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Abstra
t

The Kir
hho�-Helmholtz integral is a powerful tool to model the s
attered wave�eld from

a smooth interfa
e in a
ousti
 or isotropi
 elasti
 media due to a given in
ident wave�eld and

observation points suÆ
iently far away from the interfa
e. This integral makes use of the Kir
h-

ho� approximation of the unknown s
attered wave�eld and its normal derivative at the interfa
e

in terms of the 
orresponding quantities of the known in
ident �eld. An attra
tive property of

the Kir
hho�-Helmholtz integral is that its asymptoti
 evaluation re
overs the zero-order ray

theory approximation of the re
e
ted wave�eld at all observation points where that theory is

valid. Here, we extend the Kir
hho�-Helmholtz modeling integral to general anisotropi
 elasti


media. It uses the natural extension of the Kir
hho� approximation of the s
attered wave�eld

and its normal derivative for those media. The anisotropi
 Kir
hho�-Helmholtz integral also

asymptoti
ally provides the zero-order ray theory approximation of the re
e
ted response from

the interfa
e. In 
onne
tion with the asymptoti
 evaluation of the Kir
hho�-Helmholtz inte-

gral, we also derive an extension to anisotropi
 media of a useful de
omposition formula of the

geometri
al spreading of a primary re
e
tion ray.

2



1. Introdu
tion

The wave�eld s
attered from a smooth interfa
e 
an be represented by a surfa
e integral. Both

the �eld and its normal derivative at the interfa
e appear in the integrand. Fundamental repre-

sentations for the a
ousti
, isotropi
 and anisotropi
 elasti
 
ases 
an be found in the literature

(see, e.g., Aki and Ri
hards [2℄; Baker and Copson [3℄; Bleistein [4℄); Kupradze [5℄). These rep-

resentations 
an be re
ast as modeling formulas for re
e
tion from a transparent interfa
e by

exploiting the Kir
hho� approximation whi
h expresses the unknown s
attered �eld and its nor-

mal derivative in terms of the known in
ident �eld (Bleistein [4℄, Frazer and Sen [6℄, Tygel et

al. [7℄). The result is 
alled the Kir
hho�-Helmholtz integral.

We derive the extension of the Kir
hho�-Helmholtz integral to anisotropi
 elasti
 media

starting with an integral representation for the wave�eld at a re
eiver point (Aki and Ri
hards

[2℄). The in
oming wave�eld and the Green's fun
tion from the re
eiver point to the interfa
e are

both repla
ed by the geometri
 ray approximation (GRA). The GRA Green's fun
tion is often

expressed as a fun
tion of phase velo
ities and the relative geometri
al-spreading fa
tor that may

be 
omputed from mixed se
ond-order traveltime derivatives with respe
t to the phase-front 
o-

ordinates that are normal to the phase-velo
ity ve
tors. Here we prefer to work with a GRA that

is expressed by the group velo
ities and a relative geometri
al-spreading fa
tor that is expressed

by the mixed se
ond-order traveltime derivatives with respe
t to the ray 
oordinates that are

normal to the group-velo
ity ve
tors. The relationship between the geometri
al-spreading fa
tors

is shown in Appendix A.

The Kir
hho� approximation for anisotropi
 media is done in the same way as for isotropi


media. Both the outgoing �eld and its derivative at the interfa
e are approximated from the

spe
ularly re
e
ted wave�eld from the sour
e. This approximation has also been indi
ated by

de Hoop and Bleistein [8℄. To verify the resulting anisotropi
 Kir
hho�-Helmholtz integral, we

show that the stationary-phase evaluation is the GRA for the re
e
ted wave�eld. Ne
essary

de
omposition formulas for the geometri
al-spreading fa
tors for the re
e
ted wave are given in

Appendix B. These are extensions of the isotropi
 elasti
 formulas (Hubral et al. [9℄,[10℄ and

�

Cerven�y [11℄). The GRA of the re
e
ted wave�eld is then expressed by the total geometri
al

spreading and a re
e
tion 
oeÆ
ient whi
h is normalized with respe
t to the verti
al energy


ux. This formula also satis�es re
ipro
ity.

2. The geometri
 ray approximation

Wave propagation in an inhomogeneous anisotropi
 elasti
 solid is governed by the elasto-

dynami
 equations (Aki and Ri
hards [2℄). In the frequen
y domain, these are

!

2

�U

i

+ (


ijkl

U

k;l

)

;j

= 0 ; i; j; k = 1; 2; 3: (1)

Here, ! is the frequen
y, U

i

= U

i

(x; !) is the i-th 
omponent of the displa
ement ve
tor U (x:!),

� = �(x) is the density, and 


ijkl

= 


ijkl

(x) are the elasti
 parameters of the medium at the
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point x = (x

1

; x

2

; x

3

). The elasti
 parameters satisfy the symmetry relations 


ijkl

= 


jikl

=




ijlk

= 


klij

. In equation (1), the notation \; j" stands for �=�x

j

, and a repeated index implies

summation with respe
t to that index.

The Green's fun
tion, G

in

(x; !;x

s

), satis�es the equation

!

2

�G

in

+ (


ijkl

G

kn;l

)

;j

= � Æ

in

Æ(x � x

s

) : (2)

For homogeneous boundary 
onditions, it also satis�es the re
ipro
ity relation (Aki and Ri
hards

[2℄, equation (2.39))

G

ij

(x; !;x

s

) = G

ji

(x

s

; !;x) : (3)

For a spe
i�
 ray 
onne
ting a sour
e point x

s

to a s
attering point x, the GRA Green's fun
tion

is (

�

Cerven�y [11℄, Chapman and Coates [12℄)

G

ij

(x; !;x

s

) = h

s

i

(x) A(x;x

s

) e

i!T (x;x

s

)

h

j

(x

s

) ; (4)

where h(x

s

) and h

s

(x) are the unit polarization ve
tors in the ray dire
tion at the sour
e x

s

and at the point x, respe
tively. T (x;x

s

) is the traveltime along the ray from x to x

s

, and

A(x;x

s

) is a 
omplex amplitude fun
tion taking into a

ount possible 
austi
s and phase-shift

at the sour
e. It is given by

A(x;x

s

) =

e

�i

�

2

sgn(!) �(x;x

s

)

4� [�(x) v

s

(x) �(x

s

) v(x

s

)℄

1=2

jdetQ

2

(x;x

s

)j

1=2

: (5)

Here, �(x

s

) and �(x

r

) are the densities and v(x

s

) and v

s

(x) the phase velo
ities in the ray

dire
tion at the sour
e x

s

and at the point x, respe
tively; jdetQ

2

(x;x

s

)j

1=2

denotes the relative

geometri
al spreading fa
tor 
omputed with respe
t to lo
al wavefront 
oordinates. The inverse

of the matrix Q

2

is given by

Q

�1

2 ij

= �

�

2

T (x;x

s

)

�q

s

i

�q

j

; i; j = 1; 2: (6)

The lo
al 
oordinates q

s

i

and q

j

are in the wavefront plane (normal to the phase velo
ity) at the

points x

s

and x, respe
tively. Finally, �(x;x

s

) is the KMAH index for the ray that 
onne
ts the

sour
e x

s

to the point x.

We re
ognize that our notations for the phase velo
ities v

s

(x) and v(x

s

) require some

explanation. These are both velo
ities at the end points of the spe
i�
 ray that 
onne
ts x

s

to x. Due to anisotropy, these velo
ities depend on the ray dire
tion, as well as position. The

additional supers
ript in v

s

(x) is used to distinguish it from v

r

(x), the phase velo
ity at x for

the ray 
oming from a re
eiver at x

r

(see Figure 1). Our notation for the polarization ve
tors

h

s

i

(x) and h

i

(x

s

) follows the same pattern. Sin
e the magnitude of the phase velo
ity does not


hange when the ray dire
tion is reversed and, moreover, all the other quantities in the GRA

Green's fun
tion (4) remain the same when x

s

and x are inter
hanged, it follows that the GRA

Green's fun
tion also satis�es the re
ipro
ity relation (3).
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In evaluating the stationary value of the Kir
hho�-Helmholtz integral to be de�ned later,

it turns out to be more 
onvenient to work with the relative geometri
al-spreading fa
tor

jdetY (x;x

s

)j

1=2

de�ned with respe
t to lo
al ray 
oordinates. Here,

Y

�1

ij

= �

�

2

T (x;x

s

)

�g

s

i

�g

j

; i; j = 1; 2; (7)

where g

s

i

and g

j

are lo
al 
oordinates in the planes normal to the ray (and normal to the group

velo
ity), respe
tively.

Using the results of Appendix A, we have that

V

s

(x)V (x

s

) jdetY (x;x

s

)j = v

s

(x) v(x

s

) jdetQ

2

(x;x

s

)j ; (8)

where V (x

s

) and V

s

(x) denote the group velo
ities in the ray dire
tion at the sour
e x

s

and at

the point x, respe
tively. When equation (8) is used in equation (4), the amplitude expression

be
omes

A(x;x

s

) =

e

�i

�

2

sgn(!) �(x;x

s

)

4� [�(x)V

s

(x) �(x

s

)V (x

s

)℄

1=2

jdetY (x;x

s

)j

1=2

: (9)

Note again that the amplitude formula satis�es re
ipro
ity.

For our purposes, it suÆ
es to use the \free-spa
e" Green's fun
tion in what follows. This

is the Green's fun
tion in the absen
e of the re
e
ting surfa
e. This is a standard mathemati
al

devi
e. Clearly, the 
reation of this wave�eld requires an appropriately smooth 
ontinuation of

the medium parameters of the upper medium to all spa
e. However, sin
e we will only use the

ray theoreti
 des
ription of the wave�eld above the re
e
tor, there is no need to des
ribe this


ontinuation in any detail. We need only assume that the extension of the medium parameters

below the re
e
tor do not introdu
e \turned energy" from below the re
e
tor ba
k into the upper

medium. As 
an be seen from the dis
ussion above, the ray theoreti
 free spa
e Green's fun
tion

above the re
e
tor is then derived using only medium parameter values above the re
e
tor.

3. The Kir
hho�-Helmholtz integral

We will 
onsider a wave�eld that is generated by a sour
e at x

s

, re
e
ted at the surfa
e � and

re
orded at x

r

, as shown in Figure 1. The total �eld, U

tot

, above the re
e
tor 
onsists of a

dire
t arrival (the in
ident wave�eld), U

in


, that is un
hanged by the presen
e of the re
e
tor

and the response to the re
e
tor, U . It is the latter wave�eld for whi
h we will derive a Kir
hho�-

Helmholtz integral representation. It is dominated by re
e
tion and therefore, for brevity, we

will refer to it as the re
e
ted wave�eld. The in
ident wave�eld is analogous to the free-spa
e

Green's fun
tion, introdu
ed above, but now it is the free-spa
e wave response to the given

sour
e. Then

U

tot

(x) = U

in


(x) +U(x): (10)

The dependen
e on ! will no longer be shown expli
itly. The re
e
ted displa
ement �eld at the

re
eiver U(x

r

) 
an be expressed as a surfa
e integral involving the outgoing displa
ement �eld
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U(x) and its derivative rU(x) at the surfa
e. This result 
an be derived by starting from a

representation theorem that is given in Aki and Ri
hards [2℄, equation (2.41). Their result is valid

for the total �eld, U

tot

(x), in bounded media; here, we are 
onsidering problems in unbounded

media and we want a representation only for U(x). In Appendix C, we brie
y des
ribe the

adaptation of their result to the one we seek and only present the �nal result here.

In the absen
e of body for
es, and with a Green's fun
tion that satis�es the re
ipro
ity

relation (3), this representation is

U

m

(x

r

) =

Z

�

�

G

im

(x;x

r

) 


ijkl

(x)U

k;l

(x)

� G

km;l

(x;x

r

) 


ijkl

(x)U

i

(x)

�

n

j

d� : (11)

Here, n is the normal to the re
e
tor surfa
e � pointing outwards (that is, downwards) in

Figure 1.

To derive the Kir
hho�-Helmholtz integral, we shall make the following approximations:

(i) The free-spa
e Green's fun
tion G

ij

(x;x

r

) for the re
eiver ray segment is repla
ed by the

GRA 
orresponding to equation (4) with the amplitude fun
tion A(x;x

r

) in the form of

equation (9).

(ii) The spatial derivatives of the Green's fun
tion are approximated by negle
ting variations

in the amplitude fun
tion, so that

G

ij;k

(x;x

r

) � i! T

;k

G

ij

(x;x

r

)

= i! p

r

k

G

ij

(x;x

r

) ; (12)

where p

r

k

= p

r

k

(x) = T

;k

(x;x

r

) is the k-th 
omponent of the slowness ve
tor p

r

(x) at the

point x for the ray 
oming from the re
eiver at x

r

. This approximation is 
ompatible with

GRA in (i) as both have errors O(!

�1

) when 
ompared to the terms that are retained.

(iii) The in
ident wave�eld at the surfa
e � from an arbitrary sour
e at x

s

is given by a GRA

in the form

U

in


i

(x) = h

s

i

(x) A

in


(x;x

s

) e

i! T (x;x

s

)

; (13)

with the amplitude A

in


(x;x

s

) and the traveltime T (x;x

s

).

(iv) The outgoing re
e
tion wave�eld U

i

(x) at the surfa
e is now repla
ed by a Kir
hho�-type

approximation for anisotropi
 media, namely a sum of GRA wavemodes (one qP and two

qS waves), ea
h of them of the form

U

re


i

(x) = h

spe


i

(x) R

A

(x;p

s

) A

in


(x;x

s

) e

i! T (x;x

s

)

; (14)

where h

spe


i

(x) is the polarization ve
tor 
orresponding to a spe
ular re
e
ted wave of

proper mode at the point x on �, due to the in
ident wave and R

A

(x;p

s

) is the amplitude-

normalized plane-wave re
e
tion 
oeÆ
ient for our 
hoi
e of in
oming and outgoing wave

mode. Also, p

s

(x) is the slowness ve
tor at the point x for the ray 
oming from the sour
e.
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(v) The spatial derivatives of the outgoing wave�eld at the surfa
e will be given by the anal-

ogous anisotropi
 Kir
hho� approximation, namely the 
orresponding sum of GRA wave-

modes

U

re


i;k

(x) = i! p

spe


k

U

re


i

(x) ; (15)

where p

spe


(x) is the slowness ve
tor of the spe
ular re
e
ted wave, that is, it is related

to p

s

by Snell's law for a plane wave in
ident on a plane re
e
tor.

Due to linearity, when all these approximations are used in the representation integral in

equation (11), the result is a sum of integrals, one for ea
h wavemode in the re
e
ted �eld. Ea
h

of these integrals has the form

U

KH

m

(x

r

) = i!

Z

�

h

m

(x

r

) A(x;x

r

) A

in


(x;x

s

) 


ijkl

(x) n

j

(x)

�

�

h

r

i

(x) p

spe


l

(x)h

spe


k

(x)� h

r

k

(x) p

r

l

(x)h

spe


i

(x)

�

(16)

� e

i![T (x;x

r

)+T (x;x

s

)℄

R

A

(x;p

s

(x)) d� :

The above-obtained Kir
hho�-Helmholtz modeling integral is of parti
ular interest when the

in
ident wave�eld of equation (13), U

in


i

(x), is repla
ed by the GRA Green's fun
tion of equation

(4), G

in

(x; !;x

s

). Note that the GRA Green's fun
tion also 
onsists of three wavemodes (one

qP and two qS). The expli
it expression of the resulting representation integral due to ea
h of

these modes is readily found to be

G

KH

mn

(x

r

;x

s

) = i!

Z

�

h

m

(x

r

) A(x;x

r

) A(x;x

s

) 


ijkl

(x) n

j

(x)

�

�

h

r

i

(x) p

spe


l

(x)h

spe


k

(x)� h

r

k

(x) p

r

l

(x)h

spe


i

(x)

�

(17)

� e

i![T (x;x

r

)+T (x;x

s

)℄

R

A

(x;p

s

(x)) h

n

(x

s

) d� :

The Kir
hho�-Helmholtz integral does not satisfy re
ipro
ity, in 
ontrast to the Born-Kir
hho�

s
attering integral derived in Ursin and Tygel [13℄. Note that the geometri
al-spreading de
om-

position formula given in that referen
e is only valid for isotropi
 media. In anisotropi
 media,

the results from the present Appendix B should be used, instead. However, the surfa
e s
attering

integral is 
orre
tly stated there.

4. The stationary-phase approximation

We want to 
ompute the stationary values of the surfa
e s
attering integral of the type

I = i!

Z

�

b(x) e

i!T (x)

d� ; (18)

to leading order in the high-frequen
y !.
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The stationary points,
~
x, are those points for whi
h

�T

��

j

=

�T

�x

k

�x

k

��

j

=rT � t

j

= 0 ; i; j;= 1; 2 ; (19)

where t

j

are the surfa
e tangents. This 
ondition is equivalent to Snell's law. For simpli
ity, we

assume that there is only one stationary point
~
x and also that this is a regular stationary point.

This means that the se
ond-derivative matrix,

H

ij

=

�

2

T

��

i

��

j

=

�

2

T

�x

n

�x

k

�x

n

��

i

�x

k

��

j

; i; j = 1; 2 ; (20)

evaluated at
~
x is non-singular, detH 6= 0. Then the stationary value of the integral is (Bleistein

[4℄, equation (2.8.23))

~

I = i!

�

2�

j!j

�

jdetH j

�1=2

e

i

�

4

sgn(!) Sgn(H )

b(
~
x) e

i!T (

~

x)

; (21)

where
~
x = x(

~
�) is the stationary point and Sgn(H) is the signature of the matrix H , that

is, the di�eren
e between the number of its positive eigenvalues and the number of its negative

eigenvalues.

The stationary point
~
x is a point of spe
ular re
e
tion, so that h

spe


(
~
x) = h

r

(
~
x) and

p

spe


(
~
x) = �p

r

(
~
x) be
ause p

r

(
~
x) is the slowness for the ray going from x

r

to x, so that it is

pointing downwards at the interfa
e.

A stationary-phase evaluation of the integral (18) yields

G

KH

mn

(x

r

;x

s

) � 4� h

m

(x

r

) jdetH j

�1=2

e

�i

�

2

sgn(!) [1�

1

2

Sgn(H)℄

� 


ijkl

(
~
x)h

r

l

(
~
x)h

r

k

(
~
x) p

l

(
~
x)n

j

(
~
x)R

A

(
~
x;p

s

(
~
x)) (22)

� A(x

r

;
~
x)A(

~
x;x

s

) e

i![T (x

r

;x)+T (x;x

s

)℄

h

n

(x

s

)

for the re
e
ted �eld. The matrix H is 
alled the Fresnel matrix 
orresponding to the re
e
tion

ray (Hubral et al. [10℄). Here we note that (

�

Cerven�y [11℄)




ijkl

(
~
x)h

r

i

(
~
x)h

r

k

(
~
x) p

r

i

(
~
x)n

j

(
~
x) = �(

~
x)V

r

j

(
~
x)n

j

(
~
x) = �(

~
x)V

r

(
~
x) 
os�

r

; (23)

where �

r

is the angle between the surfa
e normal and the ray 
oming from the re
eiver; see

Figure 1. We now use the energy-
ux normalized re
e
tion 
oeÆ
ient

R(
~
x) = R

A

(
~
x;p

s

(
~
x))

�

V

r


os�

r

V

s


os�

s

�

1=2

: (24)

Combining equations (22) to (24), and taking into a

ount the amplitude formula in equation

(9), we obtain that the stationary value of the Kir
hho�-Helmholtz integral is equal to the GRA

for the re
e
ted wave�eld

G

KH

mn

(x

r

;x

s

) � G

R

mn

(x

r

;x

s

) = h

m

(x

r

) A(x

r

;x

s

) e

i! T (x

r

;x

s

)

R(
~
x) h

n

(x

s

) : (25)
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Here, R(
~
x) is given in equation (24), the total traveltime is

T (x

r

;x

s

) = T (x

r

;
~
x) + T (

~
x;x

s

) ; (26)

and the total amplitude is given as in equation (9), with

�(x

r

;x

s

) = �(x

r

;
~
x) + �(

~
x;x

s

) + 1� Sgn(H)=2 : (27)

Finally,

jdetY (x

r

;x

s

)j =

jdetH detY (x

r

;
~
x) detY (

~
x;x

s

)j


os�

r


os�

s

; (28)

where equation (B-16) has been used.

5. Con
lusions

We have extended the Kir
hho�-Helmholtz integral to general anisotropi
 media. The upgoing

s
attered �eld at the interfa
e was repla
ed by the spe
ularly re
e
ted �eld, as approximated

by the GRA. Within the validity of the GRA, the new integral formula 
an be used to 
ompute

multiply re
e
ted and 
onverted waves in anisotropi
 media. This also in
ludes a possible wave-

mode 
onversion at the interfa
e. The present approa
h provides a \single-event" approximation

that enables us to determine one spe
i�
ally 
hosen re
e
tion without having to 
al
ulate all

other events that might be 
onsidered noise in the a
tual problem. The 
omplete wave�eld at the

re
eiver is, then, the superposition of all possible events that 
an be 
al
ulated independently

(but simultaneously, if so desired) by the 
orresponding Kir
hho�-Helmholtz integrals.

We have also extended the de
omposition formula for the relative geometri
al spreading

fa
tor from isotropi
 to anisotropi
 elasti
 media. This generalization has been done indepen-

dently, based only on ray-theoreti
al arguments. The resulting de
omposition formula provides

the means to 
al
ulate the geometri
al spreading of a primary re
e
ted ray in terms of the

spreading fa
tors of the in
ident and re
e
ted ray segments and a third fa
tor that a

ounts for

the in
uen
e of the interfa
e.
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Appendix A

Relationship between the relative

geometri
al-spreading matri
es

In this appendix we derive expressions for the relative geometri
al spreading given through

the matri
es Q

2

and Y de�ned in the main text. We start with the general expression

�

2

T (x

r

;x

s

)

�x

s

i

�x

r

j

=

�g

s

n

�x

s

i

�

2

T (x

r

;x

s

)

�g

s

n

�g

r

m

�g

r

m

�x

r

j

(A-1)

Here, the indi
es i and j are �xed and vary from 1 to 3. A summation from 1 to 3 is understood

for the indi
es n and m. The orthogonal ray 
oordinates systems g

s

n

and g

r

m

are 
hosen su
h that

g

s

3

and g

r

3

are in the dire
tion of the ray (and the group velo
ity) at x

s

and x

r

, respe
tively. We

use the notation of (26) for the total traveltime from x

s

to the re
e
tor to x

r

. (The dependen
e

of the traveltime on the re
e
tor point is unimportant in this dis
ussion.) We have that

�T (x

r

;x

s

)

�g

s

i

= p

(g)

i

(x

s

) ; (A-2)

where p

(g)

i

(x

s

) denote the 
omponents of the slowness ve
tor at x

s

, expressed in the g

s

i

-
oordinate

system. Observe that as the re
eiver position is 
hanged in the ray dire
tion, that is, as g

r

3

varies

along the ray, this gradient does not vary. Thus, taking the derivative with respe
t to g

r

3

|that

is, taking a derivative along the ray at x

r

|does not 
hange this slowness. This means that

�

2

T (x

r

;x

s

)

�g

r

3

�g

s

i

= 0 : (A-3)

Similarly, we have that

�

2

T (x

r

;x

s

)

�g

s

3

�g

r

i

= 0 : (A-4)

This means that the summations over the indi
es n and m in equation (A-1) need to be taken

from 1 to 2 only. Next we de�ne the 2� 2 matrix B(x

r

;x

s

) with 
omponents

B

ij

(x

r

;x

s

) = �

"

�

2

T (x

r

;x

s

)

�x

s

i

�x

r

j

#

�1

; i; j = 1; 2: (A-5)

Then the upper left 2� 2 part in equation (A-1) may be written

B

�1

(x

r

;x

s

) = �

T

(x

s

)Y

�1

(x

r

;x

s

)�(x

r

) ; (A-6)

where �(x

s

) is the upper left 2�2 sub-matrix of the full 3�3 transformation matrix (�g

s

m

=�x

i

).

This is a general 3-D rotation matrix that 
an be de
omposed into three elementary rotations,
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being one around the 3-axis, a se
ond one around the resulting 2-axis, and a third one around

the new 3-axis. Therefore, their upper left 2 � 2 submatri
es 
an be de
omposed into three

elementary matri
es, being two rotation matri
es and a proje
tion matrix, namely

�(x

s

) =

0

B

�


os 
(x

s

) sin
(x

s

)

� sin
(x

s

) 
os 
(x

s

)

1

C

A

0

B

�


os�(x

s

) 0

0 1

1

C

A

0

B

�


os�(x

s

) sin�(x

s

)

� sin�(x

s

) 
os�(x

s

)

1

C

A

: (A-7)

Here, �(x

s

) and 
(x

s

) denote the in-plane rotation angles around the old and new 3-axes,

respe
tively, and �(x

s

) denotes the angle between the group velo
ity ve
tor and the x

s

3

-axis.

The fa
t that the form (A-7) of the 2 � 2 matrix �(x

s

) is exa
t 
an be veri�ed by 
omputing

the upper left 2 � 2 matrix of the full 3 � 3 transformation matrix in equation (A-1) following

the previous des
ription. The matrix �(x

r

) is similarly de�ned. Then it follows dire
tly that

detY (x

r

;x

s

) = 
os�(x

r

) 
os�(x

s

) detB(x

r

;x

s

) : (A-8)

Next we 
hoose the x

s

and x

r


oordinate systems to be equal to the phase-front 
oordinate q

s

and q

r

, respe
tively. Then, equation (A-1) 
an be written as in equation (A-6), so that

Q

�1

2

(x

r

;x

s

) = �

T

(x

s

)Y

�1

(x

r

;x

s

)�(x

r

) ; (A-9)

where the 2� 2 transformation matrix now is de�ned by

�(x

s

) =

0

B

�


os �(x

s

) sin�(x

s

)

� sin�(x

s

) 
os �(x

s

)

1

C

A

0

B

�


os�(x

s

) 0

0 1

1

C

A

0

B

�


os�(x

s

) sin�(x

s

)

� sin�(x

s

) 
os�(x

s

)

1

C

A

: (A-10)

Here, �(x

s

) and �(x

s

) are rotation angles de�ned in a similar way as 
(x

s

) and �(x

s

) de�ned

previously, and �(x

s

) is the angle between the phase velo
ity and group velo
ity ve
tors at x

s

.

The matrix �(x

r

) is similarly de�ned.

We have that (

�

Cerven�y [11℄)


os� =

v

V

; (A-11)

so that equation (A-9) dire
tly yields

V (x

r

)V (x

s

) detY (x

r

;x

s

) = v(x

r

) v(x

s

) detQ

2

(x

r

;x

s

) : (A-12)

A dire
t relationship between the matri
es B and Q

2


an be established by 
ombining

equations (A-6) and (A-9). It reads

Q

�1

2

(x

r

;x

s

) = �

T

(x

s

)�

�T

(x

s

)B

�1

(x

r

;x

s

)�

�1

(x

r

)�(x

r

) : (A-13)

It is instru
tive to note in the above derivation the 
ru
ial role played by the matrix Y (in

the g-system) to establish the relationship (A-13) between the B matrix (in the x-system) and

the Q

2

matrix (in the q-system). A question that naturally arises is why is the intermediary Y

12



matrix a
tually needed. A mathemati
al argument is that the invarian
e properties (A-3) and

(A-4) are only valid in the g system, so that no one-step 2� 2 matrix transformation is possible

between quantities in the x and q 
oordinate systems. Physi
ally, equations (A-3) and (A-4)

express the fa
t that any dislo
ation of one end point of the ray in dire
tion other than that of

the group velo
ity also a�e
ts the dire
tion of the slowness ve
tor at its other end point.
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Appendix B

De
omposition of the relative geometri
al spreading

In this appendix, we derive the geometri
al-spreading de
omposition formula (28) in terms

of the se
ond-order mixed derivatives of the traveltime. This formula is 
ru
ial to the veri�
ation

that the asymptoti
 evaluation of the Kir
hho�-Helmholtz integral provides the GRA for the

re
e
ted wave.

First, we derive a de
omposition formula for the se
ond-order mixed derivatives of traveltime

for general Cartesian 
oordinate systems. Upon suitable spe
i�
ation of the 
oordinate systems,

this formula will provide the relationships for the matri
es Q

2

and Y that are needed to derive

the expressions for the geometri
al-spreading used in the main text.

We 
onsider �xed sour
e and re
eiver pair, as well as a given smooth re
e
tor �, as shown in

Figure 1. Points in the vi
inity of the sour
e will be represented by x

s

in a �xed, 3-D Cartesian

system. Analogously, points in the vi
inity of the re
eiver will be represented by x

r

in a se
ond,

also �xed, 3-D Cartesian system. We assume that the given sour
e-re
eiver pair determines a

unique re
e
tion point on the re
e
tor. Points on the re
e
tor surfa
e � in the vi
inity of the

re
e
tion point, will be represented by � in a 2-D 
urvilinear 
oordinate system.

We 
an express the di�ra
tion traveltime as the sum of the traveltimes,

T

D

(x

r

;�;x

s

) = T (x

r

;�) + T (�;x

s

) ; (B-1)

along the ray segments that 
onne
t x

s

to � and � to x

r

, respe
tively. The re
e
tion traveltime

that 
orresponds to a sour
e at x

s

and a re
eiver at x

r

will be expressed as

T

R

(x

r

;x

s

) = T

D

(x

r

;
~
�;x

s

) ; (B-2)

where the stationary point
~
� =

~
�(x

r

;x

s

) is su
h that

�T

D

(x

r

;�;x

s

)

��

i

�

�

�

�

~

�

= 0 ; i = 1; 2 : (B-3)

It is our aim to show that the se
ond-order mixed derivatives of the re
e
tion traveltime sat-

is�es an important de
omposition formula. We start by di�erentiating the re
e
tion traveltime

T

R

(x

r

;x

s

) with respe
t to x

r

j

. We have

�T

R

�x

r

j

=

�

�x

r

j

[T

D

(x

r

;
~
�(x

r

;x

s

);x

s

)℄ =

�T

D

�x

r

j

�

�

�

�

~

�

+

�T

D

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

: (B-4)

We next di�erentiate the above expression with respe
t to x

s

i

to obtain

�

2

T

R

�x

s

i

�x

r

j

=

�

�x

s

i

�

�T

D

�x

r

j

�

�

�

�

~

�

+

�T

D

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

�
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=

(

�

2

T

D

�x

s

i

�x

r

j

�

�

�

�

~

�

+

�~�

l

�x

s

i

�

2

T

D

��

l

�x

r

j

�

�

�

�

~

�

)

+

(

�

2

T

D

�x

s

i

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

+

�~�

l

�x

s

i

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

+

�T

D

��

k

�

�

�

�

~

�

�

2

~�

k

�x

s

i

�x

r

j

)

: (B-5)

We now observe, by the very de�nition of T

D

as a traveltime sum along the in
oming and

out
oming ray segments, the properties

�

2

T

D

(x

s

;
~
�;x

r

)

�x

s

i

��

k

=

�

2

T (x

s

;
~
�)

�x

s

i

��

k

;

�

2

T

D

(x

s

;
~
�;x

r

)

�x

r

j

��

k

=

�

2

T (x

r

;
~
�)

�x

s

i

��

k

;

�

2

T

D

(x

s

;
~
�;x

r

)

�x

s

i

�x

r

j

= 0 :

(B-6)

After the use of the stationary 
ondition (B-3), our expression for the traveltime se
ond derivative

be
omes

�

2

T

R

(x

r

;x

s

)

�x

s

i

�x

r

j

=

�~�

l

�x

s

i

�

2

T (x

r

;�)

��

l

�x

r

j

�

�

�

�

~

�

+

�

2

T (x

s

;�)

�x

s

i

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

+

�~�

l

�x

s

i

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

k

�x

r

j

: (B-7)

In the above expression, the unknown quantities �~�

i

=�x

s;r

j


an be determined by di�erentiating

the stationary 
ondition (B-3) with respe
t to the sour
e/re
eiver 
oordinates x

s;r

i

. Sin
e the

stationary 
ondition holds independently of x

s

and x

r

, we �nd

�

�x

s;r

i

"

�T

D

��

k

�

�

�

�

~

�

#

=

�

2

T

D

�x

s;r

i

��

k

�

�

�

�

~

�

+

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

l

�x

s;r

i

= 0 : (B-8)

We now use the properties (B-6) to obtain

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

l

�x

s

i

+

�

2

T (x

s

;
~
�)

�x

s

i

��

k

�

�

�

�

~

�

= 0;

(B-9)

�

2

T

D

��

l

��

k

�

�

�

�

~

�

�~�

l

�x

r

i

+

�

2

T (x

r

;
~
�)

�x

r

i

��

k

�

�

�

�

~

�

= 0:

Re
asting the above equations in matrix form, leads to the alternative system

�~�

l

�x

s

i

= �

�

2

T (x

s

;�)

�x

s

i

��

k

�

�

�

�

~

�

D

kl

;

(B-10)

�~�

l

�x

s

i

= � D

lk

�

2

T (x

s

;�)

�x

s

i

��

k

�

�

�

�

~

�

;
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where D

kl

denote the 
omponents of the symmetri
 matrix

D =H

�1

=

 

�

2

T

D

(x

r

;�;x

s

)

��

i

��

j

�

�

�

�

~

�

!

�1

: (B-11)

This is the inverse of the so-
alled Fresnel matrix H 
orresponding to the sour
e-re
eiver points

x

s

and x

r

and the re
e
tion point
~
�.

Substituting these expressions into equation (B-7) and using the de�nition of D, this gives

the de
omposition formula

�

2

T

R

(x

r

;x

s

)

�x

s

i

�x

r

j

= �

�

2

T (�;x

s

)

�x

s

i

��

j

�

�

�

�

~

�

D

kl

�

2

T (x

r

;�)

��

l

�x

r

j

�

�

�

�

~

�

: (B-12)

Using the matrix B(x

r

;x

s

) de�ned by equation (A-5), this 
an now be written

B(x

r

;x

s

) = B(x

r

;
~
x)H(

~
x) B(

~
x;x

s

) : (B-13)

>From equation (A-6), we have that

B(x

r

;x

s

) = �

�1

(x

r

;
~
x) Y (x

r

;x

s

)) �

�T

(x

s

) : (B-14)

When this expression and similar expressions for B(x

s

;
~
x) and B(

~
x;x

s

) are used in equation

(B-13), we obtain

Y (x

r

;x

s

) = Y (x

r

;
~
x) (�

r

)

�T

(
~
x)H(

~
x) (�

s

)

�1

(
~
x)Y (

~
x;x

s

) : (B-15)

Here, �

s

(
~
x) and �

r

(
~
x) are the transformation matri
es at

~
x 
orresponding to the ray from the

sour
e and re
eiver, respe
tively.

>From the above equation, it follows that

detY (x

r

;x

s

) =

detY (x

r

;
~
x) detH(

~
x) detY (

~
x;x

s

)


os�

r


os�

s

: (B-16)

Equation (A-9) 
an be re
ast into the form

Y (x

r

;x

s

) = �(x

r

)Q

2

(x

r

;x

s

)�

T

(x

s

) ; (B-17)

so that equation (B-15) leads to the de
omposition formula,

Q

2

(x

r

;x

s

) = Q

2

(x

r

;
~
x) (�

r

)

T

(
~
x) (�

r

)

�T

(
~
x)H(

~
x) (�

s

)

�1

(
~
x) �

s

(
~
x) Q

2

(
~
x;x

s

) : (B-18)

Here, �

s

(
~
x) and �

r

(
~
x) are transformation matri
es for the ray 
oming from the sour
e to the

re
eiver, respe
tively. Finally, we obtain

detQ

2

(x

r

;x

s

) = detQ

2

(x

r

;
~
x) detH(

~
x) detQ

2

(
~
x;x

s

)


os�

r


os�

s


os�

r


os�

s

(B-19)

as the de
omposition formula for the relative geometri
al-spreading fa
tor in anisotropi
 media.
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Appendix C

Derivation of Equation (11)

In this appendix, we dis
uss the derivation of equation (11) for the upward s
attered wave.

First, let us 
onsider the total wave�eld above the re
e
tor, U

tot

(x). Then, Aki and Ri
hards

[2℄, equation (2.41) states that

U

tot

m

(x

r

) =

Z

S

�

G

im

(x;x

r

) 


ijkl

(x)U

tot

k;l

(x)

� G

km;l

(x;x

r

) 


ijkl

(x)U

tot

i

(x)

�

n

j

d� : (C-1)

Here, S is a surfa
e 
on�ned to the upper domain, possibly in
luding a portion of the re
e
tor,

�, but also in
luding the points, x

s

and x

r

. For our purposes, we introdu
e a sphere of radius

R, 
entered at a point on �. We then take S to 
onsist of the portion of the sphere above the

re
e
tor, denoted by S

R

and the portion of � interior to the sphere, denoted by �

R

. See Figure 2.

Our �rst obje
tive is to allow the radius of the sphere approa
h in�nity and argue away the

integral over the spheri
al portion of S; then, only the integral over � will remain. For isotropi


elasti
 media the appropriate generalization of the Sommerfeld radiation 
onditions to assure this

result is readily available in the literature. See, for example, A
henba
h, et al, [1℄ or Kupradze

[5℄. Dis
ussion of the appropriate extension of these radiation 
onditions to anisotropi
 media

are less a

essible. However, there is an alternative method for assuring that the integral over

this sphere vanishes with in
reasing radius. Re
all that the underlying problem here is an initial

value problem in the time domain, a so-
alled 
ausal problem. For su
h problems and our sign


onvention in the phase, the Fourier transform is initially de�ned in some upper-half 
omplex-

valued !-plane, above all singularities of the transformed wave�eld. Further, the solution must

de
ay to zero as j!j ! 1 in that upper half plane. Note that solutions with phase fa
tor,

expfi!T (x;x

s

)g, have this property, while solutions with phase fa
tor, expf�i!T (x;x

s

)g, do

not. Thus, this property distinguishes between in
oming and outgoing wave types and identi�es

the a

eptable �elds at in�nity. Further, the solutions de
ay exponentially in the upper half

plane. We 
an think of this 
ondition as a 
ausality 
ondition. Typi
ally, these solutions have

singularities on the <f!g axis. Thus, solutions on that line should be obtained by analyti



ontinuation from above. It is only when we insist on evaluating solutions solely for real values of

! that we need to resort to radiation 
onditions to distinguish between in
oming (una

eptable)

and outgoing (a

eptable) solutions at in�nity.

With this in mind, then, we allow the radius R of S

R

approa
h in�nity. In that limit, the

exponential de
ay of the wave�elds assures that the integral over S

R

approa
hes zero and the

surfa
e �

R

approa
hes �. Thus, we 
an repla
e S by � in (C-1).

Next, we must address the question of 
on
luding the same representation result for the

upward s
attered wave, U(x).

17



Both U

in


(x) and U(x) also satisfy the appropriate radiation 
onditions or 
ausality 
on-

dition for observation points above the re
e
tor. It is then fairly straightforward to show that

U

in


(x

r

) is given by the right side of (11) if the wave�eld used in the integrand is U

in


(x). When

we subtra
t that identity from the representation for the total wave�eld, the result is (11) for

an upward s
attered wave�eld, alone.

The wave�eld, U

in


(x

r

), 
ontains no response to the re
e
tor, sin
e it is derived in the

absen
e of the re
e
tor. Thus, all responses to the presen
e of the re
e
tor are 
ontained inU(x).

What is important to us, here, is that it 
ontains all of the re
e
ted wave�elds, un
onverted and


onverted, in response to the point sour
e on the right side of (2).
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Figure 1: Geometry of the re
e
tion point
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Figure 2: The integration domain for equation (C-1)
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