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Abstrat

The inuene of observations on the parameter estimates for the

simple strutural errors-in-variables model with no equation error, un-

der the Student-t distribution, is investigated using the loal inuene

approah. The likelihood displaement approah is useful for outlier

detetion espeially when a masking phenomenon is present. The di-

agnostis are illustrated with two examples.

Key Words: Diagnostis; inuential observations; loal inuene;

t-distribution.

1 Introdution

The main objet of this paper is the study of loal inuene and diagnosti

in the strutural errors-in-variables models. It is assumed that the observed

variables follow a bivariate Student-t distribution. The detetion of outliers

and inuential observations in the error-in-variables model (EVM), under

the normality assumption, has been onsidered by some authors. For exam-

ple, Kelly (1984) derived the inuene funtions of the model parameters.

Wellman and Gunst (1991) showed the need for inuene diagnostis in suh
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models using the inuene funtion. Abdullah (1995) applied some diagnos-

ti methods in regression analysis to the funtional model. Lee and Zhao

(1996) employed the loal inuene approah to some linear and nonlinear

measurement error models. Reently, Kim (2000) applied the loal inuene

method in the strutural EVM. However, no appliations of loal inuene

has been onsidered for strutural EVM under Student t-distributions. Thus,

the main objet of the this paper is to apply the approah of loal inuene

to strutural EVM under Student-t distributions. The perturbation shemes

onsidered here are shemes in whih the sale matrix is modi�ed to allow

onvenient perturbations of the model.

In the setion 2, along with the notation, the strutural EVM, under the

Student-t distribution, is de�ned. The loal inuene method is reviewed in

setion 3. Setion 4 deals with the derivation of the diagnostis proedures for

the strutural errors-in-variables Student-t model. Two illustrative examples

are given in the last setion.

2 The strutural Student-t errors-in-variables

model

In this paper, we onsider the simple strutural EVM with no equation error

given by (Fuller; 1987)

Y

i

= y

i

+ e

i

;

X

i

= x

i

+ u

i

; (2.1)

y

i

= �+ �x

i

; i = 1; :::; n;

where Y

i

and X

i

are the ith observations whose true values are y

i

and x

i

,

respetively, and e

i

and u

i

are measurement errors. As in Bolfarine and

Arellano-Valle (1994), it is assumed that the unobservable vetors (x

i

; e

i

; u

i

)

>

are independently distributed as a trivariate Student t-distribution with lo-
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ation vetor (�

x

; 0; 0)

>

and diagonal sale matrix diag(�

x

; �

e

; �

u

). Further

assume that � = �

e

=�

u

is known. In this ase, we may onsider that

�

e

= �

u

= �, (� = 1), without loss of generality. Then the joint distri-

bution of Z

i

= (Y

i

; X

i

)

>

beomes a bivariate Student-t distribution with

loation vetor � = (� + ��

x

; �

x

)

>

and sale matrix

� =

�

�

2

�
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+ � ��

x

��

x

�

x

+ �
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;

that is, Z

i

iid

� t

2

(�;�; �), � > 0, i = 1; :::; n. The density funtion of Z

i

is

given by:

f(z

i

; �) =

1

2�

j�j

�1=2

(1 +

1

�

d
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(�))

�

1
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(�+2)

; (2.2)

where d

i

(�) = (z

i

� �)

>

�

�1

(z

i

� �) and ��

�

= (�; �; �; �

x

; �

x

)

>

. To obtain

the maximum likelihood estimator of the vetor �, we use the EM-algorithm

as onsidered in Bolfarine and Arellano-Valle (1994).

Several authors have onsidered the Student-t distribution as an alterna-

tive to the normal distribution beause it an naturally aomodate outliers

present in the data. For example, Lange et. al. (1989) and Galea et al. (1997)

disuss the use of the Student-t distribution in regression models and in prob-

lems related to multivariate analysis; Bolfarine and Arellano-Valle (1994) in-

trodue Student-t funtional and strutural measurement error models and

Bolfarine and Galea (1996) use the Student-t distribution in omparative

alibration models.

The Student-t distribution inorporates an additional parameter, �, namely

the degrees of freedom, whih allows adjusting for the kurthosis of the dis-

tribution. This parameter an be �xed previously and Lange et al. (1989)

and Berkane et al. (1994) reommend taking � = 4 or, otherwise, get infor-

mation for it from the data set. For some diÆulty in the estimation of �,

see Fern�andez and Steel (1999).
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3 Inuene diagnostis for parameter estimates

Deteting outliers and inuential observations is an important step in the

analysis of data sets. Several approahes exist to asses the inuene of data

and model perturbations on the parameter estimates. Overviews an be �nd

in the books by Cook and Weisberg (1982) and Chatterjee and Hadi (1988)

and the paper by Cook (1986).

Case deletion is a popular way to asses the individual impat of ases on

the estimation proess. This approah is global inuene analysis, namely

the e�et of an observation is assessed by ompletely removing it. An al-

ternative approah, loal inuene, is based on di�erential geometry instead

of omplete deletion. It employs a di�erential omparison of parameter es-

timates before and after perturbation to data values or model assumptions.

We apply loal inuene methods to the EVM Student-t model. As in Cook

(1986), the displaement in log-likelihood funtion was taken as the metri

to evaluate loal inuene.

The log-likelihood funtion of model (2.1) is given by

L(�) =

n

X

i=1

l

i

(�); (3.1)

where l

i

(�) = �log(2�)�

1

2

logj�j�

1

2

(�+2)log(1+d

i

(�)=�), i = 1; :::; n and

��

�

= (�; �; �; �

x

; �

x

)

>

Small perturbations are introdued into the Student-t EVM through a

vetor !. We write L(�j!) for the log-likelihood (3.1) orresponding to the

perturbed data or model and let

b

�

!

be the maximum likelihood estimates

from the perturbed model. Spei� perturbation shemes are desribed be-

low. For eah sheme there is a point !

0

representing no perturbation. The

inuene of ! an be assessed by the log-likelihood displaement

LD(!) = 2[L(

b

�)� L(

b

�

!

)℄; (3.2)
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where

b

� =

b

�

!

0

. Beause evaluation of LD(!) for all ! is pratially unfea-

sible, Cook (1986) proposes studying the loal behaviour of LD(!) around

!

0

. This was done using the normal urvature C

l

of LD(!) at !

0

in the

diretion of some unit vetor l.

Cook (1986) showed that the normal urvature in the diretion l takes

the form

C

l

= 2jl

>

�

>

I

�1

�lj; (3.3)

where klk = 1, � =

�

2

L(�=!)

���!

>

and the 5 � 5 observed information matrix

I = �

�

2

L(�)

����

>

are both evaluated at � =

b

� and ! = !

0

.

Let l

max

be the diretion of maximum normal urvature, whih is the

perturbation that produes the greatest loal hange in

b

�. The most inu-

ential elements of the data may be identi�ed by their large omponent of

the vetor l

max

. Furthermore, l

max

, is just the eigenvetor orresponding to

the largest eigenvalue of �

>

I

�1

�. Other important diretion is l = e

in

,

whih orresponds to the ith position, where there is a one. In that ase, the

normal urvature, alled the total loal inuene of individual i, is given by

C

i

= 2�

>

i

I

�1

�

i

, where �

>

i

is the ith olumn of �, i = 1; :::; n. We use l

max

and C

i

as diagnostis for loal inuene. From (3.1), it follows that I takes

the form

I = �

��

�

2

L(�)

���

��

; (3.4)

where, ; � = �; �; �; �

x

; �

x

. The elements of the matrix I are presented in

the appendix.

When a subset �

1

from the partition � = (�

>

1

; �

>

2

)

>

is of interest, diag-

nostis for inuene an be based on (Cook, 1986)

�

>

(I

�1

�B

22

)�;

where

B

22

=

�

0 0

0 I

�1

22

�

;

5



and I

22

is determined from partitioning I onformably with the partition of

�.

As in Kim (2000) we onsidered a perturbed model in whih the vetors

Z

i

= (Y

i

; X

i

)

>

are independently distributed as the Student t-distribution;

t

2

(�;�=!

i

; �), i = 1; :::; n. Here ! = (!

1

; :::; !

n

)

>

and !

0

= 1

n

= (1; :::; 1)

>

.

This perturbation sheme puts a weight on the sale matrix for eah obser-

vation and provides similar result as the ase-weights perturbation.

In this ase the � matrix in given by,

� = D

�

D(a); (3.5)

where D

�

= [d

1�

: : :d

n�

℄ and D(a) = diag(a

1

; :::; a

n

), with a

i

= �

1

2

�(�+2)

(�+d

i

(�))

2

,

d

i�

= (d

i�

; d

i�

; d

i�

; d

i�

x

; d

i�

x

)

>

, d

i

=

�d

i

(�)

�

as in the Appendix i = 1; :::; n,

evaluated at � =

b

�.

Note that for the normal model ( � �!1), � = (�1=2)D

�

.

4 Appliations

4.1 Serum kanamyin data

To illustrate the methodology desribed in this paper we onsider �rst the

data set reported by Kelly (1984). The data set onsists of paired measure-

ments of serum kanamyin levels in blood samples drawn from 20 babies. The

measurements were obtained by two distint methods. Diagnostis based on

the inuene fution (Kelly, 1984) deteted babies 2 and 16 as inuential in

the estimation of (�; �)

>

.

Aording to estudies reported in Bolfarine and Arellano-Valle (1994),

a Student-t model with �=10 degress freedom seems to provide the best
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�t. Further, � = 100 seems to provide a good approximation for the normal

model. Figure 1 onsiders loal inuene of the observations for � = 1, � = 10

and � = 100 degrees of freedom. Observations 2 and 17 seems to moderatily

inuene the estimation of � in the normal model. In the Cauhy ase (� =

1) and in the Student-t model with low degrees of freedom, this inuene

seems to be substantially redued. Loal inuene in the normal model is

investigated in Kim (2000) with similar results as the ones reported above.

Further, in the normal model, homoedastiity seems to be plausible sine

variane pertubation yields jl

max

j=(0:70681; 0:70740)

>

. This seems also to be

ase in the Student-t model with low degrees of freedom, as also onsidered

by Kelly (1984), Kim (2000) and Bolfarine and Arellano-Valle (1994).

4.2 Conrete data

The onrete data was studied in Wellman and Gunst (1991). The data set

ontains omprehensive strengh measurements of 41 samples of onrete. It

was desired to use a linear regression model to predit the strength of onrete

28 days after pourning from the strength measurements taken two days after

pouring. Wellman and Gunst (1991) onsider a normal linear measurement

error model. In this appliation we onsider a Student-t model with varying

degrees of freedom parameter �.

The loal inuene of observations is investigated in Figure 2. As Figure 2

indiate, no inuenial observations arise with low degrees of freedom that is,

the Cauhy and Student-t model with low degrees of freedom are quite able

to inorporate well the possible outlying observations in the data. However,

aording to Figure 2 as we move in the diretion of the normal model, when

� = 100 or higher, the model is quite inuened by observation 21, whih, is

this ase, ertainly is the most inuential. The loal inuene resulting from

other perturbation shemes were also investigated and sine they give similar

results to Figure 2 they are not presented. Similar results were also obtained
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for individual inuene using the quantity C

i

; i = 1; : : : ; n.

Figure 1: Index plots, for the kanamyin levels with, � = 1; 10; 100 degrees of freedom
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Figure 2: Index plots, for the Conrete data with, � = 1; 10; 100 degrees of

freedom
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Appendix: Computing the observed information ma-

trix in the Student-t strutural model

In this appendix we present the elements of the observed information

matrix. From (3.1), it follows that

�l

i

(�)

�

= �

1

2

�logj�j

�

�

1

2

� + 2

(� + d

i

(�))

d

i

; (A.1)

with d

i

=

�d

i

(�)

�

;  = �; �; �; �

x

and �

x

, d

i

(�) as in (2.2), i = 1; :::; n. We

have that

�logj�j

��

= 2�a;

�logj�j

��

=

1

�

+

a

�

x

; (A.2)

�logj�j

��

x

=

a

�

x

;

�logj�j

�

= 0;  = �; �

x

;

d

i�

=

2

�

fa�q

2i

� (Y

i

� �� ��

x

)g (A.3)

d

i�

=

2

�

fa

2

�q

2

2i

� aq

2i

(Y

i

� �� 2��

x

)� �

x

(Y

i

� �� ��

x

)g (A.4)

d

i�

=

a

�

q

2

2i

(

1

�

+

a

�

x

)�

q

1i

�

2

(A.5)

d

i�

x

=

2

�

q

2i

(a� 1) (A.6)

d

i�

x

=

aq

2

2i

��

x

(a� 1); (A.7)

where  = 1 + �

2

, a = �

x

=(�+ �

x

), q

1i

= (Y

i

� �� ��

x

)

2

+ (X

i

� �

x

)

2

and

q

2i

= �(Y

i

� �� ��

x

) + (X

i

� �

x

), i = 1; :::; n.

>From (A.1) it follows that the per element observed information matrix is

given by

I

i

= �

��

�

2

l

i

���

��

; (A.8)
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where

�

2

l

i

���

= �

1

2

�

2

logj�j

���

�

1

2

� + 2

� + d

i

(�)

�

d

i�

�

d

i

d

i�

� + d

i

(�)

�

with d

i

,  = �; �; �; �

x

; �

x

as in (A.3)-(A.7) and d

i�

=

�

2

(d

i

)

���

; � =

�; �; �; �

x

; �

x

, where

�

2

logj�j

���

=

�

2

logj�j

��

x

�

= 0;  = �; �; �; �

x

; �

x

; (A.9)

�

2

logj�j

����

= 2a(1� 2a�

2

); (A.10)

�

2

logj�j

����

= �2�a

2

=�

x

; (A.11)

�

2

logj�j

����

x

= 2

a�

�

x

(1� a); (A.12)

�

2

logj�j

����

= �(

1

�

2

+

a

2

�

2

x

); (A.13)

�

2

logj�j

����

x

= �

a

2



�

2

x

; (A.14)

�

2

logj�j

��

x

��

x

= �(

a

�

x

)

2

; (A.15)

d

i��

=

2

�

(1� a�

2

); (A.16)

d

i��

=

2

�

fa�(Y

i

� �� 2��

x

) + aq

2i

(1� 2a�

2

) + �

x

g; (A.17)

d

i��

=

2

�

f

1

�

(Y

i

� �� ��

x

)� a�q

2i

(

1

�

+

a

�

x

)g; (A.18)

d

i��

x

=

2�

�

(1� a); (A.19)
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d

i��

x

=

2a�

��

x

q

2i

(1� a); (A.20)

d

i��

=

2

�

f�

2

x

+ 2a�

x

q

2i

� a(Y

i

� �� 2��

x

)

2

+ 4a

2

�q

2i

(A.21)

(Y

i

� �� 2��

x

) + a

2

(1� 4a�

2

)q

2

2i

g;

d

i��

=

2

�

faq

2i

(Y

i

� �� 2��

x

)(

1

�

+

a

�

x

)� a

2

�q

2

2i

(

1

�

+

2a

�

x

) (A.22)

+

�

x

�

(Y

i

� �� ��

x

)g;

d

i��

x

=

2(1� a)

�

f2a�q

2i

� (Y

i

� �� 2��

x

)g; (A.23)

d

i��

x

=

2a(1� a)

��

x

f2a�q

2

2i

� q

2i

(Y

i

� �� 2��

x

)g; (A.24)

d

i��

=

2

�

2

d

i

(�)�

2a

2

��

x

q

2

2i

(

1

�

+

a

�

x

); (A.25)

d

i��

x

=

2

�

2

fq

2i

� a(1 +

a�

�

x

)q

2i

g; (A.26)

d

i��

x

=

a

��

x

(

1� a

�

+

a� 2a

2

)

�

x

)q

2

2i

; (A.27)

d

i�

x

�

x

= 2(1� a)=�; (A.28)

d

i�

x

�

x

=

2a(1� a)

��

x

q

2i

; (A.29)

d

i�

x

�

x

=

2a

2

(1� a)

��

2

x

q

2

2i

; (A.30)

i = 1; :::; n. Thus, the omplete observed information matrix is I

ob

(�=Y ) =

n

X

i=1

I

i

(�=Y

i

). Evaluating the observed information matrix at

b

� it follows

that I

ob

(

b

�=Y ) = �I given in (3.4).
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