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Abstract

We consider and initial boundary value problem for a system of equations
describing nonstationary flows of incompressible asymmetric fluids in unbounded
domains. Under conditions similar to the ones for the usual Navier-Stokes equa-
tions, we prove the existence and uniqueness of strong solutions.

Resumo

Consideramos um problema de valor inicial e de contorno para um sistema
de equagoes que descrevem o fluxo dos fluidos assimétricos incompressiveis em
dominios nao limitados. Sob condicoes similares as equacgoes de Navier-Stokes
usuais, provamos a existéncia e unicidade de solugoes fortes.

1. Introduction

Let © be a bounded or unbounded domain in IR*, T > 0 and Q; = Q x [0, 7.
The equations that describe the motion of asymmetric fluids are given by
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(0
a—l;Jr(u-V)u—(quur)Aqu Vp=2u, rot wf,

divua=0,

(1.1)

— + (u- V)W — (¢y + ca) AW — (cg + ¢4 — ¢,)V div w
+4p,w =2p, ot utg .

together with the following boundary and initial conditions

u=0 on Spr=00x(0,7),
u(z,0) =ug(x) in Q,
w=0 on Spr=00x(0,7T),
w(z,0) =wp(z) in Q.

(1.2)

The functions u = (uy, uy, uz), w = (wy, wy, w3) and p denote the velocity vec-
tor, the angular velocity vector of rotation of particles, the pressure of the fluid,
respectively. The functions £ = (f1, fo, f3) and g = (g1, g2, g3) denote external
sources of linear and angular momentum, respectively. The positive constants
Iy [y Co, Cq and cq are viscosities. We consider ¢y + ¢4 > ¢,.

For the derivation and physical discussion of equations (1.1)-(1.2) see Pet-
rosyan [12], Condiff and Dalher [1], Eringen [4], [5] and Lukaszewicz [11]. We
observe that this model of fluid include as a particular case the classical Navier-
Stokes equations, which has been greatly studied (see, for instance, the classical
books by Ladyzhenskaya [6], Temam [21] and the references there in). For New-
tonian fluids, equations (1.1) and (1.2) decouple since p, = 0.

It is appropriate to cite some earlier works on the initial-value problem (1.1)-
(1.2) which are related to ours and also located our contribution there in. When
2 is a bounded domain, Lukaszewicz [9], [10] (see, also [11]) established the global
existence of weak solutions and local strong solutions for (1.1)-(1.2) under certain
assumptions by using linearization and an almost fixed point theorem.

By using the spectral Galerkin method Rojas-Medar and Boldrini [18] proved
the global existence of weak solutions and the regularity of solution was studied
by Ortega-Torres and Rojas-Medar [13]. More, strong solution was obtained by
Rojas-Medar [16] (local), Ortega-Torres and Rojas-Medar [14] (global) by using
the spectral Galerkin method. The convergence rates to this method were estab-
lished in [17]. An interactive method was used in [15] to show the existence and
uniqueness of strong solution.



When (2 is a exterior domain, the existence of weak solution for stationary
model associated a (1.1)-(1.2) was studied in [2], the evolution case was done in
[3].

However, no study of existence and uniqueness has been considered for system
(1.1)-(1.2) in unbounded domains.

In work , we use an iterative process to prove the existence and uniqueness of
strong solution.

The paper is organized as follows: in Section 2 we state some preliminaries re-
sults that will be useful in the rest of the paper; state the results of existence and
uniqueness of strong solutions as also some apriori estimates that form the theo-
rical basis for the problem. In Section 3 we study the linear problems associated
a (1.1) and (1.2). In Section 4 we prove our result.

Finally, we would like to say that, as it usual in this context, to simplic-
ity the notation in the expressions we will denote by ¢, Cy, M, generics finites
positives constants depending only on €2 and the other fixed parameters of the
problem (like the initial data) that may have different values in different expres-
sions. In a few points to emphasize the fact that the constants are different we
use C,CYy, ..., My, M>, - -+ and so on.

2. Preliminaries

We use the classical notations and results of the Sobolev spaces. For £k =0,1,2, ...
and 1 < p < o0,

Wy (Q) ={ue L)/ > [[Dfu < oo}

P
la|<k

Wy H(@Qr) ={u € Ly(@Qr) / [ully21 g, = el + 2 1030l @) < o0},

la|<2
where D2 = ()™ (2) (2)"

oz o) Oxs
It is know that the values of the function from W2'(Qr) on the hyperplane
2

t = const. belong for V ¢ € [0,7] to the Slobodetsku Besov space Wp ?(2) and
depend continuously on ¢ in the norm of Wp E(Q), defined by

(Z IDzally o+ 3 b |x_y|1+p( dexdy)p.

la|<1 |a|=1

luf .-
WP

’t)llv
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Moreover, we have the inequality

||11(-,t) < ||11(,U)|| 22

||W;_%(Q) W I—Z,(Q) +C||“||W§’1(QT)7

where the constant ¢ does not depend on t.
For more details of the Slobodetskii-Besov space see [8]

Theorem 2.1. Let p > 3. assume that

uy(z) € W25 (Q), uglg, =0, divuy =0,

2

9_2
wo(z) € Wy 7(2), wyls, =0,

f7 g ELP(QT)‘

Then there exists Ty € (0,T] such that problem (1.1)-(1.2) has a unique solution
(u, w,p) which satisfies

uc W;,I(QTE)J
Vp S LP(QTl)

3. Linear problems

In this section, we study some linear problems associated with (1.1)-(1.2). The
first Lemma is proved in Solonnikov [20]

Lemma 3.1. Let F(z,t) € Ly(Qr) and up(z) € Win;(Q) with uy|s, = 0 and
div uy = 0, then the following problem

aa—l;—(quur)AquVp = F,
diva = 0,
uls, = 0,
u(0) = uo(x)

has a unique solution u € W' (Qr), satisfying

lallwzgn + IVPIL@r) < Ki(T)(luo]l -

P

) + ||F||Lp(QT))7

2
(
where K(+) is an increasing function of T.
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The following result is a special case of the result for parabolic system given
in [19].

_2
Lemma 3.2. Let G(z,t) € L,(Qr) and wy(x) € Wp2 ?(Q2) with wy|s, = 0, then
the following problem

88—‘: — (o + ca) AW — (co + ¢4 — )V divw +4pu,w = G,

W|5T = 0,
w(0) = wy(z)

has a unique solution w € W2 (Qr), satisfying

¥lhyz g < K)ol o 3+ 1G5y 0m)

where K5 (+) is an increasing function of T.

4. Auxiliar result

We construct approximate solution inductively

and for & = 1,2,3,...,{u® p®} and {w®} are respectively, the solutions of
problems

ouk)
lalt o (H + Nr)Au(k) + vp(k) = f + 2“7‘ rot W(kil) - (u(kil) ’ v)u(kil)a
divu® = 0,
u(k)|ST = 0,
u®(0) = uy(x)
and
ow )
v(;t — (ca + cd)Aw(k) — (co 4+ g — o)V div wk) 4 4urw(k)

= g+2u, rot u® Y — (uF V. v)wk-D
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k)|ST = 0,
wB(0) = wo(x).

Now, we prove the boundeness of above sequence.

Lemma 4.1. For sufficiently small Ty € (0,T], the sequence {u®), p*) w1 js
bounded in W' (Qr) X Ly(Qr) x W2 (Qx,).

Proof. Let
() = [0y g + WP 22 g + VPP 1,00
From Lemmas (3.1)-(3.2) imply

eO(T) < Ky(T)(]|wll + 1Ellzy0n + 1(* Y- V) * Y|, o

2 2
w, F(@Q
+(12u, rot wE VL 0,))

+K2(T)(||WO||W2—%( Q) + ||g||Lp(QT) + ||(11(k71) . V)WUC*UHLP(QT)

+[124, rot u*! ,@1))-

Now, we estimate the right-hand side of the above inequality.
The following estimate was obtained in

1 V) llnyor) < C Il g o+ T7RED(D)?
W, P(Q

with some positive constant § and C' > 2.
We will prove

1 Vyw Dl ) < Clliwll

2
p

P(Q

30, + 7%= (73,
where o > 0.
In fact, we have
1 )wEE ) < TN @ IV, o
We observe that
IVwED @)L, w0 (1) lwa o)
— a — l1-a
WD @) 20 W ED @15 )

VANV



— p-3
where a = L

By other hand, see Ladyzhenskaya and Solonnikov [7], we have

1w D@ < clliwoll ooz +T0720=D a1 (1)) (4.1)
w, P(Q)
and X ,
1-Ha-2 -
[0 Dllsan < elllun] og o+ TOTTPREDD)), (4.2)
Consequently,
T
N0 WD oy < TN g [ ITWE D@, gt (4.3)
<

T
(k— (k— k—
< I o IwE DL [ w0 @) 5 g de.

But,

r (k—1) ap r s % r (k— apr
[ IO e < ([ vae) ([ w0 )

since a < 1, we take % =1—a, % = a then %—I—% = 1 and thus in the last inequality,

we have
1—a r (k—1) P ‘
7 ([ I 0l

S~
~
El
AN

1—a (k—1) | ap
< T (4.4
< 7 (e®)T
The inequalities (4.1), (4.2), (4.3) and (4.4) imply
||(11(k71)'V)W(k71)||Lp(QT) < TFTGC(HUOH z_z( )_i_T(l—%)(l—%)q)(kl)(T))
w, 7(©
x(Iwoll oo+ TP REDT) (2l 0)

We observe that
([[woll -3 )+T(l‘%)(l‘%)q)(k—l)(T))l—a % T5" (q,(k—n)“
w, P(Q

p

< 2(iwolll g+ TP @) T (20(D)

Wp

a

3

3

l—a
= 2wl ), Q)(TW(I)U“)(T))“) + 170 U(T),

Wy



p
Also,
[wol| -2 l=a g
—a T ar k-1 (T
Iwoll 2, (a0 < — Wt T @ T
W, P() 1—a T
where we use the inequality x%y% <L+ 4 % + % = 1, consequently
lwoll'"2, (& ®(T)Y) < (1-a)llwol|l , 3 +al'5% @ED(T)
W, P(Q) w, P(9)
loa
S ||W0||Wp2,% =+ CLT ap (}(k 1)(T)
Consequently
_1 _3 _
[(® Y- V)W Vo < cllluoll 27%(9)+T(1 D0k 1(T))
P

%27 (|[wo|| oz +aT w @ED(T)) x T GE-D(T)
W, P(Q)

2wl ,

IN

+

2+ woll? Lz
S (?) W, *(Q)

l—a 2

(Tg(lfi)(lf%)_i_(T = +T‘51)2) (@(k—l)(T)) :

Setting 7 = 7200 (Tla__; +T°1)2) we have

2
laD-9)w Dl o) < c2“1<[||uo||2 e L A Ca () ]
w, ?(Q) w, *(Q)

g p

Also, we observe that

||VW(k*1)(t)||Lp(Q) < ||W(k71)(t)||wpl(n)
< E=D||
< WO g
follows that

sup (121, ot WD (O)l0) < e sup [WEDQ L

0<t<T 0<t<T W, F(Q)
< CHW(kil)(t)“Wj’l(Qt) + ||W0||W2_%(Q)

P

VAN

c@(T) + [lwo|

Wy

2 .
P()



Analogously,

IN

sup |24, rot u Y (#)]|1, ) ¢ sup |Ju* V@) L2
0<t<T 0<t<T W, ?(Q)

[a® DOl + Mol .-

p

IN

2
P ()

IN

@) + fluoll .oz
W, F(Q)

The above estimates imply the following inequality

oM (T) < Kl(T)(Iluo||W2

P

@5D(T) + [[wo|
WP

. . 0 (k—1) 2
¢ oy T WMlisan + (Ol og  +To@E (D)) +

o) T (D) ((lwol| .-

P

: b T 182, (@r)

+C2_a_1(||u0||2 2-2 2
WP P p
+c®*-V(T) + b2
c (T) ”uOHW,, p(m)
< K(T)(C +CcT'o*(T)? + co=1(T),

where K(T') = max(K,(T), K2(T')) and v = min(c, 0).

5. Proof of the Theorem

Settlng u(nzs) (t) — u(n+s) (t) — u(n) (t),p(nas) — p(n+s) — p(n) and W(TL,S) — W(n+5) _
w(™ we have

au<n,s> n,s n,s n,s
o — () Au)  vp) = e,
div u™ = 0, (5.1)
u("’5)|5T = 0,
u™)(0) = 0,
where F%) = 24, rot w=59) — (u*=1) . V)urts=l) — (0D - V)u=1) and
Ow ()
Tt (o + cg) AW — (o + ¢4 — co)V div w™®) 4 4y, w) = Gm9)
wm|g, = 0, (5.2)
wm(0) = 0,
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where G*) = 2y, rot u*=1*) — (ur+s=D . V)w=1s) — (un=19) . ¥)w-b),
Let

\If(”’s)(t) = ||u(n,s)

)+||Vp( %)

(Qe)-

w21 + w2 23

Then, it follows that for ¢ € (0,7}],

IFCN, 0o < VWL o™ 8- v =D)L o [ (0@ - w) a2 .
By other hand
(n—1,s) (n—1+s) ¢ (n—1+s) p (n—1,s) p

[(™™>* - V)u N @y < /0 [Vu (ML, 0™ (M) @) d7

t
< sup ||Vu(n_1+s)(7)||§p(n)/ ||u(n_1’s)(7)||poo(g)d7
0<s<t 0

t
< swp OO [0 oy dr
0<s<t
< sup Hu(n—l-i—s ||p / ||un 1,s) “p dT
0<s<t
< (n—1+s) 0
< (O ;,(m
t
(141 (n—1+5) P (n—1,s) 1P
+2|lu (Dl (gn) /OE”Hu (PR
and
t
||(u(n71)_V)u(n 1,s) ||Lp o < /0dT/Q|u(n71)|P|vu(n71,S)|Pdl‘
t
< "IN g [ IVa I,
< g I / a9 s oy dr
0<7<t P
< sup [ju Y ||”Z /||u" M g O
0<7<t w,
< (Ja™ PO -

W, %(m

+C||u" b ||W21 (Q1) Ep/ ||11n L,s) ||W21 )dT

10



and

||VW mobe ||Lp Q1)

t
< /OHVW(TL*LS)“IEP(Q)dT

< [

< /||wn“||p 0
P

< /||w"“||Wu

consequently

t
(n—1,s)||P
Lp(Qt = C/o [l ||W§’1(Qr)d7+(||u0||wf%(m
t
llgn—1+9) P (n—1,s)
OOz [ 7

-+ g2 5.3
(ol 3., (5.

t
+E||u(nfl+s)(7_)||W;,1(Qt))11/0 EPHu(nfl,S)Hi;Vg’l(QT)dT.

Also, we have

||(u(n+sfl) . V)W(n 1,s

t
Wy < [ dr [ Dot 19

t
< I g ) IVWOT I, oy
t
< swp uttp et ar
0<7<t P 0 W, P(Q)
< u .
< (huoll 3

t
Rl R e Ll (PR

(@)

t
(@5 )yw=D] 6, < /||VW(”‘”(T)||” =B g

< sup VWOV ) [ ||”o<,
0<s<t

11



t
< sup WOV g, [ I 0y dr

0<s<t

< gup w0V g / [N
0<s<t Py P(

< w g

< o||W;_%(m

t
AW g o) f) @I

t
||Vu” 1s||Lp Q) < /0||Vu(n—1,s)||1£pm)d7-

t
Pl

/“un 1,s) ||P , 2 dT
P
~p (n—1,s)||P
s ¢ /0 u®™" HWz?’l(Qr)dT’

Then, from , it follows that for ¢ € (0, 71],

A

A

G gy < cllVa® I o) + (22 V)wDIg

+||(u(n+s—1) . v)w(n—l,s) p

Lp(Qr)
t
C/ ||u(n—1,s) 2
0 ) W, ?(Q)

t
Alwer(m—1) . (n—1,8)||P
+c||lw (T)“sz’l(Qt))p/O Ju “Wp“(QT)dT
+e(f|uol]

I

(5.4)

Wl P @)

1) 1,
el |y ) /||w” Moz, -

By using the estimates (5.1), (5.4) and together with Lemma 4.1, we have for
t€[0,71] and p > 3

W) (1) < ¢ ( / Cpn 1) (T)pf (5.5)

] <e |

0

or

{\I’("_l’s)(T)]p dr,

12



consequently U(™)(¢) — 0 as n — oo, V t € [0,T}]. Firstly, we observe that
W21 (Qy) is a Banach space and consequently, we have there exist u,w € W' (Qr,),
such that

n

u” — u strongly in W;’I(Qn),
w" — w strongly in W;’I(Qﬁ)-

Also, from of the completeness of L,((Q);, ), there exist p € L,(Qr,) such that
p" — p strongly in L,(Qq,).

Now, the next step is to take limit. But, once the above convergences have
been established, this is a standard procedure to obtain that u,w,p is a strong
solution of the problem (1.1)-(1.2).

We need only to argument the uniqueness of the solution in order to complete
the proof of Theorem . Suppose that there exist another solution u;, wy,p; of
(1.1) and (1.2) with the same regularity as stated in the Theorem. Define

U=u —u W=w;—w, P=p; —p.

These auxiliar functions verify a set of equations similar to (5.1)-(5.2). Repeat
the argument used to obtain (5.5), we get for 0(¢) = [|U|]? ..., . + [WI? 21, . +
Wy (Qr) Wy (Q1)

I1PI17,(q,) an inequality of the following type

0(t) < c/ote(T)dT

which, by Gronwall’s inequality, is equivalent to assert U = 0, W =0, P = 0.
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