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Abstract. We show that the set of F

q

-rational points of either certain Fermat curves

or certain F

q

-Frobenius non-classical plane curves is a complete (k; d)-arc in P

2

(F

q

),

where k and d are respectively the number of F

q

-rational points and the degree of the

underlying curve.

1. Introduction and statement of results

A (k; d)-arc K in the projective plane P

2

(F

q

), F

q

being the �nite �eld with q elements,

is a set of k elements such that no line in P

2

(F

q

) meets K in more than d points. The

(k; d)-arc is called complete if it is not contained in a (k + 1; d)-arc. For basic facts on

arcs the reader is refered to [7, Ch. 12] (see also the references therein), [10, Sec. 5], [1],

and [18].

A natural example of a (k; d)-arc is the set X (F

q

) of F

q

-rational points of a plane curve X

without linear components and de�ned over F

q

, where k = #X (F

q

) and d is the degree

of X . As a matter of terminology, we shall say that X has the arc property whenever

X (F

q

) is a complete (k; d)-arc with k and d as above. As a matter of fact, the interplay

between the theory of algebraic curves and �nite geometries was initiated by Segre around

1955. In [14] (see also [7, Sec. 10.4]) he established an upper bound for the second largest

size that a complete (k; 2)-arc in P

2

(F

q

) can have. He proved this result by applying the

Hasse-Weil upper bound to the non-singular model of the envelope associated to (k; 2)-

arcs. For further results on these arcs see Hirschfeld and Korchm�aros' papers [8] and [9].

For other applications of curves to �nite geometries see the surveys [17] and [16].

In this paper we are concerning with the problem of determining plane curves having the

arc property. This was asked around 1988 by Hirschfeld and Voloch [11, Problem III].

Only few examples of such curves are known. Among them we have the irreducibles conics

in odd characteristic [7, Ch. 8], certain cubics [11, Sect. 5], [5, Sect. 6], and Hermitian

curves [7, Lemma 7.20].

For q a square, the Hermitian curve X

p

q+1

can be de�ned by

X

p

q+1

+ Y

p

q+1

+ Z

p

q+1

= 0 :(1.1)

Then X

p

q+1

(F

q

) is a complete (q

p

q+1;

p

q+1)-arc (loc. cit.). The completeness property

means that for each P 2 P

2

(F

q

) n X

p

q+1

(F

q

) there exists a F

q

-rational line ` such that
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#`\X

p

q+1

(F

q

) =

p

q+1. This property can be easily shown by using the special feature of

Eq. (1.1) (see the proof of Theorem 1.1(1)). Moreover, this property is also a consequence

of the fact that the image of P 2 X

p

q+1

by the F

q

-Frobenius morphism lies on the tangent

line of X

p

q+1

at P (see the proof of Theorem 1.2). A plane curve satisfying the above

property for general points is called F

q

-Frobenius non-classical [15], [6].

The Hermitian curve is a member of the family of Fermat curves X

d

(a; b) de�ned by

aX

d

+ bY

d

+ Z

d

= 0 ;(1.2)

where d = (q � 1)=(q

0

� 1), q = p

n

, q

0

= p

e

, p := char(F

q

) such that e < n and ejn, and

where a; b 2 F

�

q

0

:= F

q

0

n f0g.

The �rst aim of this paper is to extend the arc property of the Hermitian curve to the

curves X

n

(a; b) above as well as to the Fermat curve X

q�1

de�ned by

X

q�1

+ Y

q�1

= 2Z

q�1

;(1.3)

provided that p � 3.

Theorem 1.1. For p � 3, the following statements hold:

(1) the set of F

q

-rational points of the Fermat curve de�ned by Eq. (1.2) is a complete

(k; d)-arc, where k = d(q � d+ 2);

(2) the set of F

q

-rational points of the Fermat curve de�ned by Eq. (1.3) is a complete

((q � 1)

2

; q � 1)-arc.

The arc in part (2) of this theorem is maximal among (k; q�1)-arcs for which there exists

an external line, see Remark 3.3. On the other hand, it seems that the arcs in part (1)

are new.

We notice that the curves in Theorem 1.1 are among the Fermat curves having a large

number of F

q

-rational points [4]. We also notice that the hypothesis p � 3 is necessary,

see Remark 3.2.

The second aim of this paper is to show that certain F

q

-Frobenius non-classical plane

curves do satisfy the arc property.

Theorem 1.2. Let X be a non-singular F

q

-Frobenius non-classical plane curve of degree

d. Let � be the order of contact of X with the tangent at a general point. If

d(d� 1) < (q + 1)� ;(1.4)

then the set of F

q

-rational points of X is a complete (k; d)-arc, where k = #X (F

q

) =

d(q � d+ 2).

The Fermat curve in Theorem 1.1(2) is F

q

-classical by [4, Thm. 2]. Hence the hypothesis

of being F

q

-Frobenius non-classical in Theorem 1.2 is not necessary. We observe that

d(d� 1)=� is the degree of the dual curve of X ; see Remark 2.3.
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For the Hermitian curve X

p

q+1

, � =

p

q (see e.g. [2]) and therefore it satis�es (1.4) in

Theorem 1.2. The Fermat curves in Theorem 1.1(1) are F

q

-Frobenius non-classical, see [4,

Thm. 2]. For these curves, � = q

0

[6, Thm. 2], and so they satisfy (1.4) if and only if they

are Hermitian curves. So far, we could not �nd examples of non-singular F

q

-Frobenius

non-classical curves ful�lling (1.4) which are not F

q

-isomorphic to Hermitian curves; see

Remark 4.3.

2. Frobenius non-classical planes curves

The study of Frobenius non-classical curves was initiated by Hefez and Voloch [6] based

on a fundamental paper by St�ohr and Voloch [15], where an approach to the Hasse-Weil

bound was given.

In this paper we only consider irreducible non-linear plane curves de�ned over F

q

. Let

X � P

2

(

�

F

q

) be such a curve. For i = 0; 1; 2, let x

i

be the coordinates functions of P

2

(

�

F

q

)

on X . Let t be a separating variable of F

q

(X )jF

q

and denote by D

i

= D

i

t

the i-th Hasse

derivative on X . The order sequence of X (see [15, p. 5]) are the numbers 0; 1 and

� = �(X ), where � > 1 is the least integer such that

det

0

@

x

0

x

1

x

2

D

1

x

0

D

1

x

1

D

1

x

2

D

�

x

0

D

�

x

1

D

�

x

2

1

A

6= 0 :

Geometrically, the numbers 0, 1 and � represent all the possible intersection multiplicities

of the curve X with lines in P

2

(

�

F

q

) at general points.

The F

q

-Frobenius order sequence of X (see [15, p. 9]) are the numbers 0 and � = �(X ; q),

where � > 0 is the least integer such that

det

0

@

x

q

0

x

q

1

x

q

2

x

0

x

1

x

2

D

�

x

0

D

�

x

1

D

�

x

2

1

A

6= 0 :(2.1)

We have that � 2 f1; �g [15, Prop. 2.1]. The plane curve X is called F

q

-Frobenius

non-classical if � = � (or equivalently if � > 1).

Remark 2.1. From Eq. (2.1) follows that X is F

q

-Frobenius non-classical if and only

if Fr

X

(P ) 2 T

P

X for all non-singular points P 2 X , where Fr

X

is the F

q

-Frobenius

morphism on X and T

P

X is the tangent line to X at P .

Remark 2.2. Let X be a curve as above.

(i) If �(X ) > 2 then it is a power of p [3, Prop. 2].

(ii) If X is F

q

-Frobenius non-classical and p > 2, then �(X ) > 2 [6, Prop. 1].

(iii) If X is F

q

-Frobenius non-classical, then �(X ) � q [6, p. 266]. If in addition X is

non-singular, then �(X ) �

p

q [6, Prop. 6].
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(iv) Let X be non-singular F

q

-Frobenius non-classical plane curve. Let d the degree of d

and suppose that � = �(X ) > 2. Then [6, Props. 5, 6]

p

q + 1 � d � (q � 1)=(�� 1) :

Remark 2.3. Let X be a non-singular plane curve of degree d � 2, X

�

the dual curve of

X and T : X ! X

�

the dual map; i.e, T (P ) = T

P

X . Then d(d� 1) = deg(T )d

�

, where d

�

is the degree of X

�

; this follows e.g. from [12, Lemma 4.3]. Now by a result of Kaji [13,

Cor. 4.5], T is purely inseparable. If in addition, X is F

q

-Frobenius non-classical, then

deg(T ) = �(X ) [6, Props. 3 and 4]. Therefore, in Theorem 1.2 we look for F

q

-Frobenius

non-classical plane curves such that the degree of its dual curve is upper bounded by

(q + 1).

Let F = F (X

0

; X

1

; X

2

) = 0 be the equation of X over F

q

. From [3, Thm. 1], � = �(X ) > 2

if and only if there exist homogeneous polynomials H;P

0

; P

1

; P

2

2 F

q

[X

0

; X

1

; X

2

] n f0g

such that

FH = X

0

P

�

0

+X

1

P

�

1

+X

2

P

�

2

:(2.2)

We have that H = 1 if X is non-singular (loc. cit, p. 462). Now it is easy to see that X

is F

q

-non-classical if and only if there exists H

1

2 F

q

[X

0

; X

1

; X

2

] such that

FH

1

= X

q=�

0

P

0

+X

q=�

1

P

1

+X

q=�

2

P

2

:(2.3)

Finally, we mention a formula for the precise number of F

q

-rational points of non-singular

F

q

-Frobenius non-classical curves.

Lemma 2.4. ([6, Thm. 1]) Let X be a plane non-singular F

q

-Frobenius non-classical

curve of degree d. Then

#X (F

q

) = d(q � d+ 2) :

3. Proof of Theorem 1.1

(1) That #X

d

(a; b) = d(q � d + 2) is well known, see e.g. [4, p. 354]. (This result also

follows from [4, Thm. 2] and Lemma 2.4).

Next, for P 2 P

2

(F

q

) n X

d

(F

q

), we will show that there exists a F

q

-rational line ` which

passes through P and intersects the curve X

d

(a; b) in d distinct F

q

-rational points. We

recall the following easy fact.

Claim 3.1. Let A;B 2 F

�

q

0

. Then the equation AX

d

+B = 0 has d distinct solutions in

F

q

.

Proof. Since p does not divide d, the equation has d solutions in

�

F

q

. If x is a solution,

then x

q�1

= 1, as d = (q � 1)=(q

0

� 1), and hence x 2 F

q

.
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We consider four cases:

Case 1: P = (� : � : 0). Let ` : Z = 0. Then P 2 ` and

` \ X

d

(a; b) = f(� : 1 : 0) : a�

d

+ b = 0g :

Case 2: P = (� : � : 1) and a�

d

+ 1 6= 0. Let ` : X = �Z. Then P 2 ` and

` \ X

d

(a; b) = f(� : � : 1) : b�

d

+ a�

d

+ 1 = 0g :

Case 3: P = (� : � : 1) and b�

d

+ 1 6= 0. Let ` : Y = �Z. Then P 2 ` and

` \ X

d

(a; b) = f(� : � : 1) : a�

d

+ b�

d

+ 1 = 0g :

Case 4: P = (� : � : 1) and a�

d

+ 1 = b�

d

+ 1 = 0. Let ` : �X = �Y . Then P 2 ` and

` \ X

d

(a; b) = f(�; �; ��) : �

d

+ 2b = 0g :

Now by Claim 3.1 all the sets above have cardinality d and are contained in X

d

(a; b)(F

q

).

This completes the proof of Theorem 1.1(1).

(2) We have that

X

q�1

(F

q

) = f(� : � : ) 2 P

2

(F

q

) : �� 6= 0g ;

so that #X

q�1

(F

q

) = q

2

+ q+1� 3q = (q� 1)

2

. Let P = (� : � : ) 2 P

2

(F

q

) nX

q�1

(F

q

).

The proof of the arc property for X

q�1

follows from the following �ve computations.

Case 1: � =  = 0. Let ` : Y = Z. Then P 2 ` and

` \ X

q�1

= f(� : 1 : 1) : � 2 F

�

q

g :

Case 2: � 6= 0 and  = 0. Let ` : Y = bX. Then P 2 ` and

` \ X

q�1

= f(1 : b : �) : � 2 F

�

q

g :

Case 3: � = � = 0. Let ` : X = Y . Then P 2 ` and

` \ X

q�1

= f(1 : 1 : �) : � 2 F

�

q

g :

Case 4: � 6= 0 and  = 1. Let ` : X = aZ. Then P 2 ` and

` \ X

q�1

= f(a : � : 1) : � 2 F

�

q

g :

Case 5: � 6= 0 and  = 1. Let ` : Y = bZ. Then P 2 ` and

` \ X

q�1

= f(� : b : 1) : � 2 F

�

q

g :

Remark 3.2. The hypothesis p � 3 in Theorem 1.1(1) is necessary. Indeed, consider the

Fermat curve X de�ned by

X

q�1

+ Y

q�1

+ Z

q�1

= 0 ;

where q is a power of two. Take P = (1 : 1 : 1). Then it is easy to see that #`\X < q�1

for any F

q

-rational line ` passing through P .
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Remark 3.3. For a (k; q � 1)-arc K having an external line (i.e. a F

q

-rational line ` such

that ` \ K = ;), we have that k � (q � 2)q + 1 = (q � 1)

2

(�) [7, Thm. 12.40]. Since the

line ` : Z = 0 is external to the ((q � 1)

2

; q � 1)-arc in Theorem 1.1(2), we have that the

upper bound in (�) is attained by this arc.

Remark 3.4. Notice that the ((q� 1)

2

; q� 1)-arc in Theorem 1.1(2) is the complement of

three non-concurrent lines in P

2

(F

q

). Moreover, it can be shown that any such set is a

complete ((q � 1)

2

; q � 1)-arc which is also the set of F

q

-rational points of a plane curve

of degree q � 1; it turns out that this curve is F

q

-isomorphic to the Fermat curve X

q�1

.

Example 3.5. Taking q = p

3

and q

0

= p in Theorem 1.1(1), we have that there exists a

complete (k; p

2

+p+1)-arc in P

2

(F

q

) with k = (p

2

+p+1)(p

3

�p

2

�p+1). In particular,

there exists a complete (208; 13)-arc in F

27

.

4. Proof of Theorem 1.2

Theorem 1.2 will be a consequence of the following more general result.

Theorem 4.1. Let X be a F

q

-Frobenius non-classical (possible singular) plane curve. Let

d be the degree of X and k = #X (F

q

). Then X (F

q

) is a complete (k; d)-arc provided that

k > (d� �)(q + 1�#S) + (d� 1)#S ;

where S is the set of singular points of X and � is as in Theorem 1.2.

Proof. Suppose that X (F

q

) is not complete. Then there exists P 2 P

2

(F

q

) n X (F

q

) such

that for any F

q

-rational line ` through P ,

#` \ X (F

q

) < d :(4.1)

Claim 4.2. If ` is a line such that (4.1) holds and that ` \ S = ;, then

#` \ X (F

q

) � (d� �) :

Proof. Case 1: ` \ X 6� X (F

q

). Let Q 2 ` \ X n X (F

q

). Then, as ` is F

q

-rational,

Fr

X

(Q) 2 ` and thus, as ` \ S = ;, ` is the tangent line of X at Q (see Remark 2.1).

Therefore

#` \ X (F

q

) � d� � ;

since I(X ; `;Q) � �; see [15, p.5].

Case 2: ` \ X � X (F

q

). From (4.1) and Bezout's theorem there exists Q 2 ` \ X (F

q

)

such that j(Q) := I(X ; `;Q) > 1. Then, as `\S = ;, ` is the tangent line of X at Q. We

have that

#` \ X (F

q

) � d� j(Q) + 1

and the claim follows from the fact that j(Q) � � + 1 [15, Cor. 2.10].
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Now there are at most N � #S lines `

0

such that `

0

\ S 6= ;. For each of these lines,

`

0

\ X (F

q

) � d� 1; hence from Claim 4.2 we have

k � (d� �)(q + 1�N) + (d� 1)N :

Then k � (d� �)(q + 1) +N(� � 1) � (d� �)(q + 1) + (� � 1)#S, a contradiction. This

�nishs the proof of Theorem 4.1.

Proof of Theorem 1.2. We have S = ; and so the hypothesis in Theorem 4.1 is

k > (d� �)(q + 1) :(4.2)

Since k = d(q� d+2) (see Lemma 2.4), it turns out that (4.2) is equivalent to d(d� 1) <

(q + 1)�) and the result follows.

Remark 4.3. Let X be a non-singular F

q

-Frobenius non-classical curve of degree d. As-

sume � = �(X ) > 2. Then from Eqs. (2.2) and (2.3), d = �� + 1 for some � 2 N. If (1.4)

holds, then

p

q=� � � <

p

q=� ;

where the �rst inequality follows from Remark 2.2(iv).

For a concrete example take q = p

3

. Then � = p by Remark 2.2(i)(iii) and so

p

p � � < p.

Therefore X will satisfy (1.4) if � = p�1, i.e. if X has degree d = p

2

�p+1. The existence

of a such curve is equivalent to the existence of polynomials P

0

; P

1

; P

2

2 F

q

[X

0

; X

1

; X

2

]

of degree p � 1 and H

1

2 F

q

[X

0

; X

1

; X

2

] such that Eqs. (2.2) and (2.3) hold true. This

seems an involved problem. On the other hand, the curve X will rise to the existence of

a complete ((p

2

� p+ 1)(p

3

� p

2

+ p+ 1); p

2

� p+ 1)-arc. Unfortunately, the existence of

such an arc is not known.
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