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Abstra
t. Some new results on plane F

q

2

-maximal 
urves are stated and proved. By

[32℄, the degree d of a plane F

q

2
-maximal 
urve is less than or equal to q+1 and equality

holds if and only if the 
urve is F

q

2

-isomorphi
 to the Hermitian 
urve. We show that

d � q + 1 
an be improved to d � (q + 2)=2 apart from the 
ase d = q + 1 or q � 5.

This upper bound turns out to be sharp for q odd. In [4℄ it was pointed out that some

Hurwitz 
urves are plane F

q

2

-maximal 
urves. Here we prove that (1.3) is the ne
essary

and suÆ
ient 
ondition for a Hurwitz 
urve to be F

q

2
-maximal. We also show that this


riterium holds true for the F

q

2

-maximality of a wider family of 
urves.

1. Introdu
tion

An F

q

2

-maximal 
urve of genus g is a proje
tive, geometri
ally irredu
ible, non-singular,

algebrai
 
urve de�ned over a �nite �eld F

q

2

of order q

2

su
h that the number of its

F

q

2

-rational points attains the Hasse-Weil upper bound

1 + q

2

+ 2qg :

Maximal 
urves, espe
ially those having large genus with respe
t to q, are known to be

very useful in Coding theory [19℄. Also, there are various ways of employing them in

Cryptography, and it is expe
ted that this interesting 
onne
tion will be be explored

more fully, see [34, Chapter 8℄. Other motivation for the study of maximal 
urves 
omes

from Correlations of Shift Register Sequen
es [28℄, Exponentials Sums over Finite Fields

[29℄, and Finite Geometry [24℄. Re
ent papers on maximal 
urves whi
h also 
ontain

ba
kground and expository a

ounts are [32℄, [35℄, [10℄, [9℄, [18℄, [11℄, [7℄, [14℄, [6℄, [1℄, [8℄,

and [26℄.

A relevant result on F

q

2

-maximal 
urves X with genus g states that either g = q(q� 1)=2

and X is F

q

2

-isomorphi
 to the Hermitian 
urve H of equation

X

q+1

+ Y

q+1

+ Z

q+1

= 0 ;(1.1)

or g � (q � 1)

2

=4; see [25℄, [35℄, and [10℄. One expe
ts that the bound (q � 1)

2

=4 
an

be substantially lowered apart from a 
ertain number of ex
eptional values of g. Finding
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su
h values is one of the problems of 
urrent interest in the study of maximal 
urves; see

[9, Se
tion 3℄, [11, Proposition 2.5℄, [7, Se
tion 3℄, and [1℄.

In this paper we investigate plane maximal 
urves. In Se
tion 2 we prove the non-existen
e

of a plane F

q

2

-maximal 
urve whose genus belongs to the interval (q(q� 2)=8; q(q� 2)=4℄,

for q even, and ((q � 1)(q � 3)=8; (q � 1)

2

=4℄ for q odd; see Corollary 2.3. The 
urves

studied in Se
tion 3 show that these bounds are sharp in some 
ases. In 
ontrast, a few

examples of (non planar) F

q

2

-maximal 
urves with genera in these intervals are known to

exist; see [9, Se
tion 3℄, [7, pp. 74{75℄, [1℄, [13℄, and [8, Theorem 2.1℄.

In the 
ourse of our investigation we point out that the Hermitian 
urve H is the unique

F

q

2

-maximal 
urve (up to F

q

2

-isomorphism) whi
h is F

q

2

-Frobenius non-
lassi
al with

respe
t to the linear series �

1


ut out by lines; see Proposition 2.2. Also, the order of


onta
t �

2

of a non-
lassi
al (with respe
t to �

1

) F

q

2

-maximal 
urve with the tangent at

a general point satis�es �

2

2

� q=p, where p := 
har(F

q

2

); see Corollary 2.8. In parti
ular,

plane F

q

2

-maximal 
urves with q = p and q = p

2

are 
lassi
al with respe
t to �

1

.

A

ording to [27, Prop. 6℄, every 
urve whi
h is F

q

2

-
overed by the Hermitian 
urve is

F

q

2

-maximal. An open problem of 
onsiderable interest is to de
ide whether the 
onverse

of this statement also holds. In Se
tion 3 we solve this problem for the family of the

so-
alled Hurwitz 
urves. Re
all that a Hurwitz 
urve of degree n + 1 is de�ned as a

non{singular plane 
urve of equation

X

n

Y + Y

n

Z + Z

n

X = 0 ;(1.2)

where p = 
har(F

q

2

) does not divide n

2

�n+1. Theorem 3.1 together with Corollary 3.3

states indeed that the Hurwitz 
urve is F

q

2

-
overed by the Hermitian 
urve if and only if

q + 1 � 0 (mod (n

2

� n+ 1)) :(1.3)

It should be noted on the other hand that for 
ertain n and p, the Hurwitz 
urve is not

F

q

2

-maximal for any power q of p; this o

urs, for instan
e, for n = 3 and p � 1 (mod 7).

One 
an then ask for 
onditions in terms of n and p whi
h assure that the Hurwitz 
urve

is F

q

2

-maximal for some power q of p. Our results in this dire
tion are given in Remarks

3.6 and 3.10, and Corollaries 3.7, 3.8. They generalise some previous results obtained

in [4, Lemmes 3.3, 3.6℄. Another feature of the Hurwitz 
urve is that it is non-
lassi
al

provided that p

e

divides n with p

e

� 3; see Remark 3.11. So if both (1.3) and p

e

jn hold

then the Hurwitz 
urve turns out to be a non-
lassi
al plane F

q

2

-maximal 
urve. As far as

we know, these Hurwitz 
urves together with the Hermitian 
urves and the Fermat 
urves

of degree n

2

� n + 1 (see Corollary 3.3), are the only known examples of non-
lassi
al

plane F

q

2

-maximal 
urves. As mentioned before, these 
urves show the sharpness of some

of the results obtained in Se
tion 2.

Hurwitz 
urves as well as their generalizations have been investigated for several reasons

by many authors; see [3, Se
tion 1℄ and [31℄. This gives a motivation to the �nal Se
tion
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4 where we show that the main results of Se
tion 3 extend to (the non{singular model

of) the 
urve with equation

X

n

Y

`

+ Y

n

Z

`

+ Z

n

X

`

= 0 ;

where n � ` � 2 and p = 
har(F

q

2

) does not divide Q(n; `) := n

2

� n` + `

2

.

Our investigation uses some 
on
epts, su
h as non-
lassi
ity, from St�ohr-Volo
h's paper

[36℄ where an alternative proof to the Hasse-Weil bound was given among other things. We

also refer to that paper for terminology and ba
kground results on orders and Frobenius

orders of linear series on 
urves.

2. The degree of a plane maximal 
urve

Let X be a plane F

q

2

-maximal 
urve of degree d � 2. Sin
e the genus of X is equal to

(d� 1)(d� 2)=2, the upper bound for g quoted in Se
. 1 
an be rephrased in terms of d:

d � d

1

(q) :=

3 +

p

2(q � 3)(q + 1) + 9

2

or d = q + 1 :(2.1)

The main result in this se
tion is the improvement of (2.1) given in Theorem 2.12: Apart

from small q's, either d = q + 1, or d = b(q + 2)=2
, or d is upper bounded by a 
ertain

fun
tion d

5

(q) su
h that d

5

(q)=q � 2=5. Our �rst step 
onsists in lowering d

1

(q) to d

2

(q)

with d

2

(q)=q � 1=2.

Let �

1

be the linear series 
ut out by lines of P

2

(

�

F

q

2

) on X . For P 2 X , let j

0

(P ) = 0 <

j

1

(P ) = 1 < j

2

(P ) be the (�

1

; P )-orders, and �

0

= 0 < �

1

= 1 < �

2

(resp. �

0

= 0 < �

1

)

the orders (resp. F

q

2

-Frobenius orders) of �

1

. We let p be the 
hara
teristi
 of F

q

2

.

Lemma 2.1. (1) �

1

2 f1; �

2

g;

(2) �

2

� q;

(3) �

2

is a power of p whenever �

2

> 2:

Proof. For (1), see [36, Prop. 2.1℄. For (2), suppose that �

2

> q, then �

2

= q+1 as �

2

� d

and d � q+1 by (2.1). Then, by the p-adi
 
riterion [36, Cor. 1.9℄, q would be a �

1

-order,

a 
ontradi
tion. For (3), see [16, Prop. 2℄.

The following result is a 
omplement to [30, Prop. 3.7℄, [22, Thm. 6.1℄, and [21, Prop. 6℄.

Proposition 2.2. For a plane F

q

2

-maximal 
urve X of degree d � 3, the following 
on-

ditions are equivalent:

(1) d = q + 1;

(2) X is F

q

2

-isomorphi
 to the Hermitian of equation (1.1);

(3) �

2

= q;

(4) �

1

= q;

(5) j

2

(P ) = q + 1 for ea
h P 2 X (F

q

2

);
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(6) �

1

> 1; i.e, �

1

is F

q

2

-Frobenius non-
lassi
al:

Proof. (1))(2) : Sin
e the genus of a non{singular plane 
urve of degree d is q(q � 1)=2,

part (2) follows from [32℄.

(2))(3) : This is well known property of the Hermitian 
urve; see e.g. [10, p. 105℄ or

[15℄.

(3))(4) : If q = 2, then from d � �

2

= q and (2.1), either d = 2 or d = 3. By hypothesis,

d = 3 
an only o

ur, and so, by parts (1) and (2), X is F

4

-isomorphi
 to the Hermitian


urve X

3

+ Y

3

+ Z

3

= 0. Then �

1

= �

2

= 2; see lo
. 
it.

Let q � 3. By Lemma 2.1(1), �

1

2 f1; qg. Suppose that �

1

= 1 and let S

1

be the

F

q

2

-Frobenius divisor asso
iated to �

1

. Then [36, Thm. 2.13℄

deg(S

1

) = (2g � 2) + (q

2

+ 2)d � 2#X (F

q

2

) = 2(q + 1)

2

+ 2q(2g � 2)

so that ((2q � 1)d� (q

2

+ 2q + 1))(d� 2) � 0, and hen
e

d � F (q) := (q

2

+ 2q + 1)=(2q � 1) :(2.2)

Thus, as d � �

2

= q, we would have q

2

� 3q� 1 � 0 and hen
e q � 3. If q = 3, from (2.2)

we have that d = 3; this 
ontradi
ts [30, Cor. 2.2℄ (
f. Remark 2.5(ii)).

(4))(5) : By [36, Cor. 2.6℄, �

1

� j

2

(P )� 1 for any P 2 X (F

q

2

). Then part (5) follows as

j

2

(P ) � d and d � q + 1 by (2.1).

(5))(6) : Suppose that �

1

= 1. Then, by [36, Prop. 2.4(a)℄, v

P

(S

1

) � q + 1 for any

P 2 X (F

q

2

). Therefore

deg(S

1

) = (2g � 2) + (q

2

+ 2)d � (q + 1)#X (F

q

2

) = (q + 1)

3

+ (q + 1)q(2g � 2) ;

a 
ontradi
tion as 3 � d � q + 1.

(6))(1) : From [21, Thm. 1℄ and the F

q

2

-maximality of X we have

#X (F

q

2

) = d(q

2

� 1)� (2g � 2) = (1 + q)

2

+ q(2g � 2) :

Sin
e 2g � 2 = d(d� 3) and d > 1, part (1) follows.

Corollary 2.3. Let d � 3 be the degree of a plane F

q

2

-maximal 
urve. Then either

d = q + 1 or

d � d

2

(q) :=

8

>

>

<

>

>

:

b(q + 2)=2
 if q � 4 and q 6= 3; 5,

3 if q = 3,

4 if q = 5.

In parti
ular, for q 6= 3; 5, an F

q

2

-maximal 
urve has no non-singular plane model if

its genus is assumed to belong to the interval (q(q � 2)=8; q(q � 2)=4℄, for q even, and

((q � 1)(q � 3)=8; (q � 1)

2

=4℄, for q odd.
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Proof. The statement on the genus follows immediately from the upper bound on d. By

(2.1) we have that d � q + 1. If d < q + 1, then q � 3 and from Proposition 2.2 �

1

is

F

q

2

-Frobenius 
lassi
al. In parti
ular, (2.2) holds true; i.e., we have d � F (q). It is easy

to see that F (q) < (q+3)=2 for q > 5 and that F (4) = 25=7. Moreover, F (3) = 16=5 and

F (5) = 4, and the result follows.

Remark 2.4. Let d be the degree of a plane F

q

2

-maximal 
urve of degree d and assume

that 3 � d � d

2

(q).

(i) If q is odd, then the F

q

2

-maximal 
urve of equation

X

(q+1)=2

+ Y

(q+1)=2

+ Z

(q+1)=2

= 0 ;

shows that the upper bound d

2

(q) = (q + 1)=2 in Corollary 2.3 is the best possible as

far as q 6= 3; 5. We noti
e that this 
urve is the unique F

q

2

-maximal plane 
urve (up to

F

q

2

-isomorphism) of degree (q + 1)=2 provided that q � 11; see [6℄.

(ii) From results of Deuring, Tate and Watherhouse (see e.g. [37, Thm. 4℄), there exist

ellipti
 F

q

2

-maximal 
urves for any q. In parti
ular, d

2

(q) = 3 is sharp for q = 3.

(iii) From [33, Se
. 4℄, there exists a plane quarti
 F

25

-maximal; so d

2

(q) = 4 is sharp for

q = 5.

(iv) By part (ii), d

2

(q) = 3 is sharp for q = 4. For q � 8, q even, no information is


urrently available to asses how good the bound d

2

(q) = (q + 2)=2 is.

We go on to look for an upper bound for the degree d of a F

q

2

-maximal 
urve satisfying the


ondition d < b(q+2)=2
. Our approa
h is inspired on [6, Se
. 3℄ where the F

q

2

-Frobenius

divisor S

2

asso
iated with the linear series �

2


ut out on X by 
oni
s was employed to

obtain upper bounds for the number of F

q

2

-rational points of plane 
urves. In fa
t, if we

use �

2

instead of �

1

, we 
an get better results for values of d ranging in 
ertain intervals

depending on q. This was pointed out at the �rst time in [17℄.

In order to 
ompute the �

2

-orders of a plane F

q

2

-maximal 
urve X , one needs to know

whether X is 
lassi
al or not with respe
t to �

1

. This gives the motivation to Proposition

2.6. The following remark will be useful in the proof.

Remark 2.5. (i) If a proje
tive, geometri
ally irredu
ible, non-singular, algebrai
 
urve

de�ned over a �eld of 
hara
teristi
 p > 0 admits a linear series � of degree D, then � is


lassi
al provided that p > D; see [36, Cor. 1.8℄.

(ii) If a non-singular plane 
urve of degree D de�ned over a �eld of 
hara
teristi
 p > is

non-
lassi
al with respe
t to the linear series 
ut out by lines, then D � 1 (mod p); see

[30, Cor. 2.2℄, and [23, Cor. 2.4℄.

Proposition 2.6. Let X be a plane F

q

2

-maximal 
urve of degree d su
h that 3 � d �

d

2

(q), where d

2

(q) is as in Corollary 2.3. Then the linear series �

1

on X is 
lassi
al

provided that one of the following 
onditions holds:
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(i) p � d or d 6� 1 (mod p);

(ii) q = 4; 8; 16; 32;

(iii) p � 3 and either q = p or q = p

2

;

(iv) p = 2, q � 64, and either d � 4, or d � d

3

(q) := q=4 � 1 for q = 64; 128; 256, or

d � d

3

(q) := q=4 for q � 512;

(v) p � 3, q = p

v

with v � 3, and d � d

3

(q) := q=p� p+ 2:

Proof. If (i) holds, then �

1

is 
lassi
al by Remark 2.5. For q = p, the hypothesis on d

yields p � 3 and hen
e d � (p + 1)=2 < p. Thus �

1

is 
lassi
al by Remark 2.5(i). Note

that the following 
omputations will provide another proof of this fa
t.

For the rest of the proof we assume �

1

to be non-
lassi
al, and we show that no one of

the 
onditions (i), : : : ,(v) holds. From Lemma 2.1(3), �

2

� M , where M = 4 for p = 2,

and M = p for p � 3. Also, �

1

= 1 by Proposition 2.2. Therefore, as j

2

(P ) � �

2

for ea
h

P 2 X [36, p. 5℄. From [36, Prop. 2.4(a)℄ we have that v

P

(S

1

) �M for ea
h P 2 X (F

q

2

),

where as before S

1

denotes the F

q

2

-Frobenius divisor asso
iated to �

1

. Thus,

deg(S

1

) = (2g � 2) + (q

2

+ 2)d �M#X (F

q

2

) =M(q + 1)

2

+Mq(2g � 2) ;

or, equivalently,

(Mq � 1)d

2

� (q

2

+ 3Mq � 1)d+M(q + 1)

2

� 0 :

On the other hand, the dis
riminant of the above quadrati
 polynomial in d is

�

M

(q) := q

4

� (4M

2

� 6M)q

3

+ (M

2

+ 4M � 2)q

2

� (4M

2

� 2M)q + 4M + 1 ;

and hen
e �

M

(q) < 0 if and only if either q = 4; 8; 16; 32 and M = 4, or q = p; p

2

and

M = p � 3. For these q's, the above inequality 
annot a
tually hold, and hen
e �

1

must

be 
lassi
al. Furthermore, if �

M

(q) � 0, then

F

0

(M; q) :=

q

2

+ 3Mq � 1�

p

�

M

(q)

2(Mq � 1)

� d � F (M; q) :=

q

2

+ 3Mq � 1 +

p

�

M

(q)

2(Mq � 1)

:

It is easy to 
he
k that F

0

(4; q) > 4, F (4; q) < q=4 � 1 for q = 64; 128; 256, and that

F (4; q) < q=4 for q � 512; hen
e if (iv) holds, then �

1

must be 
lassi
al. Let p � 3.

If q=p � p + 2 � d � q=p, then �

1

must be 
lassi
al by (i). So we 
an suppose that

d � q=p+ 1. It turns out that F (p; q) < q=p+ 1 and hen
e the result follows when (v) is

assumed to be true.

Remark 2.7. For q = p

3

, p � 3, the bound d

3

(q) in Proposition 2.6 is sharp. Indeed, there

exists a plane F

p

6

-maximal 
urve of degree p

2

� p + 1 whi
h is non-
lassi
al for �

1

; see

Corollary 3.3 and Remark 3.11.

Corollary 2.8. Let X be a plane F

q

2

-maximal 
urve of degree d as in Proposition 2.6.

Assume that X is non-
lassi
al for �

1

and let �

2

be the order of 
onta
t of X with the

tangent at a general point. Then

(1) q � 64 if p = 2, and q � p

3

for p � 3;
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(2) �

2

2

� q=p:

Proof. Part (1) follows from Proposition 2.6(ii)(iii). To prove (2), we �rst note that �

2

< q

(
f. Proposition 2.2), and that �

2

is a power of p (see Lemma 2.1(3)). Now, with the same

notation as in the proof of the previous proposition, we get d � F (M; q) with M = �

2

. So

d � q=�

2

. Furthermore, d � �

2

and so d � �

2

+ 1 by Remark 2.5(ii). Hen
e �

2

+ 1 � q=�

2

and part (2) follows.

Remark 2.9. The example in Remark 2.7 shows that Corollary 2.8(1) is sharp for p � 3.

Our next step is to show that every plane F

q

2

-maximal 
urve whi
h is 
lassi
al for �

1


ontains an F

q

2

-rational point di�erent from its in
exions.

Lemma 2.10. Let X be an F

q

2

-maximal 
urve of degree d � 3 whi
h is 
lassi
al with

respe
t to �

1

. Then there exists P

0

2 X (F

q

2

) whose (�

1

; P

0

)-orders are 0; 1; 2:

Proof. Let R

1

be the rami�
ation divisor asso
iated to �

1

and suppose that j

2

(P ) � 3

for ea
h P 2 X (F

q

2

). Then from [36, p. 12℄,

deg(R

1

) = 3(2g � 2) + 3d � #X (F

q

2

) = (q + 1)

2

+ q(2g � 2)

whi
h is a 
ontradi
tion as g � 1 and 3 � d < q + 1.

It should be noti
ed that Lemma 2.10 improves a previous result, see [6, Cor. 3.2℄.

We are in a position to establish some useful properties of the linear series �

2


ut out by


oni
s of P

2

(

�

F

q

2

) on plane F

q

2

-maximal 
urve X of degree d � 3. Sin
e X is non-singular,

�

2

= 2�

1

. Taking into a

ount d � 3, we see that �

2

is a 5-dimensional linear series of

degree 2d.

Lemma 2.11. Let d be the degree of a plane F

q

2

-maximal 
urve X . Let q = 8 or q � 11,

and suppose that

d

4

(q) :=

2q

2

+ 15q � 20 +

p

4q

4

� 40q

3

+ 145q

2

� 300q + 600

10(q � 2)

< d � d

2

(q) ;

where d

2

(q) is as in Corollary 2.3. Then the orders (resp. F

q

2

-Frobenius orders) of �

2

are 0; 1; 2; 3; 4; � (resp. 0; 1; 2; 3; �) with 5 � � � q. Furthermore, p divides �:

Proof. By some 
omputations we obtain that d

4

(q) is bigger than d

3

(q) in Proposition

2.6. So the 
urve X is 
lassi
al for �

1

. Let P

0

2 X (F

q

2

) be as in Lemma 2.10. Then

the (�

2

; P

0

)-orders are 0; 1; 2; 3; 4 and j

0

with 5 � j

0

� 2d (
f. [16, p. 464℄). Therefore,

the �

2

-orders are 0; 1; 2; 3; 4 and � with 5 � � � j

0

. Sin
e j

0

� 2d, from Corollary 2.3,

� � q + 2, and hen
e � � q by the p-adi
 
riterion [36, Cor. 1.9℄. Also, the F

q

2

-Frobenius

orders of �

2

are 0; 1; 2; 3 and � with � 2 f4; �g; see [36, Prop. 2.1, Cor. 2.6℄. Suppose
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that � = 4 and keep up S

2

to denote the F

q

2

-Frobenius divisor asso
iated to �

2

. Then

[36, Thm. 2.13℄

deg(S

2

) = 10(2g � 2) + (q

2

+ 5)2d � 5#X (F

q

2

) = 5(q + 1)

2

+ 5q(2g � 2)

or equivalently

(5q � 10)d

2

� (2q

2

+ 15q � 20)d+ 5(q + 1)

2

� 0 :

The dis
riminant of this equation is 4q

2

� 40q

3

+145q

2

� 300q+600 and it is positive for

any q. Sin
e d

4

(q) is the biggest root of the quadrati
 polynomial in d above, d � d

4

(q),

a 
ontradi
tion. Finally, p divides � by [12, Cor. 3℄.

Let d

4

(q) be as in Lemma 2.11 and for q = p

v

, v � 2, let d

4

(p; q) denote the fun
tion

2q

2

+ 3(5�

1

p

)q � 8 +

q

4q

4

� 8(5�

1

p

)q

3

+ (113�

50

p

+

9

p

2

)q

2

� 4(25�

17

p

)q + 184

2(5�

1

p

)q � 12

:

Theorem 2.12. Let d be the degree of a plane F

q

2

-maximal 
urve X . Suppose that 3 �

d < q + 1 and that q = 8 or q � 11. Then

d � d

5

(q) :=

(

d

4

(q) if q = p,

d

4

(p; q) if q = p

v

, v � 2,

or d = b(q + 2)=2
 :

Proof. Suppose that d > d

5

(q). By means of some 
omputations, d

5

(p; q) > d

4

(q) and

hen
e Lemma 2.11 holds true. With the same notation as in the proof of that lemma, we


an then use the following two fa
ts: � = � � q, and pj�. A
tually, we will improve the

latter one.

Claim 1. � is a power of p:

Indeed, by pj� and the p-adi
 
riterion [36, Cor. 1.9℄, a ne
essary and suÆ
ient 
ondition

for � not to be a power of p is that p 2 f2; 3g and � = 6. If this o

urs, one 
an argue as

in the previous proof and obtain the following result:

(5q � 2)d

2

� (q

2

+ 15q � 31)d+ 5(q + 1)

2

� 0 :

From this,

d � G(q) :=

q

2

+ 15q � 31 +

p

q

4

� 70q

3

+ 203q

2

� 550q + 1201

2(5q � 12)

;

whi
h is a 
ontradi
tion as G(q) < d

5

(q).

Claim 2. � = q:

The 
laim is 
ertainly true for q = p. So, q = p

v

, with v � 2. If � < q, by Claim 1 we

have � � q=p. Thus, this fa
t together with

deg(S

2

) = (6 + �)(2g � 2) + (q

2

+ 5)2d � 5#X (F

q

2

) = 5(q + 1)

2

+ 5q(2g � 2) ;
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would yield

(5q � q=p� 6)d

2

� (2q

2

+ 15q � 3q=p� 8)d+ 5(q + 1)

2

� 0 ;

and hen
e d � d

4

(p; q), a 
ontradi
tion.

Now from Claim 2 and [36, Cor. 2.6℄, we have

q = � = � � j

5

(P

0

)� 1 � 2d� 1 ;

and Theorem 2.12 follows from Corollary 2.3.

3. Maximal Hurwitz's 
urves

In this se
tion we give a ne
essary and suÆ
ient 
ondition for q in order that the Hurwitz


urve X

n

de�ned by Eq. (1.2) be F

q

2

-maximal.

Theorem 3.1. The 
urve X

n

is F

q

2

-maximal if and only if (1.3) holds.

We �rst prove two lemmas.

Lemma 3.2. ([4, p. 210℄) The Hurwitz 
urve X

n

is F

p

-
overed by the Fermat 
urve

F

n

2

�n+1

U

n

2

�n+1

+ V

n

2

�n+1

+W

n

2

�n+1

= 0 :

Proof. Let u = U=W and v := V=W . Then the image of the morphism (u : v : 1)! (x :

y : 1) = (u

n

v

�1

: uv

n�1

: 1) is the 
urve de�ned by x

n

y + y

n

+ x = 0. This proves the

lemma.

Corollary 3.3. Suppose that (1.3) holds. Then both 
urves X

n

and F

n

2

�n+1

are F

q

2

-


overed by the Hermitian 
urve of equation (1.1). In parti
ular, both are F

q

2

-maximal.

Proof. If (1.3) holds, it is 
lear that F

n

2

�n+1

is F

q

2

-
overed by the Hermitian 
urve. This

property extends to X

n

via the previous lemma. For both 
urves, the F

q

2

-maximality now

follows from [27, Prop. 6℄.

Lemma 3.4. ([5, p. 5249℄) The Weierstrass semigroup of X

n

at the point (0 : 1 : 0) is

generated by the set S := fs(n� 1) + 1 : s = 1; : : : ; ng.

Proof. Let P

0

:= (1 : 0 : 0), P

1

= (0 : 1 : 0), and P

2

= (0 : 0 : 1). Then div(x) =

nP

2

� (n� 1)P

1

� P

0

and div(y) = (n� 1)P

0

+ P

2

� nP

1

so that

div(x

s�1

y) = ((n(s� 1) + 1)P

2

+ (n� s)P

0

� (s(n� 1) + 1)P

1

:

This shows that S is 
ontained in the Weierstrass semigroup H(P

1

) at P

1

. In parti
ular,

H(P

1

) � hSi. Sin
e #(N

0

n hSi) = n(n� 1)=2 (see [20℄), the result follows.
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Proof of Theorem 3.1. If (1.3) holds, then X

n

is F

q

2

-maximal by Corollary 3.3. Conversely,

assume that X

n

is F

q

2

-maximal. Then (q+1)P

1

� (q+1)P

2

[32, Lemma 1℄, and the 
ase

s = n in the proof of Lemma 3.4 gives (n

2

� n + 1)P

1

� (n

2

� n + 1)P

2

. Therefore

d := g
d(n

2

� n + 1; q + 1) belongs to H(P

1

). A

ording to Lemma 3.4 we have that

d = A(n�1)+B with A � B � 1. Now, there exists C � 1 su
h that (A(n�1)+B)C =

n

2

�n+1 and so BC = D(n�1)+1 for someD � 0. Therefore, AD(n�1)+A+BD = Bn.

We 
laim that D = 0, otherwise the left side of the last equality would be bigger than

Bn. Then B = C = 1 and so A = n; i.e., d = n

2

� n+ 1 and the proof is 
omplete.

Corollary 3.5. The 
urve F

n

2

�n+1

in Lemma 3.2 is F

q

2

-maximal if and only if (1.3)

holds.

Proof. If (1.3) is satis�ed, the result follows from Corollary 3.3. Now if F

n

2

�n+1

is F

q

2

-

maximal, then X

n

is also F

q

2

-maximal by Lemma 3.2 and [27, Prop. 6℄. Then the 
orollary

follows from Theorem 3.1.

Remark 3.6. For a given positive integer n, we are led to look for a power q of a prime

p su
h that q + 1 � 0 (mod m) with m = n

2

� n + 1. Sin
e m 6� 0 (mod p), and p 6� 0

(mod m), a ne
essary and suÆ
ient 
ondition for q to have the requested property (1.3)

is p � x (mod m), where x is a solution of the 
ongruen
e X

w

+ 1 � 0 (mod m), and w

is de�ned by q = p

�(m)v+w

, w 2 f1; 2; : : : ; �(m)� 1g; here � denotes the Euler fun
tion.

Regarding spe
i�
 examples, we noti
e that Carbonne and Heno
q [4, Lemmes 3.3, 3.6℄

pointed out that X

n

is F

q

2

-maximal in the following 
ases:

(1) n = 3, q = p

6v+3

and p � 3; 5 (mod 7);

(2) n = 4, q = p

12v+6

and p � 2; 6; 7; 11 (mod 13).

By using Theorem 3.1 and Remark 3.6 we have the following result.

Corollary 3.7. (1) The 
urve X

2

is F

q

2

-maximal if and only if q = p

2v+1

and p � 2

(mod 3);

(2) The 
urve X

3

is F

q

2

-maximal if and only if either q = p

6v+1

and p � 6 (mod 7), or

q = p

6v+3

and p � 3; 5; 6 (mod 7), or q = p

6v+5

and p � 6 (mod 7);

(3) The 
urve X

4

is F

q

2

-maximal if and only if either q = p

12v+1

and p � 12 (mod 13),

or q = p

12v+2

and p � 5; 8, or q = p

12v+3

and p � 4; 10; 12 (mod 13), or q = p

12v+5

and p � 12 (mod 13), or q = p

12v+6

and p � 2; 5; 6; 7; 8; 11 (mod 13), or q = p

12v+7

and p � 12 (mod 13), or q = p

12v+9

and p � 4; 10; 12 (mod 13), or q = p

12v+11

and

p � 12 (mod 13):

Corollary 3.8. Let n be a positive integer, m := n

2

� n + 1 and p a prime.

(1) If n = p

e

with e � 1, then the 
urve X

n

is F

q

2

-maximal with q = p

�(m)v+3e

.

(2) Let p � 3 (mod 4) and n � 0; 1 (mod p) su
h that m is prime and that m � 3

(mod 4). Then X

n

is F

q

2

-maximal with q = p

(m�1)v+(m�1)=2

.
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Proof. Part (1) follows from the identity p

3e

+1 = (p

e

+1)(p

2e

� p

e

+1) and Theorem 3.1.

To show (2), it is enough to 
he
k that p

(m�1)=2

+ 1 � 0 (mod m). Re
all that the

Legendre symbol (a=p) is de�ned by:

(a=p) =

(

1 if x

2

� a (mod p) has two solutions in Z

p

,

�1 if x

2

� a (mod p) has no solution in Z

p

.

In our 
ase, sin
e m � 1 (mod p), (m=p) = 1. By the quadrati
 re
ipro
ity low

(m=p)(p=m) = (�1)

((m�1)=2)((p�1)=2)

;

from (m=p) = 1 and m � 3 (mod 4) we get (p=m) = (�1)

(p�1)=2

. Now, as p � 3 (mod 4),

we have that (p=m) = �1. In other words, p viewed as an element in F

m

is a non-square

in F

m

. Sin
e �1 is as well a non-square in F

m

, it follows then that p � (�1)u

2

(mod m)

with u 2 Z su
h that u 6� 0 (mod m). Hen
e p

(m�1)=2

� (�1) (mod m) as, in parti
ular,

m is odd and as u

m�1

� 1 (mod m).

Remark 3.9. The hypothesis m � 3 (mod 4) in the above 
orollary 
annot be relaxed. In

fa
t, for n = 4 we have m = 13 but, a

ording with Corollary 3.7, X

4

is no F

3

6

-maximal.

Remark 3.10. Let us assume the hypothesis in Corollary 3.8(2) with m not ne
essarily

prime. In this 
ase, to study the 
ongruen
e in (1.3) we have to 
onsider the multipli
ative

group �

m

of the units in Z

m

. This group has order �(m), and p 2 �

m

sin
e m � 1

(mod p). Now suppose that p, as an element of �

m

, has even order 2i. Then p

2i

� 1

(mod m) and hen
e (p

i

+ 1)(p

i

� 1) � 0 (mod m). Sin
e p has order greater than i, we

have that p

i

� 1 6� 0 (mod m) unless both p

i

+1 and p

i

� 1 are zero divisors in Z

m

. If we

assume that this does not happen, then equivalen
e (1.3) follows for q = p

�(m)v+i

.

Remark 3.11. Let p be a prime, n := p

e

u with e � 1 and g
d(p; u) = 1. Assume e � 2

if p = 2. Then the Hurwitz 
urve X

n

as well as the 
urve F

n

2

�n+1

are non-
lassi
al with

respe
t to �

1

. It is easy to see that 0; 1 and p

e

are their �

1

-orders.

4. On the maximality of generalized Hurwitz 
urves

In this se
tion we investigate the F

q

2

-maximality of the non-singular model of the so-
alled

generalized Hurwitz 
urve X

n;`

of equation

X

n

Y

`

+ Y

n

Z

`

+ Z

n

X

`

= 0 ;

where n � ` � 2 and p = 
har(F

q

2

) does not divide Q(n; `) := n

2

� n`+ `

2

. The singular

points of X

n;`

are P

0

:= (1 : 0 : 0), P

1

= (0 : 1 : 0), and P

2

= (0 : 0 : 1); ea
h of them is

unibran
hed with Æ-invariant equal to (n` � n � ` + g
d(n; `))=2. Therefore its genus g

(
f. [3, Se
. 4℄ and [2, Example 4.5℄) is equal to

g =

n

2

� n`+ `

2

+ 2� 3g
d(n; `)

2

:

First we generalize Lemma 3.2.
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Lemma 4.1. The 
urve X

n;`

is F

q

2

-
overed by the Fermat 
urve F

n

2

�n`+`

2

U

n

2

�n`+`

2

+ V

n

2

�n`+`

2

+W

n

2

�n`+`

2

= 0 :

Proof. The 
urve X

n;`

is F

q

2

-
overed by F

n

2

�n`+`

2

via the morphism (u : v : 1)! (x : y :

1) := (u

n

v

�m

: u

m

v

n�m

: 1), where u := U=W and v := V=W .

From this lemma and [27, Prop. 6℄ we have the following.

Corollary 4.2. The 
urve F

n

2

�n`+`

2

in the above lemma and the F

q

2

-non-singular model

of X

n;`

are F

q

2

-maximal provided that

n

2

� n`+ `

2

� 0 (mod (q + 1)) :(4.1)

Now, we generalize Lemma 3.4 for any two 
oprime n and `. For 0 � i � 2, let Q

i

be the

unique point in the non-singular model of X

n;`

lying over P

i

.

Lemma 4.3. Suppose that g
d(n; `) = 1. Then the Weierstrass semigroup H(Q

1

) at Q

1

is given by

f(n� `)s+ nt : s; t 2 Z; t � 0 �

`

n

t � s �

n� `

`

tg :(4.2)

Proof. Let x := X=Z; y := Y=Z. It is not diÆ
ult to see that div(x) = nQ

2

�(n�`)Q

1

�`Q

0

and div(y) = (n� `)Q

0

+ `Q

2

� nQ

1

. Hen
e, for s; t 2 Z,

div(x

s

y

t

) = (ns+ `t)Q

2

+ (�`s + (n� `)t)Q

0

� ((n� `)s+ nt)Q

1

;

and hen
e (n� `)s+nt 2 H(Q

1

) provided that ns+ `t � 0 and �`s+(n� `)t � 0. Let H

denote the set introdu
ed in (4.2). Then H � H(Q

1

), and it is easily 
he
ked that H is a

semigroup. By means of some 
omputations we see that #(NnH) = (n

2

�n`+ `

2

�1)=2,

when
e H = H(Q

1

) follows.

Remark 4.4. The above Weierstrass semigroup H(Q

1

) was 
omputed for ` = n � 1, and

(n; `) = (5; 2) in [3℄.

We are able to generalize Theorem 3.1 for 
ertain 
urves X

n;`

.

Theorem 4.5. Assume that g
d(n; `) = 1 and that Q := Q(n; `) = n

2

�n`+ `

2

is prime.

Then X

n;`

is F

q

2

-maximal if and only if (4:1) holds.

Proof. The \if" part follows from Corollary 4.2 and here we do not use the hypothesis

that Q is prime. For the \only if" part, we �rst noti
e that ea
h Q

i

is F

q

2

-rational. Now

the 
ase s = n �m and t = m in the proof of Lemma 4.3 gives QQ

2

� QQ

1

. Therefore

d = g
d(Q; q + 1) 2 H(Q

1

) be
ause (q + 1)Q

1

� (q + 1)Q

2

[32, lemma1℄. As 1 62 H(Q

1

)

and Q is prime, the result follows.

Corollary 4.6. Let n, ` and Q be as in Theorem 4.5. Then the 
urve F

n

2

�n`+`

2

in Lemma

4.1 is F

q

2

-maximal if and only if (4.1) holds.
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Proof. Similar to the proof of Corollary 3.5.

Remark 4.7. There are in�nitely many n; ` with n > ` � 1 su
h that Q(n; `) is prime. In

fa
t, for a prime p

0

su
h that p

0

� 1 (mod 6), there exists su
h n and ` so that p

0

= Q(n; `);

see [3, Remarque 4℄.
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