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Abstra
t

The in
uen
e of observations on the parameter estimates for the

simple stru
tural errors-in-variables model with no equation error, un-

der the Student-t distribution, is investigated using the lo
al in
uen
e

approa
h. The likelihood displa
ement approa
h is useful for outlier

dete
tion espe
ially when a masking phenomenon is present. The di-

agnosti
s are illustrated with two examples.

Key Words: Diagnosti
s; in
uential observations; lo
al in
uen
e;

t-distribution.

1 Introdu
tion

The main obje
t of this paper is the study of lo
al in
uen
e and diagnosti


in the stru
tural errors-in-variables models. It is assumed that the observed

variables follow a bivariate Student-t distribution. The dete
tion of outliers

and in
uential observations in the error-in-variables model (EVM), under

the normality assumption, has been 
onsidered by some authors. For exam-

ple, Kelly (1984) derived the in
uen
e fun
tions of the model parameters.

Wellman and Gunst (1991) showed the need for in
uen
e diagnosti
s in su
h
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models using the in
uen
e fun
tion. Abdullah (1995) applied some diagnos-

ti
 methods in regression analysis to the fun
tional model. Lee and Zhao

(1996) employed the lo
al in
uen
e approa
h to some linear and nonlinear

measurement error models. Re
ently, Kim (2000) applied the lo
al in
uen
e

method in the stru
tural EVM. However, no appli
ations of lo
al in
uen
e

has been 
onsidered for stru
tural EVM under Student t-distributions. Thus,

the main obje
t of the this paper is to apply the approa
h of lo
al in
uen
e

to stru
tural EVM under Student-t distributions. The perturbation s
hemes


onsidered here are s
hemes in whi
h the s
ale matrix is modi�ed to allow


onvenient perturbations of the model.

In the se
tion 2, along with the notation, the stru
tural EVM, under the

Student-t distribution, is de�ned. The lo
al in
uen
e method is reviewed in

se
tion 3. Se
tion 4 deals with the derivation of the diagnosti
s pro
edures for

the stru
tural errors-in-variables Student-t model. Two illustrative examples

are given in the last se
tion.

2 The stru
tural Student-t errors-in-variables

model

In this paper, we 
onsider the simple stru
tural EVM with no equation error

given by (Fuller; 1987)

Y

i

= y

i

+ e

i

;

X

i

= x

i

+ u

i

; (2.1)

y

i

= �+ �x

i

; i = 1; :::; n;

where Y

i

and X

i

are the ith observations whose true values are y

i

and x

i

,

respe
tively, and e

i

and u

i

are measurement errors. As in Bolfarine and

Arellano-Valle (1994), it is assumed that the unobservable ve
tors (x

i

; e

i

; u

i

)

>

are independently distributed as a trivariate Student t-distribution with lo-
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ation ve
tor (�

x

; 0; 0)

>

and diagonal s
ale matrix diag(�

x

; �

e

; �

u

). Further

assume that � = �

e

=�

u

is known. In this 
ase, we may 
onsider that

�

e

= �

u

= �, (� = 1), without loss of generality. Then the joint distri-

bution of Z

i

= (Y

i

; X

i

)

>

be
omes a bivariate Student-t distribution with

lo
ation ve
tor � = (� + ��

x

; �

x

)

>

and s
ale matrix

� =

�

�

2

�

x

+ � ��

x

��

x

�

x

+ �

�

;

that is, Z

i

iid

� t

2

(�;�; �), � > 0, i = 1; :::; n. The density fun
tion of Z

i

is

given by:

f(z

i

; �) =

1

2�

j�j

�1=2

(1 +

1

�

d

i

(�))

�

1

2

(�+2)

; (2.2)

where d

i

(�) = (z

i

� �)

>

�

�1

(z

i

� �) and ��

�

= (�; �; �; �

x

; �

x

)

>

. To obtain

the maximum likelihood estimator of the ve
tor �, we use the EM-algorithm

as 
onsidered in Bolfarine and Arellano-Valle (1994).

Several authors have 
onsidered the Student-t distribution as an alterna-

tive to the normal distribution be
ause it 
an naturally a
omodate outliers

present in the data. For example, Lange et. al. (1989) and Galea et al. (1997)

dis
uss the use of the Student-t distribution in regression models and in prob-

lems related to multivariate analysis; Bolfarine and Arellano-Valle (1994) in-

trodu
e Student-t fun
tional and stru
tural measurement error models and

Bolfarine and Galea (1996) use the Student-t distribution in 
omparative


alibration models.

The Student-t distribution in
orporates an additional parameter, �, namely

the degrees of freedom, whi
h allows adjusting for the kurthosis of the dis-

tribution. This parameter 
an be �xed previously and Lange et al. (1989)

and Berkane et al. (1994) re
ommend taking � = 4 or, otherwise, get infor-

mation for it from the data set. For some diÆ
ulty in the estimation of �,

see Fern�andez and Steel (1999).
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3 In
uen
e diagnosti
s for parameter estimates

Dete
ting outliers and in
uential observations is an important step in the

analysis of data sets. Several approa
hes exist to asses the in
uen
e of data

and model perturbations on the parameter estimates. Overviews 
an be �nd

in the books by Cook and Weisberg (1982) and Chatterjee and Hadi (1988)

and the paper by Cook (1986).

Case deletion is a popular way to asses the individual impa
t of 
ases on

the estimation pro
ess. This approa
h is global in
uen
e analysis, namely

the e�e
t of an observation is assessed by 
ompletely removing it. An al-

ternative approa
h, lo
al in
uen
e, is based on di�erential geometry instead

of 
omplete deletion. It employs a di�erential 
omparison of parameter es-

timates before and after perturbation to data values or model assumptions.

We apply lo
al in
uen
e methods to the EVM Student-t model. As in Cook

(1986), the displa
ement in log-likelihood fun
tion was taken as the metri


to evaluate lo
al in
uen
e.

The log-likelihood fun
tion of model (2.1) is given by

L(�) =

n

X

i=1

l

i

(�); (3.1)

where l

i

(�) = �log(2�)�

1

2

logj�j�

1

2

(�+2)log(1+d

i

(�)=�), i = 1; :::; n and

��

�

= (�; �; �; �

x

; �

x

)

>

Small perturbations are introdu
ed into the Student-t EVM through a

ve
tor !. We write L(�j!) for the log-likelihood (3.1) 
orresponding to the

perturbed data or model and let

b

�

!

be the maximum likelihood estimates

from the perturbed model. Spe
i�
 perturbation s
hemes are des
ribed be-

low. For ea
h s
heme there is a point !

0

representing no perturbation. The

in
uen
e of ! 
an be assessed by the log-likelihood displa
ement

LD(!) = 2[L(

b

�)� L(

b

�

!

)℄; (3.2)
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where

b

� =

b

�

!

0

. Be
ause evaluation of LD(!) for all ! is pra
ti
ally unfea-

sible, Cook (1986) proposes studying the lo
al behaviour of LD(!) around

!

0

. This was done using the normal 
urvature C

l

of LD(!) at !

0

in the

dire
tion of some unit ve
tor l.

Cook (1986) showed that the normal 
urvature in the dire
tion l takes

the form

C

l

= 2jl

>

�

>

I

�1

�lj; (3.3)

where klk = 1, � =

�

2

L(�=!)

���!

>

and the 5 � 5 observed information matrix

I = �

�

2

L(�)

����

>

are both evaluated at � =

b

� and ! = !

0

.

Let l

max

be the dire
tion of maximum normal 
urvature, whi
h is the

perturbation that produ
es the greatest lo
al 
hange in

b

�. The most in
u-

ential elements of the data may be identi�ed by their large 
omponent of

the ve
tor l

max

. Furthermore, l

max

, is just the eigenve
tor 
orresponding to

the largest eigenvalue of �

>

I

�1

�. Other important dire
tion is l = e

in

,

whi
h 
orresponds to the ith position, where there is a one. In that 
ase, the

normal 
urvature, 
alled the total lo
al in
uen
e of individual i, is given by

C

i

= 2�

>

i

I

�1

�

i

, where �

>

i

is the ith 
olumn of �, i = 1; :::; n. We use l

max

and C

i

as diagnosti
s for lo
al in
uen
e. From (3.1), it follows that I takes

the form

I = �

��

�

2

L(�)

�
��

��

; (3.4)

where, 
; � = �; �; �; �

x

; �

x

. The elements of the matrix I are presented in

the appendix.

When a subset �

1

from the partition � = (�

>

1

; �

>

2

)

>

is of interest, diag-

nosti
s for in
uen
e 
an be based on (Cook, 1986)

�

>

(I

�1

�B

22

)�;

where

B

22

=

�

0 0

0 I

�1

22

�

;
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and I

22

is determined from partitioning I 
onformably with the partition of

�.

As in Kim (2000) we 
onsidered a perturbed model in whi
h the ve
tors

Z

i

= (Y

i

; X

i

)

>

are independently distributed as the Student t-distribution;

t

2

(�;�=!

i

; �), i = 1; :::; n. Here ! = (!

1

; :::; !

n

)

>

and !

0

= 1

n

= (1; :::; 1)

>

.

This perturbation s
heme puts a weight on the s
ale matrix for ea
h obser-

vation and provides similar result as the 
ase-weights perturbation.

In this 
ase the � matrix in given by,

� = D

�

D(a); (3.5)

where D

�

= [d

1�

: : :d

n�

℄ and D(a) = diag(a

1

; :::; a

n

), with a

i

= �

1

2

�(�+2)

(�+d

i

(�))

2

,

d

i�

= (d

i�

; d

i�

; d

i�

; d

i�

x

; d

i�

x

)

>

, d

i


=

�d

i

(�)

�


as in the Appendix i = 1; :::; n,

evaluated at � =

b

�.

Note that for the normal model ( � �!1), � = (�1=2)D

�

.

4 Appli
ations

4.1 Serum kanamy
in data

To illustrate the methodology des
ribed in this paper we 
onsider �rst the

data set reported by Kelly (1984). The data set 
onsists of paired measure-

ments of serum kanamy
in levels in blood samples drawn from 20 babies. The

measurements were obtained by two distin
t methods. Diagnosti
s based on

the in
uen
e fu
tion (Kelly, 1984) dete
ted babies 2 and 16 as in
uential in

the estimation of (�; �)

>

.

A

ording to estudies reported in Bolfarine and Arellano-Valle (1994),

a Student-t model with �=10 degress freedom seems to provide the best

6



�t. Further, � = 100 seems to provide a good approximation for the normal

model. Figure 1 
onsiders lo
al in
uen
e of the observations for � = 1, � = 10

and � = 100 degrees of freedom. Observations 2 and 17 seems to moderatily

in
uen
e the estimation of � in the normal model. In the Cau
hy 
ase (� =

1) and in the Student-t model with low degrees of freedom, this in
uen
e

seems to be substantially redu
ed. Lo
al in
uen
e in the normal model is

investigated in Kim (2000) with similar results as the ones reported above.

Further, in the normal model, homo
edasti
ity seems to be plausible sin
e

varian
e pertubation yields jl

max

j=(0:70681; 0:70740)

>

. This seems also to be


ase in the Student-t model with low degrees of freedom, as also 
onsidered

by Kelly (1984), Kim (2000) and Bolfarine and Arellano-Valle (1994).

4.2 Con
rete data

The 
on
rete data was studied in Wellman and Gunst (1991). The data set


ontains 
omprehensive strengh measurements of 41 samples of 
on
rete. It

was desired to use a linear regression model to predi
t the strength of 
on
rete

28 days after pourning from the strength measurements taken two days after

pouring. Wellman and Gunst (1991) 
onsider a normal linear measurement

error model. In this appli
ation we 
onsider a Student-t model with varying

degrees of freedom parameter �.

The lo
al in
uen
e of observations is investigated in Figure 2. As Figure 2

indi
ate, no in
uen
ial observations arise with low degrees of freedom that is,

the Cau
hy and Student-t model with low degrees of freedom are quite able

to in
orporate well the possible outlying observations in the data. However,

a

ording to Figure 2 as we move in the dire
tion of the normal model, when

� = 100 or higher, the model is quite in
uen
ed by observation 21, whi
h, is

this 
ase, 
ertainly is the most in
uential. The lo
al in
uen
e resulting from

other perturbation shemes were also investigated and sin
e they give similar

results to Figure 2 they are not presented. Similar results were also obtained
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for individual in
uen
e using the quantity C

i

; i = 1; : : : ; n.

Figure 1: Index plots, for the kanamy
in levels with, � = 1; 10; 100 degrees of freedom
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Figure 2: Index plots, for the Con
rete data with, � = 1; 10; 100 degrees of

freedom
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Appendix: Computing the observed information ma-

trix in the Student-t stru
tural model

In this appendix we present the elements of the observed information

matrix. From (3.1), it follows that

�l

i

(�)

�


= �

1

2

�logj�j

�


�

1

2

� + 2

(� + d

i

(�))

d

i


; (A.1)

with d

i


=

�d

i

(�)

�


; 
 = �; �; �; �

x

and �

x

, d

i

(�) as in (2.2), i = 1; :::; n. We

have that

�logj�j

��

= 2�a;

�logj�j

��

=

1

�

+

a

�

x

; (A.2)

�logj�j

��

x

=

a


�

x

;

�logj�j

�


= 0; 
 = �; �

x

;

d

i�

=

2

�

fa�q

2i

� (Y

i

� �� ��

x

)g (A.3)

d

i�

=

2

�

fa

2

�q

2

2i

� aq

2i

(Y

i

� �� 2��

x

)� �

x

(Y

i

� �� ��

x

)g (A.4)

d

i�

=

a

�

q

2

2i

(

1

�

+

a

�

x

)�

q

1i

�

2

(A.5)

d

i�

x

=

2

�

q

2i

(a
� 1) (A.6)

d

i�

x

=

aq

2

2i

��

x

(a
� 1); (A.7)

where 
 = 1 + �

2

, a = �

x

=(�+ 
�

x

), q

1i

= (Y

i

� �� ��

x

)

2

+ (X

i

� �

x

)

2

and

q

2i

= �(Y

i

� �� ��

x

) + (X

i

� �

x

), i = 1; :::; n.

>From (A.1) it follows that the per element observed information matrix is

given by

I

i

= �

��

�

2

l

i

�
��

��

; (A.8)

10



where

�

2

l

i

�
��

= �

1

2

�

2

logj�j

�
��

�

1

2

� + 2

� + d

i

(�)

�

d

i
�

�

d

i


d

i�

� + d

i

(�)

�

with d

i


, 
 = �; �; �; �

x

; �

x

as in (A.3)-(A.7) and d

i
�

=

�

2

(d

i

)

�
��


; � =

�; �; �; �

x

; �

x

, where

�

2

logj�j

���


=

�

2

logj�j

��

x

�


= 0; 
 = �; �; �; �

x

; �

x

; (A.9)

�

2

logj�j

����

= 2a(1� 2a�

2

); (A.10)

�

2

logj�j

����

= �2�a

2

=�

x

; (A.11)

�

2

logj�j

����

x

= 2

a�

�

x

(1� a
); (A.12)

�

2

logj�j

����

= �(

1

�

2

+

a

2

�

2

x

); (A.13)

�

2

logj�j

����

x

= �

a

2




�

2

x

; (A.14)

�

2

logj�j

��

x

��

x

= �(

a


�

x

)

2

; (A.15)

d

i��

=

2

�

(1� a�

2

); (A.16)

d

i��

=

2

�

fa�(Y

i

� �� 2��

x

) + aq

2i

(1� 2a�

2

) + �

x

g; (A.17)

d

i��

=

2

�

f

1

�

(Y

i

� �� ��

x

)� a�q

2i

(

1

�

+

a

�

x

)g; (A.18)

d

i��

x

=

2�

�

(1� a
); (A.19)
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d

i��

x

=

2a�

��

x

q

2i

(1� a
); (A.20)

d

i��

=

2

�

f�

2

x

+ 2a�

x

q

2i

� a(Y

i

� �� 2��

x

)

2

+ 4a

2

�q

2i

(A.21)

(Y

i

� �� 2��

x

) + a

2

(1� 4a�

2

)q

2

2i

g;

d

i��

=

2

�

faq

2i

(Y

i

� �� 2��

x

)(

1

�

+

a

�

x

)� a

2

�q

2

2i

(

1

�

+

2a

�

x

) (A.22)

+

�

x

�

(Y

i

� �� ��

x

)g;

d

i��

x

=

2(1� a
)

�

f2a�q

2i

� (Y

i

� �� 2��

x

)g; (A.23)

d

i��

x

=

2a(1� a
)

��

x

f2a�q

2

2i

� q

2i

(Y

i

� �� 2��

x

)g; (A.24)

d

i��

=

2

�

2

d

i

(�)�

2a

2

��

x

q

2

2i

(

1

�

+

a

�

x

); (A.25)

d

i��

x

=

2

�

2

fq

2i

� a
(1 +

a�

�

x

)q

2i

g; (A.26)

d

i��

x

=

a

��

x

(

1� a


�

+

a� 2a

2


)

�

x

)q

2

2i

; (A.27)

d

i�

x

�

x

= 2
(1� a
)=�; (A.28)

d

i�

x

�

x

=

2a
(1� a
)

��

x

q

2i

; (A.29)

d

i�

x

�

x

=

2a

2


(1� a
)

��

2

x

q

2

2i

; (A.30)

i = 1; :::; n. Thus, the 
omplete observed information matrix is I

ob

(�=Y ) =

n

X

i=1

I

i

(�=Y

i

). Evaluating the observed information matrix at

b

� it follows

that I

ob

(

b

�=Y ) = �I given in (3.4).

12



Referen
es

Abdullah, M. B. (1995). Dete
tion of in
uential observations in fun
tional

errors-in-variables model. Communi
ations in Statisti
s: Theory and Method,

24, 1585-1595.

Berkman, M., Kano, Y. and Bentler, P.M. (1994). Pseudo Maximun Likeli-

hood Estimation in Ellipti
al Theory: E�e
ts of misspe
i�
ation. Computa-

tional Statisti
s and Data Analysis, 18, 255-267.

Bolfarine, H. and Arellano-Valle, R. B.(1994). Robust Modeling in measure-

ment error models using the Student-t distributions. Brazilian Journal of

Probability and Statisti
s, 8, 67-84.

Bolfarine, H. and Galea-Rojas, M.(1996). One Stru
tural Comparative Cal-

ibration under a t-Models. Computational Statisti
s, 11, 63-85.

Chatterjee, S. Hadi, A.S. (1988). Sensivity Analysis in Linear Regression,

John Wiley. New York.

Cook, R. D. (1986). Assessment of lo
al in
uen
e. Journal of the Royal

Statisti
al So
iety, B, 48, 133-169.

Cook, R. D. and Weisberg, S. (1982). Residuals and In
uen
e in Regression,

Chapman and Hall. London.

Fern�andez, C. and Steel, M. (1999). Multivariate Student-t Regression Mod-

els: Pitfalls and Inferen
e. Biometrika, 86, 156-167.

Fuller, W. A. (1987). Measurement error models. Wiley, New York.

Galea, M., Paula, G. A. e Bolfarine, H. (1997). Lo
al in
uen
e in ellipti
al

linear regression models. The Statisti
ian, 46, 71-79.

Kim, M. G. (2000).Outliers and in
uential observations in the stru
tural

errors-in-variables model. Journal of Applied Statisti
s, 24, 461-473.

Kelly, G. (1984).The in
uen
e fun
tion in the errors-in-variables problem.

The Annals of Statisti
s, 12, 87-100.

Lange, K. L., Little, R.J. and Taylor, J. (1989). Robust statisti
al modelling

using the t-distribution. Journal of the Ameri
an Statisti
al Asso
iation, 84,

13



881-896.

Lee, A. H. and Zhao, Y. (1996). Assessing lo
al in
uen
e in measurement

error models. Biometri
al Journal, 38(7), 829-841.

Wellman, M. J. and Gunst, R.F. (1991). In
uen
e diagnosti
s for linear

measurement error models. Biometrika, 78, 373-380.

14


