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Abstrat

The Kirhho�-Helmholtz integral is a powerful tool to model the sattered wave�eld from

a smooth interfae in aousti or isotropi elasti media due to a given inident wave�eld and

observation points suÆiently far away from the interfae. This integral makes use of the Kirh-

ho� approximation of the unknown sattered wave�eld and its normal derivative at the interfae

in terms of the orresponding quantities of the known inident �eld. An attrative property of

the Kirhho�-Helmholtz integral is that its asymptoti evaluation reovers the zero-order ray

theory approximation of the reeted wave�eld at all observation points where that theory is

valid. Here, we extend the Kirhho�-Helmholtz modeling integral to general anisotropi elasti

media. It uses the natural extension of the Kirhho� approximation of the sattered wave�eld

and its normal derivative for those media. The anisotropi Kirhho�-Helmholtz integral also

asymptotially provides the zero-order ray theory approximation of the reeted response from

the interfae. In onnetion with the asymptoti evaluation of the Kirhho�-Helmholtz inte-

gral, we also derive an extension to anisotropi media of a useful deomposition formula of the

geometrial spreading of a primary reetion ray.
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1. Introdution

The wave�eld sattered from a smooth interfae an be represented by a surfae integral. Both

the �eld and its normal derivative at the interfae appear in the integrand. Fundamental repre-

sentations for the aousti, isotropi and anisotropi elasti ases an be found in the literature

(see, e.g., Aki and Rihards [2℄; Baker and Copson [3℄; Bleistein [4℄); Kupradze [5℄). These rep-

resentations an be reast as modeling formulas for reetion from a transparent interfae by

exploiting the Kirhho� approximation whih expresses the unknown sattered �eld and its nor-

mal derivative in terms of the known inident �eld (Bleistein [4℄, Frazer and Sen [6℄, Tygel et

al. [7℄). The result is alled the Kirhho�-Helmholtz integral.

We derive the extension of the Kirhho�-Helmholtz integral to anisotropi elasti media

starting with an integral representation for the wave�eld at a reeiver point (Aki and Rihards

[2℄). The inoming wave�eld and the Green's funtion from the reeiver point to the interfae are

both replaed by the geometri ray approximation (GRA). The GRA Green's funtion is often

expressed as a funtion of phase veloities and the relative geometrial-spreading fator that may

be omputed from mixed seond-order traveltime derivatives with respet to the phase-front o-

ordinates that are normal to the phase-veloity vetors. Here we prefer to work with a GRA that

is expressed by the group veloities and a relative geometrial-spreading fator that is expressed

by the mixed seond-order traveltime derivatives with respet to the ray oordinates that are

normal to the group-veloity vetors. The relationship between the geometrial-spreading fators

is shown in Appendix A.

The Kirhho� approximation for anisotropi media is done in the same way as for isotropi

media. Both the outgoing �eld and its derivative at the interfae are approximated from the

speularly reeted wave�eld from the soure. This approximation has also been indiated by

de Hoop and Bleistein [8℄. To verify the resulting anisotropi Kirhho�-Helmholtz integral, we

show that the stationary-phase evaluation is the GRA for the reeted wave�eld. Neessary

deomposition formulas for the geometrial-spreading fators for the reeted wave are given in

Appendix B. These are extensions of the isotropi elasti formulas (Hubral et al. [9℄,[10℄ and

�

Cerven�y [11℄). The GRA of the reeted wave�eld is then expressed by the total geometrial

spreading and a reetion oeÆient whih is normalized with respet to the vertial energy

ux. This formula also satis�es reiproity.

2. The geometri ray approximation

Wave propagation in an inhomogeneous anisotropi elasti solid is governed by the elasto-

dynami equations (Aki and Rihards [2℄). In the frequeny domain, these are

!
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+ (

ijkl

U

k;l

)

;j

= 0 ; i; j; k = 1; 2; 3: (1)

Here, ! is the frequeny, U

i

= U

i

(x; !) is the i-th omponent of the displaement vetor U (x:!),

� = �(x) is the density, and 

ijkl

= 

ijkl

(x) are the elasti parameters of the medium at the
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point x = (x

1

; x

2

; x

3

). The elasti parameters satisfy the symmetry relations 

ijkl

= 

jikl

=



ijlk

= 

klij

. In equation (1), the notation \; j" stands for �=�x

j

, and a repeated index implies

summation with respet to that index.

The Green's funtion, G

in

(x; !;x

s

), satis�es the equation

!

2

�G

in

+ (

ijkl

G

kn;l

)

;j

= � Æ

in

Æ(x � x

s

) : (2)

For homogeneous boundary onditions, it also satis�es the reiproity relation (Aki and Rihards

[2℄, equation (2.39))

G

ij

(x; !;x

s

) = G

ji

(x

s

; !;x) : (3)

For a spei� ray onneting a soure point x

s

to a sattering point x, the GRA Green's funtion

is (

�

Cerven�y [11℄, Chapman and Coates [12℄)

G

ij

(x; !;x

s

) = h

s

i

(x) A(x;x

s

) e

i!T (x;x

s

)

h

j

(x

s

) ; (4)

where h(x

s

) and h

s

(x) are the unit polarization vetors in the ray diretion at the soure x

s

and at the point x, respetively. T (x;x

s

) is the traveltime along the ray from x to x

s

, and

A(x;x

s

) is a omplex amplitude funtion taking into aount possible austis and phase-shift

at the soure. It is given by

A(x;x

s

) =

e

�i

�

2

sgn(!) �(x;x

s

)

4� [�(x) v

s

(x) �(x

s

) v(x

s

)℄

1=2

jdetQ

2

(x;x

s

)j

1=2

: (5)

Here, �(x

s

) and �(x

r

) are the densities and v(x

s

) and v

s

(x) the phase veloities in the ray

diretion at the soure x

s

and at the point x, respetively; jdetQ

2

(x;x

s

)j

1=2

denotes the relative

geometrial spreading fator omputed with respet to loal wavefront oordinates. The inverse

of the matrix Q

2

is given by

Q

�1

2 ij

= �

�

2

T (x;x

s

)

�q

s

i

�q

j

; i; j = 1; 2: (6)

The loal oordinates q

s

i

and q

j

are in the wavefront plane (normal to the phase veloity) at the

points x

s

and x, respetively. Finally, �(x;x

s

) is the KMAH index for the ray that onnets the

soure x

s

to the point x.

We reognize that our notations for the phase veloities v

s

(x) and v(x

s

) require some

explanation. These are both veloities at the end points of the spei� ray that onnets x

s

to x. Due to anisotropy, these veloities depend on the ray diretion, as well as position. The

additional supersript in v

s

(x) is used to distinguish it from v

r

(x), the phase veloity at x for

the ray oming from a reeiver at x

r

(see Figure 1). Our notation for the polarization vetors

h

s

i

(x) and h

i

(x

s

) follows the same pattern. Sine the magnitude of the phase veloity does not

hange when the ray diretion is reversed and, moreover, all the other quantities in the GRA

Green's funtion (4) remain the same when x

s

and x are interhanged, it follows that the GRA

Green's funtion also satis�es the reiproity relation (3).
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In evaluating the stationary value of the Kirhho�-Helmholtz integral to be de�ned later,

it turns out to be more onvenient to work with the relative geometrial-spreading fator

jdetY (x;x

s

)j

1=2

de�ned with respet to loal ray oordinates. Here,

Y

�1

ij

= �

�

2

T (x;x

s

)

�g

s

i

�g

j

; i; j = 1; 2; (7)

where g

s

i

and g

j

are loal oordinates in the planes normal to the ray (and normal to the group

veloity), respetively.

Using the results of Appendix A, we have that

V

s

(x)V (x

s

) jdetY (x;x

s

)j = v

s

(x) v(x

s

) jdetQ

2

(x;x

s

)j ; (8)

where V (x

s

) and V

s

(x) denote the group veloities in the ray diretion at the soure x

s

and at

the point x, respetively. When equation (8) is used in equation (4), the amplitude expression

beomes

A(x;x

s

) =

e

�i

�

2

sgn(!) �(x;x

s

)

4� [�(x)V

s

(x) �(x

s

)V (x

s

)℄

1=2

jdetY (x;x

s

)j

1=2

: (9)

Note again that the amplitude formula satis�es reiproity.

For our purposes, it suÆes to use the \free-spae" Green's funtion in what follows. This

is the Green's funtion in the absene of the reeting surfae. This is a standard mathematial

devie. Clearly, the reation of this wave�eld requires an appropriately smooth ontinuation of

the medium parameters of the upper medium to all spae. However, sine we will only use the

ray theoreti desription of the wave�eld above the reetor, there is no need to desribe this

ontinuation in any detail. We need only assume that the extension of the medium parameters

below the reetor do not introdue \turned energy" from below the reetor bak into the upper

medium. As an be seen from the disussion above, the ray theoreti free spae Green's funtion

above the reetor is then derived using only medium parameter values above the reetor.

3. The Kirhho�-Helmholtz integral

We will onsider a wave�eld that is generated by a soure at x

s

, reeted at the surfae � and

reorded at x

r

, as shown in Figure 1. The total �eld, U

tot

, above the reetor onsists of a

diret arrival (the inident wave�eld), U

in

, that is unhanged by the presene of the reetor

and the response to the reetor, U . It is the latter wave�eld for whih we will derive a Kirhho�-

Helmholtz integral representation. It is dominated by reetion and therefore, for brevity, we

will refer to it as the reeted wave�eld. The inident wave�eld is analogous to the free-spae

Green's funtion, introdued above, but now it is the free-spae wave response to the given

soure. Then

U

tot

(x) = U

in

(x) +U(x): (10)

The dependene on ! will no longer be shown expliitly. The reeted displaement �eld at the

reeiver U(x

r

) an be expressed as a surfae integral involving the outgoing displaement �eld
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U(x) and its derivative rU(x) at the surfae. This result an be derived by starting from a

representation theorem that is given in Aki and Rihards [2℄, equation (2.41). Their result is valid

for the total �eld, U

tot

(x), in bounded media; here, we are onsidering problems in unbounded

media and we want a representation only for U(x). In Appendix C, we briey desribe the

adaptation of their result to the one we seek and only present the �nal result here.

In the absene of body fores, and with a Green's funtion that satis�es the reiproity

relation (3), this representation is

U

m

(x

r

) =

Z

�

�

G

im

(x;x

r

) 

ijkl

(x)U

k;l

(x)

� G

km;l

(x;x

r

) 

ijkl

(x)U

i

(x)

�

n

j

d� : (11)

Here, n is the normal to the reetor surfae � pointing outwards (that is, downwards) in

Figure 1.

To derive the Kirhho�-Helmholtz integral, we shall make the following approximations:

(i) The free-spae Green's funtion G

ij

(x;x

r

) for the reeiver ray segment is replaed by the

GRA orresponding to equation (4) with the amplitude funtion A(x;x

r

) in the form of

equation (9).

(ii) The spatial derivatives of the Green's funtion are approximated by negleting variations

in the amplitude funtion, so that

G

ij;k

(x;x

r

) � i! T

;k

G

ij

(x;x

r

)

= i! p

r

k

G

ij

(x;x

r

) ; (12)

where p

r

k

= p

r

k

(x) = T

;k

(x;x

r

) is the k-th omponent of the slowness vetor p

r

(x) at the

point x for the ray oming from the reeiver at x

r

. This approximation is ompatible with

GRA in (i) as both have errors O(!

�1

) when ompared to the terms that are retained.

(iii) The inident wave�eld at the surfae � from an arbitrary soure at x

s

is given by a GRA

in the form

U

in

i

(x) = h

s

i

(x) A

in

(x;x

s

) e

i! T (x;x

s

)

; (13)

with the amplitude A

in

(x;x

s

) and the traveltime T (x;x

s

).

(iv) The outgoing reetion wave�eld U

i

(x) at the surfae is now replaed by a Kirhho�-type

approximation for anisotropi media, namely a sum of GRA wavemodes (one qP and two

qS waves), eah of them of the form

U

re

i

(x) = h

spe

i

(x) R

A

(x;p

s

) A

in

(x;x

s

) e

i! T (x;x

s

)

; (14)

where h

spe

i

(x) is the polarization vetor orresponding to a speular reeted wave of

proper mode at the point x on �, due to the inident wave and R

A

(x;p

s

) is the amplitude-

normalized plane-wave reetion oeÆient for our hoie of inoming and outgoing wave

mode. Also, p

s

(x) is the slowness vetor at the point x for the ray oming from the soure.
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(v) The spatial derivatives of the outgoing wave�eld at the surfae will be given by the anal-

ogous anisotropi Kirhho� approximation, namely the orresponding sum of GRA wave-

modes

U

re

i;k

(x) = i! p

spe

k

U

re

i

(x) ; (15)

where p

spe

(x) is the slowness vetor of the speular reeted wave, that is, it is related

to p

s

by Snell's law for a plane wave inident on a plane reetor.

Due to linearity, when all these approximations are used in the representation integral in

equation (11), the result is a sum of integrals, one for eah wavemode in the reeted �eld. Eah

of these integrals has the form

U

KH

m

(x

r

) = i!

Z

�

h

m

(x

r

) A(x;x

r

) A

in

(x;x

s

) 

ijkl

(x) n

j

(x)

�

�

h

r

i

(x) p

spe

l

(x)h

spe

k

(x)� h

r

k

(x) p

r

l

(x)h

spe

i

(x)

�

(16)

� e

i![T (x;x

r

)+T (x;x

s

)℄

R

A

(x;p

s

(x)) d� :

The above-obtained Kirhho�-Helmholtz modeling integral is of partiular interest when the

inident wave�eld of equation (13), U

in

i

(x), is replaed by the GRA Green's funtion of equation

(4), G

in

(x; !;x

s

). Note that the GRA Green's funtion also onsists of three wavemodes (one

qP and two qS). The expliit expression of the resulting representation integral due to eah of

these modes is readily found to be

G

KH

mn

(x

r

;x

s

) = i!

Z

�

h

m

(x

r

) A(x;x

r

) A(x;x

s

) 

ijkl

(x) n

j

(x)

�

�

h

r

i

(x) p

spe

l

(x)h

spe

k

(x)� h

r

k

(x) p

r

l

(x)h

spe

i

(x)

�

(17)

� e

i![T (x;x

r

)+T (x;x

s

)℄

R

A

(x;p

s

(x)) h

n

(x

s

) d� :

The Kirhho�-Helmholtz integral does not satisfy reiproity, in ontrast to the Born-Kirhho�

sattering integral derived in Ursin and Tygel [13℄. Note that the geometrial-spreading deom-

position formula given in that referene is only valid for isotropi media. In anisotropi media,

the results from the present Appendix B should be used, instead. However, the surfae sattering

integral is orretly stated there.

4. The stationary-phase approximation

We want to ompute the stationary values of the surfae sattering integral of the type

I = i!

Z

�

b(x) e

i!T (x)

d� ; (18)

to leading order in the high-frequeny !.
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The stationary points,
~
x, are those points for whih

�T

��

j

=

�T

�x

k

�x

k

��

j

=rT � t

j

= 0 ; i; j;= 1; 2 ; (19)

where t

j

are the surfae tangents. This ondition is equivalent to Snell's law. For simpliity, we

assume that there is only one stationary point
~
x and also that this is a regular stationary point.

This means that the seond-derivative matrix,

H

ij

=

�

2

T

��

i

��

j

=

�

2

T

�x

n

�x

k

�x

n

��

i

�x

k

��

j

; i; j = 1; 2 ; (20)

evaluated at
~
x is non-singular, detH 6= 0. Then the stationary value of the integral is (Bleistein

[4℄, equation (2.8.23))

~

I = i!

�

2�

j!j

�

jdetH j

�1=2

e

i

�

4

sgn(!) Sgn(H )

b(
~
x) e

i!T (

~

x)

; (21)

where
~
x = x(

~
�) is the stationary point and Sgn(H) is the signature of the matrix H , that

is, the di�erene between the number of its positive eigenvalues and the number of its negative

eigenvalues.

The stationary point
~
x is a point of speular reetion, so that h

spe

(
~
x) = h

r

(
~
x) and

p

spe

(
~
x) = �p

r

(
~
x) beause p

r

(
~
x) is the slowness for the ray going from x

r

to x, so that it is

pointing downwards at the interfae.

A stationary-phase evaluation of the integral (18) yields

G

KH

mn

(x

r

;x

s

) � 4� h

m

(x

r

) jdetH j

�1=2

e

�i

�

2

sgn(!) [1�

1

2

Sgn(H)℄

� 

ijkl

(
~
x)h

r

l

(
~
x)h

r

k

(
~
x) p

l

(
~
x)n

j

(
~
x)R

A

(
~
x;p

s

(
~
x)) (22)

� A(x

r

;
~
x)A(

~
x;x

s

) e

i![T (x

r

;x)+T (x;x

s

)℄

h

n

(x

s

)

for the reeted �eld. The matrix H is alled the Fresnel matrix orresponding to the reetion

ray (Hubral et al. [10℄). Here we note that (

�

Cerven�y [11℄)



ijkl

(
~
x)h

r

i

(
~
x)h

r

k

(
~
x) p

r

i

(
~
x)n

j

(
~
x) = �(

~
x)V

r

j

(
~
x)n

j

(
~
x) = �(

~
x)V

r

(
~
x) os�

r

; (23)

where �

r

is the angle between the surfae normal and the ray oming from the reeiver; see

Figure 1. We now use the energy-ux normalized reetion oeÆient

R(
~
x) = R

A

(
~
x;p

s

(
~
x))

�

V

r

os�

r

V

s

os�

s

�

1=2

: (24)

Combining equations (22) to (24), and taking into aount the amplitude formula in equation

(9), we obtain that the stationary value of the Kirhho�-Helmholtz integral is equal to the GRA

for the reeted wave�eld

G

KH

mn

(x

r

;x

s

) � G

R

mn

(x

r

;x

s

) = h

m

(x

r

) A(x

r

;x

s

) e

i! T (x

r

;x

s

)

R(
~
x) h

n

(x

s

) : (25)
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Here, R(
~
x) is given in equation (24), the total traveltime is

T (x

r

;x

s

) = T (x

r

;
~
x) + T (

~
x;x

s

) ; (26)

and the total amplitude is given as in equation (9), with

�(x

r

;x

s

) = �(x

r

;
~
x) + �(

~
x;x

s

) + 1� Sgn(H)=2 : (27)

Finally,

jdetY (x

r

;x

s

)j =

jdetH detY (x

r

;
~
x) detY (

~
x;x

s

)j

os�

r

os�

s

; (28)

where equation (B-16) has been used.

5. Conlusions

We have extended the Kirhho�-Helmholtz integral to general anisotropi media. The upgoing

sattered �eld at the interfae was replaed by the speularly reeted �eld, as approximated

by the GRA. Within the validity of the GRA, the new integral formula an be used to ompute

multiply reeted and onverted waves in anisotropi media. This also inludes a possible wave-

mode onversion at the interfae. The present approah provides a \single-event" approximation

that enables us to determine one spei�ally hosen reetion without having to alulate all

other events that might be onsidered noise in the atual problem. The omplete wave�eld at the

reeiver is, then, the superposition of all possible events that an be alulated independently

(but simultaneously, if so desired) by the orresponding Kirhho�-Helmholtz integrals.

We have also extended the deomposition formula for the relative geometrial spreading

fator from isotropi to anisotropi elasti media. This generalization has been done indepen-

dently, based only on ray-theoretial arguments. The resulting deomposition formula provides

the means to alulate the geometrial spreading of a primary reeted ray in terms of the

spreading fators of the inident and reeted ray segments and a third fator that aounts for

the inuene of the interfae.
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Appendix A

Relationship between the relative

geometrial-spreading matries

In this appendix we derive expressions for the relative geometrial spreading given through

the matries Q

2

and Y de�ned in the main text. We start with the general expression

�

2

T (x

r

;x

s

)

�x

s

i

�x

r

j

=

�g

s

n

�x

s

i

�

2

T (x

r

;x

s

)

�g

s

n

�g

r

m

�g

r

m

�x

r

j

(A-1)

Here, the indies i and j are �xed and vary from 1 to 3. A summation from 1 to 3 is understood

for the indies n and m. The orthogonal ray oordinates systems g

s

n

and g

r

m

are hosen suh that

g

s

3

and g

r

3

are in the diretion of the ray (and the group veloity) at x

s

and x

r

, respetively. We

use the notation of (26) for the total traveltime from x

s

to the reetor to x

r

. (The dependene

of the traveltime on the reetor point is unimportant in this disussion.) We have that

�T (x

r

;x

s

)

�g

s

i

= p

(g)

i

(x

s

) ; (A-2)

where p

(g)

i

(x

s

) denote the omponents of the slowness vetor at x

s

, expressed in the g

s

i

-oordinate

system. Observe that as the reeiver position is hanged in the ray diretion, that is, as g

r

3

varies

along the ray, this gradient does not vary. Thus, taking the derivative with respet to g

r

3

|that

is, taking a derivative along the ray at x

r

|does not hange this slowness. This means that

�

2

T (x

r

;x

s

)

�g

r

3

�g

s

i

= 0 : (A-3)

Similarly, we have that

�

2

T (x

r

;x

s

)

�g

s

3

�g

r

i

= 0 : (A-4)

This means that the summations over the indies n and m in equation (A-1) need to be taken

from 1 to 2 only. Next we de�ne the 2� 2 matrix B(x

r

;x

s

) with omponents

B

ij

(x

r

;x

s

) = �

"

�

2

T (x

r

;x

s

)

�x

s

i

�x

r

j

#

�1

; i; j = 1; 2: (A-5)

Then the upper left 2� 2 part in equation (A-1) may be written

B

�1

(x

r

;x

s

) = �

T

(x

s

)Y

�1

(x

r

;x

s

)�(x

r

) ; (A-6)

where �(x

s

) is the upper left 2�2 sub-matrix of the full 3�3 transformation matrix (�g

s

m

=�x

i

).

This is a general 3-D rotation matrix that an be deomposed into three elementary rotations,
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being one around the 3-axis, a seond one around the resulting 2-axis, and a third one around

the new 3-axis. Therefore, their upper left 2 � 2 submatries an be deomposed into three

elementary matries, being two rotation matries and a projetion matrix, namely

�(x

s

) =

0

B

�

os (x

s

) sin(x

s

)

� sin(x

s

) os (x

s

)

1

C

A

0

B

�

os�(x

s

) 0

0 1

1

C

A

0

B

�

os�(x

s

) sin�(x

s

)

� sin�(x

s

) os�(x

s

)

1

C

A

: (A-7)

Here, �(x

s

) and (x

s

) denote the in-plane rotation angles around the old and new 3-axes,

respetively, and �(x

s

) denotes the angle between the group veloity vetor and the x

s

3

-axis.

The fat that the form (A-7) of the 2 � 2 matrix �(x

s

) is exat an be veri�ed by omputing

the upper left 2 � 2 matrix of the full 3 � 3 transformation matrix in equation (A-1) following

the previous desription. The matrix �(x

r

) is similarly de�ned. Then it follows diretly that

detY (x

r

;x

s

) = os�(x

r

) os�(x

s

) detB(x

r

;x

s

) : (A-8)

Next we hoose the x

s

and x

r

oordinate systems to be equal to the phase-front oordinate q

s

and q

r

, respetively. Then, equation (A-1) an be written as in equation (A-6), so that

Q

�1

2

(x

r

;x

s

) = �

T

(x

s

)Y

�1

(x

r

;x

s

)�(x

r

) ; (A-9)

where the 2� 2 transformation matrix now is de�ned by

�(x

s

) =

0

B

�

os �(x

s

) sin�(x

s

)

� sin�(x

s

) os �(x

s

)

1

C

A

0

B

�

os�(x

s

) 0

0 1

1

C

A

0

B

�

os�(x

s

) sin�(x

s

)

� sin�(x

s

) os�(x

s

)

1

C

A

: (A-10)

Here, �(x

s

) and �(x

s

) are rotation angles de�ned in a similar way as (x

s

) and �(x

s

) de�ned

previously, and �(x

s

) is the angle between the phase veloity and group veloity vetors at x

s

.

The matrix �(x

r

) is similarly de�ned.

We have that (

�

Cerven�y [11℄)

os� =

v

V

; (A-11)

so that equation (A-9) diretly yields

V (x

r

)V (x

s

) detY (x

r

;x

s

) = v(x

r

) v(x

s

) detQ

2

(x

r

;x

s

) : (A-12)

A diret relationship between the matries B and Q

2

an be established by ombining

equations (A-6) and (A-9). It reads

Q

�1

2

(x

r

;x

s

) = �

T

(x

s

)�

�T

(x

s

)B

�1

(x

r

;x

s

)�

�1

(x

r

)�(x

r

) : (A-13)

It is instrutive to note in the above derivation the ruial role played by the matrix Y (in

the g-system) to establish the relationship (A-13) between the B matrix (in the x-system) and

the Q

2

matrix (in the q-system). A question that naturally arises is why is the intermediary Y

12



matrix atually needed. A mathematial argument is that the invariane properties (A-3) and

(A-4) are only valid in the g system, so that no one-step 2� 2 matrix transformation is possible

between quantities in the x and q oordinate systems. Physially, equations (A-3) and (A-4)

express the fat that any disloation of one end point of the ray in diretion other than that of

the group veloity also a�ets the diretion of the slowness vetor at its other end point.
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Appendix B

Deomposition of the relative geometrial spreading

In this appendix, we derive the geometrial-spreading deomposition formula (28) in terms

of the seond-order mixed derivatives of the traveltime. This formula is ruial to the veri�ation

that the asymptoti evaluation of the Kirhho�-Helmholtz integral provides the GRA for the

reeted wave.

First, we derive a deomposition formula for the seond-order mixed derivatives of traveltime

for general Cartesian oordinate systems. Upon suitable spei�ation of the oordinate systems,

this formula will provide the relationships for the matries Q

2

and Y that are needed to derive

the expressions for the geometrial-spreading used in the main text.

We onsider �xed soure and reeiver pair, as well as a given smooth reetor �, as shown in

Figure 1. Points in the viinity of the soure will be represented by x

s

in a �xed, 3-D Cartesian

system. Analogously, points in the viinity of the reeiver will be represented by x

r

in a seond,

also �xed, 3-D Cartesian system. We assume that the given soure-reeiver pair determines a

unique reetion point on the reetor. Points on the reetor surfae � in the viinity of the

reetion point, will be represented by � in a 2-D urvilinear oordinate system.

We an express the di�ration traveltime as the sum of the traveltimes,

T

D

(x

r

;�;x

s

) = T (x

r

;�) + T (�;x

s

) ; (B-1)

along the ray segments that onnet x

s

to � and � to x

r

, respetively. The reetion traveltime

that orresponds to a soure at x

s

and a reeiver at x

r

will be expressed as

T

R

(x

r

;x

s

) = T

D

(x

r

;
~
�;x

s

) ; (B-2)

where the stationary point
~
� =

~
�(x

r

;x

s

) is suh that

�T

D

(x

r

;�;x

s

)

��

i

�

�

�

�

~

�

= 0 ; i = 1; 2 : (B-3)

It is our aim to show that the seond-order mixed derivatives of the reetion traveltime sat-

is�es an important deomposition formula. We start by di�erentiating the reetion traveltime

T

R

(x

r

;x

s

) with respet to x

r

j

. We have

�T

R

�x

r

j

=

�

�x

r

j

[T

D

(x

r

;
~
�(x

r

;x

s

);x

s

)℄ =

�T

D

�x

r

j

�

�

�

�

~

�

+

�T

D

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

: (B-4)

We next di�erentiate the above expression with respet to x

s

i

to obtain

�

2

T

R

�x

s

i

�x

r

j

=

�

�x

s

i

�

�T

D

�x

r

j

�

�

�

�

~

�

+

�T

D

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

�
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=

(

�

2

T

D

�x

s

i

�x

r

j

�

�

�

�

~

�

+

�~�

l

�x

s

i

�

2

T

D

��

l

�x

r

j

�

�

�

�

~

�

)

+

(

�

2

T

D

�x

s

i

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

+

�~�

l

�x

s

i

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

+

�T

D

��

k

�

�

�

�

~

�

�

2

~�

k

�x

s

i

�x

r

j

)

: (B-5)

We now observe, by the very de�nition of T

D

as a traveltime sum along the inoming and

outoming ray segments, the properties

�

2

T

D

(x

s

;
~
�;x

r

)

�x

s

i

��

k

=

�

2

T (x

s

;
~
�)

�x

s

i

��

k

;

�

2

T

D

(x

s

;
~
�;x

r

)

�x

r

j

��

k

=

�

2

T (x

r

;
~
�)

�x

s

i

��

k

;

�

2

T

D

(x

s

;
~
�;x

r

)

�x

s

i

�x

r

j

= 0 :

(B-6)

After the use of the stationary ondition (B-3), our expression for the traveltime seond derivative

beomes

�

2

T

R

(x

r

;x

s

)

�x

s

i

�x

r

j

=

�~�

l

�x

s

i

�

2

T (x

r

;�)

��

l

�x

r

j

�

�

�

�

~

�

+

�

2

T (x

s

;�)

�x

s

i

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

+

�~�

l

�x

s

i

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

: (B-7)

In the above expression, the unknown quantities �~�

i

=�x

s;r

j

an be determined by di�erentiating

the stationary ondition (B-3) with respet to the soure/reeiver oordinates x

s;r

i

. Sine the

stationary ondition holds independently of x

s

and x

r

, we �nd

�

�x

s;r

i

"

�T

D

��

k

�

�

�

�

~

�

#

=

�

2

T

D

�x

s;r

i

��

k

�

�

�

�

~

�

+

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

l

�x

s;r

i

= 0 : (B-8)

We now use the properties (B-6) to obtain

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

l

�x

s

i

+

�

2

T (x

s

;
~
�)

�x

s

i

��

k

�

�

�

�

~

�

= 0;

(B-9)

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

l

�x

r

i

+

�

2

T (x

r

;
~
�)

�x

r

i

��

k

�

�

�

�

~

�

= 0:

Reasting the above equations in matrix form, leads to the alternative system

�~�

l

�x

s

i

= �

�

2

T (x

s

;�)

�x

s

i

��

k

�

�

�

�

~

�

D

kl

;

(B-10)

�~�

l

�x

s

i

= � D

lk

�

2

T (x

s

;�)

�x

s

i

��

k

�

�

�

�

~

�

;
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where D

kl

denote the omponents of the symmetri matrix

D =H

�1

=

 

�

2

T

D

(x

r

;�;x

s

)

��

i

��

j

�

�

�

�

~

�

!

�1

: (B-11)

This is the inverse of the so-alled Fresnel matrix H orresponding to the soure-reeiver points

x

s

and x

r

and the reetion point
~
�.

Substituting these expressions into equation (B-7) and using the de�nition of D, this gives

the deomposition formula

�

2

T

R

(x

r

;x

s

)

�x

s

i

�x

r

j

= �

�

2

T (�;x

s

)

�x

s

i

��

j

�

�

�

�

~

�

D

kl

�

2

T (x

r

;�)

��

l

�x

r

j

�

�

�

�

~

�

: (B-12)

Using the matrix B(x

r

;x

s

) de�ned by equation (A-5), this an now be written

B(x

r

;x

s

) = B(x

r

;
~
x)H(

~
x) B(

~
x;x

s

) : (B-13)

>From equation (A-6), we have that

B(x

r

;x

s

) = �

�1

(x

r

;
~
x) Y (x

r

;x

s

)) �

�T

(x

s

) : (B-14)

When this expression and similar expressions for B(x

s

;
~
x) and B(

~
x;x

s

) are used in equation

(B-13), we obtain

Y (x

r

;x

s

) = Y (x

r

;
~
x) (�

r

)

�T

(
~
x)H(

~
x) (�

s

)

�1

(
~
x)Y (

~
x;x

s

) : (B-15)

Here, �

s

(
~
x) and �

r

(
~
x) are the transformation matries at

~
x orresponding to the ray from the

soure and reeiver, respetively.

>From the above equation, it follows that

detY (x

r

;x

s

) =

detY (x

r

;
~
x) detH(

~
x) detY (

~
x;x

s

)

os�

r

os�

s

: (B-16)

Equation (A-9) an be reast into the form

Y (x

r

;x

s

) = �(x

r

)Q

2

(x

r

;x

s

)�

T

(x

s

) ; (B-17)

so that equation (B-15) leads to the deomposition formula,

Q

2

(x

r

;x

s

) = Q

2

(x

r

;
~
x) (�

r

)

T

(
~
x) (�

r

)

�T

(
~
x)H(

~
x) (�

s

)

�1

(
~
x) �

s

(
~
x) Q

2

(
~
x;x

s

) : (B-18)

Here, �

s

(
~
x) and �

r

(
~
x) are transformation matries for the ray oming from the soure to the

reeiver, respetively. Finally, we obtain

detQ

2

(x

r

;x

s

) = detQ

2

(x

r

;
~
x) detH(

~
x) detQ

2

(
~
x;x

s

)

os�

r

os�

s

os�

r

os�

s

(B-19)

as the deomposition formula for the relative geometrial-spreading fator in anisotropi media.

16



Appendix C

Derivation of Equation (11)

In this appendix, we disuss the derivation of equation (11) for the upward sattered wave.

First, let us onsider the total wave�eld above the reetor, U

tot

(x). Then, Aki and Rihards

[2℄, equation (2.41) states that

U

tot

m

(x

r

) =

Z

S

�

G

im

(x;x

r

) 

ijkl

(x)U

tot

k;l

(x)

� G

km;l

(x;x

r

) 

ijkl

(x)U

tot

i

(x)

�

n

j

d� : (C-1)

Here, S is a surfae on�ned to the upper domain, possibly inluding a portion of the reetor,

�, but also inluding the points, x

s

and x

r

. For our purposes, we introdue a sphere of radius

R, entered at a point on �. We then take S to onsist of the portion of the sphere above the

reetor, denoted by S

R

and the portion of � interior to the sphere, denoted by �

R

. See Figure 2.

Our �rst objetive is to allow the radius of the sphere approah in�nity and argue away the

integral over the spherial portion of S; then, only the integral over � will remain. For isotropi

elasti media the appropriate generalization of the Sommerfeld radiation onditions to assure this

result is readily available in the literature. See, for example, Ahenbah, et al, [1℄ or Kupradze

[5℄. Disussion of the appropriate extension of these radiation onditions to anisotropi media

are less aessible. However, there is an alternative method for assuring that the integral over

this sphere vanishes with inreasing radius. Reall that the underlying problem here is an initial

value problem in the time domain, a so-alled ausal problem. For suh problems and our sign

onvention in the phase, the Fourier transform is initially de�ned in some upper-half omplex-

valued !-plane, above all singularities of the transformed wave�eld. Further, the solution must

deay to zero as j!j ! 1 in that upper half plane. Note that solutions with phase fator,

expfi!T (x;x

s

)g, have this property, while solutions with phase fator, expf�i!T (x;x

s

)g, do

not. Thus, this property distinguishes between inoming and outgoing wave types and identi�es

the aeptable �elds at in�nity. Further, the solutions deay exponentially in the upper half

plane. We an think of this ondition as a ausality ondition. Typially, these solutions have

singularities on the <f!g axis. Thus, solutions on that line should be obtained by analyti

ontinuation from above. It is only when we insist on evaluating solutions solely for real values of

! that we need to resort to radiation onditions to distinguish between inoming (unaeptable)

and outgoing (aeptable) solutions at in�nity.

With this in mind, then, we allow the radius R of S

R

approah in�nity. In that limit, the

exponential deay of the wave�elds assures that the integral over S

R

approahes zero and the

surfae �

R

approahes �. Thus, we an replae S by � in (C-1).

Next, we must address the question of onluding the same representation result for the

upward sattered wave, U(x).

17



Both U

in

(x) and U(x) also satisfy the appropriate radiation onditions or ausality on-

dition for observation points above the reetor. It is then fairly straightforward to show that

U

in

(x

r

) is given by the right side of (11) if the wave�eld used in the integrand is U

in

(x). When

we subtrat that identity from the representation for the total wave�eld, the result is (11) for

an upward sattered wave�eld, alone.

The wave�eld, U

in

(x

r

), ontains no response to the reetor, sine it is derived in the

absene of the reetor. Thus, all responses to the presene of the reetor are ontained inU(x).

What is important to us, here, is that it ontains all of the reeted wave�elds, unonverted and

onverted, in response to the point soure on the right side of (2).
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Figure 1: Geometry of the reetion point
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Figure 2: The integration domain for equation (C-1)
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