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Abstract

We present here a study of the asymptotic behavior of the density
function of lattice sphere packings in R”. As a consequence, we give
a simple prove that the optimal solution is attained.

The sphere packing problem is one of the famous open problems in math-
ematics. In short, it asks about the densest way a set of equal spheres can
be packed in space n-dimensional Euclidean space R", without overlapping
one the other. In this context, the density means the proportion between
the covered and the uncovered amount of space. It has many variations:
one could replace spheres of equal radii by spheres of radii 0 < a < r < b
bounded from above and below, replace spheres by a collection of identical
(preferably convex) bodies, Euclidean space may be replaced by elliptical or
hyperbolic space, and many other variations.

All the above mentioned variations are generalizations, and actually, very
few is known in those cases. The case we deal here is a restriction of the
classical problem, because we assume the center of the spheres to form a
lattice in R™. This condition is not as restrictive as it appears, since also in
this case, not much is known.

What we do here is to parametrize all lattice sphere-packings in Eu-
clidean space and to study the behavior of the packings as the parameters
get arbitrarily large, that is, we study the asymptotic (as a function of its
parameters) behavior of the packings. As a consequence, we give a proof of
(the known) fact that the problem has a solution (see for example [3] for a
proof of this result with much weaker conditions).



1 Lattice Sphere Packings

The sphere packing problem consists of finding out the densest possible way
to pack identical spheres in R", when the number of sphere increase and
the radius of the spheres is kept fixed. We fix some R > 0 and imagine
an enumerable family F = {B}, . of disjoint open balls of equal radii R,
distributed in R", called a sphere packing. It may be misleading but, to
maintain the tradition in this context, we will reffer to the balls of a packing
as a sphere. We consider a ball of radius ¢, centered at a (fixed) point z:

B, = B (z;t) = {z e R"| ||z]| < t}.
The density of the distribution is the limit

: 2 re1 (BN By)
F) = limsup =
o(F) t—00 1 (By)
volume of the spheres of F intersecting B;

=l ts—l>l£> volume of B;

Obviously, the density of a sphere packing is smaller then 1. The problem
posed is to find a packing with greater density and to determine its density.
To give the problem a solution is enough to tell what the centers of the
spheres are. Posed in this way, in its full generality, the solution is known
only for k = 2 (an easy instance). For k = 3, there is still no consensus among
the mathematical community about the correctness of the proof presented
by S.P. Ferguson and T.C. Hales in 1998 (see [4] for a brief discussion on
this matter). An enormous and updated account of the problem is found in
[1]; in [2] one can find a less encyclopedic but very readable survey on the
subject.

To study the problem in its generality, we consider a discrete subset
A={a; e R"|i =1,2,...}. We also assume that

0 < R =inf{||la; — aj]| |a;,a; € A, i # j}.
Then, if we consider the spheres
B; = B(a;; R/2) = {z e R"| ||z — ;]| < R/2}

we get a family of nonintersecting spheres. Moreover, R/2 is maximum in the
sense there are ¢, 7 distinct such that the closed balls B; and B; intersects.
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So, we have an unique optimal sphere packing F = {B(a;; R/2)|a; € A}
determined by the subset A. We call such R the minimal distance of (the
distribution A) the packing F and R/2 its inscribed radius.

We can estimate the density of the packing by taking a certain sum. For
a given a; € A, we define the Voronoi domain of A centered at the point a;
to be the closure of the set of points in R" that are closer to a; then to any
other a; € A:

Do, = Do, (A) ={z e R"[[lz — ai| < ||z —a;]| 5 0; # a; € A}
Each Voronoi domain is a measurable set and one can prove that

p = limsup Zk 1B 0 By)
t—00 M (Bt)

N
. Z 1

N—oo i1

where pig/o,, is the volume of the n-dimensional sphere of radius R/2.

We will deal here with distributions that has some regularity properties.
To understand such properties, let us examine closely the solution for k = 2.
We consider a tessellation of R? by regular hexagons and the family of spheres
inscribed in the hexagons. All the hexagons and all spheres are identical
(isometric). Let us suppose each inscribed sphere has radius R and volume
m. Then each hexagon has sides of length %R and volume equal 2v/3R2.
Standard arguments concerning limits of sequences show that

volume of a single sphere TR? s

) _ =~ 0,9069.
p(F) volume of a single hexagon ~ 2/3R2  2/3 ’

The fact that the density of a packing, an asymptotic quantity, is attained by
the density of a single sphere inscribed in a single hexagon is not much sur-
prising, because of the regularity of the tiling of a plane by regular hexagons.
It happens because the centers of the spheres in this packing constitute a sub-
group (known as Ay) of R?, the subgroup of all integer linear combination of
the points (2R, 0) and (R, \/gR):

{m (2R,0) +n (R, \/§R> lm,n € Z} :

The regular hexagons with inscribed circles of radius R are just the Voronoi
domains of the those points.



Such a subgroup is what we call a lattice in R": a discrete subgroup
I' of the (additive) group (R",+) with compact quotient R"/I'. With the
hypothesis that the spheres are centered at lattice points, the sphere packing
problem is solved in a wider range of cases: for k < 8.

In order to understand the lattice packing problem, we need to introduce
and explain some concepts and definitions.

The inclusion Z™ C R” is a lattice. Actually, it is not difficult to prove
that every lattice I' C R" is isomorphic to Z"™. We can do it by induction. To
make the induction step, take a single vector v € I'. Since I is discrete, there
is a smaller A € R™ such that \v € I". By taking quotients, we find that
['/Ruv is a discrete subgroup of the (n — 1)-dimensional vector space R"/Ru,
and thus we can use the induction hypothesis.. In other words, every lattices
in R" is the Z span

{)\17)1 + )\2’02 + -+ )\nvn|)\1, )\2, . )\n € Z}

of some base {vy, vo, ..., v, }.

The invariants of a packing defined above - minimal distance, Voronoi
domain and density - are much more easy to compute in the lattice case
when compared to the general case.

Since I is closed for the sum of vectors, the difference a,—a; € I', whenever
a;,a; € I'. So,

R = 1nf{||al — CL]'H |az~,aj S F,Z %j}
= inf{||a;|| |a; € T, a; # 0} .
For the Voronoi domain, we have that
x € Dy (A) ||z —a;l < ||z —a,Va; €T

& e —ai)ll < [[(@ = aiy) = (@ — az)||, Va; € T

& @ —aip)ll < l(x = ai,) — ;]| ,Va; €T

& (r—ay) €Dy (A).
that is, all Voronoi domains are nothing but a translate of any one of those

domains, hence, they are isometric and in particular, have the same volume.
Hence, for the density of the packing, we find that

volume of a single sphere p (Br/2n)

F) = =
p1F) volume of a single Voronoi domain (Do)



2 Lattice Packings: Asymptotic Behavior and
Existence of Solution

. From here on, we consider only lattice packings. As we saw earlier, a lattice
in R is defined by the choice of a basis {v1, ..., v, }. If we fix a base {ej, ..., e, }
of R", there is an unique element A € GL (n,R) such that A(e;) = v,
i =1,...,n. So, we may consider GL (n,R) as the space of all lattice, or the
space of all lattice packings. We define

p* : GL(n,R) —[0,1] (1)
A p(A)

where p* (A) is the density of the packing of spheres of radius
L . .
R= 3 min {||A (Arer + ... + e |||\ € Zi=1,...,n},
centered in the lattice points

{a1A(e1) + ... + a,Alen) |aa, oy, € Z}.

What we will do here is to understand the behavior of the density of
the packing associated to linear transformations A € GL (n,R). From here
on, we fix a base @ = {ey,...,e,} and the associated lattice A = {a;} =
{arey + ... + apep |y, ..., o € Z}.

The center of GL (n) is the subgroup Z = {AId|0 # A € R}, where Id is
the identity matrix. Being the center, we find that GL (n) = Z & SL (n).
The action of Z on a lattice is not trivial, but its influence on the density
of the packing is so: each element of Z acts as an homotety, so that given a
lattice A = {a;} with inscribed radius R/2 and Voronoi domain Dy, we have
that the inscribed radius of A = {Aa;} is AR/2, and ADy = {\z|z € Dy} is
a Voronoi domain of AA. Hence we find that

pt (Ald) = p(AA)

p (B (0, AR/2))
11 (ADy)

A"p (B (0, 12/2))
A" (Do)

p (B (0, R/2))
11 (Do)




So, in order to study the density function of a lattice packing, we may
restrict ourselves to lattices obtained as an GL (n,R) /Z = Z@SL (n,R) /Z ~
SL (n,R) orbit, that is, to lattices generated by vectors {Bey, Bes, ..., Be, }
where {eq, e, ...,e,} is a given and fixed base of R* and B € SL (n).

Moreover, given B € O (n), it acts in R” as isometry, thus both x (Dy) and
p (B (0, R/2)) are preserved by the action of B, and in particular, p (B (A)) =
p(A). So, we may reduce our universe of search of optimal (respective to
the maximization of the density function) solution to the symmetric space
SL(n) /SO (n), the space of positive definite symmetric forms.

Considering the polar decomposition G = KATK (valid for any semi-
simple Lie group of non-compact type), in our particular case we get that
K = S0 (n) and

M0 e 0
0 e ... ()
AT = : : : AL> > A A+ A =0

0 O et
eM 0 0
0 e 0

We will adopt the notation diag (A, .., A,) = .

0 O et

What we are going to prove is the following:

Theorem 1 Let E, € KATK be a sequence such that lim ||E,| = oo.
n—r00
Then, lim p(E, (A)) = 0.
n—o0

Here we may consider any usual norm for a matrix, for example , if
E = (eij);;_,, we may take ||E| = max {|e;||i,j = 1,...,n}.
To prove the theorem, we need the following:

Lemma 1 Let {vy,...,v,} be an orthonormal base of Q*. Then, given B =
diag (A1, .., \n) € AT, there are sequences my (k) , ..., my (k) € Z such that

lim || B (my (k) vy +mg (k) vy + ... +my, (k) v,)|| = 0.

k—00



In other words, there is a sequence of vectors
wg = my (k) vy + my (k) ve + ... +my, (k) v, € Zvy & Zvy & ... & Zuv,

such that
lim || B* (wy)|| = 0.

k—o0

Proof: Let {e,es,...,€,} be the canonical base of R" and consider (gx),-,

a sequence converging to 0.
Writing each v; = Z;lzl a;je; as a linear combination of the base, we have
that each a;; € Q, because each v; € Q". Also, we find that

wy = Zmz (k) v;

and since each e; is an eigenvector of B¥ corresponding to the eigenvalue e

we find that

B (wy) = B* (3 (S0 mi (k) a) ;)
= >0 (0 ma () aij) ey

But klim |B¥ (wk)|| = 0 if and only if klim or my (k) ai;) e = 0, for
—00 —+00

every 7 = 1,2,...,n. Let us observe that we need not to care about those j

for which A; < 0: in those cases we only need to choose sequences (m; (k)),-,

that grows less then exponentially with k. Taking the square of the norm we

find that

H (Z m; (k) aij> ek/\f = (Z mf (k) a?j + 22 m; (k) my (k) aijalj> BQkAj

1=i<l
_ (mf (k) a2, +my (k) (2 320y mi (k) a,ljaij)> 0,

+2 375 i mi (k) my (k) agjay
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and so,

< €k (2)

(Emorm)

if and only if

mj (k) (a%j) +my (k) (2325, mi (k) ayjaig) )
+ ((2 > oicy i (k) my (k) az'jazj) — efk—’&]) < 0.

This is a quadratic polynomial in m; (k) with (possibly real) solutions

_ —2 2?22 my; (k) aljaij + \/Z

k 4
my (k) 22 (4)
where
n 2 n
€k
A = <2Zmi (k) alja'ij> - 40%‘ ((2 Z m; (k) my (k) aijalj) - e2k)\j>
i=2 2=i<l
n 2 n
€k
= 4afj (Z m; (k) az‘j) - 4a%j ((2 Z m; (k) my (k) aijalj) - e2k>\j>
1=2 2=i<l
= dai; ( 2> " my (k) my (k) aijalj> +) m} (k) %>
2=i<! =2
n Ek
dai, (2 Z mq (k) my (k) aw‘”ﬂ) emm)
2=i<I
= 4afj ( Zm? (k) a?j) - 62@) :
i=2

and since we are assuming A; > 0, for almost every (apart from a finite
number of possibilities) choice of my (k) ,ms (k) , ..., m, (k) we find that A >
0. Hence, for almost every choice, the equation 2 is satisfied in the interval

[—2 Soiymi (k) ayag — VA =230 m; (k) ayja; + VA

2 2
2a7; 2a7;

5" mi(k)a;; .
—ZZ—ZI_’( )iy and, since a;;

J
is rational for every 7,7 = 1,2,...,n, for suitable choices of the integers

But those intervals are centered at the points
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my (k) ,ms (k) ,...,my (k), we find that %W is integer and we may

take any such choice of integers my (k) , m3 (k) , ..., m, (k) and get another in-
_ —2iymi(k)ai;
.

teger my (k) . Let us notice that since all the a;; are not 0, and

we are assuming \; > Ay > ... > )\, we get that khj& H o my (k) ag) e H =

0 implies that

for every j =1, 2,...,n, so that

Jm BY (w) = klggo( (Zmi(k)am') 6““%‘)
J

Remark 1 If we start with a given ordered orthonormal base of R", say e; =
(1,0,...,0),...,e, = (0,...,0,1), we may find an orthogonal matriz C such that
v; = C(e;) for i =1,2,...,n. For such an orthonormal base, the vectors of
minimal length are just the vectors +e;,1 = 1,2,...,n. This is not the case
in general, and that is the reason why, when looking for vectors of decreasing
norm, we may need to take vectors with increasing integer coefficients. This

happens for example when we take v, = (1/\/5, 1/\/5) Uy = (—1/\/5, 1/\/5)
and A = ( 8\ (1)/)\ ) with A # £1,0. In such a situation, for

Umpn = MU + MUy = (m—n,m—i—n) € Zv, @ L,

1
V2

we have that

2 1 1
HA’!C (vmn)H =5 M (m —n)® + I (m + n)2>
so that ||v1]]> = |Jo1||” = (M + 55) /2 and we find that
2 (M4
||Ul +712||2 = V < %



whenever k > log, V5.

Corollary 1 Let {vy,...,v,} be an orthonormal base of R*. Then, given
B = diag (A1, .., \n) € AT, there are sequences my (k) ,...,m, (k) € Z such
that

khj& | B* (my (k) vi +ma (k) va + ... +my, (k) v,)|| = 0.
Proof: Let (g4),-, be a sequence of positive real numbers converging to 0.
Then, for each k there is an orthonormal base vy (k),vq (k), ..., v, (k) with
rational coefficients such that ||v; (k) — ;]| < =

2nekA1 -

We choose my (k) , ..., m, (k) € Z (as in lemma 1) such that
| B* (m1 (k) vy (k) + ma (k) va (k) + ... + my, (k) v, (K))

and denote

up, = BY(my (k) vr + ... +my (k)vy,),
wy = B (my (k) vy (k) + ... + m, (k) v, (K)).

With this notation we find that

Jukll < Nlun = wr]] + [lwg ]

k
< 32 o () — il + ]
i=1
k
< e i (k) — oil| + [lwl]
i=1
< Sk +6—k:6k

2nekAl 2

Theorem 2 Let A= CBC™ be a invertible n xn matriz, with C € O (n,R)
and B € A*. Then, klim p* (AF) = 0.
—00

Proof: Let a = {ej, ey, ...,e,} be an orthonormal base of R", A the packing

determined by the lattice Ze; @ ... @ Ze,, and A, the packing determined by

the lattice ZA* (e;) @ ... ® ZA* (e,,). We want to prove that klim p (Ag) = 0.
—00
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First of all we notice that A*¥ = CB*C~!. Since C € O (n,R), the
density of the packings determined by A* and B¥C~! are the same. If D is
a Voronoi domain of the original lattice, we find that p (D) = 1, since « is
an orthonormal base. But det (A) = det (4*) = 1, and hence the Voronoi
domain Dy, of the lattice ZA* (e;) ®...® Z A (e,) also has volume 1. But the
preceding corollary assures that kl;rgo HB’“C’_1 (€;) H =O0foreveryi=1,2,....,n
and we find that the minimal distance R and the inscribed radius Ry /2 of
the lattice goes 0, so that

(B0, Ry/2) _

lim p (Ag) =
k—o00
|

What we just proved for a special kind of sequence, we are able to prove
in some more generality, just enough to prove our main result.

Lemma 2 Given D,C € O (n) and
B (t) = diag (e, €"2...,e"") = exp (diag (tA1, tAs, ..., tA,)) € AT,

we have that
tli)m p* (DB (t)C) =0,

where p* is the induced density function defined in 1.
Proof: First of all we notice that, being D an orthogonal matrix,
p* (DB (t)C) = p" (B(t) C).

Given t € R" there are n € N and s € [0,1] such that ¢t = n - s, so
that B (t)C = B" (s) C. In exactly the same way we did in the preceding
theorem, we find that lim p* (B" (s) C') = 0 and hence, tlirn p*(B(t)C) =0.
D n—00 — 00

We finally get to our main theorem:

Theorem 3 (Main Theorem) Let E, € SL (n,R) be a sequence such that
klirn |Ex|| = co. Then, klirn p* (Ex) = 0.
—00 —00
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Proof: Let us consider a ray DB (t)C € SL(n,R). As we saw in the
preceding lemma, given £ > 0 there is a M (depending on D,C and B (1))
such that p* (DB () C) < ¢ for t > M, where B (t) = diag (e, e"*2..., "),

Such ray is determined by the choice of elements D,C € O (n,R) and an
element of

C = {()\1;)\2, ,)\n) € Rn|)\1 2 )\2 Z 2 )\nand)\l + )\2 —+ ...+ )\n = O} .

The action of SL (n,R) on R” is obviously analytic. Also, the density func-
tion depends continuously on the variation of the lattices of R™, since the
density function is determined by the minimal length of a vector in the lat-
tice (remember we are restricting ourselves to lattices determined by ele-
ments Ey € SL (n, R)and this minimum is indeed attained. So, we find that
p* : SL(n,R) — (0,1) is continuous. But both O (n,R) and C are compact,
and the continuity of p* assures there is an M (now independent on D,C
and B (1)) such that p* (DB (t)C) < ¢ for t > M.

Given sequence (Ej),-, of matrices, we consider its decomposition Ej, =
DB, Cy. For each £k € N we can find ()\ )\ .. )\k) € C such that B, =
exp (tediag (Af, A5, ..., AF)) and l1m | Bi|| = o0 1f and only if hm t = oo.

So, given € > 0 there is an K such that t, > M for k > K and hence
(DkBka) < g, that is, khrn p* (Ex) = 0. O
—00

As a consequence of this theorem, we can easily prove that the lattice-
packing problem has a solution:

Corollary 2 The lattice packing problem has a solution, that is, there is
a lattice packing Eq (A) such that p(Ey (A)) > p(E (A)), for every E €
GL (n).

Proof: First of all, from the discussion above, it is enough to consider
packings associated to elements B € ATK. The density function of a lat-
tice packing is continuous and strictly positive on irreducible lattices, exactly
those attained as a GL (n) orbit. The theorem assures us that it is arbitrarily
small outside of closed, hence compact, balls. In other words, given £ > 0,
there is an R > 0 such that p (B (A)) < ¢ if | B|| > R. Hence, the supremum
is reachable by a sequence of elements B, with ||B|| < R. The continuity
of the function and the compacity of closed balls in R® assures us that the
supremum is indeed a maximum. O

12



References

[1] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups,
Springer Verlag, 3rd edition, (1999).

[2] G. Fejes T6th and W. Kuperberg, Packing and Covering with Convez
Sets, in Handbook of Convex Geometry (Ed. by P.M. Gruber and J.M.
Wills), 799-860, Elseviere Sc. Publ., (1993).

[3] H. Groemer, Ezistenzsdtze fir Lagerungen im Euklidischen Raum, Math.
Zeitschr. 81 (1963), 260-278.

[4] J. Osterlé, Densité Maximale des Empilements de Sphéres en Dimension
3, Séminaire Bourbaki, Astérisque 266 (2000), 405-413.

Marcelo Firer

Imecc-Unicamp

CP 6065

13087-970 - Campinas - SP
Brazil

email: mfirer@ime.unicamp.br

13



