Strong periodic solutions for a class of abstract evolution equations

G. Eukaszewicz ${ }^{1 *}$, E. E. Ortega-Torres ${ }^{2 \dagger}$, and M. A. Rojas-Medar ${ }^{3 \ddagger}$

${ }^{1}$ Departament of Mathematics
University of Warsaw, ul. Banacha 2, 02-097
Warsaw, Poland
${ }^{2}$ Departamento de Matemáticas
Universidad de Antofagasta, Casilla 170
Antofagasta, Chile
${ }^{3}$ Departamento de Matemática Aplicada
IMECC-UNICAMP, C.P. 6065, 13081-970
Campinas-SP, Brazil

Abstract. We consider a class of abstract evolution equations in a Hilbert space for which we prove existence and uniqueness of strong time periodic solutions. The result covers many models in hydrodynamics.

Key words: periodic solution, existence, uniqueness, hydrodynamics, Galerkin approximation

AMS subject classification: 35Q35

[^0]
1. Introduction.

We prove existence and uniqueness of strong periodic solutions for a class of abstract evolution equations of the form

$$
\begin{equation*}
\frac{d}{d t} U+\mathcal{L} U+B(U, U)+R U=F \tag{1.1}
\end{equation*}
$$

in a Hilbert space \mathcal{H}. As an application we consider the system of equations of magnetomicropolar fluids. Our result covers several other models in hydrodynamics, including, e.g., Navier-Stokes equations with nonhomogenous boundary conditions, magnetohydrodynamics equations, and micropolar fluid equations.

Our assumptions are as follows.
\mathcal{L} is a self-adjoint, strictly positive operator in \mathcal{H} with domain $\mathcal{D}(\mathcal{L})$ and compact inverse.
B is a bilinear form in $\mathcal{H} \times \mathcal{H}$ such that

$$
\begin{equation*}
|\mathcal{B}(U, V, W)| \leq c_{1}\left|\mathcal{L}^{\theta} U\right| \cdot\left|\mathcal{L}^{\rho} U\right| \cdot|W| \tag{1.2}
\end{equation*}
$$

for $U \in D\left(\mathcal{L}^{\theta}\right), V \in D\left(\mathcal{L}^{\rho}\right), W \in \mathcal{H}$, where $\mathcal{B}(U, V, W)=(B(U, V), W),(\cdot, \cdot)$ and $|\cdot|$ denote scalar product and norm in \mathcal{H}, respectively,

$$
\begin{equation*}
\theta+\rho \geq \frac{5}{4}, \quad \rho>\frac{1}{2}, \quad \theta>0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(B(U, V), V)=0, \quad U, V \in D\left(\mathcal{L}^{1 / 2}\right) \tag{1.4}
\end{equation*}
$$

R is a linear operator in \mathcal{H} such that

$$
\begin{equation*}
|\mathcal{R}(U, V)| \leq c_{2}\left|\mathcal{L}^{1 / 2} U\right| \cdot|V| \tag{1.5}
\end{equation*}
$$

where $\mathcal{R}(U, V)=(R U, V)$, and

$$
\begin{equation*}
\mathcal{A}(U, U)+\lambda \mathcal{R}(U, U) \geq k_{1}\left|\mathcal{L}^{1 / 2} U\right|^{2}, \quad \lambda \in[0,1] \tag{1.6}
\end{equation*}
$$

where $\mathcal{A}(U, V)=\left(\mathcal{L}^{1 / 2} U, \mathcal{L}^{1 / 2} V\right), \quad U, V \in D\left(\mathcal{L}^{1 / 2}\right), k_{1}>0$. We prove the following

Theorem 1.1 Let the assumptions (1.2)-(1.6) hold, and let $F \in C^{1}(\tau, \mathcal{H})$ for some $\tau>0$. Then there exists a constant M such that if

$$
\begin{equation*}
\sup _{t}|F(t)| \leq M \tag{1.7}
\end{equation*}
$$

then (1.1) has a unique strong τ-periodic solution

$$
\begin{equation*}
U \in H^{2}(\tau ; \mathcal{H}) \cap H^{1}(\tau ; D(\mathcal{L})) \cap L^{\infty}(\tau ; D(\mathcal{L})) \cap W^{1, \infty}\left(\tau ; D\left(\mathcal{L}^{1 / 2}\right)\right) \tag{1.8}
\end{equation*}
$$

By $C^{k}(\tau, \mathcal{H}), k=0,1,2, \ldots$, we denote the Banach space of \mathcal{H}-valued τ-periodic functions on R^{1} with continuous derivatives up to order k, with the usual norm

$$
\|f\|_{C^{k}(\tau, \mathcal{H})}=\sup \left\{\sum_{i=0}^{k}\left|D_{t}^{i} f(t)\right|: 0 \leq t \leq \tau\right\}
$$

For a Hilbert space X, by $H^{k}(\tau, X), k=0,1,2, \ldots$, we denote the Hilbert space of X valued functions on R^{1} that belong, together with their derivatives up to order k , to the space of τ-periodic measurable functions $L^{2}(\tau ; X)$ with the norm $\|f\|_{L^{2}(\tau ; X)}=\left(\int_{0}^{\tau}\|f(t)\|_{X}^{2} d t\right)^{1 / 2}$. Similarly, we define Banach spaces $L^{\infty}(\tau ; X)$ and $W^{1, \infty}(\tau ; X)$ with norms

$$
\|f\|_{L^{\infty}(\tau ; X)}=\sup \operatorname{ess}\left\{\|f(t)\|_{X}: 0 \leq t \leq \tau\right\}
$$

and

$$
\|f\|_{W^{1, \infty}(\tau ; X)}=\left(\|f\|_{L^{\infty}(\tau ; X)}^{2}+\left\|D_{t} f\right\|_{L^{\infty}(\tau ; X)}^{2}\right)^{1 / 2}
$$

By C we denote various numeric constants.

The proof of theorem 1.1 is based on a set of estimates applied to the family $U_{n} \in C^{1}\left(\tau ; \mathcal{H}_{n}\right), n=$ $1,2,3, \ldots$ of approximate solutions, where $\mathcal{H}_{n}=\operatorname{lin}\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ and $\left(\omega_{i}\right)$ is a complete orthonormal system in \mathcal{H} consisting of eigenfunctions of the operator \mathcal{L}, cf. [5].

In section 2 we prove the existence of solutions U_{n}. In section 3 we obtain a set of estimates of U_{n} that allows us to pass to the limit with n. In section 4 we prove the existence of a solution of equation (1.1) satisfying (1.8) by letting n to infinity as well as its uniqueness.

Section 5 presents an application of theorem 1.1 to the system of equations of magnetomicropolar fluids.

2. Approximate solutions and first order estimates.

Let

$$
\begin{equation*}
\left(U_{t}, \omega_{i}\right)+\mathcal{A}\left(U, \omega_{i}\right)+\mathcal{B}\left(U, U, \omega_{i}\right)+\mathcal{R}\left(U, \omega_{i}\right)=\left(F, \omega_{i}\right), \quad i=1,2, \ldots, n \tag{2.1}
\end{equation*}
$$

where $U(t)=U_{n}(t)=\sum_{i=1}^{n} c_{i n}(t) \omega_{i}, U(t)=U(t+\tau), n=1,2,3, \ldots$ be the system of ODE defining approximate solutions of equation (1.1).

Lemma 2.1 For each n there exists a solution $U \in C^{1}\left(\tau, \mathcal{H}_{n}\right)$ of the nonlinear problem (2.1).

Proof. The linear problem

$$
\begin{gather*}
\left(U_{t}, \phi\right)+\mathcal{A}(U, \phi)=(F, \phi)-\mathcal{R}(V, \phi)-\mathcal{B}(V, V, \phi), \quad \phi \in \mathcal{H}_{n}, \tag{2.2}\\
U(t)=U(t+\tau)
\end{gather*}
$$

has a unique solution (cf. [1], [2]) $U \in C^{1}\left(\tau, \mathcal{H}_{n}\right)$ for each $V \in C^{0}\left(\tau, \mathcal{H}_{n}\right)$. Consider the map $\Phi: V \rightarrow U$ in the space $C^{0}\left(\tau, \mathcal{H}_{n}\right)$. We shall show that Φ has a fixed point by using the Leray-Schauder theorem.

We prove that for every U and $\lambda \in[0,1]$ satisfying $\lambda \Phi(U)=U$,

$$
\begin{equation*}
\sup _{0 \leq t \leq \tau}|U(t)| \leq C M \quad \text { for some } C>0 \tag{2.3}
\end{equation*}
$$

where M is a constant in (1.7).

For $\lambda=0, U=0$. Let $\lambda>0$ and assume $\lambda \Phi(U)=U$. Then, from (2.2)

$$
\left(U_{t}, \phi\right)+\mathcal{A}(U, \phi)=\lambda(F, \phi)-\lambda \mathcal{R}(U, \phi)-\lambda \mathcal{B}(U, U, \phi)
$$

With $\phi=U$, in view of (1.4), we obtain

$$
\frac{1}{2} \frac{d}{d t}|U|^{2}+\mathcal{A}(U, U)+\lambda \mathcal{R}(U, U)=\lambda(F, U)
$$

Denoting by μ the smallest eigenvalue of \mathcal{L} we have

$$
\begin{equation*}
\left|\mathcal{L}^{\alpha} U\right| \leq \mu^{\alpha-\beta}\left|\mathcal{L}^{\beta} U\right|, \quad 0 \leq \alpha \leq \beta \tag{2.4}
\end{equation*}
$$

whence $|(F, U)| \leq C|F|\left|\mathcal{L}^{1 / 2} U\right|$, and by (1.6) we obtain

$$
\begin{equation*}
\frac{d}{d t}|U|^{2}+k_{1}\left|\mathcal{L}^{1 / 2} U\right|^{2} \leq C M^{2} \tag{2.5}
\end{equation*}
$$

Integrating in t and using the periodicity of U we have

$$
\int_{o}^{\tau}\left|\mathcal{L}^{1 / 2} U(t)\right|^{2} d t \leq C M^{2} \tau
$$

whence, by the mean value theorem for integrals and (2.4), there exists $t^{*} \in[0, \tau]$ such that

$$
\begin{equation*}
\left|U\left(t^{*}\right)\right| \leq C\left|\mathcal{L}^{1 / 2} U\left(t^{*}\right)\right| \leq C M \tag{2.6}
\end{equation*}
$$

Integrating again (2.5) from t^{*} to $t+\tau, t \in[0, \tau]$ we obtain (2.3). As the map Φ is continuous and compact in $C^{0}\left(\tau ; \mathcal{H}_{n}\right)$ we conclude the existence of a fixed point U for Φ. Observe that (2.3) holds for this U.

Now we shall prove a fundamental estimate.

Lemma 2.2 Let $U=U_{n}$ be the solution from (2.1). Then there exists a constant C independent of n and such that

$$
\begin{equation*}
\sup _{t \in R^{1}}\left|\mathcal{L}^{1 / 2} U(t)\right| \leq C M^{1 / 2} \tag{2.7}
\end{equation*}
$$

Proof. From (2.6) with $M<1$ we have

$$
\left|\mathcal{L}^{1 / 2} U\left(t^{*}\right)\right|<C M^{1 / 2}
$$

Let $T^{*}=\sup \left\{T:\left|\mathcal{L}^{1 / 2} U(t)\right| \leq C M^{1 / 2}\right.$ for $\left.t \in\left[t^{*}, T\right)\right\}$. We shall show that $T^{*}=\infty$, whence (2.7) by periodicity. Let us assume to the contrary that $T^{*}<\infty$. Then

$$
\begin{equation*}
\left|\mathcal{L}^{1 / 2} U\left(T^{*}\right)\right|=C M^{1 / 2} \tag{2.8}
\end{equation*}
$$

Our aim is to derive, using (2.8), the differential inequality

$$
\begin{equation*}
\frac{d}{d t}\left|\mathcal{L}^{1 / 2} U\left(T^{*}\right)\right|^{2} \leq 0 \tag{2.9}
\end{equation*}
$$

that shows the contradiction in view of the definition of T^{*}.

For all $\phi \in \mathcal{H}_{n}$ we have

$$
\begin{equation*}
\left(U_{t}, \phi\right)+\mathcal{A}(U, \phi)+\mathcal{B}(U, U, \phi)+\mathcal{R}(U, \phi)=(F, \phi) \tag{2.10}
\end{equation*}
$$

Setting $\phi=\mathcal{L} U$ we obtain

$$
\frac{1}{2} \frac{d}{d t}\left|\mathcal{L}^{1 / 2} U\right|^{2}+|\mathcal{L} U|^{2} \leq|F||\mathcal{L} U|+|\mathcal{R}(U, \mathcal{L} U)|+|\mathcal{B}(U, U, \mathcal{L} U)|
$$

where we have used $(\mathcal{L} U, \phi)=\mathcal{A}(U, \phi), U \in D(\mathcal{L}), \phi \in \mathcal{H}$. Now by (1.2) and (1.5),

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left|\mathcal{L}^{1 / 2} U\right|^{2}+|\mathcal{L} U|^{2} \leq|F||\mathcal{L} U|+c_{2}\left|\mathcal{L}^{1 / 2} U\right| \cdot|\mathcal{L} U|+c_{1}\left|\mathcal{L}^{1 / 4} U\right| \cdot|\mathcal{L} U|^{2} \tag{2.11}
\end{equation*}
$$

Let us consider this inequality at point $t=T^{*}$. Then, by (2.3), (2.8), and the interpolation inequality

$$
\begin{equation*}
\left|\mathcal{L}^{\sigma} U\right| \leq c_{2}\left|\mathcal{L}^{\alpha} U\right|^{\gamma} \cdot\left|\mathcal{L}^{\beta} U\right|^{1-\gamma}, \quad U \in D\left(\mathcal{L}^{\beta}\right) \tag{2.12}
\end{equation*}
$$

where $\sigma=\alpha \lambda+\beta(1-\lambda), 0 \leq \alpha \leq \sigma \leq \beta, \lambda \geq 0$, we have

$$
\begin{align*}
&\left|\mathcal{L}^{1 / 4} U\right| \cdot|\mathcal{L} U|^{2} \leq C|U|^{1 / 2} \cdot\left|\mathcal{L}^{1 / 2} U\right|^{1 / 2} \cdot|\mathcal{L} U|^{2} \leq C M^{1 / 2} M^{1 / 4}|\mathcal{L} U|^{2} \tag{2.13}\\
&\left|\mathcal{L}^{1 / 2} U\right| \cdot|\mathcal{L} U| \leq \leq \varepsilon|\mathcal{L} U|^{2}+c_{\varepsilon}\left|\mathcal{L}^{1 / 2} U\right|^{2} \tag{2.14}\\
& \leq \varepsilon|\mathcal{L} U|^{2}+c_{\varepsilon}|U| \cdot|\mathcal{L} U| \\
& \leq \varepsilon|\mathcal{L} U|^{2}+c_{\varepsilon} M \cdot|\mathcal{L} U| \\
& \leq \varepsilon|\mathcal{L} U|^{2}+c_{\varepsilon} M^{1 / 2} \cdot\left|\mathcal{L}^{1 / 2} U\right| \cdot|\mathcal{L} U| \\
& \leq \varepsilon|\mathcal{L} U|^{2}+c_{\varepsilon} M^{1 / 2}|\mathcal{L} U|^{2}
\end{align*}
$$

and, by (1.7),

$$
\begin{equation*}
|F||U| \leq C M|\mathcal{L} U|=C M^{1 / 2}\left|\mathcal{L}^{1 / 2} U\right| \cdot|\mathcal{L} U| \leq C M^{1 / 2}|\mathcal{L} U|^{2} \tag{2.15}
\end{equation*}
$$

Thus, from (2.11), together with (2.13)-(2.15), we get

$$
\frac{1}{2} \frac{d}{d t}\left|\mathcal{L}^{1 / 2} U\right|^{2}+(1-C(M))|\mathcal{L} U|^{2} \leq 0
$$

where $C(M) \searrow 0$ as $M \searrow 0$, whence (2.9), provided M is small enough. Q.E.D.

Now using (2.7) and (2.11) we have, for small M,

$$
\frac{d}{d t}\left|\mathcal{L}^{1 / 2} U\right|^{2}+|\mathcal{L} U|^{2} \leq|F|^{2}+C M
$$

In view of the periodicity of U, by integration we obtain

$$
\begin{equation*}
\int_{0}^{\tau}|\mathcal{L} U(t)|^{2} d t \leq C\left(M, M_{0}\right), \quad M_{0} \equiv\left(\int_{0}^{\tau}|F(t)|^{2} d t\right)^{1 / 2} \tag{2.16}
\end{equation*}
$$

Lemma 2.3 Let U be the solution from (2.1). Then

$$
\begin{equation*}
\sup _{t \in R^{1}}\left|U_{t}(t)\right|^{2} \leq C\left(M, M_{0}, M_{1}\right), \quad C\left(M, M_{0}, M_{1}\right) \text { independent of } n, \tag{2.17}
\end{equation*}
$$

where M_{0} is as in (2.16) and $M_{1}=\left(\int_{0}^{\tau}\left|F_{t}(t)\right|^{2} d t\right)^{1 / 2}$.

Proof. Set $\phi=U_{t}$ in (2.10). Then we have, by (1.5),

$$
\begin{equation*}
\left|U_{t}\right|^{2}+\frac{1}{2} \frac{d}{d t}\left|\mathcal{L}^{1 / 2} U\right|^{2} \leq|F|\left|U_{t}\right|+c_{2}\left|\mathcal{L}^{1 / 2} U\right| \cdot\left|U_{t}\right|+\left|\mathcal{B}\left(U, U, U_{t}\right)\right| \tag{2.18}
\end{equation*}
$$

In view of (1.2) and (2.7),

$$
\begin{align*}
\left|\mathcal{B}\left(U, U, U_{t}\right)\right| & \leq c_{1}\left|\mathcal{L}^{1 / 4} U\right| \cdot|\mathcal{L} U| \cdot\left|U_{t}\right| \tag{2.19}\\
& \leq C M^{1 / 2}|\mathcal{L} U|^{2}+C M^{1 / 2}\left|U_{t}\right|^{2}
\end{align*}
$$

and from (2.18), (2.19), for small M,

$$
\left|U_{t}\right|^{2}+\frac{d}{d t}\left|\mathcal{L}^{1 / 2} U\right|^{2} \leq|F|^{2}+C\left|\mathcal{L}^{1 / 2} U\right|^{2}+C M^{1 / 2}|\mathcal{L} U|^{2}
$$

After integration in t we obtain, in view of (2.16), (2.7),

$$
\begin{equation*}
\int_{0}^{\tau}\left|U_{t}(t)\right|^{2} d t \leq C\left(M, M_{0}\right) \tag{2.20}
\end{equation*}
$$

Now, let us differentiate (2.10) with respect to t and set $\phi=U_{t}$. Then we get, by (1.4),

$$
\left(U_{t t}, U_{t}\right)+\mathcal{A}\left(U_{t}, U_{t}\right)+\mathcal{B}\left(U_{t}, U, U_{t}\right)+\mathcal{R}\left(U_{t}, U_{t}\right)=\left(F_{t}, U_{t}\right)
$$

whence, from (1.6),

$$
\frac{d}{d t}\left|U_{t}\right|^{2}+2 k_{1}\left|\mathcal{L}^{1 / 2} U_{t}\right|^{2} \leq C\left|F_{t}\right|^{2}+\frac{k_{1}}{2}\left|\mathcal{L}^{1 / 2} U_{t}\right|^{2}+2\left|\mathcal{B}\left(U_{t}, U, U_{t}\right)\right|
$$

By (1.2),

$$
\begin{aligned}
2\left|\mathcal{B}\left(U_{t}, U, U_{t}\right)\right| & \leq 2 c_{1}\left|\mathcal{L}^{1 / 2} U_{t}\right| \cdot|\mathcal{L} U| \cdot\left|U_{t}\right| \\
& \leq \frac{k_{1}}{2}\left|\mathcal{L}^{1 / 2} U_{t}\right|^{2}+C|\mathcal{L} U|^{2} \cdot\left|U_{t}\right|^{2}
\end{aligned}
$$

From the two last inequalities we conclude

$$
\begin{equation*}
\frac{d}{d t}\left|U_{t}\right|^{2}+k_{1}\left|\mathcal{L}^{1 / 2} U_{t}\right|^{2} \leq C\left|F_{t}\right|^{2}+C|\mathcal{L} U|^{2} \cdot\left|U_{t}\right|^{2} \tag{2.21}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
\frac{d}{d t}\left|U_{t}\right|^{2} \leq C\left|F_{t}\right|^{2}+C|\mathcal{L} U|^{2} \cdot\left|U_{t}\right|^{2} \tag{2.22}
\end{equation*}
$$

We shall use now the uniform Gronwall lemma [8]. We have

$$
\int_{t}^{t+\tau}\left|U_{t}(s)\right|^{2} d s=\int_{0}^{\tau}\left|U_{t}(s)\right|^{2} d s \leq C\left(M, M_{0}\right)
$$

by (2.20), and by (2.16)

$$
\int_{t}^{t+\tau}|\mathcal{L} U(s)|^{2} d s=\int_{0}^{\tau}|\mathcal{L} U(s)|^{2} d s \leq C\left(M, M_{0}\right)
$$

By our assumptions,

$$
\int_{t}^{t+\tau}\left|F_{t}(s)\right|^{2} d s=\int_{0}^{\tau}\left|F_{t}(s)\right|^{2} d s \leq M_{1}^{2}
$$

¿From the uniform Gronwall lemma applied to inequality (2.22) we obtain

$$
\left|U_{t}(t+\tau)\right|^{2} \leq\left\{\frac{C\left(M, M_{0}\right)}{\tau}+M_{1}^{2}\right\} \exp C\left(M, M_{0}\right) \quad \text { for } \quad \text { all } t \geq 0
$$

Since U is τ-periodic, we obtain (2.17). Q.E.D.

3. Higher order estimates.

Lemma 3.1 Let U be the approximate solution from (2.1). Then

$$
\begin{equation*}
\sup _{t \in R^{1}}|\mathcal{L} U(t)| \leq C\left(M, M_{0}, M_{1}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{t \in R^{1}}\left|\mathcal{L}^{1 / 2} U_{t}(t)\right| \leq C\left(M, M_{0}, M_{1}\right) \tag{3.2}
\end{equation*}
$$

Proof. Set $\phi=\mathcal{L} U$ in (2.10), use (1.2) and (1.5), and then (2.17), (2.7), and (1.7) to get

$$
\begin{aligned}
|\mathcal{L} U|^{2} \leq\left|U_{t}\right| \cdot|\mathcal{L} U|+ & c_{1}\left|\mathcal{L}^{1 / 2} U\right| \cdot|\mathcal{L} U| \cdot|\mathcal{L} U|+c_{2}\left|\mathcal{L}^{1 / 2} U\right| \cdot|\mathcal{L} U|+|F| \cdot|\mathcal{L} U| \\
\leq & C\left(M, M_{0}, M_{1}\right)|\mathcal{L} U|+C M^{1 / 2}|\mathcal{L} U|^{2}
\end{aligned}
$$

For M such that $1-C M^{1 / 2}>0$ we obtain (3.1).

In order to obtain the second estimate of the lemma we differentiate identity (2.10) with respect to t and then set $\phi=\mathcal{L} U_{t}$. Using (1.2) and (1.5) we get

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left|\mathcal{L}^{1 / 2} U_{t}\right|^{2}+\left|\mathcal{L} U_{t}\right|^{2} \leq c_{1}\left|\mathcal{L}^{1 / 2} U_{t}\right| \cdot\left|\mathcal{L}^{3 / 4} U\right| \cdot\left|\mathcal{L} U_{t}\right|+c_{1}\left|\mathcal{L}^{1 / 2} U\right| \cdot\left|\mathcal{L}^{3 / 4} U_{t}\right| \cdot\left|\mathcal{L} U_{t}\right| \\
+C\left|\mathcal{L}^{1 / 2} U_{t}\right|^{2}+\frac{1}{4}\left|\mathcal{L} U_{t}\right|^{2}+\left|F_{t}\right|^{2}+\frac{1}{4}\left|\mathcal{L} U_{t}\right|^{2}
\end{gathered}
$$

Using (2.4) and (3.1) we get

$$
\begin{equation*}
\frac{d}{d t}\left|\mathcal{L}^{1 / 2} U_{t}\right|^{2}+\left|\mathcal{L} U_{t}\right|^{2} \leq C\left(M, M_{0}, M_{1}\right)\left|\mathcal{L}^{1 / 2} U_{t}\right| \cdot\left|\mathcal{L} U_{t}\right| \tag{3.3}
\end{equation*}
$$

$$
+C M\left|\mathcal{L} U_{t}\right|^{2}+C\left|\mathcal{L}^{1 / 2} U_{t}\right|^{2}+\left|F_{t}\right|^{2}
$$

From (2.21), (2.20),

$$
\begin{equation*}
\int_{0}^{\tau}\left|\mathcal{L}^{1 / 2} U_{t}\right|^{2} d t \leq C\left(M, M_{0}, M_{1}\right) \tag{3.4}
\end{equation*}
$$

and from (3.3), (3.4) and for M small enough,

$$
\int_{0}^{\tau}\left|\mathcal{L} U_{t}\right|^{2} d t \leq C\left(M, M_{0}, M_{1}\right)^{3 / 2} \cdot\left(\int_{0}^{\tau}\left|\mathcal{L} U_{t}\right|^{2} d t\right)^{1 / 2}+C\left(M, M_{0}, M_{1}\right)
$$

whence

$$
\begin{equation*}
\int_{0}^{\tau}\left|\mathcal{L} U_{t}(t)\right|^{2} d t \leq C\left(M, M_{0}, M_{1}\right) \tag{3.5}
\end{equation*}
$$

Thus, for some $t^{*} \in[0, \tau]$,

$$
\left|\mathcal{L}^{1 / 2} U_{t}\left(t^{*}\right)\right|^{2} \leq C\left(M, M_{0}, M_{1}\right)
$$

and, after integration of (3.3) in t from t^{*} to $t+\tau, t \in[0, \tau]$ we obtain (3.2). Q.E.D.

Lemma 3.2 Let U be the approximate solution from (2.1) Then

$$
\begin{equation*}
\int_{0}^{\tau}\left|U_{t t}(t)\right|^{2} d t \leq C\left(M, M_{0}, M_{1}\right) \tag{3.6}
\end{equation*}
$$

Proof. Differentiate (2.10) with respect to t and set $\phi=U_{t t}$. We get

$$
\begin{gathered}
\left|U_{t t}\right|^{2} \leq\left|\mathcal{A}\left(U_{t}, U_{t t}\right)\right|+\left|\mathcal{R}\left(U_{t}, U_{t t}\right)\right|+\left|\mathcal{B}\left(U_{t}, U, U_{t t}\right)\right|+\left|\mathcal{B}\left(U, U_{t}, U_{t t}\right)\right|+\left|\left(F_{t}, U_{t t}\right)\right| \\
\leq\left|\mathcal{L} U_{t}\right| \cdot\left|U_{t t}\right|+C\left|\mathcal{L}^{1 / 2} U_{t}\right| \cdot\left|U_{t t}\right|+c_{1}\left|\mathcal{L}^{1 / 2} U_{t}\right| \cdot|\mathcal{L} U| \cdot\left|U_{t t}\right|+c_{1}\left|\mathcal{L}^{1 / 2} U\right| \cdot\left|\mathcal{L} U_{t}\right| \cdot\left|U_{t t}\right|+\left|F_{t}\right| \cdot\left|U_{t t}\right|
\end{gathered}
$$

in view of (1.2), (1.5), so that, by (2.4), (3.1), and (3.2),

$$
\left|U_{t t}\right|^{2} \leq C\left(M, M_{0}, M_{1}\right)\left|\mathcal{L} U_{t}\right|^{2}+C\left|F_{t}\right|^{2}
$$

Integration in t gives (3.6), by (3.5). Q.E.D.

4. Convergence and uniqueness.

¿From the estimates we have obtained it follows that $\left(U_{n}\right)$ is a bounded sequence in

$$
\begin{equation*}
H^{2}(\tau ; \mathcal{H}) \cap H^{1}(\tau ; D(\mathcal{L})) \cap L^{\infty}(\tau ; D(\mathcal{L})) \cap W^{1, \infty}\left(\tau ; D\left(\mathcal{L}^{1 / 2}\right)\right) \tag{4.1}
\end{equation*}
$$

and that there exists a subsequence $\left(U_{\mu}\right)$ and some U in the space (4.1) such that

$$
\begin{gathered}
U_{\mu} \rightarrow U \quad \text { weak star in } L^{\infty}(\tau ; D(\mathcal{L})) \\
U_{\mu} \rightarrow U \quad \text { strongly in } L^{\infty}\left(\tau ; D\left(\mathcal{L}^{1 / 2}\right)\right) \\
D_{t} U_{\mu} \rightarrow D_{t} U \quad \text { weak star in } L^{\infty}\left(\tau ; D\left(\mathcal{L}^{1 / 2}\right)\right) \\
D_{t} U_{\mu} \rightarrow D_{t} U \quad \text { strongly in } L^{\infty}(\tau ; \mathcal{H})
\end{gathered}
$$

Set $U=U_{\mu}$ in the identity (2.1) for $\mu \geq n$, and let $\mu \rightarrow \infty$ To obtain (1.1) observe that, by (1.2) and (2.12), for all $\phi \in \mathcal{H}_{n}$ we have

$$
\begin{gathered}
\left|\mathcal{B}\left(U_{\mu}, U_{\mu}, \phi\right)-\mathcal{B}(U, U, \phi)\right| \leq\left|\mathcal{B}\left(U_{\mu}-U, U_{\mu}, \phi\right)\right|+\left|\mathcal{B}\left(U, U_{\mu}-U, \phi\right)\right| \\
\leq c_{1}\left|\mathcal{L}^{1 / 2}\left(U_{\mu}-U\right)\right| \cdot\left|\mathcal{L}^{3 / 4} U_{\mu}\right| \cdot|\phi|+c_{1}\left|\mathcal{L}^{1 / 2} U\right| \cdot\left|\mathcal{L}^{1 / 2}\left(U_{\mu}-U\right)\right|^{1 / 2} \cdot\left|\mathcal{L}\left(U_{\mu}-U\right)\right|^{1 / 2}|\phi| \rightarrow 0
\end{gathered}
$$

uniformly in t, in view of (2.7), (3.1), and then

$$
\left(U_{t}, \phi\right)+\mathcal{A}(U, \phi)+\mathcal{B}(U, U, \phi)+\mathcal{R}(U, \phi)=(F, \phi)
$$

easily follows for the limit function U and all $\phi \in \mathcal{H}$.

To prove the uniqueness assume, to the contrary, that there are two different solutions U and V. Then $W=U-V$ satisfies, for all $\phi \in \mathcal{H}$,

$$
\left(W_{t}, \phi\right)+\mathcal{A}(W, \phi)+\mathcal{B}(U, W, \phi)+\mathcal{B}(W, V, \phi)+\mathcal{R}(W, \phi)=0
$$

Set $\phi=W$ and we get by (1.2), (2.12), (2.4) and (2.7), (3.1),

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}|W|^{2}+k_{1}\left|\mathcal{L}^{1 / 2} U\right|^{2} \leq|\mathcal{B}(W, V, W)| \leq c_{1}\left|\mathcal{L}^{1 / 2} W\right| \cdot\left|\mathcal{L}^{3 / 4} V\right| \cdot|W| \leq \\
& \leq c_{1}\left|\mathcal{L}^{1 / 2} W\right| \cdot\left|\mathcal{L}^{1 / 2} V\right|^{1 / 2} \cdot|\mathcal{L} V|^{1 / 2} \cdot|W| \leq M^{1 / 4} \cdot C\left(M, M_{0}, M_{1}\right)\left|\mathcal{L}^{1 / 2} W\right|^{2}
\end{aligned}
$$

whence for small M we obtain, for some $c>0$,

$$
\begin{equation*}
\frac{d}{d t}|W|^{2}+c|W|^{2} \leq 0 \tag{4.2}
\end{equation*}
$$

which leads to the contradiction, as (4.2) yields $W \equiv 0$ by Gronwall's lemma and periodicity of W. This proves the uniqueness. Q.E.D.

Remark 4.1 Observe that in fact we have used (1.2)-(1.3) only for three pairs of parameters (θ, ρ), namely, $(1 / 4,1),(1 / 2,1)$, and $(1 / 2,3 / 4)$. Thus, we can weaken the assumption (1.2)-(1.3) of theorem 1.1 appropriately.

5. Application.

As an example of application of theorem 1.1 we shall consider a model of magneto-micropolar fluid. In the incompressible case the governing system of equations for this model is [7]:

$$
\begin{gather*}
\operatorname{div} u=0, \quad \operatorname{div} h=0 \tag{5.1}\\
\frac{\partial u}{\partial t}-\left(\nu+\nu_{r}\right) \Delta u+(u \cdot \nabla) u+\nabla\left(p+\frac{1}{2} h \cdot h\right)=2 \nu_{r} \operatorname{rot} \omega+r h \cdot \nabla h+f \tag{5.2}\\
j \frac{\partial \omega}{\partial t}-\alpha \triangle \omega-\beta \nabla \operatorname{div} \omega+j(u \cdot \nabla) \omega+4 \nu_{r} \omega=2 \nu_{r} \operatorname{rot} u+g \tag{5.3}\\
\frac{\partial h}{\partial t}-\gamma \Delta h+u \cdot \nabla h-h \cdot \nabla u=0 \tag{5.4}
\end{gather*}
$$

where u is the velocity, p is the pressure, ω is the microrotation (angular velocity of rotation of particles) and h is the magnetic field. Moreover, f and g are external fields and $\nu, \nu_{r}, j, \alpha, \beta, \gamma$ are positive constants (ν is the usual Newtonian viscosity, ν_{r} is the microrotation viscosity). We assume that the density of the fluid is equal to one. We also set $r=j=1$ for simplicity. Let Ω be a bounded set in R^{3} with smooth boundary.

By \mathcal{H} we denote the Hilbert space $H \times L^{2}(\Omega)^{3} \times H$ where H is the closure in the norm of $L^{2}(\Omega)^{3}$ of the set of divergence free, smooth functions with compact support in Ω. The norm in \mathcal{H} will be denoted by [•].

We introduce the following operators:

$$
\begin{aligned}
& \mathcal{L}(U)=\left(-\left(\nu+\nu_{r}\right) \mathcal{P} \triangle u_{1},-\alpha \Delta \omega_{1}-(\alpha+\beta) \nabla \operatorname{div} \omega_{1},-\gamma \mathcal{P} \triangle h_{1}\right)=\left(A_{1} u_{1}, A_{2} \omega_{1}, A_{3} h_{1}\right) \\
& \text { for } U=\left(u_{1}, \omega_{1}, h_{1}\right) \in D(\mathcal{L}), V=\left(u_{2}, \omega_{2}, h_{2}\right) \in D(\mathcal{L}), \\
& B(U, V)=\left(\mathcal{P}\left(u_{1} \cdot \nabla u_{2}\right)-\left(\mathcal{P} h_{1} \cdot \nabla h_{2}\right), u_{1} \cdot \nabla \omega_{2},\left(\mathcal{P} u_{1} \cdot \nabla h_{2}\right)-\left(\mathcal{P} h_{1} \cdot \nabla u_{2}\right)\right) \\
& R(U)=\left(-2 \nu_{r} \operatorname{rot} \omega_{1},-2 \nu_{r} \operatorname{rot} u_{1}+4 \nu_{r} \omega_{1}, 0\right)
\end{aligned}
$$

The operator \mathcal{P} above is the orthogonal projection in $L^{2}(\Omega)^{3}$ on the subspace H. In this notation the system of equations (5.1)-(5.4) takes the form (1.1) with $F=(\mathcal{P} f, g, 0)$

We check the assumptions of theorem 1.1.

Operator \mathcal{L} is self-adjoint, positive with $\left.D(\mathcal{L})=W^{2,2}(\Omega)^{3} \times W^{2,2}(\Omega)^{3} \times W^{2,2}(\Omega)^{3}\right) \cap\left(W_{0}^{1,2}(\Omega)^{3} \times\right.$ $W_{0}^{1,2}(\Omega)^{3} \times W_{0}^{1,2}(\Omega)^{3} \cap \mathcal{H}$ where $W^{2,2}(\Omega)$ and $W_{0}^{1,2}(\Omega)$ are Sobolev spaces. The norms $[\mathcal{L} U]$ and $\|U\|_{W^{2,2}}$ are equivalent on $D(\mathcal{L})$. We denote $X^{\theta}=D\left(\mathcal{L}^{\theta}\right)$ and $Y_{i}^{\theta}=D\left(A_{i}^{\theta}\right), i=1,2,3$. Observe that $Y_{2}^{\theta}=D\left(-\triangle^{\theta}\right), 0 \leq \theta \leq 1$.

Operator B satisfies (1.4), cf. [7]. ¿From properties of the Laplace and the Stokes operators [3], [4], [5] we have, in particular, $Y_{i}^{1 / 4} \subset L^{3}(\Omega), Y_{i}^{1 / 2} \subset L^{6}(\Omega), Y_{i}^{3 / 4} \subset W^{1,3}(\Omega)$, with continuous imbeddings. Thus, for $u \in Y_{1}^{1 / 4}, v \in Y_{i}, i=1,2,3$,

$$
|u \cdot \nabla v| \leq c|u|_{L^{3}} \cdot|\nabla v|_{L^{6}} \leq c_{1}\left|A_{1}^{1 / 4} u\right| \cdot\left|A_{i} v\right|
$$

and, similarly, for $u \in Y_{1}^{1 / 2}, v \in Y_{i}^{3 / 4}, i=1,2,3$,

$$
|u \cdot \nabla v| \leq c|u|_{L^{6}} \cdot|\nabla v|_{L^{3}} \leq c_{1}\left|A_{1}^{1 / 2} u\right| \cdot\left|A_{i}^{3 / 4} v\right| .
$$

Finally, after simple calculations, we obtain

$$
|B(U, V)| \leq c_{1}\left[\mathcal{L}^{1 / 4} U\right] \cdot[\mathcal{L} V]
$$

and

$$
|B(U, V)| \leq c_{1}\left[\mathcal{L}^{1 / 2} U\right] \cdot\left[\mathcal{L}^{3 / 4} V\right]
$$

for $U \in X^{1 / 4}, V \in X^{1}$ and $U \in X^{1 / 2}, V \in X^{3 / 4}$, respectively.

Moreover, operator R satisfies (1.5) and also (1.6) holds, cf. [6].

From theorem 1.1, cf. Remark 4.1, follows existence of τ-periodic solution for the system of equations of magneto-micropolar fluids.

References

[1] Amann, H.,Ordinary Differential Equations, W\&G, 1990.
[2] Burton T.A.,Stability and periodic solutions of ordinary and functional differential equations, Academic Press, 1985.
[3] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Springer - Verlag, Berlin Heidelberg New York, 1981
[4] Giga, Y. and Miyakawa, T.,Solutions in L_{r} of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 89 (1985), 267-281.
[5] Kato, H.,Existence of periodic solutions of the Navier-Stokes equations, J. Math. Anal. and Appl., 208(1997), 141-157.
[6] G. Lukaszewicz, Micropolar fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, Basel, Berlin, 1999.
[7] M. Rojas-Medar Magneto-micropolar fluid motion: existence and uniqueness of strong solutions, Math. Nach., 188 (1997), 301-319.
[8] R.Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer-Verlag, New York, 1997.

[^0]: *Supported by the Polish Government grant KBN 2 P301 003 14, and FAPESP/Brazil, 2000/01569-7
 ${ }^{\dagger}$ PhD. Student, IMECC-UNICAMP, Supported by CNPq-Brazil.
 \ddagger Supported by research grants: 300116/93, CNPq-BRAZIL and FAPESP-BRAZIL, 1997/3711-0.

