J is exhaustive for the equivalene relation s, i.e., any lass [x℄ is entirely

ontained in J or in J



.

Proof: Let [x℄ be a lass suh that [x℄ \ J 6= ; and [x℄ \ J



6= ; and we will

obtain a ontradition. Take z 2 [x℄ \ J and y 2 [x℄ \ J



. Then z � y, i.e.,
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z 2 l(Sy) and y 2 l(Sz). By the no-return ondition we have that y 2 J

whih is a ontradition. 2

Corollary 4 Suppose J satis�es the no-return ondition. Then

J =

[

x2J

[x℄

Proof: Take x 2 J . Then by the Proposition 3 we have x 2 [x℄ � J . Thus

S

x2J

[x℄ � J . Conversely, sine x 2 [x℄ we have J �

S

x2J

[x℄. 2

Let F = f[x℄ � J : [y℄ � J if y 2 M and [y℄ � [x℄g. As a onverse of the

last orollary we have.

Proposition 4 Assume F 6= ; and suppose that J =

S

[x℄2F

[x℄. Then J

satis�es the no-return ondition.

Proof: Take x 2 J and z 2 l(Sx) with l(Sz)\J 6= ;. Pik w 2 l(Sz)\J .

Then x � z � w. It follows that [x℄ � [z℄ � [w℄. Sine w 2 J and

w 2 [w℄ 2 F we have [z℄ � J and z 2 J . 2

The next theorem gives onditions for the existene of SJ-invariant lasses.

It also generalizes Proposition 3.3.3 of [4℄.

Theorem 1 Let J be a subset of M satisfying the no-return ondition. Take

x 2 J and assume that there exists a ompat set K � J suh that for all

y 2 l(Sx) \ J

l(Sy) \K 6= ;

Then there exists a SJ-invariant lass [w℄ � l(Sx).

Proof: For y 2 l(Sx) \ J we de�ne the ompat K

y

= l(Sy) \ K. Sine

1 2 S we have that K

x

is de�ned. Now, onsider the family

F = fK

y

: y 2 K

x

g

de�ne the following order on F

K

y

� K

z

if y � z
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thus if K

y

� K

z

then z 2 l(Sy) and K

z

= l(Sz) \K � l(Sy) \K = K

y

.

Therefore every linearly ordered set fK

y

i

: i 2 Ig has an upper bound K

y

=

T

i2I

K

y

i

for some y 2

T

i2I

K

y

i

. The Zorn's lemma implies that the family F has

a maximal element K

y

. Sine y 2 Sy \K we have y 2 K

y

� J . Let's de�ne

D = l(Sy) \ J:

We will show that D � l(Sx) is a SJ-invariant lass. We know that

y 2 Sy \ J � D. By its only de�nition, every z 2 D is approximately reah-

able from y. Conversely, y 2 l(Sz), sine otherwise y =2 l(Sz) \ K = K

z

,

hene this is a proper subset of K

y

ontraditing the maximality of K

y

.

Therefore we have approximate transitivity in D. We also have that D

is a lass. Otherwise, there exists a lass [w℄ � D ontaining a point

! =2 D = l(Sy) \ J . The no-return ondition and Proposition 3 implies

that D � [w℄ � J . It follows that w � y and w 2 l(Sy) \ J ontra-

diting the hoie of w. It remains to show the SJ-invariane of D. Take

z 2 D = l(Sy) \ J and suppose that there exists k 2 l(Sz) \ J . Then

k 2 l(Sz) � l(Sy) and k 2 l(Sy) \ J , showing the SJ-invariane of D. 2

The theorem above allows us to show that the J-maximal and JS-invariant

lasses oinide.

Corollary 5 Let J � M be a subset satisfying the no-return ondition. Take

x 2 J and assume that there exists a ompat set K � J suh that for all

y 2 l(Sx) \ J

l(Sy) \K 6= ;

Then for a lass [w℄ � l(Sx) \ J we have that [w℄ is J-maximal if and only

if [w℄ is SJ-invariant.

Proof: Suppose [w℄ is J-maximal. Assume that there exists y 2 [w℄ � l(Sx)

and z 2 l(Sy) \ J with z =2 [w℄. By the last proposition there exist a SJ-

invariant lass [w

1

℄ � l(Sy) � l(Sx). Thus [w℄ � [w

1

℄ and [w℄ 6= [w

1

℄. This

ontradits the J-maximality of [w℄. Hene [w℄ is SJ-invariant. 2

We will see next that a losed subset is a maximal lass if and only if it

is the losure of the orbit of its elements.
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Proposition 5 Let C be a losed subset of M . Then C is maximal lass if

and only if C = l(Sx) for every x 2 C.

Proof: Suppose C = l(Sx) for every x 2 C. Then for x; y 2 C we have

y 2 l(Sx) and x 2 l(Sy), i.e., x s y and therefore C is ontained in a

equivalene lass, say, [x℄ � C. Furthermore, for y 2 [x℄ we have y 2 l(Sx),

and therefore [x℄ � l(Sx) = C, showing that [x℄ = C. Now, suppose that

C = [x℄ � [y℄. Then x � y and y 2 l(Sx) = [x℄. Therefore C = [x℄ = [y℄ is

a maximal lass. Conversely, assume that C = [x℄ is a maximal lass. Thus

by the Lemma 1 we have C = [x℄ = l(Sx) for every x 2 C. 2

Now, we give onditions for the existene of a unique SJ-invariant lass.

Proposition 6 Let J � M be a subset satisfying the no-return ondition.

Take x 2 J and assume that there exists a ompat set K

x

� J whih is

S-invariant and suh that for all y 2 l(Sx) \ J

l(Sy) \K

x

6= ;

Suppose that

C =

\

x2J

\

y2l(Sx)\J

(l(Sy) \K

x

) 6= ;

Then C is a unique SJ-invariant lass ontained in J .

Proof: First, we show that C is a SJ-invariant lass. It is easy to see that

C is losed and it is ontained in J . By the Proposition 5 and Corollary 5

it is enough to show that C = l(Sx) for every x 2 C. Take x 2 J and

y 2 l(Sx) \ J . Then l(Sy) � l(Sx) and l(Sx) \K

x

� l(Sx). Therefore

C �

T

x2J

(l(Sx)) � l(Sx) for every x 2 C. Now take w 2 l(Sz) with

z 2 C. Then for every x 2 J and every y 2 l(Sx) \ J we have z 2 l(Sy)

\K

x

. Sine K

x

is S-invariant we have w 2 l(Sz) � l(Sy) \ K

x

. Thus

w 2 C. It remains to show the uniqueness of C. Suppose that C

1

� J is

a maximal lass. By the Proposition 5, l(Sx) = C

1

for every x 2 C

1

.Thus

C

1

=

T

x2C

1

l(Sx). Therefore

C =

\

x2J

\

y2l(Sx)\J

(l(Sy) \K

x

) �

\

x2J

(l(Sx)) �

\

x2C

1

l(Sx) = C

1

:
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By the maximality of C it follows that C = C

1

. 2

As the invariant ontrol sets are losed in M under the hypothesis of

aessibility of S, we show that the SJ-invariant ontrol sets are relatively

losed ontrol sets in J .

We say that a subset J � M satis�es the J-aessibility ondition for a

submonoid S if for all y 2 J , int

M

(Sy \ J) 6= ;:

Theorem 2 Suppose that J �M satisfy the J-aessibility ondition for S.

Then any SJ-invariant lass [w℄ � J is relatively losed in J , i.e., (�([w℄)�

[w℄) \ J = ;.

Proof: Assume that [w℄ is a SJ-invariant lass and (�([w℄) � [w℄) \ J 6= ;.

Pik y 2 (�([w℄) � [w℄) \ J . We have that Sy \ [w℄ = ;. Otherwise, there

exist g 2 S suh that gy 2 [w℄. Thus [w℄ �l(Sgy) � l(Sy) and we would

have y 2 [w℄, ause if y 2 �([w℄) is not in [w℄ then l(Sy) do not ontains

[w℄. Sine y 2 J the J-aessibility ondition guarantees the existene of

z 2 (int(Sy \ J)) � [w℄. There exists g 2 S suh that gy = z. Let V be

a neighborhood of z ontained in Sy \ J and outside [w℄. Now, g

�1

V is an

open neighborhood of y 2 �([w℄). Therefore there exists x 2 [w℄ suh that

gx 2 V , whih is a ontradition with the SJ-invariane of [w℄. 2
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