Strong periodic solutions for a class of abstract evolution

equations

G. Lukaszewicz'*, E. E. Ortega-Torres?] and M. A. Rojas-Medar?!

'Departament of Mathematics
University of Warsaw, ul. Banacha 2, 02-097

Warsaw, Poland

2Departamento de Matemadticas
Universidad de Antofagasta, Casilla 170

Antofagasta, Chile

3Departamento de Matematica Aplicada
IMECC-UNICAMP, C.P. 6065, 13081-970

Campinas-SP, Brazil

Abstract. We consider a class of abstract evolution equations in a Hilbert space for which we
prove existence and uniqueness of strong time periodic solutions. The result covers many models in

hydrodynamics.
Key words: periodic solution, existence, uniqueness, hydrodynamics, Galerkin approximation

AMS subject classification: 35Q35

*Supported by the Polish Government grant KBN 2 P301 003 14, and FAPESP/Brazil, 2000/01569-7
tPhD. Student, IMECC-UNICAMP, Supported by CNPq-Brazil.
tSupported by research grants: 300116/93, CNPq-BRAZIL and FAPESP-BRAZIL, 1997/3711-0.



1. Introduction.

We prove existence and uniqueness of strong periodic solutions for a class of abstract evolution
equations of the form
d

(1.1) %U+£U+B(U, U)+ RU =F

in a Hilbert space H. As an application we consider the system of equations of magneto-
micropolar fluids. Our result covers several other models in hydrodynamics, including, e.g.,
Navier-Stokes equations with nonhomogenous boundary conditions, magnetohydrodynamics

equations, and micropolar fluid equations.
Our assumptions are as follows.
L is a self-adjoint, strictly positive operator in H with domain D(L) and compact inverse.

B is a bilinear form in H x A such that
(1.2) \B(U,V,W)| < et | LU - |£PU| - |[W|

for U € D(LY), V € D(L), W € H, where B(U,V,W) = (B(U,V),W), (-,-) and | - | denote

scalar product and norm in H, respectively,
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1. O+p>° =, 0

(1.3) tpz o p>g 0>0

and

(1.4) (B(U,V),V) =0, UV € D(LY?

R is a linear operator in H such that

(1.5) IR(U, V)| < | LY2U| - |V

where R(U,V) = (RU,V), and

(1.6) AU, U) + AR(U,U) > k |[LY2U)?, A €[0,1]

where A(U, V) = (LY2U,LV?V), U,V € D(LY?), k; > 0. We prove the following

Theorem 1.1 Let the assumptions (1.2)-(1.6) hold, and let F € C'(1,H) for some 7 > 0.
Then there exists a constant M such that if

(1.7) sup |F(t)] < M
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then (1.1) has a unique strong T-periodic solution

(18) U rH) N H (s DIL) N L¥(r DL) 0 W(r; DCY2)

By C*(r,H), k = 0,1,2,..., we denote the Banach space of H-valued 7-periodic functions on

R! with continuous derivatives up to order k, with the usual norm
k .
[ flerrpo = sup{d_ [Dif(t)]: 0 <t < 7}
i=0

For a Hilbert space X, by H*(r,X), k = 0,1,2,..., we denote the Hilbert space of X val-
ued functions on R! that belong, together with their derivatives up to order k, to the space
of 7-periodic measurable functions L?(7;X) with the norm ||f||r2x) = (Jg ||£(8)|/%dt)'/2.
Similarly, we define Banach spaces L>°(7; X) and W*°(7; X)) with norms

[ llzoe(rixy = sup ess{[|f()[|x : 0 <t <7}

and
||f||W1’°°(T;X) = (||f||%oo(f;x) + ||th||%oo(7;x))1/2
By C we denote various numeric constants.
The proof of theorem 1.1 is based on a set of estimates applied to the family U, € C'(1;H,), n =

1,2,3, ... of approximate solutions, where #H,, = lin{wi,ws, ...,w,} and (w;) is a complete or-

thonormal system in H consisting of eigenfunctions of the operator £, cf. [5].

In section 2 we prove the existence of solutions U,,. In section 3 we obtain a set of estimates of
U, that allows us to pass to the limit with n. In section 4 we prove the existence of a solution

of equation (1.1) satisfying (1.8) by letting n to infinity as well as its uniqueness.

Section 5 presents an application of theorem 1.1 to the system of equations of magneto-

micropolar fluids.

2. Approximate solutions and first order estimates.

Let
(2.1) (U, w;) + A(U,w;) + B(U,U,w;) + R(U,w;) = (Fyw;), i=1,2,...,n
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where U(t) = U,(t) = X0 cin(t)ws, U(t) = U(t +7), n = 1,2,3, ... be the system of ODE

defining approximate solutions of equation (1.1).
Lemma 2.1 For each n there exists a solution U € C*(1,H,) of the nonlinear problem (2.1).

Proof. The linear problem
(22) (Ut7 ¢) + A(Ua ¢) = (F7 ¢) - R(Va ¢) - B(V7 V7 ¢)7 ¢ S Hna

Ult)=U(t+T)

has a unique solution (cf. [1], [2]) U € C'(r,H,) for each V € C°(r,H,). Consider the map
® : V — U in the space C°(1,H,). We shall show that ® has a fixed point by using the

Leray-Schauder theorem.
We prove that for every U and A € [0, 1] satisfying A®(U) = U,

(2.3) sup |U(t)| < CM for some C' >0

0<t<r

where M is a constant in (1.7).

For A =0, U =0. Let A > 0 and assume A®(U) = U. Then, from (2.2)

With ¢ = U, in view of (1.4), we obtain

Ld

; dt|U|2 + A(U,U) + AR(U,U) = \(F,U)

Denoting by p the smallest eigenvalue of £ we have
(2.4) 1LoU| < p* P|1LPU], 0<a<p,
whence |(F,U)| < C|F||£?U|, and by (1.6) we obtain

d o 1/27712 2
(2.5) E|U| + k| LU < COM
Integrating in ¢ and using the periodicity of U we have

/ \CY2U (1) 2dt < € M?,
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whence, by the mean value theorem for integrals and (2.4), there exists t* € [0, 7] such that
(2.6) U@ < ClLV?*Ut)| < CM

Integrating again (2.5) from t* to t + 7, t € [0, 7] we obtain (2.3). As the map @ is continuous
and compact in C°(7;H,) we conclude the existence of a fixed point U for ®. Observe that
(2.3) holds for thisU. m

Now we shall prove a fundamental estimate.

Lemma 2.2 Let U = U, be the solution from (2.1). Then there exists a constant C' independent
of n and such that
(2.7) sup [LY2U ()| < CM*Y?

teR!

Proof. From (2.6) with A/ < 1 we have
|LYV2U ()| < O M2

Let T* = sup{T : |L'2U(t)| < CM'? for t € [t*,T)}. We shall show that T* = oo, whence
(2.7) by periodicity. Let us assume to the contrary that 7% < co. Then

(2.8) \.V2U(T*)| = CMY?

Our aim is to derive, using (2.8), the differential inequality

d *
(2.9) £|£1/2U(T )P <0

that shows the contradiction in view of the definition of 7.

For all ¢ € H,, we have

Setting ¢ = LU we obtain

1d
§%|£1/2U|2 + |CU < |F||LU |+ |R(U, LU)| + |B(U, U, LU)|
where we have used (LU, ¢) = A(U,¢), U € D(L), ¢ € H. Now by (1.2) and (1.5),
1d
(2.11) §%|£1/2U|2 + |LU? < |F||LU| + co| LY2U| - |LU| + ¢ | £Y4U| - |LU|?



Let us consider this inequality at point ¢ = T7*. Then, by (2.3), (2.8), and the interpolation
inequality

(2.12) 1L°U| < | LU - |LPU M, U e D(LP)

where 0 = aA+ (1 —)N),0<a <o <3, A >0, we have
(2.13) |LYVAU| - LU < U2 - |LY2U M2 | LU 2 < C MY MY LU 2

(2.14) |LYV2U| - |LU| < e|LU? + .| LY2U 2
< elLUP + e |U| - |LU]
<elLUP +c.M - |LU|
< e|LUP + e.MY? | LV2U) - |LU|
< e|lLU + . MY LU

and, by (1.7),
(2.15) |F||U| < CMILU| = CMY?|LY2U| - |LU| < CMY? LU ?

Thus, from (2.11), together with (2.13)-(2.15), we get

1d
——|LYPUP + (1= C(M))|LUP <0
2dt
where C'(M) N\, 0 as M 0, whence (2.9), provided M is small enough. Q.E.D. ®
Now using (2.7) and (2.11) we have, for small M,
d | 1252 2 2
%|£ U+ LU < |F|"+CM

In view of the periodicity of U, by integration we obtain

(2.16) /0 LU () [2dt < C(M, My), My = (/OT |F(8)[2dt)?

Lemma 2.3 Let U be the solution from (2.1). Then

(2.17) sup Uy (t)[* < C(M, My, My), C(M, My, M,) independent of n,

teR!
where My is as in (2.16) and M, = (fy |Fy(t)|?dt)"/%.
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Proof. Set ¢ = U, in (2.10). Then we have, by (1.5),
(2.18) U|? + %%M”QUF < |F||U| + o LY2U| - U + |B(U, U, U,)|
In view of (1.2) and (2.7),
(2.19) IB(U,U,U,)| < er|[CV*U| - |LU| - |Uy).
< CMY2ILUP + C MY U ?
and from (2.18), (2.19), for small M,
U,|? + %MI/ZUIZ < |FP+C|LYPUP + CMY?|LU?
After integration in ¢ we obtain, in view of (2.16), (2.7),
(2.20) /0 UL(8) Pdt < C(M, Mp).
Now, let us differentiate (2.10) with respect to ¢ and set ¢ = U;. Then we get, by (1.4),
(U, Up) + AU, Uy) + B(Uy, U, Uy) + R(U, Uy) = (F, Uy)

whence, from (1.6),

%|Ut|2 + 2k, |LY2U, )2 < C|F|* + %|£1/2Ut|2 +2|B(U, U, U,)|

By (1.2),
2|B(U,, U, Uy)| < 2¢1|LY2Uy| - |LU| - Uy

k
< §1|£1/2Ut|2 + C|LUJ? - U,

From the two last inequalities we conclude
d
(2.21) %|Ut|2 + & |LV2UE < C\F* + C\1LUP? - U

and, in particular,

d
(2.22) %|Ut|2 < CIF*+ CILU? - U2

We shall use now the uniform Gronwall lemma [8]. We have
t+1 T
/ \U,(s)|2ds :/ \Uy(s)[2ds < C(M, My)
¢ 0
by (2.20), and by (2.16)

t+1 T
/ LU (s)[2ds = / LU (5)[2ds < C(M, Mo)
t 0
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By our assumptions,
t+71 T
| IR = [ |Fi(s)ds < M
t 0

¢ From the uniform Gronwall lemma applied to inequality (2.22) we obtain

C (M, M)

T

Ut + 1) < { —I—Mf}expC’(M, My) for all t>0

Since U is 7-periodic, we obtain (2.17). Q.E.D. =

3. Higher order estimates.

Lemma 3.1 Let U be the approzimate solution from (2.1). Then

(3.1) sup |[LU(t)| < C(M, My, My)
teR!
and
(3.2) sup |LY2U, ()] < C(M, My, M)
teR!

Proof. Set ¢ = LU in (2.10), use (1.2) and (1.5), and then (2.17), (2.7), and (1.7) to get
(LU < (U - |LU| + e1|[ Y201 - [LU] - |LU] + e £42U] - |CU| + |F) - |£U]|

< C(M, My, My)|LU| + CM'V?|LU?

For M such that 1 — CM'? > 0 we obtain (3.1).

In order to obtain the second estimate of the lemma we differentiate identity (2.10) with respect
to t and then set ¢ = LU;. Using (1.2) and (1.5) we get
1d

2dt|£1/2Ut|2 + LU < e[ LU - |L3AU| - | LU + e |[CY2U) - |L34 U] - |LU)

1 1
+CILPUP + S LS + R + LU
Using (2.4) and (3.1) we get

d
(3.3) %|£1/2Ut|2 + |LU|? < C(M, My, M) |LY2Uy| - | LU,



+COM|LU 2+ CILYV2U)? + |F))?

From (2.21), (2.20),
(3.4) / |CY2U,2dt < O(M, Mo, M)
0

and from (3.3), (3.4) and for M small enough,
/T \CUL 2t < C(M, Mo, My)*'? - (/T LU, 2dt) 2 + C(M, Mo, M)
0 0

whence

(3.5) /0 \CUL(8)|2dt < C(M, Mo, M,)

Thus, for some t* € [0, 7],
LUt < C(M, My, M)

and, after integration of (3.3) in ¢ from ¢* to t + 7, t € [0, 7] we obtain (3.2). Q.E.D. =

Lemma 3.2 Let U be the approximate solution from (2.1) Then

(3.6) /0 U (t)[2dt < C(M, My, M)

Proof. Differentiate (2.10) with respect to ¢ and set ¢ = Uy.. We get
U |? < |A(U, Uy)| + |R(U, Un)| + |B(U, U, Uy)| + [B(U, Uy, Uy) | + |(Fy, Uy)|

S |£Ut| . |Utt| + C|£1/2Ut| . |Utt| + Cl|£1/2Ut| . |£U| . |Utt| + Cl|£1/2U| . |£Ut| . |Utt| + |Ft| . |Utt|

in view of (1.2), (1.5), so that, by (2.4), (3.1), and (3.2),
Unl* < C(M, Mo, My)|LULJ* + C|E

Integration in t gives (3.6), by (3.5). Q.E.D. =

4. Convergence and uniqueness.

.From the estimates we have obtained it follows that (U,,) is a bounded sequence in
(4.1) H?(r;H) N H' (73 D(£)) N L® (73 D(L)) N W (75 D(L'?))
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and that there exists a subsequence (U,) and some U in the space (4.1) such that
U,—U weak star in L>(r;D(L))
U, — U strongly in L*(r; D(£Y?))
DU, — DU weak star in L®(r; D(L'?))
DU, — D,U strongly in L*(7;H)

Set U = U, in the identity (2.1) for g > n, and let © — oo To obtain (1.1) observe that, by
(1.2) and (2.12), for all ¢ € H,, we have

|B(Uu7Uu7¢) - B(U7 U7 ¢)| S |B(U,u - U7 Uu7¢)| + |B(U7 Uu - U7 ¢)|
< |LVHU, = U)LY, - || + e L2022 (U, — U) V2L (U, — U) Y2 g] — 0
uniformly in ¢, in view of (2.7), (3.1), and then
(U, ) + AU, ¢) + B(U, U, ¢) + R(U, ¢) = (F, ¢)

easily follows for the limit function U and all ¢ € H.

To prove the uniqueness assume, to the contrary, that there are two different solutions U and
V. Then W = U — V satisfies, for all ¢ € H,

(Wi, 0) + AW, ¢) + B(U, W, ¢) + BIW,V, ¢) + R(W, $) =0

Set ¢ =W and we get by (1.2), (2.12), (2.4) and (2.7), (3.1),
1d
2dt

< 01|£1/2W| . |£1/2V|1/2 . |£V|1/2 ) |W| < MY C(M, MU,M1)|£1/2W|2

(W2 + k|[CPU P < [BOW,V,W)| < o |[CY2W ]| L4V ] (W] <

whence for small M we obtain, for some ¢ > 0,
d 2 2

which leads to the contradiction, as (4.2) yields W = 0 by Gronwall’s lemma and periodicity
of W. This proves the uniqueness. Q.E.D. M

Remark 4.1 Observe that in fact we have used (1.2)-(1.3) only for three pairs of parameters
(0, p), namely, (1/4,1),(1/2,1), and (1/2,3/4). Thus, we can weaken the assumption (1.2)-(1.3)
of theorem 1.1 appropriately.
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5. Application.

As an example of application of theorem 1.1 we shall consider a model of magneto-micropolar

fluid. In the incompressible case the governing system of equations for this model is [7]:

(5.1) divu =0, divh=0
ou 1
(5.2) 5 (V—FVT)AU+(U'V)U+V(p+§h'h) = 2y,rotw +rh - Vh+ f
Ow : .
(5.3) I~ alAw — Vdivw + j(u - V) w + dv,w = 2v, rotu + ¢
oh
(5.4) E—vAh—i—u-Vh—h-Vu:O

where u is the velocity, p is the pressure, w is the microrotation (angular velocity of rotation of
particles) and h is the magnetic field. Moreover, f and g are external fields and v,v,, j, «, 5,
are positive constants (v is the usual Newtonian viscosity, v, is the microrotation viscosity).
We assume that the density of the fluid is equal to one. We also set » = j = 1 for simplicity.
Let © be a bounded set in R? with smooth boundary.

By H we denote the Hilbert space H x L*(Q)® x H where H is the closure in the norm of
L?(Q)? of the set of divergence free, smooth functions with compact support in 2. The norm
in # will be denoted by [-].

We introduce the following operators:

E(U) = (—(l/ + VT)PAul, —ozAwl — (Oé + ﬂ)Vdivwl, —’)/,PAhl) = (Alul, Agwl, Aghl)

for U = (ul,wl,hl) S D(ﬁ), V= (Ug,(x)g,hg) € D(E),
B(U, V) = (P(Ul . VUQ) - (Phl . VhQ), Uy - Vu)Q, (Pul . VhQ) - (Phl . VUQ))

R(U) = (—2v,rotw;, —2v,rotu; + 4v,wy, 0)

The operator P above is the orthogonal projection in L?(Q)® on the subspace H. In this
notation the system of equations (5.1)-(5.4) takes the form (1.1) with F' = (Pf, g,0)

We check the assumptions of theorem 1.1.
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Operator L is self-adjoint, positive with D(L) = W22(Q)? x W22(Q)? x W22(Q)3) N (W, () x
Wy (Q)? x Wy (2)® N H where W22(Q) and W, *(Q) are Sobolev spaces. The norms [LU]
and ||U||y22 are equivalent on D(L) . We denote X? = D(£%) and Y! = D(AY), i = 1,2,3.
Observe that Yy = D(—=A%),0<0 < 1.

I <x)y L. e i )
Operator B satisfies (1.4), cf. [7]. (From properties of the Laplace and the Stokes operators [3]
[4], [5] we have, in particular, Y;*/* ¢ L3(Q), Y}'/* ¢ L5(Q), Y}*/* ¢ W3(Q), with continuous

7

imbeddings. Thus, for u € Y11/4, veY,i1=1,23,
u- Vol < clulps - [Vl < | AT ul - [A]
and, similarly, for u € Y11/2, v e Yi3/4, 1=1,2,3,
u- Vo < clulpe - |Vo|re < er|A1ul - |A¥ o).
Finally, after simple calculations, we obtain
IB(U,V)| < er[£VU] - [LV]

and
IB(U,V)| < ea £1°U] - [£3V]

for U e XY V€ X' and U € X2V € X3/ respectively.
Moreover, operator R satisfies (1.5) and also (1.6) holds , cf. [6].

From theorem 1.1, cf. Remark 4.1, follows existence of 7-periodic solution for the system of

equations of magneto-micropolar fluids.
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