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Abstra
t

In this paper we des
ribe a new set of partitions that is equinumerous with

the set of partitions into odd parts. A new 
ombinatorial interpretation for

the Rogers-Ramanujan identities is given as an appli
ation.

1 Introdu
tion

By a simple geometri
 argument we present a bije
tive proof for the following the-

orem:

Theorem 1. The number of partitions of N into odd parts equals the number of

partitions of N of the form
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It is a well known result, given by Euler, that for jqj < 1
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(1.2)

If we denote by p(D; n) the number of partitions of n into distin
t parts and by

p(O; n) the number of partitions of n into odd parts we have from (1.2) that

1

X

n=0

p(D; n)q

n
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1

X

n=0

p(O; n)q

n

whi
h is the following result:
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Theorem 2. (Euler) The number of partitions of n into distin
t parts is equal to

the number of partitions of n into odd parts.

Sylvester gave a ni
e bije
tive proof for this result that 
an be explained by

modifying the Ferrers graph so that the 
entral dots in ea
h part all lie in the same


olumn. To illustrate this we take the following partitions of 36 into odd parts

9 + 7 + 7 + 5 + 3 + 3 + 1 + 1.

� � � � � � � � �

� � � � � � �

� � � � � � �

� � � � �

� � �

� � �

�

�

(�gure 1.1)

Now we draw a path starting at the bottom of the 
entral 
olumn up to the top

and turn right as shown in �gure (1.2). The number of dots in this path, that is 12,

represent the �rst part in our partition into distin
t parts. To get the se
ond part

we start, now, at the bottom of the �rst 
olumn on the left of the 
entral 
olumn

and at the top turn left.

The number of dots, 9, in this path is the se
ond part. To get the third part, 7,

we repeat the pro
ess now starting at the bottom of the �rst 
olumn on the right of

the 
entral 
olumn turning right on the se
ond row. The �gure (1.2) shows how to

get the remaining parts 4, 3, 1, by alternating sides and repeating this pro
ess.
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We have to show how to reverse this pro
ess in order to get a bije
tion. It is

easy to see that if we have a partition into s distin
t parts then when s is odd the

smallest part 
orresponds to a 
olumn of dots on the right and when s is even the

smallest part 
orresponds to a row of dots on the left.

We have to observe also that ea
h time we represent a part by an angle of dots

on the right, the next larger part is represented by an angle on the left with a 
olumn

of dots that is one longer than that of the 
olumn that has just been pla
ed and

that ea
h time we represent a part by an angle of dots on the left, the next larger

part is represented by an angle on the right with a row of dots that is one longer

than that of the row that has just been pla
ed.

By doing this the bije
tion is established.

There is another bije
tion, given by Glaisher in whi
h to go from the set of

partitions into odd parts to the set of partitions into distin
t parts we represent as

a sum of powers of 2 the number of times ea
h odd part appears multiplying ea
h

of those powers by the odd number being 
ounted. It is not diÆ
ult to reserve this

pro
ess and the following example shows how for one parti
ular partition of 96.

15 + 15 + 15 + 11 + 11 + 7 + 5 + 5 + 5 + 3 + 1 + 1 + 1 + 1

= 3:15 + 2:11 + 1:7 + 3:5 + 1:3 + 4:1

= (2
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+ 2

0
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:11 + 2
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:7 + (2
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+ 2

0

):5 + 2

0

:3 + 2
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:1

= 2

1

:15 + 2

0

:15 + 2

1

:11 + 2

0

:7 + 2

1

:5 + 2

0

:5 + 2

0

:3 + 2

2

:1

= 30 + 15 + 22 + 7 + 10 + 5 + 3 + 4

= 30 + 22 + 15 + 10 + 7 + 5 + 4 + 3

2 The proof of our theorem

Proof: In order to give a bije
tion between those two sets of partitions we start

with a partition into odd parts and represent ea
h odd part by a symmetri
 right

angle of dots displaying them one after the other from left to right. The �gure (2.1)

shows this for the partition 7 + 7 + 5 + 3 + 3 + 1 + 1 of 27.

� � � � � � � � � � � � � � � � �

� � � � �

� � �

� �

(�gure 2.1)

Now we just move those points not on the �rst row nor on the �rst 
olumn to

get a graph as the one in �gure (2.2) and the parts of the new partition are given

by the numbers of dots in ea
h row that are in this 
ase 17 + 5 + 3 + 2.
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(�gure 2.2)

We have to explain how to reverse this pro
ess to see that this is a bije
tion.

Given a partition satisfying (1.1) as the one in �gure (2.2) we have to move all the

dots not on the �rst row nor on the �rst 
olumn to the right to a position so that

the number of dots on the left forms a symmetri
 right angle. These dots that are

on the left of the verti
al line in �gure (2.3) represent the �rst odd part (7 in this


ase).

� � � � � � � � � � � � � � � � �

� � � � �

� � �

� �

(�gure 2.3)

Now we have to apply the same idea only to those dots on the right of the

verti
al line of �gure (2.3). Figure (2.4) shows what we get after doing that. The

se
ond odd part is the number of dots between the two verti
al lines in �gure (2.4)

whi
h is 7.

� � � � � � � � � � � � � � � � �

� � � � �

� � �

� �

(�gure 2.4)

In �gure (2.5) we have what we get for the next three odd parts, 5, 3 and 3,

following the same pro
edure.
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(�gure 2.5)

When after the last verti
al line there are dots only on the �rst row ea
h one of

them is a part. For the example we are using we get the partition 7+7+5+3+3+1+1

and the bije
tion is established.

2

In the table below we list the partitions of 10 into distin
t parts, odd parts and

the ones just des
ribed by the bije
tion given above.

distin
t parts odd parts as in theorem 1

6+4 9+1 6+1+1+1+1

7+3 7+1+1+1 7+1+1+1

5+4+1 7+3 6+2+1+1

8+2 5+1+1+1+1+1 8+1+1

6+3+1 5+3+1+1 7+2+1

4+3+2+1 5+5 6+2+2

5+3+2 3+3+3+1 7+3

7+2+1 3+3+1+1+1+1 8+2

9+1 3+1+1+1+1+1+1+1 9+1

10 1+1+1+1+1+1+1+1+1+1 10

It is important to mention that the idea used here to prove theorem 1 
an be

applied not only for odd numbers, that are 
ongruent to 1 modulo 2, but for any


ongruen
e 
lass modulo any integer.

A dire
t appli
ation of theorem 1 
an give us new 
ombinatorial interpretations

for many of the identities that are in Slater's list [4℄. We explain, next, how to apply

it to the Rogers-Ramanujan identities that are, in its analyti
 form, given by
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=
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n
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n

); jqj < 1.
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We re
all that to explain 
ombinatorialy the identity

1

X
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q
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(q; q)

2

n

=

1

Y

n=1

1

1� q

n

one has just to remember that the number of partitions into at most n parts equals

the number of partitions in whi
h no part is greater than n and 
onsidering the

Durfee squares add over all possible sides of the squares. In [2℄ one 
an �nd this in

great details.

By using our Theorem 1 we 
an do something similar by 
onsidering the odd

and even powers of q in the fa
tors of (q; q)

n

and building a partition in a way that


an be better explained by an example. Let's take n = 6 and 
onsider the term
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6
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=
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=
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)
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4

+ q
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+ q
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+ � � �)(1 + q
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and 
onsider the �gure

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

odd

parts

even

parts

(�gure 2.6)

where we have a square with 36 dots, the odd parts are been pla
ed to the right of

this square by the way des
ribed in theorem 1 and the even ones below that square

in the following way:

A 
ontribution from the third fa
tor (1 + q

6

+ q

12

+ q

18

+ � � �) like q

6

is pla
ed

by dividing 6 by 3 and pla
ing it in 3 
olumns of 2 dots as shown in �gure (2.7).

A 
ontribution from the se
ond fa
tor (1 + q

4

+ q

8

+ q

12

+ � � �) like q

8

is pla
ed

by dividing 8 by 2 and pla
ing it in 2 
olumns of 4 as shown in �gure (2.7).
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A 
ontribution from the �rst fa
tor (1+ q

2

+ q

4

+ q

6

+ q

8

+ � � �) like q

2

is pla
ed

by dividing 2 by 1 and pla
ing it in just 1 
olumn of 2 as shown in �gure (2.7).

In general we divide the exponent by the position \j" of the fa
tor from whi
h

the term was taken pla
ing the result in j 
olumns.
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� � � � � � � � �
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>
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>

>

:

� �
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q
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�

�

�

(�gure 2.7)

It is not diÆ
ult to see that knowing one distribution for even powers one 
an

tell immediately from whi
h fa
tors and powers they 
ame from.

On the right of the square in �gure (2.7) we have the 
ontribution q

5

from

(1 + q

5

+ q

10

+ � � �), the q

6

from (1 + q

3

+ q

6

+ � � �) and no ones by taking 1 in

(1 + q + q

2

+ � � �).

Now by observing the resulting �gure and using the Frobenius Symbol

�

s� 1 + a

1

s� 2 + a

2

s� 3 + a

3

� � � a

s

b

1

b

2

b

3

� � � b

s

�

one 
an read the following theorem in whi
h we have, for the 
ase of the se
ond

identity, to add one more line of dots below the square be
ause of the exponent

n

2

+ n.

Theorem 3. The number of partitions of n into parts that are� �1 mod 5(�2 mod 5)

equals the number of partitions of n in whi
h the numbers on the bottom row of the

Frobenius Symbol reading from right to left alternates beginning with even (odd) and

having as its �rst b

s

2


 values the sequen
e 0; 1; 2; : : : ; b

s

2


(1; 2; : : : ; b

s

2


 + 1), the top

row has for its last b

s�1

2


 values the sequen
e 0; 1; 2; : : : ; b

s�1

2


 and a

1

; a

2

; : : : ; a

b

s+1

2




satis�es the restri
tion (1.1) given in theorem 1.
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For the �rst R{R identity the 14 partitions of 15 are listed below.

�

14

0

�

;

�

2 0

11 0

�

;

�

4 0

9 0

�

;

�

6 0

7 0

�

;

�

8 0

5 0

�

;

�

10 0

3 0

�

�

12 0

1 0

�

;

�

2 1 0

8 1 0

�

;

�

4 1 0

6 1 0

�

;

�

6 1 0

4 1 0

�

�

5 2 0

4 1 0

�

;

�

8 1 0

2 1 0

�

;

�

7 2 0

2 1 0

�

;

�

6 3 0

2 1 0

�

:
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