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Abstrat

In this paper we present four di�erent ombinatorial interpretations for

the Fibonai numbers. Three in terms of restrited partitions and one in

terms of lattie path.

1 Introdution

In a series of two papers [6℄ and [7℄) Slater gave a list of 130 identities of the Rogers-

Ramanujan type. In [2℄ Andrews has introdued a two variable funtion in order to

look for ombinatorial interpretations for those identities. In [5℄ one of us, Santos,

gave onjetures for expliit formulas for families of polynomial that an be obtained

using Andrews method for 74 identities of the Slater's list.

In this paper we are going to prove the onjetures given by Santos in [5℄ for

identities 94 and 99.

We show, also, that the family of polynomials P

n

(q) related to identity 94 given

by

P

0

(q) = 1; P

1

(q) = 1 + q + q

2

P

n

(q) = (1 + q + q

2n

)P

n�1

(q)� qP

n�2

(q)

(1.1)

�
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is the generating funtion for partitions into at most n parts in whih every even

smaller than the largest part appears at least one and that the family T

n

(q) related

to identity 99 given by

T

0

(q) = 1; T

1

(q) = 1 + q

2

T

n

(q) = (1 + q + q

2n

)T

n�1

(q)� qT

n�2

(q)

(1.2)

is the generating funtion for partitions into at most n parts in whih the largest

part is even and every even smaller than the largest appears at least one.

In what follows we denote the Fibonai numbers by F

n

where F

0

= 0; F

1

= 1

and F

n

= F

n�1

+ F

n�2

; n � 2, and use the standard notation

(A; q)

n

= (1� A)(1� Aq) : : : (1� Aq

n�1

)

and

(A; q)

1

=

1

Y

n=0

(1� Aq

n

); jqj < 1:

We need also the following identities for the Gaussian polynomials

�

n

m

�

=

�

n

n�m

�

(1.3)

�

n

m

�

=

�

n� 1

m

�

+ q

n�m

�

n� 1

m� 1

�

(1.4)

�

n

m

�

=

�

n� 1

m� 1

�

+ q

m

�

n� 1

m

�

(1.5)

where

�

n

m

�

=

(q; q)

m

(q; q)

m

(q; q)

n�m

; for 0 � m � n; (1.6)

0 otherwise
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2 The �rst family of polynomials

We onsider now the two variable funtion assoiated to identity 94 of Slater [7℄

whih is:

f

94

(q; t) =

1

X

n=0

t

n

q

n

2

+n

(t; q

2

)

n+1

(tq; q

2

)

n+1

(2.1)

From this we have that

(1� t)(1� tq)f

94

(q; t) = 1 + tq

2

f

94

(q; tq

2

)

and in order to obtain a reurrene relation from this funtional equation we make

the following substitution

f

94

(q; t) =

1

X

n=0

P

n

t

n

:

Now we have:

(1� t)(1� tq)

1

X

n=0

P

n

t

n

= 1 + tq

2

1

X

n=0

P

n

(tq

2

)

n

whih implies

1

X

n=0

P

n

t

n

�

1

X

n=1

P

n�1

t

n

�

1

X

n=1

qP

n�1

t

n

+

1

X

n=2

qP

n�2

t

n

= 1 +

1

X

n=1

q

2n

P

n�1

t

n

:

From this last equation it is easy to see that

P

0

(q) = 1 ; P

1

(q) = 1 + q + q

2

P

n

(q) = (1 + q + q

2n

)P

n�1

(q)� qP

n�2

(q):

(2.2)

Santos gave in [5℄ a onjeture C

n

(q), for an expliity formula for this family of

polynomials:
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C

n

(q) =

1

X

j=�1

q

q

15j

2

+4j

�

2n+ 1

n� 5j

�

�

X

q

15j

2

+14j+3

�

2n+ 1

n� 5j � 2

�

: (2.3)

In our next theorem we prove that this onjeture is true.

Theorem 2.1. The family P

n

(q) given in (2.2) is equal to C

n

(q) given in (2.3).

Proof. Considering that C

0

(q) = 1 and C

1

(q) = 1 + q + q

2

we have to show that

C

n

(q) = (1 + q + q

2n

)C

n�1

(q)� qC

n�2

(q) that is:

1

X

j=�1

q

15j

2

+4j

�

2n+ 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n+ 1

n� 5j � 2

�

= (1 + q + q

2n

)

 

1

X

j=�1

q

15j

2

+4j

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n� 1

n� 5j � 3

�

!

�q

 

1

X

j=�1

q

15j

2

+4j

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n� 3

n� 5j � 4

�

!

(2.4)

If we apply (1.4) in eah expression on the left side of (2.4) we get

1

X

j=�1

q

15j

2

+4j

�

2n

n� 5j

�

+

1

X

j=�1

q

15j

2

+9j+n+1

�

2n

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+19j+6+n

�

2n

n� 5j � 3

�

Applying now (1.5) to eah sum in the expression above and replaing it in (2.4) we

get after some anellations

1

X

j=�1

q

15j

2

+j+n

�

2n� 1

n� 5j

�

+

1

X

j=�1

q

15j

2

+9j+n+1

�

2n� 1

n� 5j � 2

�
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�

1

X

j=�1

q

15j

2

+9j+n+4

�

2n� 1

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+19j+6+n

�

2n� 1

n� 5j � 4

�

=

1

X

j=�1

q

15j

2

+4j+1

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+14j+4

�

2n� 1

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+4j+1

�

2n� 3

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+14j+4

�

2n� 3

n� 5j � 4

�

: (2.5)

Considering the right side of the last expression and applying (1.4) on the �rst

two sums we get

1

X

j=�1

q

15j

2

+4j+1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+9j+1+n

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+14j+4

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+19j+6+n

�

2n� 2

n� 5j � 4

�

�

1

X

j=�1

q

15j

2

+4j+1

�

2n� 3

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+14j+4

�

2n� 3

n� 5j � 4

�

Applying now (1.5) on the �rst and third sums on this last expression and making

some anellations we have that the right side of (2.5) is equal to:

1

X

j=�1

q

15j

2

�j+n

�

2n� 3

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+9j+1+n

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+9j+j+1+n

�

2n� 3

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+19j+6+n

�

2n� 2

n� 5j � 4

�

If we take now the left side of (2.5) and apply (1.4) to all sums we get:

1

X

j=�1

q

15j

2

�j+n

�

2n� 2

n� 5j

�

+

1

X

j=�1

q

15j

2

+4j+2n�1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+9j+n+1

�

2n� 2

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+14j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+9j+n+1

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+14j+2n+2

�

2n� 2

n� 5j � 3

�
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�

1

X

j=�1

q

15j

2

+14j+n+6

�

2n� 2

n� 5j � 4

�

�

1

X

j=�1

q

15j

2

+24j+2n+9

�

2n� 2

n� 5j � 5

�

(2.6)

Applying now (1.5) on the �rst and �fth sums of this last expression and making

anellations with the sums from the right side given in (2.6) we are left with:

1

X

j=�1

q

15j

2

�6j+2n

�

2n� 3

n� 5j

�

+

1

X

j=�1

q

15j

2

+4j+2n�1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+14j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+4j+2n�1

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+14j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+24j+2n+9

�

2n� 2

n� 5j � 5

�

Observing that the third sum anels the �fth and replaing j by j + 1 in the

last sum we get after using (1.4)

1

X

j=�1

q

15j

2

+4j+2n+1

�

2n� 2

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+4j+2n�1

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

�j+3n�2

�

2n� 3

n� 5j � 1

�

whih is identially zero by (1.5) ompleting the proof. 2

Next we make a few observations regarding the ombinatoris of P

N

(q) given in

(2.2). Knowing that P

N

(q) is the oeÆient of t

N

in (2.1) that is:

1

X

n=0

t

n

q

n

2

+n

(1� t)(tq

2

; q

2

)

n

(tq; q

2

)

n+1

and onsidering that n

2

+ n = 2 + 4 + � � �+ 2n we an see that the oeÆient of t

N

in

t

n

q

n

2

+n

(tq

2

; q

2

)

n

(tq; q

2

)

n+1

is the generating funtion for partitions into exatly N parts in whih every even

smaller than the largest part appears at least one. Beause of the fator (1� t) in

the denominator we have proved the following theorem:
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Theorem 2.2: P

N

(q) is the generating funtion for partitions into at most N parts

in whih every even smaller than the largest part appears at least one.

To see, now, the onnetion between the family of polinomials P

N

(q) and the

Fibonai numbers we observe �rst that if we replae q by 1 in (2.2) we have

P

0

(1) = 1; P

1

(1) = 3

P

n

(1) = 3P

n�1

(1)� P

n�2

(1)

and that for the Fibonai sequene F

n

we have also that F

2

= 1; F

4

= 3 and

F

2n+2

= 3F

2n

� F

2n�2

whih allow us to onlude that

C

n

(1) = P

n

(1) = F

2n+2

and from these onsiderations we have proved the following:

Theorem 2.3: The total number of partitions into at most N parts in whih every

even smaller than the largest part appears at least one is equal to F

2N+2

.

The family given in (2.2) has also an interesting property at q = �1. At this

point we have

P

0

(�1) = 1; P

1

(�1) = 1

P

n

(�1) = P

n�1

(�1) + P

n�2

(�1)

whih tell us that for q = �1 we have all the Fibonai numbers, i.e. P

n

(�1) = F

n+1

.

In order to be able to see what happens ombinatorially at �1 we have to observe

7



that when we hange q by �q in (2.1) the only term that hanges is (tq; q

2

)

n+1

and that now the oeÆient of t

N

is going to be just the number of partitions as

desribed in Theorem 2.3 having an even number of odd parts minus the number

of partitions of that type with and odd number of odd parts. We state this in our

next theorem.

Theorem 2.4. The total number of partitions into at most N parts in whih every

even smaller than the largest part appears at least one and having and even number

of odd parts minus the number of those with an odd number of odd parts is equal

to F

N+1

.

In the table (2.1) we present, for a few values of n, all the results proved so

far. The �rst olumn has n, the seond the partitions desribed in theorem 2.4 with

and even number of odd parts and the third olumn those with an odd number of

odd parts. The fourth olumn has F

2n+2

whih is the total number of partitions

in olumns 2 and 3 and the �fth olumn has the di�erene between the number of

partitions on the seond and third olumn whih is F

n+1

.

8



with an
even number of odd parts

with an
odd number of odd parts

f

f

f

f

0

1

2

3

F2n+2 Fn+1

            1 1

3 1

8 2

21 3

Partitions as described in Theorem 2.2

n

Table 2.1

9



3 The seond family of polynomials

Now we onsider the two variable funtion given in Santos [5℄ assoiated to identity

99 of Slater [7℄ whih is:

f

99

(q; t) =

1

X

n=0

t

n

q

n

2

+n

(t; q

2

)

n+1

(tq; q

2

)

n

(3.1)

From this we an get

(1� t)(1� tq)f

99

(q; t) = 1� tq + tq

2

f

99

(q; tq

2

)

from whih we obtain in a way similar to the one used to get (2.2) the following

family of polynomials

T

0

(q) = 1; T

1

(q) = 1 + q

2

(3.2)

T

n

(q) = (1 + q + q

2n

)T

n�1

(q)� qT

n�2

(q)

As for the family (2.2) Santos gave in [5℄ a onjeture for an expliity formula for

(3.2) whih is

B

n

(q) =

1

X

j=�1

q

15j

2

+2j

�

2n + 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n+ 1

n� 5j � 1

�

(3.3)

The proof for this onjeture is given in the next theorem.

Theorem 3.1. The family T

n

(q) given in (3.2) is equal to B

n

(q) given in (3.3)
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Proof. Considering that B

0

(q) = 1 and B

1

(q) = 1 + q

2

we have to show that

B

n

(q) = (1 + q + q

2n

)B

n�1

(q)� qB

n�2

(q) whih is:

1

X

j=�1

q

15j

2

+2j

�

2n+ 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n+ 1

n� 5j � 1

�

= (1 + q + q

2n

)

 

1

X

j=�1

q

15j

2

+2j

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n� 1

n� 5j � 2

�

!

�q

 

1

X

j=�1

q

15j

2

+2j

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n� 3

n� 5j � 3

�

!

(3.4)

We apply (1.4) on eah sum on the left to get

1

X

j=�1

q

15j

2

+2j

�

2n

n� 5j

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+13j+n+2

�

2n

n� 5j � 2

�

Applying, now, (1.5) in all sums we obtain:

1

X

j=�1

q

15j

2

+2j

�

2n� 1

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

�3j

�

2n� 1

n� 5j

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n� 1

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+2j+2n

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n� 1

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+13j+n+2

�

2n� 1

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+8j+2n

�

2n� 1

n� 5j � 2

�

Replaing this in (3.4) and making anellations we are left with:

1

X

j=�1

q

15j

2

�3j+n

�

2n� 1

n� 5j

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n� 1

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+13j+n+3

�

2n� 1

n� 5j � 3

�
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=

1

X

j=�1

q

15j

2

+2j+1

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+2

�

2n� 1

n� 5j � 2

�

(3.5)

�

1

X

j=�1

q

15j

2

+2j+1

�

2n� 3

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+8j+2

�

2n� 3

n� 5j � 3

�

Applying (1.4) on the �rst two sums on the right side of this last expression we get

for that side:

1

X

j=�1

q

15j

2

+2j+1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+8j

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+13j+n+1

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+2j+1

�

2n� 3

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+8j+2

�

2n� 3

n� 5j � 3

�

Using (1.5) on the �rst and third sums we get after anellations

1

X

j=�1

q

15j

2

�3j+n

�

2n� 3

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+13j+2+n

�

2n� 2

n� 5j � 3

�

Applying (1.4) in all sums on the left side of (3.5) and making anellations with

the orresponding sums on the right we get:

1

X

j=�1

q

15j

2

�3j+n

�

2n� 2

n� 5j

�

+

1

X

j=�1

q

15j

2

+2j+2n�1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+12j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 2

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+2n

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+18j+2n+4

�

2n� 2

n� 5j � 4

�

=

1

X

j=�1

q

15j

2

�3j+n

�

2n� 3

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 3

n� 5j � 2

�

12



Using (1.5) on the �rst and fourth sums on the LHS we get:

1

X

j=�1

q

15j

2

�8j+2n

�

2n� 3

n� 5j

�

+

1

X

j=�1

q

15j

2

+2j+2n�1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+12j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

�2j+2n�1

�

2n� 3

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+2n

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+18j+5

�

2n� 2

n� 5j � 4

�

= 0

Replaing j by j�1 in the last sum and using (1.3) that sum anels with the third.

If we replae j by �j in the fourth sum using (1.3) and subtrat from the seond

by (1.4) we get �nally:

1

X

j=�1

q

15j

2

�8j+2n

�

2n� 3

n� 5j

�

+

1

X

j=�1

q

15j

2

�3j+3n�2

�

2n� 3

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+2n

�

2n� 2

n� 5j � 2

�

= 0

To see that this expression is, in fat, identially zero we apply (1.4) on the �rst two

sums replaing j by �j and using (1.3) on the result whih ompletes the proof.

Considering that T

N

(q) is the oeÆient of t

N

in the sum

1

X

n=0

t

n

q

n

2

+n

(1� t)(tq

2

; q

2

)

n

(tq; q

2

)

n

and observing again that n

2

+ n = 2+ 4+ � � �+ 2n we see that the oeÆient of t

N

in

t

n

q

n

2

+n

(tq

2

; q

2

)

n

(tq; q

2

)

n

is the generating funtion for partitions into exatly N parts in whih the largest

part is even and every even smaller the largest part appears at least one. From

13



the presene of the fator (1� t) in the denominator we have proved the following

theorem:

Theorem 3.2. T

n

(q) is the generating funtion for partitions into at most N parts

in whih the largest part is even and every even smaller than the largest appears at

least one.

Replaing now q by 1 in (3.2) we get

T

0

(1) = 1; T

1

(1) = 2

T

n

(1) = 3T

n�1

(1)� T

n�2

(1)

But for F

n

we have

F

1

= 1; F

3

= 2

F

2n+1

= 3F

2n�1

� F

2n�3

whih allow us to onlude that

B

n

(1) = T

n

(1) = F

2n+1

and by these results we have proved

Theorem 3.3. The total number of partitions into at most N parts in whih the

largest part is even and every even smaller than the largest part appears at least

one is equal to F

2n+1

.

For family (3.2) we have also that, at q = �1, we get all the Fibonai numbers

F

n

; n � 2.

T

0

(�1) = 1; T

1

(�1) = 2

T

n

(�1) = T

n�1

(�1) + T

n�2

(�1)

14



i.e., T

n

(�1) = F

n+2

; n � 0.

If we make the same observation that have made for the �rst family of poly-

nomials regarding the ombinatorial interpretation at q = �1 we have proved the

following result:

Theorem 3.4. The total number of partitions into at most N parts in whih the

largest part is even and every even smaller than the largest part appears at least

one and having an even number of odd parts minus the number of those with an

odd number of odd parts is equal to F

N+2

.

In the table (3.1) we present, for a few values of n, all the results proved in this

setion. The �rst olumn has n, the seond the partitions desribed in theorem 3.3

with and even number of odd parts and the third olumn those with an odd number

of odd parts. The fourth olumn has F

2n+1

whih is the total number of partitions

in olumns 2 and 3 and the �fth olumn has the di�erene between the number of

partitions on the seond and third olumn whih is F

n+2

.

15



with an
even number of odd parts

with an
odd number of odd parts

f

f

f

f

0

1

2

3

F2n+1 Fn+2

            1 1

2 2

5 3

13 5

Partitions as described in Theorem 3.3

n

Table 3.1
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4 A formula for F

n

Using the fat that the Gaussian polynomias given in (1.6) are q-analogue of the

binomial oeÆient, i.e., that

lim

q!1

�

n

m

�

=

�

n

m

�

we may take the limits as q approahes 1 in (2.3) and (3.3) to get

lim

q!1

C

n

(q) = lim

q!1

 

1

X

j=�1

q

15j

2

+4j

�

2n+ 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n+ 1

n� 5j � 2

�

!

=

1

X

j=�1

��

2n+ 1

n� 5j

�

�

�

2n+ 1

n� 5j � 2

��

= C

n

(1)

and

lim

q!1

B

n

(q) = lim

q!1

 

1

X

j=�1

q

15j

2

+2j

�

2n+ 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n+ 1

n� 5j � 1

�

!

=

1

X

j=�1

��

2n+ 1

n� 5j

�

�

�

2n+ 1

n� 5j � 1

��

= B

n

(1)

But as we have observed

C

n

(1) = F

2n+2

and B

n

(1) = F

2n+1

whih tell us that

F

2n+2

=

1

X

j=�1

��

2n+ 1

n� 5j

�

�

�

2n + 1

n� 5j � 2

��

(4.1)

and

F

2n+1

=

1

X

j=�1

��

2n+ 1

n� 5j

�

�

�

2n + 1

n� 5j � 1

��

(4.2)
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5 Lattie path and Fibonai

In this setion we are going to show how to express the Fibonai numbers in terms

of lattie path.

In Narayana [4℄, lemma 4A one an �nd the following formula

jL(m;n; t; s)j =

1

X

j=�1

��

m + n

m� k(t + s)

�

�

�

m+ n

n+ k(t + s) + t

��

(4.3)

whih give the total number of lattie paths from the origin to (m;n) not touhing

the lines y = x� t and y = x + s.

But onsidering that we an write (4.1) and (4.2) as follows

F

2n+2

=

1

X

j=�1

��

n+ (n+ 1)

n� j(2 + 3)

�

�

�

n+ (n+ 1)

n+ 1 + j(2 + 3) + 2

��

(4.4)

F

2n+1

=

1

X

j=�1

��

n+ (n+ 1)

n� j(1 + 4)

�

�

�

n+ (n+ 1)

(n+ 1) + j(1 + 4) + 1

��

(4.5)

we an onlude just by omparing (4.4) and (4.5) with (4.3) that the following

theorem holds:

Theorem 5.1. F

2n+i

is the number of lattie paths from the origin to (n; n + 1)

not touhing the line y = x� i and y = x+ 5� i, where i = 1; 2.
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