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2 F. TORRES

Let X be a (proje
tive, geometri
ally irredu
ible, non-singular algebrai
) 
urve of genus

g de�ned over a �nite �eld F

q

of q elements. Weil [108℄ showed that

j#X (F

q

)� (q + 1)j � 2

p

qg ;(�)

being this bound sharp as Example 4.4 here shows. Goppa [37℄ 
onstru
ted linear


odes from 
urves de�ned over F

q

. These 
odes were used by Tsfasman, Vladut and

Zink [105℄ to show that the Gilbert-Varshamov bound 
an be improved whenever q is

a square and q � 49. This was an unexpe
ted result for 
oding theorist.

The length and the minimum distan
e of Goppa 
odes are related with the number

of F

q

-rational points in the underlying 
urve. Then Goppa's 
onstru
tion provided

motivation and in fa
t reawakened the interest in the study of rational points of 
urves

whi
h, despite of this motivation, is an interesting mathemati
al problem by its own.

Serre [93℄ noti
ed that (�) 
an be improved by repla
ing 2

p

q by b2

p

q
. A re�ned

version of Ihara [58℄ shows that

g >

q

2

� q

2

p

q

2

+ 2

p

q � 2q

) #X (F

q

) < q + 1 + b2

p

q
g ;

and in this 
ase Serre [93℄, [95℄ upper bounded #X (F

q

) via expli
it formulae.

A geometri
 point of view to bound #X (F

q

) was introdu
ed by St�ohr and Volo
h [99℄:

Suppose that X admits a base-point-free linear series g

r

d

de�ned over F

q

; then

#X (F

q

) �

P

r�1

i=0

�

i

(2g � 2) + (q + r)d

r

;

where �

0

; : : : ; �

r�1

are 
ertain F

q

-invariants asso
iated to g

r

d

(see Theorem 3.13 here).

By an appropriate 
hoi
e of g

r

d

this result implies (�) [99, Cor. 2.14℄, and in several


ases one obtains improvements on (�). We write an exposition of St�ohr-Volo
h's

approa
h in Se
t. 3. For the sake of 
ompleteness we in
lude an expository a

ount

on Weierstrass point theory of linear series on 
urves: Se
ts. 1, 2.

Next we dis
uss two appli
ations of [99℄ studied here. The �rst one is 
on
erning the

uniqueness of 
ertain optimal 
urves. The most well known example of a F

q

-maximal


urve is the Hermitian 
urve (Example 4.4 here) whose genus is

p

q(

p

q�1)=2; i.e., the

biggest one that a F

q

-maximal 
urve 
an have a

ording to the aforementioned Ihara's

result. R�u
k and Sti
htenoth [87℄ showed that this property 
hara
terize Hermitian


urves up to F

q

-isomorphi
. In Se
t. 4.1 we equip the 
urve X with a linear series

D

X

obtained from its Zeta Fun
tion provided that X (F

q

) 6= ;. It turns out that

D

X

= j(

p

q + 1)P

0

j, P

0

2 X (F

q

), whenever X is F

q

-maximal. Then applying [99℄ to

D

X

we prove a stronger version of R�u
k-Sti
htenoth's result; see Theorem 4.24 here.

Further properties of F

q

-maximal were proved via an interplay of St�ohr-Volo
h's paper

[99℄, and results on linear series su
h as Castelnuovo's genus bound and Halphen's

theorem applied to D

X

; see [24℄, [26℄,[67℄,[68℄. A 
hara
terization result is also proved
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for the Suzuki 
urve (Theorem 4.27), whi
h in fa
t is optimal with genus q

0

(q� 1) and

(q

2

+ 1) F

q

-rational points.

The se
ond appli
ation of [99℄ studied here is the bounding of the size k of a 
omplete

plane ar
 K in P

2

(F

q

) whi
h indeed is a basi
 problem in Finite Geometry. What

it makes this possible is the fa
t that asso
iated to K there is a (possible singular)

plane 
urve C. A fundamental result of B. Segre [90℄ (see Theorem 5.2 here for the

odd 
ase) allows then to upper bound k via [99℄ applied to 
ertain linear series de�ned

on the non-singular model of an irredu
ible 
omponent of C. Details of the following

dis
ussion 
an be seen in Se
t. 5. The largest k is already well known and so the

problem is 
on
erning the se
ond largest size m

0

2

(2; q). Let q be a square. If q is even,

then m

0

(2; q) = q �

p

q + 1 and a similar result is expe
ted for q odd, q � 49. Let q

be odd. Applying (�) B. Segre showed that m

0

(2; q) � q �

p

q=4 + 7=4. One obtains

the same bound by using [99℄; see Proposition 5.11 here. If in addition, for q large, one

takes into 
onsideration a bound for the number of F

q

-rational of plane 
urves due to

Hirs
hfeld and Kor
hm�aros [68℄ (see Theorem 5.24 here) one �nds the 
urrently best

upper bound for m

0

(2; q), namely

m

0

(2; q) � q �

p

q

2

+

5

2

:

So far, for

p

q 62 N, the best upper bound for m

0

(2; q) is due to Volo
h [106℄, [107℄; see

Lemmas 5.17, 5.19 here.

This paper is an outgrowth and a 
onsiderable expanded of le
tures given at the Uni-

versity of Essen in April 1997 and the University of Perugia in February 1998.

Convention. The word 
urve will mean a proje
tive, irredu
ible, non-singular alge-

brai
 
urve.

1. Linear series on 
urves

The purpose of this se
tion is to summarize relevant material regarding linear series on


urves. Standard referen
es are Arbarello-Cornalba-GriÆths-Harris [3℄, GriÆths [39℄,

GriÆths-Harris [40℄, Hartshorne [45℄, Namba [79℄, Seidenberg [91℄, Sti
htenoth [96℄.

Let X be a 
urve over an algebrai
ally 
losed �eld F; set P

r

:= P

r

(F).

1.1. Terminology and notation. We start by �xing some terminology and notation.

1.1.1. We denote by Div(X ) the group of divisors on X ; i.e., the Z-free abelian group

generated by the points of X . Let D =

P

n

P

P 2 Div(X ). The multipli
ity of D at P is

v

P

(D) := n

P

. The divisor D is 
alled e�e
tive (notation: D � 0) if v

P

(D) � 0 for ea
h

P . For D;E 2 Div(X ), we write D � E if D �E � 0. The degree of D is the number

deg(D) :=

P

v

P

(D), and the support ofD is the set Supp(D) := fP 2 X : v

P

(D) 6= 0g.
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1.1.2. Let F(X ) denote the �eld of rational fun
tions on X . Asso
iated to f 2 F(X )

�

:=

F(X ) n f0g we have the divisor

div(f) :=

X

v

P

(f)P ;

where v

P

stands for the valuation at P 2 X . Re
all that v

P

satis�es: v

P

(0) := +1,

v

P

(f + g) � min(v

P

(f); v

P

(g)), and v

P

(fg) = v

P

(f) + v

P

(g) for f; g 2 F(X ).

For f 2 F

�

:= F n f0g, div(f) = 0 and for f 2 F(X ) n F, div(f) = div

0

(f)� div

1

(f),

where div

0

(f) :=

P

v

P

(f)>0

v

P

(f)P and div

1

(f) :=

P

v

P

(f)<0

(�v

P

(f))P are respe
-

tively the zero and the polar divisor of f . Moreover, deg(div(f)) = 0 and div(fg) =

div(f) + div(g).

Asso
iated to D 2 Div(X ) we have the F-linear spa
e

L(D) := ff 2 F(X )

�

: D + div(f) � 0g [ f0g ;

where `(D) := dim

F

L(D) � deg(D) + 1. For D;E 2 Div(X ) su
h that L(D) � L(E),

we have

`(E)� `(D) � deg(E)� deg(D) :

The Riemann-Ro
h theorem 
omputes `(D): If C is a 
anoni
al divisor on X and g is

the genus of X , then

`(D) = deg(D) + 1� g + `(C �D) :

In parti
ular, C is 
hara
terized by the properties: deg(C) = 2g � 2 and `(C) � g.

A lo
al parameter at P 2 X is a rational fun
tion t 2 F(X ) su
h that v

P

(t) = 1.

Asso
iated to f 2 F(X )

�

we have its lo
al expansion at P ,

P

1

i=v

P

(f)

a

i

t

i

, where a

v

P

(f)

6=

0. Let f 2 F(X ) be a separating variable of F(X )jF; i.e., let the �eld extension

F(X )jF(f) be separable. Then we have the divisor of the di�erential of f , namely

div(df) where v

P

(div(df)) equals the minimum integer i su
h that ia

i

6= 0. It holds

that deg(div(f)) = 2g � 2.

1.1.3. Two divisors D;E 2 Div(X ) are 
alled linearly equivalent (notation: D � E) if

there exists f 2 F(X )

�

su
h that D = E + div(f). In this 
ase, deg(D) = deg(E) and

L(D) is F-isomorphi
 to L(E) via the map g 7! fg. For E 2 Div(X ), let

jEj := fD 2 Div(X ) : D � 0; D � Eg ;

i.e.,

jEj = fE + div(f) : f 2 L(E) n f0gg :

Sin
e, for f; g 2 F(X)

�

, div(f) = div(g) if and only if there exists a 2 F

�

su
h that

f = ag, the set jEj is equipped with a stru
ture of proje
tive spa
e by means of the

map E + div(f) 2 jEj 7! [f ℄ 2 P(L(E)); notation: jEj

�

=

P(L(E)).

A linear series D on X is a subset of some jEj, of type

fE + div(f) : f 2 D

0

n f0gg ;
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with D

0

being a F-linear subspa
e of L(E). The numbers d = deg(D) := deg(E) and

r = dim(D) := dim

F

(D

0

) � 1 are 
alled respe
tively the degree and the (proje
tive)

dimension of D. We say that D is a g

r

d

on X . D is 
alled 
omplete if D = jEj. Observe

that, under the identi�
ation jEj

�

=

P(L(E)), D 
orresponds to P(D

0

); notation: D

�

=

P(D

0

) � jEj. A linear series D

1

�

=

P(D

0

1

) � jE

1

j will be 
alled a subspa
e of D

�

=

P(D

0

) � jEj if L(E

1

) � L(E) and D

0

1

� D

0

.

1.1.4. Let P 2 X and f 2 F(X ) regular at P ; i.e., v

P

(f) � 0. Then there exists a

unique a

f

2 F su
h that v

P

(f � a

f

) > 0. We set f(P ) := a

f

. For f; g 2 F(X ) regular

at P , (f + g)(P ) = f(P ) + g(P ) and (fg)(P ) = f(P )g(P ). A point of the r-proje
tive

spa
e P

r

will be denoted by (a

0

: � � � : a

r

).

Let � : X ! P

r

be a morphism; i.e., let f

0

; : : : ; f

r

2 F(X ), not all zero, su
h that

�(P ) = ((t

e

P

f

0

)(P ) : : : : : (t

e

P

f

r

(P )) ;

where t is a lo
al parameter at P , and

e

P

:= �minfv

P

(f

0

); : : : ; v

P

(f

r

)g :

Observe that ea
h t

e

P

f

i

is regular at P . The rational fun
tions f

0

; : : : ; f

r

are 
alled

(homogeneous) 
oordinates of �. We set

� = (f

0

: : : : : f

r

) :

The 
oordinates f

0

; : : : ; f

r

are uniquely determinated by � up to a fa
tor in F(X )

�

; so �


orresponds to a point of P

r

(F(X )). If � is non-
onstant, the image �(X ) is a (possible

singular) algebrai
 
urve in P

r

whose fun
tion �eld is F(�(X )) = F(f

0

; : : : ; f

r

). The


urve X 
an be thought as a parametrized 
urve in P

r

, or �(X ) as being a 
on
rete

manifestation of X in P

r

. For Q 2 �(X ), the points of the �ber �

�1

(Q) will be 
alled

the bran
hes of �(X ) 
entered at Q. The degree of � is deg(�) := [F(X ) : F(�(X ))℄.

Example 1.1. Ea
h rational fun
tion f 2 F(X ) 
an be seen as a morphism f : X !

P

1

= F [ f1g, su
h that P 7! f(P ) if P 62 div

1

(f); P 7! 1 otherwise. If f 62 F,

we have d := deg(f) = [F(X ) : F(f)℄ = deg(div

1

(f)). Moreover, if F(X )jF(f)

is separable, the genus g of X 
an be 
omputed via the so-
alled Riemann-Hurwitz

formula:

2g � 2 = d(�2) + deg(R

f

) ;

where R

f

= div(df) + 2div

1

(f) is the rami�
ation divisor of f . If 
har(F) does not

divide the rami�
ation index e

P

of P over f(P ), then v

P

(R

f

) = e

P

� 1 otherwise

v

P

(R

f

) > e

P

� 1. We have the produ
t formula

X

P2f

�1

(f(P ))

e

P

= d :
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For all but �nitely many Q 2 �(X ), #�

�1

(Q) equals the separable degree of

F(X )jF(�(X )). � is 
alled birational (resp. embedding) if deg(�) = 1 (resp. X is

F-isomorphi
 to �(X )); in both 
ases, X is a (the) non-singular model of �(X ).

Let H be a hyperplane in P

r

su
h that �(X ) 6� H. Then #�(X ) \ H is �nite. To

ea
h P 2 X one asso
iates a number I

P

(H) = I(�(X ); H;P ), 
alled the interse
tion

multipli
ity of �(X ) and H at P , in su
h a way that I

P

= 0 , P 62 �(X ) \ H and

that

P

I

P

(H) is independent of H; i.e., if H

0

is another hyperplane in P

r

su
h that

�(X ) 6� H

0

, then

P

I

P

(H) =

P

I

P

(H

0

). This number is 
alled the degree deg(�(X ))

of �(X ). If �(X ) � P

2

, the degree of �(X ) equals the degree of the polynomial that

de�nes �(X ).

A morphism � : X ! P

r

is 
alled non-degenerate if �(X ) 6� H for ea
h hyperplane H

in P

r

. A 
urve X � P

r

is 
alled non-degenerate if the in
lusion morphism X ,! P

r

is

so.

Lemma 1.2. A morphism � = (f

0

: : : : : f

r

) : X ! P

r

is non-degenerate if and only

if f

0

; : : : ; f

r

are F-linearly independent.

Proof. There exists a hyperplane H in P

r

su
h that �(X ) � H if and only if there

exist a

0

; : : : ; a

r

2 F, not all zero, su
h that

P

i

a

i

f

i

(P ) = 0 for all but �nitely many

P 2 X . The last 
ondition is equivalent to

P

i

a

i

f

i

= 0, as a non-zero rational fun
tion

has only �nitely many zeros (
f. Se
t. 1.1.2); now the result follows.

For V � F(X ), hV i stands for the F-ve
tor spa
e in F(X ) generated by V .

1.2. Morphisms from linear series; Castelnuovo's genus bound. Let D be a r-

dimensional linear series on X , say D

�

=

P(D

0

) � jEj. The following subsets will

provide information on the geometry of X .

De�nition. For P 2 X and i 2 N

0

,

D

i

(P ) := fD 2 D : D � iPg :

Clearly D

i

(P ) � D

i+1

(P ) and D

i

(P ) = ; if i > d.

Lemma 1.3. (1) D

i

(P ) is a linear series;

(2) D

i

(P ) is a subspa
e of D;

(3) dim(D

i

(P )) � dim(D

i+1

(P )) + 1:

Proof. Set D

j

:= D

j

(P ) and let f 2 D

0

n f0g. Then E + div(f) 2 D

i

if and only if

v

P

(E) + v

P

(f) � i; i.e., D

i

�

=

P(D

0

i

), where

D

0

i

:= D

0

\ L(E � iP ) :

This shows parts (1) and (2). Now D

0

i

=D

0

i+1

is F-isomorphi
 to a F-subspa
e of L :=

L(E � iP )=L(E � (i+ 1)P ). Sin
e dim

F

L � 1 (see Se
t. 1.1.2), part (3) follows.
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De�nition. The multipli
ity of D at P 2 X is de�ned by

b(P ) := minfv

P

(D) : D 2 Dg :

We have b(P ) > 0 if and only if P 2 Supp(D) for all D 2 D; so b(P ) 6= 0 for �nitely

many P 2 X. Consequently, we 
an de�ne the e�e
tive divisor B = B

D

on X by

setting

v

P

(B) := b(P ) :

De�nition. The divisor B is 
alled the base lo
us of D. A point P 2 Supp(B) is


alled a base point of D. If B = 0, D is 
alled base-point-free.

Thus D is base-point-free if and only if for ea
h P 2 X there exists f 2 D

0

n f0g su
h

that v

P

(E + div(f)) = 0. Now, sin
e D � B for ea
h D 2 D, D

0

� L(E � B) and

D

B

:= fD � B : D 2 Dg � jE � Bj

is a subspa
e of D su
h that D

B

�

=

P(D

0

) � jE � Bj. We have B

D

B

= 0; i.e., D

B

is a

g

r

d�deg(B)

base-point-free on X .

Lemma 1.4. Let D

�

=

P(D

0

) � jEj be a linear series, where D

0

= hf

0

; : : : ; f

s

i. Then

E is determinated by D; i.e,

v

P

(E) = b(P )�minfv

P

(f

0

); : : : ; v

P

(f

s

)g :

Proof. Sin
e D

0

� L(E �B), v

P

(E)� b(P ) + v

P

(f

i

) � 0 for ea
h i and ea
h P so that

v

P

(E) � b(P )�minfv

P

(f

0

); : : : ; v

P

(f

s

)g. On other hand, as D

B

is base-point-free, for

ea
h P there exists (a

0

: : : : : a

s

) 2 P

s

(F) su
h that v

P

(E � B + div(

P

i

a

i

f

i

)) = 0;

now the result follows.

Next we asso
iate a morphism to D. For P 2 X we have D = D

b(P )

(P ) % D

b(P )+1

(P ),

so that dim(D

b(P )+1

) = dim(D)� 1 by Lemma 1.3. Thus we have the following map

�

D

: X ! D

�

�

=

P(D

0

)

�

; P 7! D

b(P )+1

:

Homogeneous 
oordinates of �

D

are given as follows. Let ff

0

; : : : ; f

r

g be a F-base of

D

0

, t a lo
al parameter at P , and f 2 D

0

n f0g. Then v

P

(t

v

P

(E)�b(P )

f) � 0 and

E + div(f) 2 D

b(P )+1

, v

P

(t

v

P

(E)�b(P )

f) � 1 , (t

v

P

(E)�b(P )

f)(P ) = 0 :

Sin
e f =

P

i

a

i

f

i

with (a

0

: : : : : a

r

) 2 P

r

, we have

D

b(P )+1

�

=

f(a

0

: : : : : a

r

) 2 P

r

:

r

X

i=0

(t

v

P

(E)�b(P )

f

i

)(P )a

i

= 0g 2 P

r

�

�

=

((t

v

P

(E)�b(P )

f

0

)(P ) : : : : : (t

v

P

(E)�b(P )

f

r

)(P )) 2 P

r

:

Hen
e from Lemma 1.4 the morphism �

f

0

;::: ;f

r

:= (f

0

: : : : : f

r

) gives a 
oordinate

des
ription of �

D

, and it will be referred as a morphism asso
iated to D. If �

g

0

;::: ;g

r

is

another morphism asso
iated to D, then �

g

0

;::: ;g

r

= T Æ �

f

0

;::: ;f

r

, with T 2 Aut(P

r

(F));
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i.e., a morphism asso
iated to D is uniquely determinated by D, up to proje
tive

equivalen
e. Observe that �

D

and �

D

B have the same 
oordinate des
ription. We

summarize the above dis
ussion as follows.

Lemma 1.5. Let D

�

=

P(D

0

) be a r-dimensional linear series on X . Ea
h F-base

f

0

; : : : ; f

r

of D

0

de�nes a non-degenerate morphism �

f

0

;::: ;f

r

= (f

0

: : : : : f

r

) : X ! P

r

.

If g

0

; : : : ; g

r

is another F-base of D

0

, then there exists T 2 Aut(P

r

) su
h that �

g

0

;::: ;g

r

=

T Æ �

f

0

;::: ;f

r

.

At this point we re
all Castelnuovo's genus bound. Let g be the genus of X .

De�nition. A linear series D is 
alled simple if a (any) morphism asso
iated to D is

birational.

Let D be a simple g

r

d

, r � 2, on X . Let d

0

:= d � deg(B

D

), and let � be the unique

integer with 0 � � � r� 2 and d

0

� 1 � � (mod (r� 1)). De�ne Castelnuovo's number




0

(d

0

; r) by




0

(d

0

; r) =

d

0

� 1� �

2(r � 1)

(d

0

� r + �) :

Lemma 1.6. (Castelnuovo's genus bound for 
urves in proje
tive spa
es, [10℄, [3, p.

116℄, [45, IV, Thm. 6.4℄, [86, Cor. 2.8℄)

g � 


0

(d

0

; r) :

Remark 1.7.




0

(d

0

; r) �

(

(d

0

� 1� (r � 1)=2)

2

=2(r � 1) for r odd,

(d

0

� 1� (r � 1)=2)

2

� 1=4)2=(r � 1) for r even.

Remark 1.8. Any 
urve X of genus g admits a simple g

2

d

(i.e., a birational plane model)

su
h that

g = d(d� 1)=2�

X

P

Æ

P

;

where the Æ

P

's are the Æ-invariants of the plane 
urve �(X ) with � being a morphism

asso
iated to g

2

d

. We have that Æ

P

> 0 if and only if �(X ) is singular at P . A ni
e

method to 
ompute Æ

P

was re
ently noti
ed by Beelen and Pellikaan [4℄.

1.3. Linear series from morphisms. Let � = (f

0

: : : : : f

r

) : X ! P

r

be a morphism on

X . In Se
t. 1.1.4 we de�ned

e

P

= �minfv

P

(f

0

); : : : ; v

P

(f

r

)g ; P 2 X :

Then e

P

6= 0 for �nitely many P 2 X , and so we have a divisor E = E

f

0

;::: ;f

r

de�ned

by

v

P

(E) := e

P

:
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Observe that f

i

2 L(E) for ea
h i. Let

D

0

:= hf

0

; : : : ; f

r

i � L(E) :

Then we have the following linear series on X

D

f

0

;::: ;f

r

:= fE + div(f) : f 2 D

0

n f0gg � jEj ;

whi
h is base-point-free. Indeed, v

P

(E + div(f

i

0

)) = 0 where i

0

is de�ned by e

P

=

�v

P

(f

i

0

). In addition, if �

1

= (g

0

: : : : : g

r

) = T Æ � with T 2 Aut(P

r

), then

minfv

P

(g

0

); : : : ; v

P

(g

r

)g = minfv

P

(f

0

); : : : ; v

P

(f

r

)g ;

and hen
e D

g

0

;::: ;g

r

= D

f

0

;::: ;f

r

. Moreover, if h 2 F(X )

�

, then

E

f

0

h;::: ;f

r

h

= E

f

0

;::: ;f

r

� div(h)

and so

D

f

0

h;::: ;f

r

h

= D

f

0

;::: ;f

r

:

Consequently, the linear series D

�

:= D

f

0

;::: ;f

r

is uniquely determinated by � and it

is invariant under proje
tive equivalen
e of morphisms. Summarizing we have the

following.

Lemma 1.9. Asso
iated to a morphism � = (f

0

: : : : : f

r

) : X ! P

r

, there exists a

base-point-free linear series D

�

� jEj; where E is de�ned by

v

P

(E) := �minfv

P

(f

0

); : : : ; v

P

(f

r

)g :

If � is non-degenerate, then dim(D

�

) = r. If �

1

= T Æ�, T 2 Aut(P

r

), then D

�

1

= D

�

.

In the remaining part of this subse
tion, we let � = (f

0

: : : : : f

r

) be a non-degenerate

morphism on X . Then D

�

is given by

D

�

= fE + div(

r

X

i=0

a

i

f

i

) : (a

0

: : : : : a

r

) 2 P

r

g ;

be
ause

P

i

a

i

f

i

= 0 , a

i

= 0 for ea
h i by Lemma 1.2. Therefore, sin
e the point

(a

0

: : : : : a

r

) 
an be identify with the hyperplane H of equation

P

i

a

i

X

i

= 0,

D

�

= f�

�

(H) : H hyperplane in P

r

g ;(1.1)

where �

�

(H) = E + div(

P

i

a

i

f

i

) is the pull-ba
k of H by �.

Lemma 1.10. We have �

�

(H) = (T Æ �)

�

(T (H)), where T 2 Aut(P

r

) and H is a

hyperplane in P

r

.

Proof. The result follows from the fa
ts that E

�

= E

TÆ�

and that T (H) :

P

i

b

i

Y

i

= 0,

where (b

0

; : : : ; b

r

) = (a

0

; : : : ; a

r

)A

�1

, A being the matrix de�ning T andH :

P

i

a

i

X

i

=

0.
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Lemma 1.11. With the aforementioned notation,

(1) P 2 Supp(�

�

(H)), �(P ) 2 H; i.e, Supp(�

�

(H)) = �

�1

(�(X ) \H);

(2) For P

1

2 �

�1

(�(P )), P

1

2 Supp(�

�

(H)), �

�1

(�(P )) � Supp(�

�

(H));

(3) d := deg(D) = deg(�)deg(�(X )):

Proof. Let t be a lo
al parameter at P 2 X .

(1) The proof follows from the equivalen
es

P 2 Supp(�

�

(H)), v

P

(div(

X

i

a

i

t

e

P

f

i

)) � 1, (

X

i

a

i

t

e

P

f

i

)(P ) = 0 :

(2) The impli
ation (() is trivial. ()): Let P

2

2 �

�1

(�(P )). Then �(P

1

) = �(P

2

)

whi
h belong to H by part (1). Thus, on
e again by (1) we 
on
lude that P

2

2

Supp(�

�

(H)).

(3) Let H

1

be a hyperplane in P

r

su
h that �(X ) \ H \ H

1

= ;. Denote by h=h

1

the rational fun
tion on P

r

, obtained by dividing the equation of H by the one of H

1

.

Then we obtain a rational fun
tion on X , namely ' := (h=h

1

) Æ � (i.e., the pull-ba
k

of h=h

1

by �). The fun
tion h=h

1

is regular on P

r

n H

1

and hen
e ' is regular on

�

�1

(P

r

nH

1

). Moreover, by the ele
tion of H

1

, we have that v

P

(') � 1 , �(P ) 2 H

and therefore from part (1) we 
on
lude that v

P

(') � 1 , P 2 Supp(�

�

(H)). From

the de�nition of ' we even 
on
lude that �

�

(H) = div

0

(').

Now suppose that �(P ) = Q 2 �(X )\H is non-singular; let u be a lo
al parameter at

Q and set i

P

:= v

P

(u) (the rami�
ation index at P ). By 
onsidering h=h

1

as a fun
tion

on �(X ) we have v

P

(�

�1

(H)) = v

P

(') = i

P

v

Q

(h=h

1

), and by the produ
t formula we

also have

X

P2�

�1

(Q)

v

P

(�

�1

(H)) = deg(�)v

Q

(h=h

1

) :

Now take H su
h that every point in �(X)\H is non-singular (this is possible be
ause

�(X ) has a �nite number of singular points and so we 
an apply Bertini's theorem).

Then from the above equation,

d = deg(�)

X

Q2�(X )\H

v

Q

(h=h

1

) :

It turns out that v

Q

(h=h

1

) = I(�(X ); H;Q) (
f. [45, Ex.6.2℄), and the result follows.

>From this lemma and its proof we obtain:

Corollary 1.12. Let � : X ! P

r

be a non-degenerate morphism.

(1) If � is birational; i.e., deg(�) = 1, then deg(D

�

) = deg(�(X )).
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(2) If X � P

r

and � is the in
lusion morphism, then

D

�

= fX �H : H hyperplane in P

r

g ;

where X �H =

P

P

I(X ; H;P ) is the interse
tion divisor of X and H.

1.4. Relation between linear series and morphisms. De�ne the following sets:

� L = L

r

:= fD

B

: D linear series with dim(D) = rg;

� M =M

r

:= fh�i : � : X ! P

r

non-degenerate morphismg, where

h�i := fT Æ � : T 2 Aut(P

r

)g denotes the proje
tive equivalent 
lass of �.

>From Se
ts. 1.2 and 1.3 we have two maps, namely

M =M

r

: L !M; D

B

7! h
oordinate representation of �

D

Bi ;

and

L = L

r

:M! L; h�i 7! D

�

:

We have M Æ L = id

M

by de�nition, and L ÆM = id

L

by Lemma 1.4. Therefore,

Lemma 1.13. The set of base-point-free linear series of dimension r is equivalent to

the set of proje
tive equivalent 
lass of non-degenerate morphism from X to P

r

.

Remark 1.14. The fa
t that (L ÆM)(D

B

) = D

B

means that

D

B

= f�

�

(H) : H hyperplane in P

r

g � jE � Bj ;

where � : X ! P

r

is the non-degenerate morphism determinated, up to an automor-

phism of P

r

, by a base of D

0

.

1.5. Hermitian invariants; Weierstrass semigroups I. Let D be a g

r

d

on X , say D

�

=

P(D

0

) � jEj, and P 2 X . We 
ontinue the study of the linear series D

i

(P ) started in

Se
t. 1.2. Re
all that D

i

(P )

0

= D

0

\ L(E � iP ) and that D

i

(P ) � D

i+1

(P ).

De�nition. A non-negative integer j is 
alled a (D; P )-order (or an Hermitian P -

invariant), if D

j

(P ) % D

j+1

(P ).

>From Lemma 1.3, there exist r + 1 (D; P )-orders, say

j

0

(P ) = j

D

0

(P ) < : : : < j

r

(P ) = j

D

r

(P ) :

For i = 0; : : : ; r,

j

i

(P ) = minfv

P

(E) + v

P

(f) : f 2 D

j

i

(P )

(P )

0

g ;

and thus D

j

i

(P ) is a g

r�i

d

on X .
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Lemma 1.15. (Esteves-Homma [21, Lemma 1℄) For P;Q 2 X , P 6= Q,

j

i

(P ) + j

r�i

(Q) � d :

Proof. Sin
e dim(D

j

i

(P )

(P )\D

j

r�i

(Q)

(Q)) � 0, there exists D 2 D

j

i

(P )

(P )\D

j

r�i

(Q)

(Q)

and the result follows.

This result will be 
omplemented by Corollary 2.14.

Remark 1.16. (i) Sin
e j

0

(P ) equals b(P ), D is base-point-free if and only if j

0

(P ) = 0

for ea
h P 2 X . Moreover, j is a (D; P )-order if and only if j�b(P ) is a (D

B

; P )-order.

(ii) j

r

(P ) � d as D

i

(P ) = ; for i > d.

(iii) Let j 2 N

0

. From Lemma 1.3, the following statements are equivalent:

(1) j is a (D; P )-order;

(2) 9 D 2 D su
h that v

P

(D) = j;

(3) 9 f 2 D

0

su
h that v

P

(E) + v

P

(f) = j;

(4) 9 f 2 D

0

su
h that f 2 L(E � jP ) n L(E � (j + 1)P );

(5) dim

F

(D

0

j

(P )) = dim

F

(D

0

j+1

(P )) + 1;

(6) dim(D

j

(P )) = dim(D

j+1

(P )) + 1.

(iv) Let D = jEj; i.e., D

0

= L(E), C a 
anoni
al divisor on X , and j 2 N

0

. From

D

0

j

(P ) = L(E� jP ), the Riemann-Ro
h theorem, and part(iii)(5) above, the following

statements are equivalent:

(1') j is a (jEj; P )-order;

(2') 9 f 2 L(E) su
h that v

P

(E) + v

P

(f) = j;

(3') 9 f 2 L(E � jP ) n L(E � (j + 1)P );

(4') L(C � E + (j + 1)P ) = L(C � E + jP );

(5') 6 9 f 2 L(C � E + (j + 1)P ) su
h that v

P

(C � E) + v

P

(f) = �(j + 1).

Example 1.17. Let g be the genus of X , and D := jEj with d = deg(E) � 2g. For

P 2 X , we 
ompute some (D; P )-orders. We have j

i

(P ) = i for 0 � i � d� 2g. Indeed

for su
h an i, deg(C � E + (i + 1)P ) < 0 and then Remark 1.16(iv(4')) is trivially

satis�ed. In parti
ular, D is base-point-free.

Example 1.18. We 
laim that for a given sequen
e of non-negative integers `

0

< : : : <

`

r

, there exists a 
urve Y, a point P

0

2 Y, and a linear series F on Y su
h that the

sequen
e equals the (F ; P

0

)-orders. Indeed, let Y := P

1

(F) and x a trans
endental

element over F. Set P

1

:= (0 : 1), and P

a

:= (1 : a) for a 2 F. We assume

div(x) = P

0

� P

1

, v

P

a

(x� a) = 1 for a 2 F. De�ne

E := `

r

P

1

; and F

0

:= hx

`

0

; : : : ; x

`

r

i � F(x) :

Then F := fE+div(f) : f 2 F

0

g is a g

r

`

r

on Y. We have E+div(x

`

i

) = `

i

P

0

+(`

r

�`

i

)P

1

and hen
e the (F ; P

0

)-orders are `

0

; : : : ; `

r

. In addition, we have that j

F

0

(P ) = 0 for
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P 6= P

0

; i.e., the base lo
us of F is B

F

= `

0

P

0

. Moreover, for the morphism asso
iated

to F � = (x

`

0

: : : : : x

`

r

) we have E

�

= `

r

P

1

� `

0

P

0

. If `

r

= r, then F is 
omplete

and base-point-free, and the 
urve �(Y) is the so-
alled rational normal 
urve in P

r

.

Conversely, if F is 
omplete, say F = jE

1

j, then E

1

= E by Lemma 1.4, and so ` = r.

We will introdu
e next the so-
alled Weierstrass semigroup. To begin with we state a

de�nition whi
h is motivated by Remark 1.16(iv)(5').

De�nition. Let D 2 Div(X ) and ` 2 N

0

. We say that ` is a (D;P )-gap if does not

exist f 2 L(D + `P ) su
h that v

P

(D) + v

P

(f) = �`.

We have that

` is a (D;P )-gap if and only if `� 1 is a (jC �Dj; P )-order ;

where C is a 
anoni
al divisor on X . Denote by K = K

X

:= jCj the 
anoni
al linear

series on X .

De�nition. The (0; P )-gaps are 
alled the Weierstrass gaps at P . The Weierstrass

semigroup at P is the set

H(P ) := N

0

nG(P ) ;

where

G(P ) := f` 2 Z

+

: ` Weierstrass gap at Pg :

The elements of H(P ) are 
alled Weierstrass non-gaps at P .

Lemma 1.19. Let g be the genus of X . Then

(1) #G(P ) = g (Weierstrass gap theorem);

(2) For h 2 N

0

, the following statements are equivalent:

(i) h 2 H(P );

(ii) 9 f

h

2 L(hP ) su
h that v

P

(f

h

) = �h;

(iii) 9 f

h

2 k(X) su
h that div

1

(f

h

) = hP ;

(iv) `(hP ) = `((h� 1)P ) + 1:

Proof. Sin
e dim(K) = g � 1 and

G(P ) = fj

K

0

(P ) + 1; : : : ; j

K

g�1

(P ) + 1g ;

part (1) follows. Remark 1.16(iv) implies part (2).

We see now that H(P ) is indeed a semigroup.

Corollary 1.20. The set H(P ) is a sub-semigroup of (N

0

;+) su
h that

H(P ) � f2g; 2g + 1; 2g + 2; : : :g ;

where g is the genus of X .
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Proof. It follows from Lemma 1.19(2.(iii)) and j

K

g�1

(P ) � deg(K) = 2g � 2.

Let (n

i

(P ) : i = 0; 1; : : : ) denote the stri
tly in
reasing sequen
e that enumerates the

Weierstrass semigroup H(P ). From Lemma 1.19(2)(iv), `(n

i

(P )P ) = i + 1 and from

Corollary 1.20, n

i

(P ) = g + i for i � g.

Remark 1.21. For g = 0, K = ; and hen
e H(P ) = N

0

for any P 2 X . If g = 1, then

dim(K) = 0 and hen
e H(P ) = f0; 2; 3; : : :g for any P 2 X .

Corollary 1.22. If X is a 
urve of genus g � 1, then K is base-point-free.

Proof. We have to show that j

0

(P ) := j

K

0

(P ) = 0 for ea
h P 2 X . Suppose that

j

0

(P

0

) � 1 for some P

0

2 X . Then 1 2 H(P

0

) and hen
e H(P

0

) = N

0

. This implies

g = 0.

Example 1.23. We 
onsider 
omplete linear series on X arising fromWeierstrass non-

gaps whi
h will be useful for appli
ations to optimal 
urves. Let P 2 X , set n

i

:= n

i

(P )

and 
onsider D := jn

r

P j. Then

(1) D is a g

r

n

r

base-point-free on X ;

(2) The (D; P )-orders are n

r

� n

i

, i = 0; : : : ; r.

In fa
t, we already noti
ed that dim(D) = r; P 
annot be a base point of D by Lemma

1.19(2)(iv); if Q 6= P , then D := n

r

P +div(1) 2 D and v

Q

(D) = 0. This prove (1). To

see (2), let f

i

2 F(X ) su
h that div(f

i

) = div

0

(f

i

)�n

i

P ; 
f. Lemma 1.19(2)(iii). Then

n

r

P + div(f

i

) = (n

r

� n

i

)P + div

0

(f

i

) ;

and the result follows.

Lemma 1.24. Let f 2 F(X ) su
h that div

1

(f) = n

1

(P )P . Then f is a separating

variable of F(X )jF.

Proof. If F(X )jF(f) were not separable, then f = g

p

, g 2 F(X ) by [96, Prop. III.9.2℄.

Then n

1

(P )=p would be a non-gap at P , a 
ontradi
tion.

By de�nition, a Weierstrass semigroup H(P ) belongs to the 
lass of numeri
al semi-

group; i.e., it is a sub-semigroup H of (N

0

;+) whose 
omplement in N

0

, G(H) :=

N

0

nH, is �nite. For su
h a semigroup H, g(H) := #(N

0

nH) is 
alled the genus of H.

We let (n

i

(H) : i 2 N) (resp. (`

i

(H) : i = 1; : : : ; g(H))) denote the stri
tly in
reasing

sequen
e that enumerates H (resp. G(H)). Clearly n

i

(H) = g(H) + i for i � g(H),

and n

i

(H) = 2i for i = 1; : : : ; g(H) whenever n

1

(H) = 2. H is 
alled hyperellitpi
 if

2 2 H (note that 2 2 H if and only if n

1

(H) = 2, whenever g(H) � 1). This de�ni-

tion is motivated by the so-
alled hyperellipti
 
urves, namely those 
urves admitting

a g

1

2

, or equivalently those admitting rational fun
tions of degree two. Indeed, X is

hyperellipti
 if and only if there exists P 2 X su
h that 2 2 H(P ) (see Example 2.28).
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Lemma 1.25. (Bu
hweitz [7, I.3℄, Oliveira [81, Thm. 1.1℄) If n

1

(H) � 3; then n

i

(H) �

2i+ 1 for i = 1; : : : ; g(H)� 2. In parti
ular, n

g�1

(H) � 2g(H)� 2:

The weight of H is w(H) :=

P

g(H)

i=1

(`

i

(H)� i). It is easy to see that

w(H) = (3g(H)

2

+ g(H))=2�

g(H)

X

i=1

n

i

(H) ;(1.2)

and that w(H) = g(H)(g(H)� 1)=2 if H is hyperellipti
. Now Lemma 1.25 and (1.2)

imply:

Corollary 1.26. (1) 0 � w(H) � g(H)(g(H)� 1)=2;

(2) w(H) = g(H)(g(H)� 1)=2 if and only if H is hyperellipti
;

(3) w(H) � (g(H)

2

� 3g(H) + 4)=2 if n

1

(H) � 3:

Remark 1.27. (Kato [59℄) If n

1

(H) � 3, we indeed have w(H) � g(H)(g(H) � 1)=3,

for g(H) = 3; 4; 6; 7; 9; 10 and w(H) � (g(H)

2

� 5g(H) + 10)=2, otherwise.

De�nition. A numeri
al semigroup H is 
alled Weierstrass if there exist a 
urve X

and a point P 2 X su
h that H equals the Weierstrass semigroup H(P ) at P .

Remark 1.28. If H is Weierstrass, say H = H(P ) on a 
urve X of genus g = g(H),

then Lemma 1.25 follows from Castelnuovo's genus bound (Lemma 1.6): We want to

show that n

i

:= n

i

(P ) � 2i+ 1 provided that n

1

:= n

1

(P ) � 3 and 1 � i � g � 2. Let

i be the least integer for whi
h n

i

� 2i. Then i � 2, n

i�1

= 2i� 1, and n

i

= 2i. Thus

D := jn

i

P j is a simple g

i

n

i

on X ; therefore Castelnuovo's genus bound implies g � i+1,

a 
ontradi
tion.

A numeri
al semigroup H is Weierstrass if any of the following 
onditions hold:

� either g(H) � 7, or g(H) = 8 and 2n

1

(H) > `

g

(H); see Komeda [63℄;

� n

1

(H) � 5; see Komeda [61℄, [64℄, Ma
la
hlan [75, Thm. 4℄;

� either w(H) � g(H)=2 or g(H)=2 < w(H) � g(H)� 1 and 2n

1

(H) > `

g

(H); see

Eisenbud-Harris [19℄, Komeda [62℄;

We remark that the underlying 
urve in these examples is de�ned over the 
omplex

numbers.

In 1893, Hurwitz [57℄ asked about the 
hara
terization of Weierstrass semigroups; see

[8, p. 32℄ and [19, p. 499℄ for further histori
al information. Long after that, in 1980

Bu
hweitz (see Corollary 1.30) showed the existen
e of a non-Weierstrass semigroup as

a 
onsequen
e of the following.
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Lemma 1.29. (Bu
hweitz's ne
essary 
ondition, [8, p. 33℄) Let H be a numeri
al

semigroup. For an integer n � 2, let nG(H) be the set of all sums of n elements of

G(H). If H is Weierstrass, then

#nG(H) � (2n� 1)(g(H)� 1) :(1.3)

Proof. We have that g := g(H) is the genus of the underlying 
urve, say X . For a


anoni
al divisor C on X , we observe that `(nC) = (2n� 1)(g � 1) by the Riemann-

Ro
h theorem. Let ` := `

1

+ : : :+ `

n

2 nG(H). From Remark 1.16(iv)(2'), there exists

f

i

2 L(C) su
h that v

P

(C) + v

P

(f

i

) = `

i

� 1 for i = 1; : : : ; n. Then f

`

:= f

1

: : : f

n

2

L(nC) and being the map ` 7! f

`

inje
tive, the result follows.

Corollary 1.30. ([8, p. 31℄) f1; : : : ; 12; 19; 21; 24; 25g is the set of gaps of a numeri
al

semigroup H of genus 16 whi
h is not Weierstrass.

Proof. We apply the 
ase n = 2 in Lemma 1.29. An easy 
omputations shows that

2G(H) = [2; 50℄ n f39; 41; 47g. Then #2G(H) = 46 > 3g� 3 = 45 and so H 
annot be

Weierstrass.

In addition, Bu
hweitz (lo
. 
it.) showed that for every integer n � 2 there exist

numeri
al semigroups whi
h do not satisfy (1.3). Further examples of su
h semigroups

were given in [104, Se
t. 4.1℄ and Komeda [65℄. On the other hand, what 
an we

say about semigroups H that satisfy (1.3) for ea
h n � 2 ? In fa
t, there exist

at least two 
lasses of su
h semigroups, namely symmetri
 semigroups (resp. quasi-

symmetri
 semigroups); i.e., those H with `(H) = 2g(H)�1 (resp. `(H) = 2g(H)�2).

Indeed, equality in (1.3) for ea
h n 
hara
terize symmetri
 semigroups (see Oliveira

[81, Thm. 1.5℄), and Oliveira and St�ohr [82, Thm. 1.1℄ noti
ed that #nG(H) =

(2n�1)(g�1)� (n�2) whenever H is quasi-symmetri
. In 1993, St�ohr [103, S
holium

3.5℄ 
onstru
ted symmetri
 semigroups whi
h are not Weierstrass. Indeed, symmetri


non-Weierstrass semigroups of any genus larger than 99 
an be 
onstru
ted (lo
. 
it.)

by using the Bu
hweitz's semigroup (Corollary 1.30) as a building blo
k. A similar

result was obtained for quasi-symmetri
 semigroups [82, Thm. 5.1℄ and these examples

were generalized in [104, Se
t. 4.2℄. We stress that any symmetri
 (resp. quasi-

symmetri
) semigroup is a Weierstrass semigroup on a Gorenstein (resp. redu
ible

Gorenstein) 
urve; see [98℄ (resp. [82℄).

Finally, we mention that Hurwitz's question for numeri
al semigroups that satisfy (1.3)

for ea
h n � 2 is 
urrently an open problem.

2. Weierstrass point theory

In this se
tion we study Weierstrass Point Theory of linear series on 
urves from St�ohr-

Volo
h's paper [99, x1℄. Other referen
es are Farkas-Kra [22, III.5℄, Homma [54, Se
ts.

1,2℄, Laksov [71℄, F.K. S
hmidt [88℄, [89℄.
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Let X be a 
urve over an algebrai
ally 
losed �eld F of 
hara
teristi
 p � 0. Let D be

a g

r

d

on X , say D

�

=

P

r

(D

0

) � jEj.

In Se
t. 1.5, to any point P 2 X we have assigned a sequen
e of (r + 1) integers,

namely the (D; P )-orders. Here we study the behaviour of su
h sequen
es for general

points of X ; i.e, for points in an open Zariski subset of X . In order to do that we use

\wronskians" on X ; i.e., 
ertain fun
tions in F(X ) de�ned via derivatives. To avoid

restri
tions on the 
hara
teristi
 p, we use Hasse derivatives.

2.1. Hasse derivatives. Let x be a tras
endental element over F. For i; j 2 N

0

, set

D

i

x

x

j

:=

�

j

i

�

x

j�i

;

and extend itF-linearly on F[x℄. The F-linear mapD

i

x

is 
alled the i-th Hasse derivative

on F[x℄. i! D

i

x

x

j

is the usual i-th derivative

d

i

dx

i

, and D

i

x

6= 0, as D

i

x

x

i

= 1, but

d

d

i

x

= 0

for i � p > 0.

Remark 2.1. For f(x) 2 F[x℄, D

i

x

f(x) is the 
oeÆ
ient of u

i

in the expansion of f(x+u)

as a polynomial in u.

The F-linear maps D

i

x

, i 2 N

0

, satisfy the following four properties:

(H1) D

0

x

= id;

(H2) D

i

x

jF

= 0 for i � 1;

(H3) D

i

x

(fg) =

P

i

j=0

D

j

x

fD

i�j

x

g (Produ
t Rule);

(H4) D

i

x

ÆD

j

x

=

�

i+j

i

�

D

i+j

x

.

Properties (H1), (H2) and (H4) easily follow from the de�nition of D

i

x

, while (H3)

follows by 
omparing the 
oeÆ
ients of (fg)(x+ u) and f(x+ u)g(x+ u).

Next one extends D

i

x

to F(x) and then to ea
h �nite separable extension of F(x). This

is done in just one way; moreover, the extended map remains F-linear and still satis�es

the four aforementioned properties. The extension on F(x) is 
onstru
ted as follows.

By (H1) and (H3) it is enough to de�ne D

i

x

(1=f) for i � 1 and f 6= 0. From f(1=f) = 1,

(H2) and (H3) one �nds the following re
ursive formula:

i

X

j=0

D

j

x

(1=f)D

i�j

x

f = 0 :

For i = 1 one obtains the expe
ted relation D

1

x

(1=f) = �(D

1

x

f)=f

2

, and in general [38,

p. 119℄

D

i

x

(1=f) =

i

X

j=1

(�1)

j

f

j+1

X

i

1

;::: ;i

j

�1; i

1

+:::+i

j

=i

D

i

1

x

f : : :D

i

j

x

f :
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Remark 2.2. The maps D

i

x

on F(x), i 2 N

0

, are 
hara
terized by the following four

properties:

(i) they are F-linear;

(ii) they satisfy (H1) and (H3) above;

(iii) D

1

x

x = 1;

(iv) D

i

x

x = 0 for i � 2.

To see this, let �

i

, i 2 N

0

, be maps on F(x) satisfying (i), (ii), (iii) and (iv). From the

formula for D

i

x

(1=f) above, is enough to show that �

i

(x

j

) = D

i

x

x

j

(�) for i; j 2 N

0

.

Now, sin
e the �

i

's satisfy (H3), it follows [47, Lemma 3.11℄

�

i

(x

j

) = jx

j�1

�

i

(x) +

j

X

`=2

i�1

X

m=1

x

j�`

(�

m

(x))(�

i�m

(x

`�1

)) ;(2.1)

and we obtain (�) by indu
tion on i and j.

Remark 2.3. The maps D

i

x

, i 2 N

0

, on F(x) have also a unique extension to the

Laurent series F((x)) whi
h satisfy (H1), (H2), (H3), and (H4) above. One sets

D

i

x

(

P

j

a

j

x

j

) :=

P

j

�

j

i

�

a

j

x

i�j

, see [47, p. 12℄.

Next we extend D

i

x

to a �nite separable extension KjF(x). Let y 2 K be su
h that

K = F(x; y), and F (x)[Y ℄ the minimal polynomial of y over F(x). Then we de�ne

D

i

x

y

m

by using F (x; y) = 0 and (2.1). For example, for i = 1 we obtain

F

Y

(x; y)D

1

x

y +

X

j

(D

1

x

a

j

(x))y

j

= 0 ;(2.2)

so that D

1

x

y is well de�ned as F

Y

(x; y) 6= 0. Noti
e that these extensions satisfy (H1),

(H2), (H3) and (H4) above and depend on the element y. However, it is a matter of

fa
t that the F-linear maps D

i

x

on F(x) admit a unique extension to F-linear maps on

K satisfying the aforementioned (H1), (H2), (H3), and (H4); see [46℄.

Therefore, F(X ) is equipped with F-linear maps D

i

x

su
h that (H1), (H2), (H3) and

(H4) above hold true, with x being a separating variable of F(X )jF. If y is another

separating variable of F(X )jF, relations among the D

i

x

's and the D

j

y

's are given by the

so 
alled 
hain rule; see (2.3) and (2.4).

Remark 2.4. For i 2 N

0

, let D

i

be F-linear maps on a F-algebra K satisfying (H1),

(H2), (H3) and (H4) above. From (H4),

i! D

i

= (D

1

)

i

:= D

1

Æ : : : ÆD

1

i times ;

so that ea
h D

i

is determinated by D

1

provided that p = 0. Suppose now p > 0.

Claim. Let 0 � a; b < p, �; � 2 N. Then

(1) D

ap

�

+bp

�

= D

ap

�

ÆD

bp

�

.
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(2) D

ap

�

= (D

p

�

)

a

=a!.

Proof. The statements are 
onsequen
e of (H4) and the following property of binomial

numbers: if i =

P

�

a

�

p

�

, j =

P

�

b

�

p

�

are the p-adi
 expansion of i; j 2 N, then

�

i

j

�

=

Q

�

�

a

�

b

�

�

.

Therefore in positive 
hara
teristi
 the D

i

's are determinated by D

1

; D

p

; D

p

2

; : : : .

A F-linear map D on F(X ) satisfying D(fg) = fD(g)+gD(f), is 
alled a F-derivation

on F(X ). For example, D

1

x

is a derivation on F(X ), where x is a separating variable

of F(X )jF. From (2.1) follows that two F-derivations Æ

1

and Æ

2

on F(X ) are equal if

Æ

1

(x) = Æ

2

(x).

Now let y be another separating variable of F(X )jF. Sin
e the F-derivations Æ

1

:= D

1

y

and Æ

2

:= D

1

y

(x)D

1

x

satisfy Æ

1

(x) = Æ

2

(x), we obtain the usual 
hain rule, namely

D

1

y

= D

1

y

(x)D

1

x

:(2.3)

To generalize this relation to higher derivatives, let T be a tras
endental element over

F(X ). The maps D

i

x

and D

j

y


an be read o� from the homomorphisms of F-algebras

�

x

; �

y

: F(X)! F(X)[[T ℄℄ de�ned respe
tively by

�

x

(f) :=

X

i�0

D

i

x

(f)T

i

; and �

y

(f) :=

X

i�0

D

i

y

(f)T

i

:

Let h : F(X )[[T ℄℄! F(X )[[T ℄℄ be the F-homomorphism de�ned by h

jF(X )

= id

jF(X )

and

h(T ) :=

P

i�1

D

i

y

(x)T

i

. Sin
e D

1

y

(x) 6= 0 by (2.3), h is an automorphism of F(X )[[T ℄℄.

Consider the F-homomorphism � : F(X) ! F(X)[[T ℄℄ given by � := h

�1

Æ �

y

. For

f 2 F(X ), set �(f) :=

P

i�0

�

i

(f)T

i

. Then the maps �

i

are F-linear on F(X ) and

satisfy properties (H1) and (H3) above. Write h(T ) = TU , U = D

1

y

(x)+D

2

y

(x)T + : : : .

Claim. Let i 2 N

0

and f 2 F(X ). Then �

0

(f) = D

0

y

(f) and for i � 1 the following

holds

D

i

y

(f) =

i

X

j=1

a

j

�

j

(f) ;

where a

j

is the 
oeÆ
ient of T

i�j

in U

j

. In parti
ular, a

1

= D

i

y

(x), a

i

= (D

1

y

x)

i

.

Proof. Write �

y

= h Æ �. The 
oeÆ
ient of T

i

in (h Æ �)(f) 
an be read o� from

P

i

j=0

a

j

(f)(TU)

j

, and the 
laim follows.

Then we have �

1

(x) = 1 and �

i

(x) = 0 for i � 2. Therefore from Remark 2.2, �

i

= D

i

x

on F(x) and hen
e also on F(X ). This implies the generalized 
hain rule:

�

y

= h Æ �

x

;
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or equivalently

D

i

y

=

i

X

j=1

f

j

D

j

x

; i = 1; 2 : : : ;(2.4)

where f

j

2 F(fD

m

y

(x) : m = 1; 2; : : :g). Observe that f

1

= D

i

y

(x) and f

i

= (D

1

y

x)

i

.

Remark 2.5. We mention two further properties of Hasse derivatives regarding prime

powers of rational fun
tions. Let f 2 F(X ), x a separating variable of F(X )jF, and q

a power of p = 
har(F) > 0. We have

(i) D

i

x

f

q

= (D

i=q

x

f)

q

if q divides i, and D

i

x

f

q

= 0 otherwise;

(ii) ([46, Satz 10℄) 9 g 2 F(X ) su
h that f = g

q

if and only if D

i

x

(f) = 0 for

i = 1; : : : ; q � 1.

De�nition. A wronskian on X is a rational fun
tion of type

W

`

0

;::: ;`

r

f

0

;::: ;f

r

;x

:= det((D

`

i

x

f

j

)) ;

where `

0

< : : : < `

r

is a sequen
e of non-negative integers, x is a separating variable of

F(X )jF, and f

0

; : : : ; f

r

2 F(X ). We set

A(f

0

; : : : ; f

r

; x) := f(m

0

; : : : ; m

r

) 2 N

r+1

0

: m

0

< : : : < m

r

; W

m

0

;::: ;m

r

f

0

;::: ;f

r

;x

6= 0g :

2.2. Order sequen
e; Rami�
ation divisor. Let P 2 X and t be a lo
al parameter at

P . Let

j

0

= j

0

(P ) < : : : < j

r

= j

r

(P )

denote the (D; P )-orders. From Remark 1.16(iii)(3) there exists f

`

2 F(X ) su
h that

v

P

(t

v

P

(E)

f

`

) = j

`

; ` = 0; : : : ; r :

Claim. ff

0

; : : : ; f

r

g is a F-base of D

0

.

Proof. If there exists a non-trivial relation

P

i

a

i

f

i

= 0 with a

i

2 F, then we would

have v

P

(f

i

) = v

P

(f

`

) for i 6= ` and so j

i

= j

`

, a 
ontradi
tion.

De�nition. The aforementioned F-base ff

0

; : : : ; f

r

g is 
alled a (D; P )-base (or (D; P )-

Hermitian base).

Remark 2.6. Let ff

0

; : : : ; f

r

g be a (D; P )-base. For i = 0; : : : ; r, D

0

i

(P ) = D

0

\L(E �

j

i

P ) so that

D

0

j

i

(P ) = hf

i

; : : : ; f

r

i ;

or equivalently

D

j

i

(P ) = fE + div(

r

X

`=i

a

`

f

`

) : (a

i

: : : : : a

r

) 2 P

r�i

(F)g :



ST

�

OHR-VOLOCH'S APPROACH TO THE HASSE-WEIL BOUND AND APPLICATIONS 21

Thus

j

i

(P ) = minfv

P

(

r

X

`=i

a

`

f

`

t

v

P

(E)

) : (a

i

: : : : : a

r

) 2 P

r�i

(F)g :

Let ff

0

; : : : ; f

r

g be a (D; P )-base. Set g

`

:= t

v

P

(E)

f

`

.

Lemma 2.7. If m

0

< : : : < m

r

is a sequen
e of non-negative integers su
h

that det(

�

j

`

m

i

�

) 6� 0 (mod p), then (m

0

; : : : ; m

r

) 2 A(g

0

; : : : ; g

r

; t). In parti
ular,

(j

0

; : : : ; j

r

) 2 A(g

0

; : : : ; g

r

; t).

Proof. Let g

`

=

P

1

s=j

`




`

s

t

s

, 


`

j

`

6= 0, be the lo
al expansion of g

`

at P . Set C :=

Q

r

`=0




`

j

`

.

Then

W

m

0

;::: ;m

r

g

0

;::: ;g

r

;t

= det(

1

X

s=j

`

�

s

m

i

�




`

s

t

s�m

i

)

= Ct

�

P

i

m

i

det(

1

X

s=j

`

�

s

m

i

�




`

s




`

j

`

t

s

)

= Cdet(

�

j

`

m

i

�

)t

P

i

(j

i

�m

i

)

+ : : : 6= 0 ;

and the result follows.

For ` 2 N

0

, set D

`

x

� := (D

`

x

g

0

; : : : ; D

`

x

g

r

). Sin
e ea
h 
oordinate of this ve
tor is

regular at P , we also set D

`

x

�(P ) := (D

`

x

g

0

(P ); : : : ; D

`

x

g

r

(P )).

Then, for 0 � m

0

< : : : < m

r

, (m

0

; : : : ; m

r

) 2 A(g

0

; : : : ; g

r

; t) if and only if

D

m

0

t

�; : : : ; D

m

r

t

� are F(X )-linearly independent.

S
holium 2.8. (1) Set j

�1

:= 0. For i = 0; : : : ; r,

j

i

= j

D

i

(P ) = minfs > j

i�1

: (D

j

0

t

�)(P ); : : : ; (D

j

i�1

t

�)(P ); (D

s

t

�)(P ) are F-l.i.g ;

(2) Let m

0

< : : : < m

r

0

be non-negative integers, with r

0

� r, su
h that the ve
tors

(D

m

0

t

�)(P ); : : : ; (D

m

r

0

t

�)(P ) are F-linearly independent. Then j

i

� m

i

for i =

0; : : : ; r

0

:

Proof. (1) From Lemma 2.7 and its proof, the ve
tors (D

j

0

t

�)(P ); : : : ; (D

j

i

t

�)(P ) are

F-linearly independent and

D

j

i

t

g

`

(P ) =

8

>

>

<

>

>

:

0 if ` > i ;




`

j

`

if ` = i ;




`

j

i

if ` < i :

Let j

i�1

< s < j

i

. For ` = 0; : : : ; i� 1, we have ve
tors of type

(D

j

`

t

�)(P ) = (�; : : : ; �; 


`

j

`

; 0; : : : ; 0) ;
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with (r�`) zeros and where � denotes an element of F. Sin
e the last (r� i+1) entries

of the ve
tor (D

s

t

�)(P ) are zeroes, (1) follows.

(2) From (1), dim

F

hf(D

s

�)(P ) : s = 0; : : : ; j

i

� 1gi = i so that j

i

� 1 < m

i

.

In Z

r+1

we have a partial order given by the so-
alled lexi
ographi
 order <. For

�; � 2 Z

r+1

, � < � if in the ve
tor � � � the left most non-zero entry is positive. This

order is a well-ordering on N

r+1

, see e.g. [16, p. 55℄. Let

E := (�

0

; : : : ; �

r

)

be the minimum (in the lexi
ographi
 order) of A(g

0

; : : : ; g

r

; t).

Lemma 2.9. (1) �

0

= 0;

(2) �

1

= 1 whenever p does not divide deg(D)� deg(B

D

);

(3) For i = 1; : : : ; r;

�

i

= minfs > �

i�1

: D

�

0

t

�; : : : ; D

�

i�1

t

�;D

s

t

� are F(X )-l.i.g :

Proof. (1) Suppose that �

0

> 0. Then D

0

t

� =

P

r

j=1

h

j

D

�

j

t

� with some h

j

0

2 F(X )

�

,

be
ause (0; �

1

; : : : ; �

r

) < E . Then we repla
e the row D

�

j

0

t

� by D

0

t

� inW

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

so that

(0; �

0

; : : : ; �

j

0

�1

; �

j

0

+1

; : : : ; �

r

) 2 A(g

0

; : : : ; g

r

; t), a 
ontradi
tion to the minimality of

E .

(2) As in part (1) we have that �

1

= 0 if and only if D

1

t

g

`

= 0 (or equivalently D

i

t

g

`

= 0

for 1 � i < p) for any ` = 0; : : : ; r. Then ea
h g

`

is a p-power by Remark 2.5(ii), and

so p divides v

P

(E)� b(P ) by Lemma 1.4; i.e., p divides deg(D)� deg(B

D

).

(3) Clearly D

�

0

t

�; : : : ; D

�

i

t

� are F(X )-linearly independent. Let �

i�1

< s < �

i

. Sin
e

(�

0

; : : : ; �

i�1

; s; �

i+1

; : : : ; �

r

) < E , there exists a relation of type

D

s

t

� =

i�1

X

j=0

h

j

D

�

j

t

�+

r

X

j=i+1

h

j

D

�

j

t

� ;

with h

j

2 F(X ). We 
laim that h

j

= 0 for j � i + 1. Indeed, suppose that h

j

0

6= 0

for some j

0

� i + 1. Then by repla
ing D

�

j

0

t

� by D

s

t

� in W

�

0

;:::�

r

g

0

;::: ;g

r

;t

we would have

that (�

0

; : : : ; �

i�1

; s; �

i

; : : : ; �

j

0

�1

; �

j

0

+1

; : : : ; �

r

) 2 A(g

0

; : : : ; g

r

; t), a 
ontradi
tion to the

minimality of E . This �nish the proof.

Corollary 2.10. (1) Let (m

0

; : : : ; m

r

) 2 A(g

0

; : : : ; g

r

; t). Then for ea
h i, �

i

� m

i

.

In parti
ular, �

i

� j

i

= j

i

(P );

(2) If 0 � m

0

< : : : < m

r

are integers su
h that det(

�

j

i

m

`

�

) 6� 0 (mod p), then �

i

� m

i

for ea
h i:

Proof. From Lemma 2.9,

hfD

`

t

� : ` = 0; : : : ; �

i

� 1gi = hfD

�

j

t

� : j = 0; : : : ; i� 1gi :(2.5)
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If �

i

> m

i

, we would have

dim

F(X )

(fD

`

t

� : ` = 0; : : : ; �

i

� 1g) � dim

F(X )

(fD

m

`

t

� : ` = 0; : : : ; ig) � i + 1 ;

a 
ontradi
tion. This proves (1). Now (2) follows from Lemma 2.7 and (1).

Proposition 2.11. (1) If h

i

=

P

a

ij

g

j

with (a

ij

) 2M

r+1

(F), then

W

�

0

;::: ;�

r

h

0

;::: ;h

r

;t

= det((a

ij

))W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

;

(2) If f 2 F(X ), then

W

�

0

;::: ;�

r

fg

0

;::: ;fg

r

;t

= f

r+1

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

;

(3) Let x be any separating variable of F(X )jF. Then

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;x

= (D

1

x

t)

P

i

�

i

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

:

Proof. (1) It follows from D

�

`

t

h

i

=

P

a

ij

D

�

`

t

g

j

. Note that this result does not depend

on the minimality of E .

(2) By the produ
t rule (
f. Se
t. 2.1), we have

D

�

i

t

(fg

j

) =

�

i

X

`=0

D

`

t

fD

�

i

�`

t

g

j

:

Then

(D

�

i

t

fg

0

; : : : ; D

�

i

t

fg

r

) = fD

�

i

t

�+

�

i

X

`=1

D

`

t

fD

�

i

�`

t

� :

By (2.5) we 
an fa
tor out f in ea
h row of W

�

0

;::: ;�

r

fg

0

;::: ;fg

r

;t

, and (2) follows.

(3) The proof is similar to (2) but here we use the 
hain rule (2.4) instead of the produ
t

rule. We have

D

�

i

x

g

j

=

�

i

X

`=1

f

`

D

`

t

g

j

;

where f

`

2 F(X ) and f

�

i

= (D

1

x

t)

�

i

. Hen
e

D

�

i

x

� = (D

1

x

t)

�

i

D

�

i

t

�+

�

i

�1

X

`=1

f

`

D

`

t

� ;

and again by (2.5) we 
an fa
tor out (D

1

x

t)

�

i

in ea
h row of W

�

0

;::: ;�

r

g

0

;::: ;g

r

;x

.

Now we see that E depends only on D: Let f

0

0

; : : : ; f

0

r

be any F-base of D

0

and x any

separating variable of F(X )jF; sin
e g

`

= t

v

P

(E)

f

`

, from Proposition 2.11(1)(2) E is

the minimum for A(f

0

0

; : : : ; f

0

r

; t). Moreover by part (3) of that proposition, E is also

the minimum for A(g

0

; : : : ; g

r

; x). Finally, from part (2), E is also the minimum for

A(f

0

0

; : : : ; f

0

r

; x).

De�nition. E = E

D

is 
alled the order sequen
e of D. The order sequen
e of a mor-

phism � is the order sequen
e of D

�

.
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Remark 2.12. Let m

0

< : : : < m

r

be a sequen
e of non-negative integers su
h that

det(

�

j

`

m

i

�

) 6� 0 (mod p). Then �

i

� m

i

for ea
h i by Corollary 2.10(2). We shall dis
uss

the best ele
tion of the m

i

's. In Example 1.18 we have seen that the (D; P )-orders

j

0

< : : : < j

r

are the (D

�

; P

0

)-orders for � = (x

j

0

: : : : : x

j

r

) : P

1

(F) ! P

j

r

and

P

0

= (1 : 0). Observe that

W

n

0

;::: ;n

r

x

j

0

;::: ;x

j

r

;x

= det(

�

j

`

n

i

�

)x

P

i

(j

i

�n

i

)

:(2.6)

Let �

0

; : : : ; �

r

be the D

�

-orders. Then

(1) det(

�

j

i

�

`

�

) 6� 0 (mod p) by (2.6) with n

i

= �

i

, and the de�nition of D

�

-orders;

(2) �

`

� m

`

for ea
h ` by (2.6) with n

i

= m

i

, and Corollary 2.8(2).

This shows that the best way to upper bound the �

i

's is by means of the sequen
e

�

0

; : : : ; �

r

. In addition, from (2.6) and Lemma 2.9 applied to D

�

, we obtain the fol-

lowing.

Corollary 2.13. Let i 2 f0; : : : ; rg and let m

0

< : : : < m

i

be non-negative integers,

su
h that the ve
tors (

�

j

0

m

`

�

; : : : ;

�

j

r

m

`

�

), ` = 0; : : : ; i are F

p

-linearly independent. Then

�

`

� m

`

for ` = 0; : : : ; i.

Corollary 2.14. (Esteves, [20℄)

�

i

+ j

`

(P ) � j

i+`

(P ) ; i+ ` � r :

Proof. (Following Homma [56℄) By means of suitable 
entral proje
tions [20, Lemma

2℄ one 
an assume that i + ` = r. Let D

�

be the linear series on P

1

(F) in Remark

2.12, and �

0

; : : : ; �

r

the D

�

-orders. By Example 1.18, j

r

� j

r

; j

r

� j

r�1

; : : : ; j

r

� j

0

are

the (D

�

; (0 : 1))-orders. Then, for ea
h i, j

r

� j

r�i

� �

i

� �

i

by Corollary 2.10(1) and

Remark 2.12, and the result follows.

Remark 2.15. Corollary 2.14 was �rst noti
ed by Homma [55℄ for D-orders; see also

[28℄ and [56℄.

Now we de�ne the so-
alled rami�
ation divisor of D. Let f

0

0

; : : : ; f

0

r

be any base of D

0

and x any separating variable of F(X )jF. As before let P 2 X , t a lo
al parameter at

P , ff

0

; : : : ; f

r

g a (D; P )-base; set g

`

= t

v

P

(E)

f

`

. We have a matrix (a

ij

) 2 GL(r+1;F)

su
h that f

0

i

=

P

j

a

ij

f

j

for ea
h i. Proposition 2.11 implies

W

�

0

;::: ;�

r

f

0

0

;::: ;f

0

r

;x

= det(a

ij

)W

�

0

;::: ;�

r

f

0

;::: ;f

r

;x

= det(a

ij

)t

�(r+1)v

P

(E)

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;x

= det(a

ij

)t

�(r+1)v

P

(E)

(D

1

x

t)

P

i

�

i

W

E

g

0

;::: ;g

r

;t

;

i.e.,

W

�

0

;::: ;�

r

f

0

0

;::: ;f

0

r

;x

(D

1

t

x)

P

i

�

i

t

(r+1)v

P

(E)

= det(a

ij

)W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

:(2.7)
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Thus the divisor

R = R

D

:= div(W

�

0

;::: ;�

r

f

0

0

;::: ;f

0

r

;x

) + (

r

X

i=0

�

i

)div(dx) + (r + 1)E ;

just depends on D and lo
ally is given by (2.7).

De�nition. R is 
alled the rami�
ation divisor of D. The rami�
ation divisor of a

morphism � is the rami�
ation divisor of D

�

.

Example 2.16. Let x be a separating variable of F(X )jF and 
onsider the morphism

� = (1 : x) : X ! P

1

(F). Then E

�

= div

1

(x); moreover, as #x

�1

(x(P )) =

deg(div

1

(x)) for in�nitely many P 2 X , the D

�

-orders are 0,1. Then

R

D

�

= div(dx) + 2div

1

(x) ;

i.e., it 
oin
ides with the rami�
ation divisor R

x

of x, see Example 1.1.

Lemma 2.17. (Gar
ia-Volo
h [33, Thm. 1℄) Let � = (f

0

: : : : : f

r

) be a morphism

asso
iated to D, and q

0

a power of 
har(F) > 0. Then �

r

� q

0

if and only if there exist

z

0

; : : : ; z

r

2 F(X ), not all zero, su
h that

z

q

0

0

f

0

+ : : :+ z

q

0

r

f

r

= 0 :

Corollary 2.18. Let P 2 X . Under the hypothese of the previous lemma, there exist

i; ` 2 f0; : : : ; rg, i 6= `, su
h that j

i

(P ) � j

`

(P ) (mod q

0

).

Proof. We 
an assume that f

0

; : : : :f

r

is a (D; P )-base. Now there exist 0 � i < ` � r

su
h that v

P

(z

q

0

i

f

i

) = v

P

(z

q

0

`

f

`

) and the result follows.

2.3. D-Weierstrass points. Let us keep the notation of the previous subse
tion. Now

we study R lo
ally at P via (2.7); i.e., we study

v

P

(R) = v

P

(W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

) :

We observe that v

P

(R) � 0 sin
e g

`

is regular at P for ea
h `.

Theorem 2.19. (1) v

P

(R) �

P

r

i=0

(j

i

(P )� �

i

);

(2) v

P

(R) =

P

r

i=0

(j

i

(P )� �

i

) , det(

�

j

`

(P )

�

i

�

) 6� 0 (mod p):

Proof. Set j

i

:= j

i

(P ). From the proof of Lemma 2.7 with m

i

= �

i

we have a lo
al

expansion of type

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

= Cdet(

�

j

`

�

i

�

)t

P

i

(j

i

��

i

)

+ : : : ;

with C 2 F

�

and the result follows.

We have already observed that R is an e�e
tive divisor whi
h also follows from j

i

(P ) �

�

i

(
f. Corollary 2.10(1)). Moreover, the following is 
lear from the theorem.
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Corollary 2.20. v

P

(R) = 0 if and only if j

i

(P ) = �

i

for ea
h i. In parti
ular, for all

but �nitely many P 2 X , the (D; P )-orders equal �

0

; : : : ; �

r

:

De�nition. The D-Weierstrass points of X are those of Supp(R). The D-weight of P

is v

P

(R).

Thus the number of D-Weierstrass points of X , 
ounted with their weighs, equals

deg(R) = (

r

X

i=0

�

i

)(2g � 2) + (r + 1)d :

Lemma 2.21. (p-adi
 
riterion) Let � be a D-order and let � be an integer su
h that

�

�

�

�

6� 0 (mod p). Then � is also a D-order. In parti
ular, 0; 1; : : : ; �� 1 are D-orders

provided that p > �:

Proof. Let ` 2 f0; : : : ; r� 1g be su
h that �

`

< � � �

`+1

� �. We apply Corollary 2.13

to a point P 62 Supp(R); i.e., su
h that j

i

(P ) = �

i

for ea
h i. Let m

0

= �

0

; : : : ; m

`

=

�

`

; m

`+1

:= �. Then the ve
tors (

�

�

0

m

s

�

; : : : ;

�

�

r

m

s

�

), s = 0 : : : ; ` + 1, are F

p

-linearly

independent and the result follows.

De�nition. The 
urve X is 
alled 
lassi
al with respe
t to D, or the linear series D is


alled 
lassi
al, if the D-orders are 0; : : : ; r. A morphism � is 
alled 
lassi
al if D

�

is


lassi
al.

Lemma 2.22. Suppose that

Q

i>`

j

i

(P )�j

`

(P )

i�`

6� 0 (mod p). Then

(1) D is 
lassi
al;

(2) v

P

(R) =

P

r

i=0

(j

i

(P )� i):

Proof. (1) Set j

i

= j

i

(P ). We have

det(

�

j

i

`

�

) =

Y

i>`

j

i

� j

`

i� `

6� 0 (mod p) ;

by hypothesis. Then �

i

� i by Corollary 2.10(2); i.e, �

i

= i for ea
h i.

(2) Follows from Theorem 2.19(2).

In parti
ular, as j

r

(P ) � d = deg(D), we obtain:

Corollary 2.23. If p = 0 or p > d = deg(D); then

(1) D is 
lassi
al;

(2) For ea
h P 2 X , v

P

(R) =

P

i

(j

i

(P )� i):
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2.4. D-os
ulating spa
es. Assume that D is base-point-free, D = g

r

d

�

=

P

r

(D

0

) � jEj.

From Remark 1.14,

D = f�

�

(H) : H hyperplane in P

r

g ;

where � = (f

0

: : : : : f

r

), and where ff

0

; : : : ; f

r

g is a F-base of D

0

. Let P 2 X with

(D; P )-orders j

0

< : : : < j

r

. >From Lemma 1.4,

v

P

(E) = �minfv

P

(f

0

); : : : ; v

P

(f

r

)g :

For i = 0; : : : ; r�1, let L

f

0

;::: ;f

r

i

(P ) be the interse
tion of the hyperplanes H in P

r

su
h

that v

P

(�

�

(H)) � j

i+1

. If g

0

; : : : ; g

r

is another base of D

0

, there exists T 2 Aut(P

r

(F))

su
h that �

1

:= (g

0

: : : : : g

r

) = T Æ �; thus

L

g

0

;::: ;g

r

i

(P ) = T (L

f

0

;::: ;f

r

i

(P )) :(2.8)

We 
on
lude then that L

f

0

;::: ;f

r

i

(P ) is uniquely determinated by D up to proje
tive

equivalen
e.

De�nition. L

i

(P ) = L

f

0

;::: ;f

r

i

(P ) is 
alled the i-th os
ulating spa
e at P (with respe
t

to the base ff

0

; : : : ; f

r

g).

Clearly we have:

L

0

(P ) � : : : � L

r�1

(P ) :

Lemma 2.24. L

f

0

;::: ;f

r

i

(P ) is an i-dimensional spa
e generated by the ve
tors

(D

j

s

t

�

0

)(P ), s = 0; : : : ; i; where �

0

= (t

v

P

(E)

f

0

: : : : : t

v

P

(E)

f

r

):

Proof. From Lemma 1.10 and (2.8) we 
an assume that f

0

; : : : ; f

r

is a (D; P )-base. Let

H

i

be the hyperplane 
orresponding to X

i

= 0, where X

0

; : : : ; X

r

are homogeneous


oordinates of P

r

. Let H :

P

i

a

i

X

i

= 0 be a hyperplane. Then v

P

(�

�

(H)) � j

i+1

if

and only if a

0

= : : : a

i

= 0, sin
e v

P

(t

v

P

(E)

f

`

) = j

`

for ea
h `. Thus

L

f

0

;::: ;f

r

i

(P ) = H

i+1

\ : : : \H

r

;

i.e., it has dimension i. In addition, it is generated by the ve
tors (D

j

s

t

�

0

)(P ) by the

proof of S
holium 2.8

>From the proof above we obtain:

S
holium 2.25. H � L

i

(P ) if and only if v

P

(�

�

(H)) � j

i+1

:

Remark 2.26. If D has base points, the i-os
ulating spa
es for D are, by de�nition,

those of D

B

.

De�nition. The 1-os
ulating (resp. (r�1)-os
ulating) spa
e at P is 
alled the tangent

line (resp. os
ulating hyperplane ) at P .
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A 
onsequen
e of Lemma 2.24 is the following.

Corollary 2.27. The os
ulating hyperplane at P (with respe
t to the base ff

0

; : : : ; f

r

g)

is given by the equation

det

0

B

B

B

�

X

0

: : : X

r

(D

j

0

t

g

0

)(P ) : : : (D

j

0

t

g

r

)(P )

.

.

.

.

.

.

.

.

.

(D

j

r�1

t

g

0

)(P ) : : : (D

j

r�1

t

g

r

)(P )

1

C

C

C

A

= 0 ;

where g

`

:= t

v

P

(E)

f

`

; ` = 0; : : : ; r:

2.5. Weierstrass points; Weierstrass semigroups II. In this sub-se
tion we 
onsider

Weierstrass Point Theory for the 
anoni
al linear series K = K

X

on the 
urve X of

genus g. By Remark 1.21 we 
an assume g � 2. The spe
ial feature in the 
anoni
al


ase is the existen
e of a (numeri
al) semigroup, namely the Weierstrass semigroup

H(P ) at P 2 X (
f. Se
t. 1.5) whi
h is 
losely related to the (K; P )-orders. We stress

the following.

De�nition. (1) The Weierstrass points of the 
urve X is the set W = W

X

of its

K-Weierstrass points; i.e., W = Supp(R

K

). The K-weight of P is 
alled the

Weierstrass weight !

P

of P ; i.e., !

P

= v

P

(R

K

):

(2) We set w

P

:=

P

g�1

i=0

(j

K

i

(P )�i); i.e., w

P

is the weight of the Weierstrass semigroup

H(P ) at P .

(3) The 
urve X is 
alled 
lassi
al if it is 
lassi
al with respe
t to the 
anoni
al linear

series K.

In parti
ular, sin
e K has dimension g�1 and degree 2g�2, the number of Weierstrass

points P 2 W 
ounted with their weights !

P

equals

deg(R

K

) = (

g�1

X

i=0

�

i

)(2g � 2) + g(2g � 2) ;(2.9)

where �

0

< : : : < �

g�1

are the K-orders. From Theorem 2.19(1) we have

!

P

�

g�1

X

i=0

(j

K

i

(P )� �

i

) :

In general, !

P

>

P

i

(j

K

i

(P )� �

i

) and !

P

6= w

P

(see Example 2.28); however, if either

p = 0 or p > 2g � 2, then the 
urve is 
lassi
al and !

P

=

P

i

(j

K

i

(P ) � i) = w

P

by

Corollary 2.23; in this 
ase the 
urve has g(g

2

� 1) Weierstrass points (
ounted with

their weights) by (2.9).
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Example 2.28. (Hyperellipti
 
urves) Let X be hyperellipti
 with g

1

2

= jdiv

1

(f)j,

f 2 F(X ) of degree two. Note that f is a separating variable sin
e g > 0. We have

K = j(g� 1)div

1

(f)j, where K

0

is generated by 1; f; : : : ; f

g�1

. Then W

0;1;::: ;g�1

1;f;::: ;f

g�1

;f

= 1;

i.e., X is 
lassi
al.

The rami�
ation divisor of K is thus

R

K

=

g(g � 1)

2

div(df) + g(g � 1)div

1

(f) ;

so thatR

K

=

g(g�1)

2

R

f

by Example 2.16. Note that f has deg(R

f

) = 2g+2 rami�
ations

points (
ounted with multipli
ity), and that P 2 Supp(R

f

) if and only if e

P

= 2; see

Example 1.1. Therefore the following 
onditions are equivalent:

� P 2 W;

� P 2 Supp(R

f

);

� e

P

= 2;

� 2 2 H(P );

� the (K; P )-orders are 0; 2; : : : ; 2g � 2.

If P 62 W, then the (K; P )-orders are 0; 1; : : : ; g � 1; i.e., H(P ) = f0; g + 1; : : :g. In

parti
ular, a hyperellitpi
 
urve has only two types of Weierstrass semigroups.

If p = 0 or p > 2, and P 2 Supp(R

f

), then v

P

(R

f

) = 1 and hen
e X has 2g + 2

Weierstrass points P su
h that !

P

= g(g � 1)=2. In parti
ular, here we have !

P

=

P

i

(j

K

i

� i) = w

P

(�).

If p = 2, then (�) is in general not true as the following example shows. Let X be the

non-singular model of the plane 
urve of equation

y

2

+ y = x

q+1

;

over F of 
hara
teristi
 two, and where q = 2

a

, a � 2. Then x 2 F(X ) has degree two

an so X is hyperellitpi
. There are two di�erent points in X over ea
h a 2 F, sin
e

Y

2

+Y = a has two di�erent solutions. Let P over x =1. Then 2v

P

(y) = �(q+1)e

P

so that e

P

= 2; hen
e there is just one point P

1

over x =1; i.e., #Supp(R

x

) = 1. In

parti
ular, P

1

is the only Weierstrass point of X and thus its weight is !

P

= deg(R

K

) =

g(g

2

� 1) >

P

i

(j

K

i

(P )� i) = w

P

= g(g � 1)=2 be
ause g > 1 as we see below.

To 
ompute the genus of X we use the fa
t that P

1

is the only rami�ed point for x:

We have 2g � 2 = deg(dx) = v

P

1

(dx) = q � 2 and so g = q=2 > 1.

Lemma 2.29. Let X be a 
lassi
al 
urve of genus g su
h that !

P

= w

P

for ea
h P

(e.g. if p = 0 or p > 2g � 2). Then

(1) 2g + 2 � #W � g(g

2

� 1);

(2) #W = 2g + 2 if and only if X is hyperellipti
;

(3) #W = g(g

2

� 1) if and only if !

P

= 1 for any P 2 X :
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Proof. We have g(g

2

� 1) = deg(R

K

) =

P

P

w

P

� #Wg(g� 1)=2 by Corollary 1.26(1).

This proves (1). (2) follows from Corollary 1.26(2)(3) and Example 2.28. (3) is trivial.

Lemma 2.30. Let (~n

i

: i 2 N) be the Weierstrass semigroup at non-Weierstrass

points. Then n

i

(P ) � ~n

i

for ea
h P and ea
h i:

Proof. Let i be the minimum positive integer su
h that n

i

(P ) > ~n

i

. Then i � 2 and

n

i�1

(P ) � ~n

i�1

so that n

i�1

(P ) � ~n

i�1

< ~n

i

< n

i

(P ). Now we have ~n

i

= `

~n

i

�i+1

�

~

`

~n

i

�i+1

by Corollary 2.10(1), where

~

`

1

<

~

`

2

< : : : are the gaps at non-Weierstrass

points. Sin
e `

~n

i

�i+1

� ~n

i

+ 1 we have a 
ontradi
tion and the result follows.

Lemma 2.31. The largest K-order �

g�1

is less than deg(K) = 2g � 2:

Proof. (Gar
ia [27, p. 235℄) Suppose �

g�1

= 2g � 2. Then for P 62 W, (2g � 2)P is a


anoni
al divisor. In parti
ular, (2g�2)P � (2g�2)P

0

for P; P

0

62 W (�). We 
onsider

the isogeny i : D 7! (2g � 2)D on the Ja
obian variety J asso
iated to X , and the

natural map X ! J , P 7! [P � P

0

℄. Note that [P � P

0

℄ = [Q� P

0

℄ if and only P = Q

sin
e g > 0. Then (�) says that there are in�nitely points in J belonging to the kernel

of i, a 
ontradi
tion sin
e this kernel is �nite [77, p. 62℄.

Example 2.32. (The non-
lassi
al 
urve of genus 3) It is easy to see that the only

semigroups of genus two are f0; 3; 4; 5; : : :g and f0; 2; 4; 5; : : :g. Sin
e a 
urve of genus

two must have at least one Weierstrass points, then su
h a 
urve is hyperellipti
 and

hen
e 
lassi
al.

Now let X be a 
urve of genus three. We shall show a result due to Komiya [66℄: X

is non-
lassi
al if and only if p = 3 and X is F-isomorphi
 to the non-singular plane


urve of equation y

3

+ y = x

4

. If X is non-
lassi
al, then 0 < p < 2g � 2 = 4 by

Corollary 2.23 so that p = 2; 3. We have �

0

= 0; �

1

= 1 and �

2

= 3. Then p = 3 by

the 2-adi
 
riterion. We have P 2 W , j

K

0

(P ) = 0; j

K

1

(P ) = 1; j

K

2

(P ) = 4, H(P ) =

f0; 3; 4; 6; : : :g; then !

P

= 1 and X has deg(R

K

) = 28 Weierstrass points (note that a


lassi
al 
urve of genus 3 has 3� (3

2

� 1) = 24 Weierstrass points 
ounted with their

weights). Let P

0

2 W; x; y 2 F(X ) su
h that div

1

(x) = 3P

0

and div

1

(y) = 4P

0

.

We see that 4P

0

is a 
anoni
al divisor and so K = j4P

0

j. We also see that x is a

separating variable of F(X )jF so that W

0;1;2

1;x;y;x

= D

2

x

y = 0 as �

2

> 2. Now the eleven

fun
tions 1; x; y; x

2

; xy; y

2

; x

3

; x

2

y; xy

2

; x

4

; y

3

belong to L(12P

0

) whi
h has dimension

10. Therefore there is a non-trivial relation over F of type

a

00

+ a

10

x+ a

01

y+ a

20

x

2

+ a

11

xy+ a

02

y

2

+ a

30

x

3

+ a

21

x

2

y+ a

12

xy

2

+ a

40

x

4

+ a

03

y

3

= 0 :

Sin
e v

P

(x

i

y

j

) < 12 for 3i + 4j < 12 we must have a

40

6= 0 and a

03

6= 0. In parti
ular

we 
an assume a

40

= 1. Next we apply D

2

x

to the equation above; using the fa
t that

D

2

x

y = 0 we �nd:

a

20

+ a

11

D

x

y + a

02

(D

x

y)

2

+ a

21

(y + 2xD

x

y) + a

12

(2xyD

x

y + x(D

x

y)

2

) = 0 :
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Let v

P

(D

x

y) = a. Then the valuation at P of the fun
tions

1; D

x

y; (D

x

y)

2

; y; xD

x

y; xyD

x

y; x(D

x

y)

2

are respe
tively

0; a; 2a;�4;�3 + a;�7 + a;�3 + 2a ;

we see that they are pairwise di�erent and hen
e a

20

= a

11

= a

02

= a

21

= a

12

= 0; i.e.,

we have

a

00

+ a

10

x + a

01

y + a

30

x

3

+ x

4

+ a

03

y

3

= 0 :

By means of x 7! (x� a

30

) and y 7! �(a

03

)

1=3

y we 
an assume a

30

= 0 and a

03

= �1.

Now as [F(X ) : F(x)℄ = 3 the above equation is irredu
ible and hen
e a

01

6= 0 be
ause

x is a separating variable. Then by means of x 7! a

3=8

01

x and y 7! �a

1=2

01

y we 
an assume

a

01

= 1. So we have an equation of type

y

3

+ y = x

4

+ a

10

x + a

00

:

Finally let P

1

be another Weierstrass point. Then 4P

1

� 4P

0

as both divisor are


anoni
al. So we 
an 
hoose y su
h that div(y) = 4P

1

� 4P

0

. Then 4 = v

P

1

(y) =

v

P

1

(x

4

+ a

10

x+ a

00

) implies a

00

= a

10

= 0.

Conversely if X is de�nes by y

3

+ y = x

4

, we have that X is a non-singular plane


urve of genus three. Moreover there is just one point P

1

over x = 1 and H(P

1

) =

f0; 3; 4; 6; : : :g. This implies that x is a separating variable and we have D

2

x

y = 0; i.e.,

X is non-
lassi
al.

Further examples of non-
lassi
al linear series 
an be found in Neeman [80℄. Finally

we mention that Weierstrass Point Theory on s
hemes was 
onsidered by Laksov and

Thorup [72℄; see the introdu
tion there for further referen
es.

3. Frobenius orders

Let X be a 
urve de�ned over F

q

, a �nite �eld with q elements; i.e., X is a 
urve over

the algebrai
 
losure

�

F

q

of F

q

, equipped with the a
tion of the Frobenius morphism �

q

relative to F

q

. Let D

�

=

P(D

0

) � jEj be a base-point-free g

r

d

on X . Assume that D is

also de�ned over F

q

; i.e., for any D =

P

P

n

P

P 2 D, (�

q

)

�

(D) :=

P

P

n

P

�

q

(P ) = D.

Let � = (f

0

: : : : : f

r

) be a morphism over F

q

asso
iated to D; i.e., its 
oordinates

belong to F

q

(X ) and they form a F

q

-base of D

0

.

The starting point of St�ohr-Volo
h's approa
h to the Hasse-Weil bound is to look at

points P of X su
h that �(�

q

(P )) belongs to the os
ulating hyperplane L

f

0

;::: ;f

r

r�1

(P ) at
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P . Then Corollary 2.27 leads to the 
onsideration of rational fun
tions of type

V

`

0

;::: ;`

r�1

f

0

;::: ;f

r

;x

:= det

0

B

B

B

�

f

0

Æ �

q

: : : f

r

Æ �

q

D

`

0

x

f

0

: : : D

`

0

x

f

r

.

.

.

.

.

.

.

.

.

D

`

r�1

x

f

0

: : : D

`

r�1

x

f

r

1

C

C

C

A

;

where x is a separating variable of

�

F

q

(X )j

�

F

q

. We set

B(f

0

; : : : ; f

r

; x) := f(m

0

; : : : ; m

r�1

) 2 N

r

0

: m

0

< : : : < m

r�1

; V

m

0

;::: ;m

r�1

f

0

;::: ;f

r

;x

6= 0g :

Lemma 3.1. Let (m

0

; : : : ; m

r

) 2 A(f

0

; : : : ; f

r

; x) with m

0

= 0. Then there exists

0 < I � r su
h that (m

0

; : : : ; m

I�1

; m

I+1

; : : : ; m

r

) 2 B(f

0

; : : : ; f

r

; x).

Proof. Let I be the smallest integer su
h that � Æ �

q

:= (f

0

Æ �

q

; : : : ; f

r

Æ �

q

) is a

F(X )-linear 
ombination of D

m

0

x

�; : : : ; D

m

I

x

�. Sin
e f

0

; : : : ; f

r

is a F

q

-base of D

0

, then

I > 0 and the result follows.

Sin
e the D-order sequen
e (�

0

; : : : ; �

r

) belongs to A(f

0

; : : : ; f

r

; x) (
f. Proposition

2.11), B(f

0

; : : : ; f

r

; x) 6= ;. Let

V := (�

0

; : : : ; �

r�1

)

be the minimum (in the lexi
ographi
 order) of B(f

0

; : : : ; f

r

; x).

Lemma 3.2. (1) �

0

= 0;

(2) For i = 1; : : : ; r � 1;

�

i

= minfs > �

i�1

: � Æ �

q

; D

�

0

x

�; : : : ; D

�

i�1

x

�;D

s

x

� are

�

F

q

(X )-l.ig ;

(3) Let (m

0

; : : : ; m

r�1

) 2 B(f

0

; : : : ; f

r

; x). Then �

i

� m

i

for ea
h i:

Proof. Similar to the proofs of Lemma 2.9 and Corollary 2.10(1).

Corollary 3.3. There exists 0 < I � r su
h that

�

i

=

(

�

i

if i < I;

�

i+1

if i � I:

Proof. From Proposition 2.11(3) and Lemma 3.1, there exists 0 < I � r su
h

that (�

0

; : : : ; �

I�1

; �

I+1

; : : : ; �

r

) 2 B(f

0

; : : : ; f

r

; x). Hen
e from Lemma 3.2, �

i

� �

i

for i < I and �

i

� �

i+1

for i � I. Sin
e D

�

0

x

�; : : : ; D

�

I�1

x

� are F(X )-l.i, from

Lemma 2.9(3) follows that �

i

� �

i

for i = 0; : : : ; I � 1; thus �

i

= �

i

for i =

0; : : : ; I � 1. The same argument yields �

I

� �

I

; in fa
t, �

I

< �

I

by the de�ni-

tion of I in the proof of Lemma 3.1. Suppose that �

I

< �

I+1

. Then by Lemma

2.9(3) the ve
tors D

�

0

x

�; : : : ; D

�

I�1

x

�;D

�

I

x

�;D

�

I

x

� would be linearly dependent over

F(X ) so that D

�

I

2 hD

�

0

x

�; : : : ; D

�

I�1

x

�;D

�

I

x

�i. This is a 
ontradi
tion be
ause

� Æ �

q

; D

�

0

x

�; : : : ; D

�

I�1

x

�;D

�

I

x

� are

�

F

q

(X )-linearly independent. A similar argument

shows that �

i

= �

i+1

if i > I.
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We remark the following 
omputation regarding 
hange of basis. Let g

i

=

P

a

ij

f

j

with

(a

ij

) 2M

r+1

(

�

F

q

). Then

det

0

B

B

B

�

~g

0

: : : ~g

r

D

`

0

x

g

0

: : : D

`

0

x

g

r

.

.

.

.

.

.

.

.

.

D

`

r�1

x

g

0

: : : D

`

r�1

x

g

r

1

C

C

C

A

= det(a

ij

)V

`

0

;::: ;`

r�1

f

0

;::: ;f

r

;x

;(3.1)

where ~g

j

=

P

i

a

ij

f

i

Æ �

q

. The following is analogous to Proposition 2.11.

Proposition 3.4. (1) If g

i

=

P

j

a

ij

f

j

with (a

ij

) 2M

r+1

(F

q

), then

V

�

0

;::: ;�

r�1

g

0

;::: ;g

r

;x

= det((a

ij

))V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;x

;

(2) If f 2

�

F

q

(X ), then

V

�

0

;::: ;�

r�1

ff

0

;::: ;ff

r

;x

= f

q+r

V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;x

;

(3) Let y be any separating variable of

�

F

q

(X )j

�

F

q

. Then

V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;y

= (D

1

y

x)

P

i

�

i

V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;x

:

Proof. (1) follows from (3.1) taking into 
onsideration that a

q

ij

= a

ij

. (2) and (3) follow

as in Proposition 2.11.

Now we show that V just depend on D and q. Let ff

0

0

; : : : ; f

0

r

g � F

q

(X be another

F

q

-base of D

0

and y another separating variable of

�

F

q

(X )j

�

F

q

. From part (1) above,

V is the minimum for B(f

0

0

; : : : ; f

0

r

; x) and from part (3) it is also the minimum for

B(f

0

0

; : : : ; f

0

r

; y).

De�nition. V = (�

0

; : : : ; �

r�1

) is 
alled the F

q

-Frobenius orders of D. If �

i

= i for

ea
h i, D is 
alled F

q

-Frobenius 
lassi
al.

Now let P 2 X . We have that v

P

(E) = �min(v

P

(f

0

); : : : ; v

P

(f

r

)) be
ause D is base-

point-free, 
f. Lemma 1.4. In addition, the rational fun
tions g

i

:= t

v

P

(E)

f

i

are regular

at P for ea
h i, where t is a lo
al parameter at P . Let ff

0

0

; : : : ; f

0

r

g and y be as above.

Let f

0

i

=

P

j

a

ij

f

j

, a

ij

2 F

q

. Applying Proposition 3.4 we have

V

�

0

;::: ;�

r�1

f

0

0

;::: ;f

0

r

;y

= det(a

ij

)V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;y

= det(a

ij

)(D

1

y

t)

P

i

�

i

V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;t

= det(a

ij

)(D

1

y

t)

P

i

�

i

t

�(q+r)v

P

(E)

V

�

0

;::: ;�

r�1

g

0

;::: ;g

r

;t

;

i.e.,

V

�

0

;::: ;�

r�1

f

0

0

;::: ;f

0

r

;y

(

dy

dt

)

P

i

�

i

t

(q+r)v

P

(E)

= det(a

ij

)V

�

0

;::: ;�

r�1

g

0

;::: ;g

r

;t

:(3.2)
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Therefore the divisor

S = S

D;q

:= div(V

�

0

;::: ;�

r�1

f

0

0

;::: ;f

0

r

;y

) + (

r�1

X

i=0

�

i

)div(dy) + (q + r)E ;

just depend on D and q and lo
ally at P is given by (3.2).

De�nition. S is 
alled the F

q

-Frobenius divisor of D.

The divisor S is e�e
tive be
ause, as we already noti
ed, ea
h g

`

is regular at P . Note

that

deg(S) = (

r�1

X

i=0

�

i

)(2g � 2) + (q + r)d :

Next we study v

P

(S) by means of (3.2); i.e. we study

v

P

(S) = v

P

(V

�

0

;::: ;�

r�1

g

0

;::: ;g

r

;t

) :

We 
onsider two 
ases a

ording as P is F

q

-rational or not.

Case I: P 2 X (F

q

). Here we 
an assume that f

0

; : : : ; f

r

is a (D; P )-base; i.e, v

P

(g

`

) =

j

`

for ` = 0; : : : ; r. By Proposition 3.4(2)

v

P

(S) = v

P

(g

q+r

0

V

�

0

;::: ;�

r�1

h

0

;::: ;h

r

;t

) = v

P

(V

�

0

;::: ;�

r�1

h

0

;::: ;h

r

;t

) ;

where h

`

:= g

`

=g

0

. Note that h

0

= 1 and that v

p

(h

`

) = j

`

. In parti
ular,

V

�

0

;::: ;�

r�1

h

0

;::: ;h

r�1

;t

= det

0

B

B

B

�

h

1

� h

q

1

: : : h

r

� h

q

r

D

�

1

t

h

1

: : : D

�

1

t

h

r

.

.

.

.

.

.

.

.

.

D

�

r�1

t

h

1

: : : D

�

r�1

t

h

r

1

C

C

C

A

;(3.3)

and we 
an made similar 
omputations as in the proof of Lemma 2.7: Expand h

`

at

P , h

`

=

P

1

s=j

`




`

s

t

s

, set C :=

Q

r

`=1




`

j

`

; then

V

�

0

;::: ;�

r�1

h

0

;::: ;h

r

;t

= Cdet(

�

j

`

�

i

�

)t

P

r�1

i=i

(j

i

��

i�1

)

+ : : : ;(3.4)

where i = 0; : : : ; r�1; ` = 1; : : : ; r in the matrix above involving the binomial operator.

Now v

P

(S) 
an be estimated via this lo
al expansion.

Case II: P 62 X (F

q

). Let h

0

; : : : ; h

r

be a (D; P )-base. Then there exists (a

ij

) 2

M

r+1

(

�

F

q

) su
h that h

0

i

:= t

v

P

(E)

h

i

=

P

j

a

ij

g

j

. Then from (3.1)

v

P

(S) = v

P

(

r

X

i=0

(�1)

i

~

h

0

i

d

i

) ;

where the d

i

's are the determinants obtained by Cramer's rule. Clearly v

P

(

~

h

0

i

) � 0 and

so

v

P

(S) � minfv

P

(d

0

); : : : ; v

P

(d

r

)g :
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On
e again we 
an expand ea
h d

i

at P as in the proof of Lemma 2.7: Let M :=

(

�

j

`

�

k

�

)

k=0;::: ;r�1;`=0;::: ;r

and let M

i

be the matrix obtained from M by deleting the ith


olumn. Then

d

i

= C

i

det(M

i

)t

P

r

k=0

j

k

�j

i

�

P

r�1

k=0

�

k

+ : : : ;(3.5)

where C

i

2

�

F

�

q

. Thus (3.4) and (3.5) imply the following.

Proposition 3.5. (1) For P 2 X (F

q

); v

P

(S) �

P

r

i=1

(j

i

(P )� �

i�1

); equality holds if

and only if det(

�

j

`

(P )

�

i

�

)

i=0;::: ;r�1;`=1;::: ;r

6� 0 (mod p);

(2) For P 62 X (F

q

); v

P

(S) �

P

r�1

i=1

(j

i

(P )� �

i

); if det(

�

j

`

(P )

�

i

�

)

i;`=0;::: ;r�1

� 0 (mod p);

then the stri
 inequality holds:

Proposition 3.6. Let � be a F

q

-Frobenius order su
h that � < q: Let � an integer

su
h that

�

�

�

�

6� 0 (mod p): Then � is also an F

q

-Frobenius order. In parti
ular, if

�

i

< p then (�

0

; : : : ; �

i

) = (0; : : : ; i):

Proof. Let � = �

i

. For j � i, we have D

�

j

t

(f

q

) = 0 by Remark 2.5. So �

0

; : : : ; �

i

are

the �rst i + 1 orders of the morphism (h

1

� h

q

1

: : : : : h

r

� h

q

), where h

1

; : : : ; h

r

are as

in (3.3). Then the resul follows from the p-adi
 
riterion (Lemma 2.21).

Next we study relations between the F

q

-Frobenius orders and (D; P )-orders at F

q

-

rational points P .

Proposition 3.7. Let P 2 X (F

q

) and m

0

< : : : < m

r�1

be a sequen
e of non-negative

integers su
h that det(

�

j

`

(P )�j

1

(P )

m

i

�

)

i=0;::: ;r�1;`=1;::: ;r

6� 0 (mod p): Then �

i

� m

i

for ea
h

i:

Proof. Set j

i

= j

i

(P ) and let � := (1 : x

j

2

�j

1

: : : : : x

j

r

�j

1

), where x is a separating

variable of

�

F

q

(X )j

�

F

q

. Let �

0

< : : : < �

r�1

be the orders of �. Then �

i

� m

i

for ea
h i

by (2.6), hypothesis and Corollary 2.10(1). Then, as � = (x

j

1

: : : : : x

j

r

), det((

�

j

i

�

`

�

) 6� 0

(mod p), and the result follows from (3.4).

Remark 3.8. From the proof above follows that the best ele
tion of the m

i

's in Propo-

sition 3.7 are the orders of the morphism � = (x

j

1

(P )

: : : : : x

j

r

(P )

).

Corollary 3.9. Let P 2 X (F

q

).

(1) �

i

� j

i+1

(P )� j

1

(P ) for i = 0; : : : ; r � 1; and so v

P

(S) � rj

1

(P );

(2) Suppose a :=

Q

1�i<`�r

(j

`

(P ) � j

i

(P ))=(` � i) 6� 0 (mod p): Then D is F

q

-

Frobenius 
lassi
al and v

P

(S) = r +

P

r

i=1

(j

i

(P )� i):

Proof. Note that a = det(

�

j

`

(P )

i

�

)

i=0;::: ;r�1;`=1;::: ;r

. Then (1) (resp. (2)) follows from

Proposition 3.7 with m

i

= j

i

(P )� j

1

(P ) (resp. from the proof of Proposition 3.7 with

m

i

= i, and Proposition 3.5(1)).
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Remark 3.10. The 
riterion of Corollary 3.9(2) is satis�ed if j

`

(P )�j

i

(P ) 6� 0 (mod p)

for 1 � i < ` � r. In parti
ular, the 
riterion is satis�ed if p � j

r

(P ).

Corollary 3.11. (1) If P 2 X (F

q

) and det(

�

j

`

(P )�j

1

(P )

�

j

�

)

j=0;::: ;r�1;`=1;::: ;r

6� 0

(mod p); then �

i

= �

i

for i = 0; : : : ; r � 1;

(2) If D is not F

q

-Frobenius 
lassi
al; then j

r

(P ) > r for any P 2 X (F

q

);

(3) If (�

0

; : : : ; �

r�1

) 6= (�

0

; : : : ; �

r�1

); then X (F

q

) � Supp(R):

Proof. (1) follows from Proposition 3.7 with m

i

= �

i

.

(2) If there exists P 2 X (F

q

) su
h that j

r

(P ) = r, then �

i

= i for ea
h i by Corollary

3.9(1).

(3) Suppose that there exists P 2 X (F

q

) n Supp(R). Then j

i

(P ) = �

i

for ea
h i and

hen
e �

i

� �

i+1

� �

1

by Corollary 3.9(1); i.e. �

i

= �

i

for ea
h i, a 
ontradi
tion.

Remark 3.12. If we 
hoose i su
h that X (F

q

i
) 6� Supp(R), then from Corollary 3.11(3)

we see that the F

q

i

-order sequen
e of D 
oin
ide with (�

0

; : : : ; �

r�1

).

Theorem 3.13. Let X be a 
urve de�ned over F

q

that admits a base-point-free linear

series D = g

r

d

de�ned over F

q

. Let �

0

< : : : < �

r�1

be the F

q

-Frobenius orders of D.

Then

#X (F

q

) �

P

r�1

i=0

�

i

(2g � 2) + (q + r)d

r

:

Proof. Let S be the F

q

-Frobenius divisor of D. Then v

P

(S) � r for ea
h P 2 X (F

q

)

by Corollary 3.9(1), and so #X (F

q

) � deg(S)=r.

Example 3.14. (The Hermitian 
urve over F

9

) We are looking for a 
urve X of genus

3 de�ned over F

q

su
h that #X (F

q

) > 2q + 8. Let �

0

= 0 < �

1

= 1 < �

2

(resp.

�

0

= 0 < �

1

) be the 
anoni
al orders (resp. 
anoni
al F

q

-orders).

Claim. X is non-
lassi
al; i.e., �

2

> 2:

Indeed, if �

2

= 2, then �

1

� 2 by Corollary 3.3 and Theorem 3.13 gives #X (F

q

) � 2q+8.

Therefore from Example 2.32 we 
on
lude that q is a power of three, �

2

= 3, and that

X is given by y

3

+ a

01

y = x

4

, with a

01

2

�

F

q

(noti
e that the 
hange of 
oordinates

involving a

01

in Example 2.32 is not de�ned over F

q

). Moreover, the proof above also

shows that �

1

> 1; i.e �

1

= 3.

Claim. q = 9 and X is F

9

-isomorphism to the Hermitian 
urve y

3

+y = x

4

: In addition,

X (F

9

) =W (so that #X (F

9

) = 28 > 2� 9 + 8):

Let x and y be as in Example 2.32. Then V

0;1

1;x;y;x

= 0 or equivalently y � y

q

=

(x � x

q

)D

x

y (�). Then taking valuation at P we have �4q = �3q � 9 so that q = 9.

Moreover from (�) and the equation de�ning X we have (1� a

3

01

)y

3

+ (a

10

� 1)y

9

= 0
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so that a

01

= 1. That X (F

9

) � W follows from Corollary 3.11(3) and equality holds

sin
e #X (F

9

) = 28 (see Se
t. 4.2).

Finally, observe that #X (F

9

) attains the bound in Theorem 3.13.

Example 3.15. (The Hermitian 
urve, I) Let ` be a power of a prime and H the plane


urve of equation

Y

`

Z + Y Z

`

= X

`+1

:(3.6)

It is easy to see that H is non-singular so that it has genus g = `(`� 1)=2 by Remark

1.8.

Claim. #H(F

`

2

) = `

3

+ 1:

Indeed, we have H \ (Z = 0) = f(0 : 1 : 0)g; in Z 6= 0 we look for points (x : y : 1)

su
h that y

`

+ y = x

`+1

. It follows that x 2 F

`

2

) y 2 F

`

2

and sin
e Y

`

+ Y = x

`+1

has ` di�erent solutions for Y we 
on
lude that there are `

3

su
h (x : y : 1) points.

Now over x := X=Z =1 there is just one point say P

1

su
h that H(P

1

) � h`; `+ 1i.

Sin
e #(N n h`; ` + 1i) = `(` � 1)=2 = g, H(P

1

) = h`; ` + 1i. Next we 
onsider

D := j(`+ 1)P

1

j whi
h is a g

2

`+1

base-point-free on H. Sin
e L((`+ 1)P

1

) = h1; x; yi,

where y

`

+ y = x

`+1

we see that D is just the linear series 
ut out by lines on H. Let

�

0

= 0; �

1

= 1; �

2

(resp. �

0

= 0; �

1

2 f1; �

2

g) denote the D-orders (resp. F

`

2

-Frobenius

orders) of H.

Claim. (1) �

2

= �

1

= `;

(2) j

2

(P ) = `+ 1 if P 2 H(F

`

2

); j

2

(P ) = ` otherwise:

In fa
t, 2#H(F

`

2

) � �

1

(2g � 2) + (`

2

+ 2)(` + 1) by Theorem 3.13 so that �

1

� `.

Then ` � �

1

= �

2

� ` + 1 and so ` = �

1

= �

2

by Lemma 2.21 (p-adi
 
riterion). That

j

2

(P ) = ` + 1 whenever P 2 H(F

`

2

) follows from Corollary 3.9(1) and part (1). In

parti
ular for su
h points P , v

P

(R) = 1. Now we have deg(R

D

) = `

3

+ 1 and therefore

j

2

(P ) = ` for P 6 X (F

`

2

).

We 
an write a dire
t proof of part (2) as follows. Let a; b 2

�

F

`

su
h that b

`

+ b = a

`+1

.

It is easy to see that (x � a) is a lo
al parameter at (a : b : 1) 2 H so that (y � b) =

a

`

(x� a) + (a� a

`

)(x� a)

`

+ (x� a)

`+1

+ : : : . Let

f := (y � b)� a

`

(x� a) :

Then

div(f) = `(a : b : 1) + (a

`

2

: b

`

2

: 1)� (`+ 1)P

1

and part (2) follows.

Further arithmeti
al and geometri
al properties of Frobenius orders 
an be read in

Gar
ia-Homma [29℄. From that paper we mention the following.
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Lemma 3.16. ([29, Cor. 3℄) Let V = E n f�

I

g and suppose that I < r. Then 
har(F

q

)

divides �

I+1

.

4. Optimal 
urves

Let X be a 
urve de�ned over F

q

of genus g. To study quantitative results on the

number of F

q

-rational points of X it is 
onvenient to form a formal power series, the

so-
alled Zeta Fun
tion of X relative to F

q

:

Z

X ;q

(t) := exp(

1

X

i=1

#X (F

q

i

)

i

t

i

) :

By the Riemann-Ro
h theorem there exists a polynomial P (t) of degree 2g with integer


oeÆ
ients, su
h that (see e.g. [78, Thm. 3.2℄, [96, Thm. V.1.15℄)

Z

X ;q

(t) =

P (t)

(1� t)(1� qt)

:(4.1)

Remark 4.1. ([96, Thm. V.1.15℄)

(i) Let P (t) =

P

2g

i=0

a

i

t

i

. Then a

0

= 1, a

2g

= q, and a

2g�i

= q

g�i

a

i

for i = 0; : : : ; g.

(ii) Set

h(t) = h

X ;q

(t) := t

2g

P (t

�1

) ;

then the 2g roots (
ounted with multipli
ity) �

1

; : : : ; �

2g

of h(t) 
an be arranged

in su
h a way that �

j

�

g+j

= q for j = 1; : : : ; g. Note that a

1

= �

P

2g

j=1

�

j

.

Now (4.1) implies #X (F

q

) = q + 1 + a

1

and hen
e that

#X (F

q

) = q + 1�

2g

X

j=1

�

j

;

by Remark 4.1(ii). Furthermore [96, Cor. V.1.16℄,

#X (F

q

i

) = q

i

+ 1�

2g

X

j=1

�

i

j

:

By analogy with the Riemann hypothesis E. Artin 
onje
tured that the absolute value

of ea
h �

i

equals

p

q. This result was showed by Hasse for g = 1 and for A. Weil for

arbitrary g [108℄ (see also [99, Cor. 2.14℄, [78℄, [96, Thm. V.2.3℄). In parti
ular, we

obtain the Hasse-Weil bound on the number of F

q

-rational points of X , namely

j#X (F

q

)� (q + 1)j � 2

p

qg :

If X attains the upper bound above, it is 
alled F

q

-maximal; in this 
ase q must be a

square.
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Lemma 4.2. Let q = `

2

. The following statements are equivalent:

(1) X is F

`

2

-maximal;

(2) �

i

= �` for i = 1; : : : ; 2g;

(3) h

X ;`

2

(t) = (t+ `)

2g

:

If any of these 
onditions hold and X is de�ned over F

`

, then

#X (F

`

i
) =

8

>

>

<

>

>

:

`

i

+ 1 if i � 1 (mod 2),

`

i

+ 1 + 2

p

`

i

g if i � 2 (mod 4),

`

i

+ 1� 2

p

`

i

g if i � 0 (mod 4).

Proof. X is F

`

2

-maximal if and only if

P

2g

i=1

�

i

=

P

g

i=1

(�

i

+ ��

i

) = �2`g. By the

Riemann-hypothesis, this is the 
ase if and only if �

i

= �` for ea
h i and the equiv-

alen
es follow. Now we show the formulae on the number of rational points. Let

#X (F

`

) = ` + 1 �

P

2g

j=1

�

j

. Then �

2

j

= �` for ea
h j so that �

i

j

+

�

�

i

j

= 0 for i � 1

(mod 2); i.e., #X (F

`

i

) = `

i

+ 1. If i � 2 (mod 4), �

i

j

= �

p

`

i

and follows the formula

for su
h i's. Finally, if i � 0 (mod 4), �

j

=

p

`

i

and the proof is 
omplete.

Corollary 4.3. (Ihara [58℄) If X is F

`

2

-maximal, then g � `(`� 1)=2:

Proof. We have X (F

`

2

) � X (F

`

4

). Then from the lemma above, `

2

+ 1 + 2`g �

`

4

+ 1� 2`

2

g; and the result follows.

Example 4.4. (The Hermitian 
urve, II) The 
urve H in Example 3.15 has genus

`(` � 1)=2 and `

3

+ 1 F

`

2

-rational points. Hen
e it is F

`

2

-maximal and attains the

bound in Corollary 4.3.

This 
urve is 
alled the Hermitian 
urve and it is the most fan
y example of a maximal


urve. By La
haud [70, Prop. 6℄ any 
urve F

`

2

-
overed by a F

`

2

-maximal 
urve is

also F

`

2

-maximal. Then one obtains further examples of F

`

2

-maximal 
urves by e.g.


onsidering suitable quotient 
urves H=G, whit G a subgroup of Aut

F

`

2

(H); see Gar
ia-

Sti
htenoth-Xing [31℄, and [14℄, [15℄. As a matter of fa
t, all the known examples of

F

`

2

-maximal 
urves arise in this way.

Problem 4.5. Is any F

`

2

-maximal 
urve F

`

2

-
overed by H?

Further properties of maximal 
urves 
an be found in [24℄, [26℄, [67℄, [68℄ and the

referen
es therein.

If q is not a square, the Hasse-Weil bound was improved by Serre [93, Thm. 1℄ as

follows (see also [96, Thm. V.3.1℄)

j#X (F

q

)� (q + 1)j � b2

p

q
g :

Lemma 4.6. The following statements are equivalent:
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(1) X is maximal with respe
t to Serre's bound;

(2) �

i

+ ��

i

= �b2

p

q
 for i = 1; : : : g;

(3) h

X ;q

(t) = (t

2

+ b2

p

q
t+ q)

g

:

Proof. X is maximal with respe
t to Serre's bound if and only if

P

g

i=1

(� + ��

i

) =

�b2

p

q
g if and only if �

i

+ ��

i

= �b2

p

q
. Now, as we 
an assume �

i

��

i

= q by Remark

4.1(ii) so that h

X ;q

(t) =

Q

g

i=1

(t� �

i

)(t� ��

i

), the result follows.

Corollary 4.7. We have g � (q

2

� q)=(b2

p

q


2

+ b2

p

q
� 2q) whenever X is maximal

with respe
t to Serre's bound.

Proof. As in the proof of Corollary 4.3 we use X (F

q

) � X (F

q

2

). We have �

i

+ ��

i

=

�b2

p

q
 and �

i

��

i

= q so that �

2

i

+ ��

2

i

= b2

p

q


2

� 2q; hen
e

#X (F

q

) = q + 1 + b2

p

q
 � #X (F

q

2

) = q

2

+ 1� (b2

p

q


2

� 2q)g ;

and the result follows.

Remark 4.8. The proofs of the following statements are similar to the proofs of Lemmas

4.2 and 4.6.

(i) A 
urve X de�ned over F

`

2

is F

`

2

-minimal; i.e., #X (F

`

2

) = `

2

+ 1 � 2`g if and

only if h

X ;`

2

(t) = (t� `)

2g

.

(ii) A 
urve X de�ned over F

q

is minimal with respe
t to Serre's bound; i.e.,

#X (F

q

) = q + 1� b2

p

q
g if and only if h

X ;q

(t) = (t

2

� b2

p

q
t + q)

g

.

Example 4.9. (The Klein quarti
) Let X be the plane 
urve over F de�ned by

X

3

Y + Y

3

Z + Z

3

X = 0 :

It is easy to see that X is non-singular if and only if 
har(F) 6= 7; in this 
ase X

has genus 3. This 
urve was 
onsidered by many authors sin
e the time of Klein who

showed that Aut(X ) rea
hes the Hurwitz bound for the number of automorphism of


urves of genus 3 whenever 
har(F) = 0. A 
onne
tion with the Fano plane was noti
ed

by Pellikaan [84℄.

Claim. X de�ned over F

8

rea
hs the Serre's bound; i.e; #X (F

8

) = 1+9+b2

p

8
3 = 24:

To see this we �rst noti
e that (1 : 0 : 0); (0 : 1 : 0); (0 : 0 : 1) are F

8

-rational points

(this is true for any �eld where X is de�ned). Now (
f. [84, p. 10℄) we look for

(x : y : 1) 2 X su
h that x 6= 0; y 6= 0 and su
h that x

7

= 1. We have

0 = x

3

y ++y

3

+ x = x

3

y + x

7

y

3

+ x = x(x

2

y + (x

2

y)

3

+ 1) ;

i.e., t

3

+ t+ 1 = 0 (�) with t = x

2

y (�

1

). Conversely, it is easy to see that equation (�)

is irredu
ible over F

2

and hen
e its three roots are in F

8

. Then on
e x 2 F

�

8

we have

y 2 F

�

8

by (�

1

). Therefore we have 21 su
h points (x : y : 1) and the 
laim follows.

Then h

X ;8

(t) = (t

2

+ 5t+ 8)

3

by Lemma 4.6.
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Claim. h

X ;2

(t) = t

6

+ 5t

3

+ 8; in parti
ular #X (F

2

) = 3:

Let h

X ;2

(t) =

Q

3

i=1

(t��

i

)(t�

�

�

i

). Then �

3

i

+

�

�

3

i

= �5 (
f. Lemma 4.6) so that �

3

i

and

�

�

3

i

are roots of T

2

+5T +8 = 0; then h

X ;2

(t) = t

6

+5t

3

+8 so that #X (F

2

) = 2+1�0 = 3.

Finally, we mention that X is F

`

2

-maximal if and only if either ` = p

6v+1

and p � 6

(mod 7), or ` = p

6v+3

and p � 3; 5; 6 (mod 7), or ` = p

6v+5

and p � 6 (mod 7); see [2,

Cor. 3.7(2)℄.

Remark 4.10. (Lewittes [74, Thm. 1(b)℄) Let P 2 X (F

q

) and f : X ! P

1

(

�

F

q

) be the

F

q

-rational fun
tion on X su
h that div

1

(f) = n

1

(P )P . Then X (F

q

) � f

�1

(P

1

(F

q

)) =

fP

1

g [ f

�1

(F

q

) and hen
e

#X (F

q

) � 1 + qn

1

(P ) :

Now from Corollaries 4.3 and 4.7 we see that neither the Hasse-Weil bound nor Serre's

bound is e�e
tive to estimate #X (F

q

) whenever g is large with respe
t to q. So in

general one studies the number

N

q

(g) := maxf#Y(F

q

) : Y 
urve of genus g de�ned over F

q

g :

For instan
e N

q

(0) = q + 1, and Example 4.9 shows that N

8

(3) = 24. The study of

the a
tual value of N

q

(g) was initiated by Serre [93℄ who 
omputed N

q

(1) and N

q

(2).

Further properties were proved by Serre himself [94℄, Lauter [73℄, and Kresh-Wetherell-

Zieve [69℄. Tables for N

q

(g) with q and g small 
an be found in van der Geer-van der

Vlugt [34℄.

De�nition. A 
urve X of genus g and de�ned over F

q

is 
alled optimal (with respe
t

to g and q) if #X (F

q

) = N

q

(g).

If q = `

2

and X is F

`

2

-maximal then X is 
ertainly optimal. We already noti
ed

(Example 4.4) that the Hermitian 
urve H is F

`

2

-maximal whose genus attains the

bound in Corollary 4.3. Indeed, this property 
hara
terizes Hermitian 
urves:

Theorem 4.11. (R�u
k-Sti
htenoth [87℄) A F

`

2

-maximal 
urve X has genus `(`�1)=2

if and only if X is F

`

2

-isomorphi
 to the Hermitian 
urve of equation (3.6).

This result follows from Theorem 4.24.

Next we dis
uss optimal 
urves for

p

q 62 N. Besides some 
urves of small genus (see

above), the only known examples of optimal 
urves are the Deligne-Lusztig 
urves S

and R asso
iated to the Suzuki group Sz(q), q = 2

2s+1

, s � 1, and to the Ree group

R(q), q = 3

2s+1

, s � 1, respe
tively [17, Se
t. 11℄. As a matter of terminology, S (resp.

R) will be 
all the Suzuki 
urve (resp. the Ree 
urve). After the work of Hansen-

Sti
htenoth [43℄, Hansen [41℄, Pedersen [83℄, Hansen-Pedersen [42℄, the 
urves S and

R 
an be 
hara
terized as follows.
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Theorem 4.12. The 
urves S and R are the unique 
urves (up to F

q

-isomorphi
) X

de�ned over F

q

su
h that the following three 
onditions hold:

(1) #X (F

q

) = q

2

+ 1 (resp. #X (F

q

) = q

3

+ 1);

(2) X has genus q

0

(q � 1) (resp. 3q

0

(q � 1)(q + q

0

+ 1)=2); where q

0

:= 2

s

(resp. 3

s

);

(3) Aut

F

q

(X ) = Sz(q) (resp. Aut

F

q

(X ) = R(q)):

Moreover, the Suzuki 
urve S (resp. the Ree 
urve R) is the non-singular model of

Y

q

Z

q

0

� Y Z

q+q

0

�1

= X

q

0

(X

q

�XZ

q�1

) ;

(resp.

(

Y

q

W

q

0

� YW

q+q

0

�1

= X

q

0

(X

q

�XW

q�1

)

Z

q

W

2q

0

� YW

q+2q

0

�1

= X

2q

0

(x

q

�XW

q�1

)) :

In Se
t. 4.3 we prove a stronger version of this theorem for the Suzuki 
urve.

Lemma 4.13. Let X be a 
urve de�ned over F

q

su
h that (1) and (2) in Theorem

4.12 hold. Then X is optimal; moreover:

(1) If q = 2

2s+1

; h

X ;q

(t) = (t

2

+ 2q

0

t+ q)

q

0

(q�1)

;

(2) If q = 3

2s+1

; h

X ;q

(t) = (t

2

+ 3q

0

t+ q)

q

0

(q

2

�1)

(t

2

+ q)

q

0

(q�1)(q+3q

0

+1)=2

:

Proof. It is easy to see that Serre's bound is not e�e
tive to bound #X (F

q

); in this


ase one uses the so-
alled \expli
it formula" (4.2) of Weil [93℄: (following Sti
htenoth

[96, p. 183℄) Let h

X ;q

(t) =

Q

g

i=1

(t� �

i

)(t� ��

i

), �

i

=

p

qe

p

�1�

i

, and write

q

�i=2

#X (F

q

i
) = q

i=2

+ q

�i=2

� q

�i=2

g

X

j=1

(�

i

j

+ ��

i

j

) ;

this equation 
an we rewritten as

#X (F

q

)


i

q

�i=2

= 


i

q

i=2

+ 


i

q

�i=2

+ 


i

q

�i=2

g

X

j=1

(�

i

j

+ ��

i

j

)� (#X (F

q

i
)�#X (F

q

)


i

q

�i=2

;

where 


i

2 R. Now suppose that 


1

; : : : ; 


m

are given real numbers. Then from the

above equation we obtain:

#X (F

q

)�

m

(q

�1=2

) = �

m

(q

1=2

) + �

m

(q

�1=2

) + g �

g

X

j=1

f

m

(q

�1=2

�

j

)�

m

X

i=1

(#X (F

q

i

)�#X (F

q

))


i

q

�i=2

;

(4.2)

where �

m

(t) :=

P

m

i=1




i

t

i

and f

m

(t) := 1 + �

m

(t) + �

m

(t

�1

). Note that f

m

(t) 2 R

whenever t 2 C and jtj = 1.
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Case q = 2

2s+1

and g = q

0

(q � 1). Here we 
hoose m = 2, 


1

=

p

2=2, 


2

= 1=4. Then

f

2

(e

p

�1�

) = 1 +

p

2
os� + 
os(2�)=2 = (
os� +

p

2=2)

2

� 0. Then from (4.2) we have

#X (F

q

)�

2

(q

�1=2

) � �

2

(q

1=2

) + �

2

(q

�1=2

) + g ;

so that #X (F

q

) � q

2

+ 1, and hen
e X is optimal. Moreover, as #X (F

q

) = q

2

+ 1 we

must have f

2

(q

�1=2

�

j

) = 0 by (4.2) so that 
os�

j

= �

p

2=2. Then �

j

+ ��

j

= �2q

0

and

the result on h

X ;q

(t) follows.

Case q = 3

2s+1

and g = 3q

0

(q � 1)(q + q

0

+ 1)=2. Here we use m = 4, 


1

=

p

3=2,




2

= 7=12, 


3

=

p

3=6, 


4

= 1=12. Then f

4

(e

p

�1�

) = 1 +

p

3
os� + 7
os(2�)=6 +

p

3
os(3�)=3 + 
os(4�)=6 = (1 +

p

3
os� + 
os2�)

2

=3 � 0. Then from (4.2)

#X (F

q

)�

4

(q

�1=2

) � �

4

(q

1=2

) + �

4

(q

�1=2

) + g ;

so that X (F

q

) � q

3

+1. Moreover, 1+

p

3
os�

j

+ 
os2�

j

= 0 whenever X (F

q

) = q

3

+1.

Hen
e 
os�

j

= 0 or 
os�

j

= �

p

3=2 so that

h

X ;t

(t) = (t

2

+ 3q

0

t+ q)

A

(t

2

+ q)

g�A

;

where A is the number of j's su
h that 
os�

j

= �

p

3=2. To 
ompute A we use the fa
ts

that a

1

= #X (F

q

)� (q + 1) = q

3

� q and a

2g�1

= q

g�1

a

1

. We have a

2g�1

= h

0

X ;q

(0) =

3q

0

q

g�1

A and hen
e that A = q

0

(q

2

� 1).

4.1. A F

q

-divisor from the Zeta Fun
tion. Assume now that X (F

q

) 6= ;, and �x a

F

q

-rational point P

0

2 X . Let f = f

P

0

: P ! [P � P

0

℄ be the 
anoni
al map from X

to its Ja
obian over F

q

, J

�

=

fD 2 Div(X ) : deg(D) = 0g=fdiv(x) : x 2

�

F

q

(X )

�

g. Let

�

q

0

be the Frobenius morphism on J indu
ed by �

q

.

We re
all some fa
ts 
on
erning the 
hara
teristi
 polynomial of �

q

0

whi
h in fa
t turns

out to be the polynomial h(t) = h

X ;q

(t) whi
h was de�ned in Remark 4.1; see e.g. [77,

p. 205℄, or [76, proof of Thm. 19.1℄.

For a prime ` di�erent from 
har(F

q

), let J

`

i
denote the kernel of the isogeny J ! J ,

P 7! `

i

P . Then one de�nes the Tate modulo asso
iated to J as the inverse limit of

the groups J

`

i
, i � 1, with respe
t to the maps J

`

i+1
! J

`

i
, P 7! `P . We have

that #J

`

i

= (`

i

)

2g

[77, p. 62℄ so that J

`

i

is a �nite abelian group su
h that for all j,

1 � j � i it 
ontains exa
tly (`

j

)

2g

elements of order `

j

. Therefore

J

`

i

�

=

(Z=`

i

Z)

2g

and hen
e T

`

(J )

�

=

Z

2g

`

;

where Z

`

denotes the `-adi
 integers. Thus T

`

(J ) is a free Z

`

-module of rank 2g. Now


learly �

q

0

(J

`

i
) � J

`

i
and hen
e �

q

0

gives rise to a Z

`

-linear map T

`

(�

q

0

) on T

`

(J ). Let

� be the 
hara
teristi
 polynomial of T

`

(�

q

0

). A priory we have that � is a polynomial

of degree 2g with 
oeÆ
ients in Z

`

. As a matter of fa
t, � 2 Z[t℄ [77, proof of Ch. IV,
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Thm. 4℄, and � = h as we mentioned before. In parti
ular, the minimal polynomial m

of T

`

(�

q

0

) has integral 
oeÆ
ients. We 
laim that

m(�

q

0

) = 0 on J :(4.3)

To see this, noti
e that any endomorphism � 2 End(J ) : J 7! J a
ts on T

`

(J ) giving

rise to a Z

`

-linear map T

`

(�). This a
tion is inje
tive be
ause End(J ) is torsion free

and be
ause of [77, Ch. IV, Thm. 3℄. Now, as m(�

q

0

) 2 End(J ), we have

0 = m(T

`

(�

q

0

)) = T

`

(m(�

q

0

))

and (4.3) follows. Moreover, it is known that Q 
 End(J ) is a �nite dimensional

semisimple algebra over Q whose 
enter is Q[�

q

0

℄ [77, Ch. IV, Cor. 3℄, [100, Thm.

2(a)℄. In parti
ular, Q[�

q

0

℄ is semisimple and it is not diÆ
ult to see that T

`

(�

q

0

) is

semisimple; 
f. [77, p. 251℄. This means that

m(t) =

T

Y

i=1

h

i

(t) ;

where h

1

(t); : : : ; h

T

(t) are the irredu
ibles Z-fa
tors of h(t). Let U be the degree of

m(t) and let b

1

; : : : ; b

U

2 Z be the 
oeÆ
ients of m(t)� t

U

; i.e,

m(t) = t

U

+

U

X

i=1

b

i

t

U�i

:

Thus (�

q

0

)

U

+

P

U

i=1

b

i

(�

q

0

)

U�i

= 0 by (4.3). Now we evaluate the left hand side of this

equality at f(P ) = [P � P

0

℄, and by using the fa
t that �

q

0

Æ f = f Æ �

q

we �nd that

f(�

q

U

(P )) +

U

X

i=1

a

i

f(�

q

U�i

(P )) = 0 ; P 2 X ;

i.e., �

q

U

(P ) +

U

X

i=1

b

i

�

q

U�i

(P ) � (1 +

U

X

i=1

b

i

)P

0

= m(1)P

0

:(4.4)

This equivalen
e is the motivation to de�ne on X the linear series

D

X

:= jjm(1)jP

0

j ;(4.5)

whi
h is 
learly independent of P

0

being F

q

-rational.

Problem 4.14. For a 
urve X over F

q

, how is the interplay among its F

q

-rational

points, its Weierstrass points, its D

X

-Weierstrass points, and the support of the F

q

-

Frobenius divisor of D

X

.

Next we dis
uss some properties of D

X

.

Lemma 4.15. (1) If P;Q 2 X (F

q

), then m(1)P � m(1)Q; in parti
ular, jm(1)j is a

Weierstrass non-gap at ea
h P 2 X (F

q

).
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(2) If #X (F

q

) � 2g+3, then there exists P

1

2 X (F

q

) su
h that jm(1)j�1 and jm(1)j

are Weierstrass non-gaps at P

1

.

Proof. (1) It follows immediately from (4.4).

(2) (Following Sti
htenoth-Xing [97, Prop. 1℄) Let Q 2 X (F

q

) n fP

0

g. From (1), there

exists a morphism x : X ! P

1

(

�

F

q

) with div(x) = jm(1)jP

0

� jm(1)jQ. Let n be the

number of F

q

-rational points of X whi
h are unrami�ed for x. Let x

s

: X ! P

1

(

�

F

q

) be

the separable part of x. We have that div(x

s

) = jm(1)j

0

P

0

� jm(1)j

0

Q (here jm(1)j

0

is

the separable degree of x) and from the Riemman-Hurwitz applied to x

s

we �nd that

2g � 2 � jm(1)j

0

(�2) + 2(jm(1)j

0

� 1) + (#X (F

q

)� n� 2) ;

so that n � #X (F

q

) � 2g � 2. Thus n � 1 by hypothesis, and hen
e there exists

� 2 F

q

, P

1

2 X (F

q

) n fP

0

; Qg su
h that div(x � �) = P

1

+ D � mQ with P

1

; Q 62

Supp(D). Let y 2

�

F

q

(X ) be su
h that div(y) = jm(1)jQ � jm(1)jP

1

(
f. (1)). Then

div(y(x� �)) = D � (jm(1)j � 1)P

1

and (2) follows.

Corollary 4.16. (1) D

X

is base-point-free;

(2) If #X (F

q

) � 2g + 3, then D

X

is simple:

Proof. (1) follows by Lemma 4.15 and Example 1.23

(2) Let P

1

be as in Lemma 4.15(2), � a morphism asso
iated to D

X

, f

1

; f

2

2

�

F

q

(X )

su
h that div

1

(f

1

) = (jm(1)j � 1)P

1

and div

1

(f

2

) = jm(1)jP

1

. Then [

�

F

q

(X ) :

�

F

q

(f

i

)℄,

i = 1; 2, divides [

�

F

q

(X ) :

�

F

q

(�(X ))℄ and the result follows.

Now we study (D

X

; P )-orders. We let �

0

= 0 < �

1

= 1 < : : : < �

N

(resp. �

0

=

0 < : : : < �

N�1

) denote the D

X

-orders (resp. the F

q

-Frobenius orders) of D

X

, where

N := dim(D

X

). Noti
e that n

N

(P ) = jm(1)j for any P 2 X (F

q

) by Lemma 4.15(1).

>From Example 1.23 we obtain:

Lemma 4.17. For P 2 X (F

q

), the (D

X

; P )-orders are

j

N�i

(P ) = n

N

(P )� n

i

(P ) ; i = 0; 1; : : : ; N :

This result (for i = 1) and Remark 4.10 yield the following.

Corollary 4.18. Let P 2 X (F

q

): If #X (F

q

) > q(jm(1)j�b

U

)+1, then j

N�1

(P ) < b

U

:

Lemma 4.19. Suppose

b

i

� 0 ; i = 1; : : : ; U ;(4.6)

and let P 2 X su
h that �

q

i

(P ) 6= P for i = 1; : : : ; U: Then:

(1) The numbers 1; b

1

; : : : ; b

U

are (D

X

; P )-orders;
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(2) If in addition

b

1

� b

0

:= 1 and b

i+1

� b

i

; for i = 1; : : : ; U � 1 ;(4.7)

then b

U

(resp. b

U

� 1) is a Weierstrass non-gap at P whenever �

q

U+1

(P ) 6= P

(resp. �

q

U+1

(P ) = P ):

Proof. (1) Fix j 2 f0; 1; : : : ; Ug, and let Q 2 X su
h that �

q

U�j

(Q) = P (�). From

(4.4) we have

X

i2f0;1;::: ;Ugnfjg

b

i

�

q

U�i

(Q) + b

j

P � m(1)P

0

:

We 
laim that �

q

U�i

(Q) 6= P ; otherwise from (�) we would have �

q

i�j

(P ) = P , a


ontradi
tion. This shows (1).

(2) Applying �

q

�

to (4.4) we have

�

q

U

(P ) +

U

X

i=1

b

i

�

q

U�i

(P ) � m(1)P

0

� �

q

U+1

(P ) +

U

X

i=1

b

i

�

q

U�i+1

(P ) ;

so that

b

U

P � �

q

U+1

(P ) +

U

X

i=1

(b

i

� b

i�1

)�

q

U�i+1

(P ) ;

and (2) follows.

Remark 4.20. (i) Minimal 
urves as well as minimal 
urves with respe
t to Serre's

bound (Remark 4.8) do not satisfy (4.6). However we 
an still use (4.4) to infer that

p

q

is a non-gap at in�nitely many points of the 
urve provided that the 
urve is minimal.

Indeed, (4.6) reads �

q

(P )�

p

qP � (1�

p

q)P

0

so that

p

qP � (

p

q � 1)P

0

+ �

q

(P ).

In parti
ular, if g �

p

q, a F

q

-minimal 
urve is non-
lassi
al.

(ii) The Klein 
urve (Example 4.9) de�ned over F

2

satis�es (4.6) but not (4.7).

(iii) Other examples as in (i) and (ii) 
an be found in Carbonne-Heno
q [9℄.

Corollary 4.21. Assume (4.6).

(1) If P 62 X (F

q

) and X (F

q

) = : : : = X (F

q

U ); then 1; b

1

; : : : ; b

U

are (D

X

; P )-orders:

(2) The numbers 1; b

1

; : : : ; b

U

are D

X

-orders: In parti
ular; dim(D

X

) � U+1 provided

that b

i

6= b

j

for i 6= j;

(3) If in addition (4.7) holds and g � b

U

, then X is non-
lassi
al:

Proof. Lemma 4.19(1) implies (1) and (2) sin
e there are in�nitely many points P su
h

that �

q

i

(P ) 6= P for i = 1; : : : ; U . To see (3) we take P 2 X su
h that �

q

U+1

(P ) 6= P .

Then b

U

2 H(P ) by Lemma 4.19(2). If X were 
lassi
al then n

1

(P ) = g + 1 so that

g < b

U

, a 
ontradi
tion.

Corollary 4.22. Assume (4.6).
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(1) �

N

= �

N�1

= b

U

;

(2) X (F

q

) � Supp(R

D

):

Proof. (1) We have �

N�1

� j

N�1

(P ) for any P by Corollary 2.10(1); thus �

N�1

< b

U

by Corollary 4.18. Therefore �

N

= b

U

by Corollary 4.21(2), and so

�

�

(L

N�1

(P )) = �

q

U

(P ) +

U

X

I=1

b

i

�

q

U�i

(P )

by (4.4), where � is a morphism asso
iated to D

X

. It follows that �(�

q

(P )) 2 L

N�1

(P )

so that �

N�1

= �

N

.

(2) By Lemma 4.17 j

N

(P ) = n

N

(P ) = m(1) for ea
h P 2 X (F

q

). Sin
e m(1) =

1 +

P

U

i=1

b

i

> b

U

= �

N

(
f. (1)), the result follows.

Corollary 4.23. Assume (4.7). Then n

1

(P ) � b

U

for ea
h P 2 X (F

q

); and equality

holds provided that #X (F

q

) � qb

U

+ 1:

Proof. Let P 2 X (F

q

). By Lemma 2.30 n

1

(P ) � n

1

(Q) where Q 62 W. Therefore

n

1

(P ) � b

U

by Lemma 4.19(2). Now if #X (F

q

) � qb

U

+ 1, then 1 + qn

1

(P ) � qb

U

+ 1

by Remark 4.10 and the result follows.

4.2. The Hermitian 
urve. Let X be a F

`

2

-maximal 
urve of genus g. Re
all that

g � `(`+ 1)=2 by Corollary 4.3 and that the Hermitian 
urve is F

`

2

-maximal of genus

`(` � 1)=2 (
f. Example 3.15). From Lemma 4.2 and (4.5), X is equipped with the

linear series D

X

:= j(` + 1)P

0

j. By Corollary 4.16, D

X

is simple and base-point-free.

We see that X satis�es (4.7) (and hen
e (4.6)); in parti
ular 1; ` are D

X

orders so that

N := dim(D

X

) � 2.

Theorem 4.24. ([26, Thm. 2.4℄) Let X be a F

`

2

-maximal 
urve of genus g. The

following statements are equivalent:

(1) X is F

`

2

-isomorphi
 to the Hermitian 
urve H of equation (3.6);

(2) g > (`� 1)

2

=4;

(3) N = 2:

Proof. (1) implies (2) be
ause the genus of H is `(` � 1)=2. Assume (2) and suppose

that N � 3. Then Castelnuovo's genus bound (Remark 1.7) applied to D

X

would yield

g � (`� 1)

2

=4, a 
ontradi
tion. Finally let N = 2. By (4.4) (` + 1)P � (` + 1)P

0

for

any P 2 X (F

`

2

) and hen
e we 
an assume that `; ` + 1 2 H(P

0

) by Lemma 4.15(2);

in this 
ase, as N = 2, n

1

(P

0

) = ` and n

2

(P

0

) = ` + 1. Let �

0

= 0 < �

1

= 1 < �

2

(resp. �

0

= 0 < �

1

) denote the D

X

-orders (resp. F

`

2

-orders) of X . Then �

2

= �

1

= ` by



48 F. TORRES

Corollary 4.22. Let x; y 2 F

`

2

(X ) su
h that div

1

(x) = `P

0

and div

1

(y) = (` + 1)P

0

.

We have thatx is a separating variable (Lemma 1.24) and therefore

V

0;1

1;x;y;;x

= det

0

�

1 x

`

2

y

`

2

1 x y

0 1 D

1

x

y

1

A

= (x� x

`

2

)D

1

x

y � (y � y

`

2

) = 0 :(�)

Claim. There exists f 2

�

F

`

2

(X ) su
h that D

1

x

y = f

`

:

To proof this we have to show that D

i

x

(D

1

x

y) = 0 (�

1

) for 1 � i < ` by Remark 2.5(ii).

We apply D

1

x

to (�): (x� x

`

2

)D

1

x

(D

1

x

y) = 0 and so (�

1

) holds for i = 1. Suppose that

(�

1

) is true for i = 1; : : : ; j, 1 � j � ` � 2. We apply D

j+1

x

to (�) and using the

indu
tive hypothesis and Remark 2.5(i) we �nd that (x� x

`

2

)D

j+1

x

(D

1

x

y) = D

j+1

x

y. It

turns out that

W

0;1;j+1

1;x;y;x

=

0

�

1 x y

0 1 D

1

x

y

0 0 D

j+1

x

y

1

A

= D

j+1

x

y = 0 ;

sin
e �

2

= `, and the 
laim follows.

Claim. #x

�1

(x(P )) = ` for P 6= P

0

:

>From (�) v

P

0

(D

1

x

y) = �`

2

. Let t be a lo
al parameter at P

0

. Then v

P

0

(D

1

t

x) = `

2

�l�2

sin
e D

1

t

y = D

1

t

xD

1

x

y by the 
hain rule (2.3). We have that deg(dx) = 2g � 2 (see

Example 1.1) and that v

P

(x) � 0 for P 6= P

0

. Therefore 2g � 2 � `

2

� l � 2; i.e.,

g � l(l � 2)=2; i.e. g = `(` � 1)=2 by Corollary 4.3. It follows that v

P

(dx) = 0 for

P 6= P

0

and so the 
laim.

We 
on
lude that D

1

x

y = f

`

with div

i

nftyf = `P

0

; moreover f 2 F

q

(X ) sin
e D

1

x

y 2

F

q

(X ). Then f = a+ bx with a; b 2 F

`

2

and (�) gives a relation of type

(y

`

1

+ y

1

� x

`+1

1

)

`

= y

`

1

+ y

`

1

� x

`+1

1

:

Finally we have that y

`

1

+ y

1

� x

`+1

1

= 
 2 F

`

and with y

2

:= y

1

+ �, �

`

+ � = a, we

have that (3.6) holds; i.e., X is F

`

2

-isomorphi
 to H.

Corollary 4.25. ([25℄) The genus g of a F

`

2

-maximal 
urve satis�es

either g � (`� 1)

2

=4 or g = `(`� 1)=2 :

Remark 4.26. This result was improved in [68℄ where it is shown that g � (`

2

�`+1)=6

whenever g < (`� 1)

2

=4.

4.3. The Suzuki 
urve. Set q

0

:= 2

s

, s 2 N, q := 2q

2

0

. Let X be a 
urve de�ned over

F

q

of genus g su
h that

g = q

0

(q � 1) and #X (F

q

) = q

2

+ 1 :(4.8)
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The main result of this sub-se
tion is the following theorem whi
h improves Theorem

4.12 for the Suzuki 
urve S.

Theorem 4.27. A 
urve X de�ned over F

q

is F

q

-isomorphi
 to the Suzuki 
urve S if

and only if (4.8) hold true.

Problem 4.28. Can we expe
t a similar result for the Ree 
urve?

If (4.8) hold, then h

X ;q

(t) = (t

2

+ 2q

0

t + q)

g

by Lemma 4.13(1), and from (4.5) we see

that X is equipped with the linear series

D

X

= j(q + 2q

0

+ 1)P

0

j ; P

0

2 X (F

q

) :

The results of Se
t. 4.1 applied to this 
ase are summarized in the following proposition.

Let N := dim(D

X

), �

0

= 0 < �

1

= 1 < : : : < �

N

(resp. �

0

= 0 < : : : < �

N�1

) be the

D

X

-orders (resp. F

q

-Frobenius orders) of X .

Proposition 4.29. (1) j

N

(P ) = n

N

(P ) = q+2q

0

+1 for any P 2 X (F

q

); in addition,

there exists P

1

2 X (F

q

) su
h that n

N�1

(P

1

) = q + 2q

0

;

(2) D

X

is simple and base-point-free;

(3) 2q

0

and q are D

X

-orders so that N � 3;

(4) �

N

= �

N�1

= q;

(5) n

1

(P ) = q for any P 2 X (F

q

):

>From (5) and (1) above and Lemma 4.17, j

N�1

(P ) = j

N

(P )�n

1

(P ) = 2q

0

+1 for any

P 2 X (F

q

) so that

2q

0

� �

N�1

� 2q

0

+ 1 :

Lemma 4.30. �

N�1

= 2q

0

:

Proof. Suppose that �

N�1

> 2q

0

. Then �

N�2

= 2q

0

and �

N�1

= 2q

0

+ 1. By Corollary

3.9(1) �

N�2

� j

N�1

(P )� j

1

(P ) � 2q

0

= �

N�2

, and thus the F

q

-Frobenius orders of D

X

would be �

0

; �

1

; : : : ; �

N�2

, and �

N

. Now from Proposition 3.5(1)

v

P

(S) �

N

X

i=1

(j

i

(P )� �

i�1

) � (N � 1)j

1

(P ) + 1 + 2q

0

� N + 2q

0

;(4.9)

for P 2 X (F

q

) so that deg(S) = (

P

i

�

i

)(2g � 2) + (q + N)(q + 2q

0

+ 1) � (N +

2q

0

)#X (F

q

). From the identities 2g � 2 = (2q

0

� 2)(q + 2q

0

+ 1) and #X (F

q

) =

(q � 2q

0

+ 1)(q + 2q

0

+ 1) we would have

N�2

X

i=1

�

i

=

N�2

X

i=1

�

i

� (N � 1)q

0

:

Now, as �

i

+ �

j

� �

i+j

for i+ j � N by Corollary 2.14,

(N � 1)2q

0

= (N � 1)�

N�2

� 2

N�2

X

i=0

�

i

� 2(N � 1)q

0

;
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and hen
e �

i

+ �

N�2�i

= �

N�2

for i = 0; : : : ; N�2. In parti
ular, �

N�3

= 2q

0

�1 and by

the p-adi
 
riterion (Lemma 2.21) we would have �

i

= i for i = 0; 1; : : : ; N � 3. Then

N = 2q

0

+ 2. Now from Castelnuovo's genus bound (Remark 1.7)

2g = 2q

0

(q � 1) � (q + 2q

0

� (N � 1)=2)

2

)=(N � 1) ;

i.e., 2q

0

(q � 1) < (q + q

0

)

2

=2q

0

= q

0

q + q=2 + q

0

=2, a 
ontradi
tion.

Corollary 4.31. There exists P

1

2 X (F

q

) su
h that

�

j

1

(P

1

) = 1

j

i

(P

1

) = �

i�1

+ 1 if i = 2; : : : ; N � 1:

Proof. Sin
e we already observed that v

P

(S) � (N � 1)j

1

(P ) + 2q

0

+ 1 � N + 2q

0

for

P 2 X (F

q

), it is enough to show that there exists P

1

2 X (F

q

) su
h that v

P

1

(S) =

N + 2q

0

. Suppose that v

P

(S) � N + 2q

0

+ 1 for any P 2 X (F

q

). Then by Theorem

3.13

N�1

X

i=0

�

i

� q +Nq

0

+ 1 ;

so that

N�1

X

i=0

�

i

� Nq

0

+ 2 ;

be
ause �

1

= 1, �

N�1

= q and �

i

� �

i+1

. Then from Corollary 2.14 we would have

N�

N�1

� 2Nq

0

+ 4; i.e., �

N�1

> 2Nq

0

, a 
ontradi
tion by Lemma 4.30.

Lemma 4.32. (1) �

1

> �

1

= 1;

(2) �

2

is a power of two:

Proof. If �

1

> �

1

= 1, then �

1

= �

2

and it must be a power of two by the p-adi
 
riterion

(Lemma 2.21): i.e., (1) implies (2). Suppose now that �

1

= 1. Then from Corollary

4.31 there exists a point P

1

2 X (F

q

) su
h that j

1

(P

1

) = 1; j

2

(P

1

) = 2; thus

H(P

1

) � H := hq; q + 2q

0

� 1; q + 2q

0

; q + 2q

0

+ 1i ;

by Proposition 4.29(1)(5) and Lemma 4.17. In parti
ular g = q

0

(q � 1) � ~g :=

#(N

0

nH). This is a 
ontradi
tion as follows immediately from the 
laim below.

Claim. ~g = g � q

2

0

=4:
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In fa
t, L := [

2q

0

�1

i=1

L

i

is a 
omplete system of residues module q, where

L

i

= fiq + i(2q

0

� 1) + j : j = 0; : : : ; 2ig if 1 � i � q

0

� 1;

L

q

0

= fq

0

q + q � q

0

+ j : j = 0; : : : ; q

0

� 1g;

L

q

0

+1

= f(q

0

+ 1)q + 1 + j : j = 0; : : : ; q

0

� 1g;

L

q

0

+i

= f(q

0

+ i)q + (2i� 3)q

0

+ i� 1 + j : j = 0; : : : ; q

0

� 2i+ 1g[

f(q

0

+ i)q + (2i� 2)q

0

+ i + j : j = 0; : : : q

0

� 1g if 2 � i � q

0

=2;

L

3q

0

=2+i

= f(3q

0

=2 + i)q + (q

0

=2 + i� 1)(2q

0

� 1) + q

0

+ 2i� 1 + j :

j = 0; : : : ; q

0

� 2i� 1g if 1 � i � q

0

=2� 1:

Moreover, for ea
h ` 2 L, ` 2 H and `� q 62 H. Hen
e ~g 
an be 
omputed by summing

up the 
oeÆ
ients of q from the above list (see e.g. [92, Thm. p.3℄); i.e.,

~g =

P

q

0

�1

i=1

i(2i+ 1) + q

2

0

+ (q

0

+ 1)q

0

+

P

q

0

=2

i=2

(q

0

+ i)(2q

0

� 2i+ 2)+

P

q

0

=2�1

i=1

(3q

0

=2 + i)(q

0

� 2i) = q

0

(q � 1)� q

2

0

=4 :

In the remaining part of this sub-se
tion we let P

0

= P

1

be a F

q

-rational point satisfying

Corollary 4.31; we set n

i

:= n

i

(P

1

) and v := v

P

1

.

Lemma 4.32(1) implies �

i

= �

i+1

for i = 1; : : : ; N � 1. Therefore from Corollary 4.31

and Lemma 4.17 we have

�

n

i

= 2q

0

+ q � �

N�i

if i = 1; : : :N � 2

n

N�1

= 2q

0

+ q; n

N

= 1 + 2q

0

+ q:

(4.10)

Let x; y

2

; : : : ; y

N

2 F

q

(X ) be su
h that div

1

(x) = n

1

P

1

, and div

1

(y

i

) = n

i

P

1

for

i = 2; : : : ; N . The fa
t that �

1

> 1 means that the following matrix has rank two (see

Se
t. 3)

0

�

1 x

q

y

q

2

: : : y

q

r

1 x y

2

: : : y

r

0 1 D

1

x

y

2

: : : D

1

x

y

r

1

A

:

In parti
ular,

y

q

i

� y

i

= D

1

x

y

i

(x

q

� x) for i = 2; : : : ; N :(4.11)

Lemma 4.33. (1) (2g � 2)P is 
anoni
al for any P 2 X (F

q

); i.e.; the Weierstrass

semigroup at su
h a P is symmetri
;

(2) Let m 2 H(P

1

) su
h that m < q + 2q

0

. Then m � q + q

0

;

(3) There exists g

i

2 F

q

(X ) su
h that D

1

x

y

i

= g

�

2

i

for i2; : : : ; N: Furthermore;

div

1

(g

i

) =

qm

i

�q

2

�

2

P

1

:

Proof. (1) By the identity 2g � 2 = (2q

0

� 2)(q + 2q

0

+ 1) and (4.4) we 
an assume

P = P

1

. Now the 
ase i = N of Eqs. (4.11) implies v(dx) = 2g � 2 and the result

follows sin
e v

P

(dx) � 0 for P 6= P

1

.
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(2) From (4.10), q; q + 2q

0

and q + 2q

0

+ 1 2 H(P

1

). Then the numbers

(2q

0

� 2)q + q � 4q

0

+ j j = 0; : : : ; q

0

� 2

are also non-gaps at P

1

. Therefore, by the symmetry of H(P

1

),

q + q

0

+ 1 + j j = 0; : : : ; q

0

� 2

are gaps at P

1

and the proof follows.

(3) Set f

i

:= D

1

x

y

i

. We have D

j

x

y

i

= (x

q

� x)D

j

x

f

i

+ D

(j�1)

x

f

i

for 1 � j < q by the

produ
t rule applied to (4.11). Then, D

j

x

f

i

= 0 for 1 � j < �

2

, be
ause the matri
es

0

�

1 x y

2

: : : y

N

0 1 D

1

x

y

2

: : : D

1

x

y

N

0 0 D

j

x

y

2

: : : D

j

x

y

N

1

A

; 2 � j < �

2

have rank two (see Se
t. 2.2). Consequently, as �

2

is a power of two by Lemma 4.32(2)),

from Remark 2.5(2), f

i

= g

�

2

i

for some g

i

2 F

q

(X ). Finally, from the proof of (1) we

have that x � x(P ) is a lo
al parameter at P if P 6= P

1

. Then, by the ele
tion of the

y

i

's, g

i

has no pole but in P

1

, and from (4.11), v(g

i

) = �(qm

i

� q

2

)=�

2

.

Lemma 4.34. N = 4 and �

2

= q

0

:

Proof. We know that N � 3. We 
laim that N � 4 otherwise we would have �

2

= 2q

0

,

n

1

= q, n

2

= q + 2q

0

, n

3

= q + 2q

0

+ 1, and hen
e v(g

2

) = �q (with g

2

being as in

Lemma 4.33(3)). Therefore, after some F

q

-linear transformations, the 
ase i = 2 of

(4.11) reads

y

q

2

� y

2

= x

2q

0

(x

q

� x) :

Now the fun
tion z := y

q

0

2

� x

q

0

+1

satis�es z

q

� z = x

q

0

(x

q

� x) and we �nd that q

0

+ q

is a non-gap at P

1

(
f. [43, Lemma 1.8℄). This 
ontradi
tion eliminates the possibility

N = 3.

Let N � 4 and 2 � i � N . By Lemma 4.33(3) (qn

i

� q

2

)=�

2

2 H(P

1

), and sin
e

(qn

i

� q

2

)=�

2

� n

i�1

� q, by (4.10) we have

2q

0

� �

2

+ �

N�i

for i = 2; : : : ; N � 2 :

In parti
ular, �

2

� q

0

. On the other hand, by Lemma 4.33(2) we must have n

N�2

�

q + q

0

and so, by (4.10) we �nd that �

2

� q

0

; i.e., �

2

= q

0

.

Finally we show that N = 4. �

2

= q

0

implies �

N�2

� q

0

. Sin
e n

2

� q + q

0

(
f. Lemma

4.33(2)), by (4.10), we have �

N�2

� q

0

. Therefore �

N�2

= q

0

= �

2

so that N = 4.

Proof of Theorem 4.27. Let P

1

2 X (F

q

) be as above. By (4.11), Lemma 4.33(3) and

Lemma 4.34 we have the following equation

y

q

2

� y

2

= g

q

0

2

(x

q

� x) ;
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where g

2

has no pole ex
ept at P

1

. Moreover, by (4.10), n

2

= q

0

+ q and so v(g

2

) = �q

(
f. Lemma 4.33(3)). Thus g

2

= ax+ b with a; b 2 F

q

, a 6= 0, and after some F

q

-linear

transformations (as those in the proof of Theorem 4.24) the result follows.

Remark 4.35. (i) From the above 
omputations we 
on
lude that the Suzuki 
urve

S is equipped with a 
omplete, simple and base-point-free g

4

q+2q

0

+1

, namely D

S

=

j(q+2q

0

+1)P

0

j, P

0

2 S(F

q

). Su
h a linear series is an F

q

-invariant. The orders of D

S

(resp. the F

q

-Frobenius orders) are 0; 1; q

0

; 2q

0

and q (resp. 0; q

0

; 2q

0

and q).

(ii) There exists P

1

2 S(F

q

) su
h that the (D

S

; P

1

)-orders are 0; 1; q

0

+ 1; 2q

0

+ 1 and

q + 2q

0

+ 1 (Corollary 4.31). Now we show that the above sequen
e is, in fa
t, the

(D

S

; P )-orders for ea
h P 2 S(F

q

). To see this, noti
e that

deg(S) = (3q

0

+ q)(2g � 2) + (q + 4)(q + 2q

0

+ 1) = (4 + 2q

0

)#S(F

q

):

Let P 2 S(F

q

). By (4.9) we 
on
lude that v

P

(S

D

) =

P

4

i=1

(j

i

(P ) � �

i�1

) = 4 + 2q

0

and so, by Proposition 3.5(1) that j

1

(P ) = 1, j

2

(P ) = q

0

+ 1, j

3

(P ) = 2q

0

+ 1, and

j

4

(P ) = q + 2q

0

+ 1.

(iii) Then, by Lemma 4.17 H(P ) 
ontains the semigroup H := hq; q + q

0

; q + 2q

0

; q +

2q

0

+1i whenever P 2 S(F

q

). Indeed H(P ) = H sin
e #(N

0

nH) = g = q

0

(q�1) (this


an be proved as in the 
laim in the proof of Lemma 4.32(1); see also [43, Appendix℄).

(iv) We have

deg(R) =

4

X

i=0

�

i

(2g � 2) + 5(q + 2q

0

+ 1) = (2q

0

+ 3)#S(F

q

) ;

and v

P

(R) = 2q

0

+3 for P 2 S(F

q

) as follows from (i), (ii) and Se
t. 2.2. Therefore the

set of D

S

-Weierstrass points of S is equal to S(F

q

). In parti
ular, the (D; P )-orders

for P 62 S(F

q

) are 0; 1; q

0

; 2q

0

and q.

(v) We 
an use the above 
omputations to obtain information on orders for the 
anon-

i
al morphism on S. By using the fa
t that (2q

0

� 2)D

S

is 
anoni
al (
f. Lemma

4.33(1)) and (iv), we see that the set fa+ q

0

b+ 2q

0


+ qd : a+ b+ 
+ d � 2q

0

� 2g is


ontained in the set of orders of K

S

at non-rational points. (By 
onsidering �rst order

di�erentials on S, similar 
omputations were obtained in [30, Se
t. 4℄.)

(vi) Finally, we remark that S is non-
lassi
al for the 
anoni
al morphism: We have

two di�erent proofs for this fa
t: lo
. 
it. and Corollary 4.21(3).

Remark 4.36. (A. Cossidente) Re
all that an ovoid in P

N

(F

q

) is a set of points P no

three of whi
h are 
ollinear and su
h that for ea
h P the union of the tangent lines at

P is a hyperplane; see [49℄. We are going to related the Suzuki-Tits ovoid O in P

4

(F

q

)

with the F

q

-rational points of the Suzuki 
urve S.
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It is known that any ovoid in P

4

(F

q

) that 
ontains the point (0 : 0 : 0 : 0 : 1) 
an be

de�ned by

f(1 : a : b : f(a; b) : af(a; b) + b

2

) : a; b 2 F

q

g [ f(0 : 0 : 0 : 0 : 1)g;

where f(a; b) := a

2q

0

+1

+ b

2q

0

; 
f. [102℄, [85, p.3℄.

Let � = (1 : x : y : z : w) be the morphism asso
iated to D

S

su
h that div

1

(x) = qP

0

,

div

1

(y) = (q + q

0

)P

0

, div

1

(z) = (q + 2q

0

)P

0

and div

1

(w) = q + 2q

0

+ 1; see Remark

4.35(iii).

Claim. O = �(S(F

q

)):

Indeed we have �(P

0

) = (0 : 0 : 0 : 0 : 1); in addition the 
oordinates of � 
an be


hoosen su
h that y

q

� y = x

q

0

(x

q

� x), z := x

2q

0

+1

+ y

2q

0

, and w := xy

2q

0

+ z

2q

0

=

xy

2q

0

+x

2q+2q

0

+y

2q

(see [43, Se
t. 1.7℄). For P 2 S(F

q

)nfP

0

g set a := x(P ), b := y(P ),

and f(a; b) := z(a; b). Then w(a; b) = af(a; b) + b

2

and the 
laim follows.

Remark 4.37. The morphism � in the previous remark is an embedding. To see this,

as j

1

(P ) = 1 for any P 2 S ( Remarks 4.35(ii)(iv)), it is enough to show that � is

inje
tive. We have

(q + 2q

0

+ 1)P

0

� q�

q

2

(P ) + 2q

0

�

q

(P ) + P(4.12)

so that the points P 2 S where � 
ould not be inje
tive satisfy either P 62 S(F

q

),

or �

q

3

(P ) = P or �

q

2

(P ) = P . Now from the Zeta fun
tion of S one sees that

#S(F

q

3

) = #S(F

q

2

) = #S(F

q

), and the remark follows.

Remark 4.38. From the 
laim in Remark 4.36, (4.12) and [48℄ we have

Aut

�

F

q

(S) = Aut

F

q

(S)

�

=

fA 2 PGL(5; q) : AO = Og :

5. Plane ar
s

In this se
tion we show how to apply Se
tions 2 and 3 to study the size of plane ar
s.

The approa
h is from Hirs
hfeld-Kor
hm�aros [50℄, [51℄ and Volo
h [106℄, [107℄. Our

exposition follows [36℄.

A k-ar
 in P

2

(F

q

) is a set K of k points no three of whi
h are 
ollinear. It is 
omplete

if it is not properly 
ontained in another ar
. For a given q, a basi
 problem in Finite

Geometry is to �nd the values of k for whi
h a 
omplete k-ar
 exists. Bose [6℄ showed

that

k � m(2; q) :=

(

q + 1 if q is odd ;

q + 2 otherwise :

For q odd the bound m(2; q) is attained if and only if K is an irredu
ible 
oni
 [90℄,

[49, Thm. 8.2.4℄. For q even the bound is attained by the union of an irredu
ible 
oni


and its nu
leus, and not every (q + 2)-ar
 arises in this way; see [49, Se
t. 8.4℄. Let
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m

0

(2; q) denote the se
ond largest size that a 
omplete ar
 in P

2

(F

q

) 
an have. Segre

[90℄, [49, Se
t. 10.4℄ showed that

m

0

(2; q) �

(

q �

1

4

p

q +

7

4

if q is odd;

q �

p

q + 1 otherwise:

(5.1)

Besides small q, namely q � 29 [11℄, [49℄, [53℄, the only 
ase where m

0

(2; q) has been

determined is for q an even square. Indeed, for q square, examples of 
omplete (q �

p

q + 1)-ar
s [5℄, [12℄, [18℄, [23℄, [60℄ show that

m

0

(2; q) � q �

p

q + 1 ;(5.2)

and so the bound (5.1) for an even q square is sharp. This result has been re
ently

extended by Hirs
hfeld and Kor
hm�aros [52℄ who showed that the third largest size

that a 
omplete ar
 
an have is upper bounded by q � 2

p

q + 6.

If q is not a square, Segre's bounds were notably improved by Volo
h [106℄, [107℄.

If q is odd, Segre's bound was slightly improved to m

0

(2; q) � q �

p

q=4 + 25=16 by

Thas [101℄. If q is an odd square and large enough, Hirs
hfeld and Kor
hm�aros [51℄

signi�
antly improved the bound to

m

0

(2; q) � q �

1

2

p

q +

5

2

:(5.3)

Inequalities (5.2) and (5.3) suggest the following problem, whi
h seems to be diÆ
ult

and has remained open sin
e the 60's.

Problem 5.1. For q an odd square, is it true that m

0

(2; q) = q �

p

q + 1?

The answer is negative for q = 9 and aÆrmative for q = 25 [11℄, [49℄, [53℄. So Problem

5.1 is indeed open for q � 49.

5.1. B. Segre's fundamental theorem: Odd 
ase. We re
all a fundamental theorem of

Segre whi
h is the link between ar
s and 
urves.

Let K be an ar
 in P

2

(F

q

). Segre asso
iates to K a plane 
urve C in the dual plane

of P

2

(

�

F

q

). This 
urve is de�ned over F

q

and it is 
alled the envelope of K. For

P 2 P

2

(

�

F

q

), let `

P

denote the 
orresponding line in the dual plane. A line ` in P

2

(F

q

)

is 
alled an i-se
ant of K if #K \ ` = i. The following result summarizes the main

properties of C for the odd 
ase.

Theorem 5.2. (B. Segre [90℄, [49, Se
t. 10℄) If q is odd, then the following statements

hold:

(1) The degree of C is 2t, with t = q � k + 2 being the number of 1-se
ants through a

point of K.

(2) All kt of the 1-se
ants of K belong to C.
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(3) Ea
h 1-se
ant ` of K through a point P 2 K is 
ounted twi
e in the interse
tion

of C with `

P

; i.e., I(C; `

P

; `) = 2.

(4) The 
urve C 
ontains no 2-se
ant of K.

(5) The irredu
ible 
omponents of C have multipli
ity at most two, and C has at least

one 
omponent of multipli
ity one.

(6) For k > (2q + 4)=3, the ar
 K is in
omplete if and only if C admits a linear


omponent over F

q

. For k > (3q + 5)=4, the ar
 K is a 
oni
 if and only if it is


omplete and C admits a quadrati
 
omponent over F

q

.

Next we show some properties of C. Re
all that a non-singular point P of a plane 
urve

A is 
alled an in
exion point of A if I(A; `;P ) > 2, with ` being the tangent line of A

at P .

De�nition. A point P

0

of C is 
alled spe
ial if the following 
onditions hold:

(i) it is non-singular;

(ii) it is F

q

-rational;

(iii) it is not an in
exion point of C.

Then, by (i), a spe
ial point P

0

belongs to an unique irredu
ible 
omponent of the

envelope whi
h will be 
alled the irredu
ible envelope asso
iated to P

0

or an irredu
ible

envelope of K.

Lemma 5.3. Let C

1

be an irredu
ible envelope of K. Then

(1) C

1

is de�ned over F

q

;

(2) if q is odd and the k-ar
 K, with k > (3q + 5)=4, is 
omplete and di�erent from a


oni
, then the degree of C

1

is at least three.

Proof. (1) Let C

1

be asso
iated to P

0

, let � be the Frobenius morphism (relative to F

q

)

on the dual plane of P

2

(

�

F

q

), and suppose that C

1

is not de�ned over F

q

. Then, sin
e

the envelope is de�ned over F

q

and P

0

is F

q

-rational, P

0

would belong to two di�erent


omponents of the envelope, namely C

1

and �(C

1

). This is a 
ontradi
tion be
ause the

point is non-singular.

(2) This follows from Theorem 5.2(6).

The next result will show that spe
ial points do exist provided that q is odd and the

ar
 is large enough.

Proposition 5.4. Let K be an ar
 in P

2

(F

q

) of size k su
h that k > (2q + 4)=3. If q

is odd, then the envelope C of K has spe
ial points.

Remark 5.5. The hypothesis k > (2q +4)=3 in the proposition is equivalent to k > 2t,

with t = q� k+2. Also, under this hypothesis, the envelope C is uniquely determined

by K, see [49, Thm. 10.4.1(i)℄.
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To prove Proposition 5.4 we need the following lemma.

Lemma 5.6. Let A be a plane 
urve de�ned over

�

F

q

and suppose that it has no mul-

tiple 
omponents. Let � be the degree of A and s the number of its singular points.

Then,

s �

�

�

2

�

;

and equality holds if A 
onsists of � lines no three 
on
urrent.

Proof. That a set of � lines no three 
on
urrent satis�es the bound is trivial. Let G = 0

be the equation of A, let G = G

1

: : : G

r

be the fa
torization of G in

�

F

q

[X; Y ℄, and let

A

i

be the 
urve given by G

i

= 0. For simpli
ity we assume � even, say � = 2M .

Setting �

i

:= deg(G

i

), i = 1; : : : ; r and I :=

P

r�1

i=1

�

i

we have �

r

= 2M � I. The

singular points of A arise from the singular points of ea
h 
omponent and from the

points in A

i

\A

j

, i 6= j. Re
all that an irredu
ible plane 
urve of degree d has at most

�

d�1

2

�

singular points, and that #A

i

\ A

j

� a

i

a

j

, i 6= j (B�ezout's Theorem). So

s �

r�1

X

i=1

�

�

i

� 1

2

�

+

�

2M � I � 1

2

�

+

X

1�i

1

<i

2

�r�1

�

i

1

�

i

2

+

r�1

X

i=1

(2M � I)�

i

=

r�1

X

i=1

�

2

i

� 3�

i

+ 2

2

+

4M

2

� 4MI + I

2

� 6M + 3I + 2

2

+

X

1�i

1

<i

2

�r�1

�

i

1

�

i

2

+ (2M � I)I

=

1

2

[

r�1

X

i=1

�

2

i

� 3I + 2(r � 1) + 4M

2

� 4MI + I

2

� 6M + 3I + 2 +

2

X

1�i

1

<i

2

�r�1

�

i

1

�

i

2

+ 4MI � 2I

2

℄

� 2M

2

� 3M + � = 2M

2

�M :

Proof. (Proposition 5.4) Let F = 0 be the equation of C over F

q

. By Theorem 5.2(5),

F admits a fa
torization in

�

F

q

[X; Y; Z℄ of type

G

1

: : : G

r

H

2

1

: : :H

2

s

;

with r � 1 and s � 0. Let A be the plane 
urve given by

G := G

1

: : : G

r

= 0 :

Then A satis�es the hypothesis of Lemma 5.6 and it has even degree by Theorem

5.2(1). From Theorem 5.2(3) and B�ezout's theorem, for ea
h line `

P

(in the dual

plane) 
orresponding to a point P 2 K, we have

#(A\ `

P

) �M ;
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where 2M = deg(G), and so at least kM points 
orresponding to unise
ants of K

belong to A. Sin
e k > 2t (see Remark 5.5) and 2t � 2M , then kM > 2M

2

and from

Lemma 5.3 we have that at least one of the unise
ant points in A, says P

0

, is non-

singular. Suppose that P

0

passes through P 2 K. The point P

0

is 
learly F

q

-rational

and P

0

is not a point of the 
urve of equation H = 0: otherwise I(P

0

; C \ `

P

) > 2 (see

Theorem 5.2(3)). Then, I(P

0

; C \ `

P

) = I(P

0

;A \ `

P

) = 2 and so `

P

is the tangent of

C at P

0

. Therefore P

0

is not an in
exion point of C, and the proof of Proposition 5.4

is 
omplete.

Let C

1

be an irredu
ible envelope asso
iated to a spe
ial point P

0

, and

� : X ! C

1

;

the non-singular model of C

1

. Then by Lemma 5.3(1) we 
an assume that X and � are

both de�ned over F

q

. In parti
ular, the linear series �

1


ut out by lines of P

2

(

�

F

q

)

�

on

X is F

q

-rational. Also, there is just one point

~

P

0

2 X su
h that �(

~

P

0

) = P

0

.

Lemma 5.7. Let q be odd. Then,

(1) the (�

1

;

~

P

0

)-orders are 0; 1; 2;

(2) the 
urve X is 
lassi
al with respe
t to �

1

.

Proof. (1) follows from the proof of Proposition 5.4 while (2) from (1) and Corollary

2.10(1).

Remark 5.8. The hypothesis q odd in Lemma 5.7 (as well as in Proposition 5.4) is

ne
essary. In fa
t, from [23℄ and [101℄ follow that the envelope asso
iated to the 
y
li


(q �

p

q + 1)-ar
, with q an even square, is irredu
ible and F

q

-isomorphi
 to the 
urve

of equation XY

p

q

+ X

p

q

Z + Y Z

p

q

= 0. It is not diÆ
ult to see that this 
urve is

�

F

q

-isomorphi
 to the Hermitian 
urve H in Example 3.15 (see e.g. [15, p. 4711℄) so

that it is �

1

non-
lassi
al.

Next 
onsider the following sets:

X

1

(F

q

) :=fP 2 X : �(P ) 2 C

1

(F

q

)g ;

X

11

(F

q

) :=fP 2 X

1

(F

q

) : j

1

2

(P ) = 2j

1

1

(P )g ;

X

12

(F

q

) :=fP 2 X

1

(F

q

) : j

1

2

(P ) 6= 2j

1

1

(P )g ;

and the following numbers:

M

q

=M

q

(C

1

) :=

X

P2X

11

(F

q

)

j

1

1

(P ) ; M

0

q

=M

0

q

(C

1

) :=

X

P2X

12

(F

q

)

j

1

1

(P ) ;(5.4)

where 0 < j

1

1

(P ) < j

1

2

(P ) denotes the (�

1

; P )-order sequen
e. We have that

M

q

+M

0

q

� #X

1

(F

q

) � #X (F

q

) and #X

1

(F

q

) � #C

1

(F

q

) :
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Proposition 5.9. Let K be an ar
 of size k and d the degree of an irredu
ible envelope

of K. For M

q

and M

0

q

as above we have

2M

q

+M

0

q

� kd :

To prove this proposition we �rst prove the following lemma.

Lemma 5.10. Let K be an ar
 and C

1

an irredu
ible envelope of K. Let Q 2 K and

A

Q

be the set of points of C

1


orresponding to unise
ants of K passing through Q. Let

u := #A

Q

and v be the number of points in A

Q

whi
h are non-singular and in
exion

points of C

1

. Then

2(u� v) + v � d ;

where d is the degree of C

1

.

Proof. Let P

0

2 A

Q

. Suppose that it is non-singular and an in
exion point of C

1

. Then,

from Theorem 5.2(3) and the de�nition of A

Q

, we have that `

Q

is not the tangent line

of C

1

at P

0

, i.e. we have that I(P

0

; C

1

\ `

Q

) = 1. Now suppose that P

0

is either singular

or a non-in
exion point of C

1

. Then from Theorem 5.2(3) we have I(P

0

; C

1

\ `

Q

) � 2

and the result follows from B�ezout's theorem applied to C

1

and `

Q

.

Proof of Proposition 5.9. Let Q 2 K and A

Q

be as in Lemma 5.10. Set

Y

Q

:= fP 2 X

1

(F

q

) : �(P ) 2 A

Q

g ;

and

m(Q) := 2

X

P2X

11

(F

q

)\Y

Q

j

1

1

(P ) +

X

P2X

12

(F

q

)\Y

Q

j

1

1

(P ) :

We 
laim that m(Q) � d. Indeed, this 
laim implies the proposition sin
e, from

Theorem 5.2(4),

Y

Q

\ Y

Q

1

= ; whenever Q 6= Q

1

:

To prove the 
laim we distinguish four types of points in Y

Q

, namely

Y

1

Q

:=fP 2 Y

Q

: �(P ) is non-singular and non- in
exion point of C

1

g ;

Y

2

Q

:=fP 2 Y

Q

: �(P ) is a non-singular in
exion point of C

1

g ;

Y

3

Q

:=fP 2 Y

Q

: �(P ) is a singular point of C

1

su
h that #�

�1

(�(P )) = 1g ;

Y

4

Q

:=fP 2 Y

Q

: �(P ) is a singular point of C

1

su
h that #�

�1

(�(P )) > 1g :

Observe that Y

1

Q

� X

11

(F

q

) and so

m(Q) � 2

X

P2Y

1

Q

j

1

1

(P ) +

X

P2Y

2

Q

j

1

1

(P ) +

X

P2Y

3

Q

j

1

1

(P ) +

X

P2Y

4

Q

j

1

1

(P ) :

Sin
e j

1

1

(P ) > 1 for all P 2 Y

4

Q

, the above inequality be
omes

m(Q) � 2#Y

1

Q

+ 2#Y

4

Q

+#Y

3

Q

+#Y

2

Q

:
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Therefore, as to ea
h singular non-
uspidal point of C

1

in A

Q


orresponds at least two

points in Y

3

Q

, it follows that

m(Q) � 2#fP

0

2 A

Q

: P

0

is either singular or not an in
exion point of C

1

g+

#fP

0

2 A

Q

: P

0

is a nonsingular in
exion point of C

1

g :

Then the 
laim follows from Lemma 5.10 and the proof of Proposition 5.9 is 
omplete.

5.2. The work of Hirs
hfeld, Kor
hm�aros and Volo
h. Throughout the whole sub-

se
tion we �x the following notation:

� q is a power of an odd prime p;

� K is a 
omplete ar
 of size k su
h that (3q + 5)=4 < k � m

0

(2; q); therefore the

degree of any irredu
ible envelope of K is at least three by Theorem 5.2(6);

� P

0

is a spe
ial point of the envelope C of K and the plane 
urve C

1

of degree d is

an irredu
ible envelope asso
iated to P

0

;

� � : X ! C

1

is the normalization of C

1

whi
h is de�ned over F

q

; as a matter of

terminology, X will be also 
alled an irredu
ible envelope of K.

�

~

P

0

is the only point in X su
h that �(

~

P

0

) = P

0

; g is the genus of X (so that

g � (d� 1)(d� 2)=2);

� The symbols M

q

and M

0

q

are as in Se
t. 5.1;

� �

1

is the linear series g

2

d


ut out by lines of P

2

(

�

F

q

)

�

on X ; �

2

is the linear series

g

5

2d


ut out by 
oni
s of P

2

(

�

F

q

)

�

on X ; then �

2

= 2�

1

. Noti
e that dim(�

2

) = 5

be
ause d � 3 and that �

1

and �

2

are base-point-free;

� S is the F

q

-Frobenius divisor asso
iated to �

2

;

� j

5

(

~

P

0

) is the 5th positive (�

2

;

~

P

0

)-order; �

5

is the 5th positive �

2

-order; �

4

is the

4th positive F

q

-Frobenius order of �

2

.

We apply the results in Se
ts. 2 and 3 to �

1

and �

2

. We have already noti
ed that

the (�

1

;

~

P

0

)-orders, as well as the �

1

-orders, are 0,1 and 2; see Lemma 5.7. Then, the

(�

2

;

~

P

0

)-orders are 0,1,2,3,4 and j

5

(

~

P

0

), with 5 � j

5

(

~

P

0

) � 2d, and the �

2

-orders are

0,1,2,3,4 and �

5

with 5 � �

5

� j

5

(

~

P

0

).

Then, we 
ompute the F

q

-Frobenius orders of �

2

. We apply Proposition 3.5(1) to

~

P

0

and infer that this sequen
e is 0,1,2,3 and �

4

, with

�

4

2 f4; �

5

g :

Therefore

deg(S) = (6 + �

4

)(2g � 2) + (q + 5)2d ;

and

v

P

(S) � 5j

2

1

(P ); for ea
h P 2 X

1

(F

q

) ;

where j

2

1

(P ) stands for the �rst positive (�

2

; P )-order.
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Claim. j

2

1

(P ) equals j

1

1

(P ) (the �rst positive (�

1

; P )-order).

Proof. Let �

1

= fE + div(f) : f 2 �

0

1

n f0gg. From Se
t. 2.2 we 
an assume that

�

0

1

= h1; x; yi where

j

1

1

(P ) = v

P

(E) + v

P

(x) and j

1

2

(P ) = v

P

(E) + v

P

(y) :(�)

Now �

2

= f2E + div(f) : f 2 �

0

2

n f0gg, where �

0

2

= h1; x; y; xy; x

2

; y

2

i, and there

exists f 2 �

0

2

su
h that

j

2

1

(P ) = v

P

(2E) + v

P

(f) :

Let f = a

0

+ a

1

x + a

2

y + a

3

x

2

+ a

4

xy + a

5

y

2

. From Lemma 1.4,

v

P

(2E) = �minfv

P

(1); v

P

(x); v

P

(y); v

P

(x

2

); v

P

(xy); v

P

(y

2

)g :

Suppose that 0 � v

P

(x) and 0 � v

P

(y). Then v

P

(2E) = 0 so that v

P

(f) = j

2

1

(P ) > 0

and hen
e a

0

= 0. Then the result follows from (�). Now suppose that 0 > v

P

(x) or

0 > v

P

(y). Then v

P

(2E) < 0 and hen
e a

i

6= 0 for some i 2 f1; : : : ; 5g. Then the result

follows from (�) and the fa
t that v

P

(f) � minfv

P

(x); v

P

(y); v

P

(x

2

); v

P

(xy); v

P

(y

2

)g.

We then have

deg(S) � 5(M

q

+M

0

q

) ;

where M

q

and M

0

q

were de�ned in (5.4).

Proposition 5.11. Let K be a 
omplete ar
 of size k su
h that (3q + 5)=4 < k �

m

0

(2; q). Then

k � minfq �

1

4

�

4

+

7

4

;

28 + 4�

4

29 + 4�

4

q +

32 + 2�

4

29 + 4�

4

g ;

where �

4

is the 4th positive F

q

-Frobenius order of the linear series �

2

de�ned on an

irredu
ible envelope of K.

Proof. From the 
omputations above and Proposition 5.9,

deg(S) = (6 + �

4

)(2g � 2) + (q + 5)2d � 5(M

q

+M

0

q

) �

5

2

kd :

Now d(d� 3) � 2g� 2 and d � 2t = 2(q+2� k) (Theorem 5.2(1)). Then k(29+ �

4

) �

(28 + 4�

4

)q + (32 + 2�

4

). On the other hand, �

4

� j

5

(

~

P

0

) � 1 � 2d � 1 (Proposition

3.5(1)) and hen
e k � q � �

4

=4 + 7=4.

Next we 
onsider separately the 
ases �

4

= 4 and �

4

= �

5

.

Case �

4

= 4. In this 
ase, the 
orresponding irredu
ible envelope will be 
alled

Frobenius 
lassi
al. Proposition 5.11 be
omes the following.
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Corollary 5.12. Let K be a 
omplete ar
 of size k su
h that (3q+5)=4 < k � m

0

(2; q).

Suppose that K admits a Frobenius 
lassi
al irredu
ible envelope. Then

k �

44

45

q +

40

45

:

The bound in the 
orollary holds in the following 
ases:

(A) (Volo
h [107℄) Whenever q = p is an odd prime;

(B) (Giulietti [35℄) The ar
 is 
y
li
 of Singer type whose size k satis�es 2k 6� �2; 1; 2; 4

(mod p), where p > 5.

For the sake of 
ompleteness let us prove (A): Let C

1

be an irredu
ible envelope of K

and d the degree of C

1

. If p < 2d, then p < 4t = 4(p+2�k) so that k < (3p+8)=4 and

the result follows. So let p � 2d. Then from Remark 3.10 we have that C

1

is Frobenius


lassi
al and (A) follows from Proposition 5.11.

Next we show that, for q square and k = m

0

(2; q), Corollary 5.12 
an only hold for q

small.

Corollary 5.13. Let K be an ar
 of size m

0

(2; q) and suppose that q is a square. Then,

(1) if q > 9, K has irredu
ible envelopes;

(2) if q > 43

2

, any irredu
ible envelope of K is Frobenius non-
lassi
al.

Proof. (1) As we mentioned in (5.2), m

0

(2; q) � q�

p

q+1. Sin
e q�

p

q+1 > (2q+4)=3

for q > 9, (1) follows from Proposition 5.4.

(2) If existed a Frobenius 
lassi
al irredu
ible envelope of K, then from Lemma 5.14

and (5.2) we would have

q �

p

q + 1 � m

0

(2; q) � 44q=45 + 40=45 :

so that q � 43

2

.

Case �

4

= �

5

. Here, from Lemma 3.16 we have that p divides �

5

. More pre
isely we

have the following result.

Lemma 5.14. Either �

5

is a power of p or p = 3 and �

5

= 6.

Proof. We 
an assume �

5

> 5. If �

5

is not a power of p, by the p-adi
 
riterion (Lemma

2.21) we have p � 3 and � = 6.

>From Proposition 5.11, the 
ase �

4

= �

5

= 6 provides the following bound:

Lemma 5.15. Let K be a 
omplete ar
 of size k su
h that (3q + 5)=4 < k � m

0

(2; q).

Suppose that K admits an irredu
ible envelope su
h that �

4

= �

5

= 6. Then p = 3 and

k �

52

53

q +

44

53

:
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As in the 
ase �

4

= 4, for q an even power of 3 and k = m

0

(2; q) the 
ase �

4

= �

5

= 6

o

ur only for q small. More pre
isely, we have the following result.

Corollary 5.16. Let K be an ar
 of size m

0

(2; q). Suppose that q is an even power of

p and that K admits an irredu
ible envelope with �

4

= �

5

= 6. Then p = 3 and q � 3

6

.

Proof. From the p-adi
 
riterion (Lemma 2.21), p = 3. Then from Proposition 5.11

and (5.2) we have

q �

p

q + 1 � m

0

(2; q) � 52q=53 + 44=53 ;

and the result follows.

>From now on we assume

�

4

= �

5

= a power of p :

Then, the bound

k � q �

1

4

�

4

+

7

4

(5.5)

in Proposition 5.11 and Segre's bound (5.1) provide motivation to 
onsider three 
ases

a

ording as �

4

>

p

q, �

4

<

p

q, or �

4

=

p

q.

Case �

4

>

p

q. Sin
e �

4

is a power of p, here we have that �

2

� pq and so from (5.5)

the following holds:

Lemma 5.17. Let K be a 
omplete ar
 of size k su
h that (3q + 5)=4 < k � m

0

(2; q).

Suppose that K admits an irredu
ible envelope su
h that �

4

is a power of p and that

�

4

>

p

q. Then

k �

(

q �

1

4

p

pq +

7

4

if q is not a square ;

q �

1

4

p

p

q +

7

4

otherwise :

If q is a square and k = m

0

(2; q), then �

4

>

p

q 
an only o

ur in 
hara
teristi
 3:

Corollary 5.18. Let K be an ar
 of size m

0

(2; q). Suppose that q is an even power of

p and that K admits an irredu
ible envelope with �

4

a power of p and �

4

>

p

q. Then

p = 3, �

4

= 3

p

q, and

k � q �

3

4

p

q +

7

4

:

Proof. From Lemma 5.17 and (5.2) follow that

p

q(p� 4) � 3 and so that p = 3. From

�

4

� 2d� 1 and 2d � 4t = 4(q + 2�m

0

(2; q)) � 4

p

q + 4 we have that �

4

� 4

p

q + 3

and it follows the assertion on �

4

. The bound on k follows from Lemma 5.17.
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Case �

4

<

p

q. Let

F (x) := (2x+ 32� q)=(4x+ 29) :

Then the bound

k �

28 + 4�

4

29 + 4�

4

q +

32 + 2�

4

29 + 4�

4

in Proposition 5.11 
an be written as

k � q + F (�

4

) :(5.6)

For x > 0, F (x) is an in
reasing fun
tion so that

F (�

4

) �

(

F (

p

q=p) = �

1

4

p

pq +

29

16

p+

1

2

+R if q is not a square ;

F (

p

q=p) = �

1

4

p

p

q +

29

16

p

2

+

1

2

+R otherwise ;

where

R =

8

<

:

�

841p�280

16(4

p

q=p+29)

if q is not a square ;

�

841p

2

�280

16(4

p

q=p+29)

otherwise :

Then from (5.6) and sin
e R < 0 we have the following result.

Lemma 5.19. Let K be a 
omplete ar
 of size k su
h that (3q + 5)=4 < k � m

0

(2; q).

Suppose that K admits an irredu
ible envelope su
h that �

4

is a power of p and that

�

4

<

p

q. Then

k <

(

q �

1

4

p

pq +

29

16

p+

1

2

if q is not a square ;

q �

1

4

p

p

q +

29

16

p

2

+

1

2

otherwise :

Corollary 5.20. Let K be a 
omplete ar
 of size m

0

(2; q). Suppose that q is an even

power of p and that K admits an irredu
ible envelope with �

4

a power of p and �

4

<

p

q.

Then one of the following statements holds:

(1) p = 3, �

4

=

p

q=3, and m

0

(2; q) satis�es Lemma 5.19.

(2) p = 5, q = 5

4

, �

4

= 5, and m

0

(2; 5

4

) � 613;

(3) p = 5, q = 5

6

, �

4

= 5

2

, and m

0

(2; 5

6

) � 15504;

(4) p = 7, q = 7

4

, �

4

= 7, and m

0

(2; 7

4

) � 2359.

Proof. Let q = p

2e

; so e � 2 as p � �

4

< p

e

. >From (5.2) and Lemma 5.19 we have that

(p� 4)p

e

=4 < 29p

2

=16� 0:5 ;

so that p 2 f3; 5; 7; 11g.

Let p = 3. If �

4

�

p

q=9 (so e � 4), then from (5.2) and m

0

(2; q) � q + F (

p

q=9) we

would have that

q �

p

q + 1 � q � 9

p

q=4 + 2357=16� 67841=16(43

e�2

+ 29) ;

whi
h is a 
ontradi
tion for e � 4.
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Let p = 11. Then p

e

� 125 and e = 2 and �

4

= 11. Thus from Proposition 5.11 we

have m

0

(2; 11

4

) � 11

4

+ F (11), i.e. m

0

(2; 11

4

) � 14441. This is a 
ontradi
tion sin
e

by (5.2) we must have m

0

(2; 11

4

) � 14521. This eliminates the possibility p = 11.

The other 
ases 
an be handled in an analogous way.

Case �

4

=

p

q. In this 
ase, a

ording to (5.5), we just obtain Segre's bound (5.1).

Next we study geometri
al properties of irredu
ible envelopes asso
iated to large 
om-

plete ar
s in P

2

(F

q

), q odd. In doing so we use the bounds obtained above and divide

our study in two 
ases a

ording as q is a square or not.

Case q square. Let X be an irredu
ible envelope asso
iated to an ar
 of size m

0

(2; q).

Then from Lemma 5.7, and Corollaries 5.13, 5.16, 5.18, 5.20, we have the following

result.

Proposition 5.21. If q is an odd square and q > 43

2

, then X is �

1

-
lassi
al. The �

2

-

orders are 0; 1; 2; 3; 4; �

5

and the F

q

-Frobenius �

2

-orders are 0; 1; 2; 3; �

4

, with �

5

= �

4

,

where also one of the following holds:

(1) �

4

2 f

p

q=3; 3

p

qg for p = 3;

(2) (�

4

; q) 2 f(5; 5

4

); (5

2

; 5

6

); (7; 7

4

)g;

(3) �

4

=

p

q for p � 5.

Case q non-square. In this 
ase there is no analogue to bound (5.2). From Corollary

5.12 and Lemmas 5.15, 5.17, 5.19, and taking into 
onsideration (5.6) we have the

following result.

Proposition 5.22. Let q > 43

2

and q = p

2e+1

, e � 1. Then, apart from the values on

�

4

, the 
urve X , �

4

and �

5

are as in Proposition 5.21. In this 
ase

m

0

(2; q) > q � 3

p

pq=4 + 7=4

implies

(1) �

4

=

p

q=p;

(2) m

0

(2; q) < q �

p

pq=4 + 29p=16 + 1=2.

In parti
ular, our approa
h just gives a proof of Segre's bound (5.1) and Volo
h's

bound [107℄. However, both propositions above show the type of 
urves asso
iated to

large 
omplete ar
s. The study of su
h 
urves, for q square and large enough, allowed

Hirs
hfeld and Kor
hm�aros [50℄, [51℄ to improve Segre's bound (5.1) to the bound in

(5.3).

Next we stress here the main ideas from [51℄ ne
essary to deal with Problem 5.1. Due

to Proposition 5.9, the main strategy is to bound from above the number 2M

q

+M

0

q

(whi
h is de�ned via (5.4)). For instan
e, if one 
ould prove that

2M

q

+M

0

q

� d(q �

p

q + 1) ;(5.7)
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where d is the degree of the irredu
ible envelope whose normalization is X , then from

Proposition 5.9 would follow immediately an aÆrmative answer to Problem 5.1. How-

ever, sin
e we know the answer to be negative for q = 9 and d � 2t = 2(q+2�m

0

(2; q)),

then one 
an assume that d is bounded by a linear fun
tion on

p

q and should expe
t

to prove (5.7) only under 
ertain 
onditions on q.

Lemma 5.23. Let q be an odd square. If (5.7) holds true for d � 2

p

q�� with � � 0,

then m

0

(2; q) < q �

p

q + 2 + �=2. In parti
ular, if (5.7) holds true for d � 2

p

q, then

the answer to Problem 5.1 is positive; i.e,, m

0

(2; q) = q �

p

q + 1.

Proof. If m

0

(2; q) � q�

p

q+2+�=2, then from d � 2(q+2�m

0

(2; q)) we would have

that d � 2

p

q � � and so, from Proposition 5.9 and (5.7), that m

0

(2; q) � q �

p

q + 1,

a 
ontradi
tion.

Now, in [50℄, (5.7) is proved for d �

p

q � 3 and q large enough, and so (5.3) follows.

More pre
isely we have the following.

Theorem 5.24. (Hirs
hfeld-Kor
hm�aros [51, Thm. 1.3℄) Let q be a square, q > 23

2

,

q 6= 3

6

. Let 3 � d �

p

q � 3. Suppose that �

1

is 
lassi
al, that 0; 1; 2; 3; 4;

p

q are the

�

2

-orders, and that 0; 1; 2; 3;

p

q are the F

q

-Frobenius orders of �

2

. Then (5.7) holds.

Proof. (Sket
h) Suppose that 2M

q

+M

0

q

� d(q �

p

q + 1). We are going to show that

2M

q

+ M

0

q

= d(q �

p

q + 1). Noti
e that d � (

p

q + 1)=2 by Corollary 3.9(1). Let

� = (f

0

: : : : : f

5

) be a morphism asso
iated to �

2

. From Lemma 2.9 there exist

z

0

; : : : ; z

5

2

�

F

q

(X ), not all zero, su
h that

P

5

i=0

z

p

q

i

f

i

= 0. Set

Z := (z

0

: : : : : z

5

)(X ) :

(This 
urve is related to the dual 
urve of �(X ) sin
e it is easy to see that

P

5

i=0

z

p

q

i

(P )X

i

= 0 is the hyperplane tangent at P for in�nitely many P 's.)

We have [51, Props. 8.3, 8.4, 8.5℄

(I)

p

qdeg(Z) � d(2d+ q + 3)� (2M

q

+M

0

q

);

(II) deg(Z) �

p

qj

1

(P ) for any P 2 X ;

(III) deg(Z) � 2

p

q whenever C

1

is singular.

It follows from (I) and (II) that j

1

(P ) � 2 sin
e d �

p

q� 3. Now from Corollary 2.18

and the hypothesis on d there are three possibilities for (�

1

; P )-orders:

(A) j

2

(P ) = 2j

1

(P );

(B) j

2

(P ) = (

p

q + j

1

(P ))=2;

(C) j

2

(P ) =

p

q � j

1

(P ).
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We see that points of type (C) 
annot o

ur sin
e j

1

(P ) � 2 and d �

p

q � 3. Now

from the proof of [51, Prop. 9.4℄ we have that

p

qdeg(Z) = 2(dq + d� 2M

q

�M

0

q

) � 2d

p

q; ;

so that deg(Z) < 2

p

q as d �

p

q� 3. It follows from (III) that C

1

is non-singular; i.e.,

X = C

1

. In parti
ular the �

1

-Weierstrass points are of type (B) and we have

deg(R

1

) = 3d(d� 2) = (

p

q � 3)=3� ;

where R

1

is the rami�
ation divisor of �

1

and � is the number of points of type (B).

Now we use the following relation between deg(Z) and � [51, Prop. 9.3℄:

(IV) 3deg(Z) = 2� .

Sin
e we already noti
e that deg(Z) � 2d it follows that d � (

p

q + 1)=2; i.e., d =

(

p

q + 1)=2. Next we show that � = M

0

q

. For P of type (B), the (�

2

; P )-orders are

0; 1; 2; (

p

q + 1)=2; (

p

q + 3)=2;

p

q + 1. Suppose that P 62 X (F

q

). Then 2`

P

is the

tangent hyperplane L

4

(P ) at P with respe
t to �

2

, where `

P

is the tangent line at P

with respe
t to �

1

. It is easy to see that �

q

(P ) 2 L

4

(P ) so that �

q

(P ) 2 `

P

. This

implies d > (

p

q+1)=2, a 
ontradi
tion. Thus M

0

q

= 3(

p

q+1)=2. Finally by means of

deg(S

1

) = d(q + d� 1) = 2M

q

+

p

q + 1

2

M

0

q

;

where S

1

is the F

q

-Frobenius divisor asso
iated to �

1

, we �nd that

M

q

= (

p

q+1)(q�

p

q�2)=4, and one easily 
he
ks that 2M

q

+M

0

q

= d(q�

p

q+1).

Remark 5.25. The plane 
urve X of degree d = (

p

q+1)=2 in the above proof satis�es

#X (F

q

) = M

q

+M

0

q

= q + 1 +

p

q(d� 1)(d� 2) ;

i.e, it is F

q

-maximal. If q � 121, su
h a 
urve is F

q

-isomorphi
 to the Fermat 
urve

X

(

p

q+1)=2

+ Y

(

p

q+1)=2

+ Z

(

p

q+1)=2

= 0; see [13℄.

Re
ently, Aguglia and Kor
hm�aros [1℄ proved a weaker version of (5.7) for d =

p

q� 2

and q large enough, namely

2M

q

+M

0

q

� d(q �

p

q=2� 9=2)� 3 :

>From this inequality and Proposition 5.9 one slightly improves (5.3) to m

0

(2; q) �

q �

p

q=2� 11=2 whenever d =

p

q � 2 and q is large enough. Therefore the paper [1℄,

as well as [50℄ or [51℄, is a good guide toward the proof of (5.7) for

p

q� 2 � d � 2

p

q.
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