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Abstract

The Kirchhoff-Helmholtz integral is a powerful tool to model the scattered wavefield from
a smooth interface in acoustic or isotropic elastic media due to a given incident wavefield and
observation points sufficiently far away from the interface. This integral makes use of the Kirch-
hoff approximation of the unknown scattered wavefield and its normal derivative at the interface
in terms of the corresponding quantities of the known incident field. An attractive property of
the Kirchhoff-Helmholtz integral is that its asymptotic evaluation recovers the zero-order ray
theory approximation of the reflected wavefield at all observation points where that theory is
valid. Here, we extend the Kirchhoff-Helmholtz modeling integral to general anisotropic elastic
media. It uses the natural extension of the Kirchhoff approximation of the scattered wavefield
and its normal derivative for those media. The anisotropic Kirchhoff-Helmholtz integral also
asymptotically provides the zero-order ray theory approximation of the reflected response from
the interface. In connection with the asymptotic evaluation of the Kirchhoff-Helmholtz inte-
gral, we also derive an extension to anisotropic media of a useful decomposition formula of the
geometrical spreading of a primary reflection ray.



1. Introduction

The wavefield scattered from a smooth interface can be represented by a surface integral. Both
the field and its normal derivative at the interface appear in the integrand. Fundamental repre-
sentations for the acoustic, isotropic and anisotropic elastic cases can be found in the literature
(see, e.g., Aki and Richards [2]; Baker and Copson [3]; Bleistein [4]); Kupradze [5]). These rep-
resentations can be recast as modeling formulas for reflection from a transparent interface by
exploiting the Kirchhoff approximation which expresses the unknown scattered field and its nor-
mal derivative in terms of the known incident field (Bleistein [4], Frazer and Sen [6], Tygel et
al. [7]). The result is called the Kirchhoff-Helmholtz integral.

We derive the extension of the Kirchhoff-Helmholtz integral to anisotropic elastic media
starting with an integral representation for the wavefield at a receiver point (Aki and Richards
[2]). The incoming wavefield and the Green’s function from the receiver point to the interface are
both replaced by the geometric ray approximation (GRA). The GRA Green’s function is often
expressed as a function of phase velocities and the relative geometrical-spreading factor that may
be computed from mixed second-order traveltime derivatives with respect to the phase-front co-
ordinates that are normal to the phase-velocity vectors. Here we prefer to work with a GRA that
is expressed by the group velocities and a relative geometrical-spreading factor that is expressed
by the mixed second-order traveltime derivatives with respect to the ray coordinates that are
normal to the group-velocity vectors. The relationship between the geometrical-spreading factors
is shown in Appendix A.

The Kirchhoff approximation for anisotropic media is done in the same way as for isotropic
media. Both the outgoing field and its derivative at the interface are approximated from the
specularly reflected wavefield from the source. This approximation has also been indicated by
de Hoop and Bleistein [8]. To verify the resulting anisotropic Kirchhoff-Helmholtz integral, we
show that the stationary-phase evaluation is the GRA for the reflected wavefield. Necessary
decomposition formulas for the geometrical-spreading factors for the reflected wave are given in
Appendix B. These are extensions of the isotropic elastic formulas (Hubral et al. [9],[10] and
Cerveny [11]). The GRA of the reflected wavefield is then expressed by the total geometrical
spreading and a reflection coefficient which is normalized with respect to the vertical energy
flux. This formula also satisfies reciprocity.

2. The geometric ray approximation

Wave propagation in an inhomogeneous anisotropic elastic solid is governed by the elasto-
dynamic equations (Aki and Richards [2]). In the frequency domain, these are

w?pU; + (cijuUry),; =0, i,k =1,2,3. (1)

Here, w is the frequency, U; = U;(x,w) is the i-th component of the displacement vector U (z.w),
p = p(x) is the density, and c;ji; = c;jri(x) are the elastic parameters of the medium at the
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point & = (x1,%2,23). The elastic parameters satisfy the symmetry relations cjju = cjiki =
Cijik = Ckiij- In equation (1), the notation “,;” stands for d/0z;, and a repeated index implies
summation with respect to that index.

The Green’s function, Gy, (x,w; x*), satisfies the equation
w2me + (Cijlekn,l),j = — 6m6(:13 — ;US) . (2)

For homogeneous boundary conditions, it also satisfies the reciprocity relation (Aki and Richards
[2], equation (2.39))
Gij(@,wia’) = Gjila’,wie) . (3)

For a specific ray connecting a source point &*® to a scattering point x, the GRA Green’s function
is (Cerveny [11], Chapman and Coates [12])

Gij@,wi2’) = h(z) Az, 2°) T @) hy(2) (4)

where h(z®) and h®(x) are the unit polarization vectors in the ray direction at the source z*
and at the point @, respectively. T'(x, x®) is the traveltime along the ray from x to x*, and
A(z,x®) is a complex amplitude function taking into account possible caustics and phase-shift
at the source. It is given by

efi% sgn(w) k(,T°)

~ ar [p(@) v (@) p(@*) v(@*)] 2 | det Qu(w, 2¥)[/2

Az, z”) (5)
Here, p(x®) and p(x") are the densities and v(x®) and v*(x) the phase velocities in the ray
direction at the source & and at the point @, respectively; | det Q, (2, *)|'/? denotes the relative

geometrical spreading factor computed with respect to local wavefront coordinates. The inverse
of the matrix Q is given by

B 0*T (z, x®)

, 4,7 =1,2. 6
0q; 0q; (6)

—1
QZij =
The local coordinates ¢ and g; are in the wavefront plane (normal to the phase velocity) at the
points ° and @, respectively. Finally, x(x, z?) is the KMAH index for the ray that connects the
source x° to the point x.

We recognize that our notations for the phase velocities v*(x) and v(x®) require some
explanation. These are both velocities at the end points of the specific ray that connects x*
to . Due to anisotropy, these velocities depend on the ray direction, as well as position. The
additional superscript in v*(x) is used to distinguish it from v"(x), the phase velocity at @ for
the ray coming from a receiver at =" (see Figure 1). Our notation for the polarization vectors
hi(z) and h;(xz®) follows the same pattern. Since the magnitude of the phase velocity does not
change when the ray direction is reversed and, moreover, all the other quantities in the GRA
Green’s function (4) remain the same when x* and « are interchanged, it follows that the GRA
Green’s function also satisfies the reciprocity relation (3).



In evaluating the stationary value of the Kirchhoff-Helmholtz integral to be defined later,
it turns out to be more convenient to work with the relative geometrical-spreading factor
| det Y (¢, 2%)|'/? defined with respect to local ray coordinates. Here,

y-l__ 0?T (z, x®)

1) 89?89‘] ’ Z?.] » < ()

where gf and g; are local coordinates in the planes normal to the ray (and normal to the group
velocity), respectively.

Using the results of Appendix A, we have that
Vi) V(e®) [ det Y (z,2°)] = v* () v(x®) | det Qy(z, °)| , (8)

where V() and V* () denote the group velocities in the ray direction at the source & and at
the point @, respectively. When equation (8) is used in equation (4), the amplitude expression

becomes - .
e % sgn(w) k(,T°)

AT = @) Vi) pla) V(@ )77 [det ¥ (,a7) 7 ?

Note again that the amplitude formula satisfies reciprocity.

For our purposes, it suffices to use the “free-space” Green’s function in what follows. This
is the Green’s function in the absence of the reflecting surface. This is a standard mathematical
device. Clearly, the creation of this wavefield requires an appropriately smooth continuation of
the medium parameters of the upper medium to all space. However, since we will only use the
ray theoretic description of the wavefield above the reflector, there is no need to describe this
continuation in any detail. We need only assume that the extension of the medium parameters
below the reflector do not introduce “turned energy” from below the reflector back into the upper
medium. As can be seen from the discussion above, the ray theoretic free space Green’s function
above the reflector is then derived using only medium parameter values above the reflector.

3. The Kirchhoff-Helmholtz integral

We will consider a wavefield that is generated by a source at «®, reflected at the surface 3 and
recorded at x”, as shown in Figure 1. The total field, U, above the reflector consists of a
direct arrival (the incident wavefield), U™¢, that is unchanged by the presence of the reflector
and the respounse to the reflector, U. It is the latter wavefield for which we will derive a Kirchhoff-
Helmholtz integral representation. It is dominated by reflection and therefore, for brevity, we
will refer to it as the reflected wavefield. The incident wavefield is analogous to the free-space
Green’s function, introduced above, but now it is the free-space wave response to the given
source. Then

Ut(z) = U™ (x) + U(x). (10)

The dependence on w will no longer be shown explicitly. The reflected displacement field at the
receiver U (x") can be expressed as a surface integral involving the outgoing displacement field



U(x) and its derivative VU (x) at the surface. This result can be derived by starting from a
representation theorem that is given in Aki and Richards [2], equation (2.41). Their result is valid
for the total field, U'(z), in bounded media; here, we are considering problems in unbounded
media and we want a representation only for U(x). In Appendix C, we briefly describe the
adaptation of their result to the one we seek and only present the final result here.

In the absence of body forces, and with a Green’s function that satisfies the reciprocity
relation (3), this representation is

Un(z") = /E{Gim(wawr)cijkl(w) Uk, (x)
— Ggm(z,x") cijri(@) Uz’(%‘)} njdo . (11)

Here, n is the normal to the reflector surface ¥ pointing outwards (that is, downwards) in
Figure 1.

To derive the Kirchhoff-Helmholtz integral, we shall make the following approximations:

(i) The free-space Green’s function G;j(x,x") for the receiver ray segment is replaced by the
GRA corresponding to equation (4) with the amplitude function A(x,z") in the form of
equation (9).

(ii) The spatial derivatives of the Green’s function are approximated by neglecting variations
in the amplitude function, so that

Gij,k(wvmr) ~ Z“)T:k Gij(mumr)
= iwpz Gij(mer) ) (12)

where pj. = pj.(x) = T (x,x") is the k-th component of the slowness vector p"(x) at the
point x for the ray coming from the receiver at ”. This approximation is compatible with
GRA in (i) as both have errors O(w ') when compared to the terms that are retained.

(iii) The incident wavefield at the surface 3 from an arbitrary source at @* is given by a GRA
in the form . . '
Uim(:(w) — hf(a:) AmC(w,wS) esz(:B,:BS) : (13)

with the amplitude A™¢(z,z*) and the traveltime T'(z, z*).

(iv) The outgoing reflection wavefield U;(x) at the surface is now replaced by a Kirchhoff-type
approximation for anisotropic media, namely a sum of GRA wavemodes (one ¢P and two
qS waves), each of them of the form

Uit () = b (@) R (@, p*) A™(, %) T @D, (14

where h;P*(z) is the polarization vector corresponding to a specular reflected wave of
proper mode at the point & on ¥, due to the incident wave and RA(a:, p*) is the amplitude-
normalized plane-wave reflection coefficient for our choice of incoming and outgoing wave
mode. Also, p*(x) is the slowness vector at the point @ for the ray coming from the source.



(v) The spatial derivatives of the outgoing wavefield at the surface will be given by the anal-
ogous anisotropic Kirchhoff approximation, namely the corresponding sum of GRA wave-
modes

U (@) = iw P U () | (15)

where pP¢¢(z) is the slowness vector of the specular reflected wave, that is, it is related
to p® by Snell’s law for a plane wave incident on a plane reflector.

Due to linearity, when all these approximations are used in the representation integral in
equation (11), the result is a sum of integrals, one for each wavemode in the reflected field. Each
of these integrals has the form

UBH (g = iw /Ehm(mr) Az, z") A" (z, %) cijr() nj(zx)

X

{1 (@) @) 1P (@) ~ (@) i ) 1 (2) (16

« Wl (@,&")+T(X,2°)] RA(

z,p’(z)) do .

The above-obtained Kirchhoff-Helmholtz modeling integral is of particular interest when the
incident wavefield of equation (13), U!"¢(z), is replaced by the GRA Green’s function of equation
(4), Gip(z,w; x*). Note that the GRA Green’s function also consists of three wavemodes (one
gP and two ¢S). The explicit expression of the resulting representation integral due to each of
these modes is readily found to be

Gﬁf(wr,ws) = jw /th(ccr) Az, z") Az, ) cijri(x) nj(x)

X

{1 @) (@) 1 (@) — hio) 1 (@) 17 (2) (17
x eiw[T($,$T)+T($,ms)} RA(:c,pS(:I:)) hn(:cs) do .

The Kirchhoff-Helmholtz integral does not satisfy reciprocity, in contrast to the Born-Kirchhoff
scattering integral derived in Ursin and Tygel [13]. Note that the geometrical-spreading decom-
position formula given in that reference is only valid for isotropic media. In anisotropic media,
the results from the present Appendix B should be used, instead. However, the surface scattering
integral is correctly stated there.

4. The stationary-phase approximation

We want to compute the stationary values of the surface scattering integral of the type
I= iw/ b(z) T ®) do | (18)
b

to leading order in the high-frequency w.



The stationary points, &, are those points for which

oT oT Oxy,

= ZF T -t; =0 7.7.=1.2 19

aO'j 8£Ek 8(7]' J ’ > B ( )
where ¢; are the surface tangents. This condition is equivalent to Snell’s law. For simplicity, we
assume that there is only one stationary point & and also that this is a regular stationary point.
This means that the second-derivative matrix,

0T T Oz, Ox

H;; = = Y 5,7 =1,2, 20
J 80i80j a{L‘na’L‘k aO'Z' aO'j b ( )

evaluated at & is non-singular, det H # 0. Then the stationary value of the integral is (Bleistein
[4], equation (2.8.23))

f —iw <|2_7T|> |detH|—1/2 ez’ T sgn(w) Sgn(H) b(CNB) ez'wT(i) ’ (21)
w

where & = (&) is the stationary point and Sgn(H) is the signature of the matrix H, that
is, the difference between the number of its positive eigenvalues and the number of its negative
eigenvalues.

The stationary point & is a point of specular reflection, so that hsPeC( ) = h' (&) and
p*P(z) = —p" (&) because p" (&) is the slowness for the ray going from =" to x, so that it is
pointing downwards at the interface.

A stationary-phase evaluation of the integral (18) yields

") |det H|™ 1/2 —i% sgn(w )[1—3 Sgn(H)]

(z
) hf (&) hj,(®) pu(&) nj (&) R (&, p°(2)) (22)
&) A, )ezw[T( L) +1'(X, )] b (2°)

GEH(x" 2% ~ 4 hy,
Cz]kl(
,

Az

for the reflected field. The matrix H is called the Fresnel matrix corresponding to the reflection
ray (Hubral et al. [10]). Here we note that (Cerveny [11])

cijrt (&) hi (&) hip (2) p; (2) nj (@) = p(@) V] (2) nj (@) = p(2) V' (2) cosa”, (23)

where o” is the angle between the surface normal and the ray coming from the receiver; see
Figure 1. We now use the energy-flux normalized reflection coeflicient

X
X

r r1l/2
1% cosa] ‘ (24)

V'$ cosa’

R(@) = R (@.p'(@) |

Combining equations (22) to (24), and taking into account the amplitude formula in equation
(9), we obtain that the stationary value of the Kirchhoff-Helmholtz integral is equal to the GRA
for the reflected wavefield

GEH (g7 o) = GE (a7, 2°) = hyp(a") A", 2°) T EF°) R(&) hy,(z°) . (25)



Here, R(z) is given in equation (24), the total traveltime is
T, z°)=T(z",2)+T(z,z°) (26)
and the total amplitude is given as in equation (9), with
k(x", x’) = k(z", &) + k(x,2°) +1 — Sgn(H)/2 . (27)

cos a” cosaf

where equation (B-16) has been used.

5. Conclusions

We have extended the Kirchhoff-Helmholtz integral to general anisotropic media. The upgoing
scattered field at the interface was replaced by the specularly reflected field, as approximated
by the GRA. Within the validity of the GRA, the new integral formula can be used to compute
multiply reflected and converted waves in anisotropic media. This also includes a possible wave-
mode conversion at the interface. The present approach provides a “single-event” approximation
that enables us to determine one specifically chosen reflection without having to calculate all
other events that might be considered noise in the actual problem. The complete wavefield at the
receiver is, then, the superposition of all possible events that can be calculated independently
(but simultaneously, if so desired) by the corresponding Kirchhoff-Helmholtz integrals.

We have also extended the decomposition formula for the relative geometrical spreading
factor from isotropic to anisotropic elastic media. This generalization has been done indepen-
dently, based ounly on ray-theoretical arguments. The resulting decomposition formula provides
the means to calculate the geometrical spreading of a primary reflected ray in terms of the
spreading factors of the incident and reflected ray segments and a third factor that accounts for
the influence of the interface.
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Appendix A

Relationship between the relative
geometrical-spreading matrices

In this appendix we derive expressions for the relative geometrical spreading given through
the matrices Q9 and Y defined in the main text. We start with the general expression

O°T(x",x°) _ gy 0°T(x’ x*) Ogp,

Ox; Oz G Oz’

(A-1)

Here, the indices 7 and j are fixed and vary from 1 to 3. A summation from 1 to 3 is understood
for the indices n and m. The orthogonal ray coordinates systems g, and g;, are chosen such that
g5 and g5 are in the direction of the ray (and the group velocity) at ® and ", respectively. We
use the notation of (26) for the total traveltime from x*® to the reflector to ”. (The dependence
of the traveltime on the reflector point is unimportant in this discussion.) We have that

oT(z", z*) (@)
] (A2

where pl(g ) (x*) denote the components of the slowness vector at «*, expressed in the g-coordinate

system. Observe that as the receiver position is changed in the ray direction, that is, as g3 varies
along the ray, this gradient does not vary. Thus, taking the derivative with respect to g5—that
is, taking a derivative along the ray at £"—does not change this slowness. This means that

0*T(z", x®)

=0. A-3
9g309; 49
Similarly, we have that
2T [
M 0. (A-4)
99309;

This means that the summations over the indices n and m in equation (A-1) need to be taken
from 1 to 2 only. Next we define the 2 x 2 matrix B(x", x®) with components

*T(x",z%) |

1
Tl

Then the upper left 2 x 2 part in equation (A-1) may be written
B l(z",2") = AT(2") Y (", 2") A(2") (A-6)

where A(z?) is the upper left 2 x 2 sub-matrix of the full 3 x 3 transformation matrix (9g;, /0x;).
This is a general 3-D rotation matrix that can be decomposed into three elementary rotations,
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being one around the 3-axis, a second one around the resulting 2-axis, and a third one around
the new 3-axis. Therefore, their upper left 2 x 2 submatrices can be decomposed into three
elementary matrices, being two rotation matrices and a projection matrix, namely

cosy(x®) siny(x*) cosa(x®) 0 cosp(x®)  sinp(x?)
A(z®) = . (A7)
—siny(x®) cosy(x*) 0 1 —sin¢g(x®) cos ¢(x®)

Here, ¢(x®) and y(z®) denote the in-plane rotation angles around the old and new 3-axes,
respectively, and a(x®) denotes the angle between the group velocity vector and the z§-axis.
The fact that the form (A-7) of the 2 x 2 matrix A(x*) is exact can be verified by computing
the upper left 2 x 2 matrix of the full 3 x 3 transformation matrix in equation (A-1) following
the previous description. The matrix A(z") is similarly defined. Then it follows directly that

det Y (2", z%) = cos a(x”) cos a(x’®) det B(z", z?%) . (A-8)

Next we choose the &® and " coordinate systems to be equal to the phase-front coordinate g°®
and g", respectively. Then, equation (A-1) can be written as in equation (A-6), so that

Q,l(z",x®) =TT (z*) Y (2", z*) T(z") , (A-9)
where the 2 x 2 transformation matrix now is defined by

cos A(x®)  sinA(x*) cos x(x®) 0 cos p(x®)  sinp(x®)
I'(z®) = . (A-10)
—sin A(x®) cos \(zx?) 0 1 —sinpu(x®) cos p(x®)

Here, A\(z?®) and u(z?®) are rotation angles defined in a similar way as y(®) and ¢(x®) defined
previously, and x(x*) is the angle between the phase velocity and group velocity vectors at x®.
The matrix I'(z") is similarly defined.

We have that (Cerveny [11))
cosx = — , (A-11)

so that equation (A-9) directly yields
Vie")V(x®) det Y (x", 2°) = v(x") v(x®) det Qy(x", x®) . (A-12)
A direct relationship between the matrices B and Q, can be established by combining
equations (A-6) and (A-9). It reads
Q;y'(z",z*) =T (") A (z*) B '(¢",&*) A (") T (") . (A-13)
It is instructive to note in the above derivation the crucial role played by the matrix Y (in

the g-system) to establish the relationship (A-13) between the B matrix (in the z-system) and
the Q, matrix (in the g-system). A question that naturally arises is why is the intermediary Y
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matrix actually needed. A mathematical argument is that the invariance properties (A-3) and
(A-4) are only valid in the g system, so that no one-step 2 x 2 matrix transformation is possible
between quantities in the  and g coordinate systems. Physically, equations (A-3) and (A-4)
express the fact that any dislocation of one end point of the ray in direction other than that of
the group velocity also affects the direction of the slowness vector at its other end point.
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Appendix B

Decomposition of the relative geometrical spreading

In this appendix, we derive the geometrical-spreading decomposition formula (28) in terms
of the second-order mixed derivatives of the traveltime. This formula is crucial to the verification
that the asymptotic evaluation of the Kirchhoff-Helmholtz integral provides the GRA for the
reflected wave.

First, we derive a decomposition formula for the second-order mixed derivatives of traveltime
for general Cartesian coordinate systems. Upon suitable specification of the coordinate systems,
this formula will provide the relationships for the matrices @, and Y that are needed to derive
the expressions for the geometrical-spreading used in the main text.

We consider fixed source and receiver pair, as well as a given smooth reflector X, as shown in
Figure 1. Points in the vicinity of the source will be represented by x* in a fixed, 3-D Cartesian
system. Analogously, points in the vicinity of the receiver will be represented by " in a second,
also fixed, 3-D Cartesian system. We assume that the given source-receiver pair determines a
unique reflection point on the reflector. Points on the reflector surface 3 in the vicinity of the
reflection point, will be represented by o in a 2-D curvilinear coordinate system.

We can express the diffraction traveltime as the sum of the traveltimes,
TP (2", 0,2°) =T(z",0) + T(0,2°) (B-1)

along the ray segments that connect &® to o and o to ", respectively. The reflection traveltime
that corresponds to a source at ° and a receiver at " will be expressed as

TH(a" z*) =T" (2", 6,2°) , (B-2)
where the stationary point & = & (", 2*) is such that

oTP (z", o, x*)

:0 .:12. B'3
ao_l ? ? ? ( )

It is our aim to show that the second-order mixed derivatives of the reflection traveltime sat-
isfies an important decomposition formula. We start by differentiating the reflection traveltime
TR(x", z*) with respect to 2. We have

ort 9 orP orP| 0sy,
- = TD ro~ r s S\ — 2= = . B-4

We next differentiate the above expression with respect to ; to obtain

00, }

& 0x;

oTP
g Ook

O*TR 0 {8TD
8$f8$§ N oz} 8:109
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_ { o*TP | 05, PTP }+ { o*TP | 06y
0x;0z% g Oz} 00101% |6 0z;0oy |g O
05, 9TV | 95,  OTP| %Gy } (B-5)
Oz} dojdoy|g Oz doy |g Ox]ox] '

We now observe, by the very definition of TP as a traveltime sum along the incoming and
outcoming ray segments, the properties

*1TP(x® 6,2")  0°T(x°,5)
0z; 0oy, = 0zj0oy

*1P(x®, 6,2") _ T(x",6)

000, 0oy (B-6)

*1TP (x*, 6, x")

Oz; Oz =0

After the use of the stationary condition (B-3), our expression for the traveltime second derivative
becomes

PTH(" x®) 05 82T(:1:’°,o')‘ O*T(z%,0)| 05y,
Ox; 0z Oz 0010z |g  Ozjdoy |g Oz
~ 2TD ~
n 802 0 8016. (B-7)
Oz 00,00 |5 8:1:;-

In the above expression, the unknown quantities 06,/ Bz;’r can be determined by differentiating
the stationary condition (B-3) with respect to the source/receiver coordinates z;". Since the
stationary condition holds independently of &* and ", we find

o |orP| | o*1P TP | 05, 0 (B-8)
oz;" | dop |g| 0z} 0ok |g 0000k | Ox;"
We now use the properties (B-6) to obtain
o*’TP | 05 82T(m5,&)‘ o
do100y |g O o0rfdoy g
(B-9)
o*TP | 05 82T(:1:’°,&)‘ 0
do00y; |g Ozt oztdoy g
Recasting the above equations in matrix form, leads to the alternative system
00, 0’T(x*,0)
0r* 0200 |A Dy,
(B-10)
do; 0°T (x*, 0')‘
oz~ % T oxtoo, g

15



where Dy; denote the components of the symmetric matrix

0*TP (", o, *)
0o;00;

—1
D=H'= ( ) . (B-11)

This is the inverse of the so-called Fresnel matrix H corresponding to the source-receiver points
x® and x" and the reflection point o&.

Substituting these expressions into equation (B-7) and using the definition of D, this gives
the decomposition formula

O*TE(z", z%) 0*T (o, z°) O*T(z", o)
SALSLE LA LA I ) e L LA (B-12)
Oz 0z drido; |& 9010z% g
Using the matrix B(z", *) defined by equation (A-5), this can now be written
B(z",z°) = B(z",z) H(z) B(z,z°) . (B-13)
;From equation (A-6), we have that
B(z",z*) = A Y(z", &) Y(z",z°)) A T(z*) . (B-14)

When this expression and similar expressions for B(x®, &) and B(&,x®) are used in equation
(B-13), we obtain

Y(z" z*) =Y (2", z) (A")"L(z) Hz) (A°) " (2)Y (z,z°) . (B-15)

Here, A®(Z) and A" (&) are the transformation matrices at & corresponding to the ray from the
source and receiver, respectively.

iFrom the above equation, it follows that

_detY(z",x) det H(Z)detY (z,z")

detY (", z*) (B-16)
cosa” cosa’
Equation (A-9) can be recast into the form
Y (2", x°) = T(z")Qy(x", )T (z*) , (B-17)

so that equation (B-15) leads to the decomposition formula,
Qy(a",°) = Qy(a’, &) (I")" (&) (A") ™' (&) H(z) (A°)"'(2) I*(&) Qy(&,2°) . (B-18)

Here, I'(Z) and I'" (&) are transformation matrices for the ray coming from the source to the
receiver, respectively. Finally, we obtain

cos X" cos x*’

det Qy(z", %) = det Qo(x", &) det H(z) det Qy(Z, %) (B-19)

cosa” cos af

as the decomposition formula for the relative geometrical-spreading factor in anisotropic media.
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Appendix C

Derivation of Equation (11)

In this appendix, we discuss the derivation of equation (11) for the upward scattered wave.
First, let us consider the total wavefield above the reflector, U"*(z). Then, Aki and Richards
[2], equation (2.41) states that

Uwt(z") = /S{Gim(mawr)cijkl(w)Ulz?lt(w)
- ka,mm,m’“)cijkz(m)U;‘“(m)}njdo. (C-1)

Here, S is a surface confined to the upper domain, possibly including a portion of the reflector,
31, but also including the points, ® and x”". For our purposes, we introduce a sphere of radius
R, centered at a point on Y. We then take S to counsist of the portion of the sphere above the
reflector, denoted by Sk and the portion of X interior to the sphere, denoted by . See Figure 2.

Our first objective is to allow the radius of the sphere approach infinity and argue away the
integral over the spherical portion of S; then, only the integral over 3 will remain. For isotropic
elastic media the appropriate generalization of the Sommerfeld radiation conditions to assure this
result is readily available in the literature. See, for example, Achenbach, et al, [1] or Kupradze
[5]. Discussion of the appropriate extension of these radiation conditions to anisotropic media
are less accessible. However, there is an alternative method for assuring that the integral over
this sphere vanishes with increasing radius. Recall that the underlying problem here is an initial
value problem in the time domain, a so-called causal problem. For such problems and our sign
convention in the phase, the Fourier transform is initially defined in some upper-half complex-
valued w-plane, above all singularities of the transformed wavefield. Further, the solution must
decay to zero as |w| — oo in that upper half plane. Note that solutions with phase factor,
exp{iwT (x,2z®)}, have this property, while solutions with phase factor, exp{—iwT (x,z®)}, do
not. Thus, this property distinguishes between incoming and outgoing wave types and identifies
the acceptable fields at infinity. Further, the solutions decay exponentially in the upper half
plane. We can think of this condition as a causality condition. Typically, these solutions have
singularities on the R{w} axis. Thus, solutions on that line should be obtained by analytic
continuation from above. It is only when we insist on evaluating solutions solely for real values of
w that we need to resort to radiation conditions to distinguish between incoming (unacceptable)
and outgoing (acceptable) solutions at infinity.

With this in mind, then, we allow the radius R of Sp approach infinity. In that limit, the
exponential decay of the wavefields assures that the integral over Sk approaches zero and the
surface ¥ r approaches X. Thus, we can replace S by X in (C-1).

Next, we must address the question of concluding the same representation result for the
upward scattered wave, U (x).
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Both U'™(z) and U (z) also satisfy the appropriate radiation conditions or causality con-
dition for observation points above the reflector. It is then fairly straightforward to show that
U™¢(x") is given by the right side of (11) if the wavefield used in the integrand is U"(z). When
we subtract that identity from the representation for the total wavefield, the result is (11) for
an upward scattered wavefield, alone.

The wavefield, U™ (z"), contains no response to the reflector, since it is derived in the
absence of the reflector. Thus, all responses to the presence of the reflector are contained in U ().
What is important to us, here, is that it contains all of the reflected wavefields, unconverted and
converted, in response to the point source on the right side of (2).
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Figure 1: Geometry of the reflection point

19



Figure 2: The integration domain for equation (C-1)
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