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Abstrat. Some new results on plane F

q

2

-maximal urves are stated and proved. By

[32℄, the degree d of a plane F

q

2
-maximal urve is less than or equal to q+1 and equality

holds if and only if the urve is F

q

2

-isomorphi to the Hermitian urve. We show that

d � q + 1 an be improved to d � (q + 2)=2 apart from the ase d = q + 1 or q � 5.

This upper bound turns out to be sharp for q odd. In [4℄ it was pointed out that some

Hurwitz urves are plane F

q

2

-maximal urves. Here we prove that (1.3) is the neessary

and suÆient ondition for a Hurwitz urve to be F

q

2
-maximal. We also show that this

riterium holds true for the F

q

2

-maximality of a wider family of urves.

1. Introdution

An F

q

2

-maximal urve of genus g is a projetive, geometrially irreduible, non-singular,

algebrai urve de�ned over a �nite �eld F

q

2

of order q

2

suh that the number of its

F

q

2

-rational points attains the Hasse-Weil upper bound

1 + q

2

+ 2qg :

Maximal urves, espeially those having large genus with respet to q, are known to be

very useful in Coding theory [19℄. Also, there are various ways of employing them in

Cryptography, and it is expeted that this interesting onnetion will be be explored

more fully, see [34, Chapter 8℄. Other motivation for the study of maximal urves omes

from Correlations of Shift Register Sequenes [28℄, Exponentials Sums over Finite Fields

[29℄, and Finite Geometry [24℄. Reent papers on maximal urves whih also ontain

bakground and expository aounts are [32℄, [35℄, [10℄, [9℄, [18℄, [11℄, [7℄, [14℄, [6℄, [1℄, [8℄,

and [26℄.

A relevant result on F

q

2

-maximal urves X with genus g states that either g = q(q� 1)=2

and X is F

q

2

-isomorphi to the Hermitian urve H of equation

X

q+1

+ Y

q+1

+ Z

q+1

= 0 ;(1.1)

or g � (q � 1)

2

=4; see [25℄, [35℄, and [10℄. One expets that the bound (q � 1)

2

=4 an

be substantially lowered apart from a ertain number of exeptional values of g. Finding
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suh values is one of the problems of urrent interest in the study of maximal urves; see

[9, Setion 3℄, [11, Proposition 2.5℄, [7, Setion 3℄, and [1℄.

In this paper we investigate plane maximal urves. In Setion 2 we prove the non-existene

of a plane F

q

2

-maximal urve whose genus belongs to the interval (q(q� 2)=8; q(q� 2)=4℄,

for q even, and ((q � 1)(q � 3)=8; (q � 1)

2

=4℄ for q odd; see Corollary 2.3. The urves

studied in Setion 3 show that these bounds are sharp in some ases. In ontrast, a few

examples of (non planar) F

q

2

-maximal urves with genera in these intervals are known to

exist; see [9, Setion 3℄, [7, pp. 74{75℄, [1℄, [13℄, and [8, Theorem 2.1℄.

In the ourse of our investigation we point out that the Hermitian urve H is the unique

F

q

2

-maximal urve (up to F

q

2

-isomorphism) whih is F

q

2

-Frobenius non-lassial with

respet to the linear series �

1

ut out by lines; see Proposition 2.2. Also, the order of

ontat �

2

of a non-lassial (with respet to �

1

) F

q

2

-maximal urve with the tangent at

a general point satis�es �

2

2

� q=p, where p := har(F

q

2

); see Corollary 2.8. In partiular,

plane F

q

2

-maximal urves with q = p and q = p

2

are lassial with respet to �

1

.

Aording to [27, Prop. 6℄, every urve whih is F

q

2

-overed by the Hermitian urve is

F

q

2

-maximal. An open problem of onsiderable interest is to deide whether the onverse

of this statement also holds. In Setion 3 we solve this problem for the family of the

so-alled Hurwitz urves. Reall that a Hurwitz urve of degree n + 1 is de�ned as a

non{singular plane urve of equation

X

n

Y + Y

n

Z + Z

n

X = 0 ;(1.2)

where p = har(F

q

2

) does not divide n

2

�n+1. Theorem 3.1 together with Corollary 3.3

states indeed that the Hurwitz urve is F

q

2

-overed by the Hermitian urve if and only if

q + 1 � 0 (mod (n

2

� n+ 1)) :(1.3)

It should be noted on the other hand that for ertain n and p, the Hurwitz urve is not

F

q

2

-maximal for any power q of p; this ours, for instane, for n = 3 and p � 1 (mod 7).

One an then ask for onditions in terms of n and p whih assure that the Hurwitz urve

is F

q

2

-maximal for some power q of p. Our results in this diretion are given in Remarks

3.6 and 3.10, and Corollaries 3.7, 3.8. They generalise some previous results obtained

in [4, Lemmes 3.3, 3.6℄. Another feature of the Hurwitz urve is that it is non-lassial

provided that p

e

divides n with p

e

� 3; see Remark 3.11. So if both (1.3) and p

e

jn hold

then the Hurwitz urve turns out to be a non-lassial plane F

q

2

-maximal urve. As far as

we know, these Hurwitz urves together with the Hermitian urves and the Fermat urves

of degree n

2

� n + 1 (see Corollary 3.3), are the only known examples of non-lassial

plane F

q

2

-maximal urves. As mentioned before, these urves show the sharpness of some

of the results obtained in Setion 2.

Hurwitz urves as well as their generalizations have been investigated for several reasons

by many authors; see [3, Setion 1℄ and [31℄. This gives a motivation to the �nal Setion
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4 where we show that the main results of Setion 3 extend to (the non{singular model

of) the urve with equation

X

n

Y

`

+ Y

n

Z

`

+ Z

n

X

`

= 0 ;

where n � ` � 2 and p = har(F

q

2

) does not divide Q(n; `) := n

2

� n` + `

2

.

Our investigation uses some onepts, suh as non-lassiity, from St�ohr-Voloh's paper

[36℄ where an alternative proof to the Hasse-Weil bound was given among other things. We

also refer to that paper for terminology and bakground results on orders and Frobenius

orders of linear series on urves.

2. The degree of a plane maximal urve

Let X be a plane F

q

2

-maximal urve of degree d � 2. Sine the genus of X is equal to

(d� 1)(d� 2)=2, the upper bound for g quoted in Se. 1 an be rephrased in terms of d:

d � d

1

(q) :=

3 +

p

2(q � 3)(q + 1) + 9

2

or d = q + 1 :(2.1)

The main result in this setion is the improvement of (2.1) given in Theorem 2.12: Apart

from small q's, either d = q + 1, or d = b(q + 2)=2, or d is upper bounded by a ertain

funtion d

5

(q) suh that d

5

(q)=q � 2=5. Our �rst step onsists in lowering d

1

(q) to d

2

(q)

with d

2

(q)=q � 1=2.

Let �

1

be the linear series ut out by lines of P

2

(

�

F

q

2

) on X . For P 2 X , let j

0

(P ) = 0 <

j

1

(P ) = 1 < j

2

(P ) be the (�

1

; P )-orders, and �

0

= 0 < �

1

= 1 < �

2

(resp. �

0

= 0 < �

1

)

the orders (resp. F

q

2

-Frobenius orders) of �

1

. We let p be the harateristi of F

q

2

.

Lemma 2.1. (1) �

1

2 f1; �

2

g;

(2) �

2

� q;

(3) �

2

is a power of p whenever �

2

> 2:

Proof. For (1), see [36, Prop. 2.1℄. For (2), suppose that �

2

> q, then �

2

= q+1 as �

2

� d

and d � q+1 by (2.1). Then, by the p-adi riterion [36, Cor. 1.9℄, q would be a �

1

-order,

a ontradition. For (3), see [16, Prop. 2℄.

The following result is a omplement to [30, Prop. 3.7℄, [22, Thm. 6.1℄, and [21, Prop. 6℄.

Proposition 2.2. For a plane F

q

2

-maximal urve X of degree d � 3, the following on-

ditions are equivalent:

(1) d = q + 1;

(2) X is F

q

2

-isomorphi to the Hermitian of equation (1.1);

(3) �

2

= q;

(4) �

1

= q;

(5) j

2

(P ) = q + 1 for eah P 2 X (F

q

2

);
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(6) �

1

> 1; i.e, �

1

is F

q

2

-Frobenius non-lassial:

Proof. (1))(2) : Sine the genus of a non{singular plane urve of degree d is q(q � 1)=2,

part (2) follows from [32℄.

(2))(3) : This is well known property of the Hermitian urve; see e.g. [10, p. 105℄ or

[15℄.

(3))(4) : If q = 2, then from d � �

2

= q and (2.1), either d = 2 or d = 3. By hypothesis,

d = 3 an only our, and so, by parts (1) and (2), X is F

4

-isomorphi to the Hermitian

urve X

3

+ Y

3

+ Z

3

= 0. Then �

1

= �

2

= 2; see lo. it.

Let q � 3. By Lemma 2.1(1), �

1

2 f1; qg. Suppose that �

1

= 1 and let S

1

be the

F

q

2

-Frobenius divisor assoiated to �

1

. Then [36, Thm. 2.13℄

deg(S

1

) = (2g � 2) + (q

2

+ 2)d � 2#X (F

q

2

) = 2(q + 1)

2

+ 2q(2g � 2)

so that ((2q � 1)d� (q

2

+ 2q + 1))(d� 2) � 0, and hene

d � F (q) := (q

2

+ 2q + 1)=(2q � 1) :(2.2)

Thus, as d � �

2

= q, we would have q

2

� 3q� 1 � 0 and hene q � 3. If q = 3, from (2.2)

we have that d = 3; this ontradits [30, Cor. 2.2℄ (f. Remark 2.5(ii)).

(4))(5) : By [36, Cor. 2.6℄, �

1

� j

2

(P )� 1 for any P 2 X (F

q

2

). Then part (5) follows as

j

2

(P ) � d and d � q + 1 by (2.1).

(5))(6) : Suppose that �

1

= 1. Then, by [36, Prop. 2.4(a)℄, v

P

(S

1

) � q + 1 for any

P 2 X (F

q

2

). Therefore

deg(S

1

) = (2g � 2) + (q

2

+ 2)d � (q + 1)#X (F

q

2

) = (q + 1)

3

+ (q + 1)q(2g � 2) ;

a ontradition as 3 � d � q + 1.

(6))(1) : From [21, Thm. 1℄ and the F

q

2

-maximality of X we have

#X (F

q

2

) = d(q

2

� 1)� (2g � 2) = (1 + q)

2

+ q(2g � 2) :

Sine 2g � 2 = d(d� 3) and d > 1, part (1) follows.

Corollary 2.3. Let d � 3 be the degree of a plane F

q

2

-maximal urve. Then either

d = q + 1 or

d � d

2

(q) :=

8

>

>

<

>

>

:

b(q + 2)=2 if q � 4 and q 6= 3; 5,

3 if q = 3,

4 if q = 5.

In partiular, for q 6= 3; 5, an F

q

2

-maximal urve has no non-singular plane model if

its genus is assumed to belong to the interval (q(q � 2)=8; q(q � 2)=4℄, for q even, and

((q � 1)(q � 3)=8; (q � 1)

2

=4℄, for q odd.
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Proof. The statement on the genus follows immediately from the upper bound on d. By

(2.1) we have that d � q + 1. If d < q + 1, then q � 3 and from Proposition 2.2 �

1

is

F

q

2

-Frobenius lassial. In partiular, (2.2) holds true; i.e., we have d � F (q). It is easy

to see that F (q) < (q+3)=2 for q > 5 and that F (4) = 25=7. Moreover, F (3) = 16=5 and

F (5) = 4, and the result follows.

Remark 2.4. Let d be the degree of a plane F

q

2

-maximal urve of degree d and assume

that 3 � d � d

2

(q).

(i) If q is odd, then the F

q

2

-maximal urve of equation

X

(q+1)=2

+ Y

(q+1)=2

+ Z

(q+1)=2

= 0 ;

shows that the upper bound d

2

(q) = (q + 1)=2 in Corollary 2.3 is the best possible as

far as q 6= 3; 5. We notie that this urve is the unique F

q

2

-maximal plane urve (up to

F

q

2

-isomorphism) of degree (q + 1)=2 provided that q � 11; see [6℄.

(ii) From results of Deuring, Tate and Watherhouse (see e.g. [37, Thm. 4℄), there exist

ellipti F

q

2

-maximal urves for any q. In partiular, d

2

(q) = 3 is sharp for q = 3.

(iii) From [33, Se. 4℄, there exists a plane quarti F

25

-maximal; so d

2

(q) = 4 is sharp for

q = 5.

(iv) By part (ii), d

2

(q) = 3 is sharp for q = 4. For q � 8, q even, no information is

urrently available to asses how good the bound d

2

(q) = (q + 2)=2 is.

We go on to look for an upper bound for the degree d of a F

q

2

-maximal urve satisfying the

ondition d < b(q+2)=2. Our approah is inspired on [6, Se. 3℄ where the F

q

2

-Frobenius

divisor S

2

assoiated with the linear series �

2

ut out on X by onis was employed to

obtain upper bounds for the number of F

q

2

-rational points of plane urves. In fat, if we

use �

2

instead of �

1

, we an get better results for values of d ranging in ertain intervals

depending on q. This was pointed out at the �rst time in [17℄.

In order to ompute the �

2

-orders of a plane F

q

2

-maximal urve X , one needs to know

whether X is lassial or not with respet to �

1

. This gives the motivation to Proposition

2.6. The following remark will be useful in the proof.

Remark 2.5. (i) If a projetive, geometrially irreduible, non-singular, algebrai urve

de�ned over a �eld of harateristi p > 0 admits a linear series � of degree D, then � is

lassial provided that p > D; see [36, Cor. 1.8℄.

(ii) If a non-singular plane urve of degree D de�ned over a �eld of harateristi p > is

non-lassial with respet to the linear series ut out by lines, then D � 1 (mod p); see

[30, Cor. 2.2℄, and [23, Cor. 2.4℄.

Proposition 2.6. Let X be a plane F

q

2

-maximal urve of degree d suh that 3 � d �

d

2

(q), where d

2

(q) is as in Corollary 2.3. Then the linear series �

1

on X is lassial

provided that one of the following onditions holds:
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(i) p � d or d 6� 1 (mod p);

(ii) q = 4; 8; 16; 32;

(iii) p � 3 and either q = p or q = p

2

;

(iv) p = 2, q � 64, and either d � 4, or d � d

3

(q) := q=4 � 1 for q = 64; 128; 256, or

d � d

3

(q) := q=4 for q � 512;

(v) p � 3, q = p

v

with v � 3, and d � d

3

(q) := q=p� p+ 2:

Proof. If (i) holds, then �

1

is lassial by Remark 2.5. For q = p, the hypothesis on d

yields p � 3 and hene d � (p + 1)=2 < p. Thus �

1

is lassial by Remark 2.5(i). Note

that the following omputations will provide another proof of this fat.

For the rest of the proof we assume �

1

to be non-lassial, and we show that no one of

the onditions (i), : : : ,(v) holds. From Lemma 2.1(3), �

2

� M , where M = 4 for p = 2,

and M = p for p � 3. Also, �

1

= 1 by Proposition 2.2. Therefore, as j

2

(P ) � �

2

for eah

P 2 X [36, p. 5℄. From [36, Prop. 2.4(a)℄ we have that v

P

(S

1

) �M for eah P 2 X (F

q

2

),

where as before S

1

denotes the F

q

2

-Frobenius divisor assoiated to �

1

. Thus,

deg(S

1

) = (2g � 2) + (q

2

+ 2)d �M#X (F

q

2

) =M(q + 1)

2

+Mq(2g � 2) ;

or, equivalently,

(Mq � 1)d

2

� (q

2

+ 3Mq � 1)d+M(q + 1)

2

� 0 :

On the other hand, the disriminant of the above quadrati polynomial in d is

�

M

(q) := q

4

� (4M

2

� 6M)q

3

+ (M

2

+ 4M � 2)q

2

� (4M

2

� 2M)q + 4M + 1 ;

and hene �

M

(q) < 0 if and only if either q = 4; 8; 16; 32 and M = 4, or q = p; p

2

and

M = p � 3. For these q's, the above inequality annot atually hold, and hene �

1

must

be lassial. Furthermore, if �

M

(q) � 0, then

F

0

(M; q) :=

q

2

+ 3Mq � 1�

p

�

M

(q)

2(Mq � 1)

� d � F (M; q) :=

q

2

+ 3Mq � 1 +

p

�

M

(q)

2(Mq � 1)

:

It is easy to hek that F

0

(4; q) > 4, F (4; q) < q=4 � 1 for q = 64; 128; 256, and that

F (4; q) < q=4 for q � 512; hene if (iv) holds, then �

1

must be lassial. Let p � 3.

If q=p � p + 2 � d � q=p, then �

1

must be lassial by (i). So we an suppose that

d � q=p+ 1. It turns out that F (p; q) < q=p+ 1 and hene the result follows when (v) is

assumed to be true.

Remark 2.7. For q = p

3

, p � 3, the bound d

3

(q) in Proposition 2.6 is sharp. Indeed, there

exists a plane F

p

6

-maximal urve of degree p

2

� p + 1 whih is non-lassial for �

1

; see

Corollary 3.3 and Remark 3.11.

Corollary 2.8. Let X be a plane F

q

2

-maximal urve of degree d as in Proposition 2.6.

Assume that X is non-lassial for �

1

and let �

2

be the order of ontat of X with the

tangent at a general point. Then

(1) q � 64 if p = 2, and q � p

3

for p � 3;
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(2) �

2

2

� q=p:

Proof. Part (1) follows from Proposition 2.6(ii)(iii). To prove (2), we �rst note that �

2

< q

(f. Proposition 2.2), and that �

2

is a power of p (see Lemma 2.1(3)). Now, with the same

notation as in the proof of the previous proposition, we get d � F (M; q) with M = �

2

. So

d � q=�

2

. Furthermore, d � �

2

and so d � �

2

+ 1 by Remark 2.5(ii). Hene �

2

+ 1 � q=�

2

and part (2) follows.

Remark 2.9. The example in Remark 2.7 shows that Corollary 2.8(1) is sharp for p � 3.

Our next step is to show that every plane F

q

2

-maximal urve whih is lassial for �

1

ontains an F

q

2

-rational point di�erent from its inexions.

Lemma 2.10. Let X be an F

q

2

-maximal urve of degree d � 3 whih is lassial with

respet to �

1

. Then there exists P

0

2 X (F

q

2

) whose (�

1

; P

0

)-orders are 0; 1; 2:

Proof. Let R

1

be the rami�ation divisor assoiated to �

1

and suppose that j

2

(P ) � 3

for eah P 2 X (F

q

2

). Then from [36, p. 12℄,

deg(R

1

) = 3(2g � 2) + 3d � #X (F

q

2

) = (q + 1)

2

+ q(2g � 2)

whih is a ontradition as g � 1 and 3 � d < q + 1.

It should be notied that Lemma 2.10 improves a previous result, see [6, Cor. 3.2℄.

We are in a position to establish some useful properties of the linear series �

2

ut out by

onis of P

2

(

�

F

q

2

) on plane F

q

2

-maximal urve X of degree d � 3. Sine X is non-singular,

�

2

= 2�

1

. Taking into aount d � 3, we see that �

2

is a 5-dimensional linear series of

degree 2d.

Lemma 2.11. Let d be the degree of a plane F

q

2

-maximal urve X . Let q = 8 or q � 11,

and suppose that

d

4

(q) :=

2q

2

+ 15q � 20 +

p

4q

4

� 40q

3

+ 145q

2

� 300q + 600

10(q � 2)

< d � d

2

(q) ;

where d

2

(q) is as in Corollary 2.3. Then the orders (resp. F

q

2

-Frobenius orders) of �

2

are 0; 1; 2; 3; 4; � (resp. 0; 1; 2; 3; �) with 5 � � � q. Furthermore, p divides �:

Proof. By some omputations we obtain that d

4

(q) is bigger than d

3

(q) in Proposition

2.6. So the urve X is lassial for �

1

. Let P

0

2 X (F

q

2

) be as in Lemma 2.10. Then

the (�

2

; P

0

)-orders are 0; 1; 2; 3; 4 and j

0

with 5 � j

0

� 2d (f. [16, p. 464℄). Therefore,

the �

2

-orders are 0; 1; 2; 3; 4 and � with 5 � � � j

0

. Sine j

0

� 2d, from Corollary 2.3,

� � q + 2, and hene � � q by the p-adi riterion [36, Cor. 1.9℄. Also, the F

q

2

-Frobenius

orders of �

2

are 0; 1; 2; 3 and � with � 2 f4; �g; see [36, Prop. 2.1, Cor. 2.6℄. Suppose
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that � = 4 and keep up S

2

to denote the F

q

2

-Frobenius divisor assoiated to �

2

. Then

[36, Thm. 2.13℄

deg(S

2

) = 10(2g � 2) + (q

2

+ 5)2d � 5#X (F

q

2

) = 5(q + 1)

2

+ 5q(2g � 2)

or equivalently

(5q � 10)d

2

� (2q

2

+ 15q � 20)d+ 5(q + 1)

2

� 0 :

The disriminant of this equation is 4q

2

� 40q

3

+145q

2

� 300q+600 and it is positive for

any q. Sine d

4

(q) is the biggest root of the quadrati polynomial in d above, d � d

4

(q),

a ontradition. Finally, p divides � by [12, Cor. 3℄.

Let d

4

(q) be as in Lemma 2.11 and for q = p

v

, v � 2, let d

4

(p; q) denote the funtion

2q

2

+ 3(5�

1

p

)q � 8 +

q

4q

4

� 8(5�

1

p

)q

3

+ (113�

50

p

+

9

p

2

)q

2

� 4(25�

17

p

)q + 184

2(5�

1

p

)q � 12

:

Theorem 2.12. Let d be the degree of a plane F

q

2

-maximal urve X . Suppose that 3 �

d < q + 1 and that q = 8 or q � 11. Then

d � d

5

(q) :=

(

d

4

(q) if q = p,

d

4

(p; q) if q = p

v

, v � 2,

or d = b(q + 2)=2 :

Proof. Suppose that d > d

5

(q). By means of some omputations, d

5

(p; q) > d

4

(q) and

hene Lemma 2.11 holds true. With the same notation as in the proof of that lemma, we

an then use the following two fats: � = � � q, and pj�. Atually, we will improve the

latter one.

Claim 1. � is a power of p:

Indeed, by pj� and the p-adi riterion [36, Cor. 1.9℄, a neessary and suÆient ondition

for � not to be a power of p is that p 2 f2; 3g and � = 6. If this ours, one an argue as

in the previous proof and obtain the following result:

(5q � 2)d

2

� (q

2

+ 15q � 31)d+ 5(q + 1)

2

� 0 :

From this,

d � G(q) :=

q

2

+ 15q � 31 +

p

q

4

� 70q

3

+ 203q

2

� 550q + 1201

2(5q � 12)

;

whih is a ontradition as G(q) < d

5

(q).

Claim 2. � = q:

The laim is ertainly true for q = p. So, q = p

v

, with v � 2. If � < q, by Claim 1 we

have � � q=p. Thus, this fat together with

deg(S

2

) = (6 + �)(2g � 2) + (q

2

+ 5)2d � 5#X (F

q

2

) = 5(q + 1)

2

+ 5q(2g � 2) ;
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would yield

(5q � q=p� 6)d

2

� (2q

2

+ 15q � 3q=p� 8)d+ 5(q + 1)

2

� 0 ;

and hene d � d

4

(p; q), a ontradition.

Now from Claim 2 and [36, Cor. 2.6℄, we have

q = � = � � j

5

(P

0

)� 1 � 2d� 1 ;

and Theorem 2.12 follows from Corollary 2.3.

3. Maximal Hurwitz's urves

In this setion we give a neessary and suÆient ondition for q in order that the Hurwitz

urve X

n

de�ned by Eq. (1.2) be F

q

2

-maximal.

Theorem 3.1. The urve X

n

is F

q

2

-maximal if and only if (1.3) holds.

We �rst prove two lemmas.

Lemma 3.2. ([4, p. 210℄) The Hurwitz urve X

n

is F

p

-overed by the Fermat urve

F

n

2

�n+1

U

n

2

�n+1

+ V

n

2

�n+1

+W

n

2

�n+1

= 0 :

Proof. Let u = U=W and v := V=W . Then the image of the morphism (u : v : 1)! (x :

y : 1) = (u

n

v

�1

: uv

n�1

: 1) is the urve de�ned by x

n

y + y

n

+ x = 0. This proves the

lemma.

Corollary 3.3. Suppose that (1.3) holds. Then both urves X

n

and F

n

2

�n+1

are F

q

2

-

overed by the Hermitian urve of equation (1.1). In partiular, both are F

q

2

-maximal.

Proof. If (1.3) holds, it is lear that F

n

2

�n+1

is F

q

2

-overed by the Hermitian urve. This

property extends to X

n

via the previous lemma. For both urves, the F

q

2

-maximality now

follows from [27, Prop. 6℄.

Lemma 3.4. ([5, p. 5249℄) The Weierstrass semigroup of X

n

at the point (0 : 1 : 0) is

generated by the set S := fs(n� 1) + 1 : s = 1; : : : ; ng.

Proof. Let P

0

:= (1 : 0 : 0), P

1

= (0 : 1 : 0), and P

2

= (0 : 0 : 1). Then div(x) =

nP

2

� (n� 1)P

1

� P

0

and div(y) = (n� 1)P

0

+ P

2

� nP

1

so that

div(x

s�1

y) = ((n(s� 1) + 1)P

2

+ (n� s)P

0

� (s(n� 1) + 1)P

1

:

This shows that S is ontained in the Weierstrass semigroup H(P

1

) at P

1

. In partiular,

H(P

1

) � hSi. Sine #(N

0

n hSi) = n(n� 1)=2 (see [20℄), the result follows.



10 AGUGLIA, KORCHM

�

AROS, AND TORRES

Proof of Theorem 3.1. If (1.3) holds, then X

n

is F

q

2

-maximal by Corollary 3.3. Conversely,

assume that X

n

is F

q

2

-maximal. Then (q+1)P

1

� (q+1)P

2

[32, Lemma 1℄, and the ase

s = n in the proof of Lemma 3.4 gives (n

2

� n + 1)P

1

� (n

2

� n + 1)P

2

. Therefore

d := gd(n

2

� n + 1; q + 1) belongs to H(P

1

). Aording to Lemma 3.4 we have that

d = A(n�1)+B with A � B � 1. Now, there exists C � 1 suh that (A(n�1)+B)C =

n

2

�n+1 and so BC = D(n�1)+1 for someD � 0. Therefore, AD(n�1)+A+BD = Bn.

We laim that D = 0, otherwise the left side of the last equality would be bigger than

Bn. Then B = C = 1 and so A = n; i.e., d = n

2

� n+ 1 and the proof is omplete.

Corollary 3.5. The urve F

n

2

�n+1

in Lemma 3.2 is F

q

2

-maximal if and only if (1.3)

holds.

Proof. If (1.3) is satis�ed, the result follows from Corollary 3.3. Now if F

n

2

�n+1

is F

q

2

-

maximal, then X

n

is also F

q

2

-maximal by Lemma 3.2 and [27, Prop. 6℄. Then the orollary

follows from Theorem 3.1.

Remark 3.6. For a given positive integer n, we are led to look for a power q of a prime

p suh that q + 1 � 0 (mod m) with m = n

2

� n + 1. Sine m 6� 0 (mod p), and p 6� 0

(mod m), a neessary and suÆient ondition for q to have the requested property (1.3)

is p � x (mod m), where x is a solution of the ongruene X

w

+ 1 � 0 (mod m), and w

is de�ned by q = p

�(m)v+w

, w 2 f1; 2; : : : ; �(m)� 1g; here � denotes the Euler funtion.

Regarding spei� examples, we notie that Carbonne and Henoq [4, Lemmes 3.3, 3.6℄

pointed out that X

n

is F

q

2

-maximal in the following ases:

(1) n = 3, q = p

6v+3

and p � 3; 5 (mod 7);

(2) n = 4, q = p

12v+6

and p � 2; 6; 7; 11 (mod 13).

By using Theorem 3.1 and Remark 3.6 we have the following result.

Corollary 3.7. (1) The urve X

2

is F

q

2

-maximal if and only if q = p

2v+1

and p � 2

(mod 3);

(2) The urve X

3

is F

q

2

-maximal if and only if either q = p

6v+1

and p � 6 (mod 7), or

q = p

6v+3

and p � 3; 5; 6 (mod 7), or q = p

6v+5

and p � 6 (mod 7);

(3) The urve X

4

is F

q

2

-maximal if and only if either q = p

12v+1

and p � 12 (mod 13),

or q = p

12v+2

and p � 5; 8, or q = p

12v+3

and p � 4; 10; 12 (mod 13), or q = p

12v+5

and p � 12 (mod 13), or q = p

12v+6

and p � 2; 5; 6; 7; 8; 11 (mod 13), or q = p

12v+7

and p � 12 (mod 13), or q = p

12v+9

and p � 4; 10; 12 (mod 13), or q = p

12v+11

and

p � 12 (mod 13):

Corollary 3.8. Let n be a positive integer, m := n

2

� n + 1 and p a prime.

(1) If n = p

e

with e � 1, then the urve X

n

is F

q

2

-maximal with q = p

�(m)v+3e

.

(2) Let p � 3 (mod 4) and n � 0; 1 (mod p) suh that m is prime and that m � 3

(mod 4). Then X

n

is F

q

2

-maximal with q = p

(m�1)v+(m�1)=2

.
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Proof. Part (1) follows from the identity p

3e

+1 = (p

e

+1)(p

2e

� p

e

+1) and Theorem 3.1.

To show (2), it is enough to hek that p

(m�1)=2

+ 1 � 0 (mod m). Reall that the

Legendre symbol (a=p) is de�ned by:

(a=p) =

(

1 if x

2

� a (mod p) has two solutions in Z

p

,

�1 if x

2

� a (mod p) has no solution in Z

p

.

In our ase, sine m � 1 (mod p), (m=p) = 1. By the quadrati reiproity low

(m=p)(p=m) = (�1)

((m�1)=2)((p�1)=2)

;

from (m=p) = 1 and m � 3 (mod 4) we get (p=m) = (�1)

(p�1)=2

. Now, as p � 3 (mod 4),

we have that (p=m) = �1. In other words, p viewed as an element in F

m

is a non-square

in F

m

. Sine �1 is as well a non-square in F

m

, it follows then that p � (�1)u

2

(mod m)

with u 2 Z suh that u 6� 0 (mod m). Hene p

(m�1)=2

� (�1) (mod m) as, in partiular,

m is odd and as u

m�1

� 1 (mod m).

Remark 3.9. The hypothesis m � 3 (mod 4) in the above orollary annot be relaxed. In

fat, for n = 4 we have m = 13 but, aording with Corollary 3.7, X

4

is no F

3

6

-maximal.

Remark 3.10. Let us assume the hypothesis in Corollary 3.8(2) with m not neessarily

prime. In this ase, to study the ongruene in (1.3) we have to onsider the multipliative

group �

m

of the units in Z

m

. This group has order �(m), and p 2 �

m

sine m � 1

(mod p). Now suppose that p, as an element of �

m

, has even order 2i. Then p

2i

� 1

(mod m) and hene (p

i

+ 1)(p

i

� 1) � 0 (mod m). Sine p has order greater than i, we

have that p

i

� 1 6� 0 (mod m) unless both p

i

+1 and p

i

� 1 are zero divisors in Z

m

. If we

assume that this does not happen, then equivalene (1.3) follows for q = p

�(m)v+i

.

Remark 3.11. Let p be a prime, n := p

e

u with e � 1 and gd(p; u) = 1. Assume e � 2

if p = 2. Then the Hurwitz urve X

n

as well as the urve F

n

2

�n+1

are non-lassial with

respet to �

1

. It is easy to see that 0; 1 and p

e

are their �

1

-orders.

4. On the maximality of generalized Hurwitz urves

In this setion we investigate the F

q

2

-maximality of the non-singular model of the so-alled

generalized Hurwitz urve X

n;`

of equation

X

n

Y

`

+ Y

n

Z

`

+ Z

n

X

`

= 0 ;

where n � ` � 2 and p = har(F

q

2

) does not divide Q(n; `) := n

2

� n`+ `

2

. The singular

points of X

n;`

are P

0

:= (1 : 0 : 0), P

1

= (0 : 1 : 0), and P

2

= (0 : 0 : 1); eah of them is

unibranhed with Æ-invariant equal to (n` � n � ` + gd(n; `))=2. Therefore its genus g

(f. [3, Se. 4℄ and [2, Example 4.5℄) is equal to

g =

n

2

� n`+ `

2

+ 2� 3gd(n; `)

2

:

First we generalize Lemma 3.2.
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Lemma 4.1. The urve X

n;`

is F

q

2

-overed by the Fermat urve F

n

2

�n`+`

2

U

n

2

�n`+`

2

+ V

n

2

�n`+`

2

+W

n

2

�n`+`

2

= 0 :

Proof. The urve X

n;`

is F

q

2

-overed by F

n

2

�n`+`

2

via the morphism (u : v : 1)! (x : y :

1) := (u

n

v

�m

: u

m

v

n�m

: 1), where u := U=W and v := V=W .

From this lemma and [27, Prop. 6℄ we have the following.

Corollary 4.2. The urve F

n

2

�n`+`

2

in the above lemma and the F

q

2

-non-singular model

of X

n;`

are F

q

2

-maximal provided that

n

2

� n`+ `

2

� 0 (mod (q + 1)) :(4.1)

Now, we generalize Lemma 3.4 for any two oprime n and `. For 0 � i � 2, let Q

i

be the

unique point in the non-singular model of X

n;`

lying over P

i

.

Lemma 4.3. Suppose that gd(n; `) = 1. Then the Weierstrass semigroup H(Q

1

) at Q

1

is given by

f(n� `)s+ nt : s; t 2 Z; t � 0 �

`

n

t � s �

n� `

`

tg :(4.2)

Proof. Let x := X=Z; y := Y=Z. It is not diÆult to see that div(x) = nQ

2

�(n�`)Q

1

�`Q

0

and div(y) = (n� `)Q

0

+ `Q

2

� nQ

1

. Hene, for s; t 2 Z,

div(x

s

y

t

) = (ns+ `t)Q

2

+ (�`s + (n� `)t)Q

0

� ((n� `)s+ nt)Q

1

;

and hene (n� `)s+nt 2 H(Q

1

) provided that ns+ `t � 0 and �`s+(n� `)t � 0. Let H

denote the set introdued in (4.2). Then H � H(Q

1

), and it is easily heked that H is a

semigroup. By means of some omputations we see that #(NnH) = (n

2

�n`+ `

2

�1)=2,

whene H = H(Q

1

) follows.

Remark 4.4. The above Weierstrass semigroup H(Q

1

) was omputed for ` = n � 1, and

(n; `) = (5; 2) in [3℄.

We are able to generalize Theorem 3.1 for ertain urves X

n;`

.

Theorem 4.5. Assume that gd(n; `) = 1 and that Q := Q(n; `) = n

2

�n`+ `

2

is prime.

Then X

n;`

is F

q

2

-maximal if and only if (4:1) holds.

Proof. The \if" part follows from Corollary 4.2 and here we do not use the hypothesis

that Q is prime. For the \only if" part, we �rst notie that eah Q

i

is F

q

2

-rational. Now

the ase s = n �m and t = m in the proof of Lemma 4.3 gives QQ

2

� QQ

1

. Therefore

d = gd(Q; q + 1) 2 H(Q

1

) beause (q + 1)Q

1

� (q + 1)Q

2

[32, lemma1℄. As 1 62 H(Q

1

)

and Q is prime, the result follows.

Corollary 4.6. Let n, ` and Q be as in Theorem 4.5. Then the urve F

n

2

�n`+`

2

in Lemma

4.1 is F

q

2

-maximal if and only if (4.1) holds.
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Proof. Similar to the proof of Corollary 3.5.

Remark 4.7. There are in�nitely many n; ` with n > ` � 1 suh that Q(n; `) is prime. In

fat, for a prime p

0

suh that p

0

� 1 (mod 6), there exists suh n and ` so that p

0

= Q(n; `);

see [3, Remarque 4℄.

Referenes

[1℄ M. Abd�on and F. Torres, On maximal urves in harateristi two, Manusripta Math. 99 (1999),

39{53.

[2℄ P. Beelen and R. Pellikaan, The Newton polygon of plane urves with many rational points, preprint.

[3℄ H. Bennama and P. Carbonne, Courbes X

m

Y

n

+ Y

m

Z

n

+ Z

m

X

n

= 0 et d�eomposition de la Jao-

bienne, J. Algebra 188 (1997), 409{417.

[4℄ P. Carbonne and T. H�enoq, D�eomposition de la Jaobienne sur les orps �nis, Bull. Polish Aad.

Si. Math. 42(3) (1994), 207{215.

[5℄ P. Carbonne, T. H�enoq and F. Rigal, Points de Weierstrass de deux families de ourbes, Comm.

Algebra 27(11) (1999), 5235{5254.

[6℄ A. Cossidente, J.W.P. Hirshfeld, G. Korhm�aros and F. Torres, On plane maximal urves, to appear

in Compositio Math.

[7℄ A. Cossidente, G. Korhm�aros and F. Torres, On urves overed by the Hermitian urve, J. Algebra,

216 (1999), 56{76.

[8℄ A. Cossidente, G. Korhm�aros and F. Torres, Curves of large genus overed by the Hermitian urve,

to appear in Comm. Algebra.

[9℄ R. Fuhrmann, A. Garia and F. Torres, On maximal urves, J. Number Theory 67(1) (1997), 29{51.

[10℄ R. Fuhrmann and F. Torres, The genus of urves over �nite �elds with many rational points,

Manusripta Math. 89 (1996), 103{106.

[11℄ R. Fuhrmann and F. Torres, On Weierstrass points and optimal urves, Rend. Cir. Mat. Palermo

Suppl. 51 (1998), 25{46.

[12℄ A. Garia and M. Homma, Frobenius order-sequenes of urves, Algebra and number theory (G. Frey

and J. Ritter Eds.), 27{41, Walter de Gruyter Co., Berlin, 1994.

[13℄ A. Garia, H. Stihtenoth and C.P. Xing, On sub�elds of the Hermitian funtion �eld, to appear in

Compositio Math.

[14℄ A. Garia and F. Torres, On maximal urves having lassial Weierstrass gaps, Appliations of urves

over �nite �elds ( M.D. Fried Ed.), 49{59, Contemporary Math. 245, AMS, 1999.

[15℄ A. Garia and P. Viana, Weierstrass points on ertain non-lassial urves, Arh. Math. 46 (1986),

315{322.

[16℄ A. Garia and J.F. Voloh, Wronskians and linear independene in �elds of prime harateristi,

Manusripta Math. 59 (1987), 457{469.

[17℄ A. Garia and J.F. Voloh, Fermat urves over �nite �elds, J. Number Theory 30 (1988), 345{356.

[18℄ G. van der Geer and M. van der Vlugt, How to onstrut urves over �nite �elds with many points,

Arithmeti Geometry (Cortona 1994) (F. Catanese Ed.), 169{189, Cambridge Univ. Press, Cam-

bridge, 1997.

[19℄ V.D. Goppa, \Geometry and odes", Mathematis and its appliations, Vol. 24, Kluwer Aademi

Publisher, Dordreht-Boston-London, 1988.

[20℄ D.D. Grant, On linear forms whose oeÆients are in arithmetial progession, Israel J. Math. 15

(1973), 204{209.

[21℄ A. Hefez and J.F. Voloh, Frobenius non lasial urves, Arh. Math. 54 (1990), 263{273.



14 AGUGLIA, KORCHM

�

AROS, AND TORRES

[22℄ M. Homma, Funny plane urves in harateristi p > 0. Comm. Algabra 15(7) (1987), 1469{1501.

[23℄ M. Homma, A souped-up version of Pardini's theorem and its appliations to funny urves, Compo-

sitio Math. 71 (1989), 295{302.

[24℄ J.W.P. Hirshfeld, \Projetive geometries over �nite �elds", seond edition, Oxford University Press,

Oxford, 1998.

[25℄ Y. Ihara, Some remarks on the number of rational points of algebrai urves over �nite �elds, J. Fa.

Si. Tokio 28 (1981), 721{724.

[26℄ G. Korhm�aros and F. Torres, Embedding of a maximal urve in a Hermitian variety,

(math.AG/9911043), submitted.

[27℄ G. Lahaud, Sommes d'Eisenstein et nombre de points de ertaines ourbes alg�ebriques sur les orps

�nis, C.R. Aad. Si. Paris 305, S�erie I (1987), 729{732.

[28℄ R. Lidl and H. Niederreiter, \Finite �elds", Enylopedia of Mathematis and its Appliations, vol.

20, Adisson-Wesley, 1983.

[29℄ C.J. Moreno, \Algebrai urves over �nite �elds", Cambridge University Press, Vol. 97, 1991.

[30℄ R. Pardini, Some remarks on plane urves over �elds of �nite harateristi, Compositio Math. 60

(1986), 3{17.

[31℄ R. Pellikaan, The Klein quarti, the Fano plane and urves representing designs, Codes, Curves and

Signals: Common Threads in Communiations (A. Vardy Ed.), 9{20, Kluwer Aad. Publ., Dordreht,

1998.

[32℄ H.G. R�uk and H. Stihtenoth, A haraterization of Hermitian funtion �elds over �nite �elds, J.

Reine Angew. Math. 457 (1994), 185{188.

[33℄ J.P. Serre, \R�esum�e des ours de 1983-1984", Annu. College Frane 79{83 (1984); reprinted in

�uvres III, 701{705.

[34℄ I.E. Shparlinski, \Finite Fields: Theory and Computation", Dordreht/Boston/London, 1999.

[35℄ H. Stihtenoth and C. Xing, The genus of maximal funtion �elds, Manusripta Math. 86 (1995),

217{224.

[36℄ K.O. St�ohr and J.F. Voloh, Weierstrass points and urves over �nite �elds, Pro. London Math.

So. 52 (1986), 1{19.

[37℄ E. Ughi, On the number of points of ellipti urves over a �nite �eld and a problem of B. Segre,

Europ. J. Combinatoris 4 (1983), 263{270.

Dipartimento di Matematia, Universit

�

a di Basiliata, Via N. Sauro 85, 85100 Potenza,

Italy

E-mail address : aguglia�matna2.dma.unina.it

E-mail address : korhmaros�unibas.it

IMECC-UNICAMP, Cx. P. 6065, Campinas, 13083-970-SP, Brazil

E-mail address : ftorres�ime.uniamp.br


