
On the 
ombinatori
s of the Fibona

i Numbers

Jose Pl��nio O. Santos

�

Abstra
t

In this paper following some ideas introdu
ed by Andrews in [4℄ and results

given by Santos in [7℄ we give new formula and 
ombinatorial interpretation

for the Fibona

i Numbers.

1 Introdu
tion

In [9℄ Lu
y Slater presented a list of 130 q-series identities in
luding the 3 listed

below that are the ones of numbers 18, 14 and 20 respe
tively been the �rst two the

famous Rogers Ramanujan identities.
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where

(a; q)

n

= (1� a)(1� aq) : : : (1� aq

n�1

);

n a nonnegative integer.

To des
ribe an idea about how to look for a 
ombinatorial interpretation for

identities of this type we use (1.1) as a prototypi
al example.
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In [4℄ Andrews 
onsiders in as simple a manner as possible a two-variable gen-

eralization f(q; t) that has the following properties:

(i) f(q; t) =

1

X

n=0
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n

, where P

n

(q) are polynomials.
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(iii) f(q; t) satis�es a �rst-order nonhomogeneous q-di�eren
e equation.

By stating things this in this generality no one 
ould guess what to do next.

However in pra
ti
e f(q; t) is generally easily produ
ed. A parameter t is inserted

into (1.1) in su
h a way that one essentially obtains the (n+1)st term from the nth

term by repla
ing t by tq. In this instan
e
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n

)

The fa
tor (1� t) in the denominator is essential to guarantee (ii).

We now 
he
k that our three 
onditions have been veri�ed. First
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=
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t

2

q
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(1� t)f(q; t) = 1 + t

2

qf(q; tq):

Thus (iii) is satis�ed. Next we note
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(by Andrews [1℄, Theorem 3.3 p. 36℄

=
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Hen
e we have (i) sin
e by (1.4)
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�

(1.5)

For (ii) we may use Abel's lemma (Whittaker and Watson [[11℄, p.57℄ or Andrews

[[5℄, p. 190℄:

lim

n!1

P

n
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�
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A natural question at this point may be: So what? We started with (1.1) and

obtained f(q; t); however we appear not to have anything new of any real signi�
an
e.

We might, of 
ourse, attempt a justi�
ation by pointing out that the polynomials

P

n

(q), in this 
ase, were important in the treatment of Regime I of the Hard Hexagon

Model been f(q; t) the generating fun
tion for those polynomials.

In this paper we are going to explore the 
ombinatori
s of P

n

(q) obtained from

the f(q; t) asso
iated with identity (1.3) but it is important to say that f(q; t) is of

interest for other values of t besides 1. In parti
ular

f(q;�1) =

1

2

1

X

n=0

q

n

2

(�q; q)

n

=

1

2

f

0

(q);

where f

0

(q) is one of Ramanujan's �fth-order mo
k theta fun
tions (
f. Watson

[10℄).

Before starting our study of another P

n

(q) from whi
h we got new 
ombinatorial

interpretation for the Fibona

i numbers we have to mention that by analyzing

these fun
tions at other points, as mentioned above, one 
an not only give new

proofs for the identities in Slater's list but also �nd new ones with the help of Abel's
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lemma, Bailey's lemma and Ja
obi's Triple Produ
t together with a symboli
 algebra

pa
kage (
f. Santos [7℄).

A fuller dis
ussion of the 
ombinatori
s of this 
onstru
tion is given by Andrews

[4℄.

2 Some de�nitions for our proof

When dealing with the expression

(1 + x+ x

2

)

n

(2.1)

we 
all the 
oeÆ
ients of x

j

in the expanded form of (2.1) of trinomial 
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It is easy to show that if
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=
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=
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�
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=
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n
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�

2
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�
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j

�
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�
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+
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�

2

+

�
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�

2

(2.6)
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The following expressions (Andrews & Baxter [6℄) are q-analogs of the trinomial


oeÆ
ient in the same way that the Gaussian polynomial is a q-analog of the bino-

mial 
oeÆ
ient, that is, the limit of ea
h one of them when q approa
hes 1 is equal

to the trinomial 
oeÆ
ient given by (2.3) and (2.4).

T

0

(m;A; q) =

m

X

j=0

(�1)

j

�

m

j

�

q

2

�

2m� 2j
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�

; (2.7)

T
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m

X
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�
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�
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�
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�

; (2.8)

T
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1

(m� 1; A; q) + q

m+A

T

0

(m� 1; A+ 1; q)

+q
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T

0
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We need also (Andrews & Baxter [6℄) the identity:

T
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If we de�ne

U(m;A; q) = T

0

(m;A; q) + T

0

(m;A + 1; q) (2.12)

then the following two results (Andrews [3℄, pp. 13-15) are true:

U(m;A; q) = (1 + q

2m�1
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+q

m�A

T

1
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1
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T

0

(m� 2; A+ 3; q) (2.14)
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The following limiting value of our q-analog (2.12) is ne
essary:

lim

m!1

U(m;A; q) =

(�q; q

2

)

1

(q

2

; q

2

)

1

([3℄, eq. 4.16) (2.15)

3 The Fibona

i Numbers from a sequen
e P

n

(q)

We start by 
onsidering the fun
tion f(q; t) asso
iated with equation (1.3) that is
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=
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In Santos [7℄ there is a list of fun
tions f(q; t) asso
iated with 74 of the 130 identities

given by Slater together with a 
onje
ture of an expli
it formula for P

n

(q) in terms

of q-analogs of binomial or trinomial 
oeÆ
ients.
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=
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=
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=
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+
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=
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+
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From this we have

(1� t)(1 + tq

2

)f(q; t) = 1 + tq

2

+ tqf(q; tq

2

):
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In order to obtain a re
urren
e relation from this fun
tional equation we make

the following substitution:

f(q; t) =

1

X

n=0

P

n

(q)t

n

:

By equating 
oeÆ
ients of the same power in both sides we get the re
urren
e

P

0

(q) = 1; P

1

(q) = 1 + q

P

n

(q) = (1� q

2

+ q

2n�1

)P

n�1

(q) + q

2

P

n�2

(q): (3.2)

In [7℄ Santos gave the following expli
it formula as a 
onje
ture for P

n

(q).

C(n) =

1

X

j=�1

q

10j

2

+j

U(n; 5j)

(3.3)

�

1

X

j=�1

q

10j

2

+11j+3

U(n; 5j + 2):

We note that having proved this 
onje
ture we 
an get identify (1.3) by taking

the lim

n!1

C(n)

1

X

n=0

q

n

2

(q

4

; q

4

)

n
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t!1

�

(1� t)f(q; t) =

lim

n!1

C(n) = lim

n!1

"

1

X

j=�1

q

10j

2

+j

U(n; 5j)�

1

X

j=�1

q

10

2

j+11j+3

U((n; 5j + 2)

#

by (2:15)

=

(�q; q

2

)

1

(q

2

; q

2

)

1

"

1

X

j=�1

q

10

2

j+j

�

1

X

j=�1

q

10

2

j+11j+3

#

=

(�q; q

2

)

1

(q

2

; q

2

)

1

1

X

n=�1

(�1)

n

q

5n

2

+n

2

=

(�q; q

2

)

1

(q

2

; q

2

)

1

�(1� q

5n�2

)(1� q

5n�3

)(1� q

5n

)

where we have used Ja
obi's Triple Produ
t in the last equality.
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It is easy to see that when we repla
e q by 1 in (3.2) we get

P

0

(1) = 1 ; P

1

(1) = 2 ; P

n

(1) = P

n�1

(1) + P

n�2

(1)

whi
h is the Fibona

i sequen
e

F

0

= 1; F

2

= 2; F

n

= F

n�1

+ F

n�2

; n � 2:

Now from (3.3) we 
an get a new formula for the Fibona

i sequen
e by taking

the lim

q!1

C(n) on
e we have proved that the 
onje
ture is 
orre
t. This is done in the

next theorem.

Theorem 3.1. The re
urren
e

P

m

= (1� q

2

+ q

2m�1

)P

m�1

+ q

2

P

m�2

holds for the expression below whi
h is given by (3.3)

C(m) =

1

X

j=�1

q

10j

2

+j

U(m; 5j)�

1

X

j=�1

q

10j

2

+11j+3

U(m; 5j + 2):

Proof: If (3.2) were true for U(m;A) we would be done. But sin
e this is not the


ase we 
onsider the following expression:

U(m;A)� (1� q

2

+ q

2m�1

)U(m� 1; A)� q

2

U(m� 2; A): (3.4)

Now, repla
ing here U(m;A) by its de�nition given in (2.12) together with identity

(2.13), we have:

U(m;A)� (1 + q

2m�1

)U(m� 1; A) + q

2

U(m � 1; A)�

q

2

U(m� 2; A) = q

m�A

T

1

(m� 1; A� 1) + q

m+A+1

T

1

(m� 1; A+ 2) +

q

2

T

0

(m� 1; A) + q

2

T

0

(m� 1; A+ 1)� q

2

(T

0

(m� 2; A) + T

0

(m� 2; A+ 1)):
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If, on the right side of this last equation, we apply (2.9) on the 1st and 2nd

terms and (2.10) on the 3rd and 4th terms, we have:

q

m�A

(T

1

(m� 2; A� 1) + q

m+A�2

T

0

(m� 2; A) + q

m�A

T

0

(m� 2; A� 2)) +

q

m+A+1

(T

1

(m� 2; A+ 2) + q

m+A+1

T

0

(m� 2; A+ 3) + q

m�A�3

T

0

(m� 2; A+ 1)) +

q

2

(T

0

(m� 2; A+ 1) + q

m�1�A

T

1

(m� 2; A) + q

2m�2A�2

T

0

(m� 2; A� 1)) +

q

2

(T

0

(m� 2; A) + q

m+A

T

1

(m� 2; A+ 1) + q

2m+2A

T

0

(m� 2; A+ 2))�

q

2

T

0

(m� 2; A)� q

2

T

0

(m� 2; A+ 1):

After two easy 
an
ellations we have:

q

m�A

T

1

(m� 2; A� 1) + q

2m�2

T

0

(m� 2; A) + q

2m�2A

T

0

(m� 2; A� 2) +

q

m+A+1

T

1

(m� 2; A+ 2) + q

2m+2A+2

T

0

(m� 2; A+ 3) + q

2m�2

T

0

(m� 2; A+ 1) +

q

m�A+1

T

1

(m� 2; A) + q

2m�2A

T

0

(m� 2; A� 1) +

q

m+A+2

T

1

(m� 2; A+ 1) + q

2m+2A+2

T

0

(m� 2; A+ 2):

We have now in order to 
omplete our proof to show that this expression, when

repla
ed in (3.3), is identi
ally zero. After the substitution we have:

1

X

j=�1

q

10j

2

�4j+m

T

1

(m� 2; 5j � 1) +

1

X

j=�1

q

10j

2

+j+2m�2

T

0

(m� 2; 5j) +

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j � 2) +

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 2) +

1

X

j=�1

q

10j

2

+11j+2m+2

T

0

(m� 2; 5j + 3) +

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j + 1) +

1

X

j=�1

q

10j

2

+6j+m+2

T

1

(m� 2; 5j) +

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j � 1) +

1

X

j=�1

q

10j

2

+6j+m+2

T

1

(m� 2; 5j + 1) +

1

X

j=�1

q

10j

2

+11j+2m+2

T

0

(m� 2; 5j + 2)�
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1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 1)�

1

X

j=�1

q

10j

2

+11j+2m+1

T

0

(m� 2; 5j + 2)�

1

X

j=�1

q

10j

2

+j+2m�1

T

0

(m� 2; 5j)�

1

X

j=�1

q

10j

2

+16j+m+6

T

1

(m� 2; 5j + 4)�

1

X

j=�1

q

10j

2

+21j+2m+9

T

0

(m� 2; 5j + 5)�

1

X

j=�1

q

10j

2

+11j+2m+1

T

0

(m� 2; 5j + 3)�

1

X

j=�1

q

10j

2

+6j+m+2

T

1

(m� 2; 5j + 2)�

1

X

j=�1

q

10j

2

+j+2m�1

T

0

(m� 2; 5j + 1)�

1

X

j=�1

q

10j

2

+16j+m+7

T

1

(m� 2; 5j + 3)�

1

X

j=�1

q

10j

2

+21j+2m+9

T

0

(m� 2; 5j + 4):

The 1st, 2nd and 3nd sums are 
an
eled by the 14th, 15th and 16th when we

repla
e j by j + 1 in the last three sums. Now, putting together the 4th with 17th,

the 10th with 12th, the 6th with 18th, and the 9th with 11th we have:

(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 2)

� (1� q)

1

X

j=�1

q

10j

2

+11j+2m+1

T

0

(m� 2; 5j + 2)

+ (1� q)

1

X

j=�1

q

10j

2

+j+2m�2

T

0

(m� 2; 5j + 1)

� (1� q)

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 1)

+

1

X

j=�1

q

10j

2

+11j+2m+2

T

0

(m� 2; 5j + 3) +

1

X

j=�1

q

10j

2

�4j+m+1

T

1

(m� 2; 5j)

�

1

X

j=�1

q

10j

2

+j+2m�1

T

0

(m� 2; 5j)�

1

X

j=�1

q

10j

2

+16j+m+7

T

1

(m� 2; 5j + 3)

+

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j � 1)�

1

X

j=�1

q

10j

2

+21j+2m+9

T

0

(m� 2; 5j + 4):

10



Now the 2nd plus the 3rd, the 5th plus the 8th, the 6th plus the 7th are, respe
tively:

(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

(q

m�3�5j

T

0

(m� 2; 5j + 1)� q

m+5j

T

0

(m� 2; 5j + 2));

�

1

X

j=�1

q

10j

2

+16j+m+7

(T

1

(m� 2; 5j + 3)� q

m�5j�5

T

0

(m� 2; 5j + 3));

1

X

j=�1

q

10j

2

�4j+m+1

(T

1

(m� 2; 5j)� q

5j+m�2

T

0

(m� 2; 5j)):

Applying now (2.11) in all these expressions with A repla
ed by 5j + 1 in the �rst,

by 5j + 3 in the se
ond, by �5j in the third, and in all m repla
ed by m � 2 we

have:

(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

(T

1

(m� 2; 5j + 1)� T

1

(m� 2; 5j + 2))

+(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 2)

�(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 1)

�

1

X

j=�1

q

10j

2

+16j+m+7

(T

1

(m� 2; 5j + 4)� q

m+5j+2

T

0

(m� 2; 5j + 4))

+

1

X

j=�1

q

10j

2

�4j+m+1

(T

1

(m� 2;�5j + 1)� q

m�1�5j

T

0

(m� 2;�5j + 1))

+

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j � 1)�

1

X

j=�1

q

10j

2

+21j+2m+9

T

0

(m� 2; 5j + 4):

The �rst line 
an
els the se
ond and the third. From the last three lines we are left

only with:

�

1

X

j=�1

q

10j

2

+16j+m+7

T

1

(m� 2; 5j + 4) +

1

X

j=�1

q

10j

2

�4j+m+1

T

1

(m� 2;�5j + 1):

11



whi
h is equal to zero by repla
ing j by j + 1 in the se
ond and using the fa
t that

T

1

(m;A; q) = T

1

(m;�A; q).

2

Knowing now that

P

n

(q) =

1

X

j=�1

q

10j

2

+j

U(n; 5j)�

1

X

j=�1

q

10j

2

+11j+3

U(n; 5j + 2) (3.5)

we 
an use (2.12) and (2.7) in order to �nd a new formula for the Fibona

i Numbers

by taking the limite in (3.5) when q approa
hes 1.

lim

q!1

P

n

(q) =

1

X

j=�1

��

n

5j

�

2

+

�

n

5j + 1

�

2

�

�

n

5j + 2

�

2

�

�

n

5j + 3

�

2

�

P

n

(1) = F

n

:

4 A new 
ombinatorial interpretation for F

n

De�nition: we say that a partition is \Frobenius even alternating" (F.E.A.) if

the parity of parts on the top row reading from right to left alternates starting with

even for the entire top row.

Below we have the Ferrers graph for two partitions of 15 with the 
orresponding

Frobenius Symbol and where only the �rst one is F.E.A.

12



� � � � �

� � �

� � �

� �

�

�

 !

�

4 1 0

5 2 0

�

� � � �

� � � �

� � �

� �

�

�

 !

�

3 2 0

5 2 0

�

In this se
tion we are going to prove that the 
oeÆ
ient of t

N

in the expansion

of f(q; t) given by (3.1), that is P

n

(q) in (3.2), is the generating fun
tion for self-


onjugate F.E.A. partitions with largest part � N .

Let us take (3.1) and write it in the following form:

f(q; t) =

1

X

n=0

P

n

(q)t

n

=

1

X

n=0

t

n

q

n

2

(t; q

2

)

n+1

(�tq

2

; q

2

)

n

=

1

X

n=0

t

n

q

n

2

(1� t)(tq

2

; q

2

)

n

(�tq

2

; q

2

)

n

=

1

(1� t)

1

X

n=0

t

n

q

n

2

(t

2

q

4

; q

4

)

n

It is easy to see that in the denominator

(t

2

q

4

; q

4

)

n

= (1� t

2

q

4

)(1� t

2

q

8

) : : : (1� t

2

q

4j

) : : : (1� t

2

q

4n

)

13



the exponent of q is a multiple of 4 and also of j where j is the position of that

fa
tor in that produ
t. So if one divide the exponent of q by 2 the resulting number

is always even and multiple of j. From this trivial observation we have that in the

expansion of

1

1� t

2

q

4j

that is

1 + (t

2

q

4j

)

1

+ (t

2

q

4j

)

2

+ � � �+ (t

2

q

4j

)

i

+ � � �

the exponent of q when divided by 2j is always equal to the exponent of t that is

also even.

Now we 
an explain how to build a self-
onjugate F.E.A. partition from the


oeÆ
ient of t

N

in f(q; t).

The following example will make it 
lear. Let us take t

n

q

n

2

=(t

2

q

4

; q

4

)

n

for n =

3.

t

3

q

9

(t

2

q

4

; q

4

)

3

=

t

3

q

9

(1� t

2

q

4

)(1� t

2

q

8

)(1� t

2

q

12

)

= t

3

q

9

(1 + t

2

q

4

+ t

4

q

8

+ t

6

q

12

+ � � �)

�(1 + t

2

q

8

+ t

4

q

16

+ t

6

q

24

+ � � �)

�(1 + t

2

q

12

+ t

4

q

24

+ t

6

q

36

+ � � �): (4.1)

We start by drawing a 3 � 3 square whi
h is 
oming from q

9

. The exponent of t

whi
h is 3 is the 
ontribution of this square to the largest part of the partition we

are building.

� � �

� � �

� � �

Let us now take the term t

4

q

24

from the third fa
tor in (4.1). We divide the

exponent of q, that is, 24 by 2 getting 12 and next divide it by 3 (it is 
oming from

the third fa
tor) getting 4 that is the exponent of t.

14



Now we pla
e those 12 points on the right of the square as a pile of width 4

(exponent of t) and high 3 (the position of the fa
tor). The other 12 points are

pla
ed on the symmetri
 position about the diagonal. The following �gure shows

what we get.

� � � � � � �

� � � � � � �

� � � � � � �

� � �

� � �

� � �

� � �

Let us take now, the term t

2

q

8

from the se
ond fa
tor. We divide the exponent of

q, whi
h is 8, by 2 getting 4 and then by 2 (the position of the fa
tor). We pla
e

those 4 points as a pile of width 2 (exponent of t) and high 2 (the position of the

fa
tor). The next �gure shows the result.

� � � � � � � � �

� � � � � � � � �

� � � � � � �

� � �

� � �

� � �

� � �

� �

� �

Taking the term t

4

q

8

from the �rst fa
tor we just divide the exponent of q, whi
h is

8, by 2 and by 1. We now pla
e those 4 points in a pile of width 4 (exponent of t)

and high 1 (position of the fa
tor) getting the following representation:

15



� � � � � � � � � � � � �

� � � � � � � � �

� � � � � � �

� � �

� � �

� � �

� � �

� �

� �

�

�

�

�

We observe that by pla
ing these 49 points 
oming from

t

3

q

9

(t

4

q

24

)(t

2

q

8

)(t

4

q

8

) = t

13

q

49

in this way we get a representation of a partition of 49 with largest part 13 that is

F.E.A. and self-
onjugate. It is

�

12 7 4

12 7 4

�

So, in general, the 
oeÆ
ient of t

N

in the expansion of

1

X

n=0

t

n

q

n

2

(t

2

q

4

; q

4

)

n

is the generating fun
tion for self-
onjugate partitions F.E.A. having largest part

equal to N . Considering the fa
tor 1=(1� t) we may 
on
lude that P

n

(q), whi
h is

the 
oeÆ
ient of t

N

in f(q; t), is the generating fun
tion for self-
onjugate F.E.A.

partitions with largest part � N .
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It is ne
essary to explain how to �nd, for a given self-
onjugate F.E.A. partition,

the terms from whi
h they have been generated. This is easy. The Durfee square

tell us the value of n and to �nd the fa
tor we do the following: take the high of

the �rst pile on the right of the square and its width. The width is the exponent

of t, the high is the fa
tor and the exponent of q is twi
e the high times the width.

Repeat this for the following piles.

Re
alling that P

n

(1) = F

n

we have proved the following

Theorem 4.1. The total number of self-
onjugate F.E.A. partitions with largest

part � N is equal to F

N

.
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