Relative invariance for monoid actions

Carlos J. Braga Barros*
Departamento de Matematica
Universidade Estadual de Maringa
Av. Colombo 5790
87020-900 Maringa-PR, Brazil

July 11, 2001

Abstract

Let G be a topological group and S C G a submonoid of G acting
on the topological space M. Let J be a subset of M. Our purpose here
is to study the subsets of M which correspond, under the action of
S, to the relative (with respect to J) invariant control sets for control
systems [4]. The relation z ~ y if y € cl(Sz) and = € cl(Sy) is an
equivalence relation and the classes with respect to this relation with
nonempty interior in M are the control sets for the action of §. It is
given conditions for the existence and uniqueness of relative invariant
classes. As it was done for the control sets, we define an order in
the classes and relate it to the relative invariant classes. We also show
under certain condition that the relative invariant classes are relatively
closed in J.

1 Introduction

One of the principal dynamical concepts in control theory is the study of
the controllability of the control systems. Many questions about the control

*Research partially supported by CAPES/PROCAD-Teoria de Lie e Aplicagoes grant
n® 00186,/00-7.



system, especially those related to its controllability depend, in fact, only on
the action of the semigroup of the system, so that it can be abstracted to
arbitrary semigroup actions and solved in a more general setting. The regions
of the state space where the controllability occurs are called control sets.
The control sets for control systems were studied by Colonius and Kliemann
in [1],[2],[3] and [4]. In particular, Colonius and Kliemann introduced the
concept of a control set which is relatively invariant with respect to a subset
of the phase space of the control system. From a more general point of view,
the theory of control sets for semigroup actions was developed by San Martin
and Tonelli (see [5],[6] and [7]). Let S be a submonoid of a topological group
G and suppose that S acts on a topological space M. Since the control
sets are the regions where S is approximate transitive it is natural to define
an equivalence relation by saying that two points are equivalent if they are
approximate attainable by the action of S. We consider equivalence classes in
M with respect to this relation. We show that a class with nonempty interior
in M is a control set for S. The purpose of this paper is to study the relative
invariant classes in M. We define relatively invariant classes. In case S is
the system semigroup of a control system these relatively invariant classes,
with nonempty interior in M, are the relative invariant control sets defined
by Colonius and Kliemann in [4]. We develop the theory of relative invariant
classes. As it was done for the control sets, we define an order in the classes
and relate it to the relative invariant classes. We give conditions for the
existence and uniqueness of relative invariant classes. Under the hypothesis
of acessibility, we show that a relative invariant class is relatively closed.

2 Relative invariance

In this paper we assume that G is a topological group and S is a submonoid
of G, i.e., S C G is a subsemigroup with 1 € S. We also suppose that S acts
continuously on a topological space M. We define a control set.

Definition 1 A control set for S on M is a subset D C M which satisfies

1. int(D) # 0,
2. ¥Yx € D, D C cl(Sx) and



3. D 1s maximal with these properties.
The action on M induces the pre-order relation defined by
zyifyecl(Sx), z,y € M.

We define © ~ y if z < y and y < x. Therefore [z] = [y] if and only if
y € cl(Sz) and = € cl(Sy). Thus ~ is the equivalence relation associated
with <. The pre-order in M induces a partial order in the quotient space
M/ ~. This order in the quotient space is also denoted by <. We denote
by [z] € M/ ~ the equivalence class of © € M. From the control theoretic
point of view a class [z] with inty,([x]) # 0 is a control set for the action of
the submonoid S.

Proposition 1 Let D = [z] be a class with respect to the equivalence relation
~. Suppose that inty (D) # 0. Then D is a control set for S on M.

Proof: We first show that D = [z] C cl(Sy), for every y € [z]. Take y € [z]
then x ~ y. For z € [z], we have z ~ x. By the transitivity of the relation
~ we have z ~ y and y < z. This implies that z € cl(Sy). Now, suppose
D C D' with D' satisfying the condition D' C cl(Sz) for every z € D'. Take
y € D'. Then y € cl(Sz), for every z € D', in particular for € D. There-
fore y € cl(Sx) and z < y. On the other hand, since x € D C D', we have
x € cl(Sy) once y € D' and y < x. Hence x ~ y and y € [z] = D, showing
the maximality of D. O

A class [z] is said mazimal if every class [y] with [z] < [y] satisfies [z] = [y].
We will show later that a maximal class with inty/([z]) # 0 is an invariant
control set for the submonoid S.

We observe that [z] C cl(Sx) for every x € M.

We say that a subset A C M is S-invartant, or invariant for the monoid
S, if for every y € A we have cl(Sy) C A.

A S-invariant class is always maximal. In fact, suppose [z] is S-invariant.
Then cl(Sz) C [z]. If we take [z] < [y] we have © <y and y € cl(Sz) C [z].
Therefore z ~ y and [x] = [y], showing the maximality.

We define O = {cl(Sz) C M : x € M}. Now, we relate maximality and
S-invariance.



Lemma 1 For x € M the following statements are equivalent:
1. [x] is mazimal
2. cl(Sx) is minimal in O with respect to the inclusion of sets
3. [z] = cl(Sx)
4. ] is closed and S-invariant

Proof: Let’s assume that cl(Sy) C cl(Sz) for some y € M. Take z € cl(Sy).
By the continuity of the action of S on M we have cl(Sz) C cl(Sy). Since
z € cl(Sz) the maximality of [z] implies that cl(Sz) C cl(Sz). Therefore
cl(Sz) C cl(Sy) showing that cl(Sz) is minimal. Suppose that cl(Sx) is
minimal in O@. Then cl(Sy) C cl(Sz) for all y € cl(Sz). By minimality
cl(Sy) = cl(Sz) for all y € cl(Sx). This implies that cl(Sz) is entirely con-

tained in an equivalence class so that cl(Sx) = [z]. If [z] = cl(Sz) it is
immediate that [z] is closed and S-invariant. Finally, a S-invariant class is
maximal. a

The maximal classes with nonempty interior in M are the invariant con-
trol sets, more specifically, we have.

Corollary 1 Let D = [z]| be a mazimal class with respect to the relation ~.
Assume inty (D) # 0. Then D is an invariant control set for S on M.

Proof: First we show that cl(D) = cl(Sy) for every y € D. Since [z] is
maximal we have by the Lemma 1 that [z] = cI(Sz). Hence D = cl(D). For
y,z € [x] we have z € cl(Sy). Conversely, take z € cl(Sy), since x ~ y we
have y € cl(Sz). Therefore z € cl(Sz) = [z]. Now we will show the maximal-
ity of D. Suppose [x] = D C D" and D' satisfies the equality cl(D') = cl(Sy)
for every y € D'. Take z € D'. Then cl(D') = cl(Sz). Since z € D C D' C
cl(D'") we have = € cl(Sz) and z < x. On the other hand, since z € D C D’
we have cl(D') = cl(Sz). But, z € D' C cl(D') = cl(Sz) and therefore z < 2.
It follows that  ~ z and z € [z] = D, showing the maximality of D. O

On the existence of maximal classes we have the following proposition.



Proposition 2 Let J be a S-invariant compact subset of M. Then for every
x € J there exists a mazimal equivalence class [w] C cl(Sx).

Proof: Fix x € J and consider the family of subsets
O, = {cl(Sy) : cl(Sy) C cl(Sx)}.

This family is not empty because it contains cl(Sx). Let us order O, by
inclusion and show with the aid of Hausdorff 's maximality principle that it
contains minimal elements: Take a chain {cl(Sy)},ez of subsets in O, where
7 is an index set. Since J is S-invariant cl(Sx) C J. Therefore we have a
chain of closed subsets of J. Hence they are compact which implies that
the intersection () cl(Sy) is not empty. Take z € ) cl(Sy). Then cl(S%z)
yeL yel
belongs to O, and is contained in cl(Sy) for all y € Z. These means that
cl(Sz) is a lower bound of the chain. Applying the maximality principle we
conclude that O, contains a minimal element, say cl(Sw). Any element of
O = {cl(Sz) C M : x € M} contained in cl(Sw) is an element of O, because
cl(Sw) C cl(Sz). Hence cl(Sw) is also minimal in O so the proof follows
from Lemma 1. a

We define a maximal class relatively to a subset .J contained in the man-
ifold M.

Definition 2 Given a subset J C M a class [x] C J is said to be J-mazimal,
if every class [y| C J with [x] =X |y] satisfies [x] = [y].

For subsets J of the manifold M which are compact and S-invariant we
have.

Corollary 2 Suppose that J C M 1is compact and S-invariant. Then there
are J-mazximal classes and they are the maximal classes contained in J.

Proof: Take z € J. Since J is compact and invariant under the ac-
tion of S we have by the Lemma 2 that there exist a maximal class, say,
[w] C cl(Sz) C J. We also have that [w] is J-maximal. Conversely, a maxi-
mal class contained in J is J-maximal. O

Now, we define a class which is invariant with respect to a subset J in
M.



Definition 3 For a subset J C M a class [x] C J is called SJ-invariant, if
z € cl(Sx) with z ¢ [z] implies z ¢ J.

Therefore, if a class [¢] C J is S.J-invariant it cannot leave by the closure
of an orbit without leaving .J.

If a class [z] has nonempty interior in M then a SJ-invariant class is
called an SJ-invariant control set. The relative invariant control sets for
control systems were studied in [4] by Colonius and Kliemann.

It follows immediately that a S.J-invariant class is J-maximal. As a con-
sequence a SM-invariant class is M-maximal and therefore it is a maximal
class. Conversely, by the Lemma 1, a maximal class is S M-invariant. There-
fore, if inty; ([2]) # 0 a class [z] is an invariant control set if and only if [x] is
S M -invariant.

On the existence of S J-invariant classes we have.

Corollary 3 Suppose that J C M is compact and S-invariant. Then [x] is
SJ-invariant class if and only if [x] is J-mazimal. In this case there exist
SJ-invariant classes.

Proof: Suppose [z] is J-maximal. By the Corollary 2 [z] is an S-invariant
class contained in J. Therefore [z] is a S.J-invariant class. O

The no-return condition defined bellow was introduced, in the context
of control systems, by Colonius and Kliemann [4] in the study of relatively
invariant control sets.

We say that a subset J C M satisfy the no-return condition if z € cl(Sx)
for some = € J and cl(Sz) N J # ), then z € J. This condition says that if
we leave J we cannot go back to J again thorough the closure of an orbit of
S.

Now, we translate the no-return condition in terms of an union of equiv-
alence classes.

Proposition 3 Suppose that J C M satisfy the no-return condition. Then
J is exhaustive for the equivalence relation ~, i.e., any class [x] is entirely
contained in J or in JC.

Proof: Let [z] be a class such that [z] NJ # () and [z] N J¢ # () and we will
obtain a contradiction. Take z € [z] N J and y € [z] N J° Then z ~ y, ie.,
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z € cl(Sy) and y € cl(Sz). By the no-return condition we have that y € J
which is a contradiction. a

Corollary 4 Suppose J satisfies the no-return condition. Then
J =l
zeJ

Proof: Take x € J. Then by the Proposition 3 we have z € [¢] C J. Thus
U,e, 2] € J. Conversely, since = € [x] we have J C |J,,[z]. O

Let F={[z]Cc J:[y]C Jify € M and [y] < [z]}. As a converse of the
last corollary we have.

Proposition 4 Assume F # 0 and suppose that J = |J [z]. Then J
[z]eF
satisfies the no-return condition.

Proof: Take x € J and z € cl(Sz) with cl(Sz)NJ # 0. Pick w € cl(Sz)NJ.
Then z < 2z < w. It follows that [xr] < [2] 2 [w]. Since w € J and
w € [w] € F we have [2] C J and z € J. O

The next theorem gives conditions for the existence of S.J-invariant classes.
It also generalizes Proposition 3.3.3 of [4].

Theorem 1 Let J be a subset of M satisfying the no-return condition. Take
x € J and assume that there exists a compact set K C J such that for all
yecl(Sz)ynJ

c(Sy)NK #0

Then there exists a SJ-invariant class [w] C cl(Sx).

Proof: For y € cl(Sz) N J we define the compact K, = cl(Sy) N K. Since
1 € S we have that K, is defined. Now, consider the family

F={K,:yeK,}
define the following order on F

K, <XK,ify=<=z
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thus if K, < K, then z € cl(Sy) and K, = cl(Sz) N K C cl(Sy) N K = K,,.
Therefore every linearly ordered set {K,, : i € I} has an upper bound K, =

N K,, for some y € (| K,,. The Zorn’s lemma implies that the family F has
i€l icl
a maximal element K,. Since y € Sy N K we have y € K, C J. Let’s define

D =cl(Sy)n J.

We will show that D C cl(Sz) is a SJ-invariant class. We know that
y € SynJ C D. By its only definition, every z € D is approximately reach-
able from y. Conversely, y € cl(Sz), since otherwise y ¢ cl(Sz) N K = K,
hence this is a proper subset of K, contradicting the maximality of K,.
Therefore we have approximate transitivity in D. We also have that D
is a class. Otherwise, there exists a class [w] D D containing a point
w ¢ D = cl(Sy) nJ. The no-return condition and Proposition 3 implies
that D C [w] € J. It follows that w ~ y and w € cl(Sy) N J contra-
dicting the choice of w. It remains to show the S.J-invariance of D. Take
z € D = cl(Sy) N J and suppose that there exists k£ € cl(Sz) N J. Then
k € cl(Sz) C cl(Sy) and k € cl(Sy) N J, showing the SJ-invariance of D. O

The theorem above allows us to show that the J-maximal and JS-invariant
classes coincide.

Corollary 5 Let J C M be a subset satisfying the no-return condition. Take
x € J and assume that there exists a compact set K C J such that for all
yecl(Sz)ynJ

c(Sy)NK #0

Then for a class [w] C cl(Sx) N J we have that [w] is J-mazimal if and only
if [w] is SJ-invariant.

Proof: Suppose [w] is J-maximal. Assume that there exists y € [w] C cl(Sx)
and z € cl(Sy) N J with z ¢ [w]. By the last proposition there exist a S.J-
invariant class [w] C cl(Sy) C cl(Sz). Thus [w] < [w] and [w] # [w;]. This
contradicts the J-maximality of [w]. Hence [w] is SJ-invariant. O

We will see next that a closed subset is a maximal class if and only if it
is the closure of the orbit of its elements.



Proposition 5 Let C' be a closed subset of M. Then C is mazimal class if
and only if C = cl(Sx) for every x € C.

Proof: Suppose C' = cl(Sx) for every x € C. Then for z,y € C we have
y € cl(Sx) and = € cl(Sy), i.e,, x ~ y and therefore C' is contained in a
equivalence class, say, [z] D C. Furthermore, for y € [x] we have y € cl(Sx),
and therefore [z] C cl(Sz) = C, showing that [x] = C. Now, suppose that
C = z] X [y]. Then z <y and y € cl(Sz) = [z]. Therefore C = [z] = [y] is
a maximal class. Conversely, assume that C' = [z] is a maximal class. Thus
by the Lemma 1 we have C' = [z] = c](Sx) for every z € C. O

Now, we give conditions for the existence of a unique S.J-invariant class.

Proposition 6 Let J C M be a subset satisfying the no-return condition.
Take x € J and assume that there exists a compact set K, C J which is
S-invariant and such that for all y € cl(Sxz)NJ

c(Sy)N K, #0

Suppose that

c= (dspni) #0

z€J yecl(Sz)N

Then C' is a unique SJ-invariant class contained in J.

Proof: First, we show that C'is a SJ-invariant class. It is easy to see that
C is closed and it is contained in J. By the Proposition 5 and Corollary 5
it is enough to show that C' = cl(Sz) for every x € C. Take z € J and
y € cl(Sz) N J. Then cl(Sy) C cl(Sz) and cl(Sz) N K, C cl(Sz). Therefore

C C N (cl(Sz)) C cl(Sx) for every x € C. Now take w € cl(Sz) with
zeJ

z € C. Then for every x € J and every y € cl(Sx) N J we have z € cl(Sy)
NK,. Since K, is S-invariant we have w € cl(Sz) C cl(Sy) N K,. Thus
w € C. It remains to show the uniqueness of C. Suppose that C; C J is
a maximal class. By the Proposition 5, cl(Sz) = C) for every x € C,.Thus
C1= () cl(Sxz). Therefore

zeCy

C=() (] (©(Sy)nK,) c()(clS)c [ c(Sz)=Ch.

zed yecl(Sz)nJ zeJ zeCy



By the maximality of C it follows that C = (. O

As the invariant control sets are closed in M under the hypothesis of
accessibility of S, we show that the S.J-invariant control sets are relatively
closed control sets in J.

We say that a subset J C M satisfies the J-accessibility condition for a
submonoid S if for all y € J, inty, (Sy N J) # 0.

Theorem 2 Suppose that J C M satisfy the J-accessibility condition for S.

Then any SJ-invariant class (w] C J is relatively closed in J, i.e., (O([w]) —
[w]) N J = 0.

Proof: Assume that [w] is a SJ-invariant class and (0([w]) — [w]) N J # (.
Pick y € (0([w]) — [w]) N'J. We have that Sy N [w] = 0. Otherwise, there
exist g € S such that gy € [w]. Thus [w] Ccl(Sgy) C cl(Sy) and we would
have y € [w], cause if y € J([w]) is not in [w] then cl(Sy) do not contains
[w]. Since y € J the J-accessibility condition guarantees the existence of
z € (int(Sy N J)) — [w]. There exists g € S such that gy = 2. Let V be
a neighborhood of z contained in Sy N J and outside [w]. Now, ¢~V is an
open neighborhood of y € 0([w]). Therefore there exists z € [w] such that
gx € V, which is a contradiction with the SJ-invariance of [w]. O
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