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Abstract

Suppose A is an abelian normal subgroup of a finitely generated group G
such that G/A is abelian and H;(G,Z) is finitely generated for all : . We show
that A is of finite (Priifer) rank. This generalises the main result of [5] that
deals with the same problem for split extension metabelian groups.

1 Introduction

In [5] J. R. J. Groves shows that if G is a finitely generated group, a split extension
of an abelian group A by an abelian group () and the homology group H;(G,Z) is
finitely generated for all 7 then A is of finite rank i.e. A ®; Q is finite dimensional
over (Q and the torsion part of A is finite. We generalise this result to the non-split
case.

Theorem A Suppose that A is a normal abelian subgroup of a finitely generated
group G such that G/A is abelian and H;(G,F,) is finite for all i and all primes p.
Then A is of finite (Priifer) rank.

Corollary B Suppose that A is a normal abelian subgroup of a finitely generated
group G such that G/A is abelian and H;(G,Z) is finitely generated for all i. Then
A is of finite (Prifer) rank.

Our proofs substantially use the method and the main tools from [5]: the ge-
ometric invariant for modules over finitely generated abelian groups defined in [2],
Cartan’s formula for H,(A,F,) for abelian groups A and the finite field F, with p
elements (in the case p = 2 the formula holds only for groups A of exponent 2) and



close examination of the LHS spectral sequence in homology. The new ingredients
are a lemma that gives sufficient conditions when Hy(Q, H;(A,F,)) finite implies
that H;(Q, H;(A,F,)) is finite for all ¢ > 0 and a generalisation of Cartan’s formula
for the homologies of abelian groups with trivial coefficients [F,.

2 Preliminaries on the geometric invariant for mo-
dules over finitely generated abelian groups and
on homologies of abelian group

The geometric invariant ¥,4(Q)) for a finitely generated Z[Q)]-module A was first
defined in [2]. By definition

Ya(Q) ={lx] =Rsox | x € Hom(Q,R) \ {0}, A is finitely generated over Z[Q,]},

Ya(Q) = S(@)\ Za(@)

where @, = {g € @ | x(¢9) > 0} and S(Q) = {[X] | x € Hom(Q,R) \ {0}} =~ R
where n is the torsion-free rank of ). A is said to be m-tame if every m-point subset

of ¥5(Q) is contained in an open half subspace of S(Q). One important property
of tameness is that whenever A is m-tame the m-fold tensor power of A over Z is
finitely generated over Z[@Q] via the diagonal Q-action [1, Section 3.5].

We discuss now an important result of H. Cartan [4] that will play an important
role in the proof of our main theorem. Suppose A is an abelian group. By definition
S7(,A) is the set of elements in the j-th tensor power of ,A = {a € A | pa = 0} over
[, which is invariant under the action of the symmetric group on j elements. Note
§(,,A) = @izogi(pA) is a graded algebra with multiplication given by the shuffle
product * of the tensor algebra of ,A i.e.

(01 ® ... ® a5) % (Ggs1 ® ... @ Gyig) :Zag(1)®...®ag(s+k)

where a; €, A and the sum is over all permutation o such that o(1) < o(2) < ... <
o(s)and o(s+1) <...<o(s+k).

In general homology groups do not have multiplicative structure as cohomology
but in the case of an abelian group A and commutative ring with unity k& there is a
Pontryagin product in H,(A, k) = @;>0H;(A, k) which makes it a strictly anticom-
mutative ring equipped with divided powers, for details see [3, Ch. 5, Section 6].
We remind the reader the axioms of divided powers. There is a family of functions
@ Hyi(A, k) — Hayij(A, k) for all i,j — 1 > 0.
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(:Uy)(i) = xiy(i) whenever z,y are even elements,
(zy)® = 0 if ,y are odd elements.

Proposition 1 /4, Ch. 9, Ch. 10] Suppose p is a prime and F, is the field with p
elements.
1. If p 1s odd B
H.(AF,) = (As, (A/pA)) @5, §(,4)
where A/pA has weight 1 and ,A has weight 2.
2. If p=2 and A s of exponent 2

where A has weight 1.

In both cases the isomorphism is a natural isomorphism of graded divided powers
algebras i.e. preserves grading, the multiplicative and the divided power structures.

Whenever possible we prefer using homologies with coefficients in I, than Z. The
Pontryagin product gives natural embedding of the exterior algebra of Hi(A,Z) ~ A
in H.(A,Z) and it is an isomorphism if A is Z-torsion-free [3, Ch. 5, Thm 6.4]. The
problem is that this embedding does not naturally split as in the case of coefficients
F, for p odd. In [6, Thm C] some results linking the integral homology groups
and finite generations of tensor products are established but they are not directly
applicable to the proof of Theorem A.

3 More on the homology with coefficients in [,

In [3, Thm 6.6] it is stated that there is a non-natural isomorphism
H,(AFy) ~ A(A/24) @ S(A) (%)

and that the above isomorphism could be proved as in the proof of [3, Thm 6.4].
The generating space A = {a € A | 2a = 0} of the symmetric algebra comes from
a non-natural splitting of the exact sequence

0 — A*(A/2A) — Ho(A,Fy) — 24— 0
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Still it is not made clear in [3] how to combine the non-naturality of (%) with the
ideas of the proof of [3, Thm 6.4] that deals with a natural description of homology
groups.

In this section we show how such an isomorphism could be proved and in fact
we give a natural description of H,(A,Fy) in terms of a filtration with quotients iso-
morphic to the direct summands of (). Naturality is important for two purposes.
First it is needed in the proof of the fact that the filtration is exhausting. Secondly
all the applications are for Z[@Q]-modules A and we are interested not only in the un-
derlying additive structure of the homology groups H,(A,Fy) but in their structure
as Z[Q]-modules. As before H.(A,TFy) is equipped with strictly anticommutative
Pontryagin product and divided power structure.

Note that

Hi(A,Fy) ~ A/J2A,

and by the exact universal coefficient sequence
0 — Hy(A,Z) @Fy — Hy(A,Fy) — Tor¥(H,(A,Z),F,) — 0
As Hy(A,Z) ~ N?A and Tor2(H,(A,Z),,) ~ 3A={a € A|2a =0} we have

MN A
A2H (A F,) — 7
Theorem 1 Let
FH(ATF) = > H(AR) H(AF) . Hy(ATF)),

k>0,51+...+je<i

where HQ(A,]FQ)U) is the subspace spanned by all elements \U) for \ € Hy(AFy).
Then Ui F'(H,(A,Fy)) is an ezhausting filtration of the graded algebra H.(AF,)
with quotients F'(H,(A,F,))/F"" Y (H,(A,Fy)) =~ A(A/24) @ S*(,A)

Proof. Note that to prove that

it is sufficient to consider the following cases:

1. A is cyclic;

2. if (#x) holds for the finitely generated abelian groups A; and A, then (xx)
holds A = A; @ Ay;

Then the filtration is exhausting for all finitely generated abelian groups. Finally
as every group A is the direct limit of its finitely generated subgroups and our
filtration commutes with direct limits (xx) holds.
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If A is cyclic and finite then (xx) is proved in [5, p. 124]. If A is infinite then
H;(A,Fy) =0 for all i > 2.

Now we prove that the filtration is exhausting for A = A; ® Ay provided the
same holds for A; and A,. Consider the commutative diagram

(Uis 1 FI(Ho(A1LF2))) © (Ui FH(H, (A9, ) 28 (Uit Fi(HL (A, Fy)))
la @ a la
H, (A, ) @ H.(Az, Fy) -5 H, (A, )

The maps oy, s and « are the obvious inclusions. By assumptions «; and
are isomorphisms. The map

Bi 1 Uss1 P (Ho(Ay, Fy)) — Ugs1 F¥(H. (A, 7))
is induced by the map
Hj(Ai,]FQ) — Hj(A,Fg)

for j = 1,2. The map ¢ is the inclusion given by the Kuneth formula and as Fy
is a field ¢ is an isomorphism. Then ¢(a; ® a3) is an isomorphism and hence « is
surjective. By construction « is injective and so « is an isomorphism, as required.
Then (; ® (5 is an isomorphism too.

Claim (51 @ 52)(X1, o FU(HL(A1,F2)) © FI(H. (A0, Fy))) = F™(H.(A,Fy))

Proof. Assume x1,y; are elements of degree one and x5, i, are elements of degree
two. Then by the axioms of divided powers for j > 2 the element (25 + o + z,y1)")
equals

Z xé“l)yéaz)(xlyl)(“”: Z xé“l)y§”‘2)+ Z xé‘“l)y§“2)x1y1

a1+ontaz=j a1+as=j ar+az=j—1
This together with the Kuneth formula
Hy(A,Fy) ~ @o<icoli (A1, Fy) @ Hai(As, IFy)
implies

HZ(AJIE‘Q)(]) C Z H2(A17E‘2)(j0)H1(A17F2)j1 ®HI(AZJFZ)jIHZ(AZJFZ)(j2)

Jo+j1+j2=j

C AH(A,Fy) > Hy(A,Fy)U0) Hy(A,F,)0?)

Jo+32<j



This together with the definition of the filtration implies

F"(H(AF)) € (5Bi® ) Y FIH(ALR)) ® F/(H(4,F,)))

i+j=m
The inverse inclusion is obvious.
By the claim and the fact that 5, ® [ is an isomorphism we have
F™(H. (A, )/ F™ (Ho (A Fp)) =
Do<icn I (Ho (A1, ) /FHH(ALT)) © F™ 7 (Ho(ALFy)) /[ F™ 7 HH (AL F))
By assumption

F(H,(A,Fy))/F* Y (Ho(AL Fy)) o A(A1/2A1) ® S'(2(Ar))

F™ i(H,(Ay, Fy))/F™ Y (H (AL Fy)) o2 A(A2/24,) ® S™ ¥ (5(Az))

Furthermore
A(A1/2A1) @ AN(Ag/2A5) ~ N((A1/241) & (A/245)) = N(A/2A)
Finally it remains to note that for abelian groups M and N of exponent 2
Bocicm (ST (M) @ S™ H(N)) ~ §™(M & N)

and apply this for M = 5(A;), N = 5(42), M ® N ~ ;A={a € A|2a =0} to
obtain the required isomorphism

F™(H.(A,F2))/F™" 7 (Ho (A Fy)) = (A(A/24)) © S™(54)

The formula about M and N could be verified either by hand or by Proposition 1
(remember both M and N have exponent 2) it is transformed to a special case of
the Kuneth formula

H,.(M,Fy) ® H.(N,F,) ~ H,(M & N, F,)

This completes the proof of the theorem. O
To illustrate the above theorem we consider the case when A has exponent 2.
By Proposition 1 B
H.(A,F;) = S(4)



Any symmetric element of ®‘A is a linear combination of elements of the form

(@) * (a§") % ..ox (@)

for some s <4, some pairwise different elements a4, ..., as of A where Y k; = ¢ and
x is the shuffle product. The Pontrjagin product is the shuffle product * and the
divided power structure is given by

(a®a)? = a®”

Then .
a® = af % (a® a)([k/2}) e HI(A71E‘2)6H2(AJIE~2)([I¢/2])

where ¢ = k — 2[k/2] and the element (aZ™) % (a2™) = ... * (a®") belongs to
(AH (A, ) Hy(A, o) FDH, (A, ) 15D Hy (A, Ty (5,
Thus

FHMAR)NS (W)= > (af) (@) +...x (af")
1 /214 Tk 21<]

4 Some results about homology

Lemma 1 Suppose Q) is a finitely generated abelian group, B is a Z[Q]-module
equipped with a finite filtration of Z[Q]-submodules

32313323...DBkDBk+1:0

such that Bj/Bj is a cyclic Rj-module for some commutative Noetherian ring R;,
Q) embeds in R; and the action of Q) on B;/Bj, via the embedding of Q in R; is
the original action of Q). Suppose further that Hy(Q, B) is finite. Then H;(Q, B) is
finite for all i.

Proof. We induct on the length of the filtration. Assume first that £ = 1 and
so B is cyclic and a commutative Noetherian ring. Let F be a resolution of the
trivial module Z over R; with all modules finitely generated. Consider the complex
B ®zjg) F. Its modules could be viewed as (left) B-modules via the multiplication
in B. Note this B-action is compatible with the differentials because its action
could be extended to an action of R; and the latter ring is commutative. As B is



a Noetherian ring and all modules in B ®zq) F are finitely generated over B we
deduce that all homology groups

Hi(B ®gz(q) F) ~ Hi(Q, B)

are finitely generated B-modules. Furthermore the action of @ on H;(Q, B) is
trivial and so H;(Q, B) is a finitely generated Hy(Q, B)-module. As by assumption

Hy(Q, B) is finite we are done.
If £ > 2 consider the short exact sequence of modules

0— By —+B— B/By—0
It induces a long exact sequence in homology

— H1(Q, B/By) — Hy(Q, Bs) — Ho(Q, B) — Hy(Q, B/Bz) — 0

As Hy(Q, B) is finite Hy(Q, B/Bs,) is finite and by induction H;(Q), B/B,) is finite
for all i. In particular H,(Q, B/B) is finite and hence Hy((Q), By) is finite. Again
by induction H;(Q, Bs) is finite for all ¢ and using the long exact sequence we see
that H;(Q, B) is finite for all ¢ as required.

|

Lemma 2 Suppose A is a finitely generated Z[Q)]-module and for some prime p and
some j the homology group Hy(Q,H;(A,F,)) is finite. Then H;(Q,H;(A,F,)) is
finite for all i.

Proof. By Proposition 1 (for p odd) and Theorem 1 (for p = 2) there is a
filtration of H;(A, F,) with quotients isomorphic to some B, 3 = A*(A/pA) ®5P (pbA)
for a +28 = j. B, p is a module over II, ® II3 where II; is the invariant subring of
F,[Q*] under the action of the symmetric group Sy that permutes the factors of Q*.
Note IIj, is a finitely generated algebra that contains the diagonal subgroup of QF.
Then II, ® Il is a Noetherian commutative ring containing the diagonal subgroup
of Q*T? and we can apply the previous lemma. O

Proposition 2 Suppose some extension G of A by Q is finitely generated, p is a
prime and Hy(G,F,) is finite for all t. Then H;(Q, Hi(A,F,)) is finite for all t and
i



Proof. We prove the proposition by induction on ¢t. The case t = 1 is very easy,
as H)(A,F,) ~ A/pA and A is finitely generated over Z[Q)]. Thus Hy(Q, H1(A,F,))
is finite. By Lemma 2 H;(Q, H1(A,TF,)) is finite for all 7.

For the inductive step assume H;(Q, H;(A,F,)) is finite for all j <t—1 and all ¢
and consider the Lyndon-Hochshild-Serre spectral sequence over the trivial module
F.

p
EY; = Hi(Q, Hj(A,F,))
with differentials
d"El; = E i
By induction EQ,€ is finite for £ < ¢ — 1 and all 7 > 0. This together with the fact
that d" has bidegree (—r,r —1) and our spectral sequence is a first quadrant spectral

sequence, in particular EgG = Eéj;l, implies that
EgS is finite if and only if Ef, is finite

At the same time since H;;(G,F,) is finite we have that EP is finite for every
i,7. Thus Eg,t = Hy(Q, H,(A,F,)) is finite. Finally by Lemma 2 H;(Q, H;(A,F,))
is finite for all ¢.

|

5 Proof of Theorem A

Assume that A is not of finite rank. By [5, Section 3.1, Section 5.1] there exists a
prime number p such that A/pA is infinite and A has an epimorphic image M which
is a just-infinite cyclic F,[@Q]-module of exponent p.

We claim that for p odd Hy(Q, A*M) is finite for all ¢ and for p = 2 the image of
Ho(Q, N'M) in Ho(Q, H;(M,F>)) ~ Hy(Q, S'(M)) is finite.

Indeed by Proposition 1 for p odd A]in (A/pA) is a direct summand of H;(A,F,).
Thus the embedding of the exterior algebra of H,(A,F,) ~ A/pA in H,(A,F,) is
natural and split and compatible with the multiplicative structure on the strictly
anticommutative algebra H,(A,F,). Hence the action of () on the homology group
induces on the exterior algebra of A/pA the diagonal Q-action. Then F, ®g,q
(A'(A/pA)) embeds in F, ®g, ) Hi(4,F,). By Proposition 2 F, ®g, o (A I )
finite and so IF, ®g, q] (A (A/pA)) is finite. As M is a surjective 1mage of A/pA we
deduce that HO(Q, /\Z ) is finite.

If p = 2 consider the commutative diagram

Hy(Q Hi(AF)) = Ho(Q Hi(M,Fy)) = F, @5, S'(M)

) )
F ®myq) (AL, (4/24)) -5 Fy Qmy) N'M



As by Proposition 2 Hy(Q, H;(A,F,)) is finite and ¢ is surjective we deduce that
the image of Fy ®p, ;g A'M in Fy ®g, g Si(M) is finite, as required.

From now on we will forget the existence of the group G' and will deal only with
just -infinite cyclic Z[Q]-modules M of additive exponent p with the property that
for p odd F, ®g, (¢ (AL, M) is finite for all i and for p = 2 the image of F» ®g,[q] (AL, M)
in I, ®r, [ Si(M) is finite for all .. By [5, Section 5.2] there exists a series

RQ=QCQC...CQ
of multiplicative subgroups of the field of fraction K of M and a series
M:MogM]_gth
of additive subgroup of K defined by M; = Q;M with the following properties:
L Qip1 = QiX < >
2. there exists r; € Z[Q);] with (r; — o) M; 11 = 0;

3. M; is fully tame i.e. M; is n;-tame as a module over F,[Q);] where n; is the
torsion free rank of @);.

Lemma 3 If p is odd and F, ®zqy (N M;) is finite then F, Qzq,,,] (N M) is

finite. ' B
If p = 2 and the image of Fy ®r,[q) (A,M;) in Fy Qp,q] S7(M;) is finite then the

image of Fy @p,[q] (N, Miyy) in Fy ®p, 0 S7(M;41) is finite.
Proof. First let p be odd. Suppose fi, ..., f, are elements of AJM; such that
N M =Fy fr+ ...+ F, fo + Aug(F,[Q]) (AL, M;)
where Aug denotes the augmentation ideal. We claim that
No Migy =By fr + ...+ Fy fo + Aug(Fy[Qia]) (AL, Miga)

Let f be an element from /\%p M;y1. As M, is a localisation of M; for some large

positive integer 5 we have ozi’Bf € /\%p M;. Then

oFf=afi+..  +zfitw

where z; € F, and w € Aug(F,[Q;]) (A’ M;) and hence

F=o%(afi+. +afotw) €nfit ..+ 2k + Aug(F[Qipa)) (AL Mijy),
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as required.
If p = 2 consider the commutative diagram

s 4
Vi1 " /\ﬂr2 My — S7(Mi)
Then there exist elements f,..., fs € /\ﬁ;2 M; such that

0i( N, M;) C oi(Fafi+ ...+ Fa fi) + Aug(Z[QJ)) (57 (M;))

An obvious modification of the first part of the proof gives

SOi+1(/\ﬂ;2 Mit1) C i1 (Fofi + ...+ Fy fy) + Aug(F, [Qi+1])(§j(Mi+1))

(|

Thus to prove the main theorem it is sufficient to work with M = M, and Q) = @,
so we can assume that

1. M is a cyclic F,[@Q]-module

2. M is n-tame where n is the torsion free rank of @)

3. As t could be chosen arbitrary large we can assume that n + 1 is a multiple
of the order of the torsion part of Q).

4. If pis odd F, ®p, gAY M is finite for all j. If p = 2 the image of Fy ®p, (g (AL, M)
in F, ®p, g S7(M) is finite for all 5.

Then by [5, Proposition 4.3]

F, ®r,q] (®§;“1M) is infinite

At the same time as shown in [5, Section 5.4] the forth property of M together with
the n-tameness of A implies that F, ®g, g (®f§j1M) is finite, a contradiction.
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