
Parallel Solution of Contat Problems

�

Z. Dost�al

y

F. A. M. Gomes

z

S. A. Santos

z

Deember 14, 2000

Abstrat

An eÆient non-overlapping domain deomposition algorithm of the

Neumann-Neumann type for solving both oerive and semioerive

fritionless ontat problems of elastiity has been reently presented.

The method redues, by the duality theory of onvex programming,

the disretized problem to a quadrati programming problem with

simple bounds and equality onstraints on the ontat interfae. This

dual problem is further modi�ed by means of orthogonal projetors

to the natural oarse spae, and the resulting problem is solved by an

augmented Lagrangian type algorithm. The projetors guarantee an

optimal rate of onvergene for the solution of auxiliary linear prob-

lems by the onjugate gradients method. With this approah, it is

possible to deal separately with eah body or subdomain, so that the

algorithm an be implemented in parallel. In this paper, an eÆient

parallel implementation of this method is presented, together with nu-

merial experiments that indiate the high parallel salability of the

algorithm.
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1 Introdution.

Duality based domain deomposition methods proved to be pratial and

eÆient tools for parallel solution of large ellipti boundary value problems

[15, 16, 23℄. Using this approah, a body is partitioned into non-overlapping

subdomains, for eah subdomain is de�ned an ellipti problem with Neumann

boundary onditions on the subdomain interfaes, and intersubdomain �eld

ontinuity is enfored via Lagrange multipliers. The Lagrange multipliers are

evaluated by solving a relatively well onditioned dual problem of small size

that may be eÆiently solved by a suitable variant of the onjugate gradient

algorithm. The �rst pratial implementations by Farhat and Roux [15, 16℄

exploited the favorable distribution of the spetrum of the matrix of the

smaller problem [22℄, known also as the dual Shur omplement matrix, being

an eÆient algorithm only with a small number of subdomains. Later, they

introdued a \natural oarse problem" whose solution was implemented by

auxiliary projetors so that the resulting algorithm beame optimal [17, 23℄.

Reently, the authors have shown how to use the \natural oarse grid" to

the solution of a salar variational inequality [11℄ and presented an eÆient

non-overlapping domain deomposition algorithm for solving both oerive

and semioerive fritionless ontat problems of elastiity [12℄.

In this work, we fous on the omputational implementation of parallel

solution of ontat problems. The parallelization is desribed, analysed and

tested for a model problem.

This paper is organized as follows: in Setion 2 we present the dis-

retized problem formulation, from the primal to the modi�ed dual by means

of preonditioning with projetors. For ompleteness, in Setion 3 we briey

desribe the adopted quadrati programming algorithm, based on the aug-

mented Lagrangian tehnique and adaptive preision ontrol for solving aux-

iliary problems. In Setion 4, the model problem is desribed, together with

its domain deompositions. In Setions 5 and 6, we present a pro�le of the

algorithm and the parallelization sheme, respetively. Numerial results

are shown and disussed in Setion 7. Finally, some onlusions and future

perspetives are presented in Setion 8.
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2 Problem Formulation.

We onsider a domain 
 de�ned by s homogeneous isotropi elasti bodies

in ontat, eah one oupying, in a referene on�guration, a subdomain




p

� IR

d

; d = 2; 3, with suÆiently smooth boundary. Imposing equilibrium

onditions, after �nite element disretization of 
 = 


1

[ � � � [ 


s

, with a

suitable numbering of nodes and assuming a seondary deomposition, we

obtain the quadrati programming problem:

min

1

2

u

T

Ku� f

T

u s.t. B

I

u �  and B

E

u = 0; (1)

where K 2 IR

n�n

is symmetri positive de�nite (or semide�nite) blok diag-

onal (i.e. K = diag(K

1

; : : : ; K

s

)), B

I

2 IR

m�n

and B

E

2 IR

`�n

are full rank

matries, f 2 IR

n

and  2 IR

m

. The matrix B

I

and the vetor  desribe the

linearized inremental non-interpenetration onditions, whereas matrix B

E

ensures ontinuity of the displaements aross auxiliary interfaes. For more

details, see [10, 12℄. The vetor f desribes the nodal fores arising from the

volume fores and/or some other imposed trations. Typially n is large and

m, ` are muh smaller than n. The diagonal bloks K

p

that orrespond to

subdomains 


p

are positive de�nite or semide�nite sparse matries. More-

over, we shall assume that the nodes of the disretization are numbered in

suh a way that K

p

are banded matries that an be e�etively deomposed,

possibly after some regularization, by means of the Cholesky fatorization.

Even though (1) is a standard onvex quadrati programming problem,

its formulation is not suitable for numerial solution. The reasons are that

matrix K is typially ill onditioned, possibly singular and the feasible set

is in general so omplex that projetions into it an hardly be e�etivelly

omputed. Suh diÆulties may be essentially redued by applying the du-

ality theory of onvex programming (e.g. [5, 6, 10℄). Sine the regular ase

has already been disussed [10℄ we shall assume that the matrix K has a

nontrivial null spae that de�nes the natural oarse grid ([23℄).

The Lagrangian assoiated with problem (1) is

L(u; �

I

; �

E

) =

1

2

u

T

Ku� f

T

u+ �

T

I

(B

I

u� ) + �

T

E

B

E

u; (2)

where �

I

and �

E

are the Lagrange multipliers assoiated with inequalities

and equalities, respetively. Introduing notation

� =

"

�

I

�

E

#

; B =

"

B

I

B

E

#

; and ̂ =

"



0

#

;
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we an write the Lagrangian briey as

L(u; �) =

1

2

u

T

Ku� f

T

u+ �

T

(Bu� ̂):

Problem (1) is equivalent to the saddle point problem

Find (u; �) suh that L(u; �) = sup

�

I

�0

inf

u

L(u; �): (3)

By eliminating u from (3) we obtain

min �(�) s.t. R

T

(f �B

T

�) = 0 and �

I

� 0 (4)

where

�(�) =

1

2

�

T

BK

y

B

T

�� �

T

(BK

y

f � ̂); (5)

R is a matrix whose olumns span the null spae of K and K

y

denotes any

matrix that satis�es KK

y

K = K. The essential fat is that the produt of

K

y

by a vetor should be e�etivelly arried out (see e.g. [11, 14℄). One the

solution � of (4) is obtained, the vetor u that solves (3) an be evaluated

by an expliit formula (see [6, 10℄).

The Hessian of � is, under reasonable assumptions, positive de�nite.

Besides, it is losely related to that of the basi FETI method by Farhat

and Roux [15, 16℄, so that its spetrum is relatively favorably distributed for

appliation of the onjugate gradient method [22℄.

Even though problem (4) is muh more suitable for omputations than

(1) and was used for eÆient solution of ontat problems [10℄, further im-

provement may be ahieved by adapting the results of [17℄. Let us denote

F = BK

y

B

T

;

e

d = BK

y

f;

e

G = R

T

B

T

;

e

e = R

T

f and let T denote a regular

matrix that de�nes the orthonormalization of the rows of

e

G so that matrix

G = T

e

G has orthogonal rows. After denoting e = T

e

e; problem (4) reads

min

1

2

�

T

F�� �

T

e

d s.t. G� = e and �

I

� 0: (6)

Next, the equality onstraints may be homogeneized by means of an arbitrary

� that satis�es G� = e: Denoting d =

e

d� F�, the modi�ed problem reads

min

1

2

�

T

F�� �

T

d s.t. G� = 0 and �

I

� ��

I

: (7)
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Further improvement an be obtained based on the deomposition of

the augmented Lagrangian for problem(7) by the orthogonal projetors Q =

G

T

G and P = I � Q on the image spae of G

T

and on the kernel of G, re-

spetively. Indeed, sine P� = � for any feasible �, problem (7) is equivalent

to

min

1

2

�

T

PFP�� �

T

Pd s.t. G� = 0 and �

I

� ��

I

(8)

and the Hessian H = PFP + �Q of the augmented Lagrangian

L(�; �; �) =

1

2

�

T

(PFP + �Q)�� �

T

Pd+ �

T

G� (9)

is deomposed by projetors P and Q whose image spaes are invariant sub-

spaes of H. The analysis of Axelsson [2℄ and Dost�al [8℄ together with re-

sults of the FETI method [17℄ provide ingredients to show that the rate of

onvergene for unonstrained minimization of the augmented Lagrangian

(9) depends on neither the penalization parameter � nor the disretization

parameter. In fat, provided the aspet ratios of both disretization and

deomposition are lose to one, the number of onjugate gradient iterations

is bounded by the square root of the ratio between subdomain and mesh

diameters (see [11, 12℄).

3 Algorithm for Quadrati Programming with

Equality Constraints and Simple Bounds.

Our development of an eÆient algorithm for the solution of (8) is based

on the observation that the solution of suh problem may be redued, by

the augmented Lagrangian tehnique [4, 9℄, to the solution of a sequene of

quadrati programming (QP) problems with simple bounds, and that the

latter an be solved muh more eÆiently than more general QP problems

due to the possibility of using projetions and results on adaptive preision

ontrol in the ative set strategy [3, 7, 18, 19, 20℄. Here, for ompleteness,

we briey desribe the QP algorithm proposed in [9℄, onveniently adjusted

to problem (8).

To simplify our notation, let us denote F

P

= PFP so that the aug-

mented Lagrangian for problem (8) and its gradient are given by

L(�; �; �) =

1

2

�

T

F

P

�� �

T

Pd+ �

T

G�+

1

2

�jjQ�jj

2
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and

g(�; �; �) = F

P

�� Pd+G

T

(�+ �G�);

respetively. The projeted gradient g

P

= g

P

(�; �; �) of L at � is then given

omponentwise by

g

P

i

= g

i

for �

i

> ��

i

or i =2 I and g

P

i

= g

�

i

for �

i

= ��

i

and i 2 I

with g

�

i

= min(g

i

; 0), where I is the set of indies of onstrained entries of �.

The algorithm that we desribe here may be onsidered a variant of the

one proposed by Conn, Gould and Toint [4℄ for identi�ation of stationary

points of more general problems. However, Algorithm 3.1 is modi�ed to

exploit the spei� struture of our problem and get improved performane.

The most important of suh modi�ations onsists in inluding the adaptive

preision ontrol of auxiliary problems in Step 1.

All the parameters that must be de�ned prior to the appliation of the

algorithm are listed in Step 0, with typial values for our model problem

given in brakets.

Algorithm 3.1. (Simple bounded variables and equality onstraints)

Step 0. Initialization of parameters.
Set 0 < � < 1 for equality preision

update, 1 < � for penalty update, �

0

> 0 for initial penalty parameter,

�

0

> 0 for initial equality preision, M > 0 for balaning ratio, " > 0 for

optimality preision, �

0

for the Lagrangian multipliers and k = 0.

Step 1. Find �

k

so that jjg

P

(�

k

; �

k

; �

k

)jj �M jjG�

k

jj, by solving

min L(�; �; �) s.t. �

I

� ��

I

.

Step 2. If jjg

P

(�

k

; �

k

; �

k

)jj � "jjdjj and jjG�

k

jj � "jjf jj

then �

k

is the solution.

Step 3. If jjG�

k

jj � �

k

Step 3a. then �

k+1

= �

k

+ �

k

G�

k

, �

k+1

= �

k

, �

k+1

= ��

k

Step 3b. else �

k+1

= ��

k

, �

k+1

= �

k

end if.
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Step 4. Inrease k and return to Step 1.

The implementation of Step 1 may be arried out by means of any

algorithm for quadrati minimization with simple bounds (e.g. [3, 7, 18, 19,

20℄). The unique solution

e

� =

e

�(�; �) of this auxiliary problem satis�es the

Karush-Kuhn-Tuker onditions g

P

(

e

�; �; �) = 0.

Salient features of this algorithm are that it deals ompletely separately

with eah type of onstraint and that it aepts inexat solutions of the

auxiliary box onstrained problems in Step 1. Algorithm 3.1 has been proved

to onverge for any set of parameters that satisfy the relations presribed at

Step 0 (see [9℄). Moreover, the penalty parameter is uniformly bounded and

the asymptoti rate of onvergene is the same as for the algorithm with

exat solution of auxiliary quadrati programming problems (i.e. M = 0).

4 A Model Problem and its Domain

Deomposition.

We onsider the model problem that omes from the �nite di�erene dis-

retization of the following ontinuous problem

Minimize q(u

1

; u

2

) =

2

X

i=1

�

Z




i

jru

i

j

2

d
�

Z




i

fu

i

d


�

subjet to u

1

(0; y) � 0 and u

1

(1; y) � u

2

(1; y) for y 2 [0; 1℄;

where 


1

= (0; 1) � (0; 1), 


2

= (1; 2) � (0; 1), f(x; y) = �5 for (x; y) 2

(0; 1) � [0:75; 1), f(x; y) = 0 for (x; y) 2 (0; 1) � (0; 0:75), f(x; y) = �1 for

(x; y) 2 (1; 2)� (0; 0:25) and f(x; y) = 0 for (x; y) 2 (1; 2)� (0:25; 1).

The solution u � (u

1

; u

2

) of the model problem may be interpreted as

the displaement of two membranes under the tration f , as shown in Fig-

ure 1. The left membrane is �xed on the left and the left edge of the right

membrane is not allowed to penetrate below the edge of the left membrane.

Moreover, both membranes are strethed by normalized horizontal fores.

This problem is semioerive due to the lak of Dirihlet data on the bound-

ary of 


2

, but the solution is unique beause the right membrane is pressed

down. More details about this model problem, inluding some other results,

may be found in [11, 12℄.

The model problem was disretized by regular grids de�ned by the step-

size h = 1=n with n+ 1 nodes in eah diretion per subdomain 


i

; i = 1; 2.
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Figure 1: Model problem.

Eah subdomain 


i

was deomposed into n

x

� n

y

idential retangles with

dimensions H

x

= 1=n

x

and H

y

= 1=n

y

. Aording to the values of n

y

, we

may have a deomposition into strips (n

y

= 1) or into a hessboard pattern

(n

y

> 1).

Figure 2: Deomposition into strips.

5 A Pro�le of the Algorithm.

Applying duality theory to (1) greatly redues the dimension of the problem.

In fat, it an be shown that the dimension of the dual problem is O(nn

x

),

while the primal dimension is O(n

2

).

Sine the size of the dual problem may be still onsiderable large,
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a very eÆient way to arry out step 1 of Algorithm 3.1 onsists in ap-

plying a onjugate gradient type method to solve the bound-onstrained

quadrati problem using a modi�ed lumped preonditioner in the form C

�1

=

PBKB

T

P +(1=�)G

T

G to aelerate the onvergene. In this ase, the prod-

ut of F = BK

y

B

T

by a vetor has to be omputed at least one per iteration.

Observing that F inludes K

y

, the generalized inverse of the primal sti�ness

matrix, one an onlude that this produt might dominate the overall time

of Algorithm 3.1.

Fortunately, the produt of K

y

by a vetor an be eÆiently performed

in parallel, sine this matrix is blok-diagonal, with 2n

x

bloks for the de-

omposition into strips and 2n

x

n

y

bloks if the hessboard deomposition is

used. Moreover, for our semioerive model problem, K

y

ontains only two

di�erent banded bloks, so storing this matrix is not a main onern even if

a distributed parallel environment is used.

Besides the produt of K

y

by a vetor, other relevant steps of the om-

putation are

� The Cholesky deomposition of the two distint diagonal bloks of K,

used to ompute K

y

times a vetor.

� The generation of matrix G = T

e

G. In our implementation, this matrix

is obtained from the thin QR deomposition of a \ondensed" version

of

e

G

T

(see [13℄).

� The produt of F = BK

y

B

T

by a vetor.

� The produts of G and G

T

by a vetor.

To obtain an eÆient implementation of Algorithm 3.1, it is important

to minimize the time spent on generating matries K

y

and G, sine this

generation involves matrix deompositions that are diÆult to parallelize.

For the model problem, the perentage of the total time that is spent

in omputing eah of the steps desribed above is presented in Table 1. The

hessboard deomposition was de�ned by setting n

y

= n

x

. Missing results

orrespond either to problems that are too large for the available memory or

problems so small that the results provided by the pro�ler were not reliable.

Table 1 indiates that, for the deomposition into strips, the generation

of K

y

is muh more expensive than the generation of G, so this last produt

may be negleted. Besides, the problem an be solved more eÆiently in

9



Table 1.

Perentage of the time spent by eah routine.

deomposition into strips hessboard deomposition

n n

x

hol qr Fv Gv, other hol qr Fv Gv, other

K

y

e

G

T

G

T

v K

y

e

G

T

G

T

v

32 2 15.6 0.0 82.9 0.2 1.3 { { { { {

4 4.5 0.5 89.5 2.2 3.3 { { { { {

8 2.1 1.0 91.2 2.6 3.1 { { { { {

64 2 27.2 0.1 72.3 0.1 0.3 5.2 0.2 93.0 0.8 0.8

4 12.8 0.0 86.2 0.5 0.5 0.6 0.4 90.9 4.7 3.4

8 4.8 0.1 93.1 0.9 1.1 0.1 14.5 63.5 14.7 7.2

16 1.4 0.0 95.6 1.3 1.7 0.0 85.6 7.3 5.1 2.0

32 0.3 0.0 94.3 2.1 3.3 0.0 98.9 0.4 0.6 0.1

128 2 30.8 0.0 69.1 0.0 0.1 5.2 0.2 93.0 0.8 0.8

4 13.7 0.0 86.0 0.1 0.2 0.8 0.1 96.8 1.4 0.9

8 5.4 0.0 94.0 0.3 0.3 0.1 2.0 89.5 5.0 3.4

16 1.8 0.0 97.4 0.4 0.4 0.0 64.6 25.6 6.4 3.4

32 0.5 0.0 97.8 0.7 1.0 0.0 98.2 0.8 0.8 0.2

256 4 16.2 0.0 83.1 0.0 0.7 0.4 0.1 98.4 0.8 0.3

8 6.8 0.0 93.1 0.0 0.1 0.2 0.4 96.7 1.7 1.0

16 2.5 0.0 97.1 0.1 0.3 0.0 27.0 65.9 4.4 2.7

32 0.6 0.0 98.9 0.3 0.2 0.0 95.6 3.0 1.1 0.3

512 4 { { { { { 2.3 0.0 97.4 0.1 0.2

8 { { { { { 0.5 0.0 98.7 0.7 0.1

16 { { { { { 0.0 4.3 92.7 1.8 1.2

1024 16 { { { { { 0.4 0.1 98.4 0.8 0.3

parallel if the number of strips is large, sine the dimension of the diagonal

bloks of K

y

is inversely proportional to the number of strips. Thus, for a

reasonably large value of r, the Cholesky deomposition of K

y

is almost in-

expensive and only the produt of BK

y

B

T

by a vetor needs to be performed

in parallel.

For the hessboard deomposition, the time spent omputing the QR

deomposition of

e

G

T

inreases exponentially as we inrease the number of

subdomains, sine the number of olumns of

e

G

T

is proportional to n

x

n

y

. In

this ase, some are must be taken in order to prevent the QR deomposi-

tion from dominating the overall time spent by the algorithm beause this

deomposition annot be eÆiently parallelized. Fortunately, Table 1 sug-

gests that this an be aomplished by keeping ratios n

x

=n and n

y

=n small.

For the model problem, supposing that n

x

= n

y

, this means that the relation

10



n

x

�

q

n=2 must hold. On the other hand, if n

x

and n

y

are too small, the

deomposition of K

y

may redue the eÆieny of the parallelization, so it is

important to hoose these parameters very arefully.

6 The Parallel Sheme.

For the model problem, a areful hoie of n

x

and n

y

may ensure that more

than 95 perent of the total time of the algorithm will be spent on omputing

the produt of BK

y

B

T

by a vetor.

If the deomposition into strips is used, almost all of the remaining time

is spent in omputing the Cholesky fators of matrixK

y

, whih means that no

other part of the algorithm an be eÆiently parallelized. For the hessboard

deomposition, though, it is worth onsidering omputing in parallel the

produt of the entire Hessian H = PFP + �Q by a vetor, as the produts

of Q = G

T

G or P = I �Q by a vetor are also easily performed in parallel.

In this paper, however, we will illustrate the parallel solution of the

model problem using only the deomposition into strips. Therefore, we re-

strit our attention to the omputation of produt

y = BK

y

B

T

v: (10)

Produt (10) an be deomposed into three parts. First, v is \expanded"

and stored in a vetor z with the same dimension as K. Then K

y

z is obtained

using the Cholesky fators previously omputed. Finally, the resulting vetor

is ompressed to �t in y.

The way this produt is omputed in parallel depends on the omputa-

tional model used. In our ode, the SPMD (single program, multiple data)

model was adopted, whih means that the same program is exeuted by all of

the n

pro

proessors. Besides, MPI was hosen as the ommuniation library.

Sine vetor v is available to all of the proessors, eah one an pik

one part of the vetor, expand it, ompute the e�et of the orresponding

diagonal bloks of K

y

on it and ompress the resulting vetor into y. At

the end of this proedure, eah proessor stores a small portion of y, so it is

neessary to gather all these parts up and distribute y to all of the proessors

in order to resume the algorithm. Fortunately, this is the only ommunia-

tion point of the entire algorithm and an be eÆiently implemented using

routine MPI AllGatherV from MPI. However, some are must be taken when

11



gathering y, sine some of the (2n

x

� 1)n elements of this vetor belong to

the interfae of two strips and reeive ontributions from di�erent bloks of

K

y

Bv. To irumvent this problem, a vetor with (2n

x

+n

pro

�2)n elements

is used to store all of the n

pro

parts in whih y was divided. After being

distributed, this larger vetor is ompressed by eah proessor and y is �nally

generated.

7 Numerial Results.

To evaluate the behavior of our parallel algorithm, a FORTRAN ode was

written. All of the tests were performed on a SGI Origin 2000 shared mem-

ory omputer, with 4 proessors, using MPICH, a portable implementation

of MPI developed jointly by the Argonne National Laboratory and the Mis-

sissippi State University.

The model problem was solved for a variety of values of n and n

x

in

order to test experimentally the dependene of the rate of onvergene on the

disretization parameter. The bound onstrained quadrati solver desribed

in [3℄ was used to ompute Step 1. The numerial data used were � = 0:1,

� = 10, �

0

= 10

4

, �

0

= 0:1, M = 10

4

, " = 10

�5

and �

0

= 0.

The parallel algorithm attained the same preision as the sequential one.

Moreover, both performed the same number of iterations and matrix-vetor

produts. Figure 3 exhibits a typial solution for the strips deomposition.

5
10

15
20

25
30

35

5

10

15

−0.05

−0.04

−0.03

−0.02

−0.01

Figure 3: Typial solution.
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The performane of the parallel algorithm is shown in Table 2, where

S

p

and S

a

denote, respetively, the \predited" and the speedup atually ob-

tained in the experiments. For predited speedup we mean the speedup that

ould be obtained if the time spent on omputing (10) using n

pro

proessors

was the time spent by one proessor divided by n

pro

, i.e. in the absene of

ommuniation osts. We also inlude the ratio S

a

=S

p

as a measure of the

eÆieny of our parallel implementation.

Table 2.

Parallel performane of the algorithm.

n n

x

n

pro

= 4 n

pro

= 2

S

a

S

p

S

a

=S

p

S

a

S

p

S

a

=S

p

64 4 2.43 2.83 0.86 1.62 1.76 0.92

8 2.79 3.31 0.84 1.75 1.87 0.93

16 2.86 3.53 0.81 1.78 1.92 0.93

32 2.63 3.42 0.77 1.71 1.89 0.90

128 4 2.82 2.82 1.00 1.75 1.75 1.00

8 3.28 3.39 0.97 1.88 1.89 1.00

16 3.36 3.71 0.91 1.87 1.95 0.96

32 3.30 3.75 0.88 1.87 1.96 0.96

256 4 2.46 2.65 0.93 1.45 1.71 0.85

8 2.84 3.31 0.86 1.57 1.87 0.84

16 3.11 3.68 0.85 1.65 1.94 0.85

32 3.21 3.87 0.83 1.83 1.98 0.93

Sine a vetor with (2n

x

+n

pro

�2)n omponents need to be distributed

to all of the proessors, it should be expeted that the eÆieny deays as

n

pro

grows. However, for small problems, (10) is omputed so fast that the

time spent on ommuniation beomes more signi�ant, as an be seen in

Table 2 for n = 64.

The predited speedup values obtained show that, for eah n, the par-

allel sheme is very eÆient for appropriate hoies of n

x

. The �gures for the

atual speedup on�rm the e�etiveness of the algorithm.

Naturally, as the number of proessors is inreased, other routines than

the produt (10) need also to be implemented in parallel in order to improve

eÆieny to a better extent.
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8 Final Remarks.

In this work, we desribed the omputational implementation of a parallel

ode for solving ontat problems. A pro�le of the algorithm was presented

for a model problem with two membranes, using two domain deompositions

(strips and hessboard pattern). This pro�le suggests that an eÆient parallel

sheme an be obtained. Numerial results that on�rm the e�etiveness of

our implementation were also provided for the deomposition into strips.

Among the possible improvements on the algorithm, it is worth men-

tioning that, for the strips deomposition, better results ould be obtained

treating the diagonal bloks K

y

as general sparse matries, instead of storing

them using a band format as we urrently do. With this new approah, we

ould apply the minimum degree algorithm to permute the olumns of K

y

and redue the number of nonzero elements in the resulting Cholesky fators.

A 3D ontat problem with Signorini type of ontat onditions was

solved by the sequential version of the algorithm [12℄. Future work inludes

extending the parallel sheme to this more realisti problem motivated by

mining engineering, and also to the solution of 2D ontat problems with

Coulomb frition.
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