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Abstrat

We present here a study of the asymptoti behavior of the density

funtion of lattie sphere pakings in R

n

. As a onsequene, we give

a simple prove that the optimal solution is attained.

The sphere paking problem is one of the famous open problems in math-

ematis. In short, it asks about the densest way a set of equal spheres an

be paked in spae n-dimensional Eulidean spae R

n

, without overlapping

one the other. In this ontext, the density means the proportion between

the overed and the unovered amount of spae. It has many variations:

one ould replae spheres of equal radii by spheres of radii 0 < a � r � b

bounded from above and below, replae spheres by a olletion of idential

(preferably onvex) bodies, Eulidean spae may be replaed by elliptial or

hyperboli spae, and many other variations.

All the above mentioned variations are generalizations, and atually, very

few is known in those ases. The ase we deal here is a restrition of the

lassial problem, beause we assume the enter of the spheres to form a

lattie in R

n

. This ondition is not as restritive as it appears, sine also in

this ase, not muh is known.

What we do here is to parametrize all lattie sphere-pakings in Eu-

lidean spae and to study the behavior of the pakings as the parameters

get arbitrarily large, that is, we study the asymptoti (as a funtion of its

parameters) behavior of the pakings. As a onsequene, we give a proof of

(the known) fat that the problem has a solution (see for example [3℄ for a

proof of this result with muh weaker onditions).
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1 Lattie Sphere Pakings

The sphere paking problem onsists of �nding out the densest possible way

to pak idential spheres in R

n

, when the number of sphere inrease and

the radius of the spheres is kept �xed. We �x some R > 0 and imagine

an enumerable family F = fB

k

g

k2N

of disjoint open balls of equal radii R;

distributed in R

n

, alled a sphere paking. It may be misleading but, to

maintain the tradition in this ontext, we will re�er to the balls of a paking

as a sphere. We onsider a ball of radius t, entered at a (�xed) point x:

B

t

= B (x; t) = fx 2 R

n

j kxk < tg :

The density of the distribution is the limit

� (F) = lim sup

t!1

P

1

k=1

� (B

t

\ B

k

)

� (B

t

)

= lim sup

t!1

volume of the spheres of F interseting B

t

volume of B

t

:

Obviously, the density of a sphere paking is smaller then 1. The problem

posed is to �nd a paking with greater density and to determine its density.

To give the problem a solution is enough to tell what the enters of the

spheres are. Posed in this way, in its full generality, the solution is known

only for k = 2 (an easy instane). For k = 3, there is still no onsensus among

the mathematial ommunity about the orretness of the proof presented

by S.P. Ferguson and T.C. Hales in 1998 (see [4℄ for a brief disussion on

this matter). An enormous and updated aount of the problem is found in

[1℄; in [2℄ one an �nd a less enylopedi but very readable survey on the

subjet.

To study the problem in its generality, we onsider a disrete subset

A = fa

i

2 R

n

ji = 1; 2; :::g. We also assume that

0 < R = inf fka

i

� a

j

k ja

i

; a

j

2 A; i 6= jg :

Then, if we onsider the spheres

B

i

= B (a

i

;R=2) = fx 2 R

n

j kx� a

i

k < R=2g

we get a family of noninterseting spheres. Moreover, R=2 is maximum in the

sense there are i; j distint suh that the losed balls B

i

and B

j

intersets.
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So, we have an unique optimal sphere paking F = fB (a

i

;R=2) ja

i

2 Ag

determined by the subset A. We all suh R the minimal distane of (the

distribution A) the paking F and R=2 its insribed radius.

We an estimate the density of the paking by taking a ertain sum. For

a given a

i

2 A, we de�ne the Voronoi domain of A entered at the point a

i

to be the losure of the set of points in R

n

that are loser to a

i

then to any

other a

j

2 A:

D

a

i

= D

a

i

(A) = fx 2 R

n

j kx� a

i

k � kx� a

j

k ; a

i

6= a

j

2 Ag :

Eah Voronoi domain is a measurable set and one an prove that

� = lim sup

t!1

P

k

� (B

t

\B

n

)

� (B

t

)

= lim sup

N!1

N � �

R=2;n

 

N

X

i=1

1

� (D

i

)

!

where �

R=2;n

is the volume of the n-dimensional sphere of radius R=2.

We will deal here with distributions that has some regularity properties.

To understand suh properties, let us examine losely the solution for k = 2.

We onsider a tessellation of R

2

by regular hexagons and the family of spheres

insribed in the hexagons. All the hexagons and all spheres are idential

(isometri). Let us suppose eah insribed sphere has radius R and volume

�. Then eah hexagon has sides of length

2

p

3

R and volume equal 2

p

3R

2

.

Standard arguments onerning limits of sequenes show that

� (F) =

volume of a single sphere

volume of a single hexagon

=

�R

2

2

p

3R

2

=

�

2

p

3

� 0; 9069:

The fat that the density of a paking, an asymptoti quantity, is attained by

the density of a single sphere insribed in a single hexagon is not muh sur-

prising, beause of the regularity of the tiling of a plane by regular hexagons.

It happens beause the enters of the spheres in this paking onstitute a sub-

group (known as A

2

) of R

2

, the subgroup of all integer linear ombination of

the points (2R; 0) and

�

R;

p

3R

�

:

n

m (2R; 0) + n

�

R;

p

3R

�

jm;n 2 Z

o

:

The regular hexagons with insribed irles of radius R are just the Voronoi

domains of the those points.
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Suh a subgroup is what we all a lattie in R

n

: a disrete subgroup

� of the (additive) group (R

n

;+) with ompat quotient R

n

=�. With the

hypothesis that the spheres are entered at lattie points, the sphere paking

problem is solved in a wider range of ases: for k � 8.

In order to understand the lattie paking problem, we need to introdue

and explain some onepts and de�nitions.

The inlusion Z

n

� R

n

is a lattie. Atually, it is not diÆult to prove

that every lattie � � R

n

is isomorphi to Z

n

. We an do it by indution. To

make the indution step, take a single vetor v 2 �. Sine � is disrete, there

is a smaller � 2 R

+

suh that �v 2 �. By taking quotients, we �nd that

�=Rv is a disrete subgroup of the (n� 1)-dimensional vetor spae R

n

=Rv,

and thus we an use the indution hypothesis.. In other words, every latties

in R

n

is the Z span

f�

1

v

1

+ �

2

v

2

+ � � �+ �

n

v

n

j�

1

; �

2

; :::; �

n

2 Zg

of some base fv

1

; v

2

; :::; v

n

g.

The invariants of a paking de�ned above - minimal distane, Voronoi

domain and density - are muh more easy to ompute in the lattie ase

when ompared to the general ase.

Sine � is losed for the sum of vetors, the di�erene a

i

�a

j

2 �, whenever

a

i

; a

j

2 �. So,

R = inf fka

i

� a

j

k ja

i

; a

j

2 �; i 6= jg

= inf fka

i

k ja

i

2 �; a

i

6= 0g :

For the Voronoi domain, we have that

x 2 D

a

i

0

(A), kx� a

i

0

k � kx� a

i

k ; 8a

i

2 �

, k(x� a

i

0

)k � k(x� a

i

0

)� (a

i

� a

i

0

)k ; 8a

i

2 �

, k(x� a

i

0

)k � k(x� a

i

0

)� a

j

k ; 8a

j

2 �

, (x� a

i

0

) 2 D

0

(A) :

that is, all Voronoi domains are nothing but a translate of any one of those

domains, hene, they are isometri and in partiular, have the same volume.

Hene, for the density of the paking, we �nd that

� (F) =

volume of a single sphere

volume of a single Voronoi domain

=

�

�

B

R=2;n

�

� (D

0

)

:
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2 Lattie Pakings: Asymptoti Behavior and

Existene of Solution

>From here on, we onsider only lattie pakings. As we saw earlier, a lattie

in R

n

is de�ned by the hoie of a basis fv

1

; :::; v

n

g. If we �x a base fe

1

; :::; e

n

g

of R

n

, there is an unique element A 2 GL (n;R) suh that A (e

i

) = v

i

,

i = i; :::; n. So, we may onsider GL (n;R) as the spae of all lattie, or the

spae of all lattie pakings. We de�ne

�

�

: GL (n;R) ! [0; 1℄ (1)

: A 7! �

�

(A)

where �

�

(A) is the density of the paking of spheres of radius

R =

1

2

min fkA (�

1

e

1

+ ::: + �

n

e

n

)k j�

i

2 Zi = 1; :::; ng ;

entered in the lattie points

f�

1

A (e

1

) + :::+ �

n

A (e

n

) j�

1

; :::; �

n

2 Zg :

What we will do here is to understand the behavior of the density of

the paking assoiated to linear transformations A 2 GL (n;R). From here

on, we �x a base � = fe

1

; :::; e

n

g and the assoiated lattie A = fa

i

g =

f�

1

e

1

+ :::+ �

n

e

n

j�

1

; :::; �

n

2 Zg.

The enter of GL (n) is the subgroup Z = f�Idj0 6= � 2 Rg, where Id is

the identity matrix. Being the enter, we �nd that GL (n) = Z � SL (n).

The ation of Z on a lattie is not trivial, but its inuene on the density

of the paking is so: eah element of Z ats as an homotety, so that given a

lattie A = fa

i

g with insribed radius R=2 and Voronoi domain D

0

, we have

that the insribed radius of �A = f�a

i

g is �R=2, and �D

0

= f�xjx 2 D

0

g is

a Voronoi domain of �A. Hene we �nd that

�

�

(�Id) = � (�A)

=

� (B (0; �R=2))

� (�D

0

)

=

�

n

� (B (0; R=2))

�

n

� (D

0

)

=

� (B (0; R=2))

� (D

0

)
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= � (A)

= �

�

(Id) :

So, in order to study the density funtion of a lattie paking, we may

restrit ourselves to latties obtained as anGL (n;R) =Z = Z�SL (n;R) =Z '

SL (n;R) orbit, that is, to latties generated by vetors fBe

1

; Be

2

; :::; Be

n

g

where fe

1

; e

2

; :::; e

n

g is a given and �xed base of R

n

and B 2 SL (n).

Moreover, given B 2 O (n), it ats in R

n

as isometry, thus both � (D

0

) and

� (B (0; R=2)) are preserved by the ation ofB, and in partiular, � (B (A)) =

� (A). So, we may redue our universe of searh of optimal (respetive to

the maximization of the density funtion) solution to the symmetri spae

SL (n) =SO (n), the spae of positive de�nite symmetri forms.

Considering the polar deomposition G = KA

+

K (valid for any semi-

simple Lie group of non-ompat type), in our partiular ase we get that

K = SO (n) and

A

+

=

8

>

>

>

<

>

>

>

:

0

B

B

B

�

e

�

1

0 � � � 0

0 e

�

2

� � � 0

.

.

.

.

.

.

.

.

.

0 0 � � � e

�

n

1

C

C

C

A

j�

1

� � � � � �

n

; �

1

+ � � �+ �

n

= 0

9

>

>

>

=

>

>

>

;

:

We will adopt the notation diag (�

1

; ::; �

n

) =

0

B

B

B

�

e

�

1

0 � � � 0

0 e

�

2

� � � 0

.

.

.

.

.

.

.

.

.

0 0 � � � e

�

n

1

C

C

C

A

.

What we are going to prove is the following:

Theorem 1 Let E

n

2 KA

+

K be a sequene suh that lim

n!1

kE

n

k = 1.

Then, lim

n!1

� (E

n

(A)) = 0.

Here we may onsider any usual norm for a matrix, for example , if

E = (e

ij

)

n

i;j=1

, we may take kEk = max fje

ij

j ji; j = 1; :::; ng.

To prove the theorem, we need the following:

Lemma 1 Let fv

1

; :::; v

n

g be an orthonormal base of Q

n

. Then, given B =

diag (�

1

; ::; �

n

) 2 A

+

, there are sequenes m

1

(k) ; :::; m

n

(k) 2 Z suh that

lim

k!1





B

k

(m

1

(k) v

1

+m

2

(k) v

2

+ :::+m

n

(k) v

n

)





= 0:

6



In other words, there is a sequene of vetors

w

k

= m

1

(k) v

1

+m

2

(k) v

2

+ ::: +m

n

(k) v

n

2 Zv

1

� Zv

2

� :::� Zv

n

suh that

lim

k!1





B

k

(w

k

)





= 0:

Proof: Let fe

1

; e

2

; :::; e

n

g be the anonial base of R

n

and onsider ("

k

)

1

k=1

a sequene onverging to 0.

Writing eah v

i

=

P

n

j=1

a

ij

e

j

as a linear ombination of the base, we have

that eah a

ij

2 Q , beause eah v

i

2 Q

n

. Also, we �nd that

w

k

=

n

X

i=1

m

i

(k) v

i

=

n

X

i=1

 

n

X

j=1

m

i

(k) a

ij

e

j

!

=

n

X

j=1

 

n

X

i=1

m

i

(k) a

ij

!

e

j

and sine eah e

j

is an eigenvetor of B

k

orresponding to the eigenvalue e

k�

j

we �nd that

B

k

(w

k

) = B

k

�

P

n

j=1

(

P

n

i=1

m

i

(k) a

ij

) e

j

�

=

P

n

j=1

(

P

n

i=1

m

i

(k) a

ij

) e

k�

j

e

j

:

But lim

k!1





B

k

(w

k

)





= 0 if and only if lim

k!1

(

P

n

i=1

m

i

(k) a

ij

) e

k�

j

= 0, for

every j = 1; 2; :::; n. Let us observe that we need not to are about those j

for whih �

j

< 0: in those ases we only need to hoose sequenes (m

i

(k))

1

k=1

that grows less then exponentially with k. Taking the square of the norm we

�nd that











 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j











2

=

 

n

X

i=1

m

2

i

(k) a

2

ij

+ 2

n

X

1=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

e

2k�

j

=

 

m

2

1

(k) a

2

1j

+m

1

(k) (2

P

n

i=2

m

i

(k) a

1j

a

ij

)

+2

P

n

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

e

2k�

j
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and so,











 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j











< "

k

(2)

if and only if

m

2

1

(k)

�

a

2

1j

�

+m

1

(k) (2

P

n

i=2

m

i

(k) a

1j

a

ij

)

+

�

�

2

P

n

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

�

�

"

k

e

2k�

j

�

< 0:

(3)

This is a quadrati polynomial in m

1

(k) with (possibly real) solutions

m

1

(k) =

�2

P

n

i=2

m

i

(k) a

1j

a

ij

�

p

�

2a

2

1j

(4)

where

� =

 

2

n

X

i=2

m

i

(k) a

1j

a

ij

!

2

� 4a

2

1j

  

2

n

X

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

�

"

k

e

2k�

j

!

= 4a

2

1j

 

n

X

1=2

m

i

(k) a

ij

!

2

� 4a

2

1j

  

2

n

X

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

�

"

k

e

2k�

j

!

= 4a

2

1j

  

2

n

X

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

+

n

X

i=2

m

2

i

(k) a

2

ij

!

�4a

2

1j

  

2

n

X

2=i<l

m

i

(k)m

l

(k) a

ij

a

lj

!

�

"

k

e

2k�

j

!

= 4a

2

1j

  

n

X

i=2

m

2

i

(k) a

2

ij

!

�

"

k

e

2k�

j

!

:

and sine we are assuming �

j

> 0, for almost every (apart from a �nite

number of possibilities) hoie of m

2

(k) ; m

3

(k) ; :::; m

n

(k) we �nd that � >

0. Hene, for almost every hoie, the equation 2 is satis�ed in the interval

"

�2

P

n

i=2

m

i

(k) a

1j

a

ij

�

p

�

2a

2

1j

;

�2

P

n

i=2

m

i

(k) a

1j

a

ij

+

p

�

2a

2

1j

#

:

But those intervals are entered at the points

�

P

n

i=2

m

i

(k)a

ij

a

1j

and, sine a

ij

is rational for every i; j = 1; 2; :::; n, for suitable hoies of the integers
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m

2

(k) ; m

3

(k) ; :::; m

n

(k), we �nd that

�

P

n

i=2

m

i

(k)a

ij

a

1j

is integer and we may

take any suh hoie of integers m

2

(k) ; m

3

(k) ; :::; m

n

(k) and get another in-

tegerm

1

(k) =

�

P

n

i=2

m

i

(k)a

ij

a

1j

. Let us notie that sine all the a

1j

are not 0, and

we are assuming �

1

� �

2

� ::: � �

n

, we get that lim

k!1





(

P

n

i=1

m

i

(k) a

i1

) e

k�

1





=

0 implies that

lim

k!1











 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j











= 0

for every j = 1; 2; :::; n, so that

lim

k!1

B

k

(w

k

) = lim

k!1

 

n

X

j=1

 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j

e

j

!

=

n

X

j=1

 

lim

k!1

 

n

X

i=1

m

i

(k) a

ij

!

e

k�

j

!

e

j

= 0:

2

Remark 1 If we start with a given ordered orthonormal base of R

n

, say e

1

=

(1; 0; :::; 0) ; :::; e

n

= (0; :::; 0; 1), we may �nd an orthogonal matrix C suh that

v

i

= C (e

i

) for i = 1; 2; :::; n. For suh an orthonormal base, the vetors of

minimal length are just the vetors �e

i

; i = 1; 2; :::; n. This is not the ase

in general, and that is the reason why, when looking for vetors of dereasing

norm, we may need to take vetors with inreasing integer oeÆients. This

happens for example when we take v

1

=

�

1=

p

2; 1=

p

2

�

; v

2

=

�

�1=

p

2; 1=

p

2

�

and A =

�

� 0

0 1=�

�

with � 6= �1; 0. In suh a situation, for

v

m;n

= mv

1

+mv

2

=

1

p

2

(m� n;m + n) 2 Zv

1

� Zv

2

we have that





A

k

(v

m;n

)





2

=

1

2

�

�

k

(m� n)

2

+

1

�

k

(m + n)

2

�

so that kv

1

k

2

= kv

1

k

2

=

�

�

k

+

1

�

k

�

=2 and we �nd that

kv

1

+ v

2

k

2

=

2

�

k

�

�

�

k

+

1

�

k

�

2
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whenever k � log

�

p

5.

Corollary 1 Let fv

1

; :::; v

n

g be an orthonormal base of R

n

. Then, given

B = diag (�

1

; ::; �

n

) 2 A

+

, there are sequenes m

1

(k) ; :::; m

n

(k) 2 Z suh

that

lim

k!1





B

k

(m

1

(k) v

1

+m

2

(k) v

2

+ :::+m

n

(k) v

n

)





= 0:

Proof: Let ("

k

)

1

k=1

be a sequene of positive real numbers onverging to 0.

Then, for eah k there is an orthonormal base v

1

(k) ; v

2

(k) ; :::; v

n

(k) with

rational oeÆients suh that kv

i

(k)� v

i

k <

"

k

2ne

k�

1

.

We hoose m

1

(k) ; :::; m

n

(k) 2 Z (as in lemma 1) suh that





B

k

(m

1

(k) v

1

(k) +m

2

(k) v

2

(k) + :::+m

n

(k) v

n

(k))





<

"

k

2

and denote

u

k

= B

k

(m

1

(k) v

1

+ ::: +m

n

(k) v

n

) ;

w

k

= B

k

(m

1

(k) v

1

(k) + :::+m

n

(k) v

n

(k)) :

With this notation we �nd that

ku

k

k � ku

k

� w

k

k+ kw

k

k

�

k

X

i=1

e

�

i

kv

i

(k)� v

i

k+ kw

k

k

� e

k�

1

k

X

i=1

kv

i

(k)� v

i

k+ kw

k

k

� e

k�

1

n

"

k

2ne

k�1

+

"

k

2

= "

k

2

Theorem 2 Let A = CBC

�1

be a invertible n�n matrix, with C 2 O (n;R)

and B 2 A

+

. Then, lim

k!1

�

�

�

A

k

�

= 0.

Proof: Let � = fe

1

; e

2

; :::; e

n

g be an orthonormal base of R

n

, A the paking

determined by the lattie Ze

1

� :::� Ze

n

and A

k

the paking determined by

the lattie ZA

k

(e

1

)� :::�ZA

k

(e

n

). We want to prove that lim

k!1

� (A

k

) = 0.
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First of all we notie that A

k

= CB

k

C

�1

. Sine C 2 O (n;R), the

density of the pakings determined by A

k

and B

k

C

�1

are the same. If D is

a Voronoi domain of the original lattie, we �nd that � (D) = 1, sine � is

an orthonormal base. But det (A) = det

�

A

k

�

= 1, and hene the Voronoi

domain D

k

of the lattie ZA

k

(e

1

)� :::�ZA

k

(e

n

) also has volume 1. But the

preeding orollary assures that lim

k!1





B

k

C

�1

(e

i

)





= 0 for every i = 1; 2; :::; n

and we �nd that the minimal distane R

k

and the insribed radius R

k

=2 of

the lattie goes 0, so that

lim

k!1

� (A

k

) = lim

k!1

� (B (0; R

k

=2))

� (D

k

)

= 0

2

What we just proved for a speial kind of sequene, we are able to prove

in some more generality, just enough to prove our main result.

Lemma 2 Given D;C 2 O (n) and

B (t) = diag

�

e

t�

1

; e

t�

2

:::; e

t�

n

�

= exp (diag (t�

1

; t�

2

; :::; t�

n

)) 2 A

+

;

we have that

lim

t!1

�

�

(DB (t)C) = 0;

where �

�

is the indued density funtion de�ned in 1.

Proof: First of all we notie that, being D an orthogonal matrix,

�

�

(DB (t)C) = �

�

(B (t)C) :

Given t 2 R

+

there are n 2 N and s 2 [0; 1℄ suh that t = n � s, so

that B (t)C = B

n

(s)C. In exatly the same way we did in the preeding

theorem, we �nd that lim

n!1

�

�

(B

n

(s)C) = 0 and hene, lim

t!1

�

�

(B (t)C) = 0.

2

We �nally get to our main theorem:

Theorem 3 (Main Theorem) Let E

k

2 SL (n;R) be a sequene suh that

lim

k!1

kE

k

k =1. Then, lim

k!1

�

�

(E

k

) = 0.

11



Proof: Let us onsider a ray DB (t)C 2 SL (n;R). As we saw in the

preeding lemma, given " > 0 there is a M (depending on D;C and B (1))

suh that �

�

(DB (t)C) < " for t > M , where B (t) = diag

�

e

t�

1

; e

t�

2

:::; e

t�

n

�

.

Suh ray is determined by the hoie of elements D;C 2 O (n;R) and an

element of

C = f(�

1

; �

2

; :::; �

n

) 2 R

n

j�

1

� �

2

� ::: � �

n

and�

1

+ �

2

+ :::+ �

n

= 0g :

The ation of SL (n;R) on R

n

is obviously analyti. Also, the density fun-

tion depends ontinuously on the variation of the latties of R

n

, sine the

density funtion is determined by the minimal length of a vetor in the lat-

tie (remember we are restriting ourselves to latties determined by ele-

ments E

k

2 SL (n;R)and this minimum is indeed attained. So, we �nd that

�

�

: SL (n;R) ! (0; 1) is ontinuous. But both O (n;R) and C are ompat,

and the ontinuity of �

�

assures there is an M (now independent on D;C

and B (1)) suh that �

�

(DB (t)C) < " for t > M .

Given sequene (E

k

)

1

k=1

of matries, we onsider its deomposition E

k

=

D

k

B

k

C

k

. For eah k 2 N we an �nd

�

�

k

1

; �

k

2

; :::; �

k

n

�

2 C suh that B

k

=

exp

�

t

k

diag

�

�

k

1

; �

k

2

; :::; �

k

n

��

and lim

k!1

kB

k

k = 1 if and only if lim

k!1

t

k

= 1.

So, given " > 0 there is an K suh that t

k

> M for k > K, and hene

�

�

(D

k

B

k

C

k

) < ", that is, lim

k!1

�

�

(E

k

) = 0. 2

As a onsequene of this theorem, we an easily prove that the lattie-

paking problem has a solution:

Corollary 2 The lattie paking problem has a solution, that is, there is

a lattie paking E

0

(A) suh that � (E

0

(A)) � � (E (A)), for every E 2

GL (n).

Proof: First of all, from the disussion above, it is enough to onsider

pakings assoiated to elements B 2 A

+

K. The density funtion of a lat-

tie paking is ontinuous and stritly positive on irreduible latties, exatly

those attained as a GL (n) orbit. The theorem assures us that it is arbitrarily

small outside of losed, hene ompat, balls. In other words, given " > 0,

there is an R > 0 suh that � (B (A)) < " if kBk > R. Hene, the supremum

is reahable by a sequene of elements B

n

with kBk � R. The ontinuity

of the funtion and the ompaity of losed balls in R

n

assures us that the

supremum is indeed a maximum. 2
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