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Abstract

In this paper we present four different combinatorial interpretations for
the Fibonacci numbers. Three in terms of restricted partitions and one in
terms of lattice path.

1 Introduction

In a series of two papers [6] and [7]) Slater gave a list of 130 identities of the Rogers-
Ramanujan type. In [2] Andrews has introduced a two variable function in order to
look for combinatorial interpretations for those identities. In [5] one of us, Santos,
gave conjectures for explicit formulas for families of polynomial that can be obtained
using Andrews method for 74 identities of the Slater’s list.

In this paper we are going to prove the conjectures given by Santos in [5] for
identities 94 and 99.

We show, also, that the family of polynomials P, (¢) related to identity 94 given
by

Pq)=1, P(g)=1+q+q
(1.1)
Pu(g) = (1 +q+¢™)Par(q) — qPu2(q)
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is the generating function for partitions into at most n parts in which every even
smaller than the largest part appears at least once and that the family 7,,(¢) related

to identity 99 given by

To(q) =1, Ti(g) =1+¢
(1.2)
To(g) = (1 +q+¢*")Tn-1(q) — ¢Tn-2(q)

is the generating function for partitions into at most n parts in which the largest
part is even and every even smaller than the largest appears at least once.
In what follows we denote the Fibonacci numbers by F,, where Fy = 0; F; =1

and F,, = F,, 1 + F, 5,n > 2, and use the standard notation
(A =(1—=A) (1 - Ag)...(1 - Ag"™)

and

o0

(A q)o = [J(1 - Ag™), gl <1.

n=0

We need also the following identities for the Gaussian polynomials
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2 The first family of polynomials

We consider now the two variable function associated to identity 94 of Slater [7]

which is:

tn n2+n

(2.1)

foa(a,t Z
n=

From this we have that

t q n+1 tq q )n+1

(1 —t)(1 —tq) foa(q, t) = 1+ tq* fou(q; tq?)

and in order to obtain a recurrence relation from this functional equation we make

the following substitution

f94 q7 ZPtn

Now we have:
(L—t)(1—tq) Y Put"=1+1t¢" Y _ Pu(tq*)"
n=0 n=0

which implies

f: Pt" — i P, t" — i qP,_1t" + i qP, ot" =1+ i ¢ P, t".
n=0 n=1 n=1 n=2 n=1

From this last equation it is easy to see that

Po(q)=1; Pi(q) =1+ q+¢*
(2.2)
Po(q) = (1+q+¢")Pooi(q) — qPu2(q).

Santos gave in [5] a conjecture C,,(q), for an explicity formula for this family of

polynomials:



o0

o q15j2+4j 277/ + ]_ . 15]2+14J+3 2n + ]_
Cule)= ) 4 {n—5j] > a [n_5j_2 L (23)

j=—o0

In our next theorem we prove that this conjecture is true.
Theorem 2.1. The family P,(¢) given in (2.2) is equal to C,(¢) given in (2.3).

Proof. Considering that Cy(q) = 1 and Ci(q) = 1 + ¢ + ¢* we have to show that

Cu(q) = 1+ ¢+ ¢*")Cr1(q) — qCr2(q) that is:

S 152445 | 2n+1 | s 1552 +14j+3 2n+1
SR A D O

j=—o0 j=—o00
— 2n N 1552 +4; 2n—1 _ S 1552 4+145+3 2n—1
=(l+q+q )<_Zq [n—5j—1] _Zq {n—5j—3
j=—o00 j=—o00
- 1552445 2n—3 S 1552414543 2n—3
—q(_zw TP D Sl ey 24
j=—00 j=—00

If we apply (1.4) in each expression on the left side of (2.4) we get

- 2n - 2n
1552+45 155249j+n+1
2. {n—5j}+,zq [n—5j—1]

j=—o0 j=—o0
. = 15524145+3 2n . - 15524+19j+6+n 2n
PORE St P B DA PR
j=—00 j=—o0
Applying now (1.5) to each sum in the expression above and replacing it in (2.4) we

get after some cancellations

o0

155%+j4n | 21— 1 S 1552495 +n+1 2n—1
2. [n—sj]Jqu [n—5j—2

j:—oo j:foo



0 00
_ E q15j2+9j+n+4 2n—1 Z q15] +19j+6+n 2n—1
, n—>5j—2 n—oj—4
Jj=—

j=—00
— i ql5j2+4j+1 2n —1 . i q15j2+14j+4 2n—1
, n—>55—1 , n—>5 —3
J=—0 J=—00
. = 155244541 2n —3 = 15524145 +4 2n —3
.Zq {n—5j—2:|+_zq {n—5j—4 . (25)
J=—00 Jj=—00

Considering the right side of the last expression and applying (1.4) on the first

two sums we get

N 1552 +4j+1 2n —2 15j2495+14n 2n —2
2. {n—5]—1] Zq [n—5j—2
J=—00 Jj=-—o00
_ i q15j2+14j+4 2n —2 . i q15j2+19j+6+n 2n —2

: n—>5j—3 . n—>5j—4

J=—0 J=—00

. i q15j2+4j+1 2n—3 + i q15j2+14j+4 2n —3
, n—>5j—2 , n—95)—4
J=—00 J=—00

Applying now (1.5) on the first and third sums on this last expression and making

some cancellations we have that the right side of (2.5) is equal to:

2. [n—fm‘—l]*.zq {n—Sj—2
J=—0 J=—00
o0
— Z q15j2+9j+j+1+n 2n — Z q15] +195+6+n 2n — 2
J=—0 j=—00

If we take now the left side of (2.5) and apply (1.4) to all sums we get:

00 o
15j2—j4n | 21— 2 1552 +4j+2n—1 2n —2
2. {n—5j]+2q [n—5j—1

j=—o0 j=—00
oo o
155249j4+n+1 2n —2 1552 +145+2n42 2n —2
T {n—5j—2]+2q {n—5j—3
j=—00 =—00
_ . 1552495 4+n+1 2n —2 _ . 15524145 +2n+2 2n —2
2. [n—5j—2] 2. {n—5j—3
j=—00 j=—o0
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— 2n — 2 - 2n — 2
_ 1552+14j4+n+6 - . 1552+424j42n+9 -
Zq {n—5j—4} 'Zq {n—5j—5} (2.6)

Applying now (1.5) on the first and fifth sums of this last expression and making

cancellations with the sums from the right side given in (2.6) we are left with:

o0 o0
Z q15j2—6j+2n 2n =3 + Z q15j2+4j+2n—1 2n —2
n—>5j n—>55—1

Jj=—00 j=—00
S 1552 4+145+2n+2 2n —2 _ = 1572 4+4j42n—1 2n —3
t2 {n—5j—3] P [n—5j—2
j=—o0 j=—00
B = 157241442042 2n —2 B = 157242442049 2n —2
21 [n—5j—3] 2. [n—Sj—S
j=—o0 j=—00

Observing that the third sum cancels the fifth and replacing j by j + 1 in the

last sum we get after using (1.4)

oo oo
Z q15j2+4j+2n+1 2n —2 . Z q15j2+4j+2n—1 2n —3
, n—>57—1 , n—>55—2
j=—00 j=—00
_ i q15j2—j+3n—2 2n—3
, n—9j—1
j=—00
which is identically zero by (1.5) completing the proof. O

Next we make a few observations regarding the combinatorics of Py(q) given in

(2.2). Knowing that Py(g) is the coefficient of " in (2.1) that is:

i Zfnqn2—|—n
= (1= 1) (tg*; ¢*)n(tq; ¢*)nn1

and considering that n? +n =2+ 4+ --- + 2n we can see that the coefficient of ¢V
in

tnqn2+n

(tg%; ¢*)n(tq; ¢*)nta
is the generating function for partitions into exactly N parts in which every even

smaller than the largest part appears at least once. Because of the factor (1 —¢) in

the denominator we have proved the following theorem:

6



Theorem 2.2: Py(q) is the generating function for partitions into at most N parts
in which every even smaller than the largest part appears at least once.
To see, now, the connection between the family of polinomials Py(¢) and the

Fibonacci numbers we observe first that if we replace ¢ by 1 in (2.2) we have

R(1)=1 A()=3

P,(1) =3P, 1(1) — P, »(1)
and that for the Fibonacci sequence F), we have also that Fy, =1; F;, = 3 and
Fonyo = 3Fo, — Fana
which allow us to conclude that
Cn(1) = (1) = Fapyo

and from these considerations we have proved the following:

Theorem 2.3: The total number of partitions into at most /N parts in which every

even smaller than the largest part appears at least once is equal to Foyo.

The family given in (2.2) has also an interesting property at ¢ = —1. At this

point we have

P(-1) = 1; P(~1) =1

Pu(=1) = Py y(=1) + Py_5(—1)

which tell us that for ¢ = —1 we have all the Fibonacci numbers, i.e. P,(—1) = F,1;.

In order to be able to see what happens combinatorially at —1 we have to observe



that when we change ¢ by —¢ in (2.1) the only term that changes is (tq; ¢*)ni1
and that now the coefficient of ¢tV is going to be just the number of partitions as
described in Theorem 2.3 having an even number of odd parts minus the number
of partitions of that type with and odd number of odd parts. We state this in our

next theorem.

Theorem 2.4. The total number of partitions into at most /N parts in which every
even smaller than the largest part appears at least once and having and even number
of odd parts minus the number of those with an odd number of odd parts is equal
to Fiygq.

In the table (2.1) we present, for a few values of n, all the results proved so
far. The first column has n, the second the partitions described in theorem 2.4 with
and even number of odd parts and the third column those with an odd number of
odd parts. The fourth column has F,, o which is the total number of partitions
in columns 2 and 3 and the fifth column has the difference between the number of

partitions on the second and third column which is F, .
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with an with an
even number of odd parts odd number of odd parts Fopiz | Frsg
¢ 1 1
0] ° ° ° 3 1
[ J [ J [}
¢ ° ° °
[ [
8 2
[ ] [ ] Y Y ° ® [ ] [ ] [
P P Y ° [ J [
° ° ° °
¢ [ J [ J PY [ J
[ ] Y PY
[} [ J [ ] [ J
i ¢ oo o ole o o ¢ e
) o o [} [ ] o o
° ° e o o o
[ [
21 3
o o e 0 0 |® © 0 0|® © 0 000 0 0gg000
o o PR} e o o o o 0 o o0 00
° ° ° L ¢ e e
¢ oo S o0 0000
(] ® 6 0 00000
o O ([ ] e

Table 2.1



3 The second family of polynomials

Now we consider the two variable function given in Santos [5] associated to identity

99 of Slater [7] which is:

0 tn n2+n

3.1
f99 q7 Z t q n+1 tqaq )n ( )

n=

From this we can get

(1 —t)(1 — tq) foo(q,t) = 1 — tq + tq* foo (g, tq?)

from which we obtain in a way similar to the one used to get (2.2) the following

family of polynomials

To(q) =1; Ti(g) =1+¢°
(3.2)

Tn(g) = 14 g+ ¢*")Th-1(q) — ¢Tn-2(q)

As for the family (2.2) Santos gave in [5] a conjecture for an explicity formula for

(3.2) which is

o0

5o [ 20+ 1 - 2 g on + 1
_ 155425 - 15j°+8j+1
Bu(g)= Y _ q [n—5j} Y g [n—5j—1] (3.3)

The proof for this conjecture is given in the next theorem.

Theorem 3.1. The family 7,,(¢) given in (3.2) is equal to B, (¢) given in (3.3)

10



Proof. Considering that By(q) = 1 and Bi(q) = 1 + ¢* we have to show that
B,(q) = (1 + ¢+ ¢*")By_1(q) — qBn—2(q) which is:

o0

.Zq {n—&')j ,Zq n—5j—1
j=—00 j=—00
_ oy [N gt | 201 ] NS e | 20— 1
j=—o0 j=—00
o0 o0
_ ity | =3 i1 | 20— 3
q(,zq [n—5j—2] ,Zq {n—5j—3 (3-4)
j=—o0 j=—00
We apply (1.4) on each sum on the left to get
= 2n = 2n,
1552425 1552 +754+n+1
2.4 {n—5j}+,zq [n—5j—1]
j=—00 j=—00
o0 o0
_ Y g 2n I s s 2n
| n—5j—1|" n—5j—2
j=—o0 j=—00
Applying, now, (1.5) in all sums we obtain:
o o
DOF A Frrit FD SE ) i
j=—o0 j=—00
o o
1552+ Tj+n+1 2n —1 15242j42n | 2n—1
upIL {n—sj—z}fzq [n—5j—1
j=—o0 j=—00
o o
B Z LGS 2n —1 B Z MERSET 2n —1
| n—5j-2| " n—5j—1
j=—00 j=—00
. . 15524135 4n+2 2n—1 . S 1552485+2n 2n—1
2 {n—5j—3} P [n—5j—2
j=—o0 j=—o00

Replacing this in (3.4) and making cancellations we are left with:

o0

o0
1552-3j4n | 20— 1 15247 4+n+1 2n —1
Z a [ n—>5j } * Z q [

. , n—>5j—2
J=— j=—o00

— 152 4354n | 20— 1 CN- sPeisiengs | 2n—1
-Zq [”—59'—1] .Zq [n—5j—3
j=—o0

j=—00

11



— - 155%+2j+1 n—1 155%+85+2 2n—1
DA IR D P IR Y

j=-—00 j=—00
o0
_ 15524241 | 2N — 152 48j+2 | 2N —3
,Zq {H—E)]—Q] Zq [n—5j—3
Jj=—00 j=—00

Applying (1.4) on the first two sums on the right side of this last expression we get

for that side:

o0 o0
Z q15j2+2j+1 2n —2 + Z q15j2+7j+n+1 2n —2
, n—>5 —1 , n—>5 —2
J=— J=—00
0 00
_ Z q15j2+8j 2n —2 . Z q15j2+13j+n+1 2n — 2
. n—29j—2 , n—>5j—3
J=—0o0 J=—00
2n — 3 Ny 2n — 3
_ 1552425 +1 155°485+2
e [ 200 [ e [ 20
Jj=—00 j=-—00

Using (1.5) on the first and third sums we get after cancellations

N 1552 —3j+n 2n — 1552475 +n+1 2n — 2

j=—00 j=—00
N sitan 2n — 3 N 5ia1s) 20 — 2
o 155°+3j+n - 155°+13j+2+n
Y [n—5j—2] P {n—5j—3}
j=—00 j=—00
Applying (1.4) in all sums on the left side of (3.5) and making cancellations with

the corresponding sums on the right we get:

N sajen | 20— 2 N isigjient | 2n =2
P [n—5j]+,zq [n—5j—1
j=—o0 j=—00
o0 o0
152 +12j+2n+2 | 21— 2 _ 15243j4n | 2N —2
t2a {n—5j—3} 2. [n—f)j—l
j=—00 j==00
o0 o0
. Z q15j2+8j+2n 2n —2 . Z q15j2+18j+2n+4 2n —2
| n—5j—2| n—5j—4
j=—00 j=—00
_ S 1552 =3j+n 2n—3 _ S 155243j+4n 2n—3
2. [n—5j—1] 2. [n—5j—2
j=—o0 j=—o0

12



Using (1.5) on the first and fourth sums on the LHS we get:

Zq {n_5j}+_zq {n—Sj—l

p— j=—oo
(0@ (0.0
152 +12j+2n+2 | 21— 2 _ 1552-2j42n-1 |  2n—3
t2a {n—5j—3} P [n—f)j—l
j=—o00 j=—o00
0 00
_ Z ¢ 157 +87+2n 2n —2 _ Z U5 o2n — 2 0
| n—5j-2|" n—>5j—4
J=—00 J=—00

Replacing j by 7 —1 in the last sum and using (1.3) that sum cancels with the third.
If we replace j by —j in the fourth sum using (1.3) and subtract from the second
by (1.4) we get finally:

i q15j2—8j+2n 2n —3 + i q15j2—3j+3n—2 2n —3
n—>5y , n—>sj—1

j=—o0 j=—o0
_ Z q15j2+8j+2n [ 2n - 2 } —0
. n—=>oj—2
j=—00
To see that this expression is, in fact, identically zero we apply (1.4) on the first two

sums replacing j by —j and using (1.3) on the result which completes the proof.

Considering that Ty (q) is the coefficient of ¢tV in the sum

tnqn2+n

2 (L —t)(te% ¢*)n(tq; ¢*)n

n=0

and observing again that n? +n = 2+4 +-- -+ 2n we see that the coefficient of ¢V
in
n qn2+n
(ta%; ¢*)n(tq; ¢*)n

is the generating function for partitions into exactly /N parts in which the largest

part is even and every even smaller the largest part appears at least once. From

13



the presence of the factor (1 — ¢) in the denominator we have proved the following

theorem:

Theorem 3.2. T,(q) is the generating function for partitions into at most N parts
in which the largest part is even and every even smaller than the largest appears at
least once.
Replacing now ¢ by 1 in (3.2) we get
T,(1) = 3T, 1(1) — T, _o(1)
But for F,, we have
F]_ = ]_, F3 =2
F2n+1 = 3F2n71 - F2n73

which allow us to conclude that

and by these results we have proved

Theorem 3.3. The total number of partitions into at most /N parts in which the
largest part is even and every even smaller than the largest part appears at least
once is equal to Fy, 1.

For family (3.2) we have also that, at ¢ = —1, we get all the Fibonacci numbers

F,, n>2.
Ty(—1) = 1; Ty(~1) =2
T.(-1) =T, 1(=1)+ T, o(—1)

14



e, T,(—1) = Fuie, n>0.
If we make the same observation that have made for the first family of poly-
nomials regarding the combinatorial interpretation at ¢ = —1 we have proved the

following result:

Theorem 3.4. The total number of partitions into at most N parts in which the
largest part is even and every even smaller than the largest part appears at least
once and having an even number of odd parts minus the number of those with an
odd number of odd parts is equal to Flys.

In the table (3.1) we present, for a few values of n, all the results proved in this
section. The first column has n, the second the partitions described in theorem 3.3
with and even number of odd parts and the third column those with an odd number
of odd parts. The fourth column has F3,; which is the total number of partitions
in columns 2 and 3 and the fifth column has the difference between the number of

partitions on the second and third column which is £, .

15



Partitions as described in Theorem 3.3

with an with an
even number of odd parts odd number of odd parts Fopii| Fsz
¢ 1 1
) ° ° 2 2
[ ] [ ] [ ] [}
) )
[ ] [ ] (]
5 3
e 6 o0 o
o o
i ® ° °
¢ [ ]
[ ] [ ] Y
o o
[ ) e o 0 o e 6 0 o [ ]
° o o o0 L 13 5
o o
° [ I} ) L]
© 0 0 00 0 0 000000
L I o o o o000
[ N ]
o o e o
Table 3.1
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4 A formula for F,

Using the fact that the Gaussian polynomias given in (1.6) are g-analogue of the

)= (o)

we may take the limits as ¢ approaches 1 in (2.3) and (3.3) to get

binomial coefficient, i.e., that

(IILH} Culq) = (lllg} (i R [ in_+5; ] _ i IRETARETAE. { } 2_n5-]+—i ) ])
j=—00 P—
B _,-_ZOO K in—+5} ) - < n2—n5;‘r12 )] = Cu(1)
and
‘lligi B,(q) = }IILT% (200: q'oi* 2 [ in_+5; ] _ i gl H8I+ [ § 3n5q;i 1 ])
j=—o00 P
B i K in—+5} ) - < ni”gﬁl >] = B,(1)
j=—o0

But as we have observed
Cn(].) = F2n+2 and Bn(]-) = F2n+1

which tell us that

o [ 21 2n+1 ]
j=—o00 - -

and
> [( 2n+1 on+1 ]
j=—o0 - .
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5 Lattice path and Fibonacci

In this section we are going to show how to express the Fibonacci numbers in terms
of lattice path.

In Narayana [4], lemma 4A one can find the following formula

[E(m, 3¢, 5)] = i K mTkJ(;Tjr 5) > - ( n+l:(1t12)+t )} (4.3)

j=—00
which give the total number of lattice paths from the origin to (m,n) not touching
the lines y =x —t and y = x + s.
But considering that we can write (4.1) and (4.2) as follows

Fonva = i K r?j;((gil:%)) ) B ( n+?:j(zl2113))+2 )] (44)

j=—00
R n+(n+1) \ n+(n+1)
F2”+1_j_zoo{<n—j(1+4)> ((n+1)+j(1+4)+1 (4.5)
we can conclude just by comparing (4.4) and (4.5) with (4.3) that the following

theorem holds:

Theorem 5.1. Fy,; is the number of lattice paths from the origin to (n,n + 1)

not touching the line y = x — i and y = v + 5 — 4, where 1 = 1, 2.

18
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