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Abstract

The influence of observations on the parameter estimates for the
simple structural errors-in-variables model with no equation error, un-
der the Student-t distribution, is investigated using the local influence
approach. The likelihood displacement approach is useful for outlier
detection especially when a masking phenomenon is present. The di-
agnostics are illustrated with two examples.
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1 Introduction

The main object of this paper is the study of local influence and diagnostic
in the structural errors-in-variables models. It is assumed that the observed
variables follow a bivariate Student-t distribution. The detection of outliers
and influential observations in the error-in-variables model (EVM), under
the normality assumption, has been considered by some authors. For exam-
ple, Kelly (1984) derived the influence functions of the model parameters.

Wellman and Gunst (1991) showed the need for influence diagnostics in such



models using the influence function. Abdullah (1995) applied some diagnos-
tic methods in regression analysis to the functional model. Lee and Zhao
(1996) employed the local influence approach to some linear and nonlinear
measurement error models. Recently, Kim (2000) applied the local influence
method in the structural EVM. However, no applications of local influence
has been considered for structural EVM under Student t-distributions. Thus,
the main object of the this paper is to apply the approach of local influence
to structural EVM under Student-t distributions. The perturbation schemes
considered here are schemes in which the scale matrix is modified to allow

convenient perturbations of the model.

In the section 2, along with the notation, the structural EVM, under the
Student-t distribution, is defined. The local influence method is reviewed in
section 3. Section 4 deals with the derivation of the diagnostics procedures for
the structural errors-in-variables Student-t model. Two illustrative examples

are given in the last section.

2 The structural Student-t errors-in-variables
model

In this paper, we consider the simple structural EVM with no equation error
given by (Fuller; 1987)
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where Y; and X, are the ¢th observations whose true values are y; and x;,
respectively, and e; and u; are measurement errors. As in Bolfarine and
Arellano-Valle (1994), it is assumed that the unobservable vectors (z;, €;, u;) "

are independently distributed as a trivariate Student t-distribution with lo-



cation vector (p,,0,0)" and diagonal scale matrix diag(¢s, ¢e, ¢,). Further
assume that A\ = ¢./¢, is known. In this case, we may consider that
be = Oy = ¢, (A = 1), without loss of generality. Then the joint distri-
bution of Z; = (Y;, X;)" becomes a bivariate Student-t distribution with
)T

location vector g = (o + Bfig, 1) and scale matrix

2:<ﬂ2¢x+¢ ﬂ%)
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that is, Z; s to(p,X;v), v > 0,7 =1,...,n. The density function of Z; is
given by:

1 _ 1 _1
F(2150) = o[BI 72(1+ —di(9)) 72+, (2:2)

where d;(0) = (z; — ) ' 2 Y(z; — ) and 0 = (o, 8, b, fie, ) . To obtain
the maximum likelihood estimator of the vector 8, we use the EM-algorithm
as considered in Bolfarine and Arellano-Valle (1994).

Several authors have considered the Student-t distribution as an alterna-
tive to the normal distribution because it can naturally acomodate outliers
present in the data. For example, Lange et. al. (1989) and Galea et al. (1997)
discuss the use of the Student-t distribution in regression models and in prob-
lems related to multivariate analysis; Bolfarine and Arellano-Valle (1994) in-
troduce Student-t functional and structural measurement error models and
Bolfarine and Galea (1996) use the Student-t distribution in comparative

calibration models.

The Student-t distribution incorporates an additional parameter, v, namely
the degrees of freedom, which allows adjusting for the kurthosis of the dis-
tribution. This parameter can be fixed previously and Lange et al. (1989)
and Berkane et al. (1994) recommend taking v = 4 or, otherwise, get infor-
mation for it from the data set. For some difficulty in the estimation of v,
see Fernandez and Steel (1999).



3 Influence diagnostics for parameter estimates

Detecting outliers and influential observations is an important step in the
analysis of data sets. Several approaches exist to asses the influence of data
and model perturbations on the parameter estimates. Overviews can be find
in the books by Cook and Weisberg (1982) and Chatterjee and Hadi (1988)
and the paper by Cook (1986).

Case deletion is a popular way to asses the individual impact of cases on
the estimation process. This approach is global influence analysis, namely
the effect of an observation is assessed by completely removing it. An al-
ternative approach, local influence, is based on differential geometry instead
of complete deletion. It employs a differential comparison of parameter es-
timates before and after perturbation to data values or model assumptions.
We apply local influence methods to the EVM Student-t model. As in Cook
(1986), the displacement in log-likelihood function was taken as the metric

to evaluate local influence.

The log-likelihood function of model (2.1) is given by
L(0) = _1i(6), (3.1)
i=1

where [;(0) = —log(27) — %log|2| — %(l/-i- 2)log(1+d;(0)/v),i=1,...,n and
0 = (a, 5,0, s $2) "

Small perturbations are introduced into the Student-t EVM through a
vector w. We write L(6|w) for the log-likelihood (3.1) corresponding to the
perturbed data or model and let Ew be the maximum likelihood estimates
from the perturbed model. Specific perturbation schemes are described be-
low. For each scheme there is a point w representing no perturbation. The

influence of w can be assessed by the log-likelihood displacement
LD(w) = 2[L(6) — L(B.)], (3.2)
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where 0 = @,0. Because evaluation of LD(w) for all w is practically unfea-
sible, Cook (1986) proposes studying the local behaviour of LD(w) around
wg. This was done using the normal curvature C; of LD(w) at wy in the

direction of some unit vector I.

Cook (1986) showed that the normal curvature in the direction I takes

the form
C, =2ITAT I ‘Al (3.3)
21(0
where [|l]| =1, A = L/Tw) and the 5 x 5 observed information matrix
5L(6) 000w
= — =+ are both evaluated at @ = 6 and w = wp.
0000

Let .« be the direction of maximum normal curvature, which is the
perturbation that produces the greatest local change in 6. The most influ-
ential elements of the data may be identified by their large component of
the vector .. Furthermore, ., is just the eigenvector corresponding to
the largest eigenvalue of A" I"'A. Other important direction is I = ey,
which corresponds to the ith position, where there is a one. In that case, the
normal curvature, called the total local influence of individual ¢, is given by
C; = 2A;I‘1Ai, where AiT is the 7th column of A, ¢ =1,...,n. We use .«

and C; as diagnostics for local influence. From (3.1), it follows that I takes

(7).

where, v,7 = «, 3, ¢, i, 0. The elements of the matrix I are presented in

the form

the appendix.

When a subset @, from the partition @ = (8, ,0,)" is of interest, diag-

nostics for influence can be based on (Cook, 1986)
A'(I'"—By)A,

where



and Iy, is determined from partitioning I conformably with the partition of
0.

As in Kim (2000) we considered a perturbed model in which the vectors
Z; = (Y;, X;)" are independently distributed as the Student t-distribution;
ta(p, E/wi;v), i =1,...,n. Here w = (wy, ...,wy,) " and wy =1, = (1,...,1) 7.
This perturbation scheme puts a weight on the scale matrix for each obser-

vation and provides similar result as the case-weights perturbation.

In this case the A matrix in given by,

A = DgD(a), (3.5)
where Dg = [dyg . .. dyy] and D(a) :;;aga(al, ey Gp), With @; = —3 (V';(Z:E;)))Z,
dig = (dm, diﬂ,diqg, dmI, di(bI)T; dzuy = 5( ) as in the Appendix 1= 1, ey 1,

v

evaluated at @ = 6.

Note that for the normal model ( v — 00), A = (—1/2)Dy.

4 Applications

4.1 Serum kanamycin data

To illustrate the methodology described in this paper we consider first the
data set reported by Kelly (1984). The data set consists of paired measure-
ments of serum kanamycin levels in blood samples drawn from 20 babies. The
measurements were obtained by two distinct methods. Diagnostics based on
the influence fuction (Kelly, 1984) detected babies 2 and 16 as influential in

the estimation of (a, 3)".

According to estudies reported in Bolfarine and Arellano-Valle (1994),

a Student-t model with v=10 degress freedom seems to provide the best



fit. Further, v = 100 seems to provide a good approximation for the normal
model. Figure 1 considers local influence of the observations for v =1, v = 10
and v = 100 degrees of freedom. Observations 2 and 17 seems to moderatily
influence the estimation of  in the normal model. In the Cauchy case (v =
1) and in the Student-t model with low degrees of freedom, this influence
seems to be substantially reduced. Local influence in the normal model is
investigated in Kim (2000) with similar results as the ones reported above.
Further, in the normal model, homocedasticity seems to be plausible since
variance pertubation yields |l |=(0.70681,0.70740) . This seems also to be
case in the Student-t model with low degrees of freedom, as also considered
by Kelly (1984), Kim (2000) and Bolfarine and Arellano-Valle (1994).

4.2 Concrete data

The concrete data was studied in Wellman and Gunst (1991). The data set
contains comprehensive strengh measurements of 41 samples of concrete. It
was desired to use a linear regression model to predict the strength of concrete
28 days after pourning from the strength measurements taken two days after
pouring. Wellman and Gunst (1991) consider a normal linear measurement
error model. In this application we consider a Student-t model with varying

degrees of freedom parameter v.

The local influence of observations is investigated in Figure 2. As Figure 2
indicate, no influencial observations arise with low degrees of freedom that is,
the Cauchy and Student-t model with low degrees of freedom are quite able
to incorporate well the possible outlying observations in the data. However,
according to Figure 2 as we move in the direction of the normal model, when
v = 100 or higher, the model is quite influenced by observation 21, which, is
this case, certainly is the most influential. The local influence resulting from
other perturbation shemes were also investigated and since they give similar

results to Figure 2 they are not presented. Similar results were also obtained



for individual influence using the quantity C;, ¢ =1,...,n.

Figure 1: Index plots, for the kanamycin levels with, v = 1,10, 100 degrees of freedom
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Figure 2: Index plots, for the Concrete data with, v = 1,10, 100 degrees of

freedom
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Appendix:

Computing the observed information ma-
trix in the Student-t structural model

In this appendix we present the elements of the observed information

matrix. From (3.1), it follows that

0l;(@) _ 10log|Z| 1 w42

= — iy Al
oy 2 Oy 2 (v+d;(0) " (A1)
with d;, = 8627@),7 =, 3,0, 1y and ¢, d;(0) as in (2.2), 1 =1,....,n. We
Y
have that
olog|X| dlogl2] 1 a
=928q, o _ -, % A2
05 - Tas e (A.2)
Olog|x| ac  Olog|X| 0 .
a¢x ¢x, ar)/ Y f)/ 7/1’137
2
dio = ${aﬂq% — (Y —a—Bug)} (A.3)
2
diﬂ = 5{a26q§i - UJC]%(Y; - — 25,%) - Mz(Yi —a— 5,%)} (A-4)
a 1 a qii
dig = —@oi(—+ —) — A5
2
dip, = $q2i(ac -1) (A.6)
2
aqds;
dig, = ﬁ(ac - 1), (A.7)

where ¢ =1+ 3% a = ¢,/ (¢ + cds), qri = (Vi — o — Bua)?® + (Xi — p)? and

Goi = B(Yi — a = PBpe) + (Xi = o), 1 = 1, .,
;From (A.1) it follows that the per element observed information matrix is

given by

(2]
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where

L _16210g|2| 1 v+2 o diydis
oyor 2 0yOr 2v+d;(0) |7 v+di(0)
ith diy, 7 = @8, 6, o6 a5 in (AB)-(AT) and dyyy = 29 o
w ivy Y = G, 0,0, Uy, Py AS -0)- A a i — 8’787’ v, T =
a, B, ¢, fg, ¢, where
d’log|x|  9%log|x| B
8048’)/ - 8[L$8’7 - 07 7 =q, 67 ¢7 Moy ¢$7 (Ag)
’log|=| )
8210g|2| _ 2
’log|=|  _af
aﬂagﬁx - 2@(1 - ac), (A.12)
Plogl=| 1 a
d*log|X| a’c
=0 A.14
9606, 9 (A.14)
D*log|X| ac.
A o - ) A.15
0600 ~ '3, (A15)
diga = %(1—@62), (A.16)
2
diapg = a{aﬁ(Yi — o — 2Bpe) + agai(1 — 2a5%) + e}, (A.17)
2.1 1 a
diapg = —{5(Yi—a—Bug) — abeui(- + )}, A8
diap, = %(l—ac), (A.19)
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diag,

digp

dige

diﬁux
digg,

dipg
didﬁux

digpe
d

ey

Aiguis

2B
¢¢xq2z

2
a{/ﬁi —+ 201/1193(]21' — CL(Y; — 0 — 26/1193)2 + 4&25q% (A21)

(Vi — & — 200,) + a2(1 - 4a*)g3},
2

(1 - ac), (A.20)

1 2a

1

oV = a =265 + %) - a5+ ) (A22)
+“7jm — o — B},
2L 00— (V- 0 = 200} (229
W{Qaﬂq; - Q2¢(Yi - — 25%)}; (A-24)
2 2¢ , 1 a
= 4.(0) — (24D, A.
Fh(0) = k(S + ) (A.25)
%{(bz’ —ac(l+ %f)%z‘}, (A.26)

o _ 2
Ly, (A.20)
2¢(1 — ac)/ ¢, (A.28)
%q (A.29)
%q{z, (A.30)

i =1,...,n. Thus, the complete observed information matrix is I,,(0/Y) =

Zli(O/Yi). Evaluating the observed information matrix at 8 it follows
i=1

that 1,,(8/Y) = —1I given in (3.4).
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