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Let X be a (projetive, geometrially irreduible, non-singular algebrai) urve of genus

g de�ned over a �nite �eld F

q

of q elements. Weil [108℄ showed that

j#X (F

q

)� (q + 1)j � 2

p

qg ;(�)

being this bound sharp as Example 4.4 here shows. Goppa [37℄ onstruted linear

odes from urves de�ned over F

q

. These odes were used by Tsfasman, Vladut and

Zink [105℄ to show that the Gilbert-Varshamov bound an be improved whenever q is

a square and q � 49. This was an unexpeted result for oding theorist.

The length and the minimum distane of Goppa odes are related with the number

of F

q

-rational points in the underlying urve. Then Goppa's onstrution provided

motivation and in fat reawakened the interest in the study of rational points of urves

whih, despite of this motivation, is an interesting mathematial problem by its own.

Serre [93℄ notied that (�) an be improved by replaing 2

p

q by b2

p

q. A re�ned

version of Ihara [58℄ shows that

g >

q

2

� q

2

p

q

2

+ 2

p

q � 2q

) #X (F

q

) < q + 1 + b2

p

qg ;

and in this ase Serre [93℄, [95℄ upper bounded #X (F

q

) via expliit formulae.

A geometri point of view to bound #X (F

q

) was introdued by St�ohr and Voloh [99℄:

Suppose that X admits a base-point-free linear series g

r

d

de�ned over F

q

; then

#X (F

q

) �

P

r�1

i=0

�

i

(2g � 2) + (q + r)d

r

;

where �

0

; : : : ; �

r�1

are ertain F

q

-invariants assoiated to g

r

d

(see Theorem 3.13 here).

By an appropriate hoie of g

r

d

this result implies (�) [99, Cor. 2.14℄, and in several

ases one obtains improvements on (�). We write an exposition of St�ohr-Voloh's

approah in Set. 3. For the sake of ompleteness we inlude an expository aount

on Weierstrass point theory of linear series on urves: Sets. 1, 2.

Next we disuss two appliations of [99℄ studied here. The �rst one is onerning the

uniqueness of ertain optimal urves. The most well known example of a F

q

-maximal

urve is the Hermitian urve (Example 4.4 here) whose genus is

p

q(

p

q�1)=2; i.e., the

biggest one that a F

q

-maximal urve an have aording to the aforementioned Ihara's

result. R�uk and Stihtenoth [87℄ showed that this property haraterize Hermitian

urves up to F

q

-isomorphi. In Set. 4.1 we equip the urve X with a linear series

D

X

obtained from its Zeta Funtion provided that X (F

q

) 6= ;. It turns out that

D

X

= j(

p

q + 1)P

0

j, P

0

2 X (F

q

), whenever X is F

q

-maximal. Then applying [99℄ to

D

X

we prove a stronger version of R�uk-Stihtenoth's result; see Theorem 4.24 here.

Further properties of F

q

-maximal were proved via an interplay of St�ohr-Voloh's paper

[99℄, and results on linear series suh as Castelnuovo's genus bound and Halphen's

theorem applied to D

X

; see [24℄, [26℄,[67℄,[68℄. A haraterization result is also proved
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for the Suzuki urve (Theorem 4.27), whih in fat is optimal with genus q

0

(q� 1) and

(q

2

+ 1) F

q

-rational points.

The seond appliation of [99℄ studied here is the bounding of the size k of a omplete

plane ar K in P

2

(F

q

) whih indeed is a basi problem in Finite Geometry. What

it makes this possible is the fat that assoiated to K there is a (possible singular)

plane urve C. A fundamental result of B. Segre [90℄ (see Theorem 5.2 here for the

odd ase) allows then to upper bound k via [99℄ applied to ertain linear series de�ned

on the non-singular model of an irreduible omponent of C. Details of the following

disussion an be seen in Set. 5. The largest k is already well known and so the

problem is onerning the seond largest size m

0

2

(2; q). Let q be a square. If q is even,

then m

0

(2; q) = q �

p

q + 1 and a similar result is expeted for q odd, q � 49. Let q

be odd. Applying (�) B. Segre showed that m

0

(2; q) � q �

p

q=4 + 7=4. One obtains

the same bound by using [99℄; see Proposition 5.11 here. If in addition, for q large, one

takes into onsideration a bound for the number of F

q

-rational of plane urves due to

Hirshfeld and Korhm�aros [68℄ (see Theorem 5.24 here) one �nds the urrently best

upper bound for m

0

(2; q), namely

m

0

(2; q) � q �

p

q

2

+

5

2

:

So far, for

p

q 62 N, the best upper bound for m

0

(2; q) is due to Voloh [106℄, [107℄; see

Lemmas 5.17, 5.19 here.

This paper is an outgrowth and a onsiderable expanded of letures given at the Uni-

versity of Essen in April 1997 and the University of Perugia in February 1998.

Convention. The word urve will mean a projetive, irreduible, non-singular alge-

brai urve.

1. Linear series on urves

The purpose of this setion is to summarize relevant material regarding linear series on

urves. Standard referenes are Arbarello-Cornalba-GriÆths-Harris [3℄, GriÆths [39℄,

GriÆths-Harris [40℄, Hartshorne [45℄, Namba [79℄, Seidenberg [91℄, Stihtenoth [96℄.

Let X be a urve over an algebraially losed �eld F; set P

r

:= P

r

(F).

1.1. Terminology and notation. We start by �xing some terminology and notation.

1.1.1. We denote by Div(X ) the group of divisors on X ; i.e., the Z-free abelian group

generated by the points of X . Let D =

P

n

P

P 2 Div(X ). The multipliity of D at P is

v

P

(D) := n

P

. The divisor D is alled e�etive (notation: D � 0) if v

P

(D) � 0 for eah

P . For D;E 2 Div(X ), we write D � E if D �E � 0. The degree of D is the number

deg(D) :=

P

v

P

(D), and the support ofD is the set Supp(D) := fP 2 X : v

P

(D) 6= 0g.
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1.1.2. Let F(X ) denote the �eld of rational funtions on X . Assoiated to f 2 F(X )

�

:=

F(X ) n f0g we have the divisor

div(f) :=

X

v

P

(f)P ;

where v

P

stands for the valuation at P 2 X . Reall that v

P

satis�es: v

P

(0) := +1,

v

P

(f + g) � min(v

P

(f); v

P

(g)), and v

P

(fg) = v

P

(f) + v

P

(g) for f; g 2 F(X ).

For f 2 F

�

:= F n f0g, div(f) = 0 and for f 2 F(X ) n F, div(f) = div

0

(f)� div

1

(f),

where div

0

(f) :=

P

v

P

(f)>0

v

P

(f)P and div

1

(f) :=

P

v

P

(f)<0

(�v

P

(f))P are respe-

tively the zero and the polar divisor of f . Moreover, deg(div(f)) = 0 and div(fg) =

div(f) + div(g).

Assoiated to D 2 Div(X ) we have the F-linear spae

L(D) := ff 2 F(X )

�

: D + div(f) � 0g [ f0g ;

where `(D) := dim

F

L(D) � deg(D) + 1. For D;E 2 Div(X ) suh that L(D) � L(E),

we have

`(E)� `(D) � deg(E)� deg(D) :

The Riemann-Roh theorem omputes `(D): If C is a anonial divisor on X and g is

the genus of X , then

`(D) = deg(D) + 1� g + `(C �D) :

In partiular, C is haraterized by the properties: deg(C) = 2g � 2 and `(C) � g.

A loal parameter at P 2 X is a rational funtion t 2 F(X ) suh that v

P

(t) = 1.

Assoiated to f 2 F(X )

�

we have its loal expansion at P ,

P

1

i=v

P

(f)

a

i

t

i

, where a

v

P

(f)

6=

0. Let f 2 F(X ) be a separating variable of F(X )jF; i.e., let the �eld extension

F(X )jF(f) be separable. Then we have the divisor of the di�erential of f , namely

div(df) where v

P

(div(df)) equals the minimum integer i suh that ia

i

6= 0. It holds

that deg(div(f)) = 2g � 2.

1.1.3. Two divisors D;E 2 Div(X ) are alled linearly equivalent (notation: D � E) if

there exists f 2 F(X )

�

suh that D = E + div(f). In this ase, deg(D) = deg(E) and

L(D) is F-isomorphi to L(E) via the map g 7! fg. For E 2 Div(X ), let

jEj := fD 2 Div(X ) : D � 0; D � Eg ;

i.e.,

jEj = fE + div(f) : f 2 L(E) n f0gg :

Sine, for f; g 2 F(X)

�

, div(f) = div(g) if and only if there exists a 2 F

�

suh that

f = ag, the set jEj is equipped with a struture of projetive spae by means of the

map E + div(f) 2 jEj 7! [f ℄ 2 P(L(E)); notation: jEj

�

=

P(L(E)).

A linear series D on X is a subset of some jEj, of type

fE + div(f) : f 2 D

0

n f0gg ;
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with D

0

being a F-linear subspae of L(E). The numbers d = deg(D) := deg(E) and

r = dim(D) := dim

F

(D

0

) � 1 are alled respetively the degree and the (projetive)

dimension of D. We say that D is a g

r

d

on X . D is alled omplete if D = jEj. Observe

that, under the identi�ation jEj

�

=

P(L(E)), D orresponds to P(D

0

); notation: D

�

=

P(D

0

) � jEj. A linear series D

1

�

=

P(D

0

1

) � jE

1

j will be alled a subspae of D

�

=

P(D

0

) � jEj if L(E

1

) � L(E) and D

0

1

� D

0

.

1.1.4. Let P 2 X and f 2 F(X ) regular at P ; i.e., v

P

(f) � 0. Then there exists a

unique a

f

2 F suh that v

P

(f � a

f

) > 0. We set f(P ) := a

f

. For f; g 2 F(X ) regular

at P , (f + g)(P ) = f(P ) + g(P ) and (fg)(P ) = f(P )g(P ). A point of the r-projetive

spae P

r

will be denoted by (a

0

: � � � : a

r

).

Let � : X ! P

r

be a morphism; i.e., let f

0

; : : : ; f

r

2 F(X ), not all zero, suh that

�(P ) = ((t

e

P

f

0

)(P ) : : : : : (t

e

P

f

r

(P )) ;

where t is a loal parameter at P , and

e

P

:= �minfv

P

(f

0

); : : : ; v

P

(f

r

)g :

Observe that eah t

e

P

f

i

is regular at P . The rational funtions f

0

; : : : ; f

r

are alled

(homogeneous) oordinates of �. We set

� = (f

0

: : : : : f

r

) :

The oordinates f

0

; : : : ; f

r

are uniquely determinated by � up to a fator in F(X )

�

; so �

orresponds to a point of P

r

(F(X )). If � is non-onstant, the image �(X ) is a (possible

singular) algebrai urve in P

r

whose funtion �eld is F(�(X )) = F(f

0

; : : : ; f

r

). The

urve X an be thought as a parametrized urve in P

r

, or �(X ) as being a onrete

manifestation of X in P

r

. For Q 2 �(X ), the points of the �ber �

�1

(Q) will be alled

the branhes of �(X ) entered at Q. The degree of � is deg(�) := [F(X ) : F(�(X ))℄.

Example 1.1. Eah rational funtion f 2 F(X ) an be seen as a morphism f : X !

P

1

= F [ f1g, suh that P 7! f(P ) if P 62 div

1

(f); P 7! 1 otherwise. If f 62 F,

we have d := deg(f) = [F(X ) : F(f)℄ = deg(div

1

(f)). Moreover, if F(X )jF(f)

is separable, the genus g of X an be omputed via the so-alled Riemann-Hurwitz

formula:

2g � 2 = d(�2) + deg(R

f

) ;

where R

f

= div(df) + 2div

1

(f) is the rami�ation divisor of f . If har(F) does not

divide the rami�ation index e

P

of P over f(P ), then v

P

(R

f

) = e

P

� 1 otherwise

v

P

(R

f

) > e

P

� 1. We have the produt formula

X

P2f

�1

(f(P ))

e

P

= d :
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For all but �nitely many Q 2 �(X ), #�

�1

(Q) equals the separable degree of

F(X )jF(�(X )). � is alled birational (resp. embedding) if deg(�) = 1 (resp. X is

F-isomorphi to �(X )); in both ases, X is a (the) non-singular model of �(X ).

Let H be a hyperplane in P

r

suh that �(X ) 6� H. Then #�(X ) \ H is �nite. To

eah P 2 X one assoiates a number I

P

(H) = I(�(X ); H;P ), alled the intersetion

multipliity of �(X ) and H at P , in suh a way that I

P

= 0 , P 62 �(X ) \ H and

that

P

I

P

(H) is independent of H; i.e., if H

0

is another hyperplane in P

r

suh that

�(X ) 6� H

0

, then

P

I

P

(H) =

P

I

P

(H

0

). This number is alled the degree deg(�(X ))

of �(X ). If �(X ) � P

2

, the degree of �(X ) equals the degree of the polynomial that

de�nes �(X ).

A morphism � : X ! P

r

is alled non-degenerate if �(X ) 6� H for eah hyperplane H

in P

r

. A urve X � P

r

is alled non-degenerate if the inlusion morphism X ,! P

r

is

so.

Lemma 1.2. A morphism � = (f

0

: : : : : f

r

) : X ! P

r

is non-degenerate if and only

if f

0

; : : : ; f

r

are F-linearly independent.

Proof. There exists a hyperplane H in P

r

suh that �(X ) � H if and only if there

exist a

0

; : : : ; a

r

2 F, not all zero, suh that

P

i

a

i

f

i

(P ) = 0 for all but �nitely many

P 2 X . The last ondition is equivalent to

P

i

a

i

f

i

= 0, as a non-zero rational funtion

has only �nitely many zeros (f. Set. 1.1.2); now the result follows.

For V � F(X ), hV i stands for the F-vetor spae in F(X ) generated by V .

1.2. Morphisms from linear series; Castelnuovo's genus bound. Let D be a r-

dimensional linear series on X , say D

�

=

P(D

0

) � jEj. The following subsets will

provide information on the geometry of X .

De�nition. For P 2 X and i 2 N

0

,

D

i

(P ) := fD 2 D : D � iPg :

Clearly D

i

(P ) � D

i+1

(P ) and D

i

(P ) = ; if i > d.

Lemma 1.3. (1) D

i

(P ) is a linear series;

(2) D

i

(P ) is a subspae of D;

(3) dim(D

i

(P )) � dim(D

i+1

(P )) + 1:

Proof. Set D

j

:= D

j

(P ) and let f 2 D

0

n f0g. Then E + div(f) 2 D

i

if and only if

v

P

(E) + v

P

(f) � i; i.e., D

i

�

=

P(D

0

i

), where

D

0

i

:= D

0

\ L(E � iP ) :

This shows parts (1) and (2). Now D

0

i

=D

0

i+1

is F-isomorphi to a F-subspae of L :=

L(E � iP )=L(E � (i+ 1)P ). Sine dim

F

L � 1 (see Set. 1.1.2), part (3) follows.
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De�nition. The multipliity of D at P 2 X is de�ned by

b(P ) := minfv

P

(D) : D 2 Dg :

We have b(P ) > 0 if and only if P 2 Supp(D) for all D 2 D; so b(P ) 6= 0 for �nitely

many P 2 X. Consequently, we an de�ne the e�etive divisor B = B

D

on X by

setting

v

P

(B) := b(P ) :

De�nition. The divisor B is alled the base lous of D. A point P 2 Supp(B) is

alled a base point of D. If B = 0, D is alled base-point-free.

Thus D is base-point-free if and only if for eah P 2 X there exists f 2 D

0

n f0g suh

that v

P

(E + div(f)) = 0. Now, sine D � B for eah D 2 D, D

0

� L(E � B) and

D

B

:= fD � B : D 2 Dg � jE � Bj

is a subspae of D suh that D

B

�

=

P(D

0

) � jE � Bj. We have B

D

B

= 0; i.e., D

B

is a

g

r

d�deg(B)

base-point-free on X .

Lemma 1.4. Let D

�

=

P(D

0

) � jEj be a linear series, where D

0

= hf

0

; : : : ; f

s

i. Then

E is determinated by D; i.e,

v

P

(E) = b(P )�minfv

P

(f

0

); : : : ; v

P

(f

s

)g :

Proof. Sine D

0

� L(E �B), v

P

(E)� b(P ) + v

P

(f

i

) � 0 for eah i and eah P so that

v

P

(E) � b(P )�minfv

P

(f

0

); : : : ; v

P

(f

s

)g. On other hand, as D

B

is base-point-free, for

eah P there exists (a

0

: : : : : a

s

) 2 P

s

(F) suh that v

P

(E � B + div(

P

i

a

i

f

i

)) = 0;

now the result follows.

Next we assoiate a morphism to D. For P 2 X we have D = D

b(P )

(P ) % D

b(P )+1

(P ),

so that dim(D

b(P )+1

) = dim(D)� 1 by Lemma 1.3. Thus we have the following map

�

D

: X ! D

�

�

=

P(D

0

)

�

; P 7! D

b(P )+1

:

Homogeneous oordinates of �

D

are given as follows. Let ff

0

; : : : ; f

r

g be a F-base of

D

0

, t a loal parameter at P , and f 2 D

0

n f0g. Then v

P

(t

v

P

(E)�b(P )

f) � 0 and

E + div(f) 2 D

b(P )+1

, v

P

(t

v

P

(E)�b(P )

f) � 1 , (t

v

P

(E)�b(P )

f)(P ) = 0 :

Sine f =

P

i

a

i

f

i

with (a

0

: : : : : a

r

) 2 P

r

, we have

D

b(P )+1

�

=

f(a

0

: : : : : a

r

) 2 P

r

:

r

X

i=0

(t

v

P

(E)�b(P )

f

i

)(P )a

i

= 0g 2 P

r

�

�

=

((t

v

P

(E)�b(P )

f

0

)(P ) : : : : : (t

v

P

(E)�b(P )

f

r

)(P )) 2 P

r

:

Hene from Lemma 1.4 the morphism �

f

0

;::: ;f

r

:= (f

0

: : : : : f

r

) gives a oordinate

desription of �

D

, and it will be referred as a morphism assoiated to D. If �

g

0

;::: ;g

r

is

another morphism assoiated to D, then �

g

0

;::: ;g

r

= T Æ �

f

0

;::: ;f

r

, with T 2 Aut(P

r

(F));
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i.e., a morphism assoiated to D is uniquely determinated by D, up to projetive

equivalene. Observe that �

D

and �

D

B have the same oordinate desription. We

summarize the above disussion as follows.

Lemma 1.5. Let D

�

=

P(D

0

) be a r-dimensional linear series on X . Eah F-base

f

0

; : : : ; f

r

of D

0

de�nes a non-degenerate morphism �

f

0

;::: ;f

r

= (f

0

: : : : : f

r

) : X ! P

r

.

If g

0

; : : : ; g

r

is another F-base of D

0

, then there exists T 2 Aut(P

r

) suh that �

g

0

;::: ;g

r

=

T Æ �

f

0

;::: ;f

r

.

At this point we reall Castelnuovo's genus bound. Let g be the genus of X .

De�nition. A linear series D is alled simple if a (any) morphism assoiated to D is

birational.

Let D be a simple g

r

d

, r � 2, on X . Let d

0

:= d � deg(B

D

), and let � be the unique

integer with 0 � � � r� 2 and d

0

� 1 � � (mod (r� 1)). De�ne Castelnuovo's number



0

(d

0

; r) by



0

(d

0

; r) =

d

0

� 1� �

2(r � 1)

(d

0

� r + �) :

Lemma 1.6. (Castelnuovo's genus bound for urves in projetive spaes, [10℄, [3, p.

116℄, [45, IV, Thm. 6.4℄, [86, Cor. 2.8℄)

g � 

0

(d

0

; r) :

Remark 1.7.



0

(d

0

; r) �

(

(d

0

� 1� (r � 1)=2)

2

=2(r � 1) for r odd,

(d

0

� 1� (r � 1)=2)

2

� 1=4)2=(r � 1) for r even.

Remark 1.8. Any urve X of genus g admits a simple g

2

d

(i.e., a birational plane model)

suh that

g = d(d� 1)=2�

X

P

Æ

P

;

where the Æ

P

's are the Æ-invariants of the plane urve �(X ) with � being a morphism

assoiated to g

2

d

. We have that Æ

P

> 0 if and only if �(X ) is singular at P . A nie

method to ompute Æ

P

was reently notied by Beelen and Pellikaan [4℄.

1.3. Linear series from morphisms. Let � = (f

0

: : : : : f

r

) : X ! P

r

be a morphism on

X . In Set. 1.1.4 we de�ned

e

P

= �minfv

P

(f

0

); : : : ; v

P

(f

r

)g ; P 2 X :

Then e

P

6= 0 for �nitely many P 2 X , and so we have a divisor E = E

f

0

;::: ;f

r

de�ned

by

v

P

(E) := e

P

:
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Observe that f

i

2 L(E) for eah i. Let

D

0

:= hf

0

; : : : ; f

r

i � L(E) :

Then we have the following linear series on X

D

f

0

;::: ;f

r

:= fE + div(f) : f 2 D

0

n f0gg � jEj ;

whih is base-point-free. Indeed, v

P

(E + div(f

i

0

)) = 0 where i

0

is de�ned by e

P

=

�v

P

(f

i

0

). In addition, if �

1

= (g

0

: : : : : g

r

) = T Æ � with T 2 Aut(P

r

), then

minfv

P

(g

0

); : : : ; v

P

(g

r

)g = minfv

P

(f

0

); : : : ; v

P

(f

r

)g ;

and hene D

g

0

;::: ;g

r

= D

f

0

;::: ;f

r

. Moreover, if h 2 F(X )

�

, then

E

f

0

h;::: ;f

r

h

= E

f

0

;::: ;f

r

� div(h)

and so

D

f

0

h;::: ;f

r

h

= D

f

0

;::: ;f

r

:

Consequently, the linear series D

�

:= D

f

0

;::: ;f

r

is uniquely determinated by � and it

is invariant under projetive equivalene of morphisms. Summarizing we have the

following.

Lemma 1.9. Assoiated to a morphism � = (f

0

: : : : : f

r

) : X ! P

r

, there exists a

base-point-free linear series D

�

� jEj; where E is de�ned by

v

P

(E) := �minfv

P

(f

0

); : : : ; v

P

(f

r

)g :

If � is non-degenerate, then dim(D

�

) = r. If �

1

= T Æ�, T 2 Aut(P

r

), then D

�

1

= D

�

.

In the remaining part of this subsetion, we let � = (f

0

: : : : : f

r

) be a non-degenerate

morphism on X . Then D

�

is given by

D

�

= fE + div(

r

X

i=0

a

i

f

i

) : (a

0

: : : : : a

r

) 2 P

r

g ;

beause

P

i

a

i

f

i

= 0 , a

i

= 0 for eah i by Lemma 1.2. Therefore, sine the point

(a

0

: : : : : a

r

) an be identify with the hyperplane H of equation

P

i

a

i

X

i

= 0,

D

�

= f�

�

(H) : H hyperplane in P

r

g ;(1.1)

where �

�

(H) = E + div(

P

i

a

i

f

i

) is the pull-bak of H by �.

Lemma 1.10. We have �

�

(H) = (T Æ �)

�

(T (H)), where T 2 Aut(P

r

) and H is a

hyperplane in P

r

.

Proof. The result follows from the fats that E

�

= E

TÆ�

and that T (H) :

P

i

b

i

Y

i

= 0,

where (b

0

; : : : ; b

r

) = (a

0

; : : : ; a

r

)A

�1

, A being the matrix de�ning T andH :

P

i

a

i

X

i

=

0.
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Lemma 1.11. With the aforementioned notation,

(1) P 2 Supp(�

�

(H)), �(P ) 2 H; i.e, Supp(�

�

(H)) = �

�1

(�(X ) \H);

(2) For P

1

2 �

�1

(�(P )), P

1

2 Supp(�

�

(H)), �

�1

(�(P )) � Supp(�

�

(H));

(3) d := deg(D) = deg(�)deg(�(X )):

Proof. Let t be a loal parameter at P 2 X .

(1) The proof follows from the equivalenes

P 2 Supp(�

�

(H)), v

P

(div(

X

i

a

i

t

e

P

f

i

)) � 1, (

X

i

a

i

t

e

P

f

i

)(P ) = 0 :

(2) The impliation (() is trivial. ()): Let P

2

2 �

�1

(�(P )). Then �(P

1

) = �(P

2

)

whih belong to H by part (1). Thus, one again by (1) we onlude that P

2

2

Supp(�

�

(H)).

(3) Let H

1

be a hyperplane in P

r

suh that �(X ) \ H \ H

1

= ;. Denote by h=h

1

the rational funtion on P

r

, obtained by dividing the equation of H by the one of H

1

.

Then we obtain a rational funtion on X , namely ' := (h=h

1

) Æ � (i.e., the pull-bak

of h=h

1

by �). The funtion h=h

1

is regular on P

r

n H

1

and hene ' is regular on

�

�1

(P

r

nH

1

). Moreover, by the eletion of H

1

, we have that v

P

(') � 1 , �(P ) 2 H

and therefore from part (1) we onlude that v

P

(') � 1 , P 2 Supp(�

�

(H)). From

the de�nition of ' we even onlude that �

�

(H) = div

0

(').

Now suppose that �(P ) = Q 2 �(X )\H is non-singular; let u be a loal parameter at

Q and set i

P

:= v

P

(u) (the rami�ation index at P ). By onsidering h=h

1

as a funtion

on �(X ) we have v

P

(�

�1

(H)) = v

P

(') = i

P

v

Q

(h=h

1

), and by the produt formula we

also have

X

P2�

�1

(Q)

v

P

(�

�1

(H)) = deg(�)v

Q

(h=h

1

) :

Now take H suh that every point in �(X)\H is non-singular (this is possible beause

�(X ) has a �nite number of singular points and so we an apply Bertini's theorem).

Then from the above equation,

d = deg(�)

X

Q2�(X )\H

v

Q

(h=h

1

) :

It turns out that v

Q

(h=h

1

) = I(�(X ); H;Q) (f. [45, Ex.6.2℄), and the result follows.

>From this lemma and its proof we obtain:

Corollary 1.12. Let � : X ! P

r

be a non-degenerate morphism.

(1) If � is birational; i.e., deg(�) = 1, then deg(D

�

) = deg(�(X )).
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(2) If X � P

r

and � is the inlusion morphism, then

D

�

= fX �H : H hyperplane in P

r

g ;

where X �H =

P

P

I(X ; H;P ) is the intersetion divisor of X and H.

1.4. Relation between linear series and morphisms. De�ne the following sets:

� L = L

r

:= fD

B

: D linear series with dim(D) = rg;

� M =M

r

:= fh�i : � : X ! P

r

non-degenerate morphismg, where

h�i := fT Æ � : T 2 Aut(P

r

)g denotes the projetive equivalent lass of �.

>From Sets. 1.2 and 1.3 we have two maps, namely

M =M

r

: L !M; D

B

7! hoordinate representation of �

D

Bi ;

and

L = L

r

:M! L; h�i 7! D

�

:

We have M Æ L = id

M

by de�nition, and L ÆM = id

L

by Lemma 1.4. Therefore,

Lemma 1.13. The set of base-point-free linear series of dimension r is equivalent to

the set of projetive equivalent lass of non-degenerate morphism from X to P

r

.

Remark 1.14. The fat that (L ÆM)(D

B

) = D

B

means that

D

B

= f�

�

(H) : H hyperplane in P

r

g � jE � Bj ;

where � : X ! P

r

is the non-degenerate morphism determinated, up to an automor-

phism of P

r

, by a base of D

0

.

1.5. Hermitian invariants; Weierstrass semigroups I. Let D be a g

r

d

on X , say D

�

=

P(D

0

) � jEj, and P 2 X . We ontinue the study of the linear series D

i

(P ) started in

Set. 1.2. Reall that D

i

(P )

0

= D

0

\ L(E � iP ) and that D

i

(P ) � D

i+1

(P ).

De�nition. A non-negative integer j is alled a (D; P )-order (or an Hermitian P -

invariant), if D

j

(P ) % D

j+1

(P ).

>From Lemma 1.3, there exist r + 1 (D; P )-orders, say

j

0

(P ) = j

D

0

(P ) < : : : < j

r

(P ) = j

D

r

(P ) :

For i = 0; : : : ; r,

j

i

(P ) = minfv

P

(E) + v

P

(f) : f 2 D

j

i

(P )

(P )

0

g ;

and thus D

j

i

(P ) is a g

r�i

d

on X .
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Lemma 1.15. (Esteves-Homma [21, Lemma 1℄) For P;Q 2 X , P 6= Q,

j

i

(P ) + j

r�i

(Q) � d :

Proof. Sine dim(D

j

i

(P )

(P )\D

j

r�i

(Q)

(Q)) � 0, there exists D 2 D

j

i

(P )

(P )\D

j

r�i

(Q)

(Q)

and the result follows.

This result will be omplemented by Corollary 2.14.

Remark 1.16. (i) Sine j

0

(P ) equals b(P ), D is base-point-free if and only if j

0

(P ) = 0

for eah P 2 X . Moreover, j is a (D; P )-order if and only if j�b(P ) is a (D

B

; P )-order.

(ii) j

r

(P ) � d as D

i

(P ) = ; for i > d.

(iii) Let j 2 N

0

. From Lemma 1.3, the following statements are equivalent:

(1) j is a (D; P )-order;

(2) 9 D 2 D suh that v

P

(D) = j;

(3) 9 f 2 D

0

suh that v

P

(E) + v

P

(f) = j;

(4) 9 f 2 D

0

suh that f 2 L(E � jP ) n L(E � (j + 1)P );

(5) dim

F

(D

0

j

(P )) = dim

F

(D

0

j+1

(P )) + 1;

(6) dim(D

j

(P )) = dim(D

j+1

(P )) + 1.

(iv) Let D = jEj; i.e., D

0

= L(E), C a anonial divisor on X , and j 2 N

0

. From

D

0

j

(P ) = L(E� jP ), the Riemann-Roh theorem, and part(iii)(5) above, the following

statements are equivalent:

(1') j is a (jEj; P )-order;

(2') 9 f 2 L(E) suh that v

P

(E) + v

P

(f) = j;

(3') 9 f 2 L(E � jP ) n L(E � (j + 1)P );

(4') L(C � E + (j + 1)P ) = L(C � E + jP );

(5') 6 9 f 2 L(C � E + (j + 1)P ) suh that v

P

(C � E) + v

P

(f) = �(j + 1).

Example 1.17. Let g be the genus of X , and D := jEj with d = deg(E) � 2g. For

P 2 X , we ompute some (D; P )-orders. We have j

i

(P ) = i for 0 � i � d� 2g. Indeed

for suh an i, deg(C � E + (i + 1)P ) < 0 and then Remark 1.16(iv(4')) is trivially

satis�ed. In partiular, D is base-point-free.

Example 1.18. We laim that for a given sequene of non-negative integers `

0

< : : : <

`

r

, there exists a urve Y, a point P

0

2 Y, and a linear series F on Y suh that the

sequene equals the (F ; P

0

)-orders. Indeed, let Y := P

1

(F) and x a transendental

element over F. Set P

1

:= (0 : 1), and P

a

:= (1 : a) for a 2 F. We assume

div(x) = P

0

� P

1

, v

P

a

(x� a) = 1 for a 2 F. De�ne

E := `

r

P

1

; and F

0

:= hx

`

0

; : : : ; x

`

r

i � F(x) :

Then F := fE+div(f) : f 2 F

0

g is a g

r

`

r

on Y. We have E+div(x

`

i

) = `

i

P

0

+(`

r

�`

i

)P

1

and hene the (F ; P

0

)-orders are `

0

; : : : ; `

r

. In addition, we have that j

F

0

(P ) = 0 for
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P 6= P

0

; i.e., the base lous of F is B

F

= `

0

P

0

. Moreover, for the morphism assoiated

to F � = (x

`

0

: : : : : x

`

r

) we have E

�

= `

r

P

1

� `

0

P

0

. If `

r

= r, then F is omplete

and base-point-free, and the urve �(Y) is the so-alled rational normal urve in P

r

.

Conversely, if F is omplete, say F = jE

1

j, then E

1

= E by Lemma 1.4, and so ` = r.

We will introdue next the so-alled Weierstrass semigroup. To begin with we state a

de�nition whih is motivated by Remark 1.16(iv)(5').

De�nition. Let D 2 Div(X ) and ` 2 N

0

. We say that ` is a (D;P )-gap if does not

exist f 2 L(D + `P ) suh that v

P

(D) + v

P

(f) = �`.

We have that

` is a (D;P )-gap if and only if `� 1 is a (jC �Dj; P )-order ;

where C is a anonial divisor on X . Denote by K = K

X

:= jCj the anonial linear

series on X .

De�nition. The (0; P )-gaps are alled the Weierstrass gaps at P . The Weierstrass

semigroup at P is the set

H(P ) := N

0

nG(P ) ;

where

G(P ) := f` 2 Z

+

: ` Weierstrass gap at Pg :

The elements of H(P ) are alled Weierstrass non-gaps at P .

Lemma 1.19. Let g be the genus of X . Then

(1) #G(P ) = g (Weierstrass gap theorem);

(2) For h 2 N

0

, the following statements are equivalent:

(i) h 2 H(P );

(ii) 9 f

h

2 L(hP ) suh that v

P

(f

h

) = �h;

(iii) 9 f

h

2 k(X) suh that div

1

(f

h

) = hP ;

(iv) `(hP ) = `((h� 1)P ) + 1:

Proof. Sine dim(K) = g � 1 and

G(P ) = fj

K

0

(P ) + 1; : : : ; j

K

g�1

(P ) + 1g ;

part (1) follows. Remark 1.16(iv) implies part (2).

We see now that H(P ) is indeed a semigroup.

Corollary 1.20. The set H(P ) is a sub-semigroup of (N

0

;+) suh that

H(P ) � f2g; 2g + 1; 2g + 2; : : :g ;

where g is the genus of X .
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Proof. It follows from Lemma 1.19(2.(iii)) and j

K

g�1

(P ) � deg(K) = 2g � 2.

Let (n

i

(P ) : i = 0; 1; : : : ) denote the stritly inreasing sequene that enumerates the

Weierstrass semigroup H(P ). From Lemma 1.19(2)(iv), `(n

i

(P )P ) = i + 1 and from

Corollary 1.20, n

i

(P ) = g + i for i � g.

Remark 1.21. For g = 0, K = ; and hene H(P ) = N

0

for any P 2 X . If g = 1, then

dim(K) = 0 and hene H(P ) = f0; 2; 3; : : :g for any P 2 X .

Corollary 1.22. If X is a urve of genus g � 1, then K is base-point-free.

Proof. We have to show that j

0

(P ) := j

K

0

(P ) = 0 for eah P 2 X . Suppose that

j

0

(P

0

) � 1 for some P

0

2 X . Then 1 2 H(P

0

) and hene H(P

0

) = N

0

. This implies

g = 0.

Example 1.23. We onsider omplete linear series on X arising fromWeierstrass non-

gaps whih will be useful for appliations to optimal urves. Let P 2 X , set n

i

:= n

i

(P )

and onsider D := jn

r

P j. Then

(1) D is a g

r

n

r

base-point-free on X ;

(2) The (D; P )-orders are n

r

� n

i

, i = 0; : : : ; r.

In fat, we already notied that dim(D) = r; P annot be a base point of D by Lemma

1.19(2)(iv); if Q 6= P , then D := n

r

P +div(1) 2 D and v

Q

(D) = 0. This prove (1). To

see (2), let f

i

2 F(X ) suh that div(f

i

) = div

0

(f

i

)�n

i

P ; f. Lemma 1.19(2)(iii). Then

n

r

P + div(f

i

) = (n

r

� n

i

)P + div

0

(f

i

) ;

and the result follows.

Lemma 1.24. Let f 2 F(X ) suh that div

1

(f) = n

1

(P )P . Then f is a separating

variable of F(X )jF.

Proof. If F(X )jF(f) were not separable, then f = g

p

, g 2 F(X ) by [96, Prop. III.9.2℄.

Then n

1

(P )=p would be a non-gap at P , a ontradition.

By de�nition, a Weierstrass semigroup H(P ) belongs to the lass of numerial semi-

group; i.e., it is a sub-semigroup H of (N

0

;+) whose omplement in N

0

, G(H) :=

N

0

nH, is �nite. For suh a semigroup H, g(H) := #(N

0

nH) is alled the genus of H.

We let (n

i

(H) : i 2 N) (resp. (`

i

(H) : i = 1; : : : ; g(H))) denote the stritly inreasing

sequene that enumerates H (resp. G(H)). Clearly n

i

(H) = g(H) + i for i � g(H),

and n

i

(H) = 2i for i = 1; : : : ; g(H) whenever n

1

(H) = 2. H is alled hyperellitpi if

2 2 H (note that 2 2 H if and only if n

1

(H) = 2, whenever g(H) � 1). This de�ni-

tion is motivated by the so-alled hyperellipti urves, namely those urves admitting

a g

1

2

, or equivalently those admitting rational funtions of degree two. Indeed, X is

hyperellipti if and only if there exists P 2 X suh that 2 2 H(P ) (see Example 2.28).
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Lemma 1.25. (Buhweitz [7, I.3℄, Oliveira [81, Thm. 1.1℄) If n

1

(H) � 3; then n

i

(H) �

2i+ 1 for i = 1; : : : ; g(H)� 2. In partiular, n

g�1

(H) � 2g(H)� 2:

The weight of H is w(H) :=

P

g(H)

i=1

(`

i

(H)� i). It is easy to see that

w(H) = (3g(H)

2

+ g(H))=2�

g(H)

X

i=1

n

i

(H) ;(1.2)

and that w(H) = g(H)(g(H)� 1)=2 if H is hyperellipti. Now Lemma 1.25 and (1.2)

imply:

Corollary 1.26. (1) 0 � w(H) � g(H)(g(H)� 1)=2;

(2) w(H) = g(H)(g(H)� 1)=2 if and only if H is hyperellipti;

(3) w(H) � (g(H)

2

� 3g(H) + 4)=2 if n

1

(H) � 3:

Remark 1.27. (Kato [59℄) If n

1

(H) � 3, we indeed have w(H) � g(H)(g(H) � 1)=3,

for g(H) = 3; 4; 6; 7; 9; 10 and w(H) � (g(H)

2

� 5g(H) + 10)=2, otherwise.

De�nition. A numerial semigroup H is alled Weierstrass if there exist a urve X

and a point P 2 X suh that H equals the Weierstrass semigroup H(P ) at P .

Remark 1.28. If H is Weierstrass, say H = H(P ) on a urve X of genus g = g(H),

then Lemma 1.25 follows from Castelnuovo's genus bound (Lemma 1.6): We want to

show that n

i

:= n

i

(P ) � 2i+ 1 provided that n

1

:= n

1

(P ) � 3 and 1 � i � g � 2. Let

i be the least integer for whih n

i

� 2i. Then i � 2, n

i�1

= 2i� 1, and n

i

= 2i. Thus

D := jn

i

P j is a simple g

i

n

i

on X ; therefore Castelnuovo's genus bound implies g � i+1,

a ontradition.

A numerial semigroup H is Weierstrass if any of the following onditions hold:

� either g(H) � 7, or g(H) = 8 and 2n

1

(H) > `

g

(H); see Komeda [63℄;

� n

1

(H) � 5; see Komeda [61℄, [64℄, Malahlan [75, Thm. 4℄;

� either w(H) � g(H)=2 or g(H)=2 < w(H) � g(H)� 1 and 2n

1

(H) > `

g

(H); see

Eisenbud-Harris [19℄, Komeda [62℄;

We remark that the underlying urve in these examples is de�ned over the omplex

numbers.

In 1893, Hurwitz [57℄ asked about the haraterization of Weierstrass semigroups; see

[8, p. 32℄ and [19, p. 499℄ for further historial information. Long after that, in 1980

Buhweitz (see Corollary 1.30) showed the existene of a non-Weierstrass semigroup as

a onsequene of the following.
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Lemma 1.29. (Buhweitz's neessary ondition, [8, p. 33℄) Let H be a numerial

semigroup. For an integer n � 2, let nG(H) be the set of all sums of n elements of

G(H). If H is Weierstrass, then

#nG(H) � (2n� 1)(g(H)� 1) :(1.3)

Proof. We have that g := g(H) is the genus of the underlying urve, say X . For a

anonial divisor C on X , we observe that `(nC) = (2n� 1)(g � 1) by the Riemann-

Roh theorem. Let ` := `

1

+ : : :+ `

n

2 nG(H). From Remark 1.16(iv)(2'), there exists

f

i

2 L(C) suh that v

P

(C) + v

P

(f

i

) = `

i

� 1 for i = 1; : : : ; n. Then f

`

:= f

1

: : : f

n

2

L(nC) and being the map ` 7! f

`

injetive, the result follows.

Corollary 1.30. ([8, p. 31℄) f1; : : : ; 12; 19; 21; 24; 25g is the set of gaps of a numerial

semigroup H of genus 16 whih is not Weierstrass.

Proof. We apply the ase n = 2 in Lemma 1.29. An easy omputations shows that

2G(H) = [2; 50℄ n f39; 41; 47g. Then #2G(H) = 46 > 3g� 3 = 45 and so H annot be

Weierstrass.

In addition, Buhweitz (lo. it.) showed that for every integer n � 2 there exist

numerial semigroups whih do not satisfy (1.3). Further examples of suh semigroups

were given in [104, Set. 4.1℄ and Komeda [65℄. On the other hand, what an we

say about semigroups H that satisfy (1.3) for eah n � 2 ? In fat, there exist

at least two lasses of suh semigroups, namely symmetri semigroups (resp. quasi-

symmetri semigroups); i.e., those H with `(H) = 2g(H)�1 (resp. `(H) = 2g(H)�2).

Indeed, equality in (1.3) for eah n haraterize symmetri semigroups (see Oliveira

[81, Thm. 1.5℄), and Oliveira and St�ohr [82, Thm. 1.1℄ notied that #nG(H) =

(2n�1)(g�1)� (n�2) whenever H is quasi-symmetri. In 1993, St�ohr [103, Sholium

3.5℄ onstruted symmetri semigroups whih are not Weierstrass. Indeed, symmetri

non-Weierstrass semigroups of any genus larger than 99 an be onstruted (lo. it.)

by using the Buhweitz's semigroup (Corollary 1.30) as a building blok. A similar

result was obtained for quasi-symmetri semigroups [82, Thm. 5.1℄ and these examples

were generalized in [104, Set. 4.2℄. We stress that any symmetri (resp. quasi-

symmetri) semigroup is a Weierstrass semigroup on a Gorenstein (resp. reduible

Gorenstein) urve; see [98℄ (resp. [82℄).

Finally, we mention that Hurwitz's question for numerial semigroups that satisfy (1.3)

for eah n � 2 is urrently an open problem.

2. Weierstrass point theory

In this setion we study Weierstrass Point Theory of linear series on urves from St�ohr-

Voloh's paper [99, x1℄. Other referenes are Farkas-Kra [22, III.5℄, Homma [54, Sets.

1,2℄, Laksov [71℄, F.K. Shmidt [88℄, [89℄.
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Let X be a urve over an algebraially losed �eld F of harateristi p � 0. Let D be

a g

r

d

on X , say D

�

=

P

r

(D

0

) � jEj.

In Set. 1.5, to any point P 2 X we have assigned a sequene of (r + 1) integers,

namely the (D; P )-orders. Here we study the behaviour of suh sequenes for general

points of X ; i.e, for points in an open Zariski subset of X . In order to do that we use

\wronskians" on X ; i.e., ertain funtions in F(X ) de�ned via derivatives. To avoid

restritions on the harateristi p, we use Hasse derivatives.

2.1. Hasse derivatives. Let x be a trasendental element over F. For i; j 2 N

0

, set

D

i

x

x

j

:=

�

j

i

�

x

j�i

;

and extend itF-linearly on F[x℄. The F-linear mapD

i

x

is alled the i-th Hasse derivative

on F[x℄. i! D

i

x

x

j

is the usual i-th derivative

d

i

dx

i

, and D

i

x

6= 0, as D

i

x

x

i

= 1, but

d

d

i

x

= 0

for i � p > 0.

Remark 2.1. For f(x) 2 F[x℄, D

i

x

f(x) is the oeÆient of u

i

in the expansion of f(x+u)

as a polynomial in u.

The F-linear maps D

i

x

, i 2 N

0

, satisfy the following four properties:

(H1) D

0

x

= id;

(H2) D

i

x

jF

= 0 for i � 1;

(H3) D

i

x

(fg) =

P

i

j=0

D

j

x

fD

i�j

x

g (Produt Rule);

(H4) D

i

x

ÆD

j

x

=

�

i+j

i

�

D

i+j

x

.

Properties (H1), (H2) and (H4) easily follow from the de�nition of D

i

x

, while (H3)

follows by omparing the oeÆients of (fg)(x+ u) and f(x+ u)g(x+ u).

Next one extends D

i

x

to F(x) and then to eah �nite separable extension of F(x). This

is done in just one way; moreover, the extended map remains F-linear and still satis�es

the four aforementioned properties. The extension on F(x) is onstruted as follows.

By (H1) and (H3) it is enough to de�ne D

i

x

(1=f) for i � 1 and f 6= 0. From f(1=f) = 1,

(H2) and (H3) one �nds the following reursive formula:

i

X

j=0

D

j

x

(1=f)D

i�j

x

f = 0 :

For i = 1 one obtains the expeted relation D

1

x

(1=f) = �(D

1

x

f)=f

2

, and in general [38,

p. 119℄

D

i

x

(1=f) =

i

X

j=1

(�1)

j

f

j+1

X

i

1

;::: ;i

j

�1; i

1

+:::+i

j

=i

D

i

1

x

f : : :D

i

j

x

f :
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Remark 2.2. The maps D

i

x

on F(x), i 2 N

0

, are haraterized by the following four

properties:

(i) they are F-linear;

(ii) they satisfy (H1) and (H3) above;

(iii) D

1

x

x = 1;

(iv) D

i

x

x = 0 for i � 2.

To see this, let �

i

, i 2 N

0

, be maps on F(x) satisfying (i), (ii), (iii) and (iv). From the

formula for D

i

x

(1=f) above, is enough to show that �

i

(x

j

) = D

i

x

x

j

(�) for i; j 2 N

0

.

Now, sine the �

i

's satisfy (H3), it follows [47, Lemma 3.11℄

�

i

(x

j

) = jx

j�1

�

i

(x) +

j

X

`=2

i�1

X

m=1

x

j�`

(�

m

(x))(�

i�m

(x

`�1

)) ;(2.1)

and we obtain (�) by indution on i and j.

Remark 2.3. The maps D

i

x

, i 2 N

0

, on F(x) have also a unique extension to the

Laurent series F((x)) whih satisfy (H1), (H2), (H3), and (H4) above. One sets

D

i

x

(

P

j

a

j

x

j

) :=

P

j

�

j

i

�

a

j

x

i�j

, see [47, p. 12℄.

Next we extend D

i

x

to a �nite separable extension KjF(x). Let y 2 K be suh that

K = F(x; y), and F (x)[Y ℄ the minimal polynomial of y over F(x). Then we de�ne

D

i

x

y

m

by using F (x; y) = 0 and (2.1). For example, for i = 1 we obtain

F

Y

(x; y)D

1

x

y +

X

j

(D

1

x

a

j

(x))y

j

= 0 ;(2.2)

so that D

1

x

y is well de�ned as F

Y

(x; y) 6= 0. Notie that these extensions satisfy (H1),

(H2), (H3) and (H4) above and depend on the element y. However, it is a matter of

fat that the F-linear maps D

i

x

on F(x) admit a unique extension to F-linear maps on

K satisfying the aforementioned (H1), (H2), (H3), and (H4); see [46℄.

Therefore, F(X ) is equipped with F-linear maps D

i

x

suh that (H1), (H2), (H3) and

(H4) above hold true, with x being a separating variable of F(X )jF. If y is another

separating variable of F(X )jF, relations among the D

i

x

's and the D

j

y

's are given by the

so alled hain rule; see (2.3) and (2.4).

Remark 2.4. For i 2 N

0

, let D

i

be F-linear maps on a F-algebra K satisfying (H1),

(H2), (H3) and (H4) above. From (H4),

i! D

i

= (D

1

)

i

:= D

1

Æ : : : ÆD

1

i times ;

so that eah D

i

is determinated by D

1

provided that p = 0. Suppose now p > 0.

Claim. Let 0 � a; b < p, �; � 2 N. Then

(1) D

ap

�

+bp

�

= D

ap

�

ÆD

bp

�

.
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(2) D

ap

�

= (D

p

�

)

a

=a!.

Proof. The statements are onsequene of (H4) and the following property of binomial

numbers: if i =

P

�

a

�

p

�

, j =

P

�

b

�

p

�

are the p-adi expansion of i; j 2 N, then

�

i

j

�

=

Q

�

�

a

�

b

�

�

.

Therefore in positive harateristi the D

i

's are determinated by D

1

; D

p

; D

p

2

; : : : .

A F-linear map D on F(X ) satisfying D(fg) = fD(g)+gD(f), is alled a F-derivation

on F(X ). For example, D

1

x

is a derivation on F(X ), where x is a separating variable

of F(X )jF. From (2.1) follows that two F-derivations Æ

1

and Æ

2

on F(X ) are equal if

Æ

1

(x) = Æ

2

(x).

Now let y be another separating variable of F(X )jF. Sine the F-derivations Æ

1

:= D

1

y

and Æ

2

:= D

1

y

(x)D

1

x

satisfy Æ

1

(x) = Æ

2

(x), we obtain the usual hain rule, namely

D

1

y

= D

1

y

(x)D

1

x

:(2.3)

To generalize this relation to higher derivatives, let T be a trasendental element over

F(X ). The maps D

i

x

and D

j

y

an be read o� from the homomorphisms of F-algebras

�

x

; �

y

: F(X)! F(X)[[T ℄℄ de�ned respetively by

�

x

(f) :=

X

i�0

D

i

x

(f)T

i

; and �

y

(f) :=

X

i�0

D

i

y

(f)T

i

:

Let h : F(X )[[T ℄℄! F(X )[[T ℄℄ be the F-homomorphism de�ned by h

jF(X )

= id

jF(X )

and

h(T ) :=

P

i�1

D

i

y

(x)T

i

. Sine D

1

y

(x) 6= 0 by (2.3), h is an automorphism of F(X )[[T ℄℄.

Consider the F-homomorphism � : F(X) ! F(X)[[T ℄℄ given by � := h

�1

Æ �

y

. For

f 2 F(X ), set �(f) :=

P

i�0

�

i

(f)T

i

. Then the maps �

i

are F-linear on F(X ) and

satisfy properties (H1) and (H3) above. Write h(T ) = TU , U = D

1

y

(x)+D

2

y

(x)T + : : : .

Claim. Let i 2 N

0

and f 2 F(X ). Then �

0

(f) = D

0

y

(f) and for i � 1 the following

holds

D

i

y

(f) =

i

X

j=1

a

j

�

j

(f) ;

where a

j

is the oeÆient of T

i�j

in U

j

. In partiular, a

1

= D

i

y

(x), a

i

= (D

1

y

x)

i

.

Proof. Write �

y

= h Æ �. The oeÆient of T

i

in (h Æ �)(f) an be read o� from

P

i

j=0

a

j

(f)(TU)

j

, and the laim follows.

Then we have �

1

(x) = 1 and �

i

(x) = 0 for i � 2. Therefore from Remark 2.2, �

i

= D

i

x

on F(x) and hene also on F(X ). This implies the generalized hain rule:

�

y

= h Æ �

x

;
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or equivalently

D

i

y

=

i

X

j=1

f

j

D

j

x

; i = 1; 2 : : : ;(2.4)

where f

j

2 F(fD

m

y

(x) : m = 1; 2; : : :g). Observe that f

1

= D

i

y

(x) and f

i

= (D

1

y

x)

i

.

Remark 2.5. We mention two further properties of Hasse derivatives regarding prime

powers of rational funtions. Let f 2 F(X ), x a separating variable of F(X )jF, and q

a power of p = har(F) > 0. We have

(i) D

i

x

f

q

= (D

i=q

x

f)

q

if q divides i, and D

i

x

f

q

= 0 otherwise;

(ii) ([46, Satz 10℄) 9 g 2 F(X ) suh that f = g

q

if and only if D

i

x

(f) = 0 for

i = 1; : : : ; q � 1.

De�nition. A wronskian on X is a rational funtion of type

W

`

0

;::: ;`

r

f

0

;::: ;f

r

;x

:= det((D

`

i

x

f

j

)) ;

where `

0

< : : : < `

r

is a sequene of non-negative integers, x is a separating variable of

F(X )jF, and f

0

; : : : ; f

r

2 F(X ). We set

A(f

0

; : : : ; f

r

; x) := f(m

0

; : : : ; m

r

) 2 N

r+1

0

: m

0

< : : : < m

r

; W

m

0

;::: ;m

r

f

0

;::: ;f

r

;x

6= 0g :

2.2. Order sequene; Rami�ation divisor. Let P 2 X and t be a loal parameter at

P . Let

j

0

= j

0

(P ) < : : : < j

r

= j

r

(P )

denote the (D; P )-orders. From Remark 1.16(iii)(3) there exists f

`

2 F(X ) suh that

v

P

(t

v

P

(E)

f

`

) = j

`

; ` = 0; : : : ; r :

Claim. ff

0

; : : : ; f

r

g is a F-base of D

0

.

Proof. If there exists a non-trivial relation

P

i

a

i

f

i

= 0 with a

i

2 F, then we would

have v

P

(f

i

) = v

P

(f

`

) for i 6= ` and so j

i

= j

`

, a ontradition.

De�nition. The aforementioned F-base ff

0

; : : : ; f

r

g is alled a (D; P )-base (or (D; P )-

Hermitian base).

Remark 2.6. Let ff

0

; : : : ; f

r

g be a (D; P )-base. For i = 0; : : : ; r, D

0

i

(P ) = D

0

\L(E �

j

i

P ) so that

D

0

j

i

(P ) = hf

i

; : : : ; f

r

i ;

or equivalently

D

j

i

(P ) = fE + div(

r

X

`=i

a

`

f

`

) : (a

i

: : : : : a

r

) 2 P

r�i

(F)g :
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Thus

j

i

(P ) = minfv

P

(

r

X

`=i

a

`

f

`

t

v

P

(E)

) : (a

i

: : : : : a

r

) 2 P

r�i

(F)g :

Let ff

0

; : : : ; f

r

g be a (D; P )-base. Set g

`

:= t

v

P

(E)

f

`

.

Lemma 2.7. If m

0

< : : : < m

r

is a sequene of non-negative integers suh

that det(

�

j

`

m

i

�

) 6� 0 (mod p), then (m

0

; : : : ; m

r

) 2 A(g

0

; : : : ; g

r

; t). In partiular,

(j

0

; : : : ; j

r

) 2 A(g

0

; : : : ; g

r

; t).

Proof. Let g

`

=

P

1

s=j

`



`

s

t

s

, 

`

j

`

6= 0, be the loal expansion of g

`

at P . Set C :=

Q

r

`=0



`

j

`

.

Then

W

m

0

;::: ;m

r

g

0

;::: ;g

r

;t

= det(

1

X

s=j

`

�

s

m

i

�



`

s

t

s�m

i

)

= Ct

�

P

i

m

i

det(

1

X

s=j

`

�

s

m

i

�



`

s



`

j

`

t

s

)

= Cdet(

�

j

`

m

i

�

)t

P

i

(j

i

�m

i

)

+ : : : 6= 0 ;

and the result follows.

For ` 2 N

0

, set D

`

x

� := (D

`

x

g

0

; : : : ; D

`

x

g

r

). Sine eah oordinate of this vetor is

regular at P , we also set D

`

x

�(P ) := (D

`

x

g

0

(P ); : : : ; D

`

x

g

r

(P )).

Then, for 0 � m

0

< : : : < m

r

, (m

0

; : : : ; m

r

) 2 A(g

0

; : : : ; g

r

; t) if and only if

D

m

0

t

�; : : : ; D

m

r

t

� are F(X )-linearly independent.

Sholium 2.8. (1) Set j

�1

:= 0. For i = 0; : : : ; r,

j

i

= j

D

i

(P ) = minfs > j

i�1

: (D

j

0

t

�)(P ); : : : ; (D

j

i�1

t

�)(P ); (D

s

t

�)(P ) are F-l.i.g ;

(2) Let m

0

< : : : < m

r

0

be non-negative integers, with r

0

� r, suh that the vetors

(D

m

0

t

�)(P ); : : : ; (D

m

r

0

t

�)(P ) are F-linearly independent. Then j

i

� m

i

for i =

0; : : : ; r

0

:

Proof. (1) From Lemma 2.7 and its proof, the vetors (D

j

0

t

�)(P ); : : : ; (D

j

i

t

�)(P ) are

F-linearly independent and

D

j

i

t

g

`

(P ) =

8

>

>

<

>

>

:

0 if ` > i ;



`

j

`

if ` = i ;



`

j

i

if ` < i :

Let j

i�1

< s < j

i

. For ` = 0; : : : ; i� 1, we have vetors of type

(D

j

`

t

�)(P ) = (�; : : : ; �; 

`

j

`

; 0; : : : ; 0) ;
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with (r�`) zeros and where � denotes an element of F. Sine the last (r� i+1) entries

of the vetor (D

s

t

�)(P ) are zeroes, (1) follows.

(2) From (1), dim

F

hf(D

s

�)(P ) : s = 0; : : : ; j

i

� 1gi = i so that j

i

� 1 < m

i

.

In Z

r+1

we have a partial order given by the so-alled lexiographi order <. For

�; � 2 Z

r+1

, � < � if in the vetor � � � the left most non-zero entry is positive. This

order is a well-ordering on N

r+1

, see e.g. [16, p. 55℄. Let

E := (�

0

; : : : ; �

r

)

be the minimum (in the lexiographi order) of A(g

0

; : : : ; g

r

; t).

Lemma 2.9. (1) �

0

= 0;

(2) �

1

= 1 whenever p does not divide deg(D)� deg(B

D

);

(3) For i = 1; : : : ; r;

�

i

= minfs > �

i�1

: D

�

0

t

�; : : : ; D

�

i�1

t

�;D

s

t

� are F(X )-l.i.g :

Proof. (1) Suppose that �

0

> 0. Then D

0

t

� =

P

r

j=1

h

j

D

�

j

t

� with some h

j

0

2 F(X )

�

,

beause (0; �

1

; : : : ; �

r

) < E . Then we replae the row D

�

j

0

t

� by D

0

t

� inW

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

so that

(0; �

0

; : : : ; �

j

0

�1

; �

j

0

+1

; : : : ; �

r

) 2 A(g

0

; : : : ; g

r

; t), a ontradition to the minimality of

E .

(2) As in part (1) we have that �

1

= 0 if and only if D

1

t

g

`

= 0 (or equivalently D

i

t

g

`

= 0

for 1 � i < p) for any ` = 0; : : : ; r. Then eah g

`

is a p-power by Remark 2.5(ii), and

so p divides v

P

(E)� b(P ) by Lemma 1.4; i.e., p divides deg(D)� deg(B

D

).

(3) Clearly D

�

0

t

�; : : : ; D

�

i

t

� are F(X )-linearly independent. Let �

i�1

< s < �

i

. Sine

(�

0

; : : : ; �

i�1

; s; �

i+1

; : : : ; �

r

) < E , there exists a relation of type

D

s

t

� =

i�1

X

j=0

h

j

D

�

j

t

�+

r

X

j=i+1

h

j

D

�

j

t

� ;

with h

j

2 F(X ). We laim that h

j

= 0 for j � i + 1. Indeed, suppose that h

j

0

6= 0

for some j

0

� i + 1. Then by replaing D

�

j

0

t

� by D

s

t

� in W

�

0

;:::�

r

g

0

;::: ;g

r

;t

we would have

that (�

0

; : : : ; �

i�1

; s; �

i

; : : : ; �

j

0

�1

; �

j

0

+1

; : : : ; �

r

) 2 A(g

0

; : : : ; g

r

; t), a ontradition to the

minimality of E . This �nish the proof.

Corollary 2.10. (1) Let (m

0

; : : : ; m

r

) 2 A(g

0

; : : : ; g

r

; t). Then for eah i, �

i

� m

i

.

In partiular, �

i

� j

i

= j

i

(P );

(2) If 0 � m

0

< : : : < m

r

are integers suh that det(

�

j

i

m

`

�

) 6� 0 (mod p), then �

i

� m

i

for eah i:

Proof. From Lemma 2.9,

hfD

`

t

� : ` = 0; : : : ; �

i

� 1gi = hfD

�

j

t

� : j = 0; : : : ; i� 1gi :(2.5)
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If �

i

> m

i

, we would have

dim

F(X )

(fD

`

t

� : ` = 0; : : : ; �

i

� 1g) � dim

F(X )

(fD

m

`

t

� : ` = 0; : : : ; ig) � i + 1 ;

a ontradition. This proves (1). Now (2) follows from Lemma 2.7 and (1).

Proposition 2.11. (1) If h

i

=

P

a

ij

g

j

with (a

ij

) 2M

r+1

(F), then

W

�

0

;::: ;�

r

h

0

;::: ;h

r

;t

= det((a

ij

))W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

;

(2) If f 2 F(X ), then

W

�

0

;::: ;�

r

fg

0

;::: ;fg

r

;t

= f

r+1

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

;

(3) Let x be any separating variable of F(X )jF. Then

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;x

= (D

1

x

t)

P

i

�

i

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

:

Proof. (1) It follows from D

�

`

t

h

i

=

P

a

ij

D

�

`

t

g

j

. Note that this result does not depend

on the minimality of E .

(2) By the produt rule (f. Set. 2.1), we have

D

�

i

t

(fg

j

) =

�

i

X

`=0

D

`

t

fD

�

i

�`

t

g

j

:

Then

(D

�

i

t

fg

0

; : : : ; D

�

i

t

fg

r

) = fD

�

i

t

�+

�

i

X

`=1

D

`

t

fD

�

i

�`

t

� :

By (2.5) we an fator out f in eah row of W

�

0

;::: ;�

r

fg

0

;::: ;fg

r

;t

, and (2) follows.

(3) The proof is similar to (2) but here we use the hain rule (2.4) instead of the produt

rule. We have

D

�

i

x

g

j

=

�

i

X

`=1

f

`

D

`

t

g

j

;

where f

`

2 F(X ) and f

�

i

= (D

1

x

t)

�

i

. Hene

D

�

i

x

� = (D

1

x

t)

�

i

D

�

i

t

�+

�

i

�1

X

`=1

f

`

D

`

t

� ;

and again by (2.5) we an fator out (D

1

x

t)

�

i

in eah row of W

�

0

;::: ;�

r

g

0

;::: ;g

r

;x

.

Now we see that E depends only on D: Let f

0

0

; : : : ; f

0

r

be any F-base of D

0

and x any

separating variable of F(X )jF; sine g

`

= t

v

P

(E)

f

`

, from Proposition 2.11(1)(2) E is

the minimum for A(f

0

0

; : : : ; f

0

r

; t). Moreover by part (3) of that proposition, E is also

the minimum for A(g

0

; : : : ; g

r

; x). Finally, from part (2), E is also the minimum for

A(f

0

0

; : : : ; f

0

r

; x).

De�nition. E = E

D

is alled the order sequene of D. The order sequene of a mor-

phism � is the order sequene of D

�

.
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Remark 2.12. Let m

0

< : : : < m

r

be a sequene of non-negative integers suh that

det(

�

j

`

m

i

�

) 6� 0 (mod p). Then �

i

� m

i

for eah i by Corollary 2.10(2). We shall disuss

the best eletion of the m

i

's. In Example 1.18 we have seen that the (D; P )-orders

j

0

< : : : < j

r

are the (D

�

; P

0

)-orders for � = (x

j

0

: : : : : x

j

r

) : P

1

(F) ! P

j

r

and

P

0

= (1 : 0). Observe that

W

n

0

;::: ;n

r

x

j

0

;::: ;x

j

r

;x

= det(

�

j

`

n

i

�

)x

P

i

(j

i

�n

i

)

:(2.6)

Let �

0

; : : : ; �

r

be the D

�

-orders. Then

(1) det(

�

j

i

�

`

�

) 6� 0 (mod p) by (2.6) with n

i

= �

i

, and the de�nition of D

�

-orders;

(2) �

`

� m

`

for eah ` by (2.6) with n

i

= m

i

, and Corollary 2.8(2).

This shows that the best way to upper bound the �

i

's is by means of the sequene

�

0

; : : : ; �

r

. In addition, from (2.6) and Lemma 2.9 applied to D

�

, we obtain the fol-

lowing.

Corollary 2.13. Let i 2 f0; : : : ; rg and let m

0

< : : : < m

i

be non-negative integers,

suh that the vetors (

�

j

0

m

`

�

; : : : ;

�

j

r

m

`

�

), ` = 0; : : : ; i are F

p

-linearly independent. Then

�

`

� m

`

for ` = 0; : : : ; i.

Corollary 2.14. (Esteves, [20℄)

�

i

+ j

`

(P ) � j

i+`

(P ) ; i+ ` � r :

Proof. (Following Homma [56℄) By means of suitable entral projetions [20, Lemma

2℄ one an assume that i + ` = r. Let D

�

be the linear series on P

1

(F) in Remark

2.12, and �

0

; : : : ; �

r

the D

�

-orders. By Example 1.18, j

r

� j

r

; j

r

� j

r�1

; : : : ; j

r

� j

0

are

the (D

�

; (0 : 1))-orders. Then, for eah i, j

r

� j

r�i

� �

i

� �

i

by Corollary 2.10(1) and

Remark 2.12, and the result follows.

Remark 2.15. Corollary 2.14 was �rst notied by Homma [55℄ for D-orders; see also

[28℄ and [56℄.

Now we de�ne the so-alled rami�ation divisor of D. Let f

0

0

; : : : ; f

0

r

be any base of D

0

and x any separating variable of F(X )jF. As before let P 2 X , t a loal parameter at

P , ff

0

; : : : ; f

r

g a (D; P )-base; set g

`

= t

v

P

(E)

f

`

. We have a matrix (a

ij

) 2 GL(r+1;F)

suh that f

0

i

=

P

j

a

ij

f

j

for eah i. Proposition 2.11 implies

W

�

0

;::: ;�

r

f

0

0

;::: ;f

0

r

;x

= det(a

ij

)W

�

0

;::: ;�

r

f

0

;::: ;f

r

;x

= det(a

ij

)t

�(r+1)v

P

(E)

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;x

= det(a

ij

)t

�(r+1)v

P

(E)

(D

1

x

t)

P

i

�

i

W

E

g

0

;::: ;g

r

;t

;

i.e.,

W

�

0

;::: ;�

r

f

0

0

;::: ;f

0

r

;x

(D

1

t

x)

P

i

�

i

t

(r+1)v

P

(E)

= det(a

ij

)W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

:(2.7)
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Thus the divisor

R = R

D

:= div(W

�

0

;::: ;�

r

f

0

0

;::: ;f

0

r

;x

) + (

r

X

i=0

�

i

)div(dx) + (r + 1)E ;

just depends on D and loally is given by (2.7).

De�nition. R is alled the rami�ation divisor of D. The rami�ation divisor of a

morphism � is the rami�ation divisor of D

�

.

Example 2.16. Let x be a separating variable of F(X )jF and onsider the morphism

� = (1 : x) : X ! P

1

(F). Then E

�

= div

1

(x); moreover, as #x

�1

(x(P )) =

deg(div

1

(x)) for in�nitely many P 2 X , the D

�

-orders are 0,1. Then

R

D

�

= div(dx) + 2div

1

(x) ;

i.e., it oinides with the rami�ation divisor R

x

of x, see Example 1.1.

Lemma 2.17. (Garia-Voloh [33, Thm. 1℄) Let � = (f

0

: : : : : f

r

) be a morphism

assoiated to D, and q

0

a power of har(F) > 0. Then �

r

� q

0

if and only if there exist

z

0

; : : : ; z

r

2 F(X ), not all zero, suh that

z

q

0

0

f

0

+ : : :+ z

q

0

r

f

r

= 0 :

Corollary 2.18. Let P 2 X . Under the hypothese of the previous lemma, there exist

i; ` 2 f0; : : : ; rg, i 6= `, suh that j

i

(P ) � j

`

(P ) (mod q

0

).

Proof. We an assume that f

0

; : : : :f

r

is a (D; P )-base. Now there exist 0 � i < ` � r

suh that v

P

(z

q

0

i

f

i

) = v

P

(z

q

0

`

f

`

) and the result follows.

2.3. D-Weierstrass points. Let us keep the notation of the previous subsetion. Now

we study R loally at P via (2.7); i.e., we study

v

P

(R) = v

P

(W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

) :

We observe that v

P

(R) � 0 sine g

`

is regular at P for eah `.

Theorem 2.19. (1) v

P

(R) �

P

r

i=0

(j

i

(P )� �

i

);

(2) v

P

(R) =

P

r

i=0

(j

i

(P )� �

i

) , det(

�

j

`

(P )

�

i

�

) 6� 0 (mod p):

Proof. Set j

i

:= j

i

(P ). From the proof of Lemma 2.7 with m

i

= �

i

we have a loal

expansion of type

W

�

0

;::: ;�

r

g

0

;::: ;g

r

;t

= Cdet(

�

j

`

�

i

�

)t

P

i

(j

i

��

i

)

+ : : : ;

with C 2 F

�

and the result follows.

We have already observed that R is an e�etive divisor whih also follows from j

i

(P ) �

�

i

(f. Corollary 2.10(1)). Moreover, the following is lear from the theorem.



26 F. TORRES

Corollary 2.20. v

P

(R) = 0 if and only if j

i

(P ) = �

i

for eah i. In partiular, for all

but �nitely many P 2 X , the (D; P )-orders equal �

0

; : : : ; �

r

:

De�nition. The D-Weierstrass points of X are those of Supp(R). The D-weight of P

is v

P

(R).

Thus the number of D-Weierstrass points of X , ounted with their weighs, equals

deg(R) = (

r

X

i=0

�

i

)(2g � 2) + (r + 1)d :

Lemma 2.21. (p-adi riterion) Let � be a D-order and let � be an integer suh that

�

�

�

�

6� 0 (mod p). Then � is also a D-order. In partiular, 0; 1; : : : ; �� 1 are D-orders

provided that p > �:

Proof. Let ` 2 f0; : : : ; r� 1g be suh that �

`

< � � �

`+1

� �. We apply Corollary 2.13

to a point P 62 Supp(R); i.e., suh that j

i

(P ) = �

i

for eah i. Let m

0

= �

0

; : : : ; m

`

=

�

`

; m

`+1

:= �. Then the vetors (

�

�

0

m

s

�

; : : : ;

�

�

r

m

s

�

), s = 0 : : : ; ` + 1, are F

p

-linearly

independent and the result follows.

De�nition. The urve X is alled lassial with respet to D, or the linear series D is

alled lassial, if the D-orders are 0; : : : ; r. A morphism � is alled lassial if D

�

is

lassial.

Lemma 2.22. Suppose that

Q

i>`

j

i

(P )�j

`

(P )

i�`

6� 0 (mod p). Then

(1) D is lassial;

(2) v

P

(R) =

P

r

i=0

(j

i

(P )� i):

Proof. (1) Set j

i

= j

i

(P ). We have

det(

�

j

i

`

�

) =

Y

i>`

j

i

� j

`

i� `

6� 0 (mod p) ;

by hypothesis. Then �

i

� i by Corollary 2.10(2); i.e, �

i

= i for eah i.

(2) Follows from Theorem 2.19(2).

In partiular, as j

r

(P ) � d = deg(D), we obtain:

Corollary 2.23. If p = 0 or p > d = deg(D); then

(1) D is lassial;

(2) For eah P 2 X , v

P

(R) =

P

i

(j

i

(P )� i):
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2.4. D-osulating spaes. Assume that D is base-point-free, D = g

r

d

�

=

P

r

(D

0

) � jEj.

From Remark 1.14,

D = f�

�

(H) : H hyperplane in P

r

g ;

where � = (f

0

: : : : : f

r

), and where ff

0

; : : : ; f

r

g is a F-base of D

0

. Let P 2 X with

(D; P )-orders j

0

< : : : < j

r

. >From Lemma 1.4,

v

P

(E) = �minfv

P

(f

0

); : : : ; v

P

(f

r

)g :

For i = 0; : : : ; r�1, let L

f

0

;::: ;f

r

i

(P ) be the intersetion of the hyperplanes H in P

r

suh

that v

P

(�

�

(H)) � j

i+1

. If g

0

; : : : ; g

r

is another base of D

0

, there exists T 2 Aut(P

r

(F))

suh that �

1

:= (g

0

: : : : : g

r

) = T Æ �; thus

L

g

0

;::: ;g

r

i

(P ) = T (L

f

0

;::: ;f

r

i

(P )) :(2.8)

We onlude then that L

f

0

;::: ;f

r

i

(P ) is uniquely determinated by D up to projetive

equivalene.

De�nition. L

i

(P ) = L

f

0

;::: ;f

r

i

(P ) is alled the i-th osulating spae at P (with respet

to the base ff

0

; : : : ; f

r

g).

Clearly we have:

L

0

(P ) � : : : � L

r�1

(P ) :

Lemma 2.24. L

f

0

;::: ;f

r

i

(P ) is an i-dimensional spae generated by the vetors

(D

j

s

t

�

0

)(P ), s = 0; : : : ; i; where �

0

= (t

v

P

(E)

f

0

: : : : : t

v

P

(E)

f

r

):

Proof. From Lemma 1.10 and (2.8) we an assume that f

0

; : : : ; f

r

is a (D; P )-base. Let

H

i

be the hyperplane orresponding to X

i

= 0, where X

0

; : : : ; X

r

are homogeneous

oordinates of P

r

. Let H :

P

i

a

i

X

i

= 0 be a hyperplane. Then v

P

(�

�

(H)) � j

i+1

if

and only if a

0

= : : : a

i

= 0, sine v

P

(t

v

P

(E)

f

`

) = j

`

for eah `. Thus

L

f

0

;::: ;f

r

i

(P ) = H

i+1

\ : : : \H

r

;

i.e., it has dimension i. In addition, it is generated by the vetors (D

j

s

t

�

0

)(P ) by the

proof of Sholium 2.8

>From the proof above we obtain:

Sholium 2.25. H � L

i

(P ) if and only if v

P

(�

�

(H)) � j

i+1

:

Remark 2.26. If D has base points, the i-osulating spaes for D are, by de�nition,

those of D

B

.

De�nition. The 1-osulating (resp. (r�1)-osulating) spae at P is alled the tangent

line (resp. osulating hyperplane ) at P .
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A onsequene of Lemma 2.24 is the following.

Corollary 2.27. The osulating hyperplane at P (with respet to the base ff

0

; : : : ; f

r

g)

is given by the equation

det

0

B

B

B

�

X

0

: : : X

r

(D

j

0

t

g

0

)(P ) : : : (D

j

0

t

g

r

)(P )

.

.

.

.

.

.

.

.

.

(D

j

r�1

t

g

0

)(P ) : : : (D

j

r�1

t

g

r

)(P )

1

C

C

C

A

= 0 ;

where g

`

:= t

v

P

(E)

f

`

; ` = 0; : : : ; r:

2.5. Weierstrass points; Weierstrass semigroups II. In this sub-setion we onsider

Weierstrass Point Theory for the anonial linear series K = K

X

on the urve X of

genus g. By Remark 1.21 we an assume g � 2. The speial feature in the anonial

ase is the existene of a (numerial) semigroup, namely the Weierstrass semigroup

H(P ) at P 2 X (f. Set. 1.5) whih is losely related to the (K; P )-orders. We stress

the following.

De�nition. (1) The Weierstrass points of the urve X is the set W = W

X

of its

K-Weierstrass points; i.e., W = Supp(R

K

). The K-weight of P is alled the

Weierstrass weight !

P

of P ; i.e., !

P

= v

P

(R

K

):

(2) We set w

P

:=

P

g�1

i=0

(j

K

i

(P )�i); i.e., w

P

is the weight of the Weierstrass semigroup

H(P ) at P .

(3) The urve X is alled lassial if it is lassial with respet to the anonial linear

series K.

In partiular, sine K has dimension g�1 and degree 2g�2, the number of Weierstrass

points P 2 W ounted with their weights !

P

equals

deg(R

K

) = (

g�1

X

i=0

�

i

)(2g � 2) + g(2g � 2) ;(2.9)

where �

0

< : : : < �

g�1

are the K-orders. From Theorem 2.19(1) we have

!

P

�

g�1

X

i=0

(j

K

i

(P )� �

i

) :

In general, !

P

>

P

i

(j

K

i

(P )� �

i

) and !

P

6= w

P

(see Example 2.28); however, if either

p = 0 or p > 2g � 2, then the urve is lassial and !

P

=

P

i

(j

K

i

(P ) � i) = w

P

by

Corollary 2.23; in this ase the urve has g(g

2

� 1) Weierstrass points (ounted with

their weights) by (2.9).
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Example 2.28. (Hyperellipti urves) Let X be hyperellipti with g

1

2

= jdiv

1

(f)j,

f 2 F(X ) of degree two. Note that f is a separating variable sine g > 0. We have

K = j(g� 1)div

1

(f)j, where K

0

is generated by 1; f; : : : ; f

g�1

. Then W

0;1;::: ;g�1

1;f;::: ;f

g�1

;f

= 1;

i.e., X is lassial.

The rami�ation divisor of K is thus

R

K

=

g(g � 1)

2

div(df) + g(g � 1)div

1

(f) ;

so thatR

K

=

g(g�1)

2

R

f

by Example 2.16. Note that f has deg(R

f

) = 2g+2 rami�ations

points (ounted with multipliity), and that P 2 Supp(R

f

) if and only if e

P

= 2; see

Example 1.1. Therefore the following onditions are equivalent:

� P 2 W;

� P 2 Supp(R

f

);

� e

P

= 2;

� 2 2 H(P );

� the (K; P )-orders are 0; 2; : : : ; 2g � 2.

If P 62 W, then the (K; P )-orders are 0; 1; : : : ; g � 1; i.e., H(P ) = f0; g + 1; : : :g. In

partiular, a hyperellitpi urve has only two types of Weierstrass semigroups.

If p = 0 or p > 2, and P 2 Supp(R

f

), then v

P

(R

f

) = 1 and hene X has 2g + 2

Weierstrass points P suh that !

P

= g(g � 1)=2. In partiular, here we have !

P

=

P

i

(j

K

i

� i) = w

P

(�).

If p = 2, then (�) is in general not true as the following example shows. Let X be the

non-singular model of the plane urve of equation

y

2

+ y = x

q+1

;

over F of harateristi two, and where q = 2

a

, a � 2. Then x 2 F(X ) has degree two

an so X is hyperellitpi. There are two di�erent points in X over eah a 2 F, sine

Y

2

+Y = a has two di�erent solutions. Let P over x =1. Then 2v

P

(y) = �(q+1)e

P

so that e

P

= 2; hene there is just one point P

1

over x =1; i.e., #Supp(R

x

) = 1. In

partiular, P

1

is the only Weierstrass point of X and thus its weight is !

P

= deg(R

K

) =

g(g

2

� 1) >

P

i

(j

K

i

(P )� i) = w

P

= g(g � 1)=2 beause g > 1 as we see below.

To ompute the genus of X we use the fat that P

1

is the only rami�ed point for x:

We have 2g � 2 = deg(dx) = v

P

1

(dx) = q � 2 and so g = q=2 > 1.

Lemma 2.29. Let X be a lassial urve of genus g suh that !

P

= w

P

for eah P

(e.g. if p = 0 or p > 2g � 2). Then

(1) 2g + 2 � #W � g(g

2

� 1);

(2) #W = 2g + 2 if and only if X is hyperellipti;

(3) #W = g(g

2

� 1) if and only if !

P

= 1 for any P 2 X :
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Proof. We have g(g

2

� 1) = deg(R

K

) =

P

P

w

P

� #Wg(g� 1)=2 by Corollary 1.26(1).

This proves (1). (2) follows from Corollary 1.26(2)(3) and Example 2.28. (3) is trivial.

Lemma 2.30. Let (~n

i

: i 2 N) be the Weierstrass semigroup at non-Weierstrass

points. Then n

i

(P ) � ~n

i

for eah P and eah i:

Proof. Let i be the minimum positive integer suh that n

i

(P ) > ~n

i

. Then i � 2 and

n

i�1

(P ) � ~n

i�1

so that n

i�1

(P ) � ~n

i�1

< ~n

i

< n

i

(P ). Now we have ~n

i

= `

~n

i

�i+1

�

~

`

~n

i

�i+1

by Corollary 2.10(1), where

~

`

1

<

~

`

2

< : : : are the gaps at non-Weierstrass

points. Sine `

~n

i

�i+1

� ~n

i

+ 1 we have a ontradition and the result follows.

Lemma 2.31. The largest K-order �

g�1

is less than deg(K) = 2g � 2:

Proof. (Garia [27, p. 235℄) Suppose �

g�1

= 2g � 2. Then for P 62 W, (2g � 2)P is a

anonial divisor. In partiular, (2g�2)P � (2g�2)P

0

for P; P

0

62 W (�). We onsider

the isogeny i : D 7! (2g � 2)D on the Jaobian variety J assoiated to X , and the

natural map X ! J , P 7! [P � P

0

℄. Note that [P � P

0

℄ = [Q� P

0

℄ if and only P = Q

sine g > 0. Then (�) says that there are in�nitely points in J belonging to the kernel

of i, a ontradition sine this kernel is �nite [77, p. 62℄.

Example 2.32. (The non-lassial urve of genus 3) It is easy to see that the only

semigroups of genus two are f0; 3; 4; 5; : : :g and f0; 2; 4; 5; : : :g. Sine a urve of genus

two must have at least one Weierstrass points, then suh a urve is hyperellipti and

hene lassial.

Now let X be a urve of genus three. We shall show a result due to Komiya [66℄: X

is non-lassial if and only if p = 3 and X is F-isomorphi to the non-singular plane

urve of equation y

3

+ y = x

4

. If X is non-lassial, then 0 < p < 2g � 2 = 4 by

Corollary 2.23 so that p = 2; 3. We have �

0

= 0; �

1

= 1 and �

2

= 3. Then p = 3 by

the 2-adi riterion. We have P 2 W , j

K

0

(P ) = 0; j

K

1

(P ) = 1; j

K

2

(P ) = 4, H(P ) =

f0; 3; 4; 6; : : :g; then !

P

= 1 and X has deg(R

K

) = 28 Weierstrass points (note that a

lassial urve of genus 3 has 3� (3

2

� 1) = 24 Weierstrass points ounted with their

weights). Let P

0

2 W; x; y 2 F(X ) suh that div

1

(x) = 3P

0

and div

1

(y) = 4P

0

.

We see that 4P

0

is a anonial divisor and so K = j4P

0

j. We also see that x is a

separating variable of F(X )jF so that W

0;1;2

1;x;y;x

= D

2

x

y = 0 as �

2

> 2. Now the eleven

funtions 1; x; y; x

2

; xy; y

2

; x

3

; x

2

y; xy

2

; x

4

; y

3

belong to L(12P

0

) whih has dimension

10. Therefore there is a non-trivial relation over F of type

a

00

+ a

10

x+ a

01

y+ a

20

x

2

+ a

11

xy+ a

02

y

2

+ a

30

x

3

+ a

21

x

2

y+ a

12

xy

2

+ a

40

x

4

+ a

03

y

3

= 0 :

Sine v

P

(x

i

y

j

) < 12 for 3i + 4j < 12 we must have a

40

6= 0 and a

03

6= 0. In partiular

we an assume a

40

= 1. Next we apply D

2

x

to the equation above; using the fat that

D

2

x

y = 0 we �nd:

a

20

+ a

11

D

x

y + a

02

(D

x

y)

2

+ a

21

(y + 2xD

x

y) + a

12

(2xyD

x

y + x(D

x

y)

2

) = 0 :
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Let v

P

(D

x

y) = a. Then the valuation at P of the funtions

1; D

x

y; (D

x

y)

2

; y; xD

x

y; xyD

x

y; x(D

x

y)

2

are respetively

0; a; 2a;�4;�3 + a;�7 + a;�3 + 2a ;

we see that they are pairwise di�erent and hene a

20

= a

11

= a

02

= a

21

= a

12

= 0; i.e.,

we have

a

00

+ a

10

x + a

01

y + a

30

x

3

+ x

4

+ a

03

y

3

= 0 :

By means of x 7! (x� a

30

) and y 7! �(a

03

)

1=3

y we an assume a

30

= 0 and a

03

= �1.

Now as [F(X ) : F(x)℄ = 3 the above equation is irreduible and hene a

01

6= 0 beause

x is a separating variable. Then by means of x 7! a

3=8

01

x and y 7! �a

1=2

01

y we an assume

a

01

= 1. So we have an equation of type

y

3

+ y = x

4

+ a

10

x + a

00

:

Finally let P

1

be another Weierstrass point. Then 4P

1

� 4P

0

as both divisor are

anonial. So we an hoose y suh that div(y) = 4P

1

� 4P

0

. Then 4 = v

P

1

(y) =

v

P

1

(x

4

+ a

10

x+ a

00

) implies a

00

= a

10

= 0.

Conversely if X is de�nes by y

3

+ y = x

4

, we have that X is a non-singular plane

urve of genus three. Moreover there is just one point P

1

over x = 1 and H(P

1

) =

f0; 3; 4; 6; : : :g. This implies that x is a separating variable and we have D

2

x

y = 0; i.e.,

X is non-lassial.

Further examples of non-lassial linear series an be found in Neeman [80℄. Finally

we mention that Weierstrass Point Theory on shemes was onsidered by Laksov and

Thorup [72℄; see the introdution there for further referenes.

3. Frobenius orders

Let X be a urve de�ned over F

q

, a �nite �eld with q elements; i.e., X is a urve over

the algebrai losure

�

F

q

of F

q

, equipped with the ation of the Frobenius morphism �

q

relative to F

q

. Let D

�

=

P(D

0

) � jEj be a base-point-free g

r

d

on X . Assume that D is

also de�ned over F

q

; i.e., for any D =

P

P

n

P

P 2 D, (�

q

)

�

(D) :=

P

P

n

P

�

q

(P ) = D.

Let � = (f

0

: : : : : f

r

) be a morphism over F

q

assoiated to D; i.e., its oordinates

belong to F

q

(X ) and they form a F

q

-base of D

0

.

The starting point of St�ohr-Voloh's approah to the Hasse-Weil bound is to look at

points P of X suh that �(�

q

(P )) belongs to the osulating hyperplane L

f

0

;::: ;f

r

r�1

(P ) at
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P . Then Corollary 2.27 leads to the onsideration of rational funtions of type

V

`

0

;::: ;`

r�1

f

0

;::: ;f

r

;x

:= det

0

B

B

B

�

f

0

Æ �

q

: : : f

r

Æ �

q

D

`

0

x

f

0

: : : D

`

0

x

f

r

.

.

.

.

.

.

.

.

.

D

`

r�1

x

f

0

: : : D

`

r�1

x

f

r

1

C

C

C

A

;

where x is a separating variable of

�

F

q

(X )j

�

F

q

. We set

B(f

0

; : : : ; f

r

; x) := f(m

0

; : : : ; m

r�1

) 2 N

r

0

: m

0

< : : : < m

r�1

; V

m

0

;::: ;m

r�1

f

0

;::: ;f

r

;x

6= 0g :

Lemma 3.1. Let (m

0

; : : : ; m

r

) 2 A(f

0

; : : : ; f

r

; x) with m

0

= 0. Then there exists

0 < I � r suh that (m

0

; : : : ; m

I�1

; m

I+1

; : : : ; m

r

) 2 B(f

0

; : : : ; f

r

; x).

Proof. Let I be the smallest integer suh that � Æ �

q

:= (f

0

Æ �

q

; : : : ; f

r

Æ �

q

) is a

F(X )-linear ombination of D

m

0

x

�; : : : ; D

m

I

x

�. Sine f

0

; : : : ; f

r

is a F

q

-base of D

0

, then

I > 0 and the result follows.

Sine the D-order sequene (�

0

; : : : ; �

r

) belongs to A(f

0

; : : : ; f

r

; x) (f. Proposition

2.11), B(f

0

; : : : ; f

r

; x) 6= ;. Let

V := (�

0

; : : : ; �

r�1

)

be the minimum (in the lexiographi order) of B(f

0

; : : : ; f

r

; x).

Lemma 3.2. (1) �

0

= 0;

(2) For i = 1; : : : ; r � 1;

�

i

= minfs > �

i�1

: � Æ �

q

; D

�

0

x

�; : : : ; D

�

i�1

x

�;D

s

x

� are

�

F

q

(X )-l.ig ;

(3) Let (m

0

; : : : ; m

r�1

) 2 B(f

0

; : : : ; f

r

; x). Then �

i

� m

i

for eah i:

Proof. Similar to the proofs of Lemma 2.9 and Corollary 2.10(1).

Corollary 3.3. There exists 0 < I � r suh that

�

i

=

(

�

i

if i < I;

�

i+1

if i � I:

Proof. From Proposition 2.11(3) and Lemma 3.1, there exists 0 < I � r suh

that (�

0

; : : : ; �

I�1

; �

I+1

; : : : ; �

r

) 2 B(f

0

; : : : ; f

r

; x). Hene from Lemma 3.2, �

i

� �

i

for i < I and �

i

� �

i+1

for i � I. Sine D

�

0

x

�; : : : ; D

�

I�1

x

� are F(X )-l.i, from

Lemma 2.9(3) follows that �

i

� �

i

for i = 0; : : : ; I � 1; thus �

i

= �

i

for i =

0; : : : ; I � 1. The same argument yields �

I

� �

I

; in fat, �

I

< �

I

by the de�ni-

tion of I in the proof of Lemma 3.1. Suppose that �

I

< �

I+1

. Then by Lemma

2.9(3) the vetors D

�

0

x

�; : : : ; D

�

I�1

x

�;D

�

I

x

�;D

�

I

x

� would be linearly dependent over

F(X ) so that D

�

I

2 hD

�

0

x

�; : : : ; D

�

I�1

x

�;D

�

I

x

�i. This is a ontradition beause

� Æ �

q

; D

�

0

x

�; : : : ; D

�

I�1

x

�;D

�

I

x

� are

�

F

q

(X )-linearly independent. A similar argument

shows that �

i

= �

i+1

if i > I.
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We remark the following omputation regarding hange of basis. Let g

i

=

P

a

ij

f

j

with

(a

ij

) 2M

r+1

(

�

F

q

). Then

det

0

B

B

B

�

~g

0

: : : ~g

r

D

`

0

x

g

0

: : : D

`

0

x

g

r

.

.

.

.

.

.

.

.

.

D

`

r�1

x

g

0

: : : D

`

r�1

x

g

r

1

C

C

C

A

= det(a

ij

)V

`

0

;::: ;`

r�1

f

0

;::: ;f

r

;x

;(3.1)

where ~g

j

=

P

i

a

ij

f

i

Æ �

q

. The following is analogous to Proposition 2.11.

Proposition 3.4. (1) If g

i

=

P

j

a

ij

f

j

with (a

ij

) 2M

r+1

(F

q

), then

V

�

0

;::: ;�

r�1

g

0

;::: ;g

r

;x

= det((a

ij

))V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;x

;

(2) If f 2

�

F

q

(X ), then

V

�

0

;::: ;�

r�1

ff

0

;::: ;ff

r

;x

= f

q+r

V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;x

;

(3) Let y be any separating variable of

�

F

q

(X )j

�

F

q

. Then

V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;y

= (D

1

y

x)

P

i

�

i

V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;x

:

Proof. (1) follows from (3.1) taking into onsideration that a

q

ij

= a

ij

. (2) and (3) follow

as in Proposition 2.11.

Now we show that V just depend on D and q. Let ff

0

0

; : : : ; f

0

r

g � F

q

(X be another

F

q

-base of D

0

and y another separating variable of

�

F

q

(X )j

�

F

q

. From part (1) above,

V is the minimum for B(f

0

0

; : : : ; f

0

r

; x) and from part (3) it is also the minimum for

B(f

0

0

; : : : ; f

0

r

; y).

De�nition. V = (�

0

; : : : ; �

r�1

) is alled the F

q

-Frobenius orders of D. If �

i

= i for

eah i, D is alled F

q

-Frobenius lassial.

Now let P 2 X . We have that v

P

(E) = �min(v

P

(f

0

); : : : ; v

P

(f

r

)) beause D is base-

point-free, f. Lemma 1.4. In addition, the rational funtions g

i

:= t

v

P

(E)

f

i

are regular

at P for eah i, where t is a loal parameter at P . Let ff

0

0

; : : : ; f

0

r

g and y be as above.

Let f

0

i

=

P

j

a

ij

f

j

, a

ij

2 F

q

. Applying Proposition 3.4 we have

V

�

0

;::: ;�

r�1

f

0

0

;::: ;f

0

r

;y

= det(a

ij

)V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;y

= det(a

ij

)(D

1

y

t)

P

i

�

i

V

�

0

;::: ;�

r�1

f

0

;::: ;f

r

;t

= det(a

ij

)(D

1

y

t)

P

i

�

i

t

�(q+r)v

P

(E)

V

�

0

;::: ;�

r�1

g

0

;::: ;g

r

;t

;

i.e.,

V

�

0

;::: ;�

r�1

f

0

0

;::: ;f

0

r

;y

(

dy

dt

)

P

i

�

i

t

(q+r)v

P

(E)

= det(a

ij

)V

�

0

;::: ;�

r�1

g

0

;::: ;g

r

;t

:(3.2)
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Therefore the divisor

S = S

D;q

:= div(V

�

0

;::: ;�

r�1

f

0

0

;::: ;f

0

r

;y

) + (

r�1

X

i=0

�

i

)div(dy) + (q + r)E ;

just depend on D and q and loally at P is given by (3.2).

De�nition. S is alled the F

q

-Frobenius divisor of D.

The divisor S is e�etive beause, as we already notied, eah g

`

is regular at P . Note

that

deg(S) = (

r�1

X

i=0

�

i

)(2g � 2) + (q + r)d :

Next we study v

P

(S) by means of (3.2); i.e. we study

v

P

(S) = v

P

(V

�

0

;::: ;�

r�1

g

0

;::: ;g

r

;t

) :

We onsider two ases aording as P is F

q

-rational or not.

Case I: P 2 X (F

q

). Here we an assume that f

0

; : : : ; f

r

is a (D; P )-base; i.e, v

P

(g

`

) =

j

`

for ` = 0; : : : ; r. By Proposition 3.4(2)

v

P

(S) = v

P

(g

q+r

0

V

�

0

;::: ;�

r�1

h

0

;::: ;h

r

;t

) = v

P

(V

�

0

;::: ;�

r�1

h

0

;::: ;h

r

;t

) ;

where h

`

:= g

`

=g

0

. Note that h

0

= 1 and that v

p

(h

`

) = j

`

. In partiular,

V

�

0

;::: ;�

r�1

h

0

;::: ;h

r�1

;t

= det

0

B

B

B

�

h

1

� h

q

1

: : : h

r

� h

q

r

D

�

1

t

h

1

: : : D

�

1

t

h

r

.

.

.

.

.

.

.

.

.

D

�

r�1

t

h

1

: : : D

�

r�1

t

h

r

1

C

C

C

A

;(3.3)

and we an made similar omputations as in the proof of Lemma 2.7: Expand h

`

at

P , h

`

=

P

1

s=j

`



`

s

t

s

, set C :=

Q

r

`=1



`

j

`

; then

V

�

0

;::: ;�

r�1

h

0

;::: ;h

r

;t

= Cdet(

�

j

`

�

i

�

)t

P

r�1

i=i

(j

i

��

i�1

)

+ : : : ;(3.4)

where i = 0; : : : ; r�1; ` = 1; : : : ; r in the matrix above involving the binomial operator.

Now v

P

(S) an be estimated via this loal expansion.

Case II: P 62 X (F

q

). Let h

0

; : : : ; h

r

be a (D; P )-base. Then there exists (a

ij

) 2

M

r+1

(

�

F

q

) suh that h

0

i

:= t

v

P

(E)

h

i

=

P

j

a

ij

g

j

. Then from (3.1)

v

P

(S) = v

P

(

r

X

i=0

(�1)

i

~

h

0

i

d

i

) ;

where the d

i

's are the determinants obtained by Cramer's rule. Clearly v

P

(

~

h

0

i

) � 0 and

so

v

P

(S) � minfv

P

(d

0

); : : : ; v

P

(d

r

)g :
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One again we an expand eah d

i

at P as in the proof of Lemma 2.7: Let M :=

(

�

j

`

�

k

�

)

k=0;::: ;r�1;`=0;::: ;r

and let M

i

be the matrix obtained from M by deleting the ith

olumn. Then

d

i

= C

i

det(M

i

)t

P

r

k=0

j

k

�j

i

�

P

r�1

k=0

�

k

+ : : : ;(3.5)

where C

i

2

�

F

�

q

. Thus (3.4) and (3.5) imply the following.

Proposition 3.5. (1) For P 2 X (F

q

); v

P

(S) �

P

r

i=1

(j

i

(P )� �

i�1

); equality holds if

and only if det(

�

j

`

(P )

�

i

�

)

i=0;::: ;r�1;`=1;::: ;r

6� 0 (mod p);

(2) For P 62 X (F

q

); v

P

(S) �

P

r�1

i=1

(j

i

(P )� �

i

); if det(

�

j

`

(P )

�

i

�

)

i;`=0;::: ;r�1

� 0 (mod p);

then the stri inequality holds:

Proposition 3.6. Let � be a F

q

-Frobenius order suh that � < q: Let � an integer

suh that

�

�

�

�

6� 0 (mod p): Then � is also an F

q

-Frobenius order. In partiular, if

�

i

< p then (�

0

; : : : ; �

i

) = (0; : : : ; i):

Proof. Let � = �

i

. For j � i, we have D

�

j

t

(f

q

) = 0 by Remark 2.5. So �

0

; : : : ; �

i

are

the �rst i + 1 orders of the morphism (h

1

� h

q

1

: : : : : h

r

� h

q

), where h

1

; : : : ; h

r

are as

in (3.3). Then the resul follows from the p-adi riterion (Lemma 2.21).

Next we study relations between the F

q

-Frobenius orders and (D; P )-orders at F

q

-

rational points P .

Proposition 3.7. Let P 2 X (F

q

) and m

0

< : : : < m

r�1

be a sequene of non-negative

integers suh that det(

�

j

`

(P )�j

1

(P )

m

i

�

)

i=0;::: ;r�1;`=1;::: ;r

6� 0 (mod p): Then �

i

� m

i

for eah

i:

Proof. Set j

i

= j

i

(P ) and let � := (1 : x

j

2

�j

1

: : : : : x

j

r

�j

1

), where x is a separating

variable of

�

F

q

(X )j

�

F

q

. Let �

0

< : : : < �

r�1

be the orders of �. Then �

i

� m

i

for eah i

by (2.6), hypothesis and Corollary 2.10(1). Then, as � = (x

j

1

: : : : : x

j

r

), det((

�

j

i

�

`

�

) 6� 0

(mod p), and the result follows from (3.4).

Remark 3.8. From the proof above follows that the best eletion of the m

i

's in Propo-

sition 3.7 are the orders of the morphism � = (x

j

1

(P )

: : : : : x

j

r

(P )

).

Corollary 3.9. Let P 2 X (F

q

).

(1) �

i

� j

i+1

(P )� j

1

(P ) for i = 0; : : : ; r � 1; and so v

P

(S) � rj

1

(P );

(2) Suppose a :=

Q

1�i<`�r

(j

`

(P ) � j

i

(P ))=(` � i) 6� 0 (mod p): Then D is F

q

-

Frobenius lassial and v

P

(S) = r +

P

r

i=1

(j

i

(P )� i):

Proof. Note that a = det(

�

j

`

(P )

i

�

)

i=0;::: ;r�1;`=1;::: ;r

. Then (1) (resp. (2)) follows from

Proposition 3.7 with m

i

= j

i

(P )� j

1

(P ) (resp. from the proof of Proposition 3.7 with

m

i

= i, and Proposition 3.5(1)).
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Remark 3.10. The riterion of Corollary 3.9(2) is satis�ed if j

`

(P )�j

i

(P ) 6� 0 (mod p)

for 1 � i < ` � r. In partiular, the riterion is satis�ed if p � j

r

(P ).

Corollary 3.11. (1) If P 2 X (F

q

) and det(

�

j

`

(P )�j

1

(P )

�

j

�

)

j=0;::: ;r�1;`=1;::: ;r

6� 0

(mod p); then �

i

= �

i

for i = 0; : : : ; r � 1;

(2) If D is not F

q

-Frobenius lassial; then j

r

(P ) > r for any P 2 X (F

q

);

(3) If (�

0

; : : : ; �

r�1

) 6= (�

0

; : : : ; �

r�1

); then X (F

q

) � Supp(R):

Proof. (1) follows from Proposition 3.7 with m

i

= �

i

.

(2) If there exists P 2 X (F

q

) suh that j

r

(P ) = r, then �

i

= i for eah i by Corollary

3.9(1).

(3) Suppose that there exists P 2 X (F

q

) n Supp(R). Then j

i

(P ) = �

i

for eah i and

hene �

i

� �

i+1

� �

1

by Corollary 3.9(1); i.e. �

i

= �

i

for eah i, a ontradition.

Remark 3.12. If we hoose i suh that X (F

q

i
) 6� Supp(R), then from Corollary 3.11(3)

we see that the F

q

i

-order sequene of D oinide with (�

0

; : : : ; �

r�1

).

Theorem 3.13. Let X be a urve de�ned over F

q

that admits a base-point-free linear

series D = g

r

d

de�ned over F

q

. Let �

0

< : : : < �

r�1

be the F

q

-Frobenius orders of D.

Then

#X (F

q

) �

P

r�1

i=0

�

i

(2g � 2) + (q + r)d

r

:

Proof. Let S be the F

q

-Frobenius divisor of D. Then v

P

(S) � r for eah P 2 X (F

q

)

by Corollary 3.9(1), and so #X (F

q

) � deg(S)=r.

Example 3.14. (The Hermitian urve over F

9

) We are looking for a urve X of genus

3 de�ned over F

q

suh that #X (F

q

) > 2q + 8. Let �

0

= 0 < �

1

= 1 < �

2

(resp.

�

0

= 0 < �

1

) be the anonial orders (resp. anonial F

q

-orders).

Claim. X is non-lassial; i.e., �

2

> 2:

Indeed, if �

2

= 2, then �

1

� 2 by Corollary 3.3 and Theorem 3.13 gives #X (F

q

) � 2q+8.

Therefore from Example 2.32 we onlude that q is a power of three, �

2

= 3, and that

X is given by y

3

+ a

01

y = x

4

, with a

01

2

�

F

q

(notie that the hange of oordinates

involving a

01

in Example 2.32 is not de�ned over F

q

). Moreover, the proof above also

shows that �

1

> 1; i.e �

1

= 3.

Claim. q = 9 and X is F

9

-isomorphism to the Hermitian urve y

3

+y = x

4

: In addition,

X (F

9

) =W (so that #X (F

9

) = 28 > 2� 9 + 8):

Let x and y be as in Example 2.32. Then V

0;1

1;x;y;x

= 0 or equivalently y � y

q

=

(x � x

q

)D

x

y (�). Then taking valuation at P we have �4q = �3q � 9 so that q = 9.

Moreover from (�) and the equation de�ning X we have (1� a

3

01

)y

3

+ (a

10

� 1)y

9

= 0
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so that a

01

= 1. That X (F

9

) � W follows from Corollary 3.11(3) and equality holds

sine #X (F

9

) = 28 (see Set. 4.2).

Finally, observe that #X (F

9

) attains the bound in Theorem 3.13.

Example 3.15. (The Hermitian urve, I) Let ` be a power of a prime and H the plane

urve of equation

Y

`

Z + Y Z

`

= X

`+1

:(3.6)

It is easy to see that H is non-singular so that it has genus g = `(`� 1)=2 by Remark

1.8.

Claim. #H(F

`

2

) = `

3

+ 1:

Indeed, we have H \ (Z = 0) = f(0 : 1 : 0)g; in Z 6= 0 we look for points (x : y : 1)

suh that y

`

+ y = x

`+1

. It follows that x 2 F

`

2

) y 2 F

`

2

and sine Y

`

+ Y = x

`+1

has ` di�erent solutions for Y we onlude that there are `

3

suh (x : y : 1) points.

Now over x := X=Z =1 there is just one point say P

1

suh that H(P

1

) � h`; `+ 1i.

Sine #(N n h`; ` + 1i) = `(` � 1)=2 = g, H(P

1

) = h`; ` + 1i. Next we onsider

D := j(`+ 1)P

1

j whih is a g

2

`+1

base-point-free on H. Sine L((`+ 1)P

1

) = h1; x; yi,

where y

`

+ y = x

`+1

we see that D is just the linear series ut out by lines on H. Let

�

0

= 0; �

1

= 1; �

2

(resp. �

0

= 0; �

1

2 f1; �

2

g) denote the D-orders (resp. F

`

2

-Frobenius

orders) of H.

Claim. (1) �

2

= �

1

= `;

(2) j

2

(P ) = `+ 1 if P 2 H(F

`

2

); j

2

(P ) = ` otherwise:

In fat, 2#H(F

`

2

) � �

1

(2g � 2) + (`

2

+ 2)(` + 1) by Theorem 3.13 so that �

1

� `.

Then ` � �

1

= �

2

� ` + 1 and so ` = �

1

= �

2

by Lemma 2.21 (p-adi riterion). That

j

2

(P ) = ` + 1 whenever P 2 H(F

`

2

) follows from Corollary 3.9(1) and part (1). In

partiular for suh points P , v

P

(R) = 1. Now we have deg(R

D

) = `

3

+ 1 and therefore

j

2

(P ) = ` for P 6 X (F

`

2

).

We an write a diret proof of part (2) as follows. Let a; b 2

�

F

`

suh that b

`

+ b = a

`+1

.

It is easy to see that (x � a) is a loal parameter at (a : b : 1) 2 H so that (y � b) =

a

`

(x� a) + (a� a

`

)(x� a)

`

+ (x� a)

`+1

+ : : : . Let

f := (y � b)� a

`

(x� a) :

Then

div(f) = `(a : b : 1) + (a

`

2

: b

`

2

: 1)� (`+ 1)P

1

and part (2) follows.

Further arithmetial and geometrial properties of Frobenius orders an be read in

Garia-Homma [29℄. From that paper we mention the following.
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Lemma 3.16. ([29, Cor. 3℄) Let V = E n f�

I

g and suppose that I < r. Then har(F

q

)

divides �

I+1

.

4. Optimal urves

Let X be a urve de�ned over F

q

of genus g. To study quantitative results on the

number of F

q

-rational points of X it is onvenient to form a formal power series, the

so-alled Zeta Funtion of X relative to F

q

:

Z

X ;q

(t) := exp(

1

X

i=1

#X (F

q

i

)

i

t

i

) :

By the Riemann-Roh theorem there exists a polynomial P (t) of degree 2g with integer

oeÆients, suh that (see e.g. [78, Thm. 3.2℄, [96, Thm. V.1.15℄)

Z

X ;q

(t) =

P (t)

(1� t)(1� qt)

:(4.1)

Remark 4.1. ([96, Thm. V.1.15℄)

(i) Let P (t) =

P

2g

i=0

a

i

t

i

. Then a

0

= 1, a

2g

= q, and a

2g�i

= q

g�i

a

i

for i = 0; : : : ; g.

(ii) Set

h(t) = h

X ;q

(t) := t

2g

P (t

�1

) ;

then the 2g roots (ounted with multipliity) �

1

; : : : ; �

2g

of h(t) an be arranged

in suh a way that �

j

�

g+j

= q for j = 1; : : : ; g. Note that a

1

= �

P

2g

j=1

�

j

.

Now (4.1) implies #X (F

q

) = q + 1 + a

1

and hene that

#X (F

q

) = q + 1�

2g

X

j=1

�

j

;

by Remark 4.1(ii). Furthermore [96, Cor. V.1.16℄,

#X (F

q

i

) = q

i

+ 1�

2g

X

j=1

�

i

j

:

By analogy with the Riemann hypothesis E. Artin onjetured that the absolute value

of eah �

i

equals

p

q. This result was showed by Hasse for g = 1 and for A. Weil for

arbitrary g [108℄ (see also [99, Cor. 2.14℄, [78℄, [96, Thm. V.2.3℄). In partiular, we

obtain the Hasse-Weil bound on the number of F

q

-rational points of X , namely

j#X (F

q

)� (q + 1)j � 2

p

qg :

If X attains the upper bound above, it is alled F

q

-maximal; in this ase q must be a

square.
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Lemma 4.2. Let q = `

2

. The following statements are equivalent:

(1) X is F

`

2

-maximal;

(2) �

i

= �` for i = 1; : : : ; 2g;

(3) h

X ;`

2

(t) = (t+ `)

2g

:

If any of these onditions hold and X is de�ned over F

`

, then

#X (F

`

i
) =

8

>

>

<

>

>

:

`

i

+ 1 if i � 1 (mod 2),

`

i

+ 1 + 2

p

`

i

g if i � 2 (mod 4),

`

i

+ 1� 2

p

`

i

g if i � 0 (mod 4).

Proof. X is F

`

2

-maximal if and only if

P

2g

i=1

�

i

=

P

g

i=1

(�

i

+ ��

i

) = �2`g. By the

Riemann-hypothesis, this is the ase if and only if �

i

= �` for eah i and the equiv-

alenes follow. Now we show the formulae on the number of rational points. Let

#X (F

`

) = ` + 1 �

P

2g

j=1

�

j

. Then �

2

j

= �` for eah j so that �

i

j

+

�

�

i

j

= 0 for i � 1

(mod 2); i.e., #X (F

`

i

) = `

i

+ 1. If i � 2 (mod 4), �

i

j

= �

p

`

i

and follows the formula

for suh i's. Finally, if i � 0 (mod 4), �

j

=

p

`

i

and the proof is omplete.

Corollary 4.3. (Ihara [58℄) If X is F

`

2

-maximal, then g � `(`� 1)=2:

Proof. We have X (F

`

2

) � X (F

`

4

). Then from the lemma above, `

2

+ 1 + 2`g �

`

4

+ 1� 2`

2

g; and the result follows.

Example 4.4. (The Hermitian urve, II) The urve H in Example 3.15 has genus

`(` � 1)=2 and `

3

+ 1 F

`

2

-rational points. Hene it is F

`

2

-maximal and attains the

bound in Corollary 4.3.

This urve is alled the Hermitian urve and it is the most fany example of a maximal

urve. By Lahaud [70, Prop. 6℄ any urve F

`

2

-overed by a F

`

2

-maximal urve is

also F

`

2

-maximal. Then one obtains further examples of F

`

2

-maximal urves by e.g.

onsidering suitable quotient urves H=G, whit G a subgroup of Aut

F

`

2

(H); see Garia-

Stihtenoth-Xing [31℄, and [14℄, [15℄. As a matter of fat, all the known examples of

F

`

2

-maximal urves arise in this way.

Problem 4.5. Is any F

`

2

-maximal urve F

`

2

-overed by H?

Further properties of maximal urves an be found in [24℄, [26℄, [67℄, [68℄ and the

referenes therein.

If q is not a square, the Hasse-Weil bound was improved by Serre [93, Thm. 1℄ as

follows (see also [96, Thm. V.3.1℄)

j#X (F

q

)� (q + 1)j � b2

p

qg :

Lemma 4.6. The following statements are equivalent:
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(1) X is maximal with respet to Serre's bound;

(2) �

i

+ ��

i

= �b2

p

q for i = 1; : : : g;

(3) h

X ;q

(t) = (t

2

+ b2

p

qt+ q)

g

:

Proof. X is maximal with respet to Serre's bound if and only if

P

g

i=1

(� + ��

i

) =

�b2

p

qg if and only if �

i

+ ��

i

= �b2

p

q. Now, as we an assume �

i

��

i

= q by Remark

4.1(ii) so that h

X ;q

(t) =

Q

g

i=1

(t� �

i

)(t� ��

i

), the result follows.

Corollary 4.7. We have g � (q

2

� q)=(b2

p

q

2

+ b2

p

q� 2q) whenever X is maximal

with respet to Serre's bound.

Proof. As in the proof of Corollary 4.3 we use X (F

q

) � X (F

q

2

). We have �

i

+ ��

i

=

�b2

p

q and �

i

��

i

= q so that �

2

i

+ ��

2

i

= b2

p

q

2

� 2q; hene

#X (F

q

) = q + 1 + b2

p

q � #X (F

q

2

) = q

2

+ 1� (b2

p

q

2

� 2q)g ;

and the result follows.

Remark 4.8. The proofs of the following statements are similar to the proofs of Lemmas

4.2 and 4.6.

(i) A urve X de�ned over F

`

2

is F

`

2

-minimal; i.e., #X (F

`

2

) = `

2

+ 1 � 2`g if and

only if h

X ;`

2

(t) = (t� `)

2g

.

(ii) A urve X de�ned over F

q

is minimal with respet to Serre's bound; i.e.,

#X (F

q

) = q + 1� b2

p

qg if and only if h

X ;q

(t) = (t

2

� b2

p

qt + q)

g

.

Example 4.9. (The Klein quarti) Let X be the plane urve over F de�ned by

X

3

Y + Y

3

Z + Z

3

X = 0 :

It is easy to see that X is non-singular if and only if har(F) 6= 7; in this ase X

has genus 3. This urve was onsidered by many authors sine the time of Klein who

showed that Aut(X ) reahes the Hurwitz bound for the number of automorphism of

urves of genus 3 whenever har(F) = 0. A onnetion with the Fano plane was notied

by Pellikaan [84℄.

Claim. X de�ned over F

8

reahs the Serre's bound; i.e; #X (F

8

) = 1+9+b2

p

83 = 24:

To see this we �rst notie that (1 : 0 : 0); (0 : 1 : 0); (0 : 0 : 1) are F

8

-rational points

(this is true for any �eld where X is de�ned). Now (f. [84, p. 10℄) we look for

(x : y : 1) 2 X suh that x 6= 0; y 6= 0 and suh that x

7

= 1. We have

0 = x

3

y ++y

3

+ x = x

3

y + x

7

y

3

+ x = x(x

2

y + (x

2

y)

3

+ 1) ;

i.e., t

3

+ t+ 1 = 0 (�) with t = x

2

y (�

1

). Conversely, it is easy to see that equation (�)

is irreduible over F

2

and hene its three roots are in F

8

. Then one x 2 F

�

8

we have

y 2 F

�

8

by (�

1

). Therefore we have 21 suh points (x : y : 1) and the laim follows.

Then h

X ;8

(t) = (t

2

+ 5t+ 8)

3

by Lemma 4.6.
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Claim. h

X ;2

(t) = t

6

+ 5t

3

+ 8; in partiular #X (F

2

) = 3:

Let h

X ;2

(t) =

Q

3

i=1

(t��

i

)(t�

�

�

i

). Then �

3

i

+

�

�

3

i

= �5 (f. Lemma 4.6) so that �

3

i

and

�

�

3

i

are roots of T

2

+5T +8 = 0; then h

X ;2

(t) = t

6

+5t

3

+8 so that #X (F

2

) = 2+1�0 = 3.

Finally, we mention that X is F

`

2

-maximal if and only if either ` = p

6v+1

and p � 6

(mod 7), or ` = p

6v+3

and p � 3; 5; 6 (mod 7), or ` = p

6v+5

and p � 6 (mod 7); see [2,

Cor. 3.7(2)℄.

Remark 4.10. (Lewittes [74, Thm. 1(b)℄) Let P 2 X (F

q

) and f : X ! P

1

(

�

F

q

) be the

F

q

-rational funtion on X suh that div

1

(f) = n

1

(P )P . Then X (F

q

) � f

�1

(P

1

(F

q

)) =

fP

1

g [ f

�1

(F

q

) and hene

#X (F

q

) � 1 + qn

1

(P ) :

Now from Corollaries 4.3 and 4.7 we see that neither the Hasse-Weil bound nor Serre's

bound is e�etive to estimate #X (F

q

) whenever g is large with respet to q. So in

general one studies the number

N

q

(g) := maxf#Y(F

q

) : Y urve of genus g de�ned over F

q

g :

For instane N

q

(0) = q + 1, and Example 4.9 shows that N

8

(3) = 24. The study of

the atual value of N

q

(g) was initiated by Serre [93℄ who omputed N

q

(1) and N

q

(2).

Further properties were proved by Serre himself [94℄, Lauter [73℄, and Kresh-Wetherell-

Zieve [69℄. Tables for N

q

(g) with q and g small an be found in van der Geer-van der

Vlugt [34℄.

De�nition. A urve X of genus g and de�ned over F

q

is alled optimal (with respet

to g and q) if #X (F

q

) = N

q

(g).

If q = `

2

and X is F

`

2

-maximal then X is ertainly optimal. We already notied

(Example 4.4) that the Hermitian urve H is F

`

2

-maximal whose genus attains the

bound in Corollary 4.3. Indeed, this property haraterizes Hermitian urves:

Theorem 4.11. (R�uk-Stihtenoth [87℄) A F

`

2

-maximal urve X has genus `(`�1)=2

if and only if X is F

`

2

-isomorphi to the Hermitian urve of equation (3.6).

This result follows from Theorem 4.24.

Next we disuss optimal urves for

p

q 62 N. Besides some urves of small genus (see

above), the only known examples of optimal urves are the Deligne-Lusztig urves S

and R assoiated to the Suzuki group Sz(q), q = 2

2s+1

, s � 1, and to the Ree group

R(q), q = 3

2s+1

, s � 1, respetively [17, Set. 11℄. As a matter of terminology, S (resp.

R) will be all the Suzuki urve (resp. the Ree urve). After the work of Hansen-

Stihtenoth [43℄, Hansen [41℄, Pedersen [83℄, Hansen-Pedersen [42℄, the urves S and

R an be haraterized as follows.
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Theorem 4.12. The urves S and R are the unique urves (up to F

q

-isomorphi) X

de�ned over F

q

suh that the following three onditions hold:

(1) #X (F

q

) = q

2

+ 1 (resp. #X (F

q

) = q

3

+ 1);

(2) X has genus q

0

(q � 1) (resp. 3q

0

(q � 1)(q + q

0

+ 1)=2); where q

0

:= 2

s

(resp. 3

s

);

(3) Aut

F

q

(X ) = Sz(q) (resp. Aut

F

q

(X ) = R(q)):

Moreover, the Suzuki urve S (resp. the Ree urve R) is the non-singular model of

Y

q

Z

q

0

� Y Z

q+q

0

�1

= X

q

0

(X

q

�XZ

q�1

) ;

(resp.

(

Y

q

W

q

0

� YW

q+q

0

�1

= X

q

0

(X

q

�XW

q�1

)

Z

q

W

2q

0

� YW

q+2q

0

�1

= X

2q

0

(x

q

�XW

q�1

)) :

In Set. 4.3 we prove a stronger version of this theorem for the Suzuki urve.

Lemma 4.13. Let X be a urve de�ned over F

q

suh that (1) and (2) in Theorem

4.12 hold. Then X is optimal; moreover:

(1) If q = 2

2s+1

; h

X ;q

(t) = (t

2

+ 2q

0

t+ q)

q

0

(q�1)

;

(2) If q = 3

2s+1

; h

X ;q

(t) = (t

2

+ 3q

0

t+ q)

q

0

(q

2

�1)

(t

2

+ q)

q

0

(q�1)(q+3q

0

+1)=2

:

Proof. It is easy to see that Serre's bound is not e�etive to bound #X (F

q

); in this

ase one uses the so-alled \expliit formula" (4.2) of Weil [93℄: (following Stihtenoth

[96, p. 183℄) Let h

X ;q

(t) =

Q

g

i=1

(t� �

i

)(t� ��

i

), �

i

=

p

qe

p

�1�

i

, and write

q

�i=2

#X (F

q

i
) = q

i=2

+ q

�i=2

� q

�i=2

g

X

j=1

(�

i

j

+ ��

i

j

) ;

this equation an we rewritten as

#X (F

q

)

i

q

�i=2

= 

i

q

i=2

+ 

i

q

�i=2

+ 

i

q

�i=2

g

X

j=1

(�

i

j

+ ��

i

j

)� (#X (F

q

i
)�#X (F

q

)

i

q

�i=2

;

where 

i

2 R. Now suppose that 

1

; : : : ; 

m

are given real numbers. Then from the

above equation we obtain:

#X (F

q

)�

m

(q

�1=2

) = �

m

(q

1=2

) + �

m

(q

�1=2

) + g �

g

X

j=1

f

m

(q

�1=2

�

j

)�

m

X

i=1

(#X (F

q

i

)�#X (F

q

))

i

q

�i=2

;

(4.2)

where �

m

(t) :=

P

m

i=1



i

t

i

and f

m

(t) := 1 + �

m

(t) + �

m

(t

�1

). Note that f

m

(t) 2 R

whenever t 2 C and jtj = 1.
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Case q = 2

2s+1

and g = q

0

(q � 1). Here we hoose m = 2, 

1

=

p

2=2, 

2

= 1=4. Then

f

2

(e

p

�1�

) = 1 +

p

2os� + os(2�)=2 = (os� +

p

2=2)

2

� 0. Then from (4.2) we have

#X (F

q

)�

2

(q

�1=2

) � �

2

(q

1=2

) + �

2

(q

�1=2

) + g ;

so that #X (F

q

) � q

2

+ 1, and hene X is optimal. Moreover, as #X (F

q

) = q

2

+ 1 we

must have f

2

(q

�1=2

�

j

) = 0 by (4.2) so that os�

j

= �

p

2=2. Then �

j

+ ��

j

= �2q

0

and

the result on h

X ;q

(t) follows.

Case q = 3

2s+1

and g = 3q

0

(q � 1)(q + q

0

+ 1)=2. Here we use m = 4, 

1

=

p

3=2,



2

= 7=12, 

3

=

p

3=6, 

4

= 1=12. Then f

4

(e

p

�1�

) = 1 +

p

3os� + 7os(2�)=6 +

p

3os(3�)=3 + os(4�)=6 = (1 +

p

3os� + os2�)

2

=3 � 0. Then from (4.2)

#X (F

q

)�

4

(q

�1=2

) � �

4

(q

1=2

) + �

4

(q

�1=2

) + g ;

so that X (F

q

) � q

3

+1. Moreover, 1+

p

3os�

j

+ os2�

j

= 0 whenever X (F

q

) = q

3

+1.

Hene os�

j

= 0 or os�

j

= �

p

3=2 so that

h

X ;t

(t) = (t

2

+ 3q

0

t+ q)

A

(t

2

+ q)

g�A

;

where A is the number of j's suh that os�

j

= �

p

3=2. To ompute A we use the fats

that a

1

= #X (F

q

)� (q + 1) = q

3

� q and a

2g�1

= q

g�1

a

1

. We have a

2g�1

= h

0

X ;q

(0) =

3q

0

q

g�1

A and hene that A = q

0

(q

2

� 1).

4.1. A F

q

-divisor from the Zeta Funtion. Assume now that X (F

q

) 6= ;, and �x a

F

q

-rational point P

0

2 X . Let f = f

P

0

: P ! [P � P

0

℄ be the anonial map from X

to its Jaobian over F

q

, J

�

=

fD 2 Div(X ) : deg(D) = 0g=fdiv(x) : x 2

�

F

q

(X )

�

g. Let

�

q

0

be the Frobenius morphism on J indued by �

q

.

We reall some fats onerning the harateristi polynomial of �

q

0

whih in fat turns

out to be the polynomial h(t) = h

X ;q

(t) whih was de�ned in Remark 4.1; see e.g. [77,

p. 205℄, or [76, proof of Thm. 19.1℄.

For a prime ` di�erent from har(F

q

), let J

`

i
denote the kernel of the isogeny J ! J ,

P 7! `

i

P . Then one de�nes the Tate modulo assoiated to J as the inverse limit of

the groups J

`

i
, i � 1, with respet to the maps J

`

i+1
! J

`

i
, P 7! `P . We have

that #J

`

i

= (`

i

)

2g

[77, p. 62℄ so that J

`

i

is a �nite abelian group suh that for all j,

1 � j � i it ontains exatly (`

j

)

2g

elements of order `

j

. Therefore

J

`

i

�

=

(Z=`

i

Z)

2g

and hene T

`

(J )

�

=

Z

2g

`

;

where Z

`

denotes the `-adi integers. Thus T

`

(J ) is a free Z

`

-module of rank 2g. Now

learly �

q

0

(J

`

i
) � J

`

i
and hene �

q

0

gives rise to a Z

`

-linear map T

`

(�

q

0

) on T

`

(J ). Let

� be the harateristi polynomial of T

`

(�

q

0

). A priory we have that � is a polynomial

of degree 2g with oeÆients in Z

`

. As a matter of fat, � 2 Z[t℄ [77, proof of Ch. IV,
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Thm. 4℄, and � = h as we mentioned before. In partiular, the minimal polynomial m

of T

`

(�

q

0

) has integral oeÆients. We laim that

m(�

q

0

) = 0 on J :(4.3)

To see this, notie that any endomorphism � 2 End(J ) : J 7! J ats on T

`

(J ) giving

rise to a Z

`

-linear map T

`

(�). This ation is injetive beause End(J ) is torsion free

and beause of [77, Ch. IV, Thm. 3℄. Now, as m(�

q

0

) 2 End(J ), we have

0 = m(T

`

(�

q

0

)) = T

`

(m(�

q

0

))

and (4.3) follows. Moreover, it is known that Q 
 End(J ) is a �nite dimensional

semisimple algebra over Q whose enter is Q[�

q

0

℄ [77, Ch. IV, Cor. 3℄, [100, Thm.

2(a)℄. In partiular, Q[�

q

0

℄ is semisimple and it is not diÆult to see that T

`

(�

q

0

) is

semisimple; f. [77, p. 251℄. This means that

m(t) =

T

Y

i=1

h

i

(t) ;

where h

1

(t); : : : ; h

T

(t) are the irreduibles Z-fators of h(t). Let U be the degree of

m(t) and let b

1

; : : : ; b

U

2 Z be the oeÆients of m(t)� t

U

; i.e,

m(t) = t

U

+

U

X

i=1

b

i

t

U�i

:

Thus (�

q

0

)

U

+

P

U

i=1

b

i

(�

q

0

)

U�i

= 0 by (4.3). Now we evaluate the left hand side of this

equality at f(P ) = [P � P

0

℄, and by using the fat that �

q

0

Æ f = f Æ �

q

we �nd that

f(�

q

U

(P )) +

U

X

i=1

a

i

f(�

q

U�i

(P )) = 0 ; P 2 X ;

i.e., �

q

U

(P ) +

U

X

i=1

b

i

�

q

U�i

(P ) � (1 +

U

X

i=1

b

i

)P

0

= m(1)P

0

:(4.4)

This equivalene is the motivation to de�ne on X the linear series

D

X

:= jjm(1)jP

0

j ;(4.5)

whih is learly independent of P

0

being F

q

-rational.

Problem 4.14. For a urve X over F

q

, how is the interplay among its F

q

-rational

points, its Weierstrass points, its D

X

-Weierstrass points, and the support of the F

q

-

Frobenius divisor of D

X

.

Next we disuss some properties of D

X

.

Lemma 4.15. (1) If P;Q 2 X (F

q

), then m(1)P � m(1)Q; in partiular, jm(1)j is a

Weierstrass non-gap at eah P 2 X (F

q

).
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(2) If #X (F

q

) � 2g+3, then there exists P

1

2 X (F

q

) suh that jm(1)j�1 and jm(1)j

are Weierstrass non-gaps at P

1

.

Proof. (1) It follows immediately from (4.4).

(2) (Following Stihtenoth-Xing [97, Prop. 1℄) Let Q 2 X (F

q

) n fP

0

g. From (1), there

exists a morphism x : X ! P

1

(

�

F

q

) with div(x) = jm(1)jP

0

� jm(1)jQ. Let n be the

number of F

q

-rational points of X whih are unrami�ed for x. Let x

s

: X ! P

1

(

�

F

q

) be

the separable part of x. We have that div(x

s

) = jm(1)j

0

P

0

� jm(1)j

0

Q (here jm(1)j

0

is

the separable degree of x) and from the Riemman-Hurwitz applied to x

s

we �nd that

2g � 2 � jm(1)j

0

(�2) + 2(jm(1)j

0

� 1) + (#X (F

q

)� n� 2) ;

so that n � #X (F

q

) � 2g � 2. Thus n � 1 by hypothesis, and hene there exists

� 2 F

q

, P

1

2 X (F

q

) n fP

0

; Qg suh that div(x � �) = P

1

+ D � mQ with P

1

; Q 62

Supp(D). Let y 2

�

F

q

(X ) be suh that div(y) = jm(1)jQ � jm(1)jP

1

(f. (1)). Then

div(y(x� �)) = D � (jm(1)j � 1)P

1

and (2) follows.

Corollary 4.16. (1) D

X

is base-point-free;

(2) If #X (F

q

) � 2g + 3, then D

X

is simple:

Proof. (1) follows by Lemma 4.15 and Example 1.23

(2) Let P

1

be as in Lemma 4.15(2), � a morphism assoiated to D

X

, f

1

; f

2

2

�

F

q

(X )

suh that div

1

(f

1

) = (jm(1)j � 1)P

1

and div

1

(f

2

) = jm(1)jP

1

. Then [

�

F

q

(X ) :

�

F

q

(f

i

)℄,

i = 1; 2, divides [

�

F

q

(X ) :

�

F

q

(�(X ))℄ and the result follows.

Now we study (D

X

; P )-orders. We let �

0

= 0 < �

1

= 1 < : : : < �

N

(resp. �

0

=

0 < : : : < �

N�1

) denote the D

X

-orders (resp. the F

q

-Frobenius orders) of D

X

, where

N := dim(D

X

). Notie that n

N

(P ) = jm(1)j for any P 2 X (F

q

) by Lemma 4.15(1).

>From Example 1.23 we obtain:

Lemma 4.17. For P 2 X (F

q

), the (D

X

; P )-orders are

j

N�i

(P ) = n

N

(P )� n

i

(P ) ; i = 0; 1; : : : ; N :

This result (for i = 1) and Remark 4.10 yield the following.

Corollary 4.18. Let P 2 X (F

q

): If #X (F

q

) > q(jm(1)j�b

U

)+1, then j

N�1

(P ) < b

U

:

Lemma 4.19. Suppose

b

i

� 0 ; i = 1; : : : ; U ;(4.6)

and let P 2 X suh that �

q

i

(P ) 6= P for i = 1; : : : ; U: Then:

(1) The numbers 1; b

1

; : : : ; b

U

are (D

X

; P )-orders;
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(2) If in addition

b

1

� b

0

:= 1 and b

i+1

� b

i

; for i = 1; : : : ; U � 1 ;(4.7)

then b

U

(resp. b

U

� 1) is a Weierstrass non-gap at P whenever �

q

U+1

(P ) 6= P

(resp. �

q

U+1

(P ) = P ):

Proof. (1) Fix j 2 f0; 1; : : : ; Ug, and let Q 2 X suh that �

q

U�j

(Q) = P (�). From

(4.4) we have

X

i2f0;1;::: ;Ugnfjg

b

i

�

q

U�i

(Q) + b

j

P � m(1)P

0

:

We laim that �

q

U�i

(Q) 6= P ; otherwise from (�) we would have �

q

i�j

(P ) = P , a

ontradition. This shows (1).

(2) Applying �

q

�

to (4.4) we have

�

q

U

(P ) +

U

X

i=1

b

i

�

q

U�i

(P ) � m(1)P

0

� �

q

U+1

(P ) +

U

X

i=1

b

i

�

q

U�i+1

(P ) ;

so that

b

U

P � �

q

U+1

(P ) +

U

X

i=1

(b

i

� b

i�1

)�

q

U�i+1

(P ) ;

and (2) follows.

Remark 4.20. (i) Minimal urves as well as minimal urves with respet to Serre's

bound (Remark 4.8) do not satisfy (4.6). However we an still use (4.4) to infer that

p

q

is a non-gap at in�nitely many points of the urve provided that the urve is minimal.

Indeed, (4.6) reads �

q

(P )�

p

qP � (1�

p

q)P

0

so that

p

qP � (

p

q � 1)P

0

+ �

q

(P ).

In partiular, if g �

p

q, a F

q

-minimal urve is non-lassial.

(ii) The Klein urve (Example 4.9) de�ned over F

2

satis�es (4.6) but not (4.7).

(iii) Other examples as in (i) and (ii) an be found in Carbonne-Henoq [9℄.

Corollary 4.21. Assume (4.6).

(1) If P 62 X (F

q

) and X (F

q

) = : : : = X (F

q

U ); then 1; b

1

; : : : ; b

U

are (D

X

; P )-orders:

(2) The numbers 1; b

1

; : : : ; b

U

are D

X

-orders: In partiular; dim(D

X

) � U+1 provided

that b

i

6= b

j

for i 6= j;

(3) If in addition (4.7) holds and g � b

U

, then X is non-lassial:

Proof. Lemma 4.19(1) implies (1) and (2) sine there are in�nitely many points P suh

that �

q

i

(P ) 6= P for i = 1; : : : ; U . To see (3) we take P 2 X suh that �

q

U+1

(P ) 6= P .

Then b

U

2 H(P ) by Lemma 4.19(2). If X were lassial then n

1

(P ) = g + 1 so that

g < b

U

, a ontradition.

Corollary 4.22. Assume (4.6).
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(1) �

N

= �

N�1

= b

U

;

(2) X (F

q

) � Supp(R

D

):

Proof. (1) We have �

N�1

� j

N�1

(P ) for any P by Corollary 2.10(1); thus �

N�1

< b

U

by Corollary 4.18. Therefore �

N

= b

U

by Corollary 4.21(2), and so

�

�

(L

N�1

(P )) = �

q

U

(P ) +

U

X

I=1

b

i

�

q

U�i

(P )

by (4.4), where � is a morphism assoiated to D

X

. It follows that �(�

q

(P )) 2 L

N�1

(P )

so that �

N�1

= �

N

.

(2) By Lemma 4.17 j

N

(P ) = n

N

(P ) = m(1) for eah P 2 X (F

q

). Sine m(1) =

1 +

P

U

i=1

b

i

> b

U

= �

N

(f. (1)), the result follows.

Corollary 4.23. Assume (4.7). Then n

1

(P ) � b

U

for eah P 2 X (F

q

); and equality

holds provided that #X (F

q

) � qb

U

+ 1:

Proof. Let P 2 X (F

q

). By Lemma 2.30 n

1

(P ) � n

1

(Q) where Q 62 W. Therefore

n

1

(P ) � b

U

by Lemma 4.19(2). Now if #X (F

q

) � qb

U

+ 1, then 1 + qn

1

(P ) � qb

U

+ 1

by Remark 4.10 and the result follows.

4.2. The Hermitian urve. Let X be a F

`

2

-maximal urve of genus g. Reall that

g � `(`+ 1)=2 by Corollary 4.3 and that the Hermitian urve is F

`

2

-maximal of genus

`(` � 1)=2 (f. Example 3.15). From Lemma 4.2 and (4.5), X is equipped with the

linear series D

X

:= j(` + 1)P

0

j. By Corollary 4.16, D

X

is simple and base-point-free.

We see that X satis�es (4.7) (and hene (4.6)); in partiular 1; ` are D

X

orders so that

N := dim(D

X

) � 2.

Theorem 4.24. ([26, Thm. 2.4℄) Let X be a F

`

2

-maximal urve of genus g. The

following statements are equivalent:

(1) X is F

`

2

-isomorphi to the Hermitian urve H of equation (3.6);

(2) g > (`� 1)

2

=4;

(3) N = 2:

Proof. (1) implies (2) beause the genus of H is `(` � 1)=2. Assume (2) and suppose

that N � 3. Then Castelnuovo's genus bound (Remark 1.7) applied to D

X

would yield

g � (`� 1)

2

=4, a ontradition. Finally let N = 2. By (4.4) (` + 1)P � (` + 1)P

0

for

any P 2 X (F

`

2

) and hene we an assume that `; ` + 1 2 H(P

0

) by Lemma 4.15(2);

in this ase, as N = 2, n

1

(P

0

) = ` and n

2

(P

0

) = ` + 1. Let �

0

= 0 < �

1

= 1 < �

2

(resp. �

0

= 0 < �

1

) denote the D

X

-orders (resp. F

`

2

-orders) of X . Then �

2

= �

1

= ` by
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Corollary 4.22. Let x; y 2 F

`

2

(X ) suh that div

1

(x) = `P

0

and div

1

(y) = (` + 1)P

0

.

We have thatx is a separating variable (Lemma 1.24) and therefore

V

0;1

1;x;y;;x

= det

0

�

1 x

`

2

y

`

2

1 x y

0 1 D

1

x

y

1

A

= (x� x

`

2

)D

1

x

y � (y � y

`

2

) = 0 :(�)

Claim. There exists f 2

�

F

`

2

(X ) suh that D

1

x

y = f

`

:

To proof this we have to show that D

i

x

(D

1

x

y) = 0 (�

1

) for 1 � i < ` by Remark 2.5(ii).

We apply D

1

x

to (�): (x� x

`

2

)D

1

x

(D

1

x

y) = 0 and so (�

1

) holds for i = 1. Suppose that

(�

1

) is true for i = 1; : : : ; j, 1 � j � ` � 2. We apply D

j+1

x

to (�) and using the

indutive hypothesis and Remark 2.5(i) we �nd that (x� x

`

2

)D

j+1

x

(D

1

x

y) = D

j+1

x

y. It

turns out that

W

0;1;j+1

1;x;y;x

=

0

�

1 x y

0 1 D

1

x

y

0 0 D

j+1

x

y

1

A

= D

j+1

x

y = 0 ;

sine �

2

= `, and the laim follows.

Claim. #x

�1

(x(P )) = ` for P 6= P

0

:

>From (�) v

P

0

(D

1

x

y) = �`

2

. Let t be a loal parameter at P

0

. Then v

P

0

(D

1

t

x) = `

2

�l�2

sine D

1

t

y = D

1

t

xD

1

x

y by the hain rule (2.3). We have that deg(dx) = 2g � 2 (see

Example 1.1) and that v

P

(x) � 0 for P 6= P

0

. Therefore 2g � 2 � `

2

� l � 2; i.e.,

g � l(l � 2)=2; i.e. g = `(` � 1)=2 by Corollary 4.3. It follows that v

P

(dx) = 0 for

P 6= P

0

and so the laim.

We onlude that D

1

x

y = f

`

with div

i

nftyf = `P

0

; moreover f 2 F

q

(X ) sine D

1

x

y 2

F

q

(X ). Then f = a+ bx with a; b 2 F

`

2

and (�) gives a relation of type

(y

`

1

+ y

1

� x

`+1

1

)

`

= y

`

1

+ y

`

1

� x

`+1

1

:

Finally we have that y

`

1

+ y

1

� x

`+1

1

=  2 F

`

and with y

2

:= y

1

+ �, �

`

+ � = a, we

have that (3.6) holds; i.e., X is F

`

2

-isomorphi to H.

Corollary 4.25. ([25℄) The genus g of a F

`

2

-maximal urve satis�es

either g � (`� 1)

2

=4 or g = `(`� 1)=2 :

Remark 4.26. This result was improved in [68℄ where it is shown that g � (`

2

�`+1)=6

whenever g < (`� 1)

2

=4.

4.3. The Suzuki urve. Set q

0

:= 2

s

, s 2 N, q := 2q

2

0

. Let X be a urve de�ned over

F

q

of genus g suh that

g = q

0

(q � 1) and #X (F

q

) = q

2

+ 1 :(4.8)
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The main result of this sub-setion is the following theorem whih improves Theorem

4.12 for the Suzuki urve S.

Theorem 4.27. A urve X de�ned over F

q

is F

q

-isomorphi to the Suzuki urve S if

and only if (4.8) hold true.

Problem 4.28. Can we expet a similar result for the Ree urve?

If (4.8) hold, then h

X ;q

(t) = (t

2

+ 2q

0

t + q)

g

by Lemma 4.13(1), and from (4.5) we see

that X is equipped with the linear series

D

X

= j(q + 2q

0

+ 1)P

0

j ; P

0

2 X (F

q

) :

The results of Set. 4.1 applied to this ase are summarized in the following proposition.

Let N := dim(D

X

), �

0

= 0 < �

1

= 1 < : : : < �

N

(resp. �

0

= 0 < : : : < �

N�1

) be the

D

X

-orders (resp. F

q

-Frobenius orders) of X .

Proposition 4.29. (1) j

N

(P ) = n

N

(P ) = q+2q

0

+1 for any P 2 X (F

q

); in addition,

there exists P

1

2 X (F

q

) suh that n

N�1

(P

1

) = q + 2q

0

;

(2) D

X

is simple and base-point-free;

(3) 2q

0

and q are D

X

-orders so that N � 3;

(4) �

N

= �

N�1

= q;

(5) n

1

(P ) = q for any P 2 X (F

q

):

>From (5) and (1) above and Lemma 4.17, j

N�1

(P ) = j

N

(P )�n

1

(P ) = 2q

0

+1 for any

P 2 X (F

q

) so that

2q

0

� �

N�1

� 2q

0

+ 1 :

Lemma 4.30. �

N�1

= 2q

0

:

Proof. Suppose that �

N�1

> 2q

0

. Then �

N�2

= 2q

0

and �

N�1

= 2q

0

+ 1. By Corollary

3.9(1) �

N�2

� j

N�1

(P )� j

1

(P ) � 2q

0

= �

N�2

, and thus the F

q

-Frobenius orders of D

X

would be �

0

; �

1

; : : : ; �

N�2

, and �

N

. Now from Proposition 3.5(1)

v

P

(S) �

N

X

i=1

(j

i

(P )� �

i�1

) � (N � 1)j

1

(P ) + 1 + 2q

0

� N + 2q

0

;(4.9)

for P 2 X (F

q

) so that deg(S) = (

P

i

�

i

)(2g � 2) + (q + N)(q + 2q

0

+ 1) � (N +

2q

0

)#X (F

q

). From the identities 2g � 2 = (2q

0

� 2)(q + 2q

0

+ 1) and #X (F

q

) =

(q � 2q

0

+ 1)(q + 2q

0

+ 1) we would have

N�2

X

i=1

�

i

=

N�2

X

i=1

�

i

� (N � 1)q

0

:

Now, as �

i

+ �

j

� �

i+j

for i+ j � N by Corollary 2.14,

(N � 1)2q

0

= (N � 1)�

N�2

� 2

N�2

X

i=0

�

i

� 2(N � 1)q

0

;
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and hene �

i

+ �

N�2�i

= �

N�2

for i = 0; : : : ; N�2. In partiular, �

N�3

= 2q

0

�1 and by

the p-adi riterion (Lemma 2.21) we would have �

i

= i for i = 0; 1; : : : ; N � 3. Then

N = 2q

0

+ 2. Now from Castelnuovo's genus bound (Remark 1.7)

2g = 2q

0

(q � 1) � (q + 2q

0

� (N � 1)=2)

2

)=(N � 1) ;

i.e., 2q

0

(q � 1) < (q + q

0

)

2

=2q

0

= q

0

q + q=2 + q

0

=2, a ontradition.

Corollary 4.31. There exists P

1

2 X (F

q

) suh that

�

j

1

(P

1

) = 1

j

i

(P

1

) = �

i�1

+ 1 if i = 2; : : : ; N � 1:

Proof. Sine we already observed that v

P

(S) � (N � 1)j

1

(P ) + 2q

0

+ 1 � N + 2q

0

for

P 2 X (F

q

), it is enough to show that there exists P

1

2 X (F

q

) suh that v

P

1

(S) =

N + 2q

0

. Suppose that v

P

(S) � N + 2q

0

+ 1 for any P 2 X (F

q

). Then by Theorem

3.13

N�1

X

i=0

�

i

� q +Nq

0

+ 1 ;

so that

N�1

X

i=0

�

i

� Nq

0

+ 2 ;

beause �

1

= 1, �

N�1

= q and �

i

� �

i+1

. Then from Corollary 2.14 we would have

N�

N�1

� 2Nq

0

+ 4; i.e., �

N�1

> 2Nq

0

, a ontradition by Lemma 4.30.

Lemma 4.32. (1) �

1

> �

1

= 1;

(2) �

2

is a power of two:

Proof. If �

1

> �

1

= 1, then �

1

= �

2

and it must be a power of two by the p-adi riterion

(Lemma 2.21): i.e., (1) implies (2). Suppose now that �

1

= 1. Then from Corollary

4.31 there exists a point P

1

2 X (F

q

) suh that j

1

(P

1

) = 1; j

2

(P

1

) = 2; thus

H(P

1

) � H := hq; q + 2q

0

� 1; q + 2q

0

; q + 2q

0

+ 1i ;

by Proposition 4.29(1)(5) and Lemma 4.17. In partiular g = q

0

(q � 1) � ~g :=

#(N

0

nH). This is a ontradition as follows immediately from the laim below.

Claim. ~g = g � q

2

0

=4:
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In fat, L := [

2q

0

�1

i=1

L

i

is a omplete system of residues module q, where

L

i

= fiq + i(2q

0

� 1) + j : j = 0; : : : ; 2ig if 1 � i � q

0

� 1;

L

q

0

= fq

0

q + q � q

0

+ j : j = 0; : : : ; q

0

� 1g;

L

q

0

+1

= f(q

0

+ 1)q + 1 + j : j = 0; : : : ; q

0

� 1g;

L

q

0

+i

= f(q

0

+ i)q + (2i� 3)q

0

+ i� 1 + j : j = 0; : : : ; q

0

� 2i+ 1g[

f(q

0

+ i)q + (2i� 2)q

0

+ i + j : j = 0; : : : q

0

� 1g if 2 � i � q

0

=2;

L

3q

0

=2+i

= f(3q

0

=2 + i)q + (q

0

=2 + i� 1)(2q

0

� 1) + q

0

+ 2i� 1 + j :

j = 0; : : : ; q

0

� 2i� 1g if 1 � i � q

0

=2� 1:

Moreover, for eah ` 2 L, ` 2 H and `� q 62 H. Hene ~g an be omputed by summing

up the oeÆients of q from the above list (see e.g. [92, Thm. p.3℄); i.e.,

~g =

P

q

0

�1

i=1

i(2i+ 1) + q

2

0

+ (q

0

+ 1)q

0

+

P

q

0

=2

i=2

(q

0

+ i)(2q

0

� 2i+ 2)+

P

q

0

=2�1

i=1

(3q

0

=2 + i)(q

0

� 2i) = q

0

(q � 1)� q

2

0

=4 :

In the remaining part of this sub-setion we let P

0

= P

1

be a F

q

-rational point satisfying

Corollary 4.31; we set n

i

:= n

i

(P

1

) and v := v

P

1

.

Lemma 4.32(1) implies �

i

= �

i+1

for i = 1; : : : ; N � 1. Therefore from Corollary 4.31

and Lemma 4.17 we have

�

n

i

= 2q

0

+ q � �

N�i

if i = 1; : : :N � 2

n

N�1

= 2q

0

+ q; n

N

= 1 + 2q

0

+ q:

(4.10)

Let x; y

2

; : : : ; y

N

2 F

q

(X ) be suh that div

1

(x) = n

1

P

1

, and div

1

(y

i

) = n

i

P

1

for

i = 2; : : : ; N . The fat that �

1

> 1 means that the following matrix has rank two (see

Set. 3)

0

�

1 x

q

y

q

2

: : : y

q

r

1 x y

2

: : : y

r

0 1 D

1

x

y

2

: : : D

1

x

y

r

1

A

:

In partiular,

y

q

i

� y

i

= D

1

x

y

i

(x

q

� x) for i = 2; : : : ; N :(4.11)

Lemma 4.33. (1) (2g � 2)P is anonial for any P 2 X (F

q

); i.e.; the Weierstrass

semigroup at suh a P is symmetri;

(2) Let m 2 H(P

1

) suh that m < q + 2q

0

. Then m � q + q

0

;

(3) There exists g

i

2 F

q

(X ) suh that D

1

x

y

i

= g

�

2

i

for i2; : : : ; N: Furthermore;

div

1

(g

i

) =

qm

i

�q

2

�

2

P

1

:

Proof. (1) By the identity 2g � 2 = (2q

0

� 2)(q + 2q

0

+ 1) and (4.4) we an assume

P = P

1

. Now the ase i = N of Eqs. (4.11) implies v(dx) = 2g � 2 and the result

follows sine v

P

(dx) � 0 for P 6= P

1

.
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(2) From (4.10), q; q + 2q

0

and q + 2q

0

+ 1 2 H(P

1

). Then the numbers

(2q

0

� 2)q + q � 4q

0

+ j j = 0; : : : ; q

0

� 2

are also non-gaps at P

1

. Therefore, by the symmetry of H(P

1

),

q + q

0

+ 1 + j j = 0; : : : ; q

0

� 2

are gaps at P

1

and the proof follows.

(3) Set f

i

:= D

1

x

y

i

. We have D

j

x

y

i

= (x

q

� x)D

j

x

f

i

+ D

(j�1)

x

f

i

for 1 � j < q by the

produt rule applied to (4.11). Then, D

j

x

f

i

= 0 for 1 � j < �

2

, beause the matries

0

�

1 x y

2

: : : y

N

0 1 D

1

x

y

2

: : : D

1

x

y

N

0 0 D

j

x

y

2

: : : D

j

x

y

N

1

A

; 2 � j < �

2

have rank two (see Set. 2.2). Consequently, as �

2

is a power of two by Lemma 4.32(2)),

from Remark 2.5(2), f

i

= g

�

2

i

for some g

i

2 F

q

(X ). Finally, from the proof of (1) we

have that x � x(P ) is a loal parameter at P if P 6= P

1

. Then, by the eletion of the

y

i

's, g

i

has no pole but in P

1

, and from (4.11), v(g

i

) = �(qm

i

� q

2

)=�

2

.

Lemma 4.34. N = 4 and �

2

= q

0

:

Proof. We know that N � 3. We laim that N � 4 otherwise we would have �

2

= 2q

0

,

n

1

= q, n

2

= q + 2q

0

, n

3

= q + 2q

0

+ 1, and hene v(g

2

) = �q (with g

2

being as in

Lemma 4.33(3)). Therefore, after some F

q

-linear transformations, the ase i = 2 of

(4.11) reads

y

q

2

� y

2

= x

2q

0

(x

q

� x) :

Now the funtion z := y

q

0

2

� x

q

0

+1

satis�es z

q

� z = x

q

0

(x

q

� x) and we �nd that q

0

+ q

is a non-gap at P

1

(f. [43, Lemma 1.8℄). This ontradition eliminates the possibility

N = 3.

Let N � 4 and 2 � i � N . By Lemma 4.33(3) (qn

i

� q

2

)=�

2

2 H(P

1

), and sine

(qn

i

� q

2

)=�

2

� n

i�1

� q, by (4.10) we have

2q

0

� �

2

+ �

N�i

for i = 2; : : : ; N � 2 :

In partiular, �

2

� q

0

. On the other hand, by Lemma 4.33(2) we must have n

N�2

�

q + q

0

and so, by (4.10) we �nd that �

2

� q

0

; i.e., �

2

= q

0

.

Finally we show that N = 4. �

2

= q

0

implies �

N�2

� q

0

. Sine n

2

� q + q

0

(f. Lemma

4.33(2)), by (4.10), we have �

N�2

� q

0

. Therefore �

N�2

= q

0

= �

2

so that N = 4.

Proof of Theorem 4.27. Let P

1

2 X (F

q

) be as above. By (4.11), Lemma 4.33(3) and

Lemma 4.34 we have the following equation

y

q

2

� y

2

= g

q

0

2

(x

q

� x) ;
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where g

2

has no pole exept at P

1

. Moreover, by (4.10), n

2

= q

0

+ q and so v(g

2

) = �q

(f. Lemma 4.33(3)). Thus g

2

= ax+ b with a; b 2 F

q

, a 6= 0, and after some F

q

-linear

transformations (as those in the proof of Theorem 4.24) the result follows.

Remark 4.35. (i) From the above omputations we onlude that the Suzuki urve

S is equipped with a omplete, simple and base-point-free g

4

q+2q

0

+1

, namely D

S

=

j(q+2q

0

+1)P

0

j, P

0

2 S(F

q

). Suh a linear series is an F

q

-invariant. The orders of D

S

(resp. the F

q

-Frobenius orders) are 0; 1; q

0

; 2q

0

and q (resp. 0; q

0

; 2q

0

and q).

(ii) There exists P

1

2 S(F

q

) suh that the (D

S

; P

1

)-orders are 0; 1; q

0

+ 1; 2q

0

+ 1 and

q + 2q

0

+ 1 (Corollary 4.31). Now we show that the above sequene is, in fat, the

(D

S

; P )-orders for eah P 2 S(F

q

). To see this, notie that

deg(S) = (3q

0

+ q)(2g � 2) + (q + 4)(q + 2q

0

+ 1) = (4 + 2q

0

)#S(F

q

):

Let P 2 S(F

q

). By (4.9) we onlude that v

P

(S

D

) =

P

4

i=1

(j

i

(P ) � �

i�1

) = 4 + 2q

0

and so, by Proposition 3.5(1) that j

1

(P ) = 1, j

2

(P ) = q

0

+ 1, j

3

(P ) = 2q

0

+ 1, and

j

4

(P ) = q + 2q

0

+ 1.

(iii) Then, by Lemma 4.17 H(P ) ontains the semigroup H := hq; q + q

0

; q + 2q

0

; q +

2q

0

+1i whenever P 2 S(F

q

). Indeed H(P ) = H sine #(N

0

nH) = g = q

0

(q�1) (this

an be proved as in the laim in the proof of Lemma 4.32(1); see also [43, Appendix℄).

(iv) We have

deg(R) =

4

X

i=0

�

i

(2g � 2) + 5(q + 2q

0

+ 1) = (2q

0

+ 3)#S(F

q

) ;

and v

P

(R) = 2q

0

+3 for P 2 S(F

q

) as follows from (i), (ii) and Set. 2.2. Therefore the

set of D

S

-Weierstrass points of S is equal to S(F

q

). In partiular, the (D; P )-orders

for P 62 S(F

q

) are 0; 1; q

0

; 2q

0

and q.

(v) We an use the above omputations to obtain information on orders for the anon-

ial morphism on S. By using the fat that (2q

0

� 2)D

S

is anonial (f. Lemma

4.33(1)) and (iv), we see that the set fa+ q

0

b+ 2q

0

+ qd : a+ b+ + d � 2q

0

� 2g is

ontained in the set of orders of K

S

at non-rational points. (By onsidering �rst order

di�erentials on S, similar omputations were obtained in [30, Set. 4℄.)

(vi) Finally, we remark that S is non-lassial for the anonial morphism: We have

two di�erent proofs for this fat: lo. it. and Corollary 4.21(3).

Remark 4.36. (A. Cossidente) Reall that an ovoid in P

N

(F

q

) is a set of points P no

three of whih are ollinear and suh that for eah P the union of the tangent lines at

P is a hyperplane; see [49℄. We are going to related the Suzuki-Tits ovoid O in P

4

(F

q

)

with the F

q

-rational points of the Suzuki urve S.
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It is known that any ovoid in P

4

(F

q

) that ontains the point (0 : 0 : 0 : 0 : 1) an be

de�ned by

f(1 : a : b : f(a; b) : af(a; b) + b

2

) : a; b 2 F

q

g [ f(0 : 0 : 0 : 0 : 1)g;

where f(a; b) := a

2q

0

+1

+ b

2q

0

; f. [102℄, [85, p.3℄.

Let � = (1 : x : y : z : w) be the morphism assoiated to D

S

suh that div

1

(x) = qP

0

,

div

1

(y) = (q + q

0

)P

0

, div

1

(z) = (q + 2q

0

)P

0

and div

1

(w) = q + 2q

0

+ 1; see Remark

4.35(iii).

Claim. O = �(S(F

q

)):

Indeed we have �(P

0

) = (0 : 0 : 0 : 0 : 1); in addition the oordinates of � an be

hoosen suh that y

q

� y = x

q

0

(x

q

� x), z := x

2q

0

+1

+ y

2q

0

, and w := xy

2q

0

+ z

2q

0

=

xy

2q

0

+x

2q+2q

0

+y

2q

(see [43, Set. 1.7℄). For P 2 S(F

q

)nfP

0

g set a := x(P ), b := y(P ),

and f(a; b) := z(a; b). Then w(a; b) = af(a; b) + b

2

and the laim follows.

Remark 4.37. The morphism � in the previous remark is an embedding. To see this,

as j

1

(P ) = 1 for any P 2 S ( Remarks 4.35(ii)(iv)), it is enough to show that � is

injetive. We have

(q + 2q

0

+ 1)P

0

� q�

q

2

(P ) + 2q

0

�

q

(P ) + P(4.12)

so that the points P 2 S where � ould not be injetive satisfy either P 62 S(F

q

),

or �

q

3

(P ) = P or �

q

2

(P ) = P . Now from the Zeta funtion of S one sees that

#S(F

q

3

) = #S(F

q

2

) = #S(F

q

), and the remark follows.

Remark 4.38. From the laim in Remark 4.36, (4.12) and [48℄ we have

Aut

�

F

q

(S) = Aut

F

q

(S)

�

=

fA 2 PGL(5; q) : AO = Og :

5. Plane ars

In this setion we show how to apply Setions 2 and 3 to study the size of plane ars.

The approah is from Hirshfeld-Korhm�aros [50℄, [51℄ and Voloh [106℄, [107℄. Our

exposition follows [36℄.

A k-ar in P

2

(F

q

) is a set K of k points no three of whih are ollinear. It is omplete

if it is not properly ontained in another ar. For a given q, a basi problem in Finite

Geometry is to �nd the values of k for whih a omplete k-ar exists. Bose [6℄ showed

that

k � m(2; q) :=

(

q + 1 if q is odd ;

q + 2 otherwise :

For q odd the bound m(2; q) is attained if and only if K is an irreduible oni [90℄,

[49, Thm. 8.2.4℄. For q even the bound is attained by the union of an irreduible oni

and its nuleus, and not every (q + 2)-ar arises in this way; see [49, Set. 8.4℄. Let
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m

0

(2; q) denote the seond largest size that a omplete ar in P

2

(F

q

) an have. Segre

[90℄, [49, Set. 10.4℄ showed that

m

0

(2; q) �

(

q �

1

4

p

q +

7

4

if q is odd;

q �

p

q + 1 otherwise:

(5.1)

Besides small q, namely q � 29 [11℄, [49℄, [53℄, the only ase where m

0

(2; q) has been

determined is for q an even square. Indeed, for q square, examples of omplete (q �

p

q + 1)-ars [5℄, [12℄, [18℄, [23℄, [60℄ show that

m

0

(2; q) � q �

p

q + 1 ;(5.2)

and so the bound (5.1) for an even q square is sharp. This result has been reently

extended by Hirshfeld and Korhm�aros [52℄ who showed that the third largest size

that a omplete ar an have is upper bounded by q � 2

p

q + 6.

If q is not a square, Segre's bounds were notably improved by Voloh [106℄, [107℄.

If q is odd, Segre's bound was slightly improved to m

0

(2; q) � q �

p

q=4 + 25=16 by

Thas [101℄. If q is an odd square and large enough, Hirshfeld and Korhm�aros [51℄

signi�antly improved the bound to

m

0

(2; q) � q �

1

2

p

q +

5

2

:(5.3)

Inequalities (5.2) and (5.3) suggest the following problem, whih seems to be diÆult

and has remained open sine the 60's.

Problem 5.1. For q an odd square, is it true that m

0

(2; q) = q �

p

q + 1?

The answer is negative for q = 9 and aÆrmative for q = 25 [11℄, [49℄, [53℄. So Problem

5.1 is indeed open for q � 49.

5.1. B. Segre's fundamental theorem: Odd ase. We reall a fundamental theorem of

Segre whih is the link between ars and urves.

Let K be an ar in P

2

(F

q

). Segre assoiates to K a plane urve C in the dual plane

of P

2

(

�

F

q

). This urve is de�ned over F

q

and it is alled the envelope of K. For

P 2 P

2

(

�

F

q

), let `

P

denote the orresponding line in the dual plane. A line ` in P

2

(F

q

)

is alled an i-seant of K if #K \ ` = i. The following result summarizes the main

properties of C for the odd ase.

Theorem 5.2. (B. Segre [90℄, [49, Set. 10℄) If q is odd, then the following statements

hold:

(1) The degree of C is 2t, with t = q � k + 2 being the number of 1-seants through a

point of K.

(2) All kt of the 1-seants of K belong to C.
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(3) Eah 1-seant ` of K through a point P 2 K is ounted twie in the intersetion

of C with `

P

; i.e., I(C; `

P

; `) = 2.

(4) The urve C ontains no 2-seant of K.

(5) The irreduible omponents of C have multipliity at most two, and C has at least

one omponent of multipliity one.

(6) For k > (2q + 4)=3, the ar K is inomplete if and only if C admits a linear

omponent over F

q

. For k > (3q + 5)=4, the ar K is a oni if and only if it is

omplete and C admits a quadrati omponent over F

q

.

Next we show some properties of C. Reall that a non-singular point P of a plane urve

A is alled an inexion point of A if I(A; `;P ) > 2, with ` being the tangent line of A

at P .

De�nition. A point P

0

of C is alled speial if the following onditions hold:

(i) it is non-singular;

(ii) it is F

q

-rational;

(iii) it is not an inexion point of C.

Then, by (i), a speial point P

0

belongs to an unique irreduible omponent of the

envelope whih will be alled the irreduible envelope assoiated to P

0

or an irreduible

envelope of K.

Lemma 5.3. Let C

1

be an irreduible envelope of K. Then

(1) C

1

is de�ned over F

q

;

(2) if q is odd and the k-ar K, with k > (3q + 5)=4, is omplete and di�erent from a

oni, then the degree of C

1

is at least three.

Proof. (1) Let C

1

be assoiated to P

0

, let � be the Frobenius morphism (relative to F

q

)

on the dual plane of P

2

(

�

F

q

), and suppose that C

1

is not de�ned over F

q

. Then, sine

the envelope is de�ned over F

q

and P

0

is F

q

-rational, P

0

would belong to two di�erent

omponents of the envelope, namely C

1

and �(C

1

). This is a ontradition beause the

point is non-singular.

(2) This follows from Theorem 5.2(6).

The next result will show that speial points do exist provided that q is odd and the

ar is large enough.

Proposition 5.4. Let K be an ar in P

2

(F

q

) of size k suh that k > (2q + 4)=3. If q

is odd, then the envelope C of K has speial points.

Remark 5.5. The hypothesis k > (2q +4)=3 in the proposition is equivalent to k > 2t,

with t = q� k+2. Also, under this hypothesis, the envelope C is uniquely determined

by K, see [49, Thm. 10.4.1(i)℄.
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To prove Proposition 5.4 we need the following lemma.

Lemma 5.6. Let A be a plane urve de�ned over

�

F

q

and suppose that it has no mul-

tiple omponents. Let � be the degree of A and s the number of its singular points.

Then,

s �

�

�

2

�

;

and equality holds if A onsists of � lines no three onurrent.

Proof. That a set of � lines no three onurrent satis�es the bound is trivial. Let G = 0

be the equation of A, let G = G

1

: : : G

r

be the fatorization of G in

�

F

q

[X; Y ℄, and let

A

i

be the urve given by G

i

= 0. For simpliity we assume � even, say � = 2M .

Setting �

i

:= deg(G

i

), i = 1; : : : ; r and I :=

P

r�1

i=1

�

i

we have �

r

= 2M � I. The

singular points of A arise from the singular points of eah omponent and from the

points in A

i

\A

j

, i 6= j. Reall that an irreduible plane urve of degree d has at most

�

d�1

2

�

singular points, and that #A

i

\ A

j

� a

i

a

j

, i 6= j (B�ezout's Theorem). So

s �

r�1

X

i=1

�

�

i

� 1

2

�

+

�

2M � I � 1

2

�

+

X

1�i

1

<i

2

�r�1

�

i

1

�

i

2

+

r�1

X

i=1

(2M � I)�

i

=

r�1

X

i=1

�

2

i

� 3�

i

+ 2

2

+

4M

2

� 4MI + I

2

� 6M + 3I + 2

2

+

X

1�i

1

<i

2

�r�1

�

i

1

�

i

2

+ (2M � I)I

=

1

2

[

r�1

X

i=1

�

2

i

� 3I + 2(r � 1) + 4M

2

� 4MI + I

2

� 6M + 3I + 2 +

2

X

1�i

1

<i

2

�r�1

�

i

1

�

i

2

+ 4MI � 2I

2

℄

� 2M

2

� 3M + � = 2M

2

�M :

Proof. (Proposition 5.4) Let F = 0 be the equation of C over F

q

. By Theorem 5.2(5),

F admits a fatorization in

�

F

q

[X; Y; Z℄ of type

G

1

: : : G

r

H

2

1

: : :H

2

s

;

with r � 1 and s � 0. Let A be the plane urve given by

G := G

1

: : : G

r

= 0 :

Then A satis�es the hypothesis of Lemma 5.6 and it has even degree by Theorem

5.2(1). From Theorem 5.2(3) and B�ezout's theorem, for eah line `

P

(in the dual

plane) orresponding to a point P 2 K, we have

#(A\ `

P

) �M ;
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where 2M = deg(G), and so at least kM points orresponding to uniseants of K

belong to A. Sine k > 2t (see Remark 5.5) and 2t � 2M , then kM > 2M

2

and from

Lemma 5.3 we have that at least one of the uniseant points in A, says P

0

, is non-

singular. Suppose that P

0

passes through P 2 K. The point P

0

is learly F

q

-rational

and P

0

is not a point of the urve of equation H = 0: otherwise I(P

0

; C \ `

P

) > 2 (see

Theorem 5.2(3)). Then, I(P

0

; C \ `

P

) = I(P

0

;A \ `

P

) = 2 and so `

P

is the tangent of

C at P

0

. Therefore P

0

is not an inexion point of C, and the proof of Proposition 5.4

is omplete.

Let C

1

be an irreduible envelope assoiated to a speial point P

0

, and

� : X ! C

1

;

the non-singular model of C

1

. Then by Lemma 5.3(1) we an assume that X and � are

both de�ned over F

q

. In partiular, the linear series �

1

ut out by lines of P

2

(

�

F

q

)

�

on

X is F

q

-rational. Also, there is just one point

~

P

0

2 X suh that �(

~

P

0

) = P

0

.

Lemma 5.7. Let q be odd. Then,

(1) the (�

1

;

~

P

0

)-orders are 0; 1; 2;

(2) the urve X is lassial with respet to �

1

.

Proof. (1) follows from the proof of Proposition 5.4 while (2) from (1) and Corollary

2.10(1).

Remark 5.8. The hypothesis q odd in Lemma 5.7 (as well as in Proposition 5.4) is

neessary. In fat, from [23℄ and [101℄ follow that the envelope assoiated to the yli

(q �

p

q + 1)-ar, with q an even square, is irreduible and F

q

-isomorphi to the urve

of equation XY

p

q

+ X

p

q

Z + Y Z

p

q

= 0. It is not diÆult to see that this urve is

�

F

q

-isomorphi to the Hermitian urve H in Example 3.15 (see e.g. [15, p. 4711℄) so

that it is �

1

non-lassial.

Next onsider the following sets:

X

1

(F

q

) :=fP 2 X : �(P ) 2 C

1

(F

q

)g ;

X

11

(F

q

) :=fP 2 X

1

(F

q

) : j

1

2

(P ) = 2j

1

1

(P )g ;

X

12

(F

q

) :=fP 2 X

1

(F

q

) : j

1

2

(P ) 6= 2j

1

1

(P )g ;

and the following numbers:

M

q

=M

q

(C

1

) :=

X

P2X

11

(F

q

)

j

1

1

(P ) ; M

0

q

=M

0

q

(C

1

) :=

X

P2X

12

(F

q

)

j

1

1

(P ) ;(5.4)

where 0 < j

1

1

(P ) < j

1

2

(P ) denotes the (�

1

; P )-order sequene. We have that

M

q

+M

0

q

� #X

1

(F

q

) � #X (F

q

) and #X

1

(F

q

) � #C

1

(F

q

) :
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Proposition 5.9. Let K be an ar of size k and d the degree of an irreduible envelope

of K. For M

q

and M

0

q

as above we have

2M

q

+M

0

q

� kd :

To prove this proposition we �rst prove the following lemma.

Lemma 5.10. Let K be an ar and C

1

an irreduible envelope of K. Let Q 2 K and

A

Q

be the set of points of C

1

orresponding to uniseants of K passing through Q. Let

u := #A

Q

and v be the number of points in A

Q

whih are non-singular and inexion

points of C

1

. Then

2(u� v) + v � d ;

where d is the degree of C

1

.

Proof. Let P

0

2 A

Q

. Suppose that it is non-singular and an inexion point of C

1

. Then,

from Theorem 5.2(3) and the de�nition of A

Q

, we have that `

Q

is not the tangent line

of C

1

at P

0

, i.e. we have that I(P

0

; C

1

\ `

Q

) = 1. Now suppose that P

0

is either singular

or a non-inexion point of C

1

. Then from Theorem 5.2(3) we have I(P

0

; C

1

\ `

Q

) � 2

and the result follows from B�ezout's theorem applied to C

1

and `

Q

.

Proof of Proposition 5.9. Let Q 2 K and A

Q

be as in Lemma 5.10. Set

Y

Q

:= fP 2 X

1

(F

q

) : �(P ) 2 A

Q

g ;

and

m(Q) := 2

X

P2X

11

(F

q

)\Y

Q

j

1

1

(P ) +

X

P2X

12

(F

q

)\Y

Q

j

1

1

(P ) :

We laim that m(Q) � d. Indeed, this laim implies the proposition sine, from

Theorem 5.2(4),

Y

Q

\ Y

Q

1

= ; whenever Q 6= Q

1

:

To prove the laim we distinguish four types of points in Y

Q

, namely

Y

1

Q

:=fP 2 Y

Q

: �(P ) is non-singular and non- inexion point of C

1

g ;

Y

2

Q

:=fP 2 Y

Q

: �(P ) is a non-singular inexion point of C

1

g ;

Y

3

Q

:=fP 2 Y

Q

: �(P ) is a singular point of C

1

suh that #�

�1

(�(P )) = 1g ;

Y

4

Q

:=fP 2 Y

Q

: �(P ) is a singular point of C

1

suh that #�

�1

(�(P )) > 1g :

Observe that Y

1

Q

� X

11

(F

q

) and so

m(Q) � 2

X

P2Y

1

Q

j

1

1

(P ) +

X

P2Y

2

Q

j

1

1

(P ) +

X

P2Y

3

Q

j

1

1

(P ) +

X

P2Y

4

Q

j

1

1

(P ) :

Sine j

1

1

(P ) > 1 for all P 2 Y

4

Q

, the above inequality beomes

m(Q) � 2#Y

1

Q

+ 2#Y

4

Q

+#Y

3

Q

+#Y

2

Q

:
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Therefore, as to eah singular non-uspidal point of C

1

in A

Q

orresponds at least two

points in Y

3

Q

, it follows that

m(Q) � 2#fP

0

2 A

Q

: P

0

is either singular or not an inexion point of C

1

g+

#fP

0

2 A

Q

: P

0

is a nonsingular inexion point of C

1

g :

Then the laim follows from Lemma 5.10 and the proof of Proposition 5.9 is omplete.

5.2. The work of Hirshfeld, Korhm�aros and Voloh. Throughout the whole sub-

setion we �x the following notation:

� q is a power of an odd prime p;

� K is a omplete ar of size k suh that (3q + 5)=4 < k � m

0

(2; q); therefore the

degree of any irreduible envelope of K is at least three by Theorem 5.2(6);

� P

0

is a speial point of the envelope C of K and the plane urve C

1

of degree d is

an irreduible envelope assoiated to P

0

;

� � : X ! C

1

is the normalization of C

1

whih is de�ned over F

q

; as a matter of

terminology, X will be also alled an irreduible envelope of K.

�

~

P

0

is the only point in X suh that �(

~

P

0

) = P

0

; g is the genus of X (so that

g � (d� 1)(d� 2)=2);

� The symbols M

q

and M

0

q

are as in Set. 5.1;

� �

1

is the linear series g

2

d

ut out by lines of P

2

(

�

F

q

)

�

on X ; �

2

is the linear series

g

5

2d

ut out by onis of P

2

(

�

F

q

)

�

on X ; then �

2

= 2�

1

. Notie that dim(�

2

) = 5

beause d � 3 and that �

1

and �

2

are base-point-free;

� S is the F

q

-Frobenius divisor assoiated to �

2

;

� j

5

(

~

P

0

) is the 5th positive (�

2

;

~

P

0

)-order; �

5

is the 5th positive �

2

-order; �

4

is the

4th positive F

q

-Frobenius order of �

2

.

We apply the results in Sets. 2 and 3 to �

1

and �

2

. We have already notied that

the (�

1

;

~

P

0

)-orders, as well as the �

1

-orders, are 0,1 and 2; see Lemma 5.7. Then, the

(�

2

;

~

P

0

)-orders are 0,1,2,3,4 and j

5

(

~

P

0

), with 5 � j

5

(

~

P

0

) � 2d, and the �

2

-orders are

0,1,2,3,4 and �

5

with 5 � �

5

� j

5

(

~

P

0

).

Then, we ompute the F

q

-Frobenius orders of �

2

. We apply Proposition 3.5(1) to

~

P

0

and infer that this sequene is 0,1,2,3 and �

4

, with

�

4

2 f4; �

5

g :

Therefore

deg(S) = (6 + �

4

)(2g � 2) + (q + 5)2d ;

and

v

P

(S) � 5j

2

1

(P ); for eah P 2 X

1

(F

q

) ;

where j

2

1

(P ) stands for the �rst positive (�

2

; P )-order.
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Claim. j

2

1

(P ) equals j

1

1

(P ) (the �rst positive (�

1

; P )-order).

Proof. Let �

1

= fE + div(f) : f 2 �

0

1

n f0gg. From Set. 2.2 we an assume that

�

0

1

= h1; x; yi where

j

1

1

(P ) = v

P

(E) + v

P

(x) and j

1

2

(P ) = v

P

(E) + v

P

(y) :(�)

Now �

2

= f2E + div(f) : f 2 �

0

2

n f0gg, where �

0

2

= h1; x; y; xy; x

2

; y

2

i, and there

exists f 2 �

0

2

suh that

j

2

1

(P ) = v

P

(2E) + v

P

(f) :

Let f = a

0

+ a

1

x + a

2

y + a

3

x

2

+ a

4

xy + a

5

y

2

. From Lemma 1.4,

v

P

(2E) = �minfv

P

(1); v

P

(x); v

P

(y); v

P

(x

2

); v

P

(xy); v

P

(y

2

)g :

Suppose that 0 � v

P

(x) and 0 � v

P

(y). Then v

P

(2E) = 0 so that v

P

(f) = j

2

1

(P ) > 0

and hene a

0

= 0. Then the result follows from (�). Now suppose that 0 > v

P

(x) or

0 > v

P

(y). Then v

P

(2E) < 0 and hene a

i

6= 0 for some i 2 f1; : : : ; 5g. Then the result

follows from (�) and the fat that v

P

(f) � minfv

P

(x); v

P

(y); v

P

(x

2

); v

P

(xy); v

P

(y

2

)g.

We then have

deg(S) � 5(M

q

+M

0

q

) ;

where M

q

and M

0

q

were de�ned in (5.4).

Proposition 5.11. Let K be a omplete ar of size k suh that (3q + 5)=4 < k �

m

0

(2; q). Then

k � minfq �

1

4

�

4

+

7

4

;

28 + 4�

4

29 + 4�

4

q +

32 + 2�

4

29 + 4�

4

g ;

where �

4

is the 4th positive F

q

-Frobenius order of the linear series �

2

de�ned on an

irreduible envelope of K.

Proof. From the omputations above and Proposition 5.9,

deg(S) = (6 + �

4

)(2g � 2) + (q + 5)2d � 5(M

q

+M

0

q

) �

5

2

kd :

Now d(d� 3) � 2g� 2 and d � 2t = 2(q+2� k) (Theorem 5.2(1)). Then k(29+ �

4

) �

(28 + 4�

4

)q + (32 + 2�

4

). On the other hand, �

4

� j

5

(

~

P

0

) � 1 � 2d � 1 (Proposition

3.5(1)) and hene k � q � �

4

=4 + 7=4.

Next we onsider separately the ases �

4

= 4 and �

4

= �

5

.

Case �

4

= 4. In this ase, the orresponding irreduible envelope will be alled

Frobenius lassial. Proposition 5.11 beomes the following.
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Corollary 5.12. Let K be a omplete ar of size k suh that (3q+5)=4 < k � m

0

(2; q).

Suppose that K admits a Frobenius lassial irreduible envelope. Then

k �

44

45

q +

40

45

:

The bound in the orollary holds in the following ases:

(A) (Voloh [107℄) Whenever q = p is an odd prime;

(B) (Giulietti [35℄) The ar is yli of Singer type whose size k satis�es 2k 6� �2; 1; 2; 4

(mod p), where p > 5.

For the sake of ompleteness let us prove (A): Let C

1

be an irreduible envelope of K

and d the degree of C

1

. If p < 2d, then p < 4t = 4(p+2�k) so that k < (3p+8)=4 and

the result follows. So let p � 2d. Then from Remark 3.10 we have that C

1

is Frobenius

lassial and (A) follows from Proposition 5.11.

Next we show that, for q square and k = m

0

(2; q), Corollary 5.12 an only hold for q

small.

Corollary 5.13. Let K be an ar of size m

0

(2; q) and suppose that q is a square. Then,

(1) if q > 9, K has irreduible envelopes;

(2) if q > 43

2

, any irreduible envelope of K is Frobenius non-lassial.

Proof. (1) As we mentioned in (5.2), m

0

(2; q) � q�

p

q+1. Sine q�

p

q+1 > (2q+4)=3

for q > 9, (1) follows from Proposition 5.4.

(2) If existed a Frobenius lassial irreduible envelope of K, then from Lemma 5.14

and (5.2) we would have

q �

p

q + 1 � m

0

(2; q) � 44q=45 + 40=45 :

so that q � 43

2

.

Case �

4

= �

5

. Here, from Lemma 3.16 we have that p divides �

5

. More preisely we

have the following result.

Lemma 5.14. Either �

5

is a power of p or p = 3 and �

5

= 6.

Proof. We an assume �

5

> 5. If �

5

is not a power of p, by the p-adi riterion (Lemma

2.21) we have p � 3 and � = 6.

>From Proposition 5.11, the ase �

4

= �

5

= 6 provides the following bound:

Lemma 5.15. Let K be a omplete ar of size k suh that (3q + 5)=4 < k � m

0

(2; q).

Suppose that K admits an irreduible envelope suh that �

4

= �

5

= 6. Then p = 3 and

k �

52

53

q +

44

53

:
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As in the ase �

4

= 4, for q an even power of 3 and k = m

0

(2; q) the ase �

4

= �

5

= 6

our only for q small. More preisely, we have the following result.

Corollary 5.16. Let K be an ar of size m

0

(2; q). Suppose that q is an even power of

p and that K admits an irreduible envelope with �

4

= �

5

= 6. Then p = 3 and q � 3

6

.

Proof. From the p-adi riterion (Lemma 2.21), p = 3. Then from Proposition 5.11

and (5.2) we have

q �

p

q + 1 � m

0

(2; q) � 52q=53 + 44=53 ;

and the result follows.

>From now on we assume

�

4

= �

5

= a power of p :

Then, the bound

k � q �

1

4

�

4

+

7

4

(5.5)

in Proposition 5.11 and Segre's bound (5.1) provide motivation to onsider three ases

aording as �

4

>

p

q, �

4

<

p

q, or �

4

=

p

q.

Case �

4

>

p

q. Sine �

4

is a power of p, here we have that �

2

� pq and so from (5.5)

the following holds:

Lemma 5.17. Let K be a omplete ar of size k suh that (3q + 5)=4 < k � m

0

(2; q).

Suppose that K admits an irreduible envelope suh that �

4

is a power of p and that

�

4

>

p

q. Then

k �

(

q �

1

4

p

pq +

7

4

if q is not a square ;

q �

1

4

p

p

q +

7

4

otherwise :

If q is a square and k = m

0

(2; q), then �

4

>

p

q an only our in harateristi 3:

Corollary 5.18. Let K be an ar of size m

0

(2; q). Suppose that q is an even power of

p and that K admits an irreduible envelope with �

4

a power of p and �

4

>

p

q. Then

p = 3, �

4

= 3

p

q, and

k � q �

3

4

p

q +

7

4

:

Proof. From Lemma 5.17 and (5.2) follow that

p

q(p� 4) � 3 and so that p = 3. From

�

4

� 2d� 1 and 2d � 4t = 4(q + 2�m

0

(2; q)) � 4

p

q + 4 we have that �

4

� 4

p

q + 3

and it follows the assertion on �

4

. The bound on k follows from Lemma 5.17.
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Case �

4

<

p

q. Let

F (x) := (2x+ 32� q)=(4x+ 29) :

Then the bound

k �

28 + 4�

4

29 + 4�

4

q +

32 + 2�

4

29 + 4�

4

in Proposition 5.11 an be written as

k � q + F (�

4

) :(5.6)

For x > 0, F (x) is an inreasing funtion so that

F (�

4

) �

(

F (

p

q=p) = �

1

4

p

pq +

29

16

p+

1

2

+R if q is not a square ;

F (

p

q=p) = �

1

4

p

p

q +

29

16

p

2

+

1

2

+R otherwise ;

where

R =

8

<

:

�

841p�280

16(4

p

q=p+29)

if q is not a square ;

�

841p

2

�280

16(4

p

q=p+29)

otherwise :

Then from (5.6) and sine R < 0 we have the following result.

Lemma 5.19. Let K be a omplete ar of size k suh that (3q + 5)=4 < k � m

0

(2; q).

Suppose that K admits an irreduible envelope suh that �

4

is a power of p and that

�

4

<

p

q. Then

k <

(

q �

1

4

p

pq +

29

16

p+

1

2

if q is not a square ;

q �

1

4

p

p

q +

29

16

p

2

+

1

2

otherwise :

Corollary 5.20. Let K be a omplete ar of size m

0

(2; q). Suppose that q is an even

power of p and that K admits an irreduible envelope with �

4

a power of p and �

4

<

p

q.

Then one of the following statements holds:

(1) p = 3, �

4

=

p

q=3, and m

0

(2; q) satis�es Lemma 5.19.

(2) p = 5, q = 5

4

, �

4

= 5, and m

0

(2; 5

4

) � 613;

(3) p = 5, q = 5

6

, �

4

= 5

2

, and m

0

(2; 5

6

) � 15504;

(4) p = 7, q = 7

4

, �

4

= 7, and m

0

(2; 7

4

) � 2359.

Proof. Let q = p

2e

; so e � 2 as p � �

4

< p

e

. >From (5.2) and Lemma 5.19 we have that

(p� 4)p

e

=4 < 29p

2

=16� 0:5 ;

so that p 2 f3; 5; 7; 11g.

Let p = 3. If �

4

�

p

q=9 (so e � 4), then from (5.2) and m

0

(2; q) � q + F (

p

q=9) we

would have that

q �

p

q + 1 � q � 9

p

q=4 + 2357=16� 67841=16(43

e�2

+ 29) ;

whih is a ontradition for e � 4.
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Let p = 11. Then p

e

� 125 and e = 2 and �

4

= 11. Thus from Proposition 5.11 we

have m

0

(2; 11

4

) � 11

4

+ F (11), i.e. m

0

(2; 11

4

) � 14441. This is a ontradition sine

by (5.2) we must have m

0

(2; 11

4

) � 14521. This eliminates the possibility p = 11.

The other ases an be handled in an analogous way.

Case �

4

=

p

q. In this ase, aording to (5.5), we just obtain Segre's bound (5.1).

Next we study geometrial properties of irreduible envelopes assoiated to large om-

plete ars in P

2

(F

q

), q odd. In doing so we use the bounds obtained above and divide

our study in two ases aording as q is a square or not.

Case q square. Let X be an irreduible envelope assoiated to an ar of size m

0

(2; q).

Then from Lemma 5.7, and Corollaries 5.13, 5.16, 5.18, 5.20, we have the following

result.

Proposition 5.21. If q is an odd square and q > 43

2

, then X is �

1

-lassial. The �

2

-

orders are 0; 1; 2; 3; 4; �

5

and the F

q

-Frobenius �

2

-orders are 0; 1; 2; 3; �

4

, with �

5

= �

4

,

where also one of the following holds:

(1) �

4

2 f

p

q=3; 3

p

qg for p = 3;

(2) (�

4

; q) 2 f(5; 5

4

); (5

2

; 5

6

); (7; 7

4

)g;

(3) �

4

=

p

q for p � 5.

Case q non-square. In this ase there is no analogue to bound (5.2). From Corollary

5.12 and Lemmas 5.15, 5.17, 5.19, and taking into onsideration (5.6) we have the

following result.

Proposition 5.22. Let q > 43

2

and q = p

2e+1

, e � 1. Then, apart from the values on

�

4

, the urve X , �

4

and �

5

are as in Proposition 5.21. In this ase

m

0

(2; q) > q � 3

p

pq=4 + 7=4

implies

(1) �

4

=

p

q=p;

(2) m

0

(2; q) < q �

p

pq=4 + 29p=16 + 1=2.

In partiular, our approah just gives a proof of Segre's bound (5.1) and Voloh's

bound [107℄. However, both propositions above show the type of urves assoiated to

large omplete ars. The study of suh urves, for q square and large enough, allowed

Hirshfeld and Korhm�aros [50℄, [51℄ to improve Segre's bound (5.1) to the bound in

(5.3).

Next we stress here the main ideas from [51℄ neessary to deal with Problem 5.1. Due

to Proposition 5.9, the main strategy is to bound from above the number 2M

q

+M

0

q

(whih is de�ned via (5.4)). For instane, if one ould prove that

2M

q

+M

0

q

� d(q �

p

q + 1) ;(5.7)
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where d is the degree of the irreduible envelope whose normalization is X , then from

Proposition 5.9 would follow immediately an aÆrmative answer to Problem 5.1. How-

ever, sine we know the answer to be negative for q = 9 and d � 2t = 2(q+2�m

0

(2; q)),

then one an assume that d is bounded by a linear funtion on

p

q and should expet

to prove (5.7) only under ertain onditions on q.

Lemma 5.23. Let q be an odd square. If (5.7) holds true for d � 2

p

q�� with � � 0,

then m

0

(2; q) < q �

p

q + 2 + �=2. In partiular, if (5.7) holds true for d � 2

p

q, then

the answer to Problem 5.1 is positive; i.e,, m

0

(2; q) = q �

p

q + 1.

Proof. If m

0

(2; q) � q�

p

q+2+�=2, then from d � 2(q+2�m

0

(2; q)) we would have

that d � 2

p

q � � and so, from Proposition 5.9 and (5.7), that m

0

(2; q) � q �

p

q + 1,

a ontradition.

Now, in [50℄, (5.7) is proved for d �

p

q � 3 and q large enough, and so (5.3) follows.

More preisely we have the following.

Theorem 5.24. (Hirshfeld-Korhm�aros [51, Thm. 1.3℄) Let q be a square, q > 23

2

,

q 6= 3

6

. Let 3 � d �

p

q � 3. Suppose that �

1

is lassial, that 0; 1; 2; 3; 4;

p

q are the

�

2

-orders, and that 0; 1; 2; 3;

p

q are the F

q

-Frobenius orders of �

2

. Then (5.7) holds.

Proof. (Sketh) Suppose that 2M

q

+M

0

q

� d(q �

p

q + 1). We are going to show that

2M

q

+ M

0

q

= d(q �

p

q + 1). Notie that d � (

p

q + 1)=2 by Corollary 3.9(1). Let

� = (f

0

: : : : : f

5

) be a morphism assoiated to �

2

. From Lemma 2.9 there exist

z

0

; : : : ; z

5

2

�

F

q

(X ), not all zero, suh that

P

5

i=0

z

p

q

i

f

i

= 0. Set

Z := (z

0

: : : : : z

5

)(X ) :

(This urve is related to the dual urve of �(X ) sine it is easy to see that

P

5

i=0

z

p

q

i

(P )X

i

= 0 is the hyperplane tangent at P for in�nitely many P 's.)

We have [51, Props. 8.3, 8.4, 8.5℄

(I)

p

qdeg(Z) � d(2d+ q + 3)� (2M

q

+M

0

q

);

(II) deg(Z) �

p

qj

1

(P ) for any P 2 X ;

(III) deg(Z) � 2

p

q whenever C

1

is singular.

It follows from (I) and (II) that j

1

(P ) � 2 sine d �

p

q� 3. Now from Corollary 2.18

and the hypothesis on d there are three possibilities for (�

1

; P )-orders:

(A) j

2

(P ) = 2j

1

(P );

(B) j

2

(P ) = (

p

q + j

1

(P ))=2;

(C) j

2

(P ) =

p

q � j

1

(P ).
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We see that points of type (C) annot our sine j

1

(P ) � 2 and d �

p

q � 3. Now

from the proof of [51, Prop. 9.4℄ we have that

p

qdeg(Z) = 2(dq + d� 2M

q

�M

0

q

) � 2d

p

q; ;

so that deg(Z) < 2

p

q as d �

p

q� 3. It follows from (III) that C

1

is non-singular; i.e.,

X = C

1

. In partiular the �

1

-Weierstrass points are of type (B) and we have

deg(R

1

) = 3d(d� 2) = (

p

q � 3)=3� ;

where R

1

is the rami�ation divisor of �

1

and � is the number of points of type (B).

Now we use the following relation between deg(Z) and � [51, Prop. 9.3℄:

(IV) 3deg(Z) = 2� .

Sine we already notie that deg(Z) � 2d it follows that d � (

p

q + 1)=2; i.e., d =

(

p

q + 1)=2. Next we show that � = M

0

q

. For P of type (B), the (�

2

; P )-orders are

0; 1; 2; (

p

q + 1)=2; (

p

q + 3)=2;

p

q + 1. Suppose that P 62 X (F

q

). Then 2`

P

is the

tangent hyperplane L

4

(P ) at P with respet to �

2

, where `

P

is the tangent line at P

with respet to �

1

. It is easy to see that �

q

(P ) 2 L

4

(P ) so that �

q

(P ) 2 `

P

. This

implies d > (

p

q+1)=2, a ontradition. Thus M

0

q

= 3(

p

q+1)=2. Finally by means of

deg(S

1

) = d(q + d� 1) = 2M

q

+

p

q + 1

2

M

0

q

;

where S

1

is the F

q

-Frobenius divisor assoiated to �

1

, we �nd that

M

q

= (

p

q+1)(q�

p

q�2)=4, and one easily heks that 2M

q

+M

0

q

= d(q�

p

q+1).

Remark 5.25. The plane urve X of degree d = (

p

q+1)=2 in the above proof satis�es

#X (F

q

) = M

q

+M

0

q

= q + 1 +

p

q(d� 1)(d� 2) ;

i.e, it is F

q

-maximal. If q � 121, suh a urve is F

q

-isomorphi to the Fermat urve

X

(

p

q+1)=2

+ Y

(

p

q+1)=2

+ Z

(

p

q+1)=2

= 0; see [13℄.

Reently, Aguglia and Korhm�aros [1℄ proved a weaker version of (5.7) for d =

p

q� 2

and q large enough, namely

2M

q

+M

0

q

� d(q �

p

q=2� 9=2)� 3 :

>From this inequality and Proposition 5.9 one slightly improves (5.3) to m

0

(2; q) �

q �

p

q=2� 11=2 whenever d =

p

q � 2 and q is large enough. Therefore the paper [1℄,

as well as [50℄ or [51℄, is a good guide toward the proof of (5.7) for

p

q� 2 � d � 2

p

q.
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