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Abstract

We present a method for the calculation of capillary pressure curve in porous media

using centrifuge single-speed experimental data. The mathematical model is based on

the hydrostatic equilibrium equation for capillary pressure and the inverse problem for

�nding the saturation distribution along the sample from the displaced 
uid volume

when all the 
ow ceased.

The capillary e�ects are interpreted as constraint forces which maintain the oil

trapped into the pores of the sample. We use the Lagrangian formulation to �nd

the equilibrium con�guration of the oil in the sample. The great advantage of this

formulation is that the explicit inclusion of forces is not necessary. Mathematical

properties of capillary pressure curve and centrifuge data are used as constraints of

the kinetic energy minimization procedure. The discretized problem is solved using

a nonlinear programming procedure using only the single-speed experimental data.

Numerical results are confronted with calculations in the frequently used multi-speed

centrifuge tests.

1 Introduction

A knowledge of how the capillary pressure is related to saturation in a porous medium,

the capillary pressure curve, is useful to characterize pore structure of the medium and

to predict of how one phase displaces the other. The centrifuge method for measuring

capillary pressure in porous medium was proposed by Hassler and Brunner [3] in 1945.

In the centrifuge method a cylindrical sample initially �lled with a liquid spins about an

axis of rotation. The sample is mounted so that the axis of the cylinder is orthogonal

to the axis of rotation. This method entails increasing the centrifuge speed in steps and

measuring, in each step, the amount of displaced phase produced from the rock when all


ow ceased. The requirement that all 
ow cease is crucial. Much literature is available on

techniques for deriving capillary pressure from centrifuge data ( see for instance, Ayappa

et al [1]).
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In this work we will assume that the gas phase displaces the oil phase in the experiments,

the water is an immobile phase and the 
uids are incompressible. Determination of the

displaced 
uid saturation, the relative volume of this phase, plays the central role in these

methods.

The basic equations in the calculations use the stabilized 
uid produced and the hydro-

static equilibrium capillary pressure distribution. For each centrifuge speed, the 
uid

produced when the 
ow ceased is related to the oil saturation, s(x), in a point x distant

from the core in
ow end, by the integral equation:

prod(w) = �A

Z

L

0

(1� s

w

i

� s(x))dx (1)

where A is the sample cross section area, L is the core length, � is the medium porosity

and s

w

i

is the residual water saturation. All these values are assumed to be known.

The hydrostatic equilibrium equation, see Lake [5] for example, is obtained by combining

the Darcy's laws (gas and oil phases) in equilibrium (in which gas and oil velocities vanish),

and using capillary pressure de�nition (the di�erence between gas and oil pressures). In

this way, the di�erential equation for the capillary pressure is,

dp

c

dx

+4�!

2

R�(x) = 0 (2)

where R is the distance from axis of rotation to middle of the L long core sample, 4� is

the oil and gas densities di�erence and the �(x) function accounts for the variation of the

centrifugal force along the core:

�(x) = 1�

L

2R

+

x

R

: (3)

Drainage mode capillary pressure exhibits an entry pressure, pe, a pressure which must

be exceeded before any gas phase can enter the core. In this case capillary pressure is not

a unique function of saturation insofar as it can have values between zero and the entry

pressure when the rock is fully saturated with the oil phase. The implication of this for a

centrifuge experiment is that the invading phase (gas) never penetrates into the rock any

further than the point at which the capillary pressure equals the entry pressure. From

this point, which we denote as he, to the out
ow end the oil phase saturation is 1� s

w

i

.

By integrating the hydrostatic equilibrium equation, from an arbitrary point x to he,

and using the boundary condition p

c

(he) = pe, we obtain the expression for the capillary

pressure distribution along the core:

p

c

(x) = pe+4�!

2

Rz(x) (4)

where

z(x) = (he� x)(1 �

L

2R

+

he+ x

2R

) (5)

Equations (1) and (4) will be used to �nd the capillary pressure curve, p

c

(s). In fact, given

the stabilized 
uid produced in a single centrifuge speed we have an integral equation of
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the �rst kind, which must be inverted to �nd s(x). On the other hand, the capillary

presure distribution along the sample is given in Equation (4). Both s(x) and p

c

(x) are

one-to-one functions, therefore, they can be combined to �nd the capillary pressure curve

p

c

(s). The usual method used to invert the integral equation (1) requires a discretization

procedure in which multi-speed centrifuge production data are used (see for instance, [1]

for details). A discretization procedure is needed because we do not know how to solve

the inverse problem described by Equation (1),i.e., how to �nd the saturation distribution

from the stabilized production. If it were possible to �nd this saturation distribution,

these values of s(x) could be coupled with the values of p

c

(x) calculated by Equation (4),

to de�ne the capillary pressure curve.

We propose here a variational formulation for this problem. We show that this formulation

yields a new procedure to solve the inverse problem de�ned by Equation (1). Using this

formulation and a discrete approximation scheme we can calculate the saturation pro�le

along the sample. We compute the capillary pressure curve with this saturation. Our

computational results matched with multi-speed centrifuge tests.

2 Variational Formulation

2.1 The Lagrangian Functional

The asymptotic production in centrifuge tests is determined only by the capillary forces.

Therefore, it is natural to interpret the capillary forces as constraint forces which maintain

the oil trapped in the core sample pores. This interpretation is crucial to our arguments

about the advantages of the variational formulation of the problem.

In order to circumvent the impossibility of obtaining explicit expressions for the pores

level of constraint forces we take minimal principles in our approach. The search of

minimal principles has a long history and is based on the notion that nature acts in such

a way that important quantities are minimized when a physical process takes place. The

mathematical foundation of these principles was given by Lagrange in 1760. Since then the

variational methods and extremum principles have been extensively used to solve problems

in physics and mathematics, see Segel [6], for example.

Most applications of the variational statement of the Hamilton's Principle in dynamics

require that the Lagrangian functional be minimum at the stable con�guration. The

scalar Lagrangian functional is the di�erence between the kinetic and potential energies

of the system, expressed in convenient generalized coordinates.

In centrifuge experiments, the kinetic energy predominates, in thousands order of magni-

tude, over the potential energy. In this case the Lagrangian may be assumed equal to the

total kinetic energy of the oil left on the core.

We will choose the saturation distribution into the sample to calculate the kinetic energy

of the oil trapped into the pore of the core sample. The saturation at an inner core point,

s(x), measures the relative oil volume in the strip volume A�4x, where A is the sample

cross section area, � is the porosity of the medium and 4x is the height of this elemental

volume.
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To calculate the kinetic energy we observe that the mass into the elemental volume is

given by

4m(x) = �A�s(x)4x (6)

where � is the oil density. Using the angular speed, !, we calculate the velocity of a generic

point x by

v(x) = !R�(x):

Therefore, the kinetic energy of the oil into this elemental volume is given by

4

~

T (x) =

1

2

�A�!

2

R

2

s(x)�

2

(x)4x: (7)

As we said before, from x = he to the out
ow end, the core is saturated with oil and

the residual water. Since the value of he is uniquely determined by the centrifuge speed,

as shown by O'Meara and Crump [4], the oil saturation varies from x = 0 to x = he:

Therefore, the total kinetic energy of the oil trapped into this region of the core sample is

the integral of Equation (7):

~

T (s) =

1

2

�A�!

2

R

2

Z

he

0

�

2

(x)s(x)dx: (8)

To simplify we use the dimensionless variable x

0

=

x

L

, denoted by x from now on. As

shown by O'Meara and Crump [4],

he =

1

2

�

R

L

+

s

(

R

L

�

1

2

)

2

+

2R

L

(1�N) (9)

where N =

pe

!

2

R4�

.

Since the constant values that multiply the integral (8) do not modify the minimum, the

functional to be minimized is

T (s) =

Z

he

0

�

2

(x)s(x)dx: (10)

2.2 The constraints

Since the saturated region begins at x = he the boundary condition for the saturation

distribution is :

s(he) = 1� s

w

i

: (11)

We now describe two constraints arising from mathematical properties of p

c

(s). Analytical

expressions for drainage capillary pressure curves are based on the assumption that the

capillary pressure at any cross section within the porous medium is uniquely determined

by the saturation at that cross section, and that the porous medium is homogeneous and

isotropic. Moreover, these expressions are formulated to meet mathematical restrictions
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imposed by the physics of the 
uid displacement in a porous medium, Bentsen and Anli

[2]. From the mathematical point of view the assumptions are that the capillary pressure

curve is a monotonic decreasing convex function of the saturation. Therefore, the �rst

derivative of this function is negative and the second is positive, i.e.,

p

0

c

(s) < 0 and p

00

c

(s) > 0: (12)

Since saturation itself is a function of the position, s(x), we use the chain rule to compute

the �rst and second derivatives of capillary pressure, as function of the position, which

are, respectively:

dp

c

(s(x))

dx

= p

0

c

(s)s

0

(x) (13)

d

2

p

c

(s(x))

dx

2

= p

00

c

(s)s

0

(x)

2

+ p

0

c

(s)s

00

(x): (14)

Using Equation (4) we have, in dimensionless x :

dp

c

dx

= �4�!

2

RL�(x) < 0: (15)

By the derivation of Equation (4), we also have

d

2

p

c

dx

2

= �4�!

2

L

2

< 0: (16)

Since p

0

c

(s) < 0, combining Equations (13) and (15) we have

s

0

(x) > 0: (17)

On the other hand, using Equations (14) and (16) we have

�4�!

2

L

2

= p

00

c

(s)(s

0

(x))

2

+ p

0

c

(s)s

00

(x) < 0: (18)

Now, we can use Equation (12) to obtain

s

00

(x) > 0: (19)

Finally, we observe that the stabilized production, described by Equation (1), is also a

constraint since it means that the area under all feasible curves s(x) must be the same, a

known value calculated from stabilized production, i.e.,

Z

he

0

s(x)dx = C; (20)

for a known C.

We may sumarize our approach in the following way. To overcome the di�culty of solving

the integral (1) we present a new approach for the capillary curve calculation. The idea is

based on Hamilton's Principle which uses the kinetic energy of the remaining oil in a single
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speed centrifuge test. We also describe the constraints used in the minimization procedure.

The porous and 
uids interface interaction is strongly used in the constraints (12), (17)

and (19). The stabilized production is used to obtain the constraint (20). Therefore, we

want to determine a function s(x); 0 < x < he, that minimizes

T (s) =

Z

he

0

�

2

(x)s(x)dx (21)

among all su�ciently smooth functions that satisfy the boundary condition,

s(he) = 1� s

w

i

(22)

and the constraints

s

0

(x) > 0 (23)

s

00

(x) > 0 (24)

Z

he

0

s(x)dx = C (25)

where C is a known constant and he is given by (8).

As we emphasized in the beginning of this work, the saturation values s(x) are coupled

with the values of p

c

(x), which are computed using Equation (4), to calculate p

c

(s), the

capillary pressure curve.

3 Discrete Model and the Computational Scheme

The discrete approximation scheme for solving the problem replaces the derivatives and

integrals, in Equations (21) through Equation (25), by appropriate di�erence quotient

approximations and numerical quadratures.

Before we explain how the approximation scheme was done, we want to say that the

problem described by the objective function (21) and the constraints (22) through (25)

represents the situation we want to model, but, it does not answer all the questions since

we observed that there are an in�nitely many curves that satisfy the constraints but the

�nal �tting of the capillary pressure obtained by our model with the capillary pressure

obtained by laboratory experiments were not good enough. Therefore, there is a missing

information in the process and to overcome this situation we forced the capillary pressure

to have a speci�c shape. To do that, we regularize the objective function to minimize the

kinetic energy and a penalization of the quadratic error of the obtained capillary pressure

and a model function we believe the capillary pressure must be (we based this information

from the experimental data).

We want to enphasize here that we do not use the experimental data obtained from the

multi-speed experiments, but, we kept our previous approach as a single-experiment and

at each iteration of our algorithm once we have a value for s(x), we compute p

c

(s(x))

by the formula (4) and an auxiliary capillary pressure, p

c

(s(x)), given by, for instance,
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p

c

(s(x)) =

1

as(x)+b

. Then, the quadratic error is given by

P

n

i=1

(p

c

(s(x)) � p

c

(s(x)))

2

.

Using this approach we obtain as �nal result a curve which is convex, monotone decreasing

and �ts well the experimental data.

The approximation scheme is de�ned as follows. First we select an integer N > 0 and

divide the interval [0; he] into 2N equal subintervals, whose end points are x

i

= ih, for

i = 0; 1; ::::2N , with h =

1

2

he

N

. Choosing constant values for h make the calculations easier,

but we could also use di�erent values h

i

.

In our calculations we used the composite Simpons rule to compute the integrals, and

�nite di�erence quotients to approximate the derivatives.

Denoting by s

i

the approximation of s(x

i

) and by �

i

the approximation of �(x

i

) where

�(x) is given by Equation (3) we can write the discrete formulation of the problem.

Minimize J(s) =

h

3

f�

2

0

s

0

+2

N�1

X

i=1

�

2

2i

s

2i

+4

N

X

i=1

�

2

2i�1

s

2i�1

+�

2

2N

s

2N

g+

2N

X

i=1

(p

c

(s

i

)�p

c

(s

i

))

2

(26)

with the constraints

s

2N

= 1� s

w

i

(27)

s

i+1

� s

i

� 0 (28)

s

i+1

� 2s

i

+ s

i�1

� 0 (29)

h

3

fs

0

+ 2

N�1

X

i=1

s

2i

+ 4

N

X

i=1

s

2i�1

g = C �

h

3

(1� s

w

i

) (30)

We solve this nonlinear programming problem using the solver \fmincon" from the Opti-

mization Toolbox of Matlab version 5.3.1 in a SUN Ultra 1 with 256 MegaBytes of RAM

and 200 Mhz of clock. We results obtained were pretty good and they are presented in

next section.

4 Computational Results

Numerical experiments were performed in two samples. The multi-speed centrifuge pro-

duction data for each speed were known, therefore, we could test the procedure using two

di�erent speed production in both samples. Although, the rock used is the same for all

samples, the 
uids are di�erent.

It was observed that in a low speed testing, the �rst value of the saturation pro�le, s

0

,

may be high. As a consequence the capillary curve may begin in high values of saturation.

We present here the results of two experiments: Samples 1 and 2 with ! = 1000rpm and

! = 1250rpm. Fluid and rock properties are presented in Table (1).

Numerical results from Sample 1 calculations are in Figures (1) and (2). The �nal satura-

tion distribution using both speeds obtained by Equations (27) through (30) are plotted
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in Figures (1b) and (2b). The curve presents a sharp derivative near the saturated region,

where the saturation is s(he) = 1� s

w

i

:

Capillary pressure values are calculated with these values of s(x) and (4). The results are

presented as a solid line in Figures (1a) and (2a). In the �gures we also present the multi-

speed test result. In the multi-speed test the calculation follows Skuse [7]. The Figures

(1a) (2a) show that our calculations are in accordance with the available experimental

results.

The same convention is used to present the Sample 2 results. We guess that the di�erence

between experimental results and our calculation is due to the fact that few speeds were

used in this experiment. As observed before, the multi-speed calculations are based on

the discretization of an integral equation and therefore, few speeds in the tests may cause

poor �nal results.

5 Conclusions

We presented a variational formulation and a numerical procedure to calculate capillary

curves in porous medium from a single-speed centrifuge experiments.

The integral to be minimized in this formulation is the kinetic energy of the oil left in the

sample after all 
ow ceased in an !-speed test.

The capillary e�ects enter as restrictions to be satis�ed by the feasible functions. The

stabilized production of the displaced 
uid is also used as a restriction in the formulation.

As far as we know, the interpretation of capillary e�ects as constraints forces is new.

Although the idea is simple, it allows a formulation in which the great advantage is that

the explicit inclusion of forces of constraint is not necessary.

Linear programming techniques were used in the e�ective calculation of the �nal distri-

bution of the displaced phase saturation.

Our calculations are in accordance with the results obtained in the frequently used multi-

speed centrifuge tests.

We believe that this new insight of the problem may be useful in new methods for calcu-

lating the capillary pressure curve from single speed centrifuge experiments.
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Captions for Figures 1 and 2

Figure 1 : Sample 1 results: (a) Capillary Pressure curve obtained (full curve) and from

a multi-speed centrifuge experiment ('*'). (b) The saturation distribution, s(x), that

minimizes the kinetic energy.

Figure 2 : Sample 1 results: (a) Capillary Pressure curve obtained (full curve) and from

a multi-speed centrifuge experiment ('*'). (b) The saturation distribution, s(x), that

minimizes the kinetic energy.

Figure 3 : Sample 2 results: (a) Capillary Pressure curve obtained (full curve) and from

a multi-speed centrifuge experiment ('*'). (b) The saturation distribution, s(x), that

minimizes the kinetic energy.

Figure 4 : Sample 2 results: (a) Capillary Pressure curve obtained (full curve) and from

a multi-speed centrifuge experiment ('*'). (b) The saturation distribution, s(x), that

minimizes the kinetic energy.
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Figures 1 and 2
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Figure 1: Sample 1 - Speed 1000 rpm
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Figures 3 and 4
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Figure 3: Sample 2 - Speed 1000 rpm
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Caption for Table 1

Table 1 : Data for Samples 1 and 2 with di�erent speeds
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Table 1

Table 1: Data for Samples 1 and 2

Speed Length Porous Porosity he R 4� Production s

w

i

! (rpm) L (cm) A (cc) � (cm) (gr/cm

3

) (cc)

Sample 1 1000 4.07 11.31 0.259 0.9290 7.35 0.7534 5.945 0.27

Sample 1 1250 4.07 11.31 0.259 0.9548 7.35 0.7534 6.470 0.27

Sample 2 1000 3.96 10.92 0.251 0.9648 7.40 0.873 6.560 0.36

Sample 2 1250 3.96 10.92 0.251 0.9776 7.40 0.873 7.190 0.36
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