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Abstrat

Suppose A is an abelian normal subgroup of a �nitely generated group G

suh that G=A is abelian and H

i

(G;Z) is �nitely generated for all i . We show

that A is of �nite (Pr�ufer) rank. This generalises the main result of [5℄ that

deals with the same problem for split extension metabelian groups.

1 Introdution

In [5℄ J. R. J. Groves shows that if G is a �nitely generated group, a split extension

of an abelian group A by an abelian group Q and the homology group H

i

(G;Z) is

�nitely generated for all i then A is of �nite rank i.e. A 


Z

Q is �nite dimensional

over Q and the torsion part of A is �nite. We generalise this result to the non-split

ase.

Theorem A Suppose that A is a normal abelian subgroup of a �nitely generated

group G suh that G=A is abelian and H

i

(G; F

p

) is �nite for all i and all primes p.

Then A is of �nite (Pr�ufer) rank.

Corollary B Suppose that A is a normal abelian subgroup of a �nitely generated

group G suh that G=A is abelian and H

i

(G;Z) is �nitely generated for all i. Then

A is of �nite (Pr�ufer) rank.

Our proofs substantially use the method and the main tools from [5℄: the ge-

ometri invariant for modules over �nitely generated abelian groups de�ned in [2℄,

Cartan's formula for H

�

(A; F

p

) for abelian groups A and the �nite �eld F

p

with p

elements (in the ase p = 2 the formula holds only for groups A of exponent 2) and
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lose examination of the LHS spetral sequene in homology. The new ingredients

are a lemma that gives suÆient onditions when H

0

(Q;H

j

(A; F

p

)) �nite implies

that H

i

(Q;H

j

(A; F

p

)) is �nite for all i � 0 and a generalisation of Cartan's formula

for the homologies of abelian groups with trivial oeÆients F

2

.

2 Preliminaries on the geometri invariant for mo-

dules over �nitely generated abelian groups and

on homologies of abelian group

The geometri invariant �

A

(Q) for a �nitely generated Z[Q℄-module A was �rst

de�ned in [2℄. By de�nition

�

A

(Q) = f[�℄ = R

>0

� j � 2 Hom(Q;R) n f0g; A is �nitely generated over Z[Q

�

℄g;

�



A

(Q) = S(Q) n �

A

(Q)

where Q

�

= fg 2 Q j �(g) � 0g and S(Q) = f[�℄ j � 2 Hom(Q;R) n f0gg ' R

n

where n is the torsion-free rank of Q. A is said to be m-tame if every m-point subset

of �



A

(Q) is ontained in an open half subspae of S(Q). One important property

of tameness is that whenever A is m-tame the m-fold tensor power of A over Z is

�nitely generated over Z[Q℄ via the diagonal Q-ation [1, Setion 3.5℄.

We disuss now an important result of H. Cartan [4℄ that will play an important

role in the proof of our main theorem. Suppose A is an abelian group. By de�nition

e

S

j

(

p

A) is the set of elements in the j-th tensor power of

p

A = fa 2 A j pa = 0g over

F

p

whih is invariant under the ation of the symmetri group on j elements. Note

e

S(

p

A) = �

i�0

e

S

i

(

p

A) is a graded algebra with multipliation given by the shu�e

produt � of the tensor algebra of

p

A i.e.

(a

1


 : : :
 a

s

) � (a

s+1


 : : :
 a

s+k

) =

X

�

a

�(1)


 : : :
 a

�(s+k)

where a

i

2

p

A and the sum is over all permutation � suh that �(1) < �(2) < : : : <

�(s) and �(s+ 1) < : : : < �(s+ k).

In general homology groups do not have multipliative struture as ohomology

but in the ase of an abelian group A and ommutative ring with unity k there is a

Pontryagin produt in H

�

(A; k) = �

i�0

H

i

(A; k) whih makes it a stritly antiom-

mutative ring equipped with divided powers, for details see [3, Ch. 5, Setion 6℄.

We remind the reader the axioms of divided powers. There is a family of funtions

(i)

: H

2j

(A; k)! H

2ij

(A; k) for all i; j � 1 � 0.
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1. x

(0)

= 1; x

(1)

= x

2. x

(i)

x

(j)

=

�

i+j

i

�

x

(i+j)

3. (x

(i)

)

(j)

= e

i;j

x

(ij)

for all i; j > 0 where e

i;j

=

Q

2�t�j

�

ti�1

i�1

�

.

4. (x + y)

(i)

=

P

j+k=i

x

(j)

y

(k)

5. For i � 2

(xy)

(i)

= x

i

y

(i)

whenever x; y are even elements;

(xy)

(i)

= 0 if x; y are odd elements.

Proposition 1 [4, Ch. 9 , Ch. 10℄ Suppose p is a prime and F

p

is the �eld with p

elements.

1. If p is odd

H

�

(A; F

p

) ' (^

F

p

(A=pA))


F

p

e

S(

p

A)

where A=pA has weight 1 and

p

A has weight 2.

2. If p = 2 and A is of exponent 2

H

�

(A; F

2

) '

e

S(A)

where A has weight 1.

In both ases the isomorphism is a natural isomorphism of graded divided powers

algebras i.e. preserves grading, the multipliative and the divided power strutures.

Whenever possible we prefer using homologies with oeÆients in F

p

than Z. The

Pontryagin produt gives natural embedding of the exterior algebra of H

1

(A;Z) ' A

in H

�

(A;Z) and it is an isomorphism if A is Z-torsion-free [3, Ch. 5, Thm 6.4℄. The

problem is that this embedding does not naturally split as in the ase of oeÆients

F

p

for p odd. In [6, Thm C℄ some results linking the integral homology groups

and �nite generations of tensor produts are established but they are not diretly

appliable to the proof of Theorem A.

3 More on the homology with oeÆients in F

2

In [3, Thm 6.6℄ it is stated that there is a non-natural isomorphism

H

�

(A; F

2

) ' ^(A=2A)


e

S(

2

A) (�)

and that the above isomorphism ould be proved as in the proof of [3, Thm 6.4℄.

The generating spae

2

A = fa 2 A j 2a = 0g of the symmetri algebra omes from

a non-natural splitting of the exat sequene

0! ^

2

(A=2A)! H

2

(A; F

2

)!

2

A! 0

3



Still it is not made lear in [3℄ how to ombine the non-naturality of (�) with the

ideas of the proof of [3, Thm 6.4℄ that deals with a natural desription of homology

groups.

In this setion we show how suh an isomorphism ould be proved and in fat

we give a natural desription of H

�

(A; F

2

) in terms of a �ltration with quotients iso-

morphi to the diret summands of (�). Naturality is important for two purposes.

First it is needed in the proof of the fat that the �ltration is exhausting. Seondly

all the appliations are for Z[Q℄-modules A and we are interested not only in the un-

derlying additive struture of the homology groups H

�

(A; F

2

) but in their struture

as Z[Q℄-modules. As before H

�

(A; F

2

) is equipped with stritly antiommutative

Pontryagin produt and divided power struture.

Note that

H

1

(A; F

2

) ' A=2A;

and by the exat universal oeÆient sequene

0! H

2

(A;Z)
 F

2

! H

2

(A; F

2

)! Tor

Z

1

(H

1

(A;Z); F

2

)! 0

As H

2

(A;Z) ' ^

2

A and Tor

Z

1

(H

1

(A;Z); F

2

) '

2

A = fa 2 A j 2a = 0g we have

H

2

(A; F

2

)

^

2

H

1

(A; F

2

)

'

2

A

Theorem 1 Let

F

i

(H

�

(A; F

2

)) =

X

k�0;j

1

+:::+j

t

�i

H

1

(A; F

2

)

k

H

2

(A; F

2

)

(j

1

)

: : :H

2

(A; F

2

)

(j

t

)

;

where H

2

(A; F

2

)

(j)

is the subspae spanned by all elements �

(j)

for � 2 H

2

(A; F

2

).

Then [

i�1

F

i

(H

�

(A; F

2

)) is an exhausting �ltration of the graded algebra H

�

(A; F

2

)

with quotients F

i

(H

�

(A; F

2

))=F

i�1

(H

�

(A; F

2

)) ' ^(A=2A)


e

S

i

(

2

A)

Proof . Note that to prove that

[

i�1

F

i

(H

�

(A; F

2

)) = H

�

(A; F

2

) (��)

it is suÆient to onsider the following ases:

1. A is yli;

2. if (��) holds for the �nitely generated abelian groups A

1

and A

2

then (��)

holds A = A

1

� A

2

;

Then the �ltration is exhausting for all �nitely generated abelian groups. Finally

as every group A is the diret limit of its �nitely generated subgroups and our

�ltration ommutes with diret limits (��) holds.
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If A is yli and �nite then (��) is proved in [5, p. 124℄. If A is in�nite then

H

i

(A; F

2

) = 0 for all i � 2.

Now we prove that the �ltration is exhausting for A = A

1

� A

2

provided the

same holds for A

1

and A

2

. Consider the ommutative diagram

([

i�1

F

i

(H

�

(A

1

; F

2

)))
 ([

i�1

F

i

(H

�

(A

2

; F

2

)))

�

1


�

2

�! ([

i�1

F

i

(H

�

(A; F

2

)))

#�

1


 �

2

#�

H

�

(A

1

; F

2

)
H

�

(A

2

; F

2

)

'

�! H

�

(A; F

2

)

The maps �

1

; �

2

and � are the obvious inlusions. By assumptions �

1

and �

2

are isomorphisms. The map

�

i

: [

s�1

F

s

(H

�

(A

i

; F

2

))! [

s�1

F

s

(H

�

(A; F

2

))

is indued by the map

H

j

(A

i

; F

2

)! H

j

(A; F

2

)

for j = 1; 2. The map ' is the inlusion given by the Kuneth formula and as F

2

is a �eld ' is an isomorphism. Then '(�

1


 �

2

) is an isomorphism and hene � is

surjetive. By onstrution � is injetive and so � is an isomorphism, as required.

Then �

1


 �

2

is an isomorphism too.

Claim (�

1


 �

2

)(

P

i+j=m

F

i

(H

�

(A

1

; F

2

))
 F

j

(H

�

(A

2

; F

2

))) = F

m

(H

�

(A; F

2

))

Proof . Assume x

1

; y

1

are elements of degree one and x

2

; y

2

are elements of degree

two. Then by the axioms of divided powers for j � 2 the element (x

2

+ y

2

+ x

1

y

1

)

(j)

equals

X

�

1

+�

2

+�

3

=j

x

(�

1

)

2

y

(�

2

)

2

(x

1

y

1

)

(�

3

)

=

X

�

1

+�

2

=j

x

(�

1

)

2

y

(�

2

)

2

+

X

�

1

+�

2

=j�1

x

(�

1

)

2

y

(�

2

)

2

x

1

y

1

This together with the Kuneth formula

H

2

(A; F

2

) ' �

0�i�2

H

i

(A

1

; F

2

)
H

2�i

(A

2

; F

2

)

implies

H

2

(A; F

2

)

(j)

�

X

j

0

+j

1

+j

2

=j

H

2

(A

1

; F

2

)

(j

0

)

H

1

(A

1

; F

2

)

j

1


H

1

(A

2

; F

2

)

j

1

H

2

(A

2

; F

2

)

(j

2

)

� ^H

1

(A; F

2

)

X

j

0

+j

2

�j

H

2

(A; F

2

)

(j

0

)

H

2

(A; F

2

)

(j

2

)

5



This together with the de�nition of the �ltration implies

F

m

(H

�

(A; F

2

)) � (�

1


 �

2

)(

X

i+j=m

F

i

(H

�

(A

1

; F

2

))
 F

j

(H

�

(A

2

; F

2

)))

The inverse inlusion is obvious.

2

By the laim and the fat that �

1


 �

2

is an isomorphism we have

F

m

(H

�

(A; F

2

))=F

m�1

(H

�

(A; F

2

)) '

�

0�i�m

F

i

(H

�

(A

1

; F

2

))=F

i�1

(H

�

(A

1

; F

2

))
 F

m�i

(H

�

(A

1

; F

2

))=F

m�i�1

(H

�

(A

1

; F

2

))

By assumption

F

i

(H

�

(A

1

; F

2

))=F

i�1

(H

�

(A

1

; F

2

)) ' ^(A

1

=2A

1

)


e

S

i

(

2

(A

1

))

F

m�i

(H

�

(A

1

; F

2

))=F

m�i�1

(H

�

(A

1

; F

2

)) ' ^(A

2

=2A

2

)


e

S

m�i

(

2

(A

2

))

Furthermore

^(A

1

=2A

1

)
 ^(A

2

=2A

2

) ' ^((A

1

=2A

1

)� (A

2

=2A

2

)) = ^(A=2A)

Finally it remains to note that for abelian groups M and N of exponent 2

�

0�i�m

(

e

S

i

(M)


e

S

m�i

(N)) '

e

S

m

(M �N)

and apply this for M =

2

(A

1

); N =

2

(A

2

), M � N '

2

A = fa 2 A j 2a = 0g to

obtain the required isomorphism

F

m

(H

�

(A; F

2

))=F

m�1

(H

�

(A; F

2

)) ' (^(A=2A))


e

S

m

(

2

A)

The formula about M and N ould be veri�ed either by hand or by Proposition 1

(remember both M and N have exponent 2) it is transformed to a speial ase of

the Kuneth formula

H

�

(M; F

2

)
H

�

(N; F

2

) ' H

�

(M �N; F

2

)

This ompletes the proof of the theorem. 2

To illustrate the above theorem we onsider the ase when A has exponent 2.

By Proposition 1

H

�

(A; F

2

) '

e

S(A)
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Any symmetri element of 


i

A is a linear ombination of elements of the form

(a




k

1

1

) � (a




k

2

2

) � : : : � (a




k

s

s

)

for some s � i, some pairwise di�erent elements a

1

; : : : ; a

s

of A where

P

k

j

= i and

� is the shu�e produt. The Pontrjagin produt is the shu�e produt � and the

divided power struture is given by

(a
 a)

(i)

= a




2i

Then

a




k

= a

�

� (a
 a)

([k=2℄)

2 H

1

(A; F

2

)

�

H

2

(A; F

2

)

([k=2℄)

where � = k � 2[k=2℄ and the element (a




k

1

1

) � (a




k

2

2

) � : : : � (a




k

s

s

) belongs to

(^H

1

(A; F

2

))H

2

(A; F

2

)

([

k

1

2

℄)

H

2

(A; F

2

)

([

k

2

2

℄)

: : :H

2

(A; F

2

)

([

k

s

2

℄)

:

Thus

F

j

(H

�

(A; F

2

)) \

e

S

i

(A) =

X

[k

1

=2℄+:::+[k

s

=2℄�j

(a




k

1

1

) � (a




k

2

2

) � : : : � (a




k

s

s

)

4 Some results about homology

Lemma 1 Suppose Q is a �nitely generated abelian group, B is a Z[Q℄-module

equipped with a �nite �ltration of Z[Q℄-submodules

B = B

1

� B

2

� : : : � B

k

� B

k+1

= 0

suh that B

j

=B

j+1

is a yli R

j

-module for some ommutative Noetherian ring R

j

,

Q embeds in R

j

and the ation of Q on B

j

=B

j+1

via the embedding of Q in R

j

is

the original ation of Q. Suppose further that H

0

(Q;B) is �nite. Then H

i

(Q;B) is

�nite for all i.

Proof . We indut on the length of the �ltration. Assume �rst that k = 1 and

so B is yli and a ommutative Noetherian ring. Let F be a resolution of the

trivial module Z over R

1

with all modules �nitely generated. Consider the omplex

B 


Z[Q℄

F . Its modules ould be viewed as (left) B-modules via the multipliation

in B. Note this B-ation is ompatible with the di�erentials beause its ation

ould be extended to an ation of R

1

and the latter ring is ommutative. As B is

7



a Noetherian ring and all modules in B 


Z[Q℄

F are �nitely generated over B we

dedue that all homology groups

H

i

(B 


Z[Q℄

F) ' H

i

(Q;B)

are �nitely generated B-modules. Furthermore the ation of Q on H

i

(Q;B) is

trivial and so H

i

(Q;B) is a �nitely generated H

0

(Q;B)-module. As by assumption

H

0

(Q;B) is �nite we are done.

If k � 2 onsider the short exat sequene of modules

0! B

2

! B ! B=B

2

! 0

It indues a long exat sequene in homology

: : :! H

i

(Q;B

2

)! H

i

(Q;B)! H

i

(Q;B=B

2

)! : : :

! H

1

(Q;B=B

2

)! H

0

(Q;B

2

)! H

0

(Q;B)! H

0

(Q;B=B

2

)! 0

As H

0

(Q;B) is �nite H

0

(Q;B=B

2

) is �nite and by indution H

i

(Q;B=B

2

) is �nite

for all i. In partiular H

1

(Q;B=B

2

) is �nite and hene H

0

(Q;B

2

) is �nite. Again

by indution H

i

(Q;B

2

) is �nite for all i and using the long exat sequene we see

that H

i

(Q;B) is �nite for all i as required.

2

Lemma 2 Suppose A is a �nitely generated Z[Q℄-module and for some prime p and

some j the homology group H

0

(Q;H

j

(A; F

p

)) is �nite. Then H

i

(Q;H

j

(A; F

p

)) is

�nite for all i.

Proof . By Proposition 1 (for p odd) and Theorem 1 (for p = 2) there is a

�ltration ofH

j

(A; F

p

) with quotients isomorphi to some B

�;�

= ^

�

(A=pA)


e

S

�

(

p

A)

for �+ 2� = j. B

�;�

is a module over �

�


�

�

where �

k

is the invariant subring of

F

p

[Q

k

℄ under the ation of the symmetri group S

k

that permutes the fators of Q

k

.

Note �

k

is a �nitely generated algebra that ontains the diagonal subgroup of Q

k

.

Then �

�


 �

�

is a Noetherian ommutative ring ontaining the diagonal subgroup

of Q

�+�

and we an apply the previous lemma. 2

Proposition 2 Suppose some extension G of A by Q is �nitely generated, p is a

prime and H

t

(G; F

p

) is �nite for all t. Then H

i

(Q;H

t

(A; F

p

)) is �nite for all t and

i.

8



Proof . We prove the proposition by indution on t. The ase t = 1 is very easy,

as H

1

(A; F

p

) ' A=pA and A is �nitely generated over Z[Q℄. Thus H

0

(Q;H

1

(A; F

p

))

is �nite. By Lemma 2 H

i

(Q;H

1

(A; F

p

)) is �nite for all i.

For the indutive step assume H

i

(Q;H

j

(A; F

p

)) is �nite for all j � t�1 and all i

and onsider the Lyndon-Hohshild-Serre spetral sequene over the trivial module

F

p

E

2

i;j

= H

i

(Q;H

j

(A; F

p

))

with di�erentials

d

r

: E

r

i;j

! E

r

i�r;j+r�1

By indution E

2

i;k

is �nite for k � t � 1 and all i � 0. This together with the fat

that d

r

has bidegree (�r; r�1) and our spetral sequene is a �rst quadrant spetral

sequene, in partiular E

1

0;t

= E

t+1

0;t

, implies that

E

1

0;t

is �nite if and only if E

2

0;t

is �nite

At the same time sine H

i+j

(G; F

p

) is �nite we have that E

1

i;j

is �nite for every

i; j. Thus E

2

0;t

= H

0

(Q;H

t

(A; F

p

)) is �nite. Finally by Lemma 2 H

i

(Q;H

t

(A; F

p

))

is �nite for all i.

2

5 Proof of Theorem A

Assume that A is not of �nite rank. By [5, Setion 3.1, Setion 5.1℄ there exists a

prime number p suh that A=pA is in�nite and A has an epimorphi imageM whih

is a just-in�nite yli F

p

[Q℄-module of exponent p.

We laim that for p odd H

0

(Q;^

i

M) is �nite for all i and for p = 2 the image of

H

0

(Q;^

i

M) in H

0

(Q;H

i

(M; F

2

)) ' H

0

(Q;

e

S

i

(M)) is �nite.

Indeed by Proposition 1 for p odd ^

i

F

p

(A=pA) is a diret summand of H

i

(A; F

p

).

Thus the embedding of the exterior algebra of H

1

(A; F

p

) ' A=pA in H

�

(A; F

p

) is

natural and split and ompatible with the multipliative struture on the stritly

antiommutative algebra H

�

(A; F

p

). Hene the ation of Q on the homology group

indues on the exterior algebra of A=pA the diagonal Q-ation. Then F

p




F

p

[Q℄

(^

i

(A=pA)) embeds in F

p




F

p

[Q℄

H

i

(A; F

p

). By Proposition 2 F

p




F

p

[Q℄

H

i

(A; F

p

) is

�nite and so F

p




F

p

[Q℄

(^

i

(A=pA)) is �nite. As M is a surjetive image of A=pA we

dedue that H

0

(Q;^

i

M) is �nite.

If p = 2 onsider the ommutative diagram

H

0

(Q;H

i

(A; F

2

)) ! H

0

(Q;H

i

(M; F

2

)) ' F

2




F

2

[Q℄

e

S

i

(M)

" "

F

2




F

2

[Q℄

(^

i

F

2

(A=2A))

'

�! F

2




F

2

[Q℄

^

i

M

9



As by Proposition 2 H

0

(Q;H

i

(A; F

2

)) is �nite and ' is surjetive we dedue that

the image of F

2




F

2

[Q℄

^

i

M in F

2




F

2

[Q℄

e

S

i

(M) is �nite, as required.

From now on we will forget the existene of the group G and will deal only with

just -in�nite yli Z[Q℄-modules M of additive exponent p with the property that

for p odd F

p




F

p

[Q℄

(^

i

Z

M) is �nite for all i and for p = 2 the image of F

2




F

2

[Q℄

(^

i

Z

M)

in F

2




F

2

[Q℄

e

S

i

(M) is �nite for all i. By [5, Setion 5.2℄ there exists a series

Q = Q

0

� Q

1

� : : : � Q

t

of multipliative subgroups of the �eld of fration K of M and a series

M =M

0

�M

1

� : : : �M

t

of additive subgroup of K de�ned by M

i

= Q

i

M with the following properties:

1. Q

i+1

= Q

i

� < �

i

>;

2. there exists r

i

2 Z[Q

i

℄ with (r

i

� �

i

)M

i+1

= 0;

3. M

i

is fully tame i.e. M

i

is n

i

-tame as a module over F

p

[Q

i

℄ where n

i

is the

torsion free rank of Q

i

.

Lemma 3 If p is odd and F

p




Z[Q

i

℄

(^

j

M

i

) is �nite then F

p




Z[Q

i+1

℄

(^

j

M

i+1

) is

�nite.

If p = 2 and the image of F

2




F

2

[Q℄

(^

j

Z

M

i

) in F

2




F

2

[Q℄

e

S

j

(M

i

) is �nite then the

image of F

2




F

2

[Q℄

(^

j

Z

M

i+1

) in F

2




F

2

[Q℄

e

S

j

(M

i+1

) is �nite.

Proof . First let p be odd. Suppose f

1

; : : : ; f

s

are elements of ^

j

M

i

suh that

^

j

F

p

M

i

= F

p

f

1

+ : : :+ F

p

f

s

+ Aug(F

p

[Q

i

℄)(^

j

F

p

M

i

)

where Aug denotes the augmentation ideal. We laim that

^

j

F

p

M

i+1

= F

p

f

1

+ : : :+ F

p

f

s

+ Aug(F

p

[Q

i+1

℄)(^

j

F

p

M

i+1

)

Let f be an element from ^

j

F

p

M

i+1

. As M

i+1

is a loalisation of M

i

for some large

positive integer � we have �

�

i

f 2 ^

j

F

p

M

i

. Then

�

�

i

f = z

1

f

1

+ : : :+ z

s

f

s

+ w

where z

i

2 F

p

and w 2 Aug(F

p

[Q

i

℄)(^

j

M

i

) and hene

f = �

��

i

(z

1

f

1

+ : : :+ z

s

f

s

+ w) 2 z

1

f

1

+ : : :+ z

s

f

s

+ Aug(F

p

[Q

i+1

℄)(^

j

F

p

M

i+1

);
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as required.

If p = 2 onsider the ommutative diagram

'

i

: ^

j

F

2

M

i

!

e

S

j

(M

i

)

# #

'

i+1

: ^

j

F

2

M

i+1

!

e

S

j

(M

i+1

)

Then there exist elements f

1

; : : : ; f

s

2 ^

j

F

2

M

i

suh that

'

i

(^

j

F

2

M

i

) � '

i

(F

2

f

1

+ : : :+ F

2

f

s

) + Aug(Z[Q

i

℄)(

e

S

j

(M

i

))

An obvious modi�ation of the �rst part of the proof gives

'

i+1

(^

j

F

2

M

i+1

) � '

i+1

(F

2

f

1

+ : : :+ F

2

f

s

) + Aug(F

2

[Q

i+1

℄)(

e

S

j

(M

i+1

))

2

Thus to prove the main theorem it is suÆient to work withM =M

t

and Q = Q

t

,

so we an assume that

1. M is a yli F

p

[Q℄-module

2. M is n-tame where n is the torsion free rank of Q

3. As t ould be hosen arbitrary large we an assume that n + 1 is a multiple

of the order of the torsion part of Q.

4. If p is odd F

p




F

p

[Q℄

^

j

M is �nite for all j. If p = 2 the image of F

2




F

2

[Q℄

(^

j

Z

M)

in F

2




F

2

[Q℄

e

S

j

(M) is �nite for all j.

Then by [5, Proposition 4.3℄

F

p




F

p

[Q℄

(


n+1

F

p

M) is in�nite

At the same time as shown in [5, Setion 5.4℄ the forth property of M together with

the n-tameness of M implies that F

p




F

p

[Q℄

(


n+1

F

p

M) is �nite, a ontradition.
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