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Abstract

An efficient non-overlapping domain decomposition algorithm of the
Neumann-Neumann type for solving both coercive and semicoercive
frictionless contact problems of elasticity has been recently presented.
The method reduces, by the duality theory of convex programming,
the discretized problem to a quadratic programming problem with
simple bounds and equality constraints on the contact interface. This
dual problem is further modified by means of orthogonal projectors
to the natural coarse space, and the resulting problem is solved by an
augmented Lagrangian type algorithm. The projectors guarantee an
optimal rate of convergence for the solution of auxiliary linear prob-
lems by the conjugate gradients method. With this approach, it is
possible to deal separately with each body or subdomain, so that the
algorithm can be implemented in parallel. In this paper, an efficient
parallel implementation of this method is presented, together with nu-
merical experiments that indicate the high parallel scalability of the
algorithm.
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1 Introduction.

Duality based domain decomposition methods proved to be practical and
efficient tools for parallel solution of large elliptic boundary value problems
[15, 16, 23|. Using this approach, a body is partitioned into non-overlapping
subdomains, for each subdomain is defined an elliptic problem with Neumann
boundary conditions on the subdomain interfaces, and intersubdomain field
continuity is enforced via Lagrange multipliers. The Lagrange multipliers are
evaluated by solving a relatively well conditioned dual problem of small size
that may be efficiently solved by a suitable variant of the conjugate gradient
algorithm. The first practical implementations by Farhat and Roux [15, 16|
exploited the favorable distribution of the spectrum of the matrix of the
smaller problem [22], known also as the dual Schur complement matrix, being
an efficient algorithm only with a small number of subdomains. Later, they
introduced a “natural coarse problem” whose solution was implemented by
auxiliary projectors so that the resulting algorithm became optimal [17, 23].
Recently, the authors have shown how to use the “natural coarse grid” to
the solution of a scalar variational inequality [11] and presented an efficient
non-overlapping domain decomposition algorithm for solving both coercive
and semicoercive frictionless contact problems of elasticity [12].

In this work, we focus on the computational implementation of parallel
solution of contact problems. The parallelization is described, analysed and
tested for a model problem.

This paper is organized as follows: in Section 2 we present the dis-
cretized problem formulation, from the primal to the modified dual by means
of preconditioning with projectors. For completeness, in Section 3 we briefly
describe the adopted quadratic programming algorithm, based on the aug-
mented Lagrangian technique and adaptive precision control for solving aux-
iliary problems. In Section 4, the model problem is described, together with
its domain decompositions. In Sections 5 and 6, we present a profile of the
algorithm and the parallelization scheme, respectively. Numerical results
are shown and discussed in Section 7. Finally, some conclusions and future
perspectives are presented in Section 8.



2 Problem Formulation.

We consider a domain €2 defined by s homogeneous isotropic elastic bodies
in contact, each one occupying, in a reference configuration, a subdomain
Q, C R%,d = 2,3, with sufficiently smooth boundary. Imposing equilibrium
conditions, after finite element discretization of 2 = Q; U --- U €, with a
suitable numbering of nodes and assuming a secondary decomposition, we
obtain the quadratic programming problem:

1
min iuTKu — f"u st. Bju<c and Bpu=0, (1)

where K € IR™*" is symmetric positive definite (or semidefinite) block diag-
onal (i.e. K = diag(Ky, ..., K,)), By € R™" and Br € IR™" are full rank
matrices, f € IR" and ¢ € IR™. The matrix B; and the vector ¢ describe the
linearized incremental non-interpenetration conditions, whereas matrix Bp
ensures continuity of the displacements across auxiliary interfaces. For more
details, see [10, 12]. The vector f describes the nodal forces arising from the
volume forces and/or some other imposed tractions. Typically n is large and
m, ¢ are much smaller than n. The diagonal blocks K, that correspond to
subdomains €2, are positive definite or semidefinite sparse matrices. More-
over, we shall assume that the nodes of the discretization are numbered in
such a way that K, are banded matrices that can be effectively decomposed,
possibly after some regularization, by means of the Cholesky factorization.

Even though (1) is a standard convex quadratic programming problem,
its formulation is not suitable for numerical solution. The reasons are that
matrix K is typically ill conditioned, possibly singular and the feasible set
is in general so complex that projections into it can hardly be effectivelly
computed. Such difficulties may be essentially reduced by applying the du-
ality theory of convex programming (e.g. [5, 6, 10]). Since the regular case
has already been discussed [10] we shall assume that the matrix K has a
nontrivial null space that defines the natural coarse grid ([23]).

The Lagrangian associated with problem (1) is

1
L(u,\j, A\g) = EuTKu — ffu+ AT (Byu — ¢) + AL Bgu, (2)

where A\; and Ap are the Lagrange multipliers associated with inequalities
and equalities, respectively. Introducing notation
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we can write the Lagrangian briefly as
1
L(u,\) = iuTKu — ffu+ A'(Bu - é).

Problem (1) is equivalent to the saddle point problem

Find (@, A\) such that L(@,\) = sup inf L(u, \). (3)

Ar>0 U

By eliminating v from (3) we obtain
min O(\) st. RY(f—B'A) =0 and X >0 (4)

where

O(\) = %)\TBKTBT)\ ~M(BK'f —¢), (5)

R is a matrix whose columns span the null space of K and K' denotes any
matrix that satisfies K KTK = K. The essential fact is that the product of
KT by a vector should be effectivelly carried out (see e.g. [11, 14]). Once the
solution A of (4) is obtained, the vector u that solves (3) can be evaluated
by an explicit formula (see [6, 10]).

The Hessian of © is, under reasonable assumptions, positive definite.
Besides, it is closely related to that of the basic FETI method by Farhat
and Roux [15, 16], so that its spectrum is relatively favorably distributed for
application of the conjugate gradient method [22].

Even though problem (4) is much more suitable for computations than
(1) and was used for efficient solution of contact problems [10], further im-
provement may be achieved by adapting the results of [17]. Let us denote
F = BK'BT d=BK'f, G =R'BT, ¢ = RTf and let T denote a regular
matrix that defines the orthonormalization of the rows of G so that matrix
G = T'G has orthogonal rows. After denoting e = T, problem (4) reads

1 ~
min §ATFA —Md st. Gh=e and A\ >0. (6)

Next, the equality constraints may be homogeneized by means of an arbitrary
A that satisfies GA = e. Denoting d = d — F'\, the modified problem reads

1 _
min JXFA=A'd st GA=0 and A > <A (7)



Further improvement can be obtained based on the decomposition of
the augmented Lagrangian for problem(7) by the orthogonal projectors @ =
GTG and P = I — @ on the image space of GT and on the kernel of G, re-
spectively. Indeed, since PA = \ for any feasible A, problem (7) is equivalent
to

1 -
min 5ATPFPA —M'Pd st. GA=0 and X\ > —); (8)
and the Hessian H = PF'P + p(Q) of the augmented Lagrangian

1
L\, p) = §AT(PFP + pQ)A = AT Pd + "G\ (9)

is decomposed by projectors P and () whose image spaces are invariant sub-
spaces of H. The analysis of Axelsson [2] and Dostél [8] together with re-
sults of the FETI method [17] provide ingredients to show that the rate of
convergence for unconstrained minimization of the augmented Lagrangian
(9) depends on neither the penalization parameter p nor the discretization
parameter. In fact, provided the aspect ratios of both discretization and
decomposition are close to one, the number of conjugate gradient iterations
is bounded by the square root of the ratio between subdomain and mesh
diameters (see [11, 12]).

3 Algorithm for Quadratic Programming with
Equality Constraints and Simple Bounds.

Our development of an efficient algorithm for the solution of (8) is based
on the observation that the solution of such problem may be reduced, by
the augmented Lagrangian technique [4, 9], to the solution of a sequence of
quadratic programming (QP) problems with simple bounds, and that the
latter can be solved much more efficiently than more general QP problems
due to the possibility of using projections and results on adaptive precision
control in the active set strategy [3, 7, 18, 19, 20]. Here, for completeness,
we briefly describe the QP algorithm proposed in [9], conveniently adjusted
to problem (8).

To simplify our notation, let us denote Fp = PFP so that the aug-
mented Lagrangian for problem (8) and its gradient are given by

1

1
L\, 1, p) = SATFpA = NPd + "G+ Spl|QAIP
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and
9(A 1, p) = FpA — Pd+ G (1 + pGA),

respectively. The projected gradient g* = g¥(\, u, p) of L at ) is then given
componentwise by
g =¢g; for \;>—X; or i ¢ and g =g for \;=—X; and i€l
with ¢g;7 = min(g;, 0), where I is the set of indices of constrained entries of A.
The algorithm that we describe here may be considered a variant of the
one proposed by Conn, Gould and Toint [4] for identification of stationary
points of more general problems. However, Algorithm 3.1 is modified to
exploit the specific structure of our problem and get improved performance.
The most important of such modifications consists in including the adaptive
precision control of auxiliary problems in Step 1.
All the parameters that must be defined prior to the application of the
algorithm are listed in Step 0, with typical values for our model problem
given in brackets.

Algorithm 3.1. (Simple bounded variables and equality constraints)

Step 0. Initialization of parameters. Set 0 < a < 1 for equality precision
update, 1 < [ for penalty update, py > 0 for initial penalty parameter,
1o > 0 for initial equality precision, M > 0 for balancing ratio, ¢ > 0 for
optimality precision, p° for the Lagrangian multipliers and k = 0.

Step 1. Find N¥ so that ||g” (¥, 1%, pr)|| < M||GN¥||, by solving
min  L(\, i, p) st. Ap > =M.

Step 2. If |lg”(A*, ¥, pi)|| < elld|| and [|GX*|| < e||£|

then \* is the solution.

Step 5. If ||GAF|| < me

Step 3a. then ! = pf + pGNE, prot = pry Mee1 = amy
Step 3b. else pry1 = Bor, Mhv1 = Mk
end if.



Step 4. Increase k and return to Step 1.

The implementation of Step 1 may be carried out by means of any
algorithm for quadratic minimization with simple bounds (e.g. [3, 7, 18, 19,
20]). The unique solution X = A(y, p) of this auxiliary problem satisfies the
Karush-Kuhn-Tucker conditions g’ (), i, p) = 0.

Salient features of this algorithm are that it deals completely separately
with each type of constraint and that it accepts inexact solutions of the
auxiliary box constrained problems in Step 1. Algorithm 3.1 has been proved
to converge for any set of parameters that satisty the relations prescribed at
Step 0 (see [9]). Moreover, the penalty parameter is uniformly bounded and
the asymptotic rate of convergence is the same as for the algorithm with

exact solution of auxiliary quadratic programming problems (i.e. M = 0).

4 A Model Problem and its Domain
Decomposition.

We consider the model problem that comes from the finite difference dis-
cretization of the following continuous problem

2
Minimize gq(ui,uz) =Y (/ |V, [*dS —/ fude>

i=1 S U
subject to u(0,y) =0 and uy(1,y) < us(1,y) for y € [0, 1],

where ©; = (0,1) x (0,1), Qs = (1,2) x (0,1), f(z,y) = =5 for (z,y) €
(0,1) x [0.75,1), f(z,y) = 0 for (x,y) € (0,1) x (0,0.75), f(z,y) = —1 for
(z,y) € (1,2) x (0,0.25) and f(z,y) =0 for (z,y) € (1,2) x (0.25,1).

The solution u = (uy, uz) of the model problem may be interpreted as
the displacement of two membranes under the traction f, as shown in Fig-
ure 1. The left membrane is fixed on the left and the left edge of the right
membrane is not allowed to penetrate below the edge of the left membrane.
Moreover, both membranes are stretched by normalized horizontal forces.
This problem is semicoercive due to the lack of Dirichlet data on the bound-
ary of {29, but the solution is unique because the right membrane is pressed
down. More details about this model problem, including some other results,
may be found in [11, 12].

The model problem was discretized by regular grids defined by the step-
size h = 1/n with n 4+ 1 nodes in each direction per subdomain €;, i =1, 2.
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Figure 1: Model problem.

Each subdomain €2; was decomposed into n, x n, identical rectangles with
dimensions H, = 1/n, and H, = 1/n,. According to the values of n,, we
may have a decomposition into strips (n, = 1) or into a chessboard pattern
(ny > 1).
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Figure 2: Decomposition into strips.

5 A Profile of the Algorithm.

Applying duality theory to (1) greatly reduces the dimension of the problem.
In fact, it can be shown that the dimension of the dual problem is O(nn,),
while the primal dimension is O(n?).

Since the size of the dual problem may be still considerable large,



a very efficient way to carry out step 1 of Algorithm 3.1 consists in ap-
plying a conjugate gradient type method to solve the bound-constrained
quadratic problem using a modified lumped preconditioner in the form C—! =
PBKBTP+(1/p)GTG to accelerate the convergence. In this case, the prod-
uct of F = BKTBT by a vector has to be computed at least once per iteration.
Observing that F includes KT, the generalized inverse of the primal stiffness
matrix, one can conclude that this product might dominate the overall time
of Algorithm 3.1.

Fortunately, the product of KT by a vector can be efficiently performed
in parallel, since this matrix is block-diagonal, with 2n, blocks for the de-
composition into strips and 2n,n, blocks if the chessboard decomposition is
used. Moreover, for our semicoercive model problem, K contains only two
different banded blocks, so storing this matrix is not a main concern even if
a distributed parallel environment is used.

Besides the product of KT by a vector, other relevant steps of the com-
putation are

e The Cholesky decomposition of the two distinct diagonal blocks of K,
used to compute KT times a vector.

e The generation of matrix G = TG. In our implementation, this matrix
is obtained from the thin QR decomposition of a “condensed” version
of GT' (see [13]).

e The product of F = BKTB” by a vector.

e The products of G and G by a vector.

To obtain an efficient implementation of Algorithm 3.1, it is important
to minimize the time spent on generating matrices K’ and G, since this
generation involves matrix decompositions that are difficult to parallelize.

For the model problem, the percentage of the total time that is spent
in computing each of the steps described above is presented in Table 1. The
chessboard decomposition was defined by setting n, = n,. Missing results
correspond either to problems that are too large for the available memory or
problems so small that the results provided by the profiler were not reliable.

Table 1 indicates that, for the decomposition into strips, the generation
of KT is much more expensive than the generation of G, so this last product
may be neglected. Besides, the problem can be solved more efficiently in



Table 1.

Percentage of the time spent by each routine.

decomposition into strips chessboard decomposition
n | ng | chol qr Fv | Gu, | other | chol qr Fv | Guo, | other
Kt | GT GTv Kt | GT GTy
32 2| 156 | 0.0 | 82.9 0.2 1.3 - - - - -
4 45 | 0.5 | 89.5 2.2 3.3 - - - - -
8 2.1 | 1.0 | 91.2 2.6 3.1 - - - - -
64 21272 0.1] 723 0.1 0.3 5.2 0.2 | 93.0 0.8 0.8
4 (128 | 0.0 | 86.2 0.5 0.5 0.6 0.4 | 90.9 4.7 3.4
8 4.8 | 0.1 | 93.1 0.9 1.1 0.1 | 14.5 | 63.5 | 14.7 7.2
16 1.4 1] 0.0] 95.6 1.3 1.7 0.0 | 85.6 7.3 5.1 2.0
32 03] 0.0 943 2.1 3.3 00989 | 04 0.6 0.1
128 2| 30.8 | 0.0 69.1 0.0 0.1 5.2 0.2 | 93.0 0.8 0.8
4| 137 0.0 | 86.0 0.1 0.2 0.8 0.1 | 96.8 14 0.9
8 5.4 | 0.0 | 94.0 0.3 0.3 0.1 2.0 | 89.5 5.0 3.4
16 1.8 0.0 974 0.4 0.4 0.0 | 64.6 | 25.6 6.4 3.4
32 0.5 0.0 | 97.8 0.7 1.0 0.0 | 98.2 0.8 0.8 0.2
256 4116.2 | 0.0 | 83.1 0.0 0.7 0.4 0.1 | 984 0.8 0.3
8 6.8 | 0.0 | 93.1 0.0 0.1 0.2 0.4 | 96.7 1.7 1.0
16 2.5 0.0 97.1 0.1 0.3 0.0 | 27.0 | 65.9 4.4 2.7
32 0.6 | 0.0 | 98.9 0.3 0.2 00956 | 3.0 1.1 0.3
512 4 - - - - - 2.3 0.0 974 0.1 0.2
8 - - - - 0.5 0.0 | 98.7 0.7 0.1
16 - - - - 0.0 | 4.3 ] 927 1.8 1.2
1024 | 16 - - - - 0.4 0.1 | 984 0.8 0.3

parallel if the number of strips is large, since the dimension of the diagonal
blocks of KT is inversely proportional to the number of strips. Thus, for a
reasonably large value of r, the Cholesky decomposition of KT is almost in-
expensive and only the product of BKTBT by a vector needs to be performed
in parallel.

For the chessboard decomposition, the time spent computing the QR
decomposition of G” increases exponentially as we increase the number of
subdomains, since the number of columns of GT is proportional to n,n,. In
this case, some care must be taken in order to prevent the QR decomposi-
tion from dominating the overall time spent by the algorithm because this
decomposition cannot be efficiently parallelized. Fortunately, Table 1 sug-
gests that this can be accomplished by keeping ratios n,/n and n,/n small.
For the model problem, supposing that n, = n,, this means that the relation
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ny < y/n/2 must hold. On the other hand, if n, and n, are too small, the

decomposition of KT may reduce the efficiency of the parallelization, so it is
important to choose these parameters very carefully.

6 The Parallel Scheme.

For the model problem, a careful choice of n, and n, may ensure that more
than 95 percent of the total time of the algorithm will be spent on computing
the product of BKTB” by a vector.

If the decomposition into strips is used, almost all of the remaining time
is spent in computing the Cholesky factors of matrix KT, which means that no
other part of the algorithm can be efficiently parallelized. For the chessboard
decomposition, though, it is worth considering computing in parallel the
product of the entire Hessian H = PF'P + pQQ by a vector, as the products
of Q = GTG or P = I — () by a vector are also easily performed in parallel.

In this paper, however, we will illustrate the parallel solution of the
model problem using only the decomposition into strips. Therefore, we re-
strict our attention to the computation of product

y = BK'B"v. (10)

Product (10) can be decomposed into three parts. First, v is “expanded”
and stored in a vector z with the same dimension as K. Then Kz is obtained
using the Cholesky factors previously computed. Finally, the resulting vector
is compressed to fit in y.

The way this product is computed in parallel depends on the computa-
tional model used. In our code, the SPMD (single program, multiple data)
model was adopted, which means that the same program is executed by all of
the n,,,. processors. Besides, MPI was chosen as the communication library.

Since vector v is available to all of the processors, each one can pick
one part of the vector, expand it, compute the effect of the corresponding
diagonal blocks of KT on it and compress the resulting vector into y. At
the end of this procedure, each processor stores a small portion of y, so it is
necessary to gather all these parts up and distribute y to all of the processors
in order to resume the algorithm. Fortunately, this is the only communica-
tion point of the entire algorithm and can be efficiently implemented using
routine MPI_AllGatherV from MPI. However, some care must be taken when
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gathering y, since some of the (2n, — 1)n elements of this vector belong to
the interface of two strips and receive contributions from different blocks of
K'Bv. To circumvent this problem, a vector with (2n4 +Nproc — 2)n elements
is used to store all of the ny,, parts in which y was divided. After being
distributed, this larger vector is compressed by each processor and y is finally
generated.

7 Numerical Results.

To evaluate the behavior of our parallel algorithm, a FORTRAN code was
written. All of the tests were performed on a SGI Origin 2000 shared mem-
ory computer, with 4 processors, using MPICH, a portable implementation
of MPI developed jointly by the Argonne National Laboratory and the Mis-
sissippi State University.

The model problem was solved for a variety of values of n and n, in
order to test experimentally the dependence of the rate of convergence on the
discretization parameter. The bound constrained quadratic solver described
in [3] was used to compute Step 1. The numerical data used were o = 0.1,
B =10, po =10% 1y = 0.1, M = 10*, ¢ = 107° and u° = 0.

The parallel algorithm attained the same precision as the sequential one.
Moreover, both performed the same number of iterations and matrix-vector
products. Figure 3 exhibits a typical solution for the strips decomposition.

Figure 3: Typical solution.
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The performance of the parallel algorithm is shown in Table 2, where
S, and S, denote, respectively, the “predicted” and the speedup actually ob-
tained in the experiments. For predicted speedup we mean the speedup that
could be obtained if the time spent on computing (10) using 7,,,. processors
was the time spent by one processor divided by 7., i.e. in the absence of
communication costs. We also include the ratio S,/S, as a measure of the
efficiency of our parallel implementation.

Table 2.
Parallel performance of the algorithm.
n | Ng Nproc = 4 Nproc = 2

Sal S5 1875 | Sa] S, 5.75,
64 | 4243|283 086|162 1.76| 092
8(279|331| 084|175[187| 093
16 | 2.86 | 3.53 | 081|178 | 1.92 | 093
32 263|342 | 077 | 171|189 | 090
128 | 428228 | 1.00| 175|175 | 1.00
8(328|339| 097|188 [1.89| 1.00
16 | 3.36 | 3.71| 091 | 1.87 | 1.95 | 0.96
32 330|375 | 0.88]187|1.96| 0.96
956 | 4| 246 | 265 | 003 | 145 [ 1.71| 085
8|284|331| 08| 157|187 084
16 | 3.11 | 368 | 085|165 |1.94| 085
32 321|387 | 083]183|1.98| 093

Since a vector with (21,47, —2)n components need to be distributed
to all of the processors, it should be expected that the efficiency decays as
Nproc grows. However, for small problems, (10) is computed so fast that the
time spent on communication becomes more significant, as can be seen in
Table 2 for n = 64.

The predicted speedup values obtained show that, for each n, the par-
allel scheme is very efficient for appropriate choices of n,. The figures for the
actual speedup confirm the effectiveness of the algorithm.

Naturally, as the number of processors is increased, other routines than
the product (10) need also to be implemented in parallel in order to improve
efficiency to a better extent.
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8 Final Remarks.

In this work, we described the computational implementation of a parallel
code for solving contact problems. A profile of the algorithm was presented
for a model problem with two membranes, using two domain decompositions
(strips and chessboard pattern). This profile suggests that an efficient parallel
scheme can be obtained. Numerical results that confirm the effectiveness of
our implementation were also provided for the decomposition into strips.

Among the possible improvements on the algorithm, it is worth men-
tioning that, for the strips decomposition, better results could be obtained
treating the diagonal blocks KT as general sparse matrices, instead of storing
them using a band format as we currently do. With this new approach, we
could apply the minimum degree algorithm to permute the columns of KT
and reduce the number of nonzero elements in the resulting Cholesky factors.

A 3D contact problem with Signorini type of contact conditions was
solved by the sequential version of the algorithm [12]. Future work includes
extending the parallel scheme to this more realistic problem motivated by
mining engineering, and also to the solution of 2D contact problems with
Coulomb friction.

Acknowledgements. We would like to acknowledge professor Patricio
Letelier, from UNICAMP, who kindly made his parallel computer available
for our numerical experiments.
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