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Abstract

In this paper we describe a new set of partitions that is equinumerous with
the set of partitions into odd parts. A new combinatorial interpretation for
the Rogers-Ramanujan identities is given as an application.

1 Introduction

By a simple geometric argument we present a bijective proof for the following the-
orem:

Theorem 1. The number of partitions of NV into odd parts equals the number of
partitions of N of the form

prt+p2t+-c+ps (pi > piy1)
in which the largest part is at least

SPs + (5 - 1)(ps—1 - ps) + (5 - 2)(ps—2 - ps—l) + -+ 2(])2 - p3). (1.1)

It is a well known result, given by Euler, that for |¢| < 1

[[a+¢= Hﬁ;n_l) (1.2)

If we denote by p(D,n) the number of partitions of n into distinct parts and by
p(O,n) the number of partitions of n into odd parts we have from (1.2) that

ZP(DJ n)qn = Zp(ov n)qn
n=0 n=0

which is the following result:
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Theorem 2. (Euler) The number of partitions of n into distinct parts is equal to
the number of partitions of n into odd parts.

Sylvester gave a nice bijective proof for this result that can be explained by
modifying the Ferrers graph so that the central dots in each part all lie in the same
column. To illustrate this we take the following partitions of 36 into odd parts
94+7+7+5+3+3+1+1.

(figure 1.1)

Now we draw a path starting at the bottom of the central column up to the top
and turn right as shown in figure (1.2). The number of dots in this path, that is 12,
represent the first part in our partition into distinct parts. To get the second part
we start, now, at the bottom of the first column on the left of the central column
and at the top turn left.

The number of dots, 9, in this path is the second part. To get the third part, 7,
we repeat the process now starting at the bottom of the first column on the right of
the central column turning right on the second row. The figure (1.2) shows how to
get the remaining parts 4, 3, 1, by alternating sides and repeating this process.



We have to show how to reverse this process in order to get a bijection. It is
easy to see that if we have a partition into s distinct parts then when s is odd the
smallest part corresponds to a column of dots on the right and when s is even the
smallest part corresponds to a row of dots on the left.

We have to observe also that each time we represent a part by an angle of dots
on the right, the next larger part is represented by an angle on the left with a column
of dots that is one longer than that of the column that has just been placed and
that each time we represent a part by an angle of dots on the left, the next larger
part is represented by an angle on the right with a row of dots that is one longer
than that of the row that has just been placed.

By doing this the bijection is established.

There is another bijection, given by Glaisher in which to go from the set of
partitions into odd parts to the set of partitions into distinct parts we represent as
a sum of powers of 2 the number of times each odd part appears multiplying each
of those powers by the odd number being counted. It is not difficult to reserve this
process and the following example shows how for one particular partition of 96.

15+15+15+114+11+7+5+5+5+3+1+1+1+1
= 315+211+1.74+35+1.3+4.1
(21 +2%).15 42811 +2°7 + (21 + 20).5 + 203 + 22.1
20154+ 2015 + 2811 + 207+ 285+ 205 4+ 203 4221
304+15+224+74+104+5+3+4
= 30+22+15+104+7+5+4+3

2 The proof of our theorem

Proof: In order to give a bijection between those two sets of partitions we start
with a partition into odd parts and represent each odd part by a symmetric right
angle of dots displaying them one after the other from left to right. The figure (2.1)
shows this for the partition 7+ 7+ 5+ 3+ 3+ 1+ 1 of 27.
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(figure 2.1)

Now we just move those points not on the first row nor on the first column to
get a graph as the one in figure (2.2) and the parts of the new partition are given
by the numbers of dots in each row that are in this case 174+ 5+ 3 + 2.



(figure 2.2)

We have to explain how to reverse this process to see that this is a bijection.
Given a partition satisfying (1.1) as the one in figure (2.2) we have to move all the
dots not on the first row nor on the first column to the right to a position so that
the number of dots on the left forms a symmetric right angle. These dots that are
on the left of the vertical line in figure (2.3) represent the first odd part (7 in this
case).

(figure 2.3)

Now we have to apply the same idea only to those dots on the right of the
vertical line of figure (2.3). Figure (2.4) shows what we get after doing that. The
second odd part is the number of dots between the two vertical lines in figure (2.4)
which is 7.

(figure 2.4)

In figure (2.5) we have what we get for the next three odd parts, 5, 3 and 3,
following the same procedure.
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(figure 2.5)

When after the last vertical line there are dots only on the first row each one of
them is a part. For the example we are using we get the partition 7+74+5+3+3+1+1

and the bijection is established.
l

In the table below we list the partitions of 10 into distinct parts, odd parts and
the ones just described by the bijection given above.

distinct parts odd parts as in theorem 1
6-+4 9+1 64+1+1+14+1
+3 T+1+1+1 T+1+1+1

o+4+1 7+3 6+2+1+1
8+2 O+1+1+1+1+1 8+1+1
6+3+1 o+3+1+1 7+2+1
4434241 o+95 6+2+2
5+3+2 3+3+3+1 +3
T+2+1 3+3+1+14+1+1 8+2
9+1 3+14+14+14+14+1+1+1 9+1
10 I+1+1+1+1+14+14+14+14+1 10

It is important to mention that the idea used here to prove theorem 1 can be
applied not only for odd numbers, that are congruent to 1 modulo 2, but for any
congruence class modulo any integer.

A direct application of theorem 1 can give us new combinatorial interpretations
for many of the identities that are in Slater’s list [4]. We explain, next, how to apply
it to the Rogers-Ramanujan identities that are, in its analytic form, given by

M8

n=0

8

S
Il

where (¢;q)n

o

=(1-q¢(1-¢)...

TL

00
H 1_q5n 1

n+n

q5n—4)

"
H 1_q5n 2
(1—¢");lql <1.

5

q5n73)



We recall that to explain combinatorialy the identity

n2

00 q _oo 1
Z -)2_H1_qn

n=0 (q’ q n=1

3

one has just to remember that the number of partitions into at most n parts equals
the number of partitions in which no part is greater than n and considering the
Durfee squares add over all possible sides of the squares. In [2] one can find this in
great details.

By using our Theorem 1 we can do something similar by considering the odd
and even powers of ¢ in the factors of (¢; ¢),, and building a partition in a way that
can be better explained by an example. Let’s take n = 6 and consider the term
¢* /(¢;q)s. We write it as

2
q6 q36 q36

(Gd)s (@)% 11— -1 -1 -¢*)(1-¢")(1-¢)
A +g+d+- )1+ + "+ + )1+ + ¢ + ¢+ )
A+ +¢" +¢+- )1+ + ¢+ ¢+ )1+ + ¢ + ¢ +--)

and consider the figure

odd
parts

even
parts

(figure 2.6)

where we have a square with 36 dots, the odd parts are been placed to the right of
this square by the way described in theorem 1 and the even ones below that square
in the following way:

A contribution from the third factor (1 + ¢® + ¢'* + ¢** + - -+) like ¢° is placed
by dividing 6 by 3 and placing it in 3 columns of 2 dots as shown in figure (2.7).

A contribution from the second factor (1 + ¢* + ¢® + ¢' + - - -) like ¢® is placed
by dividing 8 by 2 and placing it in 2 columns of 4 as shown in figure (2.7).
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A contribution from the first factor (1+ ¢? 4+ ¢* +¢® + ¢® + - - +) like ¢? is placed
by dividing 2 by 1 and placing it in just 1 column of 2 as shown in figure (2.7).

In general we divide the exponent by the position “;” of the factor from which
the term was taken placing the result in j columns.
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(figure 2.7)

It is not difficult to see that knowing one distribution for even powers one can
tell immediately from which factors and powers they came from.

On the right of the square in figure (2.7) we have the contribution ¢° from
(1+¢ +¢°+--+), the ¢° from (1 + ¢*> + ¢® + --+) and no ones by taking 1 in
I+qg+¢+-).

Now by observing the resulting figure and using the Frobenius Symbol

s—1+a1 s—24+a s—3+as -+ ag
by by bs e by

one can read the following theorem in which we have, for the case of the second

identity, to add one more line of dots below the square because of the exponent
2

n°+n.

Theorem 3. The number of partitions of n into parts that are = +1 mod 5(+2 mod 5)
equals the number of partitions of n in which the numbers on the bottom row of the
Frobenius Symbol reading from right to left alternates beginning with even (odd) and
having as its first | 5| values the sequence 0,1,2,...,|5](1,2,...,[5] +1), the top
row has for its last L%J values the sequence 0,1,2,..., Lsgl
satisfies the restriction (1.1) given in theorem 1.

| and Ay, G, - - o, (st
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For the first R—R identity the 14 partitions of 15 are listed below.
14 2 0 4 0 6 0 8 0 10 0
0 "\110/)7\90)"\7T0/)>\50)"’ 3 0
12 0 2 10 4 1 0 6 1 0
1 0)7\810)7\610/)"\410
5 2 0 8 1 0 720 6 3 0
41 0/)7\210)/)’\ 210,210/
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