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Abstra
t

We present here a study of the asymptoti
 behavior of the density

fun
tion of latti
e sphere pa
kings in R

n

. As a 
onsequen
e, we give

a simple prove that the optimal solution is attained.

The sphere pa
king problem is one of the famous open problems in math-

emati
s. In short, it asks about the densest way a set of equal spheres 
an

be pa
ked in spa
e n-dimensional Eu
lidean spa
e R

n

, without overlapping

one the other. In this 
ontext, the density means the proportion between

the 
overed and the un
overed amount of spa
e. It has many variations:

one 
ould repla
e spheres of equal radii by spheres of radii 0 < a � r � b

bounded from above and below, repla
e spheres by a 
olle
tion of identi
al

(preferably 
onvex) bodies, Eu
lidean spa
e may be repla
ed by ellipti
al or

hyperboli
 spa
e, and many other variations.

All the above mentioned variations are generalizations, and a
tually, very

few is known in those 
ases. The 
ase we deal here is a restri
tion of the


lassi
al problem, be
ause we assume the 
enter of the spheres to form a

latti
e in R

n

. This 
ondition is not as restri
tive as it appears, sin
e also in

this 
ase, not mu
h is known.

What we do here is to parametrize all latti
e sphere-pa
kings in Eu-


lidean spa
e and to study the behavior of the pa
kings as the parameters

get arbitrarily large, that is, we study the asymptoti
 (as a fun
tion of its

parameters) behavior of the pa
kings. As a 
onsequen
e, we give a proof of

(the known) fa
t that the problem has a solution (see for example [3℄ for a

proof of this result with mu
h weaker 
onditions).
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1 Latti
e Sphere Pa
kings

The sphere pa
king problem 
onsists of �nding out the densest possible way

to pa
k identi
al spheres in R

n

, when the number of sphere in
rease and

the radius of the spheres is kept �xed. We �x some R > 0 and imagine

an enumerable family F = fB

k

g

k2N

of disjoint open balls of equal radii R;

distributed in R

n

, 
alled a sphere pa
king. It may be misleading but, to

maintain the tradition in this 
ontext, we will re�er to the balls of a pa
king

as a sphere. We 
onsider a ball of radius t, 
entered at a (�xed) point x:

B

t

= B (x; t) = fx 2 R

n

j kxk < tg :

The density of the distribution is the limit

� (F) = lim sup

t!1

P

1

k=1

� (B

t

\ B

k

)

� (B

t

)

= lim sup

t!1

volume of the spheres of F interse
ting B

t

volume of B

t

:

Obviously, the density of a sphere pa
king is smaller then 1. The problem

posed is to �nd a pa
king with greater density and to determine its density.

To give the problem a solution is enough to tell what the 
enters of the

spheres are. Posed in this way, in its full generality, the solution is known

only for k = 2 (an easy instan
e). For k = 3, there is still no 
onsensus among

the mathemati
al 
ommunity about the 
orre
tness of the proof presented

by S.P. Ferguson and T.C. Hales in 1998 (see [4℄ for a brief dis
ussion on

this matter). An enormous and updated a

ount of the problem is found in

[1℄; in [2℄ one 
an �nd a less en
y
lopedi
 but very readable survey on the

subje
t.

To study the problem in its generality, we 
onsider a dis
rete subset

A = fa

i

2 R

n

ji = 1; 2; :::g. We also assume that

0 < R = inf fka

i

� a

j

k ja

i

; a

j

2 A; i 6= jg :

Then, if we 
onsider the spheres

B

i

= B (a

i

;R=2) = fx 2 R

n

j kx� a

i

k < R=2g

we get a family of noninterse
ting spheres. Moreover, R=2 is maximum in the

sense there are i; j distin
t su
h that the 
losed balls B

i

and B

j

interse
ts.
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So, we have an unique optimal sphere pa
king F = fB (a

i

;R=2) ja

i

2 Ag

determined by the subset A. We 
all su
h R the minimal distan
e of (the

distribution A) the pa
king F and R=2 its ins
ribed radius.

We 
an estimate the density of the pa
king by taking a 
ertain sum. For

a given a

i

2 A, we de�ne the Voronoi domain of A 
entered at the point a

i

to be the 
losure of the set of points in R

n

that are 
loser to a

i

then to any

other a

j

2 A:

D

a

i

= D

a

i

(A) = fx 2 R

n

j kx� a

i

k � kx� a

j

k ; a

i

6= a

j

2 Ag :

Ea
h Voronoi domain is a measurable set and one 
an prove that

� = lim sup

t!1

P

k

� (B

t

\B

n

)

� (B

t

)

= lim sup

N!1

N � �

R=2;n

 

N

X

i=1

1

� (D

i

)

!

where �

R=2;n

is the volume of the n-dimensional sphere of radius R=2.

We will deal here with distributions that has some regularity properties.

To understand su
h properties, let us examine 
losely the solution for k = 2.

We 
onsider a tessellation of R

2

by regular hexagons and the family of spheres

ins
ribed in the hexagons. All the hexagons and all spheres are identi
al

(isometri
). Let us suppose ea
h ins
ribed sphere has radius R and volume

�. Then ea
h hexagon has sides of length

2

p

3

R and volume equal 2

p

3R

2

.

Standard arguments 
on
erning limits of sequen
es show that

� (F) =

volume of a single sphere

volume of a single hexagon

=

�R

2

2

p

3R

2

=

�

2

p

3

� 0; 9069:

The fa
t that the density of a pa
king, an asymptoti
 quantity, is attained by

the density of a single sphere ins
ribed in a single hexagon is not mu
h sur-

prising, be
ause of the regularity of the tiling of a plane by regular hexagons.

It happens be
ause the 
enters of the spheres in this pa
king 
onstitute a sub-

group (known as A

2

) of R

2

, the subgroup of all integer linear 
ombination of

the points (2R; 0) and

�

R;

p

3R

�

:

n

m (2R; 0) + n

�

R;

p

3R

�

jm;n 2 Z

o

:

The regular hexagons with ins
ribed 
ir
les of radius R are just the Voronoi

domains of the those points.
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Su
h a subgroup is what we 
all a latti
e in R

n

: a dis
rete subgroup

� of the (additive) group (R

n

;+) with 
ompa
t quotient R

n

=�. With the

hypothesis that the spheres are 
entered at latti
e points, the sphere pa
king

problem is solved in a wider range of 
ases: for k � 8.

In order to understand the latti
e pa
king problem, we need to introdu
e

and explain some 
on
epts and de�nitions.

The in
lusion Z

n

� R

n

is a latti
e. A
tually, it is not diÆ
ult to prove

that every latti
e � � R

n

is isomorphi
 to Z

n

. We 
an do it by indu
tion. To

make the indu
tion step, take a single ve
tor v 2 �. Sin
e � is dis
rete, there

is a smaller � 2 R

+

su
h that �v 2 �. By taking quotients, we �nd that

�=Rv is a dis
rete subgroup of the (n� 1)-dimensional ve
tor spa
e R

n

=Rv,

and thus we 
an use the indu
tion hypothesis.. In other words, every latti
es

in R

n

is the Z span

f�

1

v

1

+ �

2

v

2

+ � � �+ �

n

v

n

j�

1

; �

2

; :::; �

n

2 Zg

of some base fv

1

; v

2

; :::; v

n

g.

The invariants of a pa
king de�ned above - minimal distan
e, Voronoi

domain and density - are mu
h more easy to 
ompute in the latti
e 
ase

when 
ompared to the general 
ase.

Sin
e � is 
losed for the sum of ve
tors, the di�eren
e a

i

�a

j

2 �, whenever

a

i

; a

j

2 �. So,

R = inf fka

i

� a

j

k ja

i

; a

j

2 �; i 6= jg

= inf fka

i

k ja

i

2 �; a

i

6= 0g :

For the Voronoi domain, we have that

x 2 D

a

i

0

(A), kx� a

i

0

k � kx� a

i

k ; 8a

i

2 �

, k(x� a

i

0

)k � k(x� a

i

0

)� (a

i

� a

i

0

)k ; 8a

i

2 �

, k(x� a

i

0

)k � k(x� a

i

0

)� a

j

k ; 8a

j

2 �

, (x� a

i

0

) 2 D

0

(A) :

that is, all Voronoi domains are nothing but a translate of any one of those

domains, hen
e, they are isometri
 and in parti
ular, have the same volume.

Hen
e, for the density of the pa
king, we �nd that

� (F) =

volume of a single sphere

volume of a single Voronoi domain

=

�

�

B

R=2;n

�

� (D

0

)

:
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2 Latti
e Pa
kings: Asymptoti
 Behavior and

Existen
e of Solution

>From here on, we 
onsider only latti
e pa
kings. As we saw earlier, a latti
e

in R

n

is de�ned by the 
hoi
e of a basis fv

1

; :::; v

n

g. If we �x a base fe

1

; :::; e

n

g

of R

n

, there is an unique element A 2 GL (n;R) su
h that A (e

i

) = v

i

,

i = i; :::; n. So, we may 
onsider GL (n;R) as the spa
e of all latti
e, or the

spa
e of all latti
e pa
kings. We de�ne

�

�

: GL (n;R) ! [0; 1℄ (1)

: A 7! �

�

(A)

where �

�

(A) is the density of the pa
king of spheres of radius

R =

1

2

min fkA (�

1

e

1

+ ::: + �

n

e

n

)k j�

i

2 Zi = 1; :::; ng ;


entered in the latti
e points

f�

1

A (e

1

) + :::+ �

n

A (e

n

) j�

1

; :::; �

n

2 Zg :

What we will do here is to understand the behavior of the density of

the pa
king asso
iated to linear transformations A 2 GL (n;R). From here

on, we �x a base � = fe

1

; :::; e

n

g and the asso
iated latti
e A = fa

i

g =

f�

1

e

1

+ :::+ �

n

e

n

j�

1

; :::; �

n

2 Zg.

The 
enter of GL (n) is the subgroup Z = f�Idj0 6= � 2 Rg, where Id is

the identity matrix. Being the 
enter, we �nd that GL (n) = Z � SL (n).

The a
tion of Z on a latti
e is not trivial, but its in
uen
e on the density

of the pa
king is so: ea
h element of Z a
ts as an homotety, so that given a

latti
e A = fa

i

g with ins
ribed radius R=2 and Voronoi domain D

0

, we have

that the ins
ribed radius of �A = f�a

i

g is �R=2, and �D

0

= f�xjx 2 D

0

g is

a Voronoi domain of �A. Hen
e we �nd that

�

�

(�Id) = � (�A)

=

� (B (0; �R=2))

� (�D

0

)

=

�

n

� (B (0; R=2))

�

n

� (D

0

)

=

� (B (0; R=2))

� (D

0

)
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= � (A)

= �

�

(Id) :

So, in order to study the density fun
tion of a latti
e pa
king, we may

restri
t ourselves to latti
es obtained as anGL (n;R) =Z = Z�SL (n;R) =Z '

SL (n;R) orbit, that is, to latti
es generated by ve
tors fBe

1

; Be

2

; :::; Be

n

g

where fe

1

; e

2

; :::; e

n

g is a given and �xed base of R

n

and B 2 SL (n).

Moreover, given B 2 O (n), it a
ts in R

n

as isometry, thus both � (D

0

) and

� (B (0; R=2)) are preserved by the a
tion ofB, and in parti
ular, � (B (A)) =

� (A). So, we may redu
e our universe of sear
h of optimal (respe
tive to

the maximization of the density fun
tion) solution to the symmetri
 spa
e

SL (n) =SO (n), the spa
e of positive de�nite symmetri
 forms.

Considering the polar de
omposition G = KA

+

K (valid for any semi-

simple Lie group of non-
ompa
t type), in our parti
ular 
ase we get that

K = SO (n) and

A

+

=

8

>

>

>

<

>

>

>

:

0

B

B

B

�

e

�

1

0 � � � 0

0 e

�

2

� � � 0

.

.

.

.

.

.

.

.

.

0 0 � � � e

�

n

1

C

C

C

A

j�

1

� � � � � �

n

; �

1

+ � � �+ �

n

= 0

9

>

>

>

=

>

>

>

;

:

We will adopt the notation diag (�

1

; ::; �

n

) =

0

B

B

B

�

e

�

1

0 � � � 0

0 e

�

2

� � � 0

.

.

.

.

.

.

.

.

.

0 0 � � � e

�

n

1

C

C

C

A

.

What we are going to prove is the following:

Theorem 1 Let E

n

2 KA

+

K be a sequen
e su
h that lim

n!1

kE

n

k = 1.

Then, lim

n!1

� (E

n

(A)) = 0.

Here we may 
onsider any usual norm for a matrix, for example , if

E = (e

ij

)

n

i;j=1

, we may take kEk = max fje

ij

j ji; j = 1; :::; ng.

To prove the theorem, we need the following:

Lemma 1 Let fv

1

; :::; v

n

g be an orthonormal base of Q

n

. Then, given B =

diag (�

1

; ::; �

n

) 2 A

+

, there are sequen
es m

1

(k) ; :::; m

n

(k) 2 Z su
h that

lim

k!1







B

k

(m

1

(k) v

1

+m

2

(k) v

2

+ :::+m

n

(k) v

n

)







= 0:
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In other words, there is a sequen
e of ve
tors

w

k

= m

1

(k) v

1

+m

2

(k) v

2

+ ::: +m

n

(k) v

n

2 Zv

1

� Zv

2

� :::� Zv

n

su
h that

lim

k!1







B

k

(w

k

)







= 0:

Proof: Let fe

1

; e

2

; :::; e

n

g be the 
anoni
al base of R

n

and 
onsider ("

k

)

1

k=1

a sequen
e 
onverging to 0.

Writing ea
h v

i

=

P

n

j=1

a

ij

e

j

as a linear 
ombination of the base, we have

that ea
h a

ij

2 Q , be
ause ea
h v

i

2 Q

n

. Also, we �nd that

w

k

=

n

X

i=1

m

i

(k) v

i

=

n

X

i=1

 

n

X

j=1

m

i

(k) a

ij

e

j

!

=

n

X

j=1

 

n

X

i=1

m

i

(k) a

ij

!

e

j

and sin
e ea
h e

j

is an eigenve
tor of B

k


orresponding to the eigenvalue e

k�

j

we �nd that

B

k

(w

k

) = B

k

�

P

n

j=1

(

P

n

i=1

m

i

(k) a

ij

) e

j

�

=

P

n

j=1

(

P

n

i=1

m

i

(k) a

ij

) e

k�

j

e

j

:

But lim

k!1







B

k

(w

k

)







= 0 if and only if lim

k!1

(

P

n

i=1

m

i

(k) a

ij

) e

k�

j

= 0, for

every j = 1; 2; :::; n. Let us observe that we need not to 
are about those j

for whi
h �

j

< 0: in those 
ases we only need to 
hoose sequen
es (m

i

(k))

1

k=1

that grows less then exponentially with k. Taking the square of the norm we

�nd that
















 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j
















2

=

 

n

X

i=1

m

2

i

(k) a

2

ij

+ 2

n

X

1=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

e

2k�

j

=

 

m

2

1

(k) a

2

1j

+m

1

(k) (2

P

n

i=2

m

i

(k) a

1j

a

ij

)

+2

P

n

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

e

2k�

j
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and so,
















 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j
















< "

k

(2)

if and only if

m

2

1

(k)

�

a

2

1j

�

+m

1

(k) (2

P

n

i=2

m

i

(k) a

1j

a

ij

)

+

�

�

2

P

n

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

�

�

"

k

e

2k�

j

�

< 0:

(3)

This is a quadrati
 polynomial in m

1

(k) with (possibly real) solutions

m

1

(k) =

�2

P

n

i=2

m

i

(k) a

1j

a

ij

�

p

�

2a

2

1j

(4)

where

� =

 

2

n

X

i=2

m

i

(k) a

1j

a

ij

!

2

� 4a

2

1j

  

2

n

X

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

�

"

k

e

2k�

j

!

= 4a

2

1j

 

n

X

1=2

m

i

(k) a

ij

!

2

� 4a

2

1j

  

2

n

X

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

�

"

k

e

2k�

j

!

= 4a

2

1j

  

2

n

X

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

+

n

X

i=2

m

2

i

(k) a

2

ij

!

�4a

2

1j

  

2

n

X

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

�

"

k

e

2k�

j

!

= 4a

2

1j

  

n

X

i=2

m

2

i

(k) a

2

ij

!

�

"

k

e

2k�

j

!

:

and sin
e we are assuming �

j

> 0, for almost every (apart from a �nite

number of possibilities) 
hoi
e of m

2

(k) ; m

3

(k) ; :::; m

n

(k) we �nd that � >

0. Hen
e, for almost every 
hoi
e, the equation 2 is satis�ed in the interval

"

�2

P

n

i=2

m

i

(k) a

1j

a

ij

�

p

�

2a

2

1j

;

�2

P

n

i=2

m

i

(k) a

1j

a

ij

+

p

�

2a

2

1j

#

:

But those intervals are 
entered at the points

�

P

n

i=2

m

i

(k)a

ij

a

1j

and, sin
e a

ij

is rational for every i; j = 1; 2; :::; n, for suitable 
hoi
es of the integers
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m

2

(k) ; m

3

(k) ; :::; m

n

(k), we �nd that

�

P

n

i=2

m

i

(k)a

ij

a

1j

is integer and we may

take any su
h 
hoi
e of integers m

2

(k) ; m

3

(k) ; :::; m

n

(k) and get another in-

tegerm

1

(k) =

�

P

n

i=2

m

i

(k)a

ij

a

1j

. Let us noti
e that sin
e all the a

1j

are not 0, and

we are assuming �

1

� �

2

� ::: � �

n

, we get that lim

k!1







(

P

n

i=1

m

i

(k) a

i1

) e

k�

1







=

0 implies that

lim

k!1
















 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j
















= 0

for every j = 1; 2; :::; n, so that

lim

k!1

B

k

(w

k

) = lim

k!1

 

n

X

j=1

 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j

e

j

!

=

n

X

j=1

 

lim

k!1

 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j

!

e

j

= 0:

2

Remark 1 If we start with a given ordered orthonormal base of R

n

, say e

1

=

(1; 0; :::; 0) ; :::; e

n

= (0; :::; 0; 1), we may �nd an orthogonal matrix C su
h that

v

i

= C (e

i

) for i = 1; 2; :::; n. For su
h an orthonormal base, the ve
tors of

minimal length are just the ve
tors �e

i

; i = 1; 2; :::; n. This is not the 
ase

in general, and that is the reason why, when looking for ve
tors of de
reasing

norm, we may need to take ve
tors with in
reasing integer 
oeÆ
ients. This

happens for example when we take v

1

=

�

1=

p

2; 1=

p

2

�

; v

2

=

�

�1=

p

2; 1=

p

2

�

and A =

�

� 0

0 1=�

�

with � 6= �1; 0. In su
h a situation, for

v

m;n

= mv

1

+mv

2

=

1

p

2

(m� n;m + n) 2 Zv

1

� Zv

2

we have that







A

k

(v

m;n

)







2

=

1

2

�

�

k

(m� n)

2

+

1

�

k

(m + n)

2

�

so that kv

1

k

2

= kv

1

k

2

=

�

�

k

+

1

�

k

�

=2 and we �nd that

kv

1

+ v

2

k

2

=

2

�

k

�

�

�

k

+

1

�

k

�

2
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whenever k � log

�

p

5.

Corollary 1 Let fv

1

; :::; v

n

g be an orthonormal base of R

n

. Then, given

B = diag (�

1

; ::; �

n

) 2 A

+

, there are sequen
es m

1

(k) ; :::; m

n

(k) 2 Z su
h

that

lim

k!1







B

k

(m

1

(k) v

1

+m

2

(k) v

2

+ :::+m

n

(k) v

n

)







= 0:

Proof: Let ("

k

)

1

k=1

be a sequen
e of positive real numbers 
onverging to 0.

Then, for ea
h k there is an orthonormal base v

1

(k) ; v

2

(k) ; :::; v

n

(k) with

rational 
oeÆ
ients su
h that kv

i

(k)� v

i

k <

"

k

2ne

k�

1

.

We 
hoose m

1

(k) ; :::; m

n

(k) 2 Z (as in lemma 1) su
h that







B

k

(m

1

(k) v

1

(k) +m

2

(k) v

2

(k) + :::+m

n

(k) v

n

(k))







<

"

k

2

and denote

u

k

= B

k

(m

1

(k) v

1

+ ::: +m

n

(k) v

n

) ;

w

k

= B

k

(m

1

(k) v

1

(k) + :::+m

n

(k) v

n

(k)) :

With this notation we �nd that

ku

k

k � ku

k

� w

k

k+ kw

k

k

�

k

X

i=1

e

�

i

kv

i

(k)� v

i

k+ kw

k

k

� e

k�

1

k

X

i=1

kv

i

(k)� v

i

k+ kw

k

k

� e

k�

1

n

"

k

2ne

k�1

+

"

k

2

= "

k

2

Theorem 2 Let A = CBC

�1

be a invertible n�n matrix, with C 2 O (n;R)

and B 2 A

+

. Then, lim

k!1

�

�

�

A

k

�

= 0.

Proof: Let � = fe

1

; e

2

; :::; e

n

g be an orthonormal base of R

n

, A the pa
king

determined by the latti
e Ze

1

� :::� Ze

n

and A

k

the pa
king determined by

the latti
e ZA

k

(e

1

)� :::�ZA

k

(e

n

). We want to prove that lim

k!1

� (A

k

) = 0.
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First of all we noti
e that A

k

= CB

k

C

�1

. Sin
e C 2 O (n;R), the

density of the pa
kings determined by A

k

and B

k

C

�1

are the same. If D is

a Voronoi domain of the original latti
e, we �nd that � (D) = 1, sin
e � is

an orthonormal base. But det (A) = det

�

A

k

�

= 1, and hen
e the Voronoi

domain D

k

of the latti
e ZA

k

(e

1

)� :::�ZA

k

(e

n

) also has volume 1. But the

pre
eding 
orollary assures that lim

k!1







B

k

C

�1

(e

i

)







= 0 for every i = 1; 2; :::; n

and we �nd that the minimal distan
e R

k

and the ins
ribed radius R

k

=2 of

the latti
e goes 0, so that

lim

k!1

� (A

k

) = lim

k!1

� (B (0; R

k

=2))

� (D

k

)

= 0

2

What we just proved for a spe
ial kind of sequen
e, we are able to prove

in some more generality, just enough to prove our main result.

Lemma 2 Given D;C 2 O (n) and

B (t) = diag

�

e

t�

1

; e

t�

2

:::; e

t�

n

�

= exp (diag (t�

1

; t�

2

; :::; t�

n

)) 2 A

+

;

we have that

lim

t!1

�

�

(DB (t)C) = 0;

where �

�

is the indu
ed density fun
tion de�ned in 1.

Proof: First of all we noti
e that, being D an orthogonal matrix,

�

�

(DB (t)C) = �

�

(B (t)C) :

Given t 2 R

+

there are n 2 N and s 2 [0; 1℄ su
h that t = n � s, so

that B (t)C = B

n

(s)C. In exa
tly the same way we did in the pre
eding

theorem, we �nd that lim

n!1

�

�

(B

n

(s)C) = 0 and hen
e, lim

t!1

�

�

(B (t)C) = 0.

2

We �nally get to our main theorem:

Theorem 3 (Main Theorem) Let E

k

2 SL (n;R) be a sequen
e su
h that

lim

k!1

kE

k

k =1. Then, lim

k!1

�

�

(E

k

) = 0.
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Proof: Let us 
onsider a ray DB (t)C 2 SL (n;R). As we saw in the

pre
eding lemma, given " > 0 there is a M (depending on D;C and B (1))

su
h that �

�

(DB (t)C) < " for t > M , where B (t) = diag

�

e

t�

1

; e

t�

2

:::; e

t�

n

�

.

Su
h ray is determined by the 
hoi
e of elements D;C 2 O (n;R) and an

element of

C = f(�

1

; �

2

; :::; �

n

) 2 R

n

j�

1

� �

2

� ::: � �

n

and�

1

+ �

2

+ :::+ �

n

= 0g :

The a
tion of SL (n;R) on R

n

is obviously analyti
. Also, the density fun
-

tion depends 
ontinuously on the variation of the latti
es of R

n

, sin
e the

density fun
tion is determined by the minimal length of a ve
tor in the lat-

ti
e (remember we are restri
ting ourselves to latti
es determined by ele-

ments E

k

2 SL (n;R)and this minimum is indeed attained. So, we �nd that

�

�

: SL (n;R) ! (0; 1) is 
ontinuous. But both O (n;R) and C are 
ompa
t,

and the 
ontinuity of �

�

assures there is an M (now independent on D;C

and B (1)) su
h that �

�

(DB (t)C) < " for t > M .

Given sequen
e (E

k

)

1

k=1

of matri
es, we 
onsider its de
omposition E

k

=

D

k

B

k

C

k

. For ea
h k 2 N we 
an �nd

�

�

k

1

; �

k

2

; :::; �

k

n

�

2 C su
h that B

k

=

exp

�

t

k

diag

�

�

k

1

; �

k

2

; :::; �

k

n

��

and lim

k!1

kB

k

k = 1 if and only if lim

k!1

t

k

= 1.

So, given " > 0 there is an K su
h that t

k

> M for k > K, and hen
e

�

�

(D

k

B

k

C

k

) < ", that is, lim

k!1

�

�

(E

k

) = 0. 2

As a 
onsequen
e of this theorem, we 
an easily prove that the latti
e-

pa
king problem has a solution:

Corollary 2 The latti
e pa
king problem has a solution, that is, there is

a latti
e pa
king E

0

(A) su
h that � (E

0

(A)) � � (E (A)), for every E 2

GL (n).

Proof: First of all, from the dis
ussion above, it is enough to 
onsider

pa
kings asso
iated to elements B 2 A

+

K. The density fun
tion of a lat-

ti
e pa
king is 
ontinuous and stri
tly positive on irredu
ible latti
es, exa
tly

those attained as a GL (n) orbit. The theorem assures us that it is arbitrarily

small outside of 
losed, hen
e 
ompa
t, balls. In other words, given " > 0,

there is an R > 0 su
h that � (B (A)) < " if kBk > R. Hen
e, the supremum

is rea
hable by a sequen
e of elements B

n

with kBk � R. The 
ontinuity

of the fun
tion and the 
ompa
ity of 
losed balls in R

n

assures us that the

supremum is indeed a maximum. 2
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