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1. Introdution.

We prove existene and uniqueness of strong periodi solutions for a lass of abstrat evolution

equations of the form

d

dt

U + LU +B(U; U) +RU = F(1.1)

in a Hilbert spae H. As an appliation we onsider the system of equations of magneto-

miropolar uids. Our result overs several other models in hydrodynamis, inluding, e.g.,

Navier-Stokes equations with nonhomogenous boundary onditions, magnetohydrodynamis

equations, and miropolar uid equations.

Our assumptions are as follows.

L is a self-adjoint, stritly positive operator in H with domain D(L) and ompat inverse.

B is a bilinear form in H�H suh that

jB(U; V;W )j � 

1

jL

�

U j � jL

�

U j � jW j(1.2)

for U 2 D(L

�

), V 2 D(L

�

), W 2 H, where B(U; V;W ) = (B(U; V );W ), (�; �) and j � j denote

salar produt and norm in H, respetively,

� + � �

5

4

; � >

1

2

; � > 0;(1.3)

and

(B(U; V ); V ) = 0; U; V 2 D(L

1=2

)(1.4)

R is a linear operator in H suh that

jR(U; V )j � 

2

jL

1=2

U j � jV j(1.5)

where R(U; V ) = (RU; V ), and

A(U; U) + �R(U; U) � k

1

jL

1=2

U j

2

; � 2 [0; 1℄(1.6)

where A(U; V ) = (L

1=2

U;L

1=2

V ); U; V 2 D(L

1=2

); k

1

> 0: We prove the following

Theorem 1.1 Let the assumptions (1.2)-(1.6) hold, and let F 2 C

1

(�;H) for some � > 0.

Then there exists a onstant M suh that if

sup

t

jF (t)j �M(1.7)
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then (1.1) has a unique strong � -periodi solution

U 2 H

2

(� ;H) \H

1

(� ;D(L)) \ L

1

(� ;D(L)) \W

1;1

(� ;D(L

1=2

))(1.8)

By C

k

(�;H), k = 0; 1; 2; :::, we denote the Banah spae of H-valued � -periodi funtions on

R

1

with ontinuous derivatives up to order k, with the usual norm

jjf jj

C

k

(�;H)

= supf

k

X

i=0

jD

i

t

f(t)j : 0 � t � �g

For a Hilbert spae X, by H

k

(�;X), k = 0; 1; 2; :::, we denote the Hilbert spae of X val-

ued funtions on R

1

that belong, together with their derivatives up to order k, to the spae

of � -periodi measurable funtions L

2

(� ;X) with the norm jjf jj

L

2

(� ;X)

= (

R

�

0

jjf(t)jj

2

X

dt)

1=2

.

Similarly, we de�ne Banah spaes L

1

(� ;X) and W

1;1

(� ;X) with norms

jjf jj

L

1

(� ;X)

= sup essfjjf(t)jj

X

: 0 � t � �g

and

jjf jj

W

1;1

(� ;X)

= (jjf jj

2

L

1

(� ;X)

+ jjD

t

f jj

2

L

1

(� ;X)

)

1=2

By C we denote various numeri onstants.

The proof of theorem 1.1 is based on a set of estimates applied to the familyU

n

2 C

1

(� ;H

n

); n =

1; 2; 3; ::: of approximate solutions, where H

n

= linf!

1

; !

2

; :::; !

n

g and (!

i

) is a omplete or-

thonormal system in H onsisting of eigenfuntions of the operator L, f. [5℄.

In setion 2 we prove the existene of solutions U

n

. In setion 3 we obtain a set of estimates of

U

n

that allows us to pass to the limit with n. In setion 4 we prove the existene of a solution

of equation (1.1) satisfying (1.8) by letting n to in�nity as well as its uniqueness.

Setion 5 presents an appliation of theorem 1.1 to the system of equations of magneto-

miropolar uids.

2. Approximate solutions and �rst order estimates.

Let

(U

t

; !

i

) +A(U; !

i

) + B(U; U; !

i

) +R(U; !

i

) = (F; !

i

); i = 1; 2; :::; n(2.1)
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where U(t) = U

n

(t) =

P

n

i=1



in

(t)!

i

, U(t) = U(t + �), n = 1; 2; 3; ::: be the system of ODE

de�ning approximate solutions of equation (1.1).

Lemma 2.1 For eah n there exists a solution U 2 C

1

(�;H

n

) of the nonlinear problem (2.1).

Proof. The linear problem

(U

t

; �) +A(U; �) = (F; �)�R(V; �)� B(V; V; �); � 2 H

n

;(2.2)

U(t) = U(t + �)

has a unique solution (f. [1℄, [2℄) U 2 C

1

(�;H

n

) for eah V 2 C

0

(�;H

n

). Consider the map

� : V ! U in the spae C

0

(�;H

n

). We shall show that � has a �xed point by using the

Leray-Shauder theorem.

We prove that for every U and � 2 [0; 1℄ satisfying ��(U) = U ,

sup

0�t��

jU(t)j � CM for some C > 0(2.3)

where M is a onstant in (1.7).

For � = 0; U = 0. Let � > 0 and assume ��(U) = U . Then, from (2.2)

(U

t

; �) +A(U; �) = �(F; �)� �R(U; �)� �B(U; U; �)

With � = U , in view of (1.4), we obtain

1

2

d

dt

jU j

2

+A(U; U) + �R(U; U) = �(F; U)

Denoting by � the smallest eigenvalue of L we have

jL

�

U j � �

���

jL

�

U j; 0 � � � �;(2.4)

whene j(F; U)j � CjF jjL

1=2

U j, and by (1.6) we obtain

d

dt

jU j

2

+ k

1

jL

1=2

U j

2

� CM

2

(2.5)

Integrating in t and using the periodiity of U we have

Z

�

o

jL

1=2

U(t)j

2

dt � CM

2

�;
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whene, by the mean value theorem for integrals and (2.4), there exists t

�

2 [0; � ℄ suh that

jU(t

�

)j � CjL

1=2

U(t

�

)j � CM(2.6)

Integrating again (2.5) from t

�

to t+ � , t 2 [0; � ℄ we obtain (2.3). As the map � is ontinuous

and ompat in C

0

(� ;H

n

) we onlude the existene of a �xed point U for �. Observe that

(2.3) holds for this U .

Now we shall prove a fundamental estimate.

Lemma 2.2 Let U = U

n

be the solution from (2.1). Then there exists a onstant C independent

of n and suh that

sup

t2R

1

jL

1=2

U(t)j � CM

1=2

(2.7)

Proof. From (2.6) with M < 1 we have

jL

1=2

U(t

�

)j < CM

1=2

Let T

�

= supfT : jL

1=2

U(t)j � CM

1=2

for t 2 [t

�

; T )g. We shall show that T

�

= 1, whene

(2.7) by periodiity. Let us assume to the ontrary that T

�

<1. Then

jL

1=2

U(T

�

)j = CM

1=2

(2.8)

Our aim is to derive, using (2.8), the di�erential inequality

d

dt

jL

1=2

U(T

�

)j

2

� 0(2.9)

that shows the ontradition in view of the de�nition of T

�

.

For all � 2 H

n

we have

(U

t

; �) +A(U; �) + B(U; U; �) +R(U; �) = (F; �)(2.10)

Setting � = LU we obtain

1

2

d

dt

jL

1=2

U j

2

+ jLU j

2

� jF jjLU j+ jR(U;LU)j+ jB(U; U;LU)j

where we have used (LU; �) = A(U; �), U 2 D(L), � 2 H. Now by (1.2) and (1.5),

1

2

d

dt

jL

1=2

U j

2

+ jLU j

2

� jF jjLU j+ 

2

jL

1=2

U j � jLU j+ 

1

jL

1=4

U j � jLU j

2

(2.11)
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Let us onsider this inequality at point t = T

�

. Then, by (2.3), (2.8), and the interpolation

inequality

jL

�

U j � 

2

jL

�

U j



� jL

�

U j

1�

; U 2 D(L

�

)(2.12)

where � = ��+ �(1� �), 0 � � � � � �, � � 0, we have

jL

1=4

U j � jLU j

2

� CjU j

1=2

� jL

1=2

U j

1=2

� jLU j

2

� CM

1=2

M

1=4

jLU j

2

(2.13)

jL

1=2

U j � jLU j � "jLU j

2

+ 

"

jL

1=2

U j

2

(2.14)

� "jLU j

2

+ 

"

jU j � jLU j

� "jLU j

2

+ 

"

M � jLU j

� "jLU j

2

+ 

"

M

1=2

� jL

1=2

U j � jLU j

� "jLU j

2

+ 

"

M

1=2

jLU j

2

and, by (1.7),

jF jjU j � CM jLU j = CM

1=2

jL

1=2

U j � jLU j � CM

1=2

jLU j

2

(2.15)

Thus, from (2.11), together with (2.13)-(2.15), we get

1

2

d

dt

jL

1=2

U j

2

+ (1� C(M))jLU j

2

� 0

where C(M)& 0 as M & 0, whene (2.9), provided M is small enough. Q.E.D.

Now using (2.7) and (2.11) we have, for small M ,

d

dt

jL

1=2

U j

2

+ jLU j

2

� jF j

2

+ CM

In view of the periodiity of U , by integration we obtain

Z

�

0

jLU(t)j

2

dt � C(M;M

0

); M

0

� (

Z

�

0

jF (t)j

2

dt)

1=2

(2.16)

Lemma 2.3 Let U be the solution from (2.1). Then

sup

t2R

1

jU

t

(t)j

2

� C(M;M

0

;M

1

); C(M;M

0

;M

1

) independent of n;(2.17)

where M

0

is as in (2.16) and M

1

= (

R

�

0

jF

t

(t)j

2

dt)

1=2

.
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Proof. Set � = U

t

in (2.10). Then we have, by (1.5),

jU

t

j

2

+

1

2

d

dt

jL

1=2

U j

2

� jF jjU

t

j+ 

2

jL

1=2

U j � jU

t

j+ jB(U; U; U

t

)j(2.18)

In view of (1.2) and (2.7),

jB(U; U; U

t

)j � 

1

jL

1=4

U j � jLU j � jU

t

j:(2.19)

� CM

1=2

jLU j

2

+ CM

1=2

jU

t

j

2

and from (2.18), (2.19), for small M,

jU

t

j

2

+

d

dt

jL

1=2

U j

2

� jF j

2

+ CjL

1=2

U j

2

+ CM

1=2

jLU j

2

After integration in t we obtain, in view of (2.16), (2.7),

Z

�

0

jU

t

(t)j

2

dt � C(M;M

0

):(2.20)

Now, let us di�erentiate (2.10) with respet to t and set � = U

t

. Then we get, by (1.4),

(U

tt

; U

t

) +A(U

t

; U

t

) + B(U

t

; U; U

t

) +R(U

t

; U

t

) = (F

t

; U

t

)

whene, from (1.6),

d

dt

jU

t

j

2

+ 2k

1

jL

1=2

U

t

j

2

� CjF

t

j

2

+

k

1

2

jL

1=2

U

t

j

2

+ 2jB(U

t

; U; U

t

)j

By (1.2),

2jB(U

t

; U; U

t

)j � 2

1

jL

1=2

U

t

j � jLU j � jU

t

j

�

k

1

2

jL

1=2

U

t

j

2

+ CjLU j

2

� jU

t

j

2

From the two last inequalities we onlude

d

dt

jU

t

j

2

+ k

1

jL

1=2

U

t

j

2

� CjF

t

j

2

+ CjLU j

2

� jU

t

j

2

(2.21)

and, in partiular,

d

dt

jU

t

j

2

� CjF

t

j

2

+ CjLU j

2

� jU

t

j

2

(2.22)

We shall use now the uniform Gronwall lemma [8℄. We have

Z

t+�

t

jU

t

(s)j

2

ds =

Z

�

0

jU

t

(s)j

2

ds � C(M;M

0

)

by (2.20), and by (2.16)

Z

t+�

t

jLU(s)j

2

ds =

Z

�

0

jLU(s)j

2

ds � C(M;M

0

)

7



By our assumptions,

Z

t+�

t

jF

t

(s)j

2

ds =

Z

�

0

jF

t

(s)j

2

ds �M

2

1

>From the uniform Gronwall lemma applied to inequality (2.22) we obtain

jU

t

(t+ �)j

2

�

(

C(M;M

0

)

�

+M

2

1

)

expC(M;M

0

) for all t � 0

Sine U is � -periodi, we obtain (2.17). Q.E.D.

3. Higher order estimates.

Lemma 3.1 Let U be the approximate solution from (2.1). Then

sup

t2R

1

jLU(t)j � C(M;M

0

;M

1

)(3.1)

and

sup

t2R

1

jL

1=2

U

t

(t)j � C(M;M

0

;M

1

)(3.2)

Proof. Set � = LU in (2.10), use (1.2) and (1.5), and then (2.17), (2.7), and (1.7) to get

jLU j

2

� jU

t

j � jLU j+ 

1

jL

1=2

U j � jLU j � jLU j+ 

2

jL

1=2

U j � jLU j+ jF j � jLU j

� C(M;M

0

;M

1

)jLU j+ CM

1=2

jLU j

2

For M suh that 1� CM

1=2

> 0 we obtain (3.1).

In order to obtain the seond estimate of the lemma we di�erentiate identity (2.10) with respet

to t and then set � = LU

t

. Using (1.2) and (1.5) we get

1

2

d

dt

jL

1=2

U

t

j

2

+ jLU

t

j

2

� 

1

jL

1=2

U

t

j � jL

3=4

U j � jLU

t

j+ 

1

jL

1=2

U j � jL

3=4

U

t

j � jLU

t

j

+CjL

1=2

U

t

j

2

+

1

4

jLU

t

j

2

+ jF

t

j

2

+

1

4

jLU

t

j

2

Using (2.4) and (3.1) we get

d

dt

jL

1=2

U

t

j

2

+ jLU

t

j

2

� C(M;M

0

;M

1

)jL

1=2

U

t

j � jLU

t

j(3.3)

8



+CM jLU

t

j

2

+ CjL

1=2

U

t

j

2

+ jF

t

j

2

From (2.21), (2.20),

Z

�

0

jL

1=2

U

t

j

2

dt � C(M;M

0

;M

1

)(3.4)

and from (3.3), (3.4) and for M small enough,

Z

�

0

jLU

t

j

2

dt � C(M;M

0

;M

1

)

3=2

� (

Z

�

0

jLU

t

j

2

dt)

1=2

+ C(M;M

0

;M

1

)

whene

Z

�

0

jLU

t

(t)j

2

dt � C(M;M

0

;M

1

)(3.5)

Thus, for some t

�

2 [0; � ℄,

jL

1=2

U

t

(t

�

)j

2

� C(M;M

0

;M

1

)

and, after integration of (3.3) in t from t

�

to t + � , t 2 [0; � ℄ we obtain (3.2). Q.E.D.

Lemma 3.2 Let U be the approximate solution from (2.1) Then

Z

�

0

jU

tt

(t)j

2

dt � C(M;M

0

;M

1

)(3.6)

Proof. Di�erentiate (2.10) with respet to t and set � = U

tt

. We get

jU

tt

j

2

� jA(U

t

; U

tt

)j+ jR(U

t

; U

tt

)j+ jB(U

t

; U; U

tt

)j+ jB(U; U

t

; U

tt

)j+ j(F

t

; U

tt

)j

� jLU

t

j � jU

tt

j+ CjL

1=2

U

t

j � jU

tt

j+ 

1

jL

1=2

U

t

j � jLU j � jU

tt

j+ 

1

jL

1=2

U j � jLU

t

j � jU

tt

j+ jF

t

j � jU

tt

j

in view of (1.2), (1.5), so that, by (2.4), (3.1), and (3.2),

jU

tt

j

2

� C(M;M

0

;M

1

)jLU

t

j

2

+ CjF

t

j

2

Integration in t gives (3.6), by (3.5). Q.E.D.

4. Convergene and uniqueness.

>From the estimates we have obtained it follows that (U

n

) is a bounded sequene in

H

2

(� ;H) \H

1

(� ;D(L)) \ L

1

(� ;D(L)) \W

1;1

(� ;D(L

1=2

))(4.1)

9



and that there exists a subsequene (U

�

) and some U in the spae (4.1) suh that

U

�

! U weak star in L

1

(� ;D(L))

U

�

! U strongly in L

1

(� ;D(L

1=2

))

D

t

U

�

! D

t

U weak star in L

1

(� ;D(L

1=2

))

D

t

U

�

! D

t

U strongly in L

1

(� ;H)

Set U = U

�

in the identity (2.1) for � � n, and let � ! 1 To obtain (1.1) observe that, by

(1.2) and (2.12), for all � 2 H

n

we have

jB(U

�

; U

�

; �)� B(U; U; �)j � jB(U

�

� U; U

�

; �)j+ jB(U; U

�

� U; �)j

� 

1

jL

1=2

(U

�

� U)j � jL

3=4

U

�

j � j�j+ 

1

jL

1=2

U j � jL

1=2

(U

�

� U)j

1=2

� jL(U

�

� U)j

1=2

j�j ! 0

uniformly in t, in view of (2.7), (3.1), and then

(U

t

; �) +A(U; �) + B(U; U; �) +R(U; �) = (F; �)

easily follows for the limit funtion U and all � 2 H.

To prove the uniqueness assume, to the ontrary, that there are two di�erent solutions U and

V . Then W = U � V satis�es, for all � 2 H,

(W

t

; �) +A(W;�) + B(U;W; �) + B(W;V; �) +R(W;�) = 0

Set � =W and we get by (1.2), (2.12), (2.4) and (2.7), (3.1),

1

2

d

dt

jW j

2

+ k

1

jL

1=2

U j

2

� jB(W;V;W )j � 

1

jL

1=2

W j � jL

3=4

V j � jW j �

� 

1

jL

1=2

W j � jL

1=2

V j

1=2

� jLV j

1=2

� jW j �M

1=4

� C(M;M

0

;M

1

)jL

1=2

W j

2

whene for small M we obtain, for some  > 0,

d

dt

jW j

2

+ jW j

2

� 0(4.2)

whih leads to the ontradition, as (4.2) yields W � 0 by Gronwall's lemma and periodiity

of W . This proves the uniqueness. Q.E.D.

Remark 4.1 Observe that in fat we have used (1.2)-(1.3) only for three pairs of parameters

(�; �), namely, (1=4; 1); (1=2; 1), and (1=2; 3=4). Thus, we an weaken the assumption (1.2)-(1.3)

of theorem 1.1 appropriately.
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5. Appliation.

As an example of appliation of theorem 1.1 we shall onsider a model of magneto-miropolar

uid. In the inompressible ase the governing system of equations for this model is [7℄:

div u = 0; div h = 0(5.1)

�u

�t

� (� + �

r

)4 u+ (u � r)u+r(p+

1

2

h � h) = 2�

r

rot! + rh � rh+ f(5.2)

j

�!

�t

� �4! � �rdiv! + j(u � r) ! + 4�

r

! = 2�

r

rotu+ g(5.3)

�h

�t

� 4h+ u � rh� h � ru = 0(5.4)

where u is the veloity, p is the pressure, ! is the mirorotation (angular veloity of rotation of

partiles) and h is the magneti �eld. Moreover, f and g are external �elds and �; �

r

; j; �; �; 

are positive onstants (� is the usual Newtonian visosity, �

r

is the mirorotation visosity).

We assume that the density of the uid is equal to one. We also set r = j = 1 for simpliity.

Let 
 be a bounded set in R

3

with smooth boundary.

By H we denote the Hilbert spae H � L

2

(
)

3

�H where H is the losure in the norm of

L

2

(
)

3

of the set of divergene free, smooth funtions with ompat support in 
. The norm

in H will be denoted by [�℄.

We introdue the following operators:

L(U) = (�(� + �

r

)P4u

1

;��4!

1

� (�+ �)rdiv!

1

;�P4h

1

) = (A

1

u

1

; A

2

!

1

; A

3

h

1

)

for U = (u

1

; !

1

; h

1

) 2 D(L), V = (u

2

; !

2

; h

2

) 2 D(L),

B(U; V ) = (P(u

1

� ru

2

)� (Ph

1

� rh

2

); u

1

� r!

2

; (Pu

1

� rh

2

)� (Ph

1

� ru

2

))

R(U) = (�2�

r

rot!

1

;�2�

r

rotu

1

+ 4�

r

!

1

; 0)

The operator P above is the orthogonal projetion in L

2

(
)

3

on the subspae H. In this

notation the system of equations (5.1)-(5.4) takes the form (1.1) with F = (Pf; g; 0)

We hek the assumptions of theorem 1.1.
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Operator L is self-adjoint, positive with D(L) = W

2;2

(
)

3

�W

2;2

(
)

3

�W

2;2

(
)

3

)\(W

1;2

0

(
)

3

�

W

1;2

0

(
)

3

� W

1;2

0

(
)

3

\ H where W

2;2

(
) and W

1;2

0

(
) are Sobolev spaes. The norms [LU ℄

and jjU jj

W

2;2

are equivalent on D(L) . We denote X

�

= D(L

�

) and Y

�

i

= D(A

�

i

); i = 1; 2; 3.

Observe that Y

�

2

= D(�4

�

), 0 � � � 1.

Operator B satis�es (1.4), f. [7℄. >From properties of the Laplae and the Stokes operators [3℄,

[4℄, [5℄ we have, in partiular, Y

1=4

i

� L

3

(
), Y

1=2

i

� L

6

(
), Y

3=4

i

� W

1;3

(
), with ontinuous

imbeddings. Thus, for u 2 Y

1=4

1

, v 2 Y

i

, i = 1; 2; 3,

ju � rvj � juj

L

3

� jrvj

L

6

� 

1

jA

1=4

1

uj � jA

i

vj

and, similarly, for u 2 Y

1=2

1

, v 2 Y

3=4

i

, i = 1; 2; 3,

ju � rvj � juj

L

6

� jrvj

L

3

� 

1

jA

1=2

1

uj � jA

3=4

i

vj:

Finally, after simple alulations, we obtain

jB(U; V )j � 

1

[L

1=4

U ℄ � [LV ℄

and

jB(U; V )j � 

1

[L

1=2

U ℄ � [L

3=4

V ℄

for U 2 X

1=4

, V 2 X

1

and U 2 X

1=2

, V 2 X

3=4

, respetively.

Moreover, operator R satis�es (1.5) and also (1.6) holds , f. [6℄.

From theorem 1.1, f. Remark 4.1, follows existene of � -periodi solution for the system of

equations of magneto-miropolar uids.
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