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Abstra
t

Let G be a topologi
al group and S � G a submonoid of G a
ting

on the topologi
al spa
eM . Let J be a subset ofM . Our purpose here

is to study the subsets of M whi
h 
orrespond, under the a
tion of

S, to the relative (with respe
t to J) invariant 
ontrol sets for 
ontrol

systems [4℄. The relation x s y if y 2 
l(Sx) and x 2 
l(Sy) is an

equivalen
e relation and the 
lasses with respe
t to this relation with

nonempty interior in M are the 
ontrol sets for the a
tion of S. It is

given 
onditions for the existen
e and uniqueness of relative invariant


lasses. As it was done for the 
ontrol sets, we de�ne an order in

the 
lasses and relate it to the relative invariant 
lasses. We also show

under 
ertain 
ondition that the relative invariant 
lasses are relatively


losed in J .

1 Introdu
tion

One of the prin
ipal dynami
al 
on
epts in 
ontrol theory is the study of

the 
ontrollability of the 
ontrol systems. Many questions about the 
ontrol
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system, espe
ially those related to its 
ontrollability depend, in fa
t, only on

the a
tion of the semigroup of the system, so that it 
an be abstra
ted to

arbitrary semigroup a
tions and solved in a more general setting. The regions

of the state spa
e where the 
ontrollability o

urs are 
alled 
ontrol sets:

The 
ontrol sets for 
ontrol systems were studied by Colonius and Kliemann

in [1℄,[2℄,[3℄ and [4℄. In parti
ular, Colonius and Kliemann introdu
ed the


on
ept of a 
ontrol set whi
h is relatively invariant with respe
t to a subset

of the phase spa
e of the 
ontrol system. From a more general point of view,

the theory of 
ontrol sets for semigroup a
tions was developed by San Martin

and Tonelli (see [5℄,[6℄ and [7℄). Let S be a submonoid of a topologi
al group

G and suppose that S a
ts on a topologi
al spa
e M . Sin
e the 
ontrol

sets are the regions where S is approximate transitive it is natural to de�ne

an equivalen
e relation by saying that two points are equivalent if they are

approximate attainable by the a
tion of S. We 
onsider equivalen
e 
lasses in

M with respe
t to this relation. We show that a 
lass with nonempty interior

in M is a 
ontrol set for S. The purpose of this paper is to study the relative

invariant 
lasses in M . We de�ne relatively invariant 
lasses. In 
ase S is

the system semigroup of a 
ontrol system these relatively invariant 
lasses,

with nonempty interior in M , are the relative invariant 
ontrol sets de�ned

by Colonius and Kliemann in [4℄. We develop the theory of relative invariant


lasses. As it was done for the 
ontrol sets, we de�ne an order in the 
lasses

and relate it to the relative invariant 
lasses. We give 
onditions for the

existen
e and uniqueness of relative invariant 
lasses. Under the hypothesis

of a
essibility, we show that a relative invariant 
lass is relatively 
losed.

2 Relative invarian
e

In this paper we assume that G is a topologi
al group and S is a submonoid

of G, i.e., S � G is a subsemigroup with 1 2 S. We also suppose that S a
ts


ontinuously on a topologi
al spa
e M . We de�ne a 
ontrol set.

De�nition 1 A 
ontrol set for S on M is a subset D �M whi
h satis�es

1. int(D) 6= ;;

2. 8x 2 D; D � 
l(Sx) and
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3. D is maximal with these properties.

The a
tion on M indu
es the pre-order relation de�ned by

x � y if y 2 
l(Sx); x; y 2M:

We de�ne x � y if x � y and y � x. Therefore [x℄ = [y℄ if and only if

y 2 
l(Sx) and x 2 
l(Sy). Thus � is the equivalen
e relation asso
iated

with �. The pre-order in M indu
es a partial order in the quotient spa
e

M= �. This order in the quotient spa
e is also denoted by �. We denote

by [x℄ 2 M= � the equivalen
e 
lass of x 2 M . From the 
ontrol theoreti


point of view a 
lass [x℄ with int

M

([x℄) 6= ; is a 
ontrol set for the a
tion of

the submonoid S.

Proposition 1 Let D = [x℄ be a 
lass with respe
t to the equivalen
e relation

s. Suppose that int

M

(D) 6= ;. Then D is a 
ontrol set for S on M .

Proof: We �rst show that D = [x℄ � 
l(Sy), for every y 2 [x℄. Take y 2 [x℄

then x s y. For z 2 [x℄, we have z s x. By the transitivity of the relation

s we have z s y and y � z. This implies that z 2 
l(Sy). Now, suppose

D � D

0

with D

0

satisfying the 
ondition D

0

� 
l(Sz) for every z 2 D

0

. Take

y 2 D

0

. Then y 2 
l(Sz), for every z 2 D

0

, in parti
ular for x 2 D. There-

fore y 2 
l(Sx) and x � y. On the other hand, sin
e x 2 D � D

0

, we have

x 2 
l(Sy) on
e y 2 D

0

and y � x. Hen
e x s y and y 2 [x℄ = D, showing

the maximality of D. 2

A 
lass [x℄ is saidmaximal if every 
lass [y℄ with [x℄ � [y℄ satis�es [x℄ = [y℄.

We will show later that a maximal 
lass with int

M

([x℄) 6= ; is an invariant


ontrol set for the submonoid S.

We observe that [x℄ � 
l(Sx) for every x 2M .

We say that a subset A � M is S-invariant, or invariant for the monoid

S, if for every y 2 A we have 
l(Sy) � A.

A S-invariant 
lass is always maximal. In fa
t, suppose [x℄ is S-invariant.

Then 
l(Sx) � [x℄. If we take [x℄ � [y℄ we have x � y and y 2 
l(Sx) � [x℄.

Therefore x s y and [x℄ = [y℄, showing the maximality.

We de�ne O = f
l(Sx) � M : x 2 Mg. Now, we relate maximality and

S-invarian
e.
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Lemma 1 For x 2M the following statements are equivalent:

1. [x℄ is maximal

2. 
l(Sx) is minimal in O with respe
t to the in
lusion of sets

3. [x℄ = 
l(Sx)

4. [x℄ is 
losed and S-invariant

Proof: Let's assume that 
l(Sy) � 
l(Sx) for some y 2M . Take z 2 
l(Sy).

By the 
ontinuity of the a
tion of S on M we have 
l(Sz) � 
l(Sy). Sin
e

z 2 
l(Sx) the maximality of [x℄ implies that 
l(Sx) � 
l(Sz). Therefore


l(Sx) � 
l(Sy) showing that 
l(Sx) is minimal. Suppose that 
l(Sx) is

minimal in O. Then 
l(Sy) � 
l(Sx) for all y 2 
l(Sx). By minimality


l(Sy) = 
l(Sx) for all y 2 
l(Sx). This implies that 
l(Sx) is entirely 
on-

tained in an equivalen
e 
lass so that 
l(Sx) = [x℄. If [x℄ = 
l(Sx) it is

immediate that [x℄ is 
losed and S-invariant. Finally, a S-invariant 
lass is

maximal. 2

The maximal 
lasses with nonempty interior in M are the invariant 
on-

trol sets, more spe
i�
ally, we have.

Corollary 1 Let D = [x℄ be a maximal 
lass with respe
t to the relation s.

Assume int

M

(D) 6= ;. Then D is an invariant 
ontrol set for S on M .

Proof: First we show that 
l(D) = 
l(Sy) for every y 2 D. Sin
e [x℄ is

maximal we have by the Lemma 1 that [x℄ = 
l(Sx). Hen
e D = 
l(D). For

y; z 2 [x℄ we have z 2 
l(Sy). Conversely, take z 2 
l(Sy), sin
e x s y we

have y 2 
l(Sx). Therefore z 2 
l(Sx) = [x℄. Now we will show the maximal-

ity of D. Suppose [x℄ = D � D

0

and D

0

satis�es the equality 
l(D

0

) = 
l(Sy)

for every y 2 D

0

. Take z 2 D

0

. Then 
l(D

0

) = 
l(Sz). Sin
e x 2 D � D

0

�


l(D

0

) we have x 2 
l(Sz) and z � x. On the other hand, sin
e x 2 D � D

0

we have 
l(D

0

) = 
l(Sx). But, z 2 D

0

� 
l(D

0

) = 
l(Sx) and therefore x � z.

It follows that x s z and z 2 [x℄ = D, showing the maximality of D. 2

On the existen
e of maximal 
lasses we have the following proposition.
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Proposition 2 Let J be a S-invariant 
ompa
t subset of M . Then for every

x 2 J there exists a maximal equivalen
e 
lass [w℄ � 
l(Sx).

Proof: Fix x 2 J and 
onsider the family of subsets

O

x

= f
l(Sy) : 
l(Sy) � 
l(Sx)g:

This family is not empty be
ause it 
ontains 
l(Sx). Let us order O

x

by

in
lusion and show with the aid of Hausdor� 's maximality prin
iple that it


ontains minimal elements: Take a 
hain f
l(Sy)g

y2I

of subsets in O

x

; where

I is an index set. Sin
e J is S-invariant 
l(Sx) � J . Therefore we have a


hain of 
losed subsets of J . Hen
e they are 
ompa
t whi
h implies that

the interse
tion

T

y2I


l(Sy) is not empty. Take z 2

T

y2I


l(Sy). Then 
l(Sz)

belongs to O

x

and is 
ontained in 
l(Sy) for all y 2 I. These means that


l(Sz) is a lower bound of the 
hain. Applying the maximality prin
iple we


on
lude that O

x


ontains a minimal element, say 
l(Sw). Any element of

O = f
l(Sx) �M : x 2Mg 
ontained in 
l(Sw) is an element of O

x

be
ause


l(Sw) � 
l(Sx). Hen
e 
l(Sw) is also minimal in O so the proof follows

from Lemma 1. 2

We de�ne a maximal 
lass relatively to a subset J 
ontained in the man-

ifold M .

De�nition 2 Given a subset J � M a 
lass [x℄ � J is said to be J-maximal,

if every 
lass [y℄ � J with [x℄ � [y℄ satis�es [x℄ = [y℄.

For subsets J of the manifold M whi
h are 
ompa
t and S-invariant we

have.

Corollary 2 Suppose that J � M is 
ompa
t and S-invariant. Then there

are J-maximal 
lasses and they are the maximal 
lasses 
ontained in J .

Proof: Take x 2 J . Sin
e J is 
ompa
t and invariant under the a
-

tion of S we have by the Lemma 2 that there exist a maximal 
lass, say,

[w℄ � 
l(Sx) � J . We also have that [w℄ is J-maximal. Conversely, a maxi-

mal 
lass 
ontained in J is J-maximal. 2

Now, we de�ne a 
lass whi
h is invariant with respe
t to a subset J in

M .
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De�nition 3 For a subset J � M a 
lass [x℄ � J is 
alled SJ-invariant, if

z 2 
l(Sx) with z =2 [x℄ implies z =2 J .

Therefore, if a 
lass [x℄ � J is SJ-invariant it 
annot leave by the 
losure

of an orbit without leaving J .

If a 
lass [x℄ has nonempty interior in M then a SJ-invariant 
lass is


alled an SJ-invariant 
ontrol set. The relative invariant 
ontrol sets for


ontrol systems were studied in [4℄ by Colonius and Kliemann.

It follows immediately that a SJ-invariant 
lass is J-maximal. As a 
on-

sequen
e a SM -invariant 
lass is M -maximal and therefore it is a maximal


lass. Conversely, by the Lemma 1, a maximal 
lass is SM -invariant. There-

fore, if int

M

([x℄) 6= ; a 
lass [x℄ is an invariant 
ontrol set if and only if [x℄ is

SM -invariant.

On the existen
e of SJ-invariant 
lasses we have.

Corollary 3 Suppose that J � M is 
ompa
t and S-invariant. Then [x℄ is

SJ-invariant 
lass if and only if [x℄ is J-maximal. In this 
ase there exist

SJ-invariant 
lasses.

Proof: Suppose [x℄ is J-maximal. By the Corollary 2 [x℄ is an S-invariant


lass 
ontained in J . Therefore [x℄ is a SJ-invariant 
lass. 2

The no-return 
ondition de�ned bellow was introdu
ed, in the 
ontext

of 
ontrol systems, by Colonius and Kliemann [4℄ in the study of relatively

invariant 
ontrol sets.

We say that a subset J � M satisfy the no-return 
ondition if z 2 
l(Sx)

for some x 2 J and 
l(Sz) \ J 6= ;; then z 2 J . This 
ondition says that if

we leave J we 
annot go ba
k to J again thorough the 
losure of an orbit of

S.

Now, we translate the no-return 
ondition in terms of an union of equiv-

alen
e 
lasses.

Proposition 3 Suppose that J � M satisfy the no-return 
ondition. Then

J is exhaustive for the equivalen
e relation s, i.e., any 
lass [x℄ is entirely


ontained in J or in J




.

Proof: Let [x℄ be a 
lass su
h that [x℄ \ J 6= ; and [x℄ \ J




6= ; and we will

obtain a 
ontradi
tion. Take z 2 [x℄ \ J and y 2 [x℄ \ J




. Then z � y, i.e.,
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z 2 
l(Sy) and y 2 
l(Sz). By the no-return 
ondition we have that y 2 J

whi
h is a 
ontradi
tion. 2

Corollary 4 Suppose J satis�es the no-return 
ondition. Then

J =

[

x2J

[x℄

Proof: Take x 2 J . Then by the Proposition 3 we have x 2 [x℄ � J . Thus

S

x2J

[x℄ � J . Conversely, sin
e x 2 [x℄ we have J �

S

x2J

[x℄. 2

Let F = f[x℄ � J : [y℄ � J if y 2 M and [y℄ � [x℄g. As a 
onverse of the

last 
orollary we have.

Proposition 4 Assume F 6= ; and suppose that J =

S

[x℄2F

[x℄. Then J

satis�es the no-return 
ondition.

Proof: Take x 2 J and z 2 
l(Sx) with 
l(Sz)\J 6= ;. Pi
k w 2 
l(Sz)\J .

Then x � z � w. It follows that [x℄ � [z℄ � [w℄. Sin
e w 2 J and

w 2 [w℄ 2 F we have [z℄ � J and z 2 J . 2

The next theorem gives 
onditions for the existen
e of SJ-invariant 
lasses.

It also generalizes Proposition 3.3.3 of [4℄.

Theorem 1 Let J be a subset of M satisfying the no-return 
ondition. Take

x 2 J and assume that there exists a 
ompa
t set K � J su
h that for all

y 2 
l(Sx) \ J


l(Sy) \K 6= ;

Then there exists a SJ-invariant 
lass [w℄ � 
l(Sx).

Proof: For y 2 
l(Sx) \ J we de�ne the 
ompa
t K

y

= 
l(Sy) \ K. Sin
e

1 2 S we have that K

x

is de�ned. Now, 
onsider the family

F = fK

y

: y 2 K

x

g

de�ne the following order on F

K

y

� K

z

if y � z

7



thus if K

y

� K

z

then z 2 
l(Sy) and K

z

= 
l(Sz) \K � 
l(Sy) \K = K

y

.

Therefore every linearly ordered set fK

y

i

: i 2 Ig has an upper bound K

y

=

T

i2I

K

y

i

for some y 2

T

i2I

K

y

i

. The Zorn's lemma implies that the family F has

a maximal element K

y

. Sin
e y 2 Sy \K we have y 2 K

y

� J . Let's de�ne

D = 
l(Sy) \ J:

We will show that D � 
l(Sx) is a SJ-invariant 
lass. We know that

y 2 Sy \ J � D. By its only de�nition, every z 2 D is approximately rea
h-

able from y. Conversely, y 2 
l(Sz), sin
e otherwise y =2 
l(Sz) \ K = K

z

,

hen
e this is a proper subset of K

y


ontradi
ting the maximality of K

y

.

Therefore we have approximate transitivity in D. We also have that D

is a 
lass. Otherwise, there exists a 
lass [w℄ � D 
ontaining a point

! =2 D = 
l(Sy) \ J . The no-return 
ondition and Proposition 3 implies

that D � [w℄ � J . It follows that w � y and w 2 
l(Sy) \ J 
ontra-

di
ting the 
hoi
e of w. It remains to show the SJ-invarian
e of D. Take

z 2 D = 
l(Sy) \ J and suppose that there exists k 2 
l(Sz) \ J . Then

k 2 
l(Sz) � 
l(Sy) and k 2 
l(Sy) \ J , showing the SJ-invarian
e of D. 2

The theorem above allows us to show that the J-maximal and JS-invariant


lasses 
oin
ide.

Corollary 5 Let J � M be a subset satisfying the no-return 
ondition. Take

x 2 J and assume that there exists a 
ompa
t set K � J su
h that for all

y 2 
l(Sx) \ J


l(Sy) \K 6= ;

Then for a 
lass [w℄ � 
l(Sx) \ J we have that [w℄ is J-maximal if and only

if [w℄ is SJ-invariant.

Proof: Suppose [w℄ is J-maximal. Assume that there exists y 2 [w℄ � 
l(Sx)

and z 2 
l(Sy) \ J with z =2 [w℄. By the last proposition there exist a SJ-

invariant 
lass [w

1

℄ � 
l(Sy) � 
l(Sx). Thus [w℄ � [w

1

℄ and [w℄ 6= [w

1

℄. This


ontradi
ts the J-maximality of [w℄. Hen
e [w℄ is SJ-invariant. 2

We will see next that a 
losed subset is a maximal 
lass if and only if it

is the 
losure of the orbit of its elements.
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Proposition 5 Let C be a 
losed subset of M . Then C is maximal 
lass if

and only if C = 
l(Sx) for every x 2 C.

Proof: Suppose C = 
l(Sx) for every x 2 C. Then for x; y 2 C we have

y 2 
l(Sx) and x 2 
l(Sy), i.e., x s y and therefore C is 
ontained in a

equivalen
e 
lass, say, [x℄ � C. Furthermore, for y 2 [x℄ we have y 2 
l(Sx),

and therefore [x℄ � 
l(Sx) = C, showing that [x℄ = C. Now, suppose that

C = [x℄ � [y℄. Then x � y and y 2 
l(Sx) = [x℄. Therefore C = [x℄ = [y℄ is

a maximal 
lass. Conversely, assume that C = [x℄ is a maximal 
lass. Thus

by the Lemma 1 we have C = [x℄ = 
l(Sx) for every x 2 C. 2

Now, we give 
onditions for the existen
e of a unique SJ-invariant 
lass.

Proposition 6 Let J � M be a subset satisfying the no-return 
ondition.

Take x 2 J and assume that there exists a 
ompa
t set K

x

� J whi
h is

S-invariant and su
h that for all y 2 
l(Sx) \ J


l(Sy) \K

x

6= ;

Suppose that

C =

\

x2J

\

y2
l(Sx)\J

(
l(Sy) \K

x

) 6= ;

Then C is a unique SJ-invariant 
lass 
ontained in J .

Proof: First, we show that C is a SJ-invariant 
lass. It is easy to see that

C is 
losed and it is 
ontained in J . By the Proposition 5 and Corollary 5

it is enough to show that C = 
l(Sx) for every x 2 C. Take x 2 J and

y 2 
l(Sx) \ J . Then 
l(Sy) � 
l(Sx) and 
l(Sx) \K

x

� 
l(Sx). Therefore

C �

T

x2J

(
l(Sx)) � 
l(Sx) for every x 2 C. Now take w 2 
l(Sz) with

z 2 C. Then for every x 2 J and every y 2 
l(Sx) \ J we have z 2 
l(Sy)

\K

x

. Sin
e K

x

is S-invariant we have w 2 
l(Sz) � 
l(Sy) \ K

x

. Thus

w 2 C. It remains to show the uniqueness of C. Suppose that C

1

� J is

a maximal 
lass. By the Proposition 5, 
l(Sx) = C

1

for every x 2 C

1

.Thus

C

1

=

T

x2C

1


l(Sx). Therefore

C =

\

x2J

\

y2
l(Sx)\J

(
l(Sy) \K

x

) �

\

x2J

(
l(Sx)) �

\

x2C

1


l(Sx) = C

1

:
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By the maximality of C it follows that C = C

1

. 2

As the invariant 
ontrol sets are 
losed in M under the hypothesis of

a

essibility of S, we show that the SJ-invariant 
ontrol sets are relatively


losed 
ontrol sets in J .

We say that a subset J � M satis�es the J-a

essibility 
ondition for a

submonoid S if for all y 2 J , int

M

(Sy \ J) 6= ;:

Theorem 2 Suppose that J �M satisfy the J-a

essibility 
ondition for S.

Then any SJ-invariant 
lass [w℄ � J is relatively 
losed in J , i.e., (�([w℄)�

[w℄) \ J = ;.

Proof: Assume that [w℄ is a SJ-invariant 
lass and (�([w℄) � [w℄) \ J 6= ;.

Pi
k y 2 (�([w℄) � [w℄) \ J . We have that Sy \ [w℄ = ;. Otherwise, there

exist g 2 S su
h that gy 2 [w℄. Thus [w℄ �
l(Sgy) � 
l(Sy) and we would

have y 2 [w℄, 
ause if y 2 �([w℄) is not in [w℄ then 
l(Sy) do not 
ontains

[w℄. Sin
e y 2 J the J-a

essibility 
ondition guarantees the existen
e of

z 2 (int(Sy \ J)) � [w℄. There exists g 2 S su
h that gy = z. Let V be

a neighborhood of z 
ontained in Sy \ J and outside [w℄. Now, g

�1

V is an

open neighborhood of y 2 �([w℄). Therefore there exists x 2 [w℄ su
h that

gx 2 V , whi
h is a 
ontradi
tion with the SJ-invarian
e of [w℄. 2
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