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Abstrat

In this paper we desribe a new set of partitions that is equinumerous with

the set of partitions into odd parts. A new ombinatorial interpretation for

the Rogers-Ramanujan identities is given as an appliation.

1 Introdution

By a simple geometri argument we present a bijetive proof for the following the-

orem:

Theorem 1. The number of partitions of N into odd parts equals the number of

partitions of N of the form
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It is a well known result, given by Euler, that for jqj < 1
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If we denote by p(D; n) the number of partitions of n into distint parts and by

p(O; n) the number of partitions of n into odd parts we have from (1.2) that
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whih is the following result:
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Theorem 2. (Euler) The number of partitions of n into distint parts is equal to

the number of partitions of n into odd parts.

Sylvester gave a nie bijetive proof for this result that an be explained by

modifying the Ferrers graph so that the entral dots in eah part all lie in the same

olumn. To illustrate this we take the following partitions of 36 into odd parts

9 + 7 + 7 + 5 + 3 + 3 + 1 + 1.
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(�gure 1.1)

Now we draw a path starting at the bottom of the entral olumn up to the top

and turn right as shown in �gure (1.2). The number of dots in this path, that is 12,

represent the �rst part in our partition into distint parts. To get the seond part

we start, now, at the bottom of the �rst olumn on the left of the entral olumn

and at the top turn left.

The number of dots, 9, in this path is the seond part. To get the third part, 7,

we repeat the proess now starting at the bottom of the �rst olumn on the right of

the entral olumn turning right on the seond row. The �gure (1.2) shows how to

get the remaining parts 4, 3, 1, by alternating sides and repeating this proess.

2



We have to show how to reverse this proess in order to get a bijetion. It is

easy to see that if we have a partition into s distint parts then when s is odd the

smallest part orresponds to a olumn of dots on the right and when s is even the

smallest part orresponds to a row of dots on the left.

We have to observe also that eah time we represent a part by an angle of dots

on the right, the next larger part is represented by an angle on the left with a olumn

of dots that is one longer than that of the olumn that has just been plaed and

that eah time we represent a part by an angle of dots on the left, the next larger

part is represented by an angle on the right with a row of dots that is one longer

than that of the row that has just been plaed.

By doing this the bijetion is established.

There is another bijetion, given by Glaisher in whih to go from the set of

partitions into odd parts to the set of partitions into distint parts we represent as

a sum of powers of 2 the number of times eah odd part appears multiplying eah

of those powers by the odd number being ounted. It is not diÆult to reserve this

proess and the following example shows how for one partiular partition of 96.

15 + 15 + 15 + 11 + 11 + 7 + 5 + 5 + 5 + 3 + 1 + 1 + 1 + 1

= 3:15 + 2:11 + 1:7 + 3:5 + 1:3 + 4:1
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= 30 + 15 + 22 + 7 + 10 + 5 + 3 + 4

= 30 + 22 + 15 + 10 + 7 + 5 + 4 + 3

2 The proof of our theorem

Proof: In order to give a bijetion between those two sets of partitions we start

with a partition into odd parts and represent eah odd part by a symmetri right

angle of dots displaying them one after the other from left to right. The �gure (2.1)

shows this for the partition 7 + 7 + 5 + 3 + 3 + 1 + 1 of 27.
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(�gure 2.1)

Now we just move those points not on the �rst row nor on the �rst olumn to

get a graph as the one in �gure (2.2) and the parts of the new partition are given

by the numbers of dots in eah row that are in this ase 17 + 5 + 3 + 2.
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(�gure 2.2)

We have to explain how to reverse this proess to see that this is a bijetion.

Given a partition satisfying (1.1) as the one in �gure (2.2) we have to move all the

dots not on the �rst row nor on the �rst olumn to the right to a position so that

the number of dots on the left forms a symmetri right angle. These dots that are

on the left of the vertial line in �gure (2.3) represent the �rst odd part (7 in this

ase).

� � � � � � � � � � � � � � � � �
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(�gure 2.3)

Now we have to apply the same idea only to those dots on the right of the

vertial line of �gure (2.3). Figure (2.4) shows what we get after doing that. The

seond odd part is the number of dots between the two vertial lines in �gure (2.4)

whih is 7.

� � � � � � � � � � � � � � � � �

� � � � �

� � �

� �

(�gure 2.4)

In �gure (2.5) we have what we get for the next three odd parts, 5, 3 and 3,

following the same proedure.
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(�gure 2.5)

When after the last vertial line there are dots only on the �rst row eah one of

them is a part. For the example we are using we get the partition 7+7+5+3+3+1+1

and the bijetion is established.

2

In the table below we list the partitions of 10 into distint parts, odd parts and

the ones just desribed by the bijetion given above.

distint parts odd parts as in theorem 1

6+4 9+1 6+1+1+1+1

7+3 7+1+1+1 7+1+1+1

5+4+1 7+3 6+2+1+1

8+2 5+1+1+1+1+1 8+1+1

6+3+1 5+3+1+1 7+2+1

4+3+2+1 5+5 6+2+2

5+3+2 3+3+3+1 7+3

7+2+1 3+3+1+1+1+1 8+2

9+1 3+1+1+1+1+1+1+1 9+1

10 1+1+1+1+1+1+1+1+1+1 10

It is important to mention that the idea used here to prove theorem 1 an be

applied not only for odd numbers, that are ongruent to 1 modulo 2, but for any

ongruene lass modulo any integer.

A diret appliation of theorem 1 an give us new ombinatorial interpretations

for many of the identities that are in Slater's list [4℄. We explain, next, how to apply

it to the Rogers-Ramanujan identities that are, in its analyti form, given by
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We reall that to explain ombinatorialy the identity
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one has just to remember that the number of partitions into at most n parts equals

the number of partitions in whih no part is greater than n and onsidering the

Durfee squares add over all possible sides of the squares. In [2℄ one an �nd this in

great details.

By using our Theorem 1 we an do something similar by onsidering the odd

and even powers of q in the fators of (q; q)

n

and building a partition in a way that

an be better explained by an example. Let's take n = 6 and onsider the term
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and onsider the �gure
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(�gure 2.6)

where we have a square with 36 dots, the odd parts are been plaed to the right of

this square by the way desribed in theorem 1 and the even ones below that square

in the following way:

A ontribution from the third fator (1 + q

6

+ q

12

+ q

18

+ � � �) like q

6

is plaed

by dividing 6 by 3 and plaing it in 3 olumns of 2 dots as shown in �gure (2.7).

A ontribution from the seond fator (1 + q

4

+ q

8

+ q

12

+ � � �) like q

8

is plaed

by dividing 8 by 2 and plaing it in 2 olumns of 4 as shown in �gure (2.7).
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A ontribution from the �rst fator (1+ q

2

+ q

4

+ q

6

+ q

8

+ � � �) like q

2

is plaed

by dividing 2 by 1 and plaing it in just 1 olumn of 2 as shown in �gure (2.7).

In general we divide the exponent by the position \j" of the fator from whih

the term was taken plaing the result in j olumns.
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(�gure 2.7)

It is not diÆult to see that knowing one distribution for even powers one an

tell immediately from whih fators and powers they ame from.

On the right of the square in �gure (2.7) we have the ontribution q

5

from

(1 + q

5

+ q
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+ � � �), the q

6

from (1 + q

3

+ q

6

+ � � �) and no ones by taking 1 in

(1 + q + q

2

+ � � �).

Now by observing the resulting �gure and using the Frobenius Symbol
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one an read the following theorem in whih we have, for the ase of the seond

identity, to add one more line of dots below the square beause of the exponent

n

2

+ n.

Theorem 3. The number of partitions of n into parts that are� �1 mod 5(�2 mod 5)

equals the number of partitions of n in whih the numbers on the bottom row of the

Frobenius Symbol reading from right to left alternates beginning with even (odd) and

having as its �rst b
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2



satis�es the restrition (1.1) given in theorem 1.
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For the �rst R{R identity the 14 partitions of 15 are listed below.

�

14

0

�

;

�

2 0

11 0

�

;

�

4 0

9 0

�

;

�

6 0

7 0

�

;

�

8 0

5 0

�

;

�

10 0

3 0

�

�

12 0

1 0

�

;

�

2 1 0

8 1 0

�

;

�

4 1 0

6 1 0

�

;

�

6 1 0

4 1 0

�

�

5 2 0

4 1 0

�

;

�

8 1 0

2 1 0

�

;

�

7 2 0

2 1 0

�

;

�

6 3 0

2 1 0

�

:
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