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Abstra
t

In this paper we present four di�erent 
ombinatorial interpretations for

the Fibona

i numbers. Three in terms of restri
ted partitions and one in

terms of latti
e path.

1 Introdu
tion

In a series of two papers [6℄ and [7℄) Slater gave a list of 130 identities of the Rogers-

Ramanujan type. In [2℄ Andrews has introdu
ed a two variable fun
tion in order to

look for 
ombinatorial interpretations for those identities. In [5℄ one of us, Santos,

gave 
onje
tures for expli
it formulas for families of polynomial that 
an be obtained

using Andrews method for 74 identities of the Slater's list.

In this paper we are going to prove the 
onje
tures given by Santos in [5℄ for

identities 94 and 99.

We show, also, that the family of polynomials P

n

(q) related to identity 94 given

by

P

0

(q) = 1; P

1

(q) = 1 + q + q

2

P

n

(q) = (1 + q + q

2n

)P

n�1

(q)� qP

n�2

(q)

(1.1)

�
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is the generating fun
tion for partitions into at most n parts in whi
h every even

smaller than the largest part appears at least on
e and that the family T

n

(q) related

to identity 99 given by

T

0

(q) = 1; T

1

(q) = 1 + q

2

T

n

(q) = (1 + q + q

2n

)T

n�1

(q)� qT

n�2

(q)

(1.2)

is the generating fun
tion for partitions into at most n parts in whi
h the largest

part is even and every even smaller than the largest appears at least on
e.

In what follows we denote the Fibona

i numbers by F

n

where F

0

= 0; F

1

= 1

and F

n

= F

n�1

+ F

n�2

; n � 2, and use the standard notation

(A; q)

n

= (1� A)(1� Aq) : : : (1� Aq

n�1

)

and

(A; q)

1

=

1

Y

n=0

(1� Aq

n

); jqj < 1:

We need also the following identities for the Gaussian polynomials

�

n

m

�

=

�

n

n�m

�

(1.3)

�

n

m

�

=

�

n� 1

m

�

+ q

n�m

�

n� 1

m� 1

�

(1.4)

�

n

m

�

=

�

n� 1

m� 1

�

+ q

m

�

n� 1

m

�

(1.5)

where

�

n

m

�

=

(q; q)

m

(q; q)

m

(q; q)

n�m

; for 0 � m � n; (1.6)

0 otherwise
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2 The �rst family of polynomials

We 
onsider now the two variable fun
tion asso
iated to identity 94 of Slater [7℄

whi
h is:

f

94

(q; t) =

1

X

n=0

t

n

q

n

2

+n

(t; q

2

)

n+1

(tq; q

2

)

n+1

(2.1)

From this we have that

(1� t)(1� tq)f

94

(q; t) = 1 + tq

2

f

94

(q; tq

2

)

and in order to obtain a re
urren
e relation from this fun
tional equation we make

the following substitution

f

94

(q; t) =

1

X

n=0

P

n

t

n

:

Now we have:

(1� t)(1� tq)

1

X

n=0

P

n

t

n

= 1 + tq

2

1

X

n=0

P

n

(tq

2

)

n

whi
h implies

1

X

n=0

P

n

t

n

�

1

X

n=1

P

n�1

t

n

�

1

X

n=1

qP

n�1

t

n

+

1

X

n=2

qP

n�2

t

n

= 1 +

1

X

n=1

q

2n

P

n�1

t

n

:

From this last equation it is easy to see that

P

0

(q) = 1 ; P

1

(q) = 1 + q + q

2

P

n

(q) = (1 + q + q

2n

)P

n�1

(q)� qP

n�2

(q):

(2.2)

Santos gave in [5℄ a 
onje
ture C

n

(q), for an expli
ity formula for this family of

polynomials:
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C

n

(q) =

1

X

j=�1

q

q

15j

2

+4j

�

2n+ 1

n� 5j

�

�

X

q

15j

2

+14j+3

�

2n+ 1

n� 5j � 2

�

: (2.3)

In our next theorem we prove that this 
onje
ture is true.

Theorem 2.1. The family P

n

(q) given in (2.2) is equal to C

n

(q) given in (2.3).

Proof. Considering that C

0

(q) = 1 and C

1

(q) = 1 + q + q

2

we have to show that

C

n

(q) = (1 + q + q

2n

)C

n�1

(q)� qC

n�2

(q) that is:

1

X

j=�1

q

15j

2

+4j

�

2n+ 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n+ 1

n� 5j � 2

�

= (1 + q + q

2n

)

 

1

X

j=�1

q

15j

2

+4j

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n� 1

n� 5j � 3

�

!

�q

 

1

X

j=�1

q

15j

2

+4j

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n� 3

n� 5j � 4

�

!

(2.4)

If we apply (1.4) in ea
h expression on the left side of (2.4) we get

1

X

j=�1

q

15j

2

+4j

�

2n

n� 5j

�

+

1

X

j=�1

q

15j

2

+9j+n+1

�

2n

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+19j+6+n

�

2n

n� 5j � 3

�

Applying now (1.5) to ea
h sum in the expression above and repla
ing it in (2.4) we

get after some 
an
ellations

1

X

j=�1

q

15j

2

+j+n

�

2n� 1

n� 5j

�

+

1

X

j=�1

q

15j

2

+9j+n+1

�

2n� 1

n� 5j � 2

�
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�

1

X

j=�1

q

15j

2

+9j+n+4

�

2n� 1

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+19j+6+n

�

2n� 1

n� 5j � 4

�

=

1

X

j=�1

q

15j

2

+4j+1

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+14j+4

�

2n� 1

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+4j+1

�

2n� 3

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+14j+4

�

2n� 3

n� 5j � 4

�

: (2.5)

Considering the right side of the last expression and applying (1.4) on the �rst

two sums we get

1

X

j=�1

q

15j

2

+4j+1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+9j+1+n

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+14j+4

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+19j+6+n

�

2n� 2

n� 5j � 4

�

�

1

X

j=�1

q

15j

2

+4j+1

�

2n� 3

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+14j+4

�

2n� 3

n� 5j � 4

�

Applying now (1.5) on the �rst and third sums on this last expression and making

some 
an
ellations we have that the right side of (2.5) is equal to:

1

X

j=�1

q

15j

2

�j+n

�

2n� 3

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+9j+1+n

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+9j+j+1+n

�

2n� 3

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+19j+6+n

�

2n� 2

n� 5j � 4

�

If we take now the left side of (2.5) and apply (1.4) to all sums we get:

1

X

j=�1

q

15j

2

�j+n

�

2n� 2

n� 5j

�

+

1

X

j=�1

q

15j

2

+4j+2n�1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+9j+n+1

�

2n� 2

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+14j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+9j+n+1

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+14j+2n+2

�

2n� 2

n� 5j � 3

�
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�

1

X

j=�1

q

15j

2

+14j+n+6

�

2n� 2

n� 5j � 4

�

�

1

X

j=�1

q

15j

2

+24j+2n+9

�

2n� 2

n� 5j � 5

�

(2.6)

Applying now (1.5) on the �rst and �fth sums of this last expression and making


an
ellations with the sums from the right side given in (2.6) we are left with:

1

X

j=�1

q

15j

2

�6j+2n

�

2n� 3

n� 5j

�

+

1

X

j=�1

q

15j

2

+4j+2n�1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+14j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+4j+2n�1

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+14j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+24j+2n+9

�

2n� 2

n� 5j � 5

�

Observing that the third sum 
an
els the �fth and repla
ing j by j + 1 in the

last sum we get after using (1.4)

1

X

j=�1

q

15j

2

+4j+2n+1

�

2n� 2

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+4j+2n�1

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

�j+3n�2

�

2n� 3

n� 5j � 1

�

whi
h is identi
ally zero by (1.5) 
ompleting the proof. 2

Next we make a few observations regarding the 
ombinatori
s of P

N

(q) given in

(2.2). Knowing that P

N

(q) is the 
oeÆ
ient of t

N

in (2.1) that is:

1

X

n=0

t

n

q

n

2

+n

(1� t)(tq

2

; q

2

)

n

(tq; q

2

)

n+1

and 
onsidering that n

2

+ n = 2 + 4 + � � �+ 2n we 
an see that the 
oeÆ
ient of t

N

in

t

n

q

n

2

+n

(tq

2

; q

2

)

n

(tq; q

2

)

n+1

is the generating fun
tion for partitions into exa
tly N parts in whi
h every even

smaller than the largest part appears at least on
e. Be
ause of the fa
tor (1� t) in

the denominator we have proved the following theorem:
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Theorem 2.2: P

N

(q) is the generating fun
tion for partitions into at most N parts

in whi
h every even smaller than the largest part appears at least on
e.

To see, now, the 
onne
tion between the family of polinomials P

N

(q) and the

Fibona

i numbers we observe �rst that if we repla
e q by 1 in (2.2) we have

P

0

(1) = 1; P

1

(1) = 3

P

n

(1) = 3P

n�1

(1)� P

n�2

(1)

and that for the Fibona

i sequen
e F

n

we have also that F

2

= 1; F

4

= 3 and

F

2n+2

= 3F

2n

� F

2n�2

whi
h allow us to 
on
lude that

C

n

(1) = P

n

(1) = F

2n+2

and from these 
onsiderations we have proved the following:

Theorem 2.3: The total number of partitions into at most N parts in whi
h every

even smaller than the largest part appears at least on
e is equal to F

2N+2

.

The family given in (2.2) has also an interesting property at q = �1. At this

point we have

P

0

(�1) = 1; P

1

(�1) = 1

P

n

(�1) = P

n�1

(�1) + P

n�2

(�1)

whi
h tell us that for q = �1 we have all the Fibona

i numbers, i.e. P

n

(�1) = F

n+1

.

In order to be able to see what happens 
ombinatorially at �1 we have to observe
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that when we 
hange q by �q in (2.1) the only term that 
hanges is (tq; q

2

)

n+1

and that now the 
oeÆ
ient of t

N

is going to be just the number of partitions as

des
ribed in Theorem 2.3 having an even number of odd parts minus the number

of partitions of that type with and odd number of odd parts. We state this in our

next theorem.

Theorem 2.4. The total number of partitions into at most N parts in whi
h every

even smaller than the largest part appears at least on
e and having and even number

of odd parts minus the number of those with an odd number of odd parts is equal

to F

N+1

.

In the table (2.1) we present, for a few values of n, all the results proved so

far. The �rst 
olumn has n, the se
ond the partitions des
ribed in theorem 2.4 with

and even number of odd parts and the third 
olumn those with an odd number of

odd parts. The fourth 
olumn has F

2n+2

whi
h is the total number of partitions

in 
olumns 2 and 3 and the �fth 
olumn has the di�eren
e between the number of

partitions on the se
ond and third 
olumn whi
h is F

n+1

.

8



with an
even number of odd parts

with an
odd number of odd parts

f

f

f

f

0

1

2

3

F2n+2 Fn+1

            1 1

3 1

8 2

21 3

Partitions as described in Theorem 2.2


n

Table 2.1
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3 The se
ond family of polynomials

Now we 
onsider the two variable fun
tion given in Santos [5℄ asso
iated to identity

99 of Slater [7℄ whi
h is:

f

99

(q; t) =

1

X

n=0

t

n

q

n

2

+n

(t; q

2

)

n+1

(tq; q

2

)

n

(3.1)

From this we 
an get

(1� t)(1� tq)f

99

(q; t) = 1� tq + tq

2

f

99

(q; tq

2

)

from whi
h we obtain in a way similar to the one used to get (2.2) the following

family of polynomials

T

0

(q) = 1; T

1

(q) = 1 + q

2

(3.2)

T

n

(q) = (1 + q + q

2n

)T

n�1

(q)� qT

n�2

(q)

As for the family (2.2) Santos gave in [5℄ a 
onje
ture for an expli
ity formula for

(3.2) whi
h is

B

n

(q) =

1

X

j=�1

q

15j

2

+2j

�

2n + 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n+ 1

n� 5j � 1

�

(3.3)

The proof for this 
onje
ture is given in the next theorem.

Theorem 3.1. The family T

n

(q) given in (3.2) is equal to B

n

(q) given in (3.3)

10



Proof. Considering that B

0

(q) = 1 and B

1

(q) = 1 + q

2

we have to show that

B

n

(q) = (1 + q + q

2n

)B

n�1

(q)� qB

n�2

(q) whi
h is:

1

X

j=�1

q

15j

2

+2j

�

2n+ 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n+ 1

n� 5j � 1

�

= (1 + q + q

2n

)

 

1

X

j=�1

q

15j

2

+2j

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n� 1

n� 5j � 2

�

!

�q

 

1

X

j=�1

q

15j

2

+2j

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n� 3

n� 5j � 3

�

!

(3.4)

We apply (1.4) on ea
h sum on the left to get

1

X

j=�1

q

15j

2

+2j

�

2n

n� 5j

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+13j+n+2

�

2n

n� 5j � 2

�

Applying, now, (1.5) in all sums we obtain:

1

X

j=�1

q

15j

2

+2j

�

2n� 1

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

�3j

�

2n� 1

n� 5j

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n� 1

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+2j+2n

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n� 1

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+13j+n+2

�

2n� 1

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+8j+2n

�

2n� 1

n� 5j � 2

�

Repla
ing this in (3.4) and making 
an
ellations we are left with:

1

X

j=�1

q

15j

2

�3j+n

�

2n� 1

n� 5j

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n� 1

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+13j+n+3

�

2n� 1

n� 5j � 3

�
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=

1

X

j=�1

q

15j

2

+2j+1

�

2n� 1

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+2

�

2n� 1

n� 5j � 2

�

(3.5)

�

1

X

j=�1

q

15j

2

+2j+1

�

2n� 3

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+8j+2

�

2n� 3

n� 5j � 3

�

Applying (1.4) on the �rst two sums on the right side of this last expression we get

for that side:

1

X

j=�1

q

15j

2

+2j+1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+8j

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+13j+n+1

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+2j+1

�

2n� 3

n� 5j � 2

�

+

1

X

j=�1

q

15j

2

+8j+2

�

2n� 3

n� 5j � 3

�

Using (1.5) on the �rst and third sums we get after 
an
ellations

1

X

j=�1

q

15j

2

�3j+n

�

2n� 3

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+7j+n+1

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 3

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+13j+2+n

�

2n� 2

n� 5j � 3

�

Applying (1.4) in all sums on the left side of (3.5) and making 
an
ellations with

the 
orresponding sums on the right we get:

1

X

j=�1

q

15j

2

�3j+n

�

2n� 2

n� 5j

�

+

1

X

j=�1

q

15j

2

+2j+2n�1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+12j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 2

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+2n

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+18j+2n+4

�

2n� 2

n� 5j � 4

�

=

1

X

j=�1

q

15j

2

�3j+n

�

2n� 3

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+3j+n

�

2n� 3

n� 5j � 2

�
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Using (1.5) on the �rst and fourth sums on the LHS we get:

1

X

j=�1

q

15j

2

�8j+2n

�

2n� 3

n� 5j

�

+

1

X

j=�1

q

15j

2

+2j+2n�1

�

2n� 2

n� 5j � 1

�

+

1

X

j=�1

q

15j

2

+12j+2n+2

�

2n� 2

n� 5j � 3

�

�

1

X

j=�1

q

15j

2

�2j+2n�1

�

2n� 3

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+2n

�

2n� 2

n� 5j � 2

�

�

1

X

j=�1

q

15j

2

+18j+5

�

2n� 2

n� 5j � 4

�

= 0

Repla
ing j by j�1 in the last sum and using (1.3) that sum 
an
els with the third.

If we repla
e j by �j in the fourth sum using (1.3) and subtra
t from the se
ond

by (1.4) we get �nally:

1

X

j=�1

q

15j

2

�8j+2n

�

2n� 3

n� 5j

�

+

1

X

j=�1

q

15j

2

�3j+3n�2

�

2n� 3

n� 5j � 1

�

�

1

X

j=�1

q

15j

2

+8j+2n

�

2n� 2

n� 5j � 2

�

= 0

To see that this expression is, in fa
t, identi
ally zero we apply (1.4) on the �rst two

sums repla
ing j by �j and using (1.3) on the result whi
h 
ompletes the proof.

Considering that T

N

(q) is the 
oeÆ
ient of t

N

in the sum

1

X

n=0

t

n

q

n

2

+n

(1� t)(tq

2

; q

2

)

n

(tq; q

2

)

n

and observing again that n

2

+ n = 2+ 4+ � � �+ 2n we see that the 
oeÆ
ient of t

N

in

t

n

q

n

2

+n

(tq

2

; q

2

)

n

(tq; q

2

)

n

is the generating fun
tion for partitions into exa
tly N parts in whi
h the largest

part is even and every even smaller the largest part appears at least on
e. From

13



the presen
e of the fa
tor (1� t) in the denominator we have proved the following

theorem:

Theorem 3.2. T

n

(q) is the generating fun
tion for partitions into at most N parts

in whi
h the largest part is even and every even smaller than the largest appears at

least on
e.

Repla
ing now q by 1 in (3.2) we get

T

0

(1) = 1; T

1

(1) = 2

T

n

(1) = 3T

n�1

(1)� T

n�2

(1)

But for F

n

we have

F

1

= 1; F

3

= 2

F

2n+1

= 3F

2n�1

� F

2n�3

whi
h allow us to 
on
lude that

B

n

(1) = T

n

(1) = F

2n+1

and by these results we have proved

Theorem 3.3. The total number of partitions into at most N parts in whi
h the

largest part is even and every even smaller than the largest part appears at least

on
e is equal to F

2n+1

.

For family (3.2) we have also that, at q = �1, we get all the Fibona

i numbers

F

n

; n � 2.

T

0

(�1) = 1; T

1

(�1) = 2

T

n

(�1) = T

n�1

(�1) + T

n�2

(�1)

14



i.e., T

n

(�1) = F

n+2

; n � 0.

If we make the same observation that have made for the �rst family of poly-

nomials regarding the 
ombinatorial interpretation at q = �1 we have proved the

following result:

Theorem 3.4. The total number of partitions into at most N parts in whi
h the

largest part is even and every even smaller than the largest part appears at least

on
e and having an even number of odd parts minus the number of those with an

odd number of odd parts is equal to F

N+2

.

In the table (3.1) we present, for a few values of n, all the results proved in this

se
tion. The �rst 
olumn has n, the se
ond the partitions des
ribed in theorem 3.3

with and even number of odd parts and the third 
olumn those with an odd number

of odd parts. The fourth 
olumn has F

2n+1

whi
h is the total number of partitions

in 
olumns 2 and 3 and the �fth 
olumn has the di�eren
e between the number of

partitions on the se
ond and third 
olumn whi
h is F

n+2

.

15



with an
even number of odd parts

with an
odd number of odd parts

f

f

f

f

0

1

2

3

F2n+1 Fn+2

            1 1

2 2

5 3

13 5

Partitions as described in Theorem 3.3

n

Table 3.1
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4 A formula for F

n

Using the fa
t that the Gaussian polynomias given in (1.6) are q-analogue of the

binomial 
oeÆ
ient, i.e., that

lim

q!1

�

n

m

�

=

�

n

m

�

we may take the limits as q approa
hes 1 in (2.3) and (3.3) to get

lim

q!1

C

n

(q) = lim

q!1

 

1

X

j=�1

q

15j

2

+4j

�

2n+ 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+14j+3

�

2n+ 1

n� 5j � 2

�

!

=

1

X

j=�1

��

2n+ 1

n� 5j

�

�

�

2n+ 1

n� 5j � 2

��

= C

n

(1)

and

lim

q!1

B

n

(q) = lim

q!1

 

1

X

j=�1

q

15j

2

+2j

�

2n+ 1

n� 5j

�

�

1

X

j=�1

q

15j

2

+8j+1

�

2n+ 1

n� 5j � 1

�

!

=

1

X

j=�1

��

2n+ 1

n� 5j

�

�

�

2n+ 1

n� 5j � 1

��

= B

n

(1)

But as we have observed

C

n

(1) = F

2n+2

and B

n

(1) = F

2n+1

whi
h tell us that

F

2n+2

=

1

X

j=�1

��

2n+ 1

n� 5j

�

�

�

2n + 1

n� 5j � 2

��

(4.1)

and

F

2n+1

=

1

X

j=�1

��

2n+ 1

n� 5j

�

�

�

2n + 1

n� 5j � 1

��

(4.2)
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5 Latti
e path and Fibona

i

In this se
tion we are going to show how to express the Fibona

i numbers in terms

of latti
e path.

In Narayana [4℄, lemma 4A one 
an �nd the following formula

jL(m;n; t; s)j =

1

X

j=�1

��

m + n

m� k(t + s)

�

�

�

m+ n

n+ k(t + s) + t

��

(4.3)

whi
h give the total number of latti
e paths from the origin to (m;n) not tou
hing

the lines y = x� t and y = x + s.

But 
onsidering that we 
an write (4.1) and (4.2) as follows

F

2n+2

=

1

X

j=�1

��

n+ (n+ 1)

n� j(2 + 3)

�

�

�

n+ (n+ 1)

n+ 1 + j(2 + 3) + 2

��

(4.4)

F

2n+1

=

1

X

j=�1

��

n+ (n+ 1)

n� j(1 + 4)

�

�

�

n+ (n+ 1)

(n+ 1) + j(1 + 4) + 1

��

(4.5)

we 
an 
on
lude just by 
omparing (4.4) and (4.5) with (4.3) that the following

theorem holds:

Theorem 5.1. F

2n+i

is the number of latti
e paths from the origin to (n; n + 1)

not tou
hing the line y = x� i and y = x+ 5� i, where i = 1; 2.
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