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�

Abstrat

In this paper following some ideas introdued by Andrews in [4℄ and results

given by Santos in [7℄ we give new formula and ombinatorial interpretation

for the Fibonai Numbers.

1 Introdution

In [9℄ Luy Slater presented a list of 130 q-series identities inluding the 3 listed

below that are the ones of numbers 18, 14 and 20 respetively been the �rst two the

famous Rogers Ramanujan identities.
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where

(a; q)

n

= (1� a)(1� aq) : : : (1� aq

n�1

);

n a nonnegative integer.

To desribe an idea about how to look for a ombinatorial interpretation for

identities of this type we use (1.1) as a prototypial example.
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In [4℄ Andrews onsiders in as simple a manner as possible a two-variable gen-

eralization f(q; t) that has the following properties:

(i) f(q; t) =

1

X

n=0

P

n

(q)t

n

, where P

n

(q) are polynomials.

(ii) lim

n!1

P
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1

Y
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)(1� q

5n�4

)

(iii) f(q; t) satis�es a �rst-order nonhomogeneous q-di�erene equation.

By stating things this in this generality no one ould guess what to do next.

However in pratie f(q; t) is generally easily produed. A parameter t is inserted

into (1.1) in suh a way that one essentially obtains the (n+1)st term from the nth

term by replaing t by tq. In this instane
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1
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n

)

The fator (1� t) in the denominator is essential to guarantee (ii).

We now hek that our three onditions have been veri�ed. First
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=
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t

2

q
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(1� t)f(q; t) = 1 + t

2

qf(q; tq):

Thus (iii) is satis�ed. Next we note
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(by Andrews [1℄, Theorem 3.3 p. 36℄
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Hene we have (i) sine by (1.4)
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For (ii) we may use Abel's lemma (Whittaker and Watson [[11℄, p.57℄ or Andrews

[[5℄, p. 190℄:
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n!1

P

n
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t!1

�
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=
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A natural question at this point may be: So what? We started with (1.1) and

obtained f(q; t); however we appear not to have anything new of any real signi�ane.

We might, of ourse, attempt a justi�ation by pointing out that the polynomials

P

n

(q), in this ase, were important in the treatment of Regime I of the Hard Hexagon

Model been f(q; t) the generating funtion for those polynomials.

In this paper we are going to explore the ombinatoris of P

n

(q) obtained from

the f(q; t) assoiated with identity (1.3) but it is important to say that f(q; t) is of

interest for other values of t besides 1. In partiular

f(q;�1) =

1

2

1

X

n=0

q

n

2

(�q; q)

n

=

1

2

f

0

(q);

where f

0

(q) is one of Ramanujan's �fth-order mok theta funtions (f. Watson

[10℄).

Before starting our study of another P

n

(q) from whih we got new ombinatorial

interpretation for the Fibonai numbers we have to mention that by analyzing

these funtions at other points, as mentioned above, one an not only give new

proofs for the identities in Slater's list but also �nd new ones with the help of Abel's
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lemma, Bailey's lemma and Jaobi's Triple Produt together with a symboli algebra

pakage (f. Santos [7℄).

A fuller disussion of the ombinatoris of this onstrution is given by Andrews

[4℄.

2 Some de�nitions for our proof

When dealing with the expression

(1 + x+ x

2

)

n

(2.1)

we all the oeÆients of x

j

in the expanded form of (2.1) of trinomial oeÆients.

It is easy to show that if

(1 + x + x

2

)

n

=

n

X

j=�n

�

n

j

�

2

x

j+n

(2.2)
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=
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=

X
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h

�

n

h
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�
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�

n
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�
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�

n

�j

�

2

(2.5)

and

�

n

j

�

2

=

�
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j � 1

�

2

+

�

n� 1

j

�

2

+

�

n� 1
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�

2

(2.6)
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The following expressions (Andrews & Baxter [6℄) are q-analogs of the trinomial

oeÆient in the same way that the Gaussian polynomial is a q-analog of the bino-

mial oeÆient, that is, the limit of eah one of them when q approahes 1 is equal

to the trinomial oeÆient given by (2.3) and (2.4).

T

0

(m;A; q) =

m

X

j=0

(�1)

j

�

m

j

�

q

2

�

2m� 2j

m� A� j

�

; (2.7)

T

1

(m;A; q) =

m

X

j=0

(�q)

j

�

m

j

�

q

2

�

2m� 2j

m� A� j

�

; (2.8)

T

1

(m;A; q) = T

1

(m� 1; A; q) + q

m+A

T

0

(m� 1; A+ 1; q)

+q

m�A

T

0

(m� 1; A� 1; q) (2.9)

T

0

(m;A; q) = T

0

(m� 1; A� 1; q) + q

m+A

T

1
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+q

2m+2A

T

0

(m� 1; A+ 1; q) (2.10)

We need also (Andrews & Baxter [6℄) the identity:

T

1

(m;A; q)� q

m�A

T

0

(m;A; q)� T

1

(m;A+ 1; q)

+q

m+A+1

T

0

(m;A+ 1; q) = 0 (2.11)

If we de�ne

U(m;A; q) = T

0

(m;A; q) + T

0

(m;A + 1; q) (2.12)

then the following two results (Andrews [3℄, pp. 13-15) are true:

U(m;A; q) = (1 + q

2m�1

)U(m� 1; A; q)

+q

m�A

T

1

(m� 1; A� 1; q) + q

m+A+1

T

1
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2m�2A

T

0
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T

0
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The following limiting value of our q-analog (2.12) is neessary:

lim

m!1

U(m;A; q) =

(�q; q

2

)

1

(q

2

; q

2

)

1

([3℄, eq. 4.16) (2.15)

3 The Fibonai Numbers from a sequene P

n

(q)

We start by onsidering the funtion f(q; t) assoiated with equation (1.3) that is
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=
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In Santos [7℄ there is a list of funtions f(q; t) assoiated with 74 of the 130 identities

given by Slater together with a onjeture of an expliit formula for P

n

(q) in terms

of q-analogs of binomial or trinomial oeÆients.
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=
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=
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=
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+
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2

)

1

X

n=0

(tq

2

)

n

q

n

2

(tq

2

; q

2

)

n+1

(�tq

4

; q

2

)

n

=
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+
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From this we have

(1� t)(1 + tq

2

)f(q; t) = 1 + tq

2

+ tqf(q; tq

2

):
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In order to obtain a reurrene relation from this funtional equation we make

the following substitution:

f(q; t) =

1

X

n=0

P

n

(q)t

n

:

By equating oeÆients of the same power in both sides we get the reurrene

P

0

(q) = 1; P

1

(q) = 1 + q

P

n

(q) = (1� q

2

+ q

2n�1

)P

n�1

(q) + q

2

P

n�2

(q): (3.2)

In [7℄ Santos gave the following expliit formula as a onjeture for P

n

(q).

C(n) =

1

X

j=�1

q

10j

2

+j

U(n; 5j)

(3.3)

�

1

X

j=�1

q

10j

2

+11j+3

U(n; 5j + 2):

We note that having proved this onjeture we an get identify (1.3) by taking

the lim

n!1

C(n)

1

X

n=0

q

n

2

(q

4

; q

4

)

n
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t!1

�

(1� t)f(q; t) =
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n!1

C(n) = lim

n!1

"

1

X
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q
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2

+j
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X
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q
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2
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U((n; 5j + 2)

#

by (2:15)

=

(�q; q

2

)

1

(q

2

; q

2

)

1

"

1

X

j=�1

q
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2

j+j

�

1

X

j=�1

q

10

2

j+11j+3

#

=

(�q; q

2

)

1

(q

2

; q

2

)

1

1

X

n=�1

(�1)

n

q

5n

2

+n

2

=

(�q; q

2

)

1

(q

2

; q

2

)

1

�(1� q

5n�2

)(1� q

5n�3

)(1� q

5n

)

where we have used Jaobi's Triple Produt in the last equality.
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It is easy to see that when we replae q by 1 in (3.2) we get

P

0

(1) = 1 ; P

1

(1) = 2 ; P

n

(1) = P

n�1

(1) + P

n�2

(1)

whih is the Fibonai sequene

F

0

= 1; F

2

= 2; F

n

= F

n�1

+ F

n�2

; n � 2:

Now from (3.3) we an get a new formula for the Fibonai sequene by taking

the lim

q!1

C(n) one we have proved that the onjeture is orret. This is done in the

next theorem.

Theorem 3.1. The reurrene

P

m

= (1� q

2

+ q

2m�1

)P

m�1

+ q

2

P

m�2

holds for the expression below whih is given by (3.3)

C(m) =

1

X

j=�1

q

10j

2

+j

U(m; 5j)�

1

X

j=�1

q

10j

2

+11j+3

U(m; 5j + 2):

Proof: If (3.2) were true for U(m;A) we would be done. But sine this is not the

ase we onsider the following expression:

U(m;A)� (1� q

2

+ q

2m�1

)U(m� 1; A)� q

2

U(m� 2; A): (3.4)

Now, replaing here U(m;A) by its de�nition given in (2.12) together with identity

(2.13), we have:

U(m;A)� (1 + q

2m�1

)U(m� 1; A) + q

2

U(m � 1; A)�

q

2

U(m� 2; A) = q

m�A

T

1

(m� 1; A� 1) + q

m+A+1

T

1

(m� 1; A+ 2) +

q

2

T

0

(m� 1; A) + q

2

T

0

(m� 1; A+ 1)� q

2

(T

0

(m� 2; A) + T

0

(m� 2; A+ 1)):
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If, on the right side of this last equation, we apply (2.9) on the 1st and 2nd

terms and (2.10) on the 3rd and 4th terms, we have:

q

m�A

(T

1

(m� 2; A� 1) + q

m+A�2

T

0

(m� 2; A) + q

m�A

T

0

(m� 2; A� 2)) +

q

m+A+1

(T

1

(m� 2; A+ 2) + q

m+A+1

T

0

(m� 2; A+ 3) + q

m�A�3

T

0

(m� 2; A+ 1)) +

q

2

(T

0

(m� 2; A+ 1) + q

m�1�A

T

1

(m� 2; A) + q

2m�2A�2

T

0

(m� 2; A� 1)) +

q

2

(T

0

(m� 2; A) + q

m+A

T

1

(m� 2; A+ 1) + q

2m+2A

T

0

(m� 2; A+ 2))�

q

2

T

0

(m� 2; A)� q

2

T

0

(m� 2; A+ 1):

After two easy anellations we have:

q

m�A

T

1

(m� 2; A� 1) + q

2m�2

T

0

(m� 2; A) + q

2m�2A

T

0

(m� 2; A� 2) +

q

m+A+1

T

1

(m� 2; A+ 2) + q

2m+2A+2

T

0

(m� 2; A+ 3) + q

2m�2

T

0

(m� 2; A+ 1) +

q

m�A+1

T

1

(m� 2; A) + q

2m�2A

T

0

(m� 2; A� 1) +

q

m+A+2

T

1

(m� 2; A+ 1) + q

2m+2A+2

T

0

(m� 2; A+ 2):

We have now in order to omplete our proof to show that this expression, when

replaed in (3.3), is identially zero. After the substitution we have:

1

X

j=�1

q

10j

2

�4j+m

T

1

(m� 2; 5j � 1) +

1

X

j=�1

q

10j

2

+j+2m�2

T

0

(m� 2; 5j) +

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j � 2) +

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 2) +

1

X

j=�1

q

10j

2

+11j+2m+2

T

0

(m� 2; 5j + 3) +

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j + 1) +

1

X

j=�1

q

10j

2

+6j+m+2

T

1

(m� 2; 5j) +

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j � 1) +

1

X

j=�1

q

10j

2

+6j+m+2

T

1

(m� 2; 5j + 1) +

1

X

j=�1

q

10j

2

+11j+2m+2

T

0

(m� 2; 5j + 2)�
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1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 1)�

1

X

j=�1

q

10j

2

+11j+2m+1

T

0

(m� 2; 5j + 2)�

1

X

j=�1

q

10j

2

+j+2m�1

T

0

(m� 2; 5j)�

1

X

j=�1

q

10j

2

+16j+m+6

T

1

(m� 2; 5j + 4)�

1

X

j=�1

q

10j

2

+21j+2m+9

T

0

(m� 2; 5j + 5)�

1

X

j=�1

q

10j

2

+11j+2m+1

T

0

(m� 2; 5j + 3)�

1

X

j=�1

q

10j

2

+6j+m+2

T

1

(m� 2; 5j + 2)�

1

X

j=�1

q

10j

2

+j+2m�1

T

0

(m� 2; 5j + 1)�

1

X

j=�1

q

10j

2

+16j+m+7

T

1

(m� 2; 5j + 3)�

1

X

j=�1

q

10j

2

+21j+2m+9

T

0

(m� 2; 5j + 4):

The 1st, 2nd and 3nd sums are aneled by the 14th, 15th and 16th when we

replae j by j + 1 in the last three sums. Now, putting together the 4th with 17th,

the 10th with 12th, the 6th with 18th, and the 9th with 11th we have:

(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 2)

� (1� q)

1

X

j=�1

q

10j

2

+11j+2m+1

T

0

(m� 2; 5j + 2)

+ (1� q)

1

X

j=�1

q

10j

2

+j+2m�2

T

0

(m� 2; 5j + 1)

� (1� q)

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 1)

+

1

X

j=�1

q

10j

2

+11j+2m+2

T

0

(m� 2; 5j + 3) +

1

X

j=�1

q

10j

2

�4j+m+1

T

1

(m� 2; 5j)

�

1

X

j=�1

q

10j

2

+j+2m�1

T

0

(m� 2; 5j)�

1

X

j=�1

q

10j

2

+16j+m+7

T

1

(m� 2; 5j + 3)

+

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j � 1)�

1

X

j=�1

q

10j

2

+21j+2m+9

T

0

(m� 2; 5j + 4):

10



Now the 2nd plus the 3rd, the 5th plus the 8th, the 6th plus the 7th are, respetively:

(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

(q

m�3�5j

T

0

(m� 2; 5j + 1)� q

m+5j

T

0

(m� 2; 5j + 2));

�

1

X

j=�1

q

10j

2

+16j+m+7

(T

1

(m� 2; 5j + 3)� q

m�5j�5

T

0

(m� 2; 5j + 3));

1

X

j=�1

q

10j

2

�4j+m+1

(T

1

(m� 2; 5j)� q

5j+m�2

T

0

(m� 2; 5j)):

Applying now (2.11) in all these expressions with A replaed by 5j + 1 in the �rst,

by 5j + 3 in the seond, by �5j in the third, and in all m replaed by m � 2 we

have:

(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

(T

1

(m� 2; 5j + 1)� T

1

(m� 2; 5j + 2))

+(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 2)

�(1� q)

1

X

j=�1

q

10j

2

+6j+m+1

T

1

(m� 2; 5j + 1)

�

1

X

j=�1

q

10j

2

+16j+m+7

(T

1

(m� 2; 5j + 4)� q

m+5j+2

T

0

(m� 2; 5j + 4))

+

1

X

j=�1

q

10j

2

�4j+m+1

(T

1

(m� 2;�5j + 1)� q

m�1�5j

T

0

(m� 2;�5j + 1))

+

1

X

j=�1

q

10j

2

�9j+2m

T

0

(m� 2; 5j � 1)�

1

X

j=�1

q

10j

2

+21j+2m+9

T

0

(m� 2; 5j + 4):

The �rst line anels the seond and the third. From the last three lines we are left

only with:

�

1

X

j=�1

q

10j

2

+16j+m+7

T

1

(m� 2; 5j + 4) +

1

X

j=�1

q

10j

2

�4j+m+1

T

1

(m� 2;�5j + 1):

11



whih is equal to zero by replaing j by j + 1 in the seond and using the fat that

T

1

(m;A; q) = T

1

(m;�A; q).

2

Knowing now that

P

n

(q) =

1

X

j=�1

q

10j

2

+j

U(n; 5j)�

1

X

j=�1

q

10j

2

+11j+3

U(n; 5j + 2) (3.5)

we an use (2.12) and (2.7) in order to �nd a new formula for the Fibonai Numbers

by taking the limite in (3.5) when q approahes 1.

lim

q!1

P

n

(q) =

1

X

j=�1

��

n

5j

�

2

+

�

n

5j + 1

�

2

�

�

n

5j + 2

�

2

�

�

n

5j + 3

�

2

�

P

n

(1) = F

n

:

4 A new ombinatorial interpretation for F

n

De�nition: we say that a partition is \Frobenius even alternating" (F.E.A.) if

the parity of parts on the top row reading from right to left alternates starting with

even for the entire top row.

Below we have the Ferrers graph for two partitions of 15 with the orresponding

Frobenius Symbol and where only the �rst one is F.E.A.

12



� � � � �

� � �

� � �

� �

�

�

 !

�

4 1 0

5 2 0

�

� � � �

� � � �

� � �

� �

�

�

 !

�

3 2 0

5 2 0

�

In this setion we are going to prove that the oeÆient of t

N

in the expansion

of f(q; t) given by (3.1), that is P

n

(q) in (3.2), is the generating funtion for self-

onjugate F.E.A. partitions with largest part � N .

Let us take (3.1) and write it in the following form:

f(q; t) =

1

X

n=0

P

n

(q)t

n

=

1

X

n=0

t

n

q

n

2

(t; q

2

)

n+1

(�tq

2

; q

2

)

n

=

1

X

n=0

t

n

q

n

2

(1� t)(tq

2

; q

2

)

n

(�tq

2

; q

2

)

n

=

1

(1� t)

1

X

n=0

t

n

q

n

2

(t

2

q

4

; q

4

)

n

It is easy to see that in the denominator

(t

2

q

4

; q

4

)

n

= (1� t

2

q

4

)(1� t

2

q

8

) : : : (1� t

2

q

4j

) : : : (1� t

2

q

4n

)

13



the exponent of q is a multiple of 4 and also of j where j is the position of that

fator in that produt. So if one divide the exponent of q by 2 the resulting number

is always even and multiple of j. From this trivial observation we have that in the

expansion of

1

1� t

2

q

4j

that is

1 + (t

2

q

4j

)

1

+ (t

2

q

4j

)

2

+ � � �+ (t

2

q

4j

)

i

+ � � �

the exponent of q when divided by 2j is always equal to the exponent of t that is

also even.

Now we an explain how to build a self-onjugate F.E.A. partition from the

oeÆient of t

N

in f(q; t).

The following example will make it lear. Let us take t

n

q

n

2

=(t

2

q

4

; q

4

)

n

for n =

3.

t

3

q

9

(t

2

q

4

; q

4

)

3

=

t

3

q

9

(1� t

2

q

4

)(1� t

2

q

8

)(1� t

2

q

12

)

= t

3

q

9

(1 + t

2

q

4

+ t

4

q

8

+ t

6

q

12

+ � � �)

�(1 + t

2

q

8

+ t

4

q

16

+ t

6

q

24

+ � � �)

�(1 + t

2

q

12

+ t

4

q

24

+ t

6

q

36

+ � � �): (4.1)

We start by drawing a 3 � 3 square whih is oming from q

9

. The exponent of t

whih is 3 is the ontribution of this square to the largest part of the partition we

are building.

� � �

� � �

� � �

Let us now take the term t

4

q

24

from the third fator in (4.1). We divide the

exponent of q, that is, 24 by 2 getting 12 and next divide it by 3 (it is oming from

the third fator) getting 4 that is the exponent of t.

14



Now we plae those 12 points on the right of the square as a pile of width 4

(exponent of t) and high 3 (the position of the fator). The other 12 points are

plaed on the symmetri position about the diagonal. The following �gure shows

what we get.

� � � � � � �

� � � � � � �

� � � � � � �

� � �

� � �

� � �

� � �

Let us take now, the term t

2

q

8

from the seond fator. We divide the exponent of

q, whih is 8, by 2 getting 4 and then by 2 (the position of the fator). We plae

those 4 points as a pile of width 2 (exponent of t) and high 2 (the position of the

fator). The next �gure shows the result.

� � � � � � � � �

� � � � � � � � �

� � � � � � �

� � �

� � �

� � �

� � �

� �

� �

Taking the term t

4

q

8

from the �rst fator we just divide the exponent of q, whih is

8, by 2 and by 1. We now plae those 4 points in a pile of width 4 (exponent of t)

and high 1 (position of the fator) getting the following representation:

15



� � � � � � � � � � � � �

� � � � � � � � �

� � � � � � �

� � �

� � �

� � �

� � �

� �

� �

�

�

�

�

We observe that by plaing these 49 points oming from

t

3

q

9

(t

4

q

24

)(t

2

q

8

)(t

4

q

8

) = t

13

q

49

in this way we get a representation of a partition of 49 with largest part 13 that is

F.E.A. and self-onjugate. It is

�

12 7 4

12 7 4

�

So, in general, the oeÆient of t

N

in the expansion of

1

X

n=0

t

n

q

n

2

(t

2

q

4

; q

4

)

n

is the generating funtion for self-onjugate partitions F.E.A. having largest part

equal to N . Considering the fator 1=(1� t) we may onlude that P

n

(q), whih is

the oeÆient of t

N

in f(q; t), is the generating funtion for self-onjugate F.E.A.

partitions with largest part � N .
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It is neessary to explain how to �nd, for a given self-onjugate F.E.A. partition,

the terms from whih they have been generated. This is easy. The Durfee square

tell us the value of n and to �nd the fator we do the following: take the high of

the �rst pile on the right of the square and its width. The width is the exponent

of t, the high is the fator and the exponent of q is twie the high times the width.

Repeat this for the following piles.

Realling that P

n

(1) = F

n

we have proved the following

Theorem 4.1. The total number of self-onjugate F.E.A. partitions with largest

part � N is equal to F

N

.
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