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Abstract

Nielsen, G.G.; Gill, R.D.; Andersen, P.K.; Sorensen, T.I.A. (1992) A Counting Process

Approach to Maximum Likelihood Estimation in Frailty Models. Scandinavian Journal of

Statistics 19:25{43 propose a consistent and asymptotically normal estimator for the variance of

the frailty distribution under gamma assumption. A simulation study shows that this estimator

is asymptotically biased for log-normal and normal frailty distributions.
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1 Introduction

In the last two decades there was a big leap in terms of survival analysis methodology. This

type of analysis has been applied not only in the traditional areas of biology and engineering,

but also in demography, social sciences and economy. One of the biggest problems in survival

analysis is related to the presence of populational heterogeneity. A very well-known method

of analysis is the method of partial likelihood based on the Cox's proportional hazard model

(Cox, 1972). In this model it is assumed that the heterogeneity can be measured through the

observable covariates and they were all included in the model. It is a semi-parametric model

since it considers the hazard function to be unknown but models covariate variables through a

�
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regression model. However, it is possible that there are factors that are in
uencing the variable

of interest and cannot be measured. This unobserved covariable can lead to very di�erent

conclusions, biased estimators and reduced e�ciency of the model (Heckman and Singer, 1982;

Vaupel and Yashin; 1985; Trussel and Rodrigues, 1990). Several analysis in epidemiology and

prognostic studies require the inclusion of non-observable covariates. For example, studies about

incidence of colon cancer can depend on familiar variable or genetic factors, also it can depend

on environment factors shared by elements of the same family or living in a close neighborhood.

This heterogeneity is frequently called biological variation and it is recognized as one of the

most important source of variations in medicine and biology (Aalen, 1988).

Frailty models are a generalization of the Cox's proportional hazards models allowing a

random e�ect due to the unobserved heterogeneity of each individual (or group). These models

were introduced by Vaupel, Manton and Stallard (1979).

Estimation for the frailty model has been studied by several authors. For example, Aalen

(1988), Clayton (1991), Klein (1992) applied frailty models in survival analysis. Trussel and

Rodrigues (1990), Manton, Singer and Woodbury (1992) apply these models to demography.

Allison (1982), Namboodiri and Suchindran (1987) and Blossfeld and Hamerle (1992) studied

these models in social sciences. In econometry, we can cite Heckman and Singer(1982) among

others.

In the usual Cox's proportional hazard model, the parametric and non-parametric maximum

likelihood estimators (Nelson-Aalen estimators) for the cumulative hazard function are known

to be consistent and asymptotically e�cient (Greenwood and Wefelmeyer, 1990). Nielsen et

al. (1992) proposed a maximum likelihood estimator for cumulative hazard function and the

variance of the random e�ect assuming it has gamma distribution. Their estimator is obtained

through the EM algorithm. Murphy (1994, 1995) proved that this estimator is consistent and

asymptotically normal. The gamma distribution of the frailty has been used by several authors

who justify this choice based on its analytic simplicity and its variety of forms as the parameters

vary. If the shape and scale parameters are free there is the problem of identi�ability (Hoem,

1990). However, making the restriction of unit expectation and letting the variance be the

unknown parameter leads to a nice interpretation, when the variance vanishes the frailty is

identically one for all the subjects and there is no heterogeneity in the model. Obviously, the

gamma distribution is not the only choice for the distribution of the frailty. Several other
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parametric distributions have been suggested such as normal, log-normal, beta among others

(Heckman and Singer, 1982; Hougard, 1984, 1986; Vaupel, 1990, b; Aalen, 1989). The objective

of this work is to verify the asymptotic properties of the estimator for the variance proposed by

Nielsen et al. (1992) under non-gamma distributions to verify its robustness.

The outline of the paper is as follows. In Section 2, we describe the estimator under study

and its asymptotic properties under gamma frailty. Section 3 presents the simulation study

under three distributions: gamma, log-normal and normal and we can see that although the

estimator performs well for the gamma case, it lacks consistency for the other distributions.

2 Maximum likelihood estimation under gamma dis-

tribution

Nielsen et al. (1992) proposed a counting process approach for estimation in frailty models

assuming that the random e�ect follows a gamma distribution. LetN be a multivariate counting

process with components N

ih

where the components with the same value of the index i share the

same frailty variable Z

i

. Usually the index i refers to a group, and h to stratum (treatment).

The intensity of the process N

ih

is denoted by �

ih

. Consider Y

i

an non-negative observable

predictable process and � the basic unknown risk function. The random e�ects Z

i

are i.i.d.

gamma distributed random variables. As pointed before, in order to deal with the identi�ability

problem (Hoem, 1990) we are going to make the restriction E(Z

i

) = 1 and Var (Z

i

) = � and

work a single parameter �. If � = 0 then Z

i

� 1 and there is no heterogeneity in the model. We

are going to concentrate on the semi-parametric model:

�

ih

(t) = Z

i

Y

ih

(t)�

h

(t) (2.1)

where the basic risk functions �

h

are unknown and need to be estimated. That is, the goal is to

jointly estimate � and the accumulated risk functions A

h

(t) =

R

t

0

�

h

(u)du, based solely in the

observations of (N;Y). In this case, it is possible to write the joint likelihood of (N;Y). First,

write the joint distribution of (N;Y) given Z = z

f

(N;Y) j Z=z

(n;y) =

Y

h

Y

t

(z

i

Y

ih

(t)�

h

(t))

�N

ih

(t)

exp

h

�z

i

Z

�

0

Y

ih

(u) dA

h

(u)

i

; (2.2)

3



where � denotes the end of the observation period. Multiplying the conditional density (2.2) by

the gamma density of Z we obtain the joint distribution of (N;Y;Z) as

f

N;Y;Z

(n;y; z) =

Y

h

Y

t

(z

i

Y

ih

(t)�

h

(t))

�N

ih

(t)

exp

h

�z

i

Z

�

0

Y

ih

(u) dA

h

(u)

i

(

1

�

)

1

�

(z

i

)

1

�

�1

�(

1

�

)

exp

h

�

1

�

z

i

]:

(2.3)

Integrating over z the complete density given by (2.3), we obtain the joint density of (N;Y)

as

f

N;Y

(n;y) =

(

1

�

)

1

�

�(

1

�

)

Y

h

Y

t

(Y

ih

(t)�

h

(t))

�N

ih

(t)

�(

P

u

�N

i

h(u) +

1

�

)

[

1

�

+

R

�

0

Y

ih

(u)dA

h

(u)]

P

u

�N

ih

(u)+

1

�

: (2.4)

Dividing the joint density of (N;Y;Z) by the marginal density of (N;Y) we have that the

conditional distribution of Z given (N;Y) is product of gamma densities with mean

P

u

�N

i

h(u) +

1

�

[

1

�

+

R

�

0

Y

ih

(u)dA

h

(u)]

(2.5)

and variance

P

u

�N

i

h(u) +

1

�

[

1

�

+

R

�

0

Y

ih

(u)dA

h

(u)]

2

: (2.6)

In this case, it is possible to jointly estimate (�; A) using the EM algorithm (Dempster et al.,

1977). The E-step consists in estimating the value of the Z

i

's by their conditional expectation

given (N;Y)

E� step :

^

Z

i

=

P

h

�N

ih

(�) +

1

�

[

1

�

+

P

h

R

�

0

Y

ih

(u)dA

h

(u)]

(2.7)

and the M-step is given by the Nelson-Aalen estimator of A given by

M� step :

^

A

h

(t) =

Z

t

0

dN

�h

(u)

P

i

^

Z

i

Y

ih

(u)

(2.8)

where N

�h

=

P

i

N

ih

.

Given the estimates

^

Z

i

and

^

A(t), we can estimate the hazard function for each individual as

^

�

i

(t) =

^

Z

i

Z

t

0

Y

i

(u) �̂(u) du =

^

Z

i

^

A(maxft; Y

i

(t) = 1g): (2.9)

In general, parameter estimation for frailty models presents better results if we work with

grouped individuals, therefore as presented in Nielsen et al. we work with two strata (h = 1; 2)

where each pair of individuals share the same frailty variable. In the presentation of the results

we are going to concentrate mostly in the estimation of the parameter �. The likelihood L(�)
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was based on the joint distribution of (N; Y ) and the EM algorithm to obtain the estimates

^

A

1

and

^

A

2

of the risk function for each stratum. Instead of working with unrestricted estimation

we decide to truncate the estimate only for non-negative values of �. From now on, let

^

� denote

the maximum likelihood estimator as obtained by Nielsen et al. and let

~

� be the estimator

de�ned by

~

� := argmax

��0

L(�) (2.10)

where

L(�) :=

n

Y

i=1

2

Y

h=1

8

<

:

�

1

�

�

1

�

�

�

1

�

�

Y

t

(Y

ih

(t)dA

h

(t))

4N

ih

(t)

�

�

N

ih

(�) +

1

�

�

�

1

�

+

R

�

0

Y

ih

(u)dA

h

(u)

�

N

ih

(�)+

1

�

9

=

;

: (2.11)

2.1 Asymptotic results under gamma distribution

In this section, we state the results of Murphy (1994, 1995) for the estimator of the variance �.

Call �

0

the true value of the variance. The results for

~

� follow immediately from these ones.

2.1.1 Consistency and asymptotic normality

Murphy (1994, 1995) proved, in particular, that the maximum likelihood estimator

^

� has optimal

asymptotic properties:

Theorem 2.12 i)

^

�

P

�! �

0

and

ii)

p

n (

^

� - �

0

)

D

�! N(0; �

2

)

as n!1 where �

2

is computed through the Fisher information matrix

�

2

=

"

E

 

�

@

2

L(�; A)

@�

2

�

�

�

�

(�

0

;A

0

)

!#

�1

: (2.13)

In the following, we are going to detail some of the calculation necessary to obtain �

2

. In

order to compute the second partial derivative of L(�; A) with respect to �, we can use the

following equivalent de�nition

L(�; A) =

1

n

n

X

i=1

Z

�

0

ln (1 + �N

i

(u�))dN

i

(u)�

�

�

�1

+N

i

(�)

�

ln

�

1 + �

Z

�

0

Y

i

(u)dA(u)

�

+

Z

�

0

ln (Y

i

(u)4A(u))dN

i

(u); (2.14)
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Therefore,

@L(�; A)

@�

=

1

n

n

X

i=1

Z

�

0

N

i

(u�)

1 + �N

i

(u�)

dN

i

(u) +

1

�

2

ln

�

1 + �

Z

�

0

Y

i

(u)dA(u)

�

�

1

�

R

�

0

Y

i

(u)dA(u)

1 + �

R

�

0

Y

i

(u)dA(u)

�N

i

(�)

R

�

0

Y

i

(u)dA(u)

1 + �

R

�

0

Y

i

(u)dA(u)

:

and

�

@

2

L(�; A)

@�

2

�

�

�

�

(�

0

;A

0

)

= n

�1

n

X

i=1

Z

�

0

�

N

i

(t�)

1 + �

0

N

i

(t�)

�

2

dN

i

(t)�N

i

(�)

�

R

�

0

Y

i

dA

0

1 + �

0

R

�

0

Y

i

dA

0

�

2

+

2�

�3

0

"

log

�

1 + �

0

Z

�

0

Y

i

dA

0

�

�

�

0

R

�

0

Y

i

dA

0

1 + �

0

R

�

0

Y

i

dA

0

�

1

2

�

�

0

R

�

0

Y

i

dA

0

1 + �

0

R

�

0

Y

i

dA

0

�

2

#

;

when �

0

= 0 , the last term is de�ned by its limit

2

3

�R

�

0

Y

i

dA

0

�

3

.

Notice that

~

� =

^

�1

^

��0

and we have

Proposition 2.15 The restricted estimator

~

� satis�es:

i)

~

�

P

�! �

0

;

ii)

p

n(

~

� � �

0

)

D

�! G.

as n!1 where G is a random variable with cumulative distribution function given by

F

G

(u) =

8

>

>

>

<

>

>

>

:

0; u < 0;

(1=2)1

[�

0

=0]

; u = 0;

�(u=�); u > 0:

(2.16)

where � is the cumulative distribution function of the standard normal and � is given by ex-

pression (2.13).

2.1.2 Asymptotic variance �

2

Case 1: �

0

= 0. In this case, all Z

i

� 1 and there is unobserved heterogeneity and �

2

can be

obtained through the following expected value:

E

(

n

�1

n

X

i=1

2

X

h=1

"

Z

�

0

(N

ih

(t�))

2

dN

ih

(t) �N

ih

(�)

�

Z

�

0

Y

ih

dA

0h

�

2

+

2

3

�

Z

�

0

Y

ih

dA

0h

�

3

#)
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= n

�1

n

X

i=1

2

X

h=1

(

E

�

Z

�

0

(N

ih

(t�))

2

dN

ih

(t)

�

�E

"

N

ih

(�)

�

Z

�

0

Y

ih

dA

0h

�

2

#

+

2

3

E

"

�

Z

�

0

Y

ih

dA

0h

�

3

#)

: (2.17)

Noting that �

0h

(t) = �, N

ih

(�) = 1 and working each term we get

E

"

�

Z

�

0

Y

ih

dA

0h

�

3

#

= E

2

4

 

Z

maxft:Y

ih

(t)=1g

0

dA

0h

!

3

3

5

= E

2

4

 

Z

maxft:Y

ih

(t)=1g

0

�

0h

(t)dt

!

3

3

5

= E

h

(�maxft : Y

ih

(t) = 1g)

3

i

; (2.18)

E

"

N

ih

(�)

�

Z

�

0

Y

ih

dA

0h

�

2

#

= E

"

�

Z

�

0

Y

ih

dA

0h

�

2

#

= E

2

4

 

Z

maxft:Y

ih

(t)=1g

0

�

0h

(t)dt

!

2

3

5

= E

h

(�maxft : Y

ih

(t) = 1g)

2

i

(2.19)

and

E

�

Z

�

0

(N

ih

(t�))

2

dN

ih

(t)

�

= E

"

�

X

t>0

(N

ih

(t�))

2

4N

ih

(t)

#

= 0: (2.20)

In expression (2.20), N

ih

(t�) = 0 since before time t there is no failure.

Therefore, for non-censored data we have

�

2

=

(

n

�1

n

X

i=1

2

X

h=1

�

2

3

E

h

(�maxft : Y

ih

(t) = 1g)

3

i

� E

h

(�max ft : Y

ih

(t)g)

2

i

�

)

�1

: (2.21)

If there are censored data, we have to modify (2.19) as

E

"

N

ih

(�)

�

Z

�

0

Y

ih

dA

0h

�

2

#

= E

"

E

"

N

ih

(�)

�

Z

�

0

Y

ih

dA

0h

�

2

jN

ih

(�)

##

(2.22)

and

E

"

N

ih

(�)

�

Z

�

0

Y

ih

dA

0h

�

2

jN

ih

(�)

#

= N

ih

(�)E

"

�

Z

�

0

Y

ih

dA

0h

�

2

#

= N

ih

(�)E

h

(�maxft : Y

ih

(t) = 1g)

2

i

: (2.23)

7



Using the fact that N

ih

(�) = 1 if, and only if there is failure we have

�

2

=

(

n

�1

n

X

i=1

2

X

h=1

�

2

3

E

h

(�maxft : Y

ih

(t) = 1g)

3

i

�E

h

(�maxft : Y

ih

(t) = 1g)

2

i

P (failure)

�

)

�1

(2.24)

Case 2: �

0

> 0. In this case, the computation of the expression (2.13) is much more

di�cult. A much simpler approach is to use the observed Fisher information number given by

I

�

^

�

�

= �

@

2

L(�; A)

@�

2

�

�

�

�

� =

^

�

(2.25)

= n

�1

n

X

i=1

2

X

h=1

8

<

:

Z

�

0

 

N

ih

(t�)

1 +

^

�N

ih

(t�)

!

2

dN

ih

(t)

�N

ih

(�)

 

R

�

0

Y

ih

dA

0h

1 +

^

�

R

�

0

Y

ih

dA

0h

!

2

+ 2

^

�

�3

�

log

�

1 +

^

�

Z

�

0

Y

ih

dA

0h

�

�

^

�

R

�

0

Y

ih

dA

0h

1 +

^

�

R

�

0

Y

ih

dA

0h

�

1

2

 

^

�

R

�

0

Y

ih

dA

0h

1 +

^

�

R

�

0

Y

ih

dA

0h

!

2

3

5

9

=

;

:

Working out the following integrals:

Z

�

0

Y

ih

dA

0h

=

Z

�

0

Y

ih

(t)�

0h

(t)dt =

Z

maxft:Y

ih

(t)=1g

0

�

0h

(t)dt

= A

0h

(max ft : Y

ih

(t) = 1g) (2.26)

Z

�

0

 

N

ih

(t�)

1 +

^

�N

ih

(t�)

!

2

dN

ih

(t) =

X

t>0

 

N

ih

(t�)

1 +

^

�N

ih

(t�)

!

2

4N

ih

(t) = 0: (2.27)

we obtain the following expression:

I(

^

�) = n

�1

n

X

i=1

2

X

h=1

8

<

:

�N

ih

(�)

 

A

0h

(max ft : Y

ih

(t) = 1g )

1 +

^

�A

0h

(max ft : Y

ih

(t) = 1g)

!

2

+ 2(

^

�)

�3

"

log

�

1 +

^

�A

0h

(max ft : Y

ih

(t) = 1g)

�

�

^

�A

0h

(max ft : Y

ih

(t) = 1g)

1 +

^

�A

0h

(max ft : Y

ih

(t) = 1g)

�

1

2

 

^

�A

0h

(max ft : Y

ih

(t) = 1g)

1 +

^

�A

0h

(max ft : Y

ih

(t) = 1g)

!

2

3

5

9

=

;

: (2.28)
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3 Simulation studies

In the following, we will follow the simulation procedure of Nielsen et al (1992) and concentrate

on the two sample case, that is h = 1; 2. In this case, we are assuming that there are two individ-

uals sharing the same frailty, for example, brothers. For simplicity, we take �

1

(t) = �

2

(t) � 1,

however in the analysis, A

1

and A

2

are estimated non-parametrically. For selected values of

the variance parameter � of the frailty density, we generate n datasets of m independent pairs

(t

i1

; t

i2

) of survival times in the following way using S-Plus to generate the random variables:

v

ih

; i = 1; : : : ; n; h = 1; 2 independent exp(1) random variables;

z

i

; i = 1; : : : ; n; independent and identically distributed random variables with mean one and

variance � (to be generated using gamma, log-normal and normal distributions);

t

ih

= v

ih

=z

i

: (3.1)

The dataset were analyzed twice, one time without censoring. The second time a U(0; 8)

censoring variable was used. That is, let c

ih

; i = 1; : : : ; n; h = 1; 2 be independent and identically

distributed U(0; 8) random variables and let

t

ih

= minfv

ih

=z

i

; c

ih

g: (3.2)

3.1 Estimation of �

0

For all of the cases, the tables present the average and standard deviation for several simulation

studies. For all cases, the sample size n are 100, 200, 500 and 1000. The estimator

~

� were

computed using the procedure described above. These values can be compared with the values

^

� presented in Nielsen et al. (1992). In all cases, we have 200 (M) repetitions of the experiment.

All simulations were carried using S-plus running on a PC. Matlab for Windows was used for

the maximization and iteration procedure.

3.1.1 Gamma frailty

Table 3.1 presents the average and standard deviation when the data was generated by equations

(3.1) or (3.2) and z

1

; : : : ; z

n

are independent and identically distributed gamma random variables

with mean one and variance �. Also, we present in this table the standard deviation of the

9



Uncensored data Censored data

n �

0

mean SD �(

~

�) �̂(

~

�) mean SD �(

~

�) �̂(

~

�)

0.0 0.0201 0.0471 0.0500 0.0415 0.0276 0.0503 0.0471 0.0501

100 0.2 0.1476 0.1188 | 0.0967 0.1614 0.1398 | 0.1248

0.4 0.3133 0.1634 | 0.1337 0.3200 0.1739 | 0.1679

0.0 0.0170 0.0320 0.0353 0.0289 0.0175 0.0366 0.0333 0.0352

200 0.2 0.1639 0.0883 | 0.0658 0.1653 0.0917 | 0.0862

0.4 0.3460 0.1181 | 0.1258 0.3519 0.1316 | 0.1357

0.0 0.0110 0.0201 0.0223 0.0183 0.0119 0.0219 0.0210 0.0222

500 0.2 0.1816 0.0592 | 0.0475 0.1855 0.0719 | 0.0568

0.4 0.3713 0.0749 | 0.0958 0.3832 0.0877 | 0.0978

0.0 0.0101 0.0160 0.0158 0.0130 | | | |

1000 0.2 0.1884 0.0468 | 0.0353 | | | |

0.4 0.3756 0.0585 | 0.0693 | | | |

Table 3.1: Mean and standard deviation for 200 replication of estimate of �

0

, �(

~

�) and �(

~

�) are the

standard deviation of the estimate computed using true and observed Fisher information number

respectively, under gamma frailty

estimator using expression (2.21) and (2.24) for �

0

= 0. For the case, �

0

> 0 only the variance

based on the observed Fisher information given by (2.28) was computed to obtain �̂(

~

�). As

expected the estimative

~

� are very close to the true parameter value �

0

. Also, as n increases

the approximation gets better. In fact, it is closer for censored data, although the standard

deviation also increases.

Figure 3.1 present the histograms of the simulated values. We can observe that for �

0

= 0 we

have a mixture of a normal random variable and a discrete variable with mass concentrated at

0. For �

0

> 0 we can see that as n increases the approximation to a normal variable is attained.

These conclusions were expected in view of the results of Murphy (1994, 1995), however they

were included for the sake of comparison with the log-normal and normal case.
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Uncensored data Censored data

n �

0

mean SD mean SD

100 0.2 0.1035 0.0938 0.1091 0.1074

0.4 0.1862 0.1326 0.2136 0.1568

200 0.2 0.1195 0.0866 0.1292 0.0950

0.4 0.2280 0.1063 0.2533 0.1225

500 0.2 0.1361 0.0574 0.1388 0.0644

0.4 0.2407 0.0624 0.2573 0.0722

1000 0.2 0.1388 0.0374 | |

0.4 0.2573 0.0469 | |

Table 3.2: Average and standard deviation for 200 replication of estimate of �

0

under log-normal

frailty

3.1.2 Log-normal frailty

Table 3.2 presents the average and standard deviation when the data was generated by equations

(3.1) or (3.2) and z

1

; : : : ; z

n

are independent and identically distributed log-normal random

variables with mean one and variance �. In this case, the expressions for the observed Fisher

information are not so easily obtained as in (2.28) and are not presented. Notice that the values

of

~

� underestimates the true variance, even for very large sample n = 1000 it has a very big

bias. On the other hand, Figure 3.2 presents the histograms of the simulated values and we can

see that the curves approaches a normal curve.
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Figure 3.1: Histogram for 200 simulation of the estimator

~

� under gamma frailty

12



�

0

= 0:2

0.0 0.2 0.4

0
2

4
6

8
10

theta estimado

n = 100

0.0 0.2 0.4

0
2

4
6

8
10

theta estimado

n = 200

0.0 0.1 0.2 0.3

0
2

4
6

8
10

theta estimado

n = 500

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
10

theta estimado

n = 1000

0.0 0.2 0.4 0.6

0
2

4
6

8
10

theta estimado

n = 100

0.0 0.2 0.4

0
2

4
6

8
10

theta estimado

n = 200

0.1 0.2 0.3 0.4

0
2

4
6

8
10

theta estimado

n = 500

0.10 0.20 0.30 0.40

0
2

4
6

8
10

theta estimado

n = 1000

0.0 0.2 0.4

0
2

4
6

8
10

theta estimado

n = 100

0.0 0.2 0.4

0
2

4
6

8
10

theta estimado

n = 200

0.0 0.1 0.2 0.3

0
2

4
6

8
10

theta estimado

n = 500

0.0 0.2 0.4 0.6
0

2
4

6
8

10

theta estimado

n = 100

0.0 0.2 0.4 0.6

0
2

4
6

8
10

theta estimado

n = 200

0.1 0.2 0.3 0.4

0
2

4
6

8
10

theta estimado

n = 500

Uncensored data Censored data

�

0

= 0:4

Figure 3.2: Histogram for 200 simulation of the estimator

~

� under log-normal frailty

3.1.3 Normal frailty

Table 3.3 presents the average and standard deviation when the data was generated by equations

(3.1) or (3.2) and z

1

= jw

1

j; : : : ; z

n

= jw

n

j, where w

1

; : : : ; w

n

are independent and identically

distributed normal random variables with mean and variance chosen so that E(z

i

) = 1 and

Var (z

i

) = �. In this case, the expressions for the observed Fisher information are not so easily

obtained as in (2.28) and are not presented. Notice that the values of

~

� overestimates the true

variance, even for very large sample n = 1000 it has a very big bias. Figure 3.3 presents the

histograms of the simulated values and we can see that, although the mean do not approach

the true value, the curves still seem to approach a normal curve.
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Uncensored data Censored data

n �

0

mean SD mean SD

100 0.2 0.3526 0.1844 0.3028 0.1809

0.4 0.5395 0.1817 0.5199 0.1977

200 0.2 0.3255 0.1135 0.2931 0.1221

0.4 0.5749 0.1340 0.5454 0.1430

500 0.2 0.3470 0.0680 0.3072 0.0705

0.4 0.6076 0.0907 0.5691 0.0976

1000 0.2 0.3546 0.0515 | |

0.4 0.6275 0.0675 | |

Table 3.3: Average and standard deviation for 200 replication of estimate of �

0

under normal frailty

4 Conclusion

The estimator proposed by Nielsen et al. (1992) based on the EM-algorithm is very good and

it has optimal asymptotic properties for the case that it was designed for, unobserved frailty

variable with gamma distribution (Murphy, 1994, 1995). However, as the simulation study

shows, the estimator is not consistent when the gamma assumption fails. It underestimates the

variance for log-normal frailty and overestimates it in the normal case. On the other hand, the

histograms show that, although the estimator is not consistent, it still follows asymptotically

a normal distribution and maybe it could be possible to �nd a non-parametric correction for

the bias. This is not, however the objective of this work. We would like to stress that, the

frailty variable is not observable, therefore it cannot be tested to check whether it satis�es

the distributional assumption. Consequently, caution must be taken when using a parametric

procedure, since a misspeci�cation on the hypothesis can lead to a very strong bias.
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Figure 3.3: Histogram for 200 simulation of the estimator

~

� under normal assumption

15



Acknowledgments This work was partially supported by CAPES and FAEP and it is part

of AF's monograph written for ful�llment of the requirements for the Master degree in Statistics

at University of Campinas. This manuscript was written while NLG was Visiting Scholar at

Department of Statistics - University of California - Berkeley and it was partially supported by

CNPq Grant 301054/93-2 and FAPESP Grant99/00260-3.

References

[1] Aalen, O.O. (1988) Heterogeneity in survival analysis. Statistics in Medicine, 7: 1121{1137.

[2] Aalen, O.O. (1989) A linear-regression model for the analysis of life times, Statistics in

Medicine, 8(8): 907{925.

[3] Allison, P.D. (1982) Discrete-Time methods for the analysis of event histories. In: Lein-

hartdt, S. (Ed.) Sociological Methodology. San Francisco, Jossey-Bass. pp. 61{98.

[4] Blossfeld, H.P.; Hamerle, A. (1992) Unobserved heterogeneity in event history models.

Quality and Quantify 26:157{168.

[5] Clayton, D.G. (1991) A Monte Carlo Method for Bayesian Inference in Frailty Models.

Biometrics 47:467{485.

[6] Cox, D.R. (1972) Regression models and life-tables. Journal of the Royal Statistical Society

B, 34:187{202.

[7] Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977) Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society B 38:1{38.

[8] Greenwood, P.E.; Wefelmeyer, W. (1990) E�ciency of estimators for partially speci�ed

�ltered models. Stochastic Process. Appl. 36:353{370.

[9] Heckman, J.; Singer, B. (1982) Population heterogeneity in demographic models. In: Land,

K.; Rogers, A. (Ed.) Multidimensional Mathematical Demography. New York, Academic

Press. pp. 567{599.

16



[10] Hoem, J.M. (1990) Identi�ability in hazards models with unobserved heterogeneity: The

compatibility of two apparently contradictory results. Theoretical Population Biology 37:

124{128.

[11] Hougaard, P. (1984) Life table methods for heterogeneous populations { Distributions

describing the heterogeneity. Biometrika 71:75{83.

[12] Hougaard, P. (1986) Survival models for heterogeneous populations derived from stable

distributions. Biometrika 73:387{396.

[13] Klein, J.P. (1992) Semi-parametric Estimation of Random E�ects Using the Cox Model

Based on the EM Algorithm. Biometrics 48:795{806.

[14] Manton, K.G.; Singer, B.; Woodbury,M.A. (1992) Some issues in the quantitative char-

acterization of heterogeneous populations. In: Trussel, J.; Hankinson, R.; Tilton, J. (Ed.)

Demographic Applications of Event History Analysis. New York, Oxford University Press.

pp. 9{37.

[15] Murphy, S.A. (1994) Consistency in a Proportional Hazards Model Incorporating a Random

E�ect. The Annals of Statistics 22:712-731.

[16] Murphy, S.A. , (1995) Asymptotic Theory for the Frailty Model. The Annals of Statistics

23:182{198.

[17] Namboodiri, K.; Suchindran, C.M. (1990) Life Table Techniques and their Applications.

Orlando, Academic Press.

[18] Nielsen, G.G.; Gill, R.D.; Andersen, P.K.; Sorensen, T.I.A. (1992) A Counting Process

Approach to Maximum Likelihood Estimation in Frailty Models. Scandinavian Journal of

Statistics 19:25{43.

[19] Trussel, J.; Rodrigues, G. (1990) Heterogeneity in demographic research. In: Adams, J. et

al. (Ed.) Convergent Questions in Genetics an Demography. New York, Oxford University

Press. pp. 111{132.

[20] Vaupel, J.W. (1990) Relative Risks { Frailty models of life-history data. Theor. Popul.

Biol. 37(1): 220-234.

17



[21] Vaupel,J.W.; Manton, K.G.; Stallard, E. (1979) The impact of heterogeneity in individual

frailty on the dynamics of mortality. Demography 16:439{454.

[22] Vaupel,J.W.; Yashin, I.A. (1985) Heterogeneity

0

s ruses: some surprising e�ects of selection

on population dynamics. American Statistician 39:176{185.

18


