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Abstract

The Spectral Projected Gradient method (SPG) is an algorithm for large-scale bound-

constrained optimization introduced recently by Birgin, Mart��nez and Raydan. It is based

on Raydan's unconstrained generalization of the Barzilai-Borwein method for quadratics.

The SPG algorithm turned out to be surprisingly e�ective for solving many large-scale mini-

mization problems with box constraints. Therefore, it is natural to test its performance for

solving the subproblems that appear in nonlinear programming methods based on augmented

Lagrangians. In this work, augmented Lagrangian methods which use SPG as underlying

convex-constraint solver are introduced (ALSPG), and the methods are tested in two sets of

problems. First, a meaningful subset of large-scale nonlinearly constrained problems of the

CUTE collection is solved and compared with the performance of LANCELOT. Second, a family

of localization problems in the minimax formulation is solved against the package FFSQP.
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Resumo

O m�etodo do gradiente espectral projetado (SPG) �e um algoritmo para problemas de mini-

miza�c~ao em caixas, de grande porte, introduzido recentemente por Birgin, Mart��nez e Raydan.

�

E

baseado na generaliza�c~ao proposta por Raydan, para minimiza�c~ao sem restri�c~oes, do m�etodo de

Barzilai-Borwein para quadr�aticas. O algoritmo SPG mostrou{se surpreendentemente e�ciente

para resolver v�arios problemas de minimiza�c~ao em caixas, de grande porte. Isto nos levou a tes-

tar seu desempenho na resolu�c~ao de subproblemas que aparecem em m�etodos de programa�c~ao

n~ao{linear baseados em Lagrangeano aumentado. Assim, neste trabalho, introduzimos o algo-

ritmo ALSPG { um m�etodo de Lagrangeano aumentado que usa SPG para resolver subproblemas

com restri�c~oes convexas. Realizamos v�arios experimentos num�ericos, que podem ser divididos

em dois conjuntos. O primeiro �e um subconjunto signi�cativo de problemas da cole�c~ao CUTE,

cujos resultados comparamos com os obtidos pelo software LANCELOT. O outro �e composto por

uma fam��lia de problemas de localiza�c~ao, escritos com formula�c~ao minimax. O desempenho de

ALSPG para esta classe de problemas foi comparado com o obtido pelo pacote FFSQP.
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1 Introduction

In a recent paper (Ref. 1), Birgin, Mart��nez and Raydan introduced the Spectral Projected

Gradient method (SPG) for continuous optimization with convex constraints. This algorithm is

based on Raydan's unconstrained generalization of the Barzilai-Borwein method for quadratics

(see Ref. 2, 3, 4). Consider the problem

Minimize F (x) subject to x 2 
; (1)

where F has continuous �rst partial derivatives and 
 is closed and convex. Given the current

point x

k

2 
, SPG computes the search direction d

k

2 IR

n

as

d

k

= P (x

k

� �

k

rF (x

k

))� x

k

; (2)

where P (z) is the orthogonal projection of z on 
 and �

k

is the spectral scaling parameter.

The new point x

k+1

= x

k

+ t

k

d

k

is chosen in order to satisfy a nonmonotone su�cient descent

condition (see Ref. 5). The method SPG is especially useful when the projections on 
 are easy

to compute, for example, when 
 is a box or a ball. In these cases, this method is extremely

easy to code and its memory requirements are minimal. Surprisingly, its numerical performance

is very good, when compared with sophisticated trust-region algorithms. SPG's algorithms have

been successful in many problems both academic (see Ref. 1, 6, 7) and industrial (see Ref. 8, 9,

10, 11, 12).

The fact that SPG is very easy to code is important in practical situations. In some engineering

applications the objective function F has been already coded in unusual computer languages,

and it is better to write an SPG code in that language than to rely on not always e�ective interface

software. The code, on the other hand, is very short and suitable for microcomputers. Finally,

it is well known that the main obstacle for the popularization of parallel computer architectures

is the necessity of developing speci�c architecture-oriented software for mathematical problems.

Clearly, simple algorithms make this task easier.

This state of facts motivated us to use SPG within the augmented Lagrangian framework for

solving

Minimize f(x) subject to h(x) = 0; x 2 
; (3)

where f : IR

n

! IR and h : IR

n

! IR

m

have continuous �rst derivatives and the set 
 is given

by:


 = fx 2 IR

n

j c

i

(x) � 0; i = 1; : : : ; pg;

where the functions c

i

are continuously di�erentiable and convex. At each outer iteration of the

augmented Lagrangian scheme for solving (3) one �nds an approximate solution of

Minimize

x

L(x; �; �) subject to x 2 
; (4)

where

L(x; �; �) = f(x) + hh(x); �i +

�

2

kh(x)k

2

(5)

is the Augmented Lagrangian function, � 2 IR

m

is an estimate of the vector of Lagrange mul-

tipliers, � > 0 is the penalty parameter, h�; �i is the Euclidean inner product and k � k is the

Euclidean norm (see Ref. 13, 14, 15, 16).
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In the present research our proposal is to solve (4) using SPG. We want to assess the per-

formance of this combination using two families of problems: a representative set of large-scale

nonlinear programming problems of the CUTE colection (Ref. 17) and localization problems in

the minimax formulation.

This paper is organized as follows. In Section 2 we describe our SPG implementation. In Sec-

tion 3 we present the augmented Lagrangian algorithm, and in Section 4 its global convergence

properties are analysed. The numerical experiments are described and discussed in Section 5,

where problems from CUTE collection are compared with LANCELOT (Ref. 15), and localization

problems are solved also by FFSQP (Ref. 18). Conclusions and perspectives are presented in

Section 6.

2 The SPG method

In (Ref. 1) two spectral gradient methods are presented, called SPG1 and SPG2 respectively. The

performance of SPG2 turned out to be better than the one of SPG1, so, SPG2 is the algorithm

used in our research and it is called SPG here. When applied to (1), SPG generates a sequence of

feasible points x

k

2 
, k = 0; 1; 2; : : :, where x

0

is given. SPG uses the algorithmic parameters M

(a positive integer), � 2 (0; 1) (the su�cient decrease parameter), and 0 < �

min

< �

max

< 1

(safeguarding parameters). As in the Introduction, P denotes the orthogonal projection operator

on 
.

Assume that x

k

2 
 is the current approximation to the solution of (1) and that x

k

is not

stationary, so P (x

k

�rF (x

k

))�x

k

6= 0. Assume that �

min

� �

k

� �

max

. If x

k

is stationary, we

say that SPG terminates at x

k

. The steps for obtaining x

k+1

are given in the following algorithm.

Algorithm SPG.

Step 1. Compute d

k

= P (x

k

� �

k

rF (x

k

))� x

k

.

Step 2. De�ne �

k

= maxfF (x

k

); F (x

k�1

); : : : ; F (x

j

)g, where j = maxf0; k � M + 1g. Set

t 1.

Step 2.1. Test the su�cient descent condition

F (x

k

+ td

k

) � �

k

+ �thrF (x

k

); d

k

i: (6)

If (6) does not hold, compute t

new

2 [0:1t; 0:9t]; set t t

new

and repeat the test (6).

Step 2.2. De�ne

x

k+1

= x

k

+ td

k

;

s

k

= x

k+1

� x

k

; y

k

= rF (x

k+1

)�rF (x

k

):

If hs

k

; y

k

i � 0 de�ne �

k+1

= �

max

. Otherwise, de�ne

�

k+1

= max

(

min

(

hs

k

; s

k

i

hs

k

; y

k

i

; �

max

)

; �

min

)

(7)

and �nish the iteration.
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When �

k+1

is not safeguarded (so �

k+1

2 (�

min

; �

max

)) we have that

1

�

k+1

=

hs

k

; y

k

i

hs

k

; s

k

i

=

hs

k

;

R

1

0

r

2

F (x

k

+ ts

k

)dt s

k

i

hs

k

; s

k

i

:

So,

1

�

k+1

is a Rayleigh quotient relative to the average Hessian

R

1

0

r

2

F (x

k

+ ts

k

)dt and, in

consequence, is between the smallest and the largest eigenvalue of this matrix. Thus, it can

be considered that

1

�

k+1

I is the matrix of the form

1

�

I that better approximates the average

Hessian. Therefore, one should develop heuristics for choosing �

0

, since, in general, the necessary

information for such estimative is not available at the initial point.

3 The Augmented Lagrangian Algorithm

In this section we consider problem (3). Given x

k�1

2 
, the current approximation to the solu-

tion of (3), a bound L > 0, �

k

2 IR

m

, the current approximation to the multipliers (k�

k

k � L)

and �

k

> 0, the penalty parameter, the augmented Lagrangian (or outer) iteration that leads

to x

k

is de�ned by Algorithm ALSPG described below. Assume that "

k

and �

k

are two positive

sequences that tend to zero.

Algorithm ALSPG

Step 1. Address subproblem

Solve problem (4) approximately, with � = �

k

and � = �

k

, using SPG with F (x) = L(x; �

k

; �

k

)

and taking x

k�1

as initial estimate for SPG iterations. The approximate solution must be such

that

kP (x

k

�rL(x

k

))� x

k

k � "

k

: (8)

De�ne x

k

as the approximate solution of (4) so far obtained by SPG.

Step 2. Update the multipliers

Choose a new vector of multipliers �

k+1

such that k�

k+1

k � L.

Step 3. Update the penalty parameter

If

kh(x

k

)k

1

� 0:1kh(x

k�1

)k

1

(9)

or

kh(x

k

)k

1

� �

k

(10)

de�ne

�

k+1

= �

k

: (11)

Otherwise, de�ne

�

k+1

= 10�

k

: (12)



6

4 Global Convergence of Algorithm ALSPG

In this section we prove two theoretical results concerning the global convergence of algorithm

ALSPG, under regularity assumptions on the feasible set. These results actually do not rely on

the SPG inner solver, but solely depend on the approximate minimization criterion (8) and on

the updatings of Steps 2 and 3.

Theorem 4.1 Assume that x

�

is a limit point of a sequence generated by algorithm ALSPG and

frc

i

(x) j c

i

(x) = 0g is linearly independent for all x 2 
. Then, x

�

is a �rst-order stationary

point of the problem

Minimize kh(x)k

2

subject to x 2 
: (13)

Proof. LetK

1

be an in�nite subset of IN such that lim

k2K

1

x

k

= x

�

. Since x

k

2 
 for k = 1; 2; : : :

then x

�

2 
.

Suppose, �rst, that there exists k

0

2 IN such that for all k � k

0

, �

k+1

= �

k

. By (9) and (10)

this implies that lim

k2K

1

h(x

k

) = 0. Therefore, h(x

�

) = 0 and, so, the thesis is true.

Now, suppose that lim

k!1

�

k

=1. We have

lim

k2K

1











P

 

x

k

�rf(x

k

)�

m

X

i=1

�

k

i

rh

i

(x

k

)� �

k

h

0

(x

k

)

T

h(x

k

)

!

� x

k











= 0:

Without loss of generality, assume that q � p,

c

i

(x

�

) = 0 for i = 1; : : : ; q;

c

i

(x

�

) < 0 for i = q + 1; : : : ; p;

and there exists k

1

2 K

1

such that

c

i

(x

k

) < 0 for i = q + 1; : : : ; p for all k 2 K

1

; k � k

1

:

De�ne

y

k

= x

k

�rf(x

k

)�

m

X

i=1

�

k

i

rh

i

(x

k

)� �

k

h

0

(x

k

)

T

h(x

k

):

Then P (y

k

) is a solution of the convex problem

Minimize ky � y

k

k

2

subject to y 2 
: (14)

Since lim

k2K

1

x

k

= x

�

and lim

k2K

1

kP (y

k

)�x

k

k = 0, we have that lim

k2K

1

kP (y

k

)�x

�

k = 0.

Therefore, without loss of generality, we can assume that

lim

k2K

1

c

i

(P (y

k

)) = 0 for i = 1; : : : ; q; and

c

i

(P (y

k

)) < 0 for i = q + 1; : : : ; p; for all k 2 K

1

; k � k

1

:
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Thus, by the KKT conditions of (14), we have that, if P (y

k

) = w

k

, then

2(w

k

� y

k

) +

q

X

i=1

�

k

i

rc

i

(w

k

) = 0 (15)

for all k 2 K

1

; k � k

1

and for some �

k

i

� 0, i = 1; 2; : : : ; q.

Dividing (15) by �

k

and since fx

k

g, fP (y

k

)g and fx

k

� rf(x

k

) �

P

m

i=1

�

k

i

rh

i

(x

k

)g are

bounded for k 2 K

1

, we obtain that

lim

k2K

1

"

2h

0

(x

k

)

T

h(x

k

) +

q

X

i=1

�

k

i

�

k

rc

i

(w

k

)

#

= 0:

Therefore,

lim

k2K

1

"

r

�

kh(x

k

)k

2

�

+

q

X

i=1

�

k

i

�

k

rc

i

(w

k

)

#

= 0: (16)

Let us call 

k

i

=

�

k

i

�

k

and 

k

= maxf

k

1

; : : : ; 

k

q

g. If lim

k2K

1



k

= 0, we have thatr

�

kh(x

�

)k

2

�

=

0 and we are done. Otherwise, assume without loss of generality that 

k

�  > 0 for all k 2 K

1

.

Dividing (16) by 

k

we get

lim

k2K

1

"

1



k

r

�

kh(x

k

)k

2

�

+

q

X

i=1



k

i



k

rc

i

(w

k

)

#

= 0: (17)

If 

k

! 1 this contradicts linearly independence of frc

i

(x

�

)g

q

i=1

. Therefore, there exists

 > 0 such that 

k

�  for all k 2 K

1

, after possibly relabelling. Then, taking convergent

subsequences of 

k

i

and taking limits in (17) we obtain

r

�

kh(x

�

)k

2

�

+

q

X

i=1

�

�

i

rc

i

(x

�

) = 0

for some �

�

i

� 0, i = 1; 2; : : : ; q. This implies that x

�

is a stationary point of (13). 2

The proof of Theorem 4.1 depends strongly on the boundedness of the multiplier estimates �

k

.

This property is not automatically satis�ed by a formula like

�

k+1

= �

k

+ �

k

h(x

k

); (18)

which represents, in the nonlinear programming terminology, a �rst-order update of Lagrange

multipliers. Higher order (more accurate) updates are possible, but they are computationally

more expensive. Since our main interest is on large-scale problems, we adopted the �rst-order

update in our algorithm. However, formula (18) must be modi�ed to avoid unboundedness of �

k

.

An alternative assumption to the boundedness of the multipliers would be that the ratio

k�

k

k

�

k

goes to zero as �

k

goes to in�nity. In (Ref. 14), for example, as a result of the proposed

algorithmic models, such ratio is proved to converge to zero as �

k

! 1 for any multiplier

updating.
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To complete the global convergence analysis we prove Theorem 4.2 in the following. Since

we already know that limit points of Algorithm ALSPG are stationary points of kh(x)k

2

, we can

classify them in two families. The �rst is the class of infeasible stationary points of kh(x)k

2

on 
,

for which there is nothing to do except to regret their existence. Second, we have the class of

feasible limit points. In Theorem 4.2 we prove that if a feasible limit point is regular (the gradi-

ents of active constraints are linearly independent), then it is a stationary point of the nonlinear

programming problem (3).

Theorem 4.2. Assume that x

�

is a limit point of the sequence generated by algorithm ALSPG.

Suppose that h(x

�

) = 0 and x

�

is regular (the gradients of the active constraints, including those

of set 
, are linearly independent). Then, x

�

is a stationary point of (3).

Proof. Assume, without loss of generality, that

c

i

(x

�

) = 0; i = 1; : : : ; q; (19)

c

i

(x

�

) < 0; i = q + 1; : : : ; p: (20)

By the regularity hypothesis, the columns of A

�

2 IR

n�(m+q)

are linearly independent, where

A

�

= (rh

1

(x

�

); : : : ;rh

m

(x

�

);rc

1

(x

�

); : : : ;rc

q

(x

�

)): (21)

Let K

1

be an in�nite subset of IN such that lim

k2K

1

x

k

= x

�

. By (20) and the regularity

hypothesis, there exists k

1

2 IN such that

c

i

(x

k

) < 0; i = q + 1; : : : ; p; (22)

and A

k

2 IR

n�(m+p)

is full-rank, where

A

k

= (rh

1

(x

k

); : : : ;rh

m

(x

k

);rc

1

(x

k

); : : : ;rc

q

(x

k

)): (23)

for all k 2 K

1

; k � k

1

. Moreover, the Moore-Penrose pseudo-inverse A

y

k

is such that

lim

k2K

1

A

y

k

= A

y

�

: (24)

For all k 2 IN let us de�ne

�

k

= �

k

+ �

k

h(x

k

): (25)

By (8), we have that











P

 

x

k

�r(f(x

k

)�

m

X

i=1

�

k

i

rh

i

(x

k

)

!

� x

k











� "

k

: (26)

The rest of the proof consists in showing that f�

k

g is bounded, so that we can take limits in

(26). For this purpose, de�ne

y

k

= x

k

�rf(x

k

)�

m

X

i=1

�

k

i

rh

i

(x

k

)
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and

w

k

= P (y

k

):

Then, by the KKT conditions associated to the projection, we have that, for k 2 K

1

, k � k

1

,

2(w

k

� y

k

) +

q

X

i=1

�

k

i

rc

i

(w

k

) +

p

X

i=q+1

�

k

i

rc

i

(w

k

) = 0

�

k

i

� 0; i = 1; : : : ; p

�

k

i

c

i

(w

k

) = 0; i = 1; : : : ; p

c

i

(w

k

) � 0; i = 1; : : : ; p

(27)

But c

i

(x

k

) < 0 for k 2 K

1

; k � k

1

; i = q + 1; : : : ; p: So, since lim

k2K

1

(w

k

� x

k

) = 0 we have

that there exists k

2

� k

1

such that

c

i

(w

k

) < 0 for k 2 K

1

; k � k

2

; i = q + 1; : : : ; p:

Thus

�

k

i

= 0 for k 2 K

1

; k � k

2

; i = q + 1; : : : ; p:

Then, by (27), if k 2 K

1

; k � k

2

, we have

2(w

k

� y

k

) +

q

X

i=1

�

k

i

rc

i

(w

k

) = 0:

Therefore, for k 2 K

1

; k � k

2

,

w

k

� x

k

+rf(x

k

) +

m

X

i=1

�

k

i

rh

i

(x

k

) +

q

X

i=1

�

k

i

2

rc

i

(w

k

) = 0:

So,

w

k

� x

k

+rf(x

k

) +

e

A

k

0

B

B

B

B

B

B

B

B

B

@

�

k

1

.

.

.

�

k

m

�

k

1

=2

.

.

.

�

k

p

=2

1

C

C

C

C

C

C

C

C

C

A

= 0 (28)

where

e

A

k

=

�

rh

1

(x

k

); : : : ;rh

m

(x

k

);rc

1

(w

k

); : : : ;rc

q

(w

k

)

�

:

Since matrix A

k

is full-rank, so is

e

A

k

, for k 2 K

1

; k � k

2

. Therefore, premultiplying (28) by

e

A

y

k

and taking limits, we obtain that �

k

1

; : : : ; �

k

m

are convergent to �

�

1

; : : : ; �

�

m

. This allows us to

take limits on both sides of (26), obtaining











P

 

x

�

�rf(x

�

)�

m

X

i=1

�

�

i

rh

i

(x

�

)

!

� x

�











= 0:
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This means that x

�

solves the problem

Minimize

w











w � x

�

+rf(x

�

) +

m

X

i=1

�

�

i

rh

i

(x

�

)











2

subject to w 2 
: (29)

Writing the KKT conditions of problem (29), we obtain the thesis. 2

5 Numerical Experiments

5.1 Problems from CUTE collection

In order to assess the performance of algorithm ALSPG, forty nonlinear equality constrained

problems with simple bounded variables from the CUTE collection (version May/98) were selected

to constitute our �rst test set. These test problems were divided in small, medium and large

ones, with the following features: 60% had both number of variables (n) and number of equality

constraints (m) between 1 and 500; 30% had n 2 (500; 3000] or m 2 (500; 3000] and 10% had

n 2 (3000; 5000] or m 2 (3000; 5000]. As a benchmark, these problems were also solved by

LANCELOT, an augmented Lagrangian algorithm implemented with a trust-region strategy for

addressing the subproblems (see Ref. 15).

The tests were run in Fortran 77 (double precision, �O compiler option), in a Sparc Station

Sun Ultra 1. An interface for running ALSPG with the CUTE collection was prepared, assuming

that the problems had already been preprocessed, so that nonlinear inequality constraints were

turned into equalities by means of additional nonnegative slack variables. Therefore, for choosing

our set of test problems, we decided to select problems originally of the form (3).

The initial approximation x

0

was the default of the CUTE set. The algorithmic choices

for these tests were: �

0

= 0 2 IR

m

, �

0

= 10, "

�

= 10

�4

, �

�

= 10

�4

, �

0

= 0:1, M = 50,

� = 10

�4

, �

min

= 10

�30

, �

max

= 10

10

. The initial tolerance "

0

was chosen as a function of the

initial approximation kd

0

k = kP (x

0

� rL(x

0

)) � x

0

k and the �nal tolerance "

�

, computed as

follows: given a constant p

0

2 (0; 1), we set � = log

10

kd

0

k, p = log

10

"

�

, � = � � p

0

(� � p) and

de�ned "

0

= 10

�

. For generating the sequence of tolerances f"

k

g, given a constant p

1

2 (0; 1),

we compute � = 10

p

1

(p��)

and set "

k

= maxf� "

k�1

; "

�

g. In the implementation we used

p

0

= 0:25 and p

1

= 0:1. The sequence of tolerances f�

k

g was updated in Step 3 according to

�

k+1

= max

n

�

k

�

k+1

; �

�

o

if (11) holds or to �

k+1

= max

n

�

0

�

k+1

; �

�

o

if (12) occurs.

The initial spectral step �

0

was set by means of an auxiliary initial computation as follows:

given x

0

, �

0

, �

0

, we computed d

0

= P (x

0

�rL(x

0

; �

0

; �

0

))�x

0

,

b

x = x

0

+0:5

kx

0

k

kd

0

k

d

0

,

b

s =

b

x�x

0

,

b

y = rL(

b

x; �

0

; �

0

)�rL(x

0

; �

0

; �

0

) and set �

0

= h

b

s;

b

si=h

b

s;

b

yi.

For LANCELOT we have followed the authors' suggestions (Ref. 15) to de�ne parameters and

settings compatible with the ALSPG choices:

� exact-second-derivatives-used

� bandsolver-preconditioned-cg-solver-used 5

� exact-Cauchy-point-required
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� infinity-norm-trust-region-used

� gradient-accuracy-required 1.0D�4

� constraint-accuracy-required 1.0D�4

� trust-region-radius 1.0D+0

� maximum-number-of-iterations 1000000

Results are shown in Table 1, where problems are presented in alphabetical order. For

each problem, the �gures of the �rst row correspond to ALSPG and the ones of the second row to

LANCELOT. We keep the notation n,m for number of variables and number of equality constraints,

respectively. The number of outer iterations of the corresponding augmented Lagrangian algo-

rithm is denoted by out; in is the number of inner iterations; feval the number of functional

evaluations and time the CPU time in seconds.

Problem n m out in feval fobj time

ALJAZZAF 3 1 7 112 258 0.7501D+02 0.4865D�02

6 22 23 0.7501D+02 0.6000D�01

ARGAUSS 3 15 6 7 24 0.0000D+00 0.3275D�02

1 1 2 0.1180D�07 0.1000D�03

AVION2 49 15 2 675585 1000001 0.1245D+08 0.1413D+03

9 14013 11549 0.9470D+08 0.5850D+02

BIGBANK 2230 1112 1 787806 1000001 �0.3131D+07 0.1125D+05

4 49 50 �0.4210D+07 0.1978D+04

BRITGAS 450 360 6 119437 155183 0.0000D+00 0.5849D+03

6 99 88 0.0000D+00 0.1494D+02

BROYDN3D 5000 5000 15 504 589 0.0000D+00 0.2021D+02

1 5 6 0.3100D�16 0.7600D+00

BROYDNBD 5000 5000 1 51 60 0.0000D+00 0.3916D+01

1 31 26 0.1370D-08 0.1224D+02

BT4 3 2 6 81 115 �0.4551D+02 0.3821D�02

4 22 22 �0.4551D+01 0.6000D�01

CATENARY 501 166 8 183909 239126 �0.3484D+06 0.3798D+03

4 797 660 �0.3484D+06 0.3058D+02

CLUSTER 2 2 2 17 19 0.0000D+00 0.2341D�02

1 9 9 0.2820D�06 0.1000D�01

DALLASL 906 667 6 608138 796716 �0.2026D+06 0.1239D+05

6 81 81 �0.2026D+06 0.1372D+0.3

DITTERT 105 70 6 642 701 �0.1985D+01 0.4784D+00

9 130 130 �0.2000D+121 0.2470D+01

DIXCHLNV 10 5 7 215 247 0.8226D�10 0.4818D�01

3 12 12 0.1200D�07 0.5000D�01

DNIEPER 61 24 7 397974 527677 0.1874D+05 0.1276D+03

6 68 47 0.1870D+05 0.3800D+00

DTOC5 1999 999 7 603180 794567 0.1536D+01 0.6714D+04

9 21 22 0.1520D+01 0.2580D+01

GILBERT 1000 1 8 41 99 0.4820D+03 0.2848D+00

5 27 28 0.4820D+03 0.5500D+01

Table 1: Complete comparative results: ALSPG � LANCELOT.
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Problem n m out in feval fobj time

HAGER1 1001 500 6 761763 1000001 0.1133D+01 0.3579D+04

2 10 11 0.8810D+00 0.8300D+00

HEART6 6 6 2 152959 570414 0.0000D+00 0.1821D+02

1 1751 1536 0.5660D�05 0.2550D+01

HS111 10 3 6 3257 4093 �0.4776D+02 0.1974D+01

5 45 44 �0.4776D+02 0.1600D+00

HS41 4 1 6 23 54 0.1926D+01 0.2328D�02

4 6 7 0.1926D+01 0.3000D�01

HUESTIS 1000 2 11 1045 1083 0.3482D+11 0.4048D+01

11 151 150 0.3482D+11 0.1128D+03

LCH 600 1 6 1212 1455 �0.4288D+01 0.4030D+01

5 36 36 �0.4320D+01 0.2570D+01

LEAKNET 156 153 5 761134 1000001 0.7523D+01 0.1389D+04

11 117 117 0.7960D+01 0.6360D+01

LINSPANH 97 33 6 150 174 �0.7700D+02 0.4247D�01

5 9 15 �0.7700D+02 0.1700D+00

LOTSCHD 12 7 6 890 1119 0.2398D+04 0.7047D�01

5 21 22 0.2398D+04 0.1000D+00

METHANB8 31 31 2 749366 1000001 0.0000D+00 0.4768D+03

1 36 37 0.9370D�05 0.8200D+00

MINC44 1113 1032 6 109 130 0.3158D�03 0.1852D+01

10 19 20 0.3170D�03 0.5560D+01

MINPERM 583 520 7 152 181 0.9366D�03 0.1155D+01

9 93 83 0.9450D�03 0.1761D+02

NCVXQP1 100 50 6 1390 1434 �0.7298D+06 0.8129D+00

7 43 44 �0.7298D+06 0.4200D+00

OPTCNTRL 32 20 6 1310 1469 0.5500D+03 0.1820D+00

6 21 22 0.5500D+03 0.1100D+00

ORTHRDM2 4003 2000 5 607156 1000001 0.1565D+03 0.2566D+05

4 129 112 0.1565D+03 0.4318D+02

ORTHREGC 1005 500 6 490278 701241 0.1879D+02 0.5068D+04

5 43 38 0.1880D+02 0.3580D+01

READING1 202 100 4 773701 1000001 �0.1495D+00 0.1344D+04

4 741 667 �0.1600D+00 0.2621D+02

SEMICON1 1002 1000 2 716590 1000002 0.0000D+00 0.2004D+05

1 1401 1195 0.1303D-06 0.3928D+02

SPANHYD 97 33 6 29959 41464 0.2397D+03 0.1068D+02

4 27 1195 0.2400D+03 0.5600D+00

STEENBRC 540 126 4 872300 1000001 0.3678D+05 0.1637D+04

8 6446 5240 0.2750D+05 0.1100D+03

TENBARS2 18 8 3 731412 1000002 0.2318D+04 0.7128D+02

4 346 300 0.2280D+04 0.1590D+01

TRAINF 4008 2002 6 760251 1000001 0.2191D+01 0.1696D+05

9 58 58 0.2760D+01 0.2103D+03

TRIGGER 7 6 3 999986 1000001 0.0000D+00 0.4449D+02

1 20 19 0.1020D�06 0.3000D�01

YORKNET 312 256 6 210592 1000001 0.1968D+05 0.7865D+03

12 236 224 0.1420D+05 0.7071D+02

Table 1 (cont.): Complete comparative results: ALSPG � LANCELOT.
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Twenty-seven out of the forty test problems were successfully solved by algorithm ALSPG. For

the remaining thirteen the maximum allowed number of functional evaluations (1000000) was

exceeded. For two of these thirteen problems (ORTHRDM2 and READING1) the �nal approximation

was nearly optimal (constraint violation less than 10

�4

and objective function value close to the

one obtained by LANCELOT). Thus, ALSPG had success in 72.5% of the tests (29 in 40). It is worth

noticing that the proportion of failures of ALSPG followed quite closely the size distribution of

the problems: 9% of the large problems, 36% of the medium and 55% of the small ones could

not be solved by ALSPG. LANCELOT performed as follows: thirty four problems were successfully

solved (85%) and for �ve problems it stopped with a too small step (AVION2, DNIEPER, HEART6,

TENBARS2 and YORKNET), which correspond to 13% of the tests. For a single problem (DITTERT)

LANCELOT did not converge, that is, no feasible solution could be found. Algorithm ALSPG was

successful in solving three problems (DITTERT, DNIEPER and HEART6) of the six aforementioned

stops of LANCELOT.

Summarizing Table 1 using geometric means of the number of the functional evaluations

performed and the CPU time spent, we obtained the �gures of Table 2. The results of Table 2

allow us to estimate the average time of a single iteration of each algorithm: 0.001 seconds for

ALSPG and 0.04 seconds for LANCELOT. Algorithm ALSPG needs to perform approximately 270

times the number of functional evaluations of LANCELOT, whereas it takes around 8 times the

CPU time spent by the algorithm of Conn, Gould and Toint.

feval time

ALSPG 16551.0 16.17

LANCELOT 61.608 2.255

Table 2: Summary of comparative results (average values) for problems from CUTE.

5.2 The localization problem

Given a family of polytopes K

i

� IR

2

, i = 1; : : : ; npol, the optimal localization problem

consists of �nding P 2 IR

2

such that its maximum distance to the polytopes is minimum. In

other words, P is a solution to

min

P

i

2K

i

maxfkP � P

1

k; kP � P

2

k; : : : ; kP � P

npol

kg (30)

where k � k is the Euclidean norm. A possible optimal con�guration with npol = 4 is illustrated

in Figure 1.

Problem (30) may be rewritten in the format

Minimize z subject to kP � P

i

k � z; P

i

2 K

i

; i = 1; : : : ; npol: (31)

Introducing positive slack variables, the inequality constraints kP � P

i

k � z are turned into

equalities kP � P

i

k+ �

i

� z = 0, so that a problem of type (4) is built

Minimize z +

npol

X

i=1

�

i

(kP � P

i

k+ �

i

� z) +

�

2

npol

X

i=1

(kP � P

i

k+ �

i

� z)

2

subject to �

i

� 0; P

i

2 K

i

; i = 1; : : : ; npol:

(32)
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Figure 1: A possible optimal con�guration of the localization problem.

In our numerical experiments, we generated a family of twenty medium-size problems of

type (30) and compared the performance of solving them by FFSQP (Ref. 18) against solving

corresponding problem (31) by Algorithm ALSPG. Code FFSQP is a Fortran implementation of a

feasible sequential quadratic programming algorithm for solving constrained nonlinear, possibly

minimax, optimization problems. For FFSQP the tolerances were set so that its feasibility and

optimality criteria were compatible and comparable with ALSPG choices. The tests were run in

Fortran 77 (double precision, �O compiler option), in a Sparc Station Sun Ultra 1.

It is worthwhile noticing that, since the formulation considered by each algorithm is di�erent,

ALSPG solves problems with 3npol+3 variables (2npol+3 original variables and npol slack ones)

and npol constraints whereas FFSQP works with 2npol + 2 variables and as much constraints as

the number of vertices of the problem. The localization problems were randomly generated and

were addressed with a di�erent formulation in (Ref. 19).

The initial approximation (P; P

1

; : : : ; P

npol

) was obtained by projecting the origin onto an

auxiliar centered polygon created during generation of the problem (initial P ). The initial values

of P

i

were set as the projection of such P onto the polygons K

i

, i = i; : : : ; npol. Variables �

i

; i =

1; : : : ; npol and z were initially zero. Algorithmic parameter choices for these tests were mostly

the same used for the CUTE set of problems, except for �

min

= 10

�6

, �

max

= 10

6

, "

0

= 10

�2

and

"

k+1

= maxf0:1"

k

; "

�

g. We also implemented a stopping test to detect lack of progress as follows:

we computed

�

h

i

= minfkh(x

0

)k; : : : ; kh(x

i

)kg and stopped if

�

h

k+1

�

�

h

k

� maxf10

�3

�

h

k

; 10

�1

g

at �fty consecutive iterations.

Comparative results are presented in Table 3, where column problem provides a number

for future reference and the pair (number of polygons, number of vertices) of each problem;

for the next columns, the �rst row corresponds to ALSPG and the second, to FFSQP. We denote

by iter the number of outer iterations of each algorithm; feval gives the number of function

evaluations; fobj provides the �nal objective function value (problem (31)) and time gives the

CPU time spent in seconds.



15

Problem iter feval fobj time

1 (70, 485) 5 18470 30.6309 7.38

8 560 30.6215 3.29

2 (77, 479) 4 10346 36.7179 5.08

13 1001 36.7179 7.52

3 (104, 709) 10 11013 37.8149 5.78

8 835 37.8034 10.75

4 (107, 652) 55 14197 92.1574 8.05

6 642 72.0387 9.99

5 (116, 717) 6 12446 49.3796 7.88

7 812 49.3786 13.82

6 (136, 1054) 17 13588 49.1609 11.36

8 1088 49.1322 21.92

7 (159, 3888) 4 3848 44.7871 8.86

9 1431 44.7868 86.73

8 (163, 1061) 4 13993 48.3872 13.50

8 1304 48.3805 35.57

9 (189, 3596) 4 3866 50.0040 10.18

8 1512 50.0039 92.18

10 (197, 1356) 54 14053 78.9317 14.54

6 1182 53.8598 50.13

11 (296, 1985) 4 18992 65.8694 30.84

8 2368 65.8666 237.55

12 (323, 4889) 52 13748 90.1371 42.80

9 2910 65.7716 436.13

13 (325, 2185) 4 10038 69.8736 25.47

8 2600 69.8730 295.66

14 (331, 2177) 52 18529 69.5391 31.33

7 2317 69.5289 291.84

15 (361, 2357) 4 8313 69.4936 20.29

6 2166 69.7373 336.02

16 (375, 2478) 52 20794 74.8264 40.70

6 2250 74.8021 374.63

17 (406, 2639) 5 9451 75.2198 25.79

6 2436 75.2184 468.38

18 (436, 2875) 4 10146 80.4443 30.64

8 3488 80.4420 786.28

19 (449, 2967) 5 10262 80.2297 31.48

7 3143 80.2291 706.32

20 (466, 3042) 54 21711 83.7485 54.43

6 2796 83.7463 695.60

Table 3: Comparative results: ALSPG � FFSQP

For six out of the twenty problems of Table 3, algorithm ALSPG stopped with lack of progress

(problems 4, 10, 12, 14, 16 and 20), which amounts to 70% successful exits for these tests.

Algorithm FFSQP had two stops with too small step (problems 3 and 12), corresponding to 90%

of success. In all these stops, however, a nearly optimal iterate was achieved. For ALSPG, the

values of kh(x

k

)k

1

were 3� 10

�2

; 2� 10

�3

; 8� 10

�2

; 3� 10

�4

; 4� 10

�3

and 4� 10

�4

at the �nal

approximation for the six aforementioned problems. For FFSQP, the norm of the gradient of the

Lagrangian at the �nal iterate was 5� 10

�4

and 2� 10

�4

for problems 3 and 12, respectively.

The results of Table 3 are summarized in Table 4, as we did with Tables 1 and 2. For this
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set of tests, the estimated average time of a single iteration for each algorithm is 0.001 and

0.06 seconds, for ALSPG and FFSQP, respectively. As a result of the low cost of ALSPG, although

our approach needs around eight times the number of functional evaluations taken by FFSQP,

algorithm FFSQP needs more than �ve times as much CPU time as the one spent by ALSPG.

feval time

ALSPG 11781.0 16.81

FFSQP 1608.1 92.99

Table 4: Summary of comparative results (average values) for localization problems.

In Table 5 we present results of ALSPG relatively to eight large-scale localization problems,

for which FFSQP failed due to memory requirements. The number of variables and of equality

nonlinear constraints varied within n 2 [1548; 2817] and m 2 [515; 938], respectively. The

notation is similar to the one of Table 3, except that the outer iterations are given in column

out and we also provide the number of inner iterations in column in.

Problem out in feval fobj time

21 (515, 14159) 4 6763 9038 85.8409 100.90

22 (640, 4759) 4 12118 16774 92.7432 88.33

23 (646, 12924) 25 15651 21691 102.3918 189.79

24 (677, 5035) 6 11433 15838 96.3327 84.79

25 (734,5442) 4 9733 13595 104.5577 88.46

26 (742, 5519) 3 5984 7951 99.7280 56.78

27 (801, 5955) 5 13107 18495 110.3467 111.92

28 (938, 6985) 23 13268 20006 119.0289 134.15

Table 5: Performance of ALSPG for large-scale localization problems

Analysing Table 5, we de�ned a measure for the e�ciency of the SPG step, given by the

arithmetic mean of the values feval

i

/in

i

, i = 1; 2; : : : ; 8, which came to 1.4. Ideally, if no

rejection occurred at Step 2.1 of algorithm SPG, a single functional evaluation would be done

per inner iteration. For this family of tests, in average, less than two functional evaluations are

necessary per inner iteration, which indicates a good performance of the SPG step.

6 Final Remarks

We have introduced an augmented Lagrangian algorithm (ALSPG) for which the spectral pro-

jected gradient is the tool for tackling the underlying subproblems. Our motivation was the

SPG e�ectiveness for minimization with simple bounds, so we wanted to assess its performance

within the augmented Lagrangian framework. For the proposed algorithm we proved global

convergence results in the sense that the generated limit points are stationary provided they are

regular and feasible with respect to the nonlinear equality constraints.

Two families of test problems were addressed. First, forty nonlinear equality constrained

problems with simple bounded variables from the CUTE collection were solved and compared
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against LANCELOT. Both augmented Lagrangian algorithms had a quite robust performance for

such problems: 72.5% were successfully solved by ALSPG and 85% by LANCELOT.

The second set of tests was formed by twenty medium-size localization problems in minimax

formulation. After turned into the nonlinear programming equivalent format, with auxiliary and

slack variables, they were solved by ALSPG. For comparative purposes, they were solved, in the

original formulation, by the code FFSQP. Both strategies performed quite well (70% of reported

success for ALSPG and 90% for FFSQP). An additional family of eight large-scale localization

problems were solved solely by ALSPG, since FFSQP could not address their large number of

variables and/or constraints. For this large-scale set, we observed the e�ciency of the SPG inner

step, with an average of 1.4 functional evaluations per iteration.

Summing up, the results summarized in Tables 2 and 4 corroborate the low cost features

of ALSPG iterations. The �rst-order features of algorithm ALSPG might require a large number

of functional evaluations. Its iterations, however, are very cheap. This easy-to-code algorithm,

with minimal memory requirements, available upon request to the authors, might be a worth-

while alternative provided the problem does not have too expensive functional evaluations.
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