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Abstra
t

An eÆ
ient non-overlapping domain de
omposition algorithm of the

Neumann-Neumann type for solving both 
oer
ive and semi
oer
ive

fri
tionless 
onta
t problems of elasti
ity has been re
ently presented.

The method redu
es, by the duality theory of 
onvex programming,

the dis
retized problem to a quadrati
 programming problem with

simple bounds and equality 
onstraints on the 
onta
t interfa
e. This

dual problem is further modi�ed by means of orthogonal proje
tors

to the natural 
oarse spa
e, and the resulting problem is solved by an

augmented Lagrangian type algorithm. The proje
tors guarantee an

optimal rate of 
onvergen
e for the solution of auxiliary linear prob-

lems by the 
onjugate gradients method. With this approa
h, it is

possible to deal separately with ea
h body or subdomain, so that the

algorithm 
an be implemented in parallel. In this paper, an eÆ
ient

parallel implementation of this method is presented, together with nu-

meri
al experiments that indi
ate the high parallel s
alability of the

algorithm.
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1 Introdu
tion.

Duality based domain de
omposition methods proved to be pra
ti
al and

eÆ
ient tools for parallel solution of large ellipti
 boundary value problems

[15, 16, 23℄. Using this approa
h, a body is partitioned into non-overlapping

subdomains, for ea
h subdomain is de�ned an ellipti
 problem with Neumann

boundary 
onditions on the subdomain interfa
es, and intersubdomain �eld


ontinuity is enfor
ed via Lagrange multipliers. The Lagrange multipliers are

evaluated by solving a relatively well 
onditioned dual problem of small size

that may be eÆ
iently solved by a suitable variant of the 
onjugate gradient

algorithm. The �rst pra
ti
al implementations by Farhat and Roux [15, 16℄

exploited the favorable distribution of the spe
trum of the matrix of the

smaller problem [22℄, known also as the dual S
hur 
omplement matrix, being

an eÆ
ient algorithm only with a small number of subdomains. Later, they

introdu
ed a \natural 
oarse problem" whose solution was implemented by

auxiliary proje
tors so that the resulting algorithm be
ame optimal [17, 23℄.

Re
ently, the authors have shown how to use the \natural 
oarse grid" to

the solution of a s
alar variational inequality [11℄ and presented an eÆ
ient

non-overlapping domain de
omposition algorithm for solving both 
oer
ive

and semi
oer
ive fri
tionless 
onta
t problems of elasti
ity [12℄.

In this work, we fo
us on the 
omputational implementation of parallel

solution of 
onta
t problems. The parallelization is des
ribed, analysed and

tested for a model problem.

This paper is organized as follows: in Se
tion 2 we present the dis-


retized problem formulation, from the primal to the modi�ed dual by means

of pre
onditioning with proje
tors. For 
ompleteness, in Se
tion 3 we brie
y

des
ribe the adopted quadrati
 programming algorithm, based on the aug-

mented Lagrangian te
hnique and adaptive pre
ision 
ontrol for solving aux-

iliary problems. In Se
tion 4, the model problem is des
ribed, together with

its domain de
ompositions. In Se
tions 5 and 6, we present a pro�le of the

algorithm and the parallelization s
heme, respe
tively. Numeri
al results

are shown and dis
ussed in Se
tion 7. Finally, some 
on
lusions and future

perspe
tives are presented in Se
tion 8.
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2 Problem Formulation.

We 
onsider a domain 
 de�ned by s homogeneous isotropi
 elasti
 bodies

in 
onta
t, ea
h one o

upying, in a referen
e 
on�guration, a subdomain




p

� IR

d

; d = 2; 3, with suÆ
iently smooth boundary. Imposing equilibrium


onditions, after �nite element dis
retization of 
 = 


1

[ � � � [ 


s

, with a

suitable numbering of nodes and assuming a se
ondary de
omposition, we

obtain the quadrati
 programming problem:

min

1

2

u

T

Ku� f

T

u s.t. B

I

u � 
 and B

E

u = 0; (1)

where K 2 IR

n�n

is symmetri
 positive de�nite (or semide�nite) blo
k diag-

onal (i.e. K = diag(K

1

; : : : ; K

s

)), B

I

2 IR

m�n

and B

E

2 IR

`�n

are full rank

matri
es, f 2 IR

n

and 
 2 IR

m

. The matrix B

I

and the ve
tor 
 des
ribe the

linearized in
remental non-interpenetration 
onditions, whereas matrix B

E

ensures 
ontinuity of the displa
ements a
ross auxiliary interfa
es. For more

details, see [10, 12℄. The ve
tor f des
ribes the nodal for
es arising from the

volume for
es and/or some other imposed tra
tions. Typi
ally n is large and

m, ` are mu
h smaller than n. The diagonal blo
ks K

p

that 
orrespond to

subdomains 


p

are positive de�nite or semide�nite sparse matri
es. More-

over, we shall assume that the nodes of the dis
retization are numbered in

su
h a way that K

p

are banded matri
es that 
an be e�e
tively de
omposed,

possibly after some regularization, by means of the Cholesky fa
torization.

Even though (1) is a standard 
onvex quadrati
 programming problem,

its formulation is not suitable for numeri
al solution. The reasons are that

matrix K is typi
ally ill 
onditioned, possibly singular and the feasible set

is in general so 
omplex that proje
tions into it 
an hardly be e�e
tivelly


omputed. Su
h diÆ
ulties may be essentially redu
ed by applying the du-

ality theory of 
onvex programming (e.g. [5, 6, 10℄). Sin
e the regular 
ase

has already been dis
ussed [10℄ we shall assume that the matrix K has a

nontrivial null spa
e that de�nes the natural 
oarse grid ([23℄).

The Lagrangian asso
iated with problem (1) is

L(u; �

I

; �

E

) =

1

2

u

T

Ku� f

T

u+ �

T

I

(B

I

u� 
) + �

T

E

B

E

u; (2)

where �

I

and �

E

are the Lagrange multipliers asso
iated with inequalities

and equalities, respe
tively. Introdu
ing notation

� =

"

�

I

�

E

#

; B =

"

B

I

B

E

#

; and 
̂ =

"




0

#

;
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we 
an write the Lagrangian brie
y as

L(u; �) =

1

2

u

T

Ku� f

T

u+ �

T

(Bu� 
̂):

Problem (1) is equivalent to the saddle point problem

Find (u; �) su
h that L(u; �) = sup

�

I

�0

inf

u

L(u; �): (3)

By eliminating u from (3) we obtain

min �(�) s.t. R

T

(f �B

T

�) = 0 and �

I

� 0 (4)

where

�(�) =

1

2

�

T

BK

y

B

T

�� �

T

(BK

y

f � 
̂); (5)

R is a matrix whose 
olumns span the null spa
e of K and K

y

denotes any

matrix that satis�es KK

y

K = K. The essential fa
t is that the produ
t of

K

y

by a ve
tor should be e�e
tivelly 
arried out (see e.g. [11, 14℄). On
e the

solution � of (4) is obtained, the ve
tor u that solves (3) 
an be evaluated

by an expli
it formula (see [6, 10℄).

The Hessian of � is, under reasonable assumptions, positive de�nite.

Besides, it is 
losely related to that of the basi
 FETI method by Farhat

and Roux [15, 16℄, so that its spe
trum is relatively favorably distributed for

appli
ation of the 
onjugate gradient method [22℄.

Even though problem (4) is mu
h more suitable for 
omputations than

(1) and was used for eÆ
ient solution of 
onta
t problems [10℄, further im-

provement may be a
hieved by adapting the results of [17℄. Let us denote

F = BK

y

B

T

;

e

d = BK

y

f;

e

G = R

T

B

T

;

e

e = R

T

f and let T denote a regular

matrix that de�nes the orthonormalization of the rows of

e

G so that matrix

G = T

e

G has orthogonal rows. After denoting e = T

e

e; problem (4) reads

min

1

2

�

T

F�� �

T

e

d s.t. G� = e and �

I

� 0: (6)

Next, the equality 
onstraints may be homogeneized by means of an arbitrary

� that satis�es G� = e: Denoting d =

e

d� F�, the modi�ed problem reads

min

1

2

�

T

F�� �

T

d s.t. G� = 0 and �

I

� ��

I

: (7)
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Further improvement 
an be obtained based on the de
omposition of

the augmented Lagrangian for problem(7) by the orthogonal proje
tors Q =

G

T

G and P = I � Q on the image spa
e of G

T

and on the kernel of G, re-

spe
tively. Indeed, sin
e P� = � for any feasible �, problem (7) is equivalent

to

min

1

2

�

T

PFP�� �

T

Pd s.t. G� = 0 and �

I

� ��

I

(8)

and the Hessian H = PFP + �Q of the augmented Lagrangian

L(�; �; �) =

1

2

�

T

(PFP + �Q)�� �

T

Pd+ �

T

G� (9)

is de
omposed by proje
tors P and Q whose image spa
es are invariant sub-

spa
es of H. The analysis of Axelsson [2℄ and Dost�al [8℄ together with re-

sults of the FETI method [17℄ provide ingredients to show that the rate of


onvergen
e for un
onstrained minimization of the augmented Lagrangian

(9) depends on neither the penalization parameter � nor the dis
retization

parameter. In fa
t, provided the aspe
t ratios of both dis
retization and

de
omposition are 
lose to one, the number of 
onjugate gradient iterations

is bounded by the square root of the ratio between subdomain and mesh

diameters (see [11, 12℄).

3 Algorithm for Quadrati
 Programming with

Equality Constraints and Simple Bounds.

Our development of an eÆ
ient algorithm for the solution of (8) is based

on the observation that the solution of su
h problem may be redu
ed, by

the augmented Lagrangian te
hnique [4, 9℄, to the solution of a sequen
e of

quadrati
 programming (QP) problems with simple bounds, and that the

latter 
an be solved mu
h more eÆ
iently than more general QP problems

due to the possibility of using proje
tions and results on adaptive pre
ision


ontrol in the a
tive set strategy [3, 7, 18, 19, 20℄. Here, for 
ompleteness,

we brie
y des
ribe the QP algorithm proposed in [9℄, 
onveniently adjusted

to problem (8).

To simplify our notation, let us denote F

P

= PFP so that the aug-

mented Lagrangian for problem (8) and its gradient are given by

L(�; �; �) =

1

2

�

T

F

P

�� �

T

Pd+ �

T

G�+

1

2

�jjQ�jj

2
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and

g(�; �; �) = F

P

�� Pd+G

T

(�+ �G�);

respe
tively. The proje
ted gradient g

P

= g

P

(�; �; �) of L at � is then given


omponentwise by

g

P

i

= g

i

for �

i

> ��

i

or i =2 I and g

P

i

= g

�

i

for �

i

= ��

i

and i 2 I

with g

�

i

= min(g

i

; 0), where I is the set of indi
es of 
onstrained entries of �.

The algorithm that we des
ribe here may be 
onsidered a variant of the

one proposed by Conn, Gould and Toint [4℄ for identi�
ation of stationary

points of more general problems. However, Algorithm 3.1 is modi�ed to

exploit the spe
i�
 stru
ture of our problem and get improved performan
e.

The most important of su
h modi�
ations 
onsists in in
luding the adaptive

pre
ision 
ontrol of auxiliary problems in Step 1.

All the parameters that must be de�ned prior to the appli
ation of the

algorithm are listed in Step 0, with typi
al values for our model problem

given in bra
kets.

Algorithm 3.1. (Simple bounded variables and equality 
onstraints)

Step 0. Initialization of parameters.
Set 0 < � < 1 for equality pre
ision

update, 1 < � for penalty update, �

0

> 0 for initial penalty parameter,

�

0

> 0 for initial equality pre
ision, M > 0 for balan
ing ratio, " > 0 for

optimality pre
ision, �

0

for the Lagrangian multipliers and k = 0.

Step 1. Find �

k

so that jjg

P

(�

k

; �

k

; �

k

)jj �M jjG�

k

jj, by solving

min L(�; �; �) s.t. �

I

� ��

I

.

Step 2. If jjg

P

(�

k

; �

k

; �

k

)jj � "jjdjj and jjG�

k

jj � "jjf jj

then �

k

is the solution.

Step 3. If jjG�

k

jj � �

k

Step 3a. then �

k+1

= �

k

+ �

k

G�

k

, �

k+1

= �

k

, �

k+1

= ��

k

Step 3b. else �

k+1

= ��

k

, �

k+1

= �

k

end if.
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Step 4. In
rease k and return to Step 1.

The implementation of Step 1 may be 
arried out by means of any

algorithm for quadrati
 minimization with simple bounds (e.g. [3, 7, 18, 19,

20℄). The unique solution

e

� =

e

�(�; �) of this auxiliary problem satis�es the

Karush-Kuhn-Tu
ker 
onditions g

P

(

e

�; �; �) = 0.

Salient features of this algorithm are that it deals 
ompletely separately

with ea
h type of 
onstraint and that it a

epts inexa
t solutions of the

auxiliary box 
onstrained problems in Step 1. Algorithm 3.1 has been proved

to 
onverge for any set of parameters that satisfy the relations pres
ribed at

Step 0 (see [9℄). Moreover, the penalty parameter is uniformly bounded and

the asymptoti
 rate of 
onvergen
e is the same as for the algorithm with

exa
t solution of auxiliary quadrati
 programming problems (i.e. M = 0).

4 A Model Problem and its Domain

De
omposition.

We 
onsider the model problem that 
omes from the �nite di�eren
e dis-


retization of the following 
ontinuous problem

Minimize q(u

1

; u

2

) =

2

X

i=1

�

Z




i

jru

i

j

2

d
�

Z




i

fu

i

d


�

subje
t to u

1

(0; y) � 0 and u

1

(1; y) � u

2

(1; y) for y 2 [0; 1℄;

where 


1

= (0; 1) � (0; 1), 


2

= (1; 2) � (0; 1), f(x; y) = �5 for (x; y) 2

(0; 1) � [0:75; 1), f(x; y) = 0 for (x; y) 2 (0; 1) � (0; 0:75), f(x; y) = �1 for

(x; y) 2 (1; 2)� (0; 0:25) and f(x; y) = 0 for (x; y) 2 (1; 2)� (0:25; 1).

The solution u � (u

1

; u

2

) of the model problem may be interpreted as

the displa
ement of two membranes under the tra
tion f , as shown in Fig-

ure 1. The left membrane is �xed on the left and the left edge of the right

membrane is not allowed to penetrate below the edge of the left membrane.

Moreover, both membranes are stret
hed by normalized horizontal for
es.

This problem is semi
oer
ive due to the la
k of Diri
hlet data on the bound-

ary of 


2

, but the solution is unique be
ause the right membrane is pressed

down. More details about this model problem, in
luding some other results,

may be found in [11, 12℄.

The model problem was dis
retized by regular grids de�ned by the step-

size h = 1=n with n+ 1 nodes in ea
h dire
tion per subdomain 


i

; i = 1; 2.

7



Figure 1: Model problem.

Ea
h subdomain 


i

was de
omposed into n

x

� n

y

identi
al re
tangles with

dimensions H

x

= 1=n

x

and H

y

= 1=n

y

. A

ording to the values of n

y

, we

may have a de
omposition into strips (n

y

= 1) or into a 
hessboard pattern

(n

y

> 1).

Figure 2: De
omposition into strips.

5 A Pro�le of the Algorithm.

Applying duality theory to (1) greatly redu
es the dimension of the problem.

In fa
t, it 
an be shown that the dimension of the dual problem is O(nn

x

),

while the primal dimension is O(n

2

).

Sin
e the size of the dual problem may be still 
onsiderable large,

8



a very eÆ
ient way to 
arry out step 1 of Algorithm 3.1 
onsists in ap-

plying a 
onjugate gradient type method to solve the bound-
onstrained

quadrati
 problem using a modi�ed lumped pre
onditioner in the form C

�1

=

PBKB

T

P +(1=�)G

T

G to a

elerate the 
onvergen
e. In this 
ase, the prod-

u
t of F = BK

y

B

T

by a ve
tor has to be 
omputed at least on
e per iteration.

Observing that F in
ludes K

y

, the generalized inverse of the primal sti�ness

matrix, one 
an 
on
lude that this produ
t might dominate the overall time

of Algorithm 3.1.

Fortunately, the produ
t of K

y

by a ve
tor 
an be eÆ
iently performed

in parallel, sin
e this matrix is blo
k-diagonal, with 2n

x

blo
ks for the de-


omposition into strips and 2n

x

n

y

blo
ks if the 
hessboard de
omposition is

used. Moreover, for our semi
oer
ive model problem, K

y


ontains only two

di�erent banded blo
ks, so storing this matrix is not a main 
on
ern even if

a distributed parallel environment is used.

Besides the produ
t of K

y

by a ve
tor, other relevant steps of the 
om-

putation are

� The Cholesky de
omposition of the two distin
t diagonal blo
ks of K,

used to 
ompute K

y

times a ve
tor.

� The generation of matrix G = T

e

G. In our implementation, this matrix

is obtained from the thin QR de
omposition of a \
ondensed" version

of

e

G

T

(see [13℄).

� The produ
t of F = BK

y

B

T

by a ve
tor.

� The produ
ts of G and G

T

by a ve
tor.

To obtain an eÆ
ient implementation of Algorithm 3.1, it is important

to minimize the time spent on generating matri
es K

y

and G, sin
e this

generation involves matrix de
ompositions that are diÆ
ult to parallelize.

For the model problem, the per
entage of the total time that is spent

in 
omputing ea
h of the steps des
ribed above is presented in Table 1. The


hessboard de
omposition was de�ned by setting n

y

= n

x

. Missing results


orrespond either to problems that are too large for the available memory or

problems so small that the results provided by the pro�ler were not reliable.

Table 1 indi
ates that, for the de
omposition into strips, the generation

of K

y

is mu
h more expensive than the generation of G, so this last produ
t

may be negle
ted. Besides, the problem 
an be solved more eÆ
iently in

9



Table 1.

Per
entage of the time spent by ea
h routine.

de
omposition into strips 
hessboard de
omposition

n n

x


hol qr Fv Gv, other 
hol qr Fv Gv, other

K

y

e

G

T

G

T

v K

y

e

G

T

G

T

v

32 2 15.6 0.0 82.9 0.2 1.3 { { { { {

4 4.5 0.5 89.5 2.2 3.3 { { { { {

8 2.1 1.0 91.2 2.6 3.1 { { { { {

64 2 27.2 0.1 72.3 0.1 0.3 5.2 0.2 93.0 0.8 0.8

4 12.8 0.0 86.2 0.5 0.5 0.6 0.4 90.9 4.7 3.4

8 4.8 0.1 93.1 0.9 1.1 0.1 14.5 63.5 14.7 7.2

16 1.4 0.0 95.6 1.3 1.7 0.0 85.6 7.3 5.1 2.0

32 0.3 0.0 94.3 2.1 3.3 0.0 98.9 0.4 0.6 0.1

128 2 30.8 0.0 69.1 0.0 0.1 5.2 0.2 93.0 0.8 0.8

4 13.7 0.0 86.0 0.1 0.2 0.8 0.1 96.8 1.4 0.9

8 5.4 0.0 94.0 0.3 0.3 0.1 2.0 89.5 5.0 3.4

16 1.8 0.0 97.4 0.4 0.4 0.0 64.6 25.6 6.4 3.4

32 0.5 0.0 97.8 0.7 1.0 0.0 98.2 0.8 0.8 0.2

256 4 16.2 0.0 83.1 0.0 0.7 0.4 0.1 98.4 0.8 0.3

8 6.8 0.0 93.1 0.0 0.1 0.2 0.4 96.7 1.7 1.0

16 2.5 0.0 97.1 0.1 0.3 0.0 27.0 65.9 4.4 2.7

32 0.6 0.0 98.9 0.3 0.2 0.0 95.6 3.0 1.1 0.3

512 4 { { { { { 2.3 0.0 97.4 0.1 0.2

8 { { { { { 0.5 0.0 98.7 0.7 0.1

16 { { { { { 0.0 4.3 92.7 1.8 1.2

1024 16 { { { { { 0.4 0.1 98.4 0.8 0.3

parallel if the number of strips is large, sin
e the dimension of the diagonal

blo
ks of K

y

is inversely proportional to the number of strips. Thus, for a

reasonably large value of r, the Cholesky de
omposition of K

y

is almost in-

expensive and only the produ
t of BK

y

B

T

by a ve
tor needs to be performed

in parallel.

For the 
hessboard de
omposition, the time spent 
omputing the QR

de
omposition of

e

G

T

in
reases exponentially as we in
rease the number of

subdomains, sin
e the number of 
olumns of

e

G

T

is proportional to n

x

n

y

. In

this 
ase, some 
are must be taken in order to prevent the QR de
omposi-

tion from dominating the overall time spent by the algorithm be
ause this

de
omposition 
annot be eÆ
iently parallelized. Fortunately, Table 1 sug-

gests that this 
an be a

omplished by keeping ratios n

x

=n and n

y

=n small.

For the model problem, supposing that n

x

= n

y

, this means that the relation

10



n

x

�

q

n=2 must hold. On the other hand, if n

x

and n

y

are too small, the

de
omposition of K

y

may redu
e the eÆ
ien
y of the parallelization, so it is

important to 
hoose these parameters very 
arefully.

6 The Parallel S
heme.

For the model problem, a 
areful 
hoi
e of n

x

and n

y

may ensure that more

than 95 per
ent of the total time of the algorithm will be spent on 
omputing

the produ
t of BK

y

B

T

by a ve
tor.

If the de
omposition into strips is used, almost all of the remaining time

is spent in 
omputing the Cholesky fa
tors of matrixK

y

, whi
h means that no

other part of the algorithm 
an be eÆ
iently parallelized. For the 
hessboard

de
omposition, though, it is worth 
onsidering 
omputing in parallel the

produ
t of the entire Hessian H = PFP + �Q by a ve
tor, as the produ
ts

of Q = G

T

G or P = I �Q by a ve
tor are also easily performed in parallel.

In this paper, however, we will illustrate the parallel solution of the

model problem using only the de
omposition into strips. Therefore, we re-

stri
t our attention to the 
omputation of produ
t

y = BK

y

B

T

v: (10)

Produ
t (10) 
an be de
omposed into three parts. First, v is \expanded"

and stored in a ve
tor z with the same dimension as K. Then K

y

z is obtained

using the Cholesky fa
tors previously 
omputed. Finally, the resulting ve
tor

is 
ompressed to �t in y.

The way this produ
t is 
omputed in parallel depends on the 
omputa-

tional model used. In our 
ode, the SPMD (single program, multiple data)

model was adopted, whi
h means that the same program is exe
uted by all of

the n

pro


pro
essors. Besides, MPI was 
hosen as the 
ommuni
ation library.

Sin
e ve
tor v is available to all of the pro
essors, ea
h one 
an pi
k

one part of the ve
tor, expand it, 
ompute the e�e
t of the 
orresponding

diagonal blo
ks of K

y

on it and 
ompress the resulting ve
tor into y. At

the end of this pro
edure, ea
h pro
essor stores a small portion of y, so it is

ne
essary to gather all these parts up and distribute y to all of the pro
essors

in order to resume the algorithm. Fortunately, this is the only 
ommuni
a-

tion point of the entire algorithm and 
an be eÆ
iently implemented using

routine MPI AllGatherV from MPI. However, some 
are must be taken when

11



gathering y, sin
e some of the (2n

x

� 1)n elements of this ve
tor belong to

the interfa
e of two strips and re
eive 
ontributions from di�erent blo
ks of

K

y

Bv. To 
ir
umvent this problem, a ve
tor with (2n

x

+n

pro


�2)n elements

is used to store all of the n

pro


parts in whi
h y was divided. After being

distributed, this larger ve
tor is 
ompressed by ea
h pro
essor and y is �nally

generated.

7 Numeri
al Results.

To evaluate the behavior of our parallel algorithm, a FORTRAN 
ode was

written. All of the tests were performed on a SGI Origin 2000 shared mem-

ory 
omputer, with 4 pro
essors, using MPICH, a portable implementation

of MPI developed jointly by the Argonne National Laboratory and the Mis-

sissippi State University.

The model problem was solved for a variety of values of n and n

x

in

order to test experimentally the dependen
e of the rate of 
onvergen
e on the

dis
retization parameter. The bound 
onstrained quadrati
 solver des
ribed

in [3℄ was used to 
ompute Step 1. The numeri
al data used were � = 0:1,

� = 10, �

0

= 10

4

, �

0

= 0:1, M = 10

4

, " = 10

�5

and �

0

= 0.

The parallel algorithm attained the same pre
ision as the sequential one.

Moreover, both performed the same number of iterations and matrix-ve
tor

produ
ts. Figure 3 exhibits a typi
al solution for the strips de
omposition.
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15
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30

35
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10

15

−0.05

−0.04

−0.03

−0.02

−0.01

Figure 3: Typi
al solution.
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The performan
e of the parallel algorithm is shown in Table 2, where

S

p

and S

a

denote, respe
tively, the \predi
ted" and the speedup a
tually ob-

tained in the experiments. For predi
ted speedup we mean the speedup that


ould be obtained if the time spent on 
omputing (10) using n

pro


pro
essors

was the time spent by one pro
essor divided by n

pro


, i.e. in the absen
e of


ommuni
ation 
osts. We also in
lude the ratio S

a

=S

p

as a measure of the

eÆ
ien
y of our parallel implementation.

Table 2.

Parallel performan
e of the algorithm.

n n

x

n

pro


= 4 n

pro


= 2

S

a

S

p

S

a

=S

p

S

a

S

p

S

a

=S

p

64 4 2.43 2.83 0.86 1.62 1.76 0.92

8 2.79 3.31 0.84 1.75 1.87 0.93

16 2.86 3.53 0.81 1.78 1.92 0.93

32 2.63 3.42 0.77 1.71 1.89 0.90

128 4 2.82 2.82 1.00 1.75 1.75 1.00

8 3.28 3.39 0.97 1.88 1.89 1.00

16 3.36 3.71 0.91 1.87 1.95 0.96

32 3.30 3.75 0.88 1.87 1.96 0.96

256 4 2.46 2.65 0.93 1.45 1.71 0.85

8 2.84 3.31 0.86 1.57 1.87 0.84

16 3.11 3.68 0.85 1.65 1.94 0.85

32 3.21 3.87 0.83 1.83 1.98 0.93

Sin
e a ve
tor with (2n

x

+n

pro


�2)n 
omponents need to be distributed

to all of the pro
essors, it should be expe
ted that the eÆ
ien
y de
ays as

n

pro


grows. However, for small problems, (10) is 
omputed so fast that the

time spent on 
ommuni
ation be
omes more signi�
ant, as 
an be seen in

Table 2 for n = 64.

The predi
ted speedup values obtained show that, for ea
h n, the par-

allel s
heme is very eÆ
ient for appropriate 
hoi
es of n

x

. The �gures for the

a
tual speedup 
on�rm the e�e
tiveness of the algorithm.

Naturally, as the number of pro
essors is in
reased, other routines than

the produ
t (10) need also to be implemented in parallel in order to improve

eÆ
ien
y to a better extent.
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8 Final Remarks.

In this work, we des
ribed the 
omputational implementation of a parallel


ode for solving 
onta
t problems. A pro�le of the algorithm was presented

for a model problem with two membranes, using two domain de
ompositions

(strips and 
hessboard pattern). This pro�le suggests that an eÆ
ient parallel

s
heme 
an be obtained. Numeri
al results that 
on�rm the e�e
tiveness of

our implementation were also provided for the de
omposition into strips.

Among the possible improvements on the algorithm, it is worth men-

tioning that, for the strips de
omposition, better results 
ould be obtained

treating the diagonal blo
ks K

y

as general sparse matri
es, instead of storing

them using a band format as we 
urrently do. With this new approa
h, we


ould apply the minimum degree algorithm to permute the 
olumns of K

y

and redu
e the number of nonzero elements in the resulting Cholesky fa
tors.

A 3D 
onta
t problem with Signorini type of 
onta
t 
onditions was

solved by the sequential version of the algorithm [12℄. Future work in
ludes

extending the parallel s
heme to this more realisti
 problem motivated by

mining engineering, and also to the solution of 2D 
onta
t problems with

Coulomb fri
tion.
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