Groups with finitely generated integral homologies

Dessislava H. Kochloukova
IMECC, UNICAMP, Cx. P. 6065, 13083-970 Campinas, SP, Brasil
desi@ime.unicamp.br

Abstract

Suppose A is an abelian normal subgroup of a finitely generated group G such that G / A is abelian and $H_{i}(G, \mathbb{Z})$ is finitely generated for all i. We show that A is of finite (Prüfer) rank. This generalises the main result of [5] that deals with the same problem for split extension metabelian groups.

1 Introduction

In [5] J. R. J. Groves shows that if G is a finitely generated group, a split extension of an abelian group A by an abelian group Q and the homology group $H_{i}(G, \mathbb{Z})$ is finitely generated for all i then A is of finite rank i.e. $A \otimes_{\mathbb{Z}} \mathbb{Q}$ is finite dimensional over \mathbb{Q} and the torsion part of A is finite. We generalise this result to the non-split case.

Theorem A Suppose that A is a normal abelian subgroup of a finitely generated group G such that G / A is abelian and $H_{i}\left(G, \mathbb{F}_{p}\right)$ is finite for all i and all primes p. Then A is of finite (Prüfer) rank.

Corollary B Suppose that A is a normal abelian subgroup of a finitely generated group G such that G / A is abelian and $H_{i}(G, \mathbb{Z})$ is finitely generated for all i. Then A is of finite (Prüfer) rank.

Our proofs substantially use the method and the main tools from [5]: the geometric invariant for modules over finitely generated abelian groups defined in [2], Cartan's formula for $H_{*}\left(A, \mathbb{F}_{p}\right)$ for abelian groups A and the finite field \mathbb{F}_{p} with p elements (in the case $p=2$ the formula holds only for groups A of exponent 2) and
close examination of the LHS spectral sequence in homology. The new ingredients are a lemma that gives sufficient conditions when $H_{0}\left(Q, H_{j}\left(A, \mathbb{F}_{p}\right)\right)$ finite implies that $H_{i}\left(Q, H_{j}\left(A, \mathbb{F}_{p}\right)\right)$ is finite for all $i \geq 0$ and a generalisation of Cartan's formula for the homologies of abelian groups with trivial coefficients \mathbb{F}_{2}.

2 Preliminaries on the geometric invariant for modules over finitely generated abelian groups and on homologies of abelian group

The geometric invariant $\Sigma_{A}(Q)$ for a finitely generated $\mathbb{Z}[Q]$-module A was first defined in [2]. By definition
$\Sigma_{A}(Q)=\left\{[\chi]=\mathbb{R}_{>0} \chi \mid \chi \in \operatorname{Hom}(Q, \mathbb{R}) \backslash\{0\}, A\right.$ is finitely generated over $\left.\mathbb{Z}\left[Q_{\chi}\right]\right\}$,

$$
\Sigma_{A}^{c}(Q)=S(Q) \backslash \Sigma_{A}(Q)
$$

where $Q_{\chi}=\{g \in Q \mid \chi(g) \geq 0\}$ and $S(Q)=\{[\chi] \mid \chi \in \operatorname{Hom}(Q, \mathbb{R}) \backslash\{0\}\} \simeq \mathbb{R}^{n}$ where n is the torsion-free rank of $Q . A$ is said to be m-tame if every m-point subset of $\Sigma_{A}^{c}(Q)$ is contained in an open half subspace of $S(Q)$. One important property of tameness is that whenever A is m-tame the m-fold tensor power of A over \mathbb{Z} is finitely generated over $\mathbb{Z}[Q]$ via the diagonal Q-action [1, Section 3.5].

We discuss now an important result of H. Cartan [4] that will play an important role in the proof of our main theorem. Suppose A is an abelian group. By definition $\widetilde{S}{ }^{j}\left({ }_{p} A\right)$ is the set of elements in the j-th tensor power of ${ }_{p} A=\{a \in A \mid p a=0\}$ over \mathbb{F}_{p} which is invariant under the action of the symmetric group on j elements. Note $\widetilde{S}\left({ }_{p} A\right)=\oplus_{i \geq 0} \widetilde{S}^{i}\left({ }_{p} A\right)$ is a graded algebra with multiplication given by the shuffle product $*$ of the tensor algebra of ${ }_{p} A$ i.e.

$$
\left(a_{1} \otimes \ldots \otimes a_{s}\right) *\left(a_{s+1} \otimes \ldots \otimes a_{s+k}\right)=\sum_{\sigma} a_{\sigma(1)} \otimes \ldots \otimes a_{\sigma(s+k)}
$$

where $a_{i} \in_{p} A$ and the sum is over all permutation σ such that $\sigma(1)<\sigma(2)<\ldots<$ $\sigma(s)$ and $\sigma(s+1)<\ldots<\sigma(s+k)$.

In general homology groups do not have multiplicative structure as cohomology but in the case of an abelian group A and commutative ring with unity k there is a Pontryagin product in $H_{*}(A, k)=\oplus_{i \geq 0} H_{i}(A, k)$ which makes it a strictly anticommutative ring equipped with divided powers, for details see [3, Ch. 5, Section 6]. We remind the reader the axioms of divided powers. There is a family of functions ${ }^{(i)}: H_{2 j}(A, k) \rightarrow H_{2 i j}(A, k)$ for all $i, j-1 \geq 0$.

1. $x^{(0)}=1, x^{(1)}=x$
2. $x^{(i)} x^{(j)}=\binom{i+j}{i} x^{(i+j)}$
3. $\left(x^{(i)}\right)^{(j)}=e_{i, j} x^{(i j)}$ for all $i, j>0$ where $e_{i, j}=\prod_{2 \leq t \leq j}\binom{t i-1}{i-1}$.
4. $(x+y)^{(i)}=\sum_{j+k=i} x^{(j)} y^{(k)}$
5. For $i \geq 2$

$$
\begin{gathered}
(x y)^{(i)}=x^{i} y^{(i)} \text { whenever } x, y \text { are even elements, } \\
(x y)^{(i)}=0 \text { if } x, y \text { are odd elements. }
\end{gathered}
$$

Proposition 1 [4, Ch. 9, Ch. 10] Suppose p is a prime and \mathbb{F}_{p} is the field with p elements.

1. If p is odd

$$
\left.H_{*}\left(A, \mathbb{F}_{p}\right) \simeq\left(\wedge_{\mathbb{F}_{p}}(A / p A)\right) \otimes_{\mathbb{F}_{p}} \widetilde{S}_{p} A\right)
$$

where $A / p A$ has weight 1 and ${ }_{p} A$ has weight 2.
2. If $p=2$ and A is of exponent 2

$$
H_{*}\left(A, \mathbb{F}_{2}\right) \simeq \widetilde{S}(A)
$$

where A has weight 1.
In both cases the isomorphism is a natural isomorphism of graded divided powers algebras i.e. preserves grading, the multiplicative and the divided power structures.

Whenever possible we prefer using homologies with coefficients in \mathbb{F}_{p} than \mathbb{Z}. The Pontryagin product gives natural embedding of the exterior algebra of $H_{1}(A, \mathbb{Z}) \simeq A$ in $H_{*}(A, \mathbb{Z})$ and it is an isomorphism if A is \mathbb{Z}-torsion-free [3, Ch. 5, Thm 6.4]. The problem is that this embedding does not naturally split as in the case of coefficients \mathbb{F}_{p} for p odd. In [6, Thm C] some results linking the integral homology groups and finite generations of tensor products are established but they are not directly applicable to the proof of Theorem A.

3 More on the homology with coefficients in \mathbb{F}_{2}

In [3, Thm 6.6] it is stated that there is a non-natural isomorphism

$$
\begin{equation*}
H_{*}\left(A, \mathbb{F}_{2}\right) \simeq \wedge(A / 2 A) \otimes \widetilde{S}\left({ }_{2} A\right) \tag{*}
\end{equation*}
$$

and that the above isomorphism could be proved as in the proof of [3, Thm 6.4]. The generating space ${ }_{2} A=\{a \in A \mid 2 a=0\}$ of the symmetric algebra comes from a non-natural splitting of the exact sequence

$$
0 \rightarrow \wedge^{2}(A / 2 A) \rightarrow H_{2}\left(A, \mathbb{F}_{2}\right) \rightarrow{ }_{2} A \rightarrow 0
$$

Still it is not made clear in [3] how to combine the non-naturality of $(*)$ with the ideas of the proof of [3, Thm 6.4] that deals with a natural description of homology groups.

In this section we show how such an isomorphism could be proved and in fact we give a natural description of $H_{*}\left(A, \mathbb{F}_{2}\right)$ in terms of a filtration with quotients isomorphic to the direct summands of $(*)$. Naturality is important for two purposes. First it is needed in the proof of the fact that the filtration is exhausting. Secondly all the applications are for $\mathbb{Z}[Q]$-modules A and we are interested not only in the underlying additive structure of the homology groups $H_{*}\left(A, \mathbb{F}_{2}\right)$ but in their structure as $\mathbb{Z}[Q]$-modules. As before $H_{*}\left(A, \mathbb{F}_{2}\right)$ is equipped with strictly anticommutative Pontryagin product and divided power structure.

Note that

$$
H_{1}\left(A, \mathbb{F}_{2}\right) \simeq A / 2 A
$$

and by the exact universal coefficient sequence

$$
0 \rightarrow H_{2}(A, \mathbb{Z}) \otimes \mathbb{F}_{2} \rightarrow H_{2}\left(A, \mathbb{F}_{2}\right) \rightarrow \operatorname{Tor}_{1}^{\mathbb{Z}}\left(H_{1}(A, \mathbb{Z}), \mathbb{F}_{2}\right) \rightarrow 0
$$

As $H_{2}(A, \mathbb{Z}) \simeq \wedge^{2} A$ and $\operatorname{Tor}_{1}^{\mathbb{Z}}\left(H_{1}(A, \mathbb{Z}), \mathbb{F}_{2}\right) \simeq{ }_{2} A=\{a \in A \mid 2 a=0\}$ we have

$$
\frac{H_{2}\left(A, \mathbb{F}_{2}\right)}{\wedge^{2} H_{1}\left(A, \mathbb{F}_{2}\right)} \simeq{ }_{2} A
$$

Theorem 1 Let

$$
F^{i}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right)=\sum_{k \geq 0, j_{1}+\ldots+j_{t} \leq i} H_{1}\left(A, \mathbb{F}_{2}\right)^{k} H_{2}\left(A, \mathbb{F}_{2}\right)^{\left(j_{1}\right)} \ldots H_{2}\left(A, \mathbb{F}_{2}\right)^{\left(j_{t}\right)}
$$

where $H_{2}\left(A, \mathbb{F}_{2}\right)^{(j)}$ is the subspace spanned by all elements $\lambda^{(j)}$ for $\lambda \in H_{2}\left(A, \mathbb{F}_{2}\right)$. Then $\cup_{i \geq 1} F^{i}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right)$ is an exhausting filtration of the graded algebra $H_{*}\left(A, \mathbb{F}_{2}\right)$ with quotients $F^{i}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right) / F^{i-1}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right) \simeq \wedge(A / 2 A) \otimes \widetilde{S}^{i}\left({ }_{2} A\right)$

Proof. Note that to prove that

$$
\begin{equation*}
\cup_{i \geq 1} F^{i}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right)=H_{*}\left(A, \mathbb{F}_{2}\right) \tag{**}
\end{equation*}
$$

it is sufficient to consider the following cases:

1. A is cyclic;
2. if ($* *$) holds for the finitely generated abelian groups A_{1} and A_{2} then ($* *$) holds $A=A_{1} \oplus A_{2}$;

Then the filtration is exhausting for all finitely generated abelian groups. Finally as every group A is the direct limit of its finitely generated subgroups and our filtration commutes with direct limits $(* *)$ holds.

If A is cyclic and finite then $(* *)$ is proved in [5, p. 124]. If A is infinite then $H_{i}\left(A, \mathbb{F}_{2}\right)=0$ for all $i \geq 2$.

Now we prove that the filtration is exhausting for $A=A_{1} \oplus A_{2}$ provided the same holds for A_{1} and A_{2}. Consider the commutative diagram

$$
\begin{array}{ccc}
\left(\cup_{i \geq 1} F^{i}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right)\right) \otimes\left(\cup_{i \geq 1} F^{i}\left(H_{*}\left(A_{2}, \mathbb{F}_{2}\right)\right)\right) & \xrightarrow{\beta_{1} \otimes \beta_{2}} & \left(\cup_{i \geq 1} F^{i}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right)\right) \\
\downarrow \alpha_{1} \otimes \alpha_{2} & \xrightarrow{\downarrow \alpha} & H_{*}\left(A, \mathbb{F}_{2}\right)
\end{array}
$$

The maps α_{1}, α_{2} and α are the obvious inclusions. By assumptions α_{1} and α_{2} are isomorphisms. The map

$$
\beta_{i}: \cup_{s \geq 1} F^{s}\left(H_{*}\left(A_{i}, \mathbb{F}_{2}\right)\right) \rightarrow \cup_{s \geq 1} F^{s}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right)
$$

is induced by the map

$$
H_{j}\left(A_{i}, \mathbb{F}_{2}\right) \rightarrow H_{j}\left(A, \mathbb{F}_{2}\right)
$$

for $j=1,2$. The map φ is the inclusion given by the Kuneth formula and as \mathbb{F}_{2} is a field φ is an isomorphism. Then $\varphi\left(\alpha_{1} \otimes \alpha_{2}\right)$ is an isomorphism and hence α is surjective. By construction α is injective and so α is an isomorphism, as required. Then $\beta_{1} \otimes \beta_{2}$ is an isomorphism too.

Claim $\left(\beta_{1} \otimes \beta_{2}\right)\left(\sum_{i+j=m} F^{i}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right) \otimes F^{j}\left(H_{*}\left(A_{2}, \mathbb{F}_{2}\right)\right)\right)=F^{m}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right)$
Proof. Assume x_{1}, y_{1} are elements of degree one and x_{2}, y_{2} are elements of degree two. Then by the axioms of divided powers for $j \geq 2$ the element $\left(x_{2}+y_{2}+x_{1} y_{1}\right)^{(j)}$ equals

$$
\sum_{\alpha_{1}+\alpha_{2}+\alpha_{3}=j} x_{2}^{\left(\alpha_{1}\right)} y_{2}^{\left(\alpha_{2}\right)}\left(x_{1} y_{1}\right)^{\left(\alpha_{3}\right)}=\sum_{\alpha_{1}+\alpha_{2}=j} x_{2}^{\left(\alpha_{1}\right)} y_{2}^{\left(\alpha_{2}\right)}+\sum_{\alpha_{1}+\alpha_{2}=j-1} x_{2}^{\left(\alpha_{1}\right)} y_{2}^{\left(\alpha_{2}\right)} x_{1} y_{1}
$$

This together with the Kuneth formula

$$
H_{2}\left(A, \mathbb{F}_{2}\right) \simeq \oplus_{0 \leq i \leq 2} H_{i}\left(A_{1}, \mathbb{F}_{2}\right) \otimes H_{2-i}\left(A_{2}, \mathbb{F}_{2}\right)
$$

implies

$$
\begin{aligned}
H_{2}\left(A, \mathbb{F}_{2}\right)^{(j)} \subset & \sum_{j_{0}+j_{1}+j_{2}=j} H_{2}\left(A_{1}, \mathbb{F}_{2}\right)^{\left(j_{0}\right)} H_{1}\left(A_{1}, \mathbb{F}_{2}\right)^{j_{1}} \otimes H_{1}\left(A_{2}, \mathbb{F}_{2}\right)^{j_{1}} H_{2}\left(A_{2}, \mathbb{F}_{2}\right)^{\left(j_{2}\right)} \\
\subseteq & \subseteq H_{1}\left(A, \mathbb{F}_{2}\right) \sum_{j_{0}+j_{2} \leq j} H_{2}\left(A, \mathbb{F}_{2}\right)^{\left(j_{0}\right)} H_{2}\left(A, \mathbb{F}_{2}\right)^{\left(j_{2}\right)}
\end{aligned}
$$

This together with the definition of the filtration implies

$$
F^{m}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right) \subseteq\left(\beta_{1} \otimes \beta_{2}\right)\left(\sum_{i+j=m} F^{i}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right) \otimes F^{j}\left(H_{*}\left(A_{2}, \mathbb{F}_{2}\right)\right)\right)
$$

The inverse inclusion is obvious.
By the claim and the fact that $\beta_{1} \otimes \beta_{2}$ is an isomorphism we have

$$
\begin{gathered}
F^{m}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right) / F^{m-1}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right) \simeq \\
\oplus_{0 \leq i \leq m} F^{i}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right) / F^{i-1}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right) \otimes F^{m-i}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right) / F^{m-i-1}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right)
\end{gathered}
$$

By assumption

$$
\begin{gathered}
F^{i}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right) / F^{i-1}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right) \simeq \wedge\left(A_{1} / 2 A_{1}\right) \otimes \widetilde{S}^{i}\left({ }_{2}\left(A_{1}\right)\right) \\
F^{m-i}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right) / F^{m-i-1}\left(H_{*}\left(A_{1}, \mathbb{F}_{2}\right)\right) \simeq \wedge\left(A_{2} / 2 A_{2}\right) \otimes \widetilde{S}^{m-i}\left({ }_{2}\left(A_{2}\right)\right)
\end{gathered}
$$

Furthermore

$$
\wedge\left(A_{1} / 2 A_{1}\right) \otimes \wedge\left(A_{2} / 2 A_{2}\right) \simeq \wedge\left(\left(A_{1} / 2 A_{1}\right) \oplus\left(A_{2} / 2 A_{2}\right)\right)=\wedge(A / 2 A)
$$

Finally it remains to note that for abelian groups M and N of exponent 2

$$
\oplus_{0 \leq i \leq m}\left(\widetilde{S}^{i}(M) \otimes \widetilde{S}^{m-i}(N)\right) \simeq \widetilde{S}^{m}(M \oplus N)
$$

and apply this for $M={ }_{2}\left(A_{1}\right), N={ }_{2}\left(A_{2}\right), M \oplus N \simeq{ }_{2} A=\{a \in A \mid 2 a=0\}$ to obtain the required isomorphism

$$
F^{m}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right) / F^{m-1}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right) \simeq(\wedge(A / 2 A)) \otimes \widetilde{S}^{m}\left({ }_{2} A\right)
$$

The formula about M and N could be verified either by hand or by Proposition 1 (remember both M and N have exponent 2) it is transformed to a special case of the Kuneth formula

$$
H_{*}\left(M, \mathbb{F}_{2}\right) \otimes H_{*}\left(N, \mathbb{F}_{2}\right) \simeq H_{*}\left(M \oplus N, \mathbb{F}_{2}\right)
$$

This completes the proof of the theorem.
To illustrate the above theorem we consider the case when A has exponent 2. By Proposition 1

$$
H_{*}\left(A, \mathbb{F}_{2}\right) \simeq \widetilde{S}(A)
$$

Any symmetric element of $\otimes^{i} A$ is a linear combination of elements of the form

$$
\left(a_{1}^{\otimes^{k_{1}}}\right) *\left(a_{2}^{\otimes^{k_{2}}}\right) * \ldots *\left(a_{s}^{\otimes^{k_{s}}}\right)
$$

for some $s \leq i$, some pairwise different elements a_{1}, \ldots, a_{s} of A where $\sum k_{j}=i$ and * is the shuffle product. The Pontrjagin product is the shuffle product $*$ and the divided power structure is given by

$$
(a \otimes a)^{(i)}=a^{\otimes^{2 i}}
$$

Then

$$
a^{\otimes^{k}}=a^{\epsilon} *(a \otimes a)^{([k / 2])} \in H_{1}\left(A, \mathbb{F}_{2}\right)^{\epsilon} H_{2}\left(A, \mathbb{F}_{2}\right)^{([k / 2])}
$$

where $\epsilon=k-2[k / 2]$ and the element $\left(a_{1}^{\otimes^{k_{1}}}\right) *\left(a_{2}^{\otimes^{k_{2}}}\right) * \ldots *\left(a_{s}^{\otimes^{k_{s}}}\right)$ belongs to

$$
\left(\wedge H_{1}\left(A, \mathbb{F}_{2}\right)\right) H_{2}\left(A, \mathbb{F}_{2}\right)^{\left(\left[\frac{k_{1}}{2}\right]\right)} H_{2}\left(A, \mathbb{F}_{2}\right)^{\left(\left[\frac{k_{2}}{2}\right]\right)} \ldots H_{2}\left(A, \mathbb{F}_{2}\right)^{\left(\left[\frac{k_{s}}{2}\right]\right)}
$$

Thus

$$
F^{j}\left(H_{*}\left(A, \mathbb{F}_{2}\right)\right) \cap \widetilde{S}^{i}(A)=\sum_{\left[k_{1} / 2\right]+\ldots+\left[k_{s} / 2\right] \leq j}\left(a_{1}^{\otimes^{k_{1}}}\right) *\left(a_{2}^{\otimes^{k_{2}}}\right) * \ldots *\left(a_{s}^{\otimes^{k_{s}}}\right)
$$

4 Some results about homology

Lemma 1 Suppose Q is a finitely generated abelian group, B is a $\mathbb{Z}[Q]$-module equipped with a finite filtration of $\mathbb{Z}[Q]$-submodules

$$
B=B_{1} \supset B_{2} \supset \ldots \supset B_{k} \supset B_{k+1}=0
$$

such that B_{j} / B_{j+1} is a cyclic R_{j}-module for some commutative Noetherian ring R_{j}, Q embeds in R_{j} and the action of Q on B_{j} / B_{j+1} via the embedding of Q in R_{j} is the original action of Q. Suppose further that $H_{0}(Q, B)$ is finite. Then $H_{i}(Q, B)$ is finite for all i.

Proof. We induct on the length of the filtration. Assume first that $k=1$ and so B is cyclic and a commutative Noetherian ring. Let \mathcal{F} be a resolution of the trivial module \mathbb{Z} over R_{1} with all modules finitely generated. Consider the complex $B \otimes_{\mathbb{Z}[Q]} \mathcal{F}$. Its modules could be viewed as (left) B-modules via the multiplication in B. Note this B-action is compatible with the differentials because its action could be extended to an action of R_{1} and the latter ring is commutative. As B is
a Noetherian ring and all modules in $B \otimes_{\mathbb{Z}[Q]} \mathcal{F}$ are finitely generated over B we deduce that all homology groups

$$
H_{i}\left(B \otimes_{\mathbb{Z}[Q]} \mathcal{F}\right) \simeq H_{i}(Q, B)
$$

are finitely generated B-modules. Furthermore the action of Q on $H_{i}(Q, B)$ is trivial and so $H_{i}(Q, B)$ is a finitely generated $H_{0}(Q, B)$-module. As by assumption $H_{0}(Q, B)$ is finite we are done.

If $k \geq 2$ consider the short exact sequence of modules

$$
0 \rightarrow B_{2} \rightarrow B \rightarrow B / B_{2} \rightarrow 0
$$

It induces a long exact sequence in homology

$$
\begin{gathered}
\ldots \rightarrow H_{i}\left(Q, B_{2}\right) \rightarrow H_{i}(Q, B) \rightarrow H_{i}\left(Q, B / B_{2}\right) \rightarrow \ldots \\
\rightarrow H_{1}\left(Q, B / B_{2}\right) \rightarrow H_{0}\left(Q, B_{2}\right) \rightarrow H_{0}(Q, B) \rightarrow H_{0}\left(Q, B / B_{2}\right) \rightarrow 0
\end{gathered}
$$

As $H_{0}(Q, B)$ is finite $H_{0}\left(Q, B / B_{2}\right)$ is finite and by induction $H_{i}\left(Q, B / B_{2}\right)$ is finite for all i. In particular $H_{1}\left(Q, B / B_{2}\right)$ is finite and hence $H_{0}\left(Q, B_{2}\right)$ is finite. Again by induction $H_{i}\left(Q, B_{2}\right)$ is finite for all i and using the long exact sequence we see that $H_{i}(Q, B)$ is finite for all i as required.

Lemma 2 Suppose A is a finitely generated $\mathbb{Z}[Q]$-module and for some prime p and some j the homology group $H_{0}\left(Q, H_{j}\left(A, \mathbb{F}_{p}\right)\right)$ is finite. Then $H_{i}\left(Q, H_{j}\left(A, \mathbb{F}_{p}\right)\right)$ is finite for all i.

Proof. By Proposition 1 (for p odd) and Theorem 1 (for $p=2$) there is a filtration of $H_{j}\left(A, \mathbb{F}_{p}\right)$ with quotients isomorphic to some $B_{\alpha, \beta}=\wedge^{\alpha}(A / p A) \otimes \widetilde{S}^{\beta}\left({ }_{p} A\right)$ for $\alpha+2 \beta=j$. $B_{\alpha, \beta}$ is a module over $\Pi_{\alpha} \otimes \Pi_{\beta}$ where Π_{k} is the invariant subring of $\mathbb{F}_{p}\left[Q^{k}\right]$ under the action of the symmetric group S_{k} that permutes the factors of Q^{k}. Note Π_{k} is a finitely generated algebra that contains the diagonal subgroup of Q^{k}. Then $\Pi_{\alpha} \otimes \Pi_{\beta}$ is a Noetherian commutative ring containing the diagonal subgroup of $Q^{\alpha+\beta}$ and we can apply the previous lemma.

Proposition 2 Suppose some extension G of A by Q is finitely generated, p is a prime and $H_{t}\left(G, \mathbb{F}_{p}\right)$ is finite for all t. Then $H_{i}\left(Q, H_{t}\left(A, \mathbb{F}_{p}\right)\right)$ is finite for all t and i.

Proof. We prove the proposition by induction on t. The case $t=1$ is very easy, as $H_{1}\left(A, \mathbb{F}_{p}\right) \simeq A / p A$ and A is finitely generated over $\mathbb{Z}[Q]$. Thus $H_{0}\left(Q, H_{1}\left(A, \mathbb{F}_{p}\right)\right)$ is finite. By Lemma $2 H_{i}\left(Q, H_{1}\left(A, \mathbb{F}_{p}\right)\right)$ is finite for all i.

For the inductive step assume $H_{i}\left(Q, H_{j}\left(A, \mathbb{F}_{p}\right)\right)$ is finite for all $j \leq t-1$ and all i and consider the Lyndon-Hochshild-Serre spectral sequence over the trivial module \mathbb{F}_{p}

$$
E_{i, j}^{2}=H_{i}\left(Q, H_{j}\left(A, \mathbb{F}_{p}\right)\right)
$$

with differentials

$$
d^{r}: E_{i, j}^{r} \rightarrow E_{i-r, j+r-1}^{r}
$$

By induction $E_{i, k}^{2}$ is finite for $k \leq t-1$ and all $i \geq 0$. This together with the fact that d^{r} has bidegree $(-r, r-1)$ and our spectral sequence is a first quadrant spectral sequence, in particular $E_{0, t}^{\infty}=E_{0, t}^{t+1}$, implies that

$$
E_{0, t}^{\infty} \text { is finite if and only if } E_{0, t}^{2} \text { is finite }
$$

At the same time since $H_{i+j}\left(G, \mathbb{F}_{p}\right)$ is finite we have that $E_{i, j}^{\infty}$ is finite for every i, j. Thus $E_{0, t}^{2}=H_{0}\left(Q, H_{t}\left(A, \mathbb{F}_{p}\right)\right)$ is finite. Finally by Lemma $2 H_{i}\left(Q, H_{t}\left(A, \mathbb{F}_{p}\right)\right)$ is finite for all i.

5 Proof of Theorem A

Assume that A is not of finite rank. By [5, Section 3.1, Section 5.1] there exists a prime number p such that $A / p A$ is infinite and A has an epimorphic image M which is a just-infinite cyclic $\mathbb{F}_{p}[Q]$-module of exponent p.

We claim that for p odd $H_{0}\left(Q, \wedge^{i} M\right)$ is finite for all i and for $p=2$ the image of $H_{0}\left(Q, \wedge^{i} M\right)$ in $H_{0}\left(Q, H_{i}\left(M, \mathbb{F}_{2}\right)\right) \simeq H_{0}\left(Q, \widetilde{S}^{i}(M)\right)$ is finite.

Indeed by Proposition 1 for p odd $\wedge_{\mathbb{F}_{p}}^{i}(A / p A)$ is a direct summand of $H_{i}\left(A, \mathbb{F}_{p}\right)$. Thus the embedding of the exterior algebra of $H_{1}\left(A, \mathbb{F}_{p}\right) \simeq A / p A$ in $H_{*}\left(A, \mathbb{F}_{p}\right)$ is natural and split and compatible with the multiplicative structure on the strictly anticommutative algebra $H_{*}\left(A, \mathbb{F}_{p}\right)$. Hence the action of Q on the homology group induces on the exterior algebra of $A / p A$ the diagonal Q-action. Then $\mathbb{F}_{p} \otimes_{\mathbb{F}_{p}[Q]}$ $\left(\wedge^{i}(A / p A)\right)$ embeds in $\mathbb{F}_{p} \otimes_{\mathbb{F}_{p}[Q]} H_{i}\left(A, \mathbb{F}_{p}\right)$. By Proposition $2 \mathbb{F}_{p} \otimes_{\mathbb{F}_{p}[Q]} H_{i}\left(A, \mathbb{F}_{p}\right)$ is finite and so $\mathbb{F}_{p} \otimes_{\mathbb{F}_{p}[Q]}\left(\wedge^{i}(A / p A)\right)$ is finite. As M is a surjective image of $A / p A$ we deduce that $H_{0}\left(Q, \wedge^{i} M\right)$ is finite.

If $p=2$ consider the commutative diagram

As by Proposition $2 H_{0}\left(Q, H_{i}\left(A, \mathbb{F}_{2}\right)\right)$ is finite and φ is surjective we deduce that the image of $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]} \wedge^{i} M$ in $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]} \widetilde{S}^{i}(M)$ is finite, as required.

From now on we will forget the existence of the group G and will deal only with just -infinite cyclic $\mathbb{Z}[Q]$-modules M of additive exponent p with the property that for p odd $\mathbb{F}_{p} \otimes_{\mathbb{F}_{p}[Q]}\left(\wedge_{\mathbb{Z}}^{i} M\right)$ is finite for all i and for $p=2$ the image of $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]}\left(\wedge_{\mathbb{Z}}^{i} M\right)$ in $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]} \widetilde{S}^{i}(M)$ is finite for all i. By [5, Section 5.2$]$ there exists a series

$$
Q=Q_{0} \subseteq Q_{1} \subseteq \ldots \subseteq Q_{t}
$$

of multiplicative subgroups of the field of fraction K of M and a series

$$
M=M_{0} \subseteq M_{1} \subseteq \ldots \subseteq M_{t}
$$

of additive subgroup of K defined by $M_{i}=Q_{i} M$ with the following properties:

1. $Q_{i+1}=Q_{i} \times<\alpha_{i}>$;
2. there exists $r_{i} \in \mathbb{Z}\left[Q_{i}\right]$ with $\left(r_{i}-\alpha_{i}\right) M_{i+1}=0$;
3. M_{i} is fully tame i.e. M_{i} is n_{i}-tame as a module over $\mathbb{F}_{p}\left[Q_{i}\right]$ where n_{i} is the torsion free rank of Q_{i}.

Lemma 3 If p is odd and $\mathbb{F}_{p} \otimes_{\mathbb{Z}\left[Q_{i}\right]}\left(\wedge^{j} M_{i}\right)$ is finite then $\mathbb{F}_{p} \otimes_{\mathbb{Z}\left[Q_{i+1}\right]}\left(\wedge^{j} M_{i+1}\right)$ is finite.

If $p=2$ and the image of $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]}\left(\wedge_{\mathbb{Z}}^{j} M_{i}\right)$ in $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]} \widetilde{S}^{j}\left(M_{i}\right)$ is finite then the image of $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]}\left(\wedge_{\mathbb{Z}}^{j} M_{i+1}\right)$ in $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]} \widetilde{S}^{j}\left(M_{i+1}\right)$ is finite.

Proof. First let p be odd. Suppose f_{1}, \ldots, f_{s} are elements of $\wedge^{j} M_{i}$ such that

$$
\wedge_{\mathbb{F}_{p}}^{j} M_{i}=\mathbb{F}_{p} f_{1}+\ldots+\mathbb{F}_{p} f_{s}+\operatorname{Aug}\left(\mathbb{F}_{p}\left[Q_{i}\right]\right)\left(\wedge_{\mathbb{F}_{p}}^{j} M_{i}\right)
$$

where $A u g$ denotes the augmentation ideal. We claim that

$$
\wedge_{\mathbb{F}_{p}}^{j} M_{i+1}=\mathbb{F}_{p} f_{1}+\ldots+\mathbb{F}_{p} f_{s}+\operatorname{Aug}\left(\mathbb{F}_{p}\left[Q_{i+1}\right]\right)\left(\wedge_{\mathbb{F}_{p}}^{j} M_{i+1}\right)
$$

Let f be an element from $\wedge_{\mathbb{F}_{p}}^{j} M_{i+1}$. As M_{i+1} is a localisation of M_{i} for some large positive integer β we have $\alpha_{i}^{\beta} f \in \wedge_{\mathbb{F}_{p}}^{j} M_{i}$. Then

$$
\alpha_{i}^{\beta} f=z_{1} f_{1}+\ldots+z_{s} f_{s}+w
$$

where $z_{i} \in \mathbb{F}_{p}$ and $w \in \operatorname{Aug}\left(\mathbb{F}_{p}\left[Q_{i}\right]\right)\left(\wedge^{j} M_{i}\right)$ and hence

$$
f=\alpha_{i}^{-\beta}\left(z_{1} f_{1}+\ldots+z_{s} f_{s}+w\right) \in z_{1} f_{1}+\ldots+z_{s} f_{s}+A u g\left(\mathbb{F}_{p}\left[Q_{i+1}\right]\right)\left(\wedge_{\mathbb{F}_{p}}^{j} M_{i+1}\right),
$$

as required.
If $p=2$ consider the commutative diagram

$$
\begin{array}{rlll}
\varphi_{i}: & : \wedge_{\mathbb{F}_{2}}^{j} M_{i} & \rightarrow & \widetilde{S}^{j}\left(M_{i}\right) \\
& \downarrow & & \downarrow \\
\varphi_{i+1}: & : \wedge_{\mathbb{F}_{2}}^{j} M_{i+1} & \rightarrow & \widetilde{S}^{j}\left(M_{i+1}\right)
\end{array}
$$

Then there exist elements $f_{1}, \ldots, f_{s} \in \wedge_{\mathbb{F}_{2}}^{j} M_{i}$ such that

$$
\varphi_{i}\left(\wedge_{\mathbb{F}_{2}}^{j} M_{i}\right) \subseteq \varphi_{i}\left(\mathbb{F}_{2} f_{1}+\ldots+\mathbb{F}_{2} f_{s}\right)+\operatorname{Aug}\left(\mathbb{Z}\left[Q_{i}\right]\right)\left(\widetilde{S}^{j}\left(M_{i}\right)\right)
$$

An obvious modification of the first part of the proof gives

$$
\varphi_{i+1}\left(\wedge_{\mathbb{F}_{2}}^{j} M_{i+1}\right) \subseteq \varphi_{i+1}\left(\mathbb{F}_{2} f_{1}+\ldots+\mathbb{F}_{2} f_{s}\right)+A u g\left(\mathbb{F}_{2}\left[Q_{i+1}\right]\right)\left(\widetilde{S}^{j}\left(M_{i+1}\right)\right)
$$

Thus to prove the main theorem it is sufficient to work with $M=M_{t}$ and $Q=Q_{t}$, so we can assume that

1. M is a cyclic $\mathbb{F}_{p}[Q]$-module
2. M is n-tame where n is the torsion free rank of Q
3. As t could be chosen arbitrary large we can assume that $n+1$ is a multiple of the order of the torsion part of Q.
4. If p is odd $\mathbb{F}_{p} \otimes_{\mathbb{F}_{p}[Q]} \wedge^{j} M$ is finite for all j. If $p=2$ the image of $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]}\left(\wedge_{\mathbb{Z}}^{j} M\right)$ in $\mathbb{F}_{2} \otimes_{\mathbb{F}_{2}[Q]} \widetilde{S}^{j}(M)$ is finite for all j.

Then by [5, Proposition 4.3]

$$
\mathbb{F}_{p} \otimes_{\mathbb{F}_{p}[Q]}\left(\otimes_{\mathbb{F}_{p}}^{n+1} M\right) \text { is infinite }
$$

At the same time as shown in [5, Section 5.4] the forth property of M together with the n-tameness of M implies that $\mathbb{F}_{p} \otimes_{\mathbb{F}_{p}[Q]}\left(\otimes_{\mathbb{F}_{p}}^{n+1} M\right)$ is finite, a contradiction.

Acknowledgements

The author is supported by a research grant 98/00482-3 from FAPESP, Brazil.

References

[1] R. Bieri, J. R. J. Groves, Metabelian groups of type $F P_{\infty}$ are virtually of type FP, Proc. London Math. Soc. (3)45, (1982), 365-384.
[2] R. Bieri, R. Strebel, Valuations and finitely presented metabelian groups, Proc. London Math. Soc. (3)41 (1980), 439-464.
[3] K. S. Brown, Cohomology of Groups, Springer-Verlag, 1982.
[4] H. Cartan, Algebres d'Eilenberg-MacLane, Seminaire H. Cartan, Ecole Normale Superieure, included in Collected Works, Volume 3, Springer-Verlag, 1979.
[5] J. R. J. Groves, Metabelian groups with finitely generated integral homologies, Quart. J. Math. Oxford (2), 33 (1982), 405-420
[6] D. H. Kochloukova, Geometric invariants and modules of type $F P_{\infty}$ over constructible nilpotent-by-abelian groups, J. Pure Appl. Algebra, to appear.

