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Abstract. We established the existence of reprodutive weak solutions of
a generalized Boussinesq model for thermally driven convection in exterior
domains.

1 Introduction

In this work we study the existence of reprodutive weak solutions for the
equations governing the coupled mass and heat flow of a viscous incompress-
ible fluid in a generalized Boussinesq approximation by assuming that vis-
cosity and heat conductivity are temperature dependent. This study is done
in a exterior domain 2 C IR*, in a the time interval [0, 00). The problem we
have interest is (see [1], for instance):

%‘: — div(v(0)Vu) +u- Vu—afg+Vp = 0, in O
divu = 0, in O (P1)
Y. ~

=~ Av(E(O)V0) +u- V6 = 0, inQ

where,
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- 0 =Q x (0,00), u(z,t) € R denotes the velocity of the fluid at point
xz € Q and time ¢t € [0, 00);

- O(x,t) € IR, denotes the temperatura;
- p(x,t) € IR denotes the hydrostatic pressure;
- g(t,z) € IR? is a gravitational field;

- v(-) is the kinematic viscosity;

()
- k(+) is thermal conductivity;

-« > 0 is a positive constant associated to the coefficient of volume
expansion.

Without loss of generality, we have considered the reference temperature
as zero.
The symbols V, A and div denote the gradient, Laplacian and divergence

u
operators, respectively. We also denote e by u;. The i component of u-Vu
ou; 00
is given by [(u-V)ul|; = u;i— and u-Vél = Uj—-.
g y [(u-V)u] ;Jaxj ;aaxj

The first equation in problem (P1) corresponds to the balance of linear
momentum; the second one says that fluid is incompressible and the third
equation is the balance of temperature.

We assume that Q = K¢, where K C IR? is compact, and its boundary
OK is de class C?. We observe that I' = 0Q = 0K.

Thus, the boundary conditions and conditions at infinity are

u(z,t) = 0, zel, tel0,00) (1)
O(x,t) = 0p>0, xel, te]0,00) (2)
lim u(z,t) = 0, lim O(x,t)=0. (3)

Let {u,0} be a weak solution of problem (P1) (the exact definition will
be given later on). If the functions u and 6 satisfy

u(z,0) =u(z,T), 6(z,0) =0(z,T), (4)



then we say that the system has the reproductive property (see Kaniel and
Shinbrot [6] for the case of Navier-Stokes equations). We observe that the
above property is a generalization of the notion of periodicity. We will show
that problem (P1) has always a reproductive weak solution.

Problem (P1) was considered by Lorca and Boldrini [10], [11] in a bounded
domain with Dirichlet’s conditions. The reduced model, where v and k are
positive constants, was discussed by many authors, see for instance, Korenev
[7], Rojas-Medar and Lorca [17], [18] (in a bounded domain) and Hishida
[5], Oeda [14], [15] (in a exterior domain). The related stationary model was
considered by Notte-Cuello and Rojas-Medar [13].

2 Preliminaries

The functions in this paper are either R or R? valued, and we will not distin-
guish these two situations in our notation, since that will be clear from the
context.

The extending domain method was introduced by Ladyzhenskaya [8] to
study the Navier-Stokes equations in unbounded domains. As observed by
Heywood [3] the method is useful in certain class of unbounded domains.
Certainly, our domain is in this class. The basic idea is the following: The
exterior domain {2 can be approximated by interior domains €2, = B,, N 2,
where B,, is a ball with radius m and center at 0, as m — oo.

In each interior domain §2,,, we will prove the existence of a weak solu-
tion, by using the Galerkin method together with the Brouwer’s fixed point
theorem as in Heywood [3]. Next, by using the estimates given in Ladyzhen-
skaya’s book [8] together with diagonal argument and Rellich’s compactness
theorem, we obtain the desirable weak solution to problem (P1) and condi-
tions (1) through (4).

Let D denote Q or Q,,, D' = D x [0,7] and DUT = (DUT) x [0,7].
And consider the following notation

= {u; D*u e L?(D),|a| <r},

= Completion of C¥(D) in W™?(D),
{veCFD); divv =0},

= Completion of Cg,, (D) in norm [|V||,
= Completion of Cg, (D) in norm |||,
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Wo(D) = {p€C(D);div g =0},
W(D) = {¢eCPDUT): o(I) =0},
Wor(D) = {peCZ(D); oz, T) = p(x,0)},
WD) = {¢ € W(D); v(x,T) =(x,0)},
LP(0,T;J(%) = {ueL2(0,7;J(%)); u(z,T) =u(z,0) z € Q4 a.e.},
LP(0,T; Hy (%)) = {w € LP(0,T; H}(%)); w(z,T) =w(z,0) x € Q) a.e.},
LP(0,T; L8()) = {fe L2(0,T; L5(W)); f(x,T) = f(x,0) z € Qp ae.}.

The norm ||-]] is the L2-norm and |||, denotes the LP-norm for 1 < p < oo.
We observe that J(D) is equivalent to

{¢ e WH(D) ; ¢loa =0, dive =0},
as was proved by Heywood[4].
When p = 2, as it usual, we denote W™P(D) = H"(D) and Wy*(D) =
Hy(D).
We make use of some inequalities with constants that depend only on the

dimension and are independent of the domain (see [8] chapter I).

Lemma 1 Suppose the space dimension is 3, with D bounded or unbounded.
Then

(a) For u e Wy*(D) (or J(D) or H}(D)), we have
ullsp) < CLlIVull L2
where O, = (48)4/°.
(b) (Hélder’s inequality). If each integral makes sense. Then we have

1,1
(- V)v, w)| < 3547 a1 |V Vo[ w

Lr(D)
where p,q,r > Oand;}+%+%: 1.

Lemma 2 Suppose that D is a bounded domain in IR" and its boundary OS2
is of class C*. Let us take an orthonormal basis {w7}52, of L*(D). Then for
any € > 0, there exists a number N, such that



Ne
[ 2)Mﬂ+ﬂﬂmeMMEme% (5)

where m > -2t (n >2),m>1(n=1)and N, is independent of u.
The following assumptions will be needed throughout this paper.

(A1) wy C K ( wy is a neighborhood of the origin 0) and K C B = B(0, d)
which is a ball with radius d and center at 0.

(A2) 00 =T = 0K € C2.

(A3) g(z) is a bounded and continuous vector function in R*\wy. Moreover
g € LP(Q) for p > 6/5.

We assume that the functions v(-) and x(-) satisty

0< Vo(To) < V(T) < VI(TO)J
0 < ko(Tp) < k(1)

ﬁ
[N
=

=
S

for all 7 € R, where

vo(To) = inf{w(); [t < sup |To[}/2,11(Th) = sup{v(®); [t] < sup [To[} ,

with analogous definitions for k¢(7p) and k;(7p), and v, k, are continuous
functions.

To transform the boundary condition on 7" to a homogeneous boundary
condition, we introduce an auxiliary function S (see Gilbarg and Trudinger
[2] pp. 137).

Lemma 3 There exists a function S which satisfies the following properties
(i) S(I') =T;
(i) § € CFR);

(iii) for any € > 0 and p > 1, we can redefine S, if necessary, such that
||S||LP < €.



Now, making ¢ = # — S we obtain

— —div(v(¢+ S)Vu) +u-Vu —apg —aSg+Vp = 0,
divua = 0,

aa—f—div(/@(go—i—S)V(p)—I-u-Vgo—div(m(cp-l—S)VS)—l—u-VS = 0,

in 2, with boundary conditions

u=0and ¢ =0 on 0,
lim u(t,z) =0; |l|irn o(t,z) =0.
T|—00

|x|—00

Definition 1 The solution (u,¢) € (L*(0,T;J(2)) N L2(0,T;L5(2))) x
(L2(0,T; H(2)) N L2(0,T; L8(Q)) is called a reproductive weak solution of
problem (P1) and conditions (1) through (4), if it satisfies

/ {(u,vy) + (v(¢+ S)Vu,Vv) + B(u,v,u) — a(pg,v) — «(Sg,v)}dt = 0,

/ {(p,4) + (k{0 + 5) Ve, V) +b(u, ¥, ©) + (k(p + S)VS, Vi) + b(u, 9, ) }dt = 0,

for allv € D,m(ﬁ) and all ¢ € Dy(Q). Where

B(u,v,w) = (u-Vv,w) /Z w;(t, ) (0v;/0x;)(t, x)w;(t, x) dw,

1,j=1

b(u,p,v) = (u- Vo, ) = / Z w;(t, ) (0p;/0x;)(t, x);(t, x) dx .

t,j=1

Theorem 4 (Ezistence) Under Assumptions (A1), (A2) and (A3), there ex-
ists a weak reproductive solution for problem (P1) and conditions (1) through

(4)-
3 Auxiliary problem.

Following the extending domain method, we first present a lemma which
ensures the existence of weak solutions for interior problems in domains €2, =
B,, N ). A interior problem, P,,, is stated as follows:
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aa_‘tf— div (u(n + S)Vv) +v-Vv —ang —aSg+Vp = 0,

divv = 0,

%— div (k(n+ S)Vn) +v-Vn— div (k(n+ S)VS)+v-VS = 0,

v = 0, on 08, =002 NOIB,,
n = 0on 08, =002 NJIB,,

V(',T) = V(',O), U('aT) = 77('70)'

Definition 2 (v,n) € (L*(0,T; J(Q,,,))NLA(0,T; L(Q))) x (L*(0, T; Hy () ) X
L2(0,T; L5(2))) is called a reproductive weak solution for (Py,) if it satisfies

/0 (v,wy) + (v(n+ S)Vv,Vw) + B(v,w,v) — a(ng,w) — a(Sg,w) = 0,
/0 (0, %) + (k(n + S)Vn, Vb) + b(v, 1, n) + (k(n + S)VS, Vi) + b(v, S,¢) =0,

for all w € l/jgm(@m), and for all ¢ € ﬁﬂ(ﬁm)

Lemma 5 Under Assumptions (A1), (A2), and (A3) we can construct a
weak solution (@™, ™) of (Py,).

To prove the existence of reproductive weak solutions for the system (P,,)
we use the Galerkin method together with Brouwer’s fixed point theorem as
in Lions [9](see also Heywood [3]).

First, we prove the a priori estimates for weak solutions of (P,).

Lemma 6 Let (v™,n™) a weak solution of (P,,). Then, they satisfy the
following estimate

(v—ﬁIISH v+ SV < (1), (6)

Yy

d m||2 m||2
SV + ) +

where v = 1 — 3aC%? [V kovollg||3 and f(t) = 9C% [ko||Si||? + k3 /ko||VS||* +
2
90*C7 [2v0]Ig|I?]|S |3



Proof. Multiplying (P,,); and (P,,):; by v™ and n™, respectively, after
on integrate on €2, we get

d
@Ilvmll2 + (v(™ + S)Vv™, Vv™) = (an™g,v™) + (aSg, v™),

d
@||nm||2+(k(nm+5)vnm, V™) = —(v"™-VS,n")—(S,, n")—(k(n™+S)VS, V™).

Now, we estimate the right-hand sides of the above equalities by using
the Lemma 1

3allgls 1™ s v s
3alg |1l [v™ e

(v V™, 8) < 3V el Vo™ 1S ],
311Sulls 1™ s,

kN [VS].

IA A

o
E
<
0
3
\E SN— j S— SN—
Il

VANVAN

Observe that

(v(n™ 4+ S)Vv™, Vv™)
(k™ +S)Vy™, V™)

vol Vv,
kol V™ I1%,

the estimates and equalities imply
d
IV P+ woll VTP < 3allgllslln™ sl v™lls + 3allgllllS sl v™ls,
d
"I+ kol P < 3V eIV 1S 1ls + 3lISullg 1™ s + V0™ VS

The Ladyzhenskaya’s inequality implies

d m m m m

V™Il [17) + vl VY™ [P+ kol I V™

3@02 m v m 9@202

\/—|| glls( 0||V77 1P+ SNV %) + L|| 15113
2 | C% 2

+—||VVm|| IS5V v™ " +

L 9C¢
L||5t||6 + 1||VS||2

VAN

3k
0||V77 I*



Thus,

d ) N 3aC? 90% 2 3aC? 5
LA™ + 1) + 22 g S|I2)| V™ Vi
S UV I+ ™7 + 5 (1= \/mﬂ ls = = ISIDIVY™ " + 5 o - m)” |
902 9a2C'2
< L||St||6 + 1||V5||2 L||g|| IS]5-
We put 7 = 1- 2L ||g||s and f(t) = 2L || Sil|o+ 1|V S2+ 25 |g] /IS 3.

This proves Lemma 8

Proof of the Lemma 7

Now, we prove the existence of the solution (v™,n™) for (). Let m be
arbitrarily fixed. Let {e'(2)}:2, € Cg2 (Qm) (respec. {¢'(2)}22 C C§°(m))
be a sequence of functions orthonormal in L*(2,,) and total in J(€,,) (respec.
H{(Q4)). As k=™ approximate solution of (B,,), we choose the functions

vi(t, ) =

M-

cj(t)e! (x), 1 (t,x) = dej(tW ()

7j=1

which satisfy the equations
() "+ S)VVE V) + BV, VR @) — a(n'e, @) — oS, ¢') = (@)
(}, &) + (6(* + )V, V') + b(v*, 1", &) + (k(n* + S)VS, V&) + b(v*,S,¢") = 0,

for1 <j<k.
Note that the solutions (v¥,n*) must satisfy the estimate (7). Thus, we
have

d
UV + lEI7) + MAVVHE + V7)< £),

where o0
R
M = min{— Sy - —L||5|| ) "),

Let d,, be the diameter of €2,,. Making use of Poincaré inequality, we obtain
d
T UVEP A+ 17 + AV + IF1%) < £ (1)

where \,, = ?i.—ZM. Or equivalently,

([ I ?) < e (2).



Integrating from 0 to 7', we get
T
M (VED)IP + I (T)IP) < IV O)IF + 10" (0)]1* +/0 e f(t)dt.

We denote by 2*(t) the vector (v¥, n¥) and ||2*(t)||* = [[vE(&)]|? + ||n*(#)]|?.
With this notation, the above inequality is rewritten as

T
(DI < (120 +/ e f(t)dt.

0

Now, let us define the mapping L* : [0,7] — IR?** as

Lk(t) == (Clk(t), ceey Ckk(t), dlk(t), ceey dkk(t))

where ¢ (t), di(t) ,i = 1, ...,k are respectively the coefficient of the expan-
sion of v¥(¢) and n*(t), as defined before.

Keep on mind that
L) g = 12, (8)

since we have chosen the basis {e*(x)}2, and {¢'(x)}$°, to be orthonormal
in (L2(Q,))"™.

Now, we define the mapping ®* : IR?* — IR?* as follows: given L, €
IR?* and define ®%(Ly) = L*(T'), where L*(t) corresponds to the solution
of problem (P1) with initial value corresponding to Lg. It is easy to see
that ®* is continuous. We want to prove that ®* has a fixed point. As a
consequence of fixed point theorem of Brouwer, it is enough to prove that
for any A € [0, 1], a possible solution of the equation

Lg(A) = A®*(Lg (M) (9)

is bounded independent by A.

Since LE(0) = 0, by (3.11), it is enough to prove this fact for A € (0, 1].
In this case, (3.11) is equivalent to ®*(LF(\)) = LE(\)/A. By definition of
®F and condition (3.10), inequality (3.9) implies that

T
e L5 (N)/ Ml < L6 (Ao +/ M f(t)dt,
0

which yields

T Amt
e (e
L e < 2Oy (10

10



since A € (0,1]. This bound is independent of A € [0,1] and, therefore, ®*
has a fixed point LE(1) satisfying the same bound as (3.12).

This corresponds to the existence of a solution v*(t), n*(t)) of (P;) satis-
fying v¥(0) = v*(T'), and n*(0) = n*(T'), that is a reproductive approximated
solution.

Moreover, ||[vF(0)|| + [[7*(0)||* = ||LE(1) |32 < N, which is also indepen-
dent of k.

On the other hand, from (3.6) we have

IV @O)11* + ||77’“(75)||2+M/0 (VvE, VvF) + a(Vir", Vi*))ds

< / F(B)dt + [[VEO)12 + |7 (0)
< N(f)+ N,

for k > 1, where N(f) = [, f(t)dt.
Moreover, the sequence (v¥, %) is bounded in L?(0, T'; J(Q,)) x L?(0, T; Hi (1))
and in L(0,T; H () x L(0,T; L*(2y,)).
Since J(,) (respectively H}(€2,,)) is compactly embedded in H(,,)
(respectively L?(£2,,)) we can choose subsequences, which we again denote
by (v¥,n¥), and elements u™ € L?(0,T; J(Q,,)), 7" € L*(0,T; H}($,,)) such
that
vF = @™ weakly in L*(0,7; J(Q,,)) and weakly* in L°(0,7"; H(2,)),
n* — 7™ weakly in L*(0,T; Hy(€,,)) and weakly* in L>(0,T; L*(Q,,)).

Furthermore, by using the Lemma 2 and (3.13) we see that

v — ™ strongly in L*(0,T; H(Q,,)),
n* — §™ strongly in L*(0,T; L*(Q,,)).

Now, it is enough to take the limit £ — oo in (P,,). Therefore, (@™, 7™)
is a required weak solution to problem (P,,).

Lemma 7 Let (@™, 7™) be a weak solution for (P,,) obtained in Lemma 7.
Put

m Jam(tx) if @€ Qp,
u (t’x)_{ 0 if 7 € Q\ Q,,

11



m Mt x) if € Qy,
? (t’x)_{o if 7 € Q\ Q.
Then it follows

u™ € L*(0,T; J(Q)) N L7(0, T L°()),

@™ € L*(0,T7 Hy(2)) N LZ(0,T7; L°(<2))

and,

T T
[ v <n [ivene < e,
0 0

T T
/0 Ja™ sy < b1, / 1™ oy < o

where ¢y, {5 are taken uniformly in m.
Proof. From (3.6), we have, integrating in [0, 7]

M/O (IVVE@IP + [IVo* (@)[1*)dt < N(f), (11)

since vF(t), n*(t) are reproductive with period 7. Consequently, if we take
k — oo in (3.13),then we obtain by the lower semicontinuity of the norm
with respect to the weak convergence

M/O (Iva™ @I + V™ (©)I")dt < N(f). (12)

On the other hand, the equality w"™(7) = @w™(0) in L?*(f,) implies
a™(T) = u™(0) for a.e. z € €, and by using the Lemma 2 we ob-
tain w™(t) € L°(Q,), therefore we find ™(T) = u™(0) as elements of
L%(9,,,). Thus, we obtain w™ € L2(0,T; L%(£,,)). Analogously, we show that
7€ L2(0,T; I5(2))

;From this and (3.15) , it follows that for all m > 1,

a” e L*(0,T; J(Q) N LA(0,T; L5 (),

12



7" € L*(0,T5 Hy () N L7 (0, T; L°(9)),

and

CLL/O (™ ()| Zogqy + 7™ (01760 dt
< /0(||Vﬁm(t)||2+||Vﬁ”‘(t)ll2)dt (13)
< CLON(f)-

4 Proof of Theorem 5
According to the uniform estimate (3.16), we can choose subsequences u™
and ©™ and

u € L*(0, 15 J()NLZ (0,5 L°()) and @ € L*(0, 75 Hy())NL7(0, T L($2))
such that

ml

u” — u weakly in L?(0,77; J(2)) and weakly in L2 (0, T; L°(Q)}(4.1))

©™  — @ weakly in L?(0,T; Hy(Q2)) and weakly in L2(0,7; L°(9)).

Now, we claim that there exist subsequences u™ and ¢™ such that for
any bounded Q' C

u™  — ustrongly in L?(0,T; L*(Q)),

©™ — o strongly in L*(0,T; L*())).

We put K; = €, then {K;}52, a sequence of compact sets such that
K, C Ky, C..— Q(j — o0). Here, for each K; we take a;(x) € C5°(Q)
with the property 0 < « < 1, a;|x; = 1, and supp a; C ;;,. We note that
Kj C supp «;. Here and from now on, let us denote ||.[|o, = ||.||z2(,) and
d; = diameter of ;. Then we construct the desired {u™ } as follows. First we

consider a sequence {a;(x)u™(x)}_; this is a uniformly bounded sequence

13



of L?(0,T; Hy(€)). Indeed, noting that u™(I') = 0 and using Poincaré’s
inequality on €, we see that [|a;u™]|q, < [|u™|lq, < 52||Vum||92. Hence we
have by (3.16)

T d2
[ @it < F [ ook

d2
2C),

VAN

S N ()

d
Moreover, [[V (™) o, < [(Van)Ju™ o, +lay(Fum) o, < (2 Varlpx(e,+

o] zoe () [[VU™ |-
Therefore, we have

/ IV ) 0

d2
< (f||Va1||Loo (92) + o[l L=02))? 20, S V(T

These estimates imply that {a;u™} is uniformly bounded in L?(0,T; H}(2)).
Consequently, there exists a subsequence {a;u'? }521 which converges weakly
in L*(0,T; Hy(€23)). Furthermore, according to Lemma 2, we get

T L T T
/ |au'” — agu||g, dt < Z/ (au' — aqu'?, e™)g + 5/ lagul? — a1u1q||%/vl,2(92)dt
0 —Jo 0

le T
< /0 (a1u'? — ayu, €2, + 4=Co N(f)
1

n=

where C,, depends on .||a1||o, ||[Vai || and is independent of p and ¢. Con-
sequently, if p, ¢ — oo, we have in (), since ¢ is arbitrary in ( ), the sequence
{aqu'?}52, converges strongly in L*(0, T; L*(€2;)). This implies that {u'?}5%,
converges strongly in L?*(0,7T; L?(K,)). Using the same reasoning as before,
we obtain {u/?}>°, (j = 1,2, ...). We choose diagonal components and denote
them by {u™ }m, 1, then it converges on all K; in L*(0, T'; L?(K)) sense. The
proof for {¢™ }%_ can be done in a similar way.

14



Once we obtain these convergence and limit results, we can show that
(u, ¢) is the desired reproductive weak solution for (P1) and conditions (1)
through (4). Indeed, let (v,1) be any arbitrary test function. Then we find
a bounded domain 2" and kg such that supp v, supp ¢ C Q' C Qy, C (Y, for
all k& > ko. Moreover, by Lemma 2.1 and (3.16)

T
/ (u* - Vv,u") — (u- Vv, u)dt
0

T
< /0 {3l1u® = 0¥ ) 10| o IV VI ooy + Bllu® — 0¥ [T [ull oo | V VIl aqr) Yt

VAN

T T

0 / 0 — w2 g dt) / 1 |26y dt) 2 sp [ 9 3
T T

o / i — w2 0y dt) 2 / 200 dt) 2 sup [ V]| sger)

Using convergences (4.1) and the above estimate, we get
T
/ (u* - Vv,u*) — (u-Vv,u)dt — 0,
0

as k — oo. The other convergences are in the same way established. Thus,
(u,p) is a reproductive weak solution for problem (P1) and conditions (1)
through (4).
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