Postponing the choice of penalty parameter and step length

FERNANDO R. VILLAS-BOAS*AND CLovis PERINT

ABSTRACT. We study, in the context of interior-point methods for linear
programming, some possible advantages of postponing the choice of the penalty pa-
rameter and the steplength, which happens both when we apply Newton’s method to
the Karush-Kuhn-Tucker system and when we apply a predictor-corrector scheme.
We show that for a Newton or a strictly predictor step the next iterate can be
expressed as a linear function of the penalty parameter u, and, in the case of a
predictor-corrector step, as a quadratic function of u. We also show that this pa-
rameterization is useful to guarantee either the non-negativity of the next iterate or
the proximity to the central path. Initial computational results of these strategies are
shown and compared with PCx, an implementation of Mehotra’s predictor-corrector
method.

RESUMO. No contexto dos métodos de pontos interiores para programagao
linear, estudamos algumas possveis vantagens em postergar a escolha do pardmetro de
penalizacdo e do tamanho de passo quando o método de Newton aplicado no esquema
preditor-corretor do sistema das condies de Karush-Kuhn-Tucker. Ns mostramos
que o prximo iterando pode ser expresso como uma fungdo linear (quadratica) do
pardmetro de centragem p no esquema preditor puro (preditor-corretor). Também
mostramos que esta parametrizagao é util para garantir a ndo-negatividade do
préximo iterando ou a proximidade da trajetéria central. Resultados computacionais
iniciais sdo apresentados e comparados com o programa PCx, uma implementgédo
autorizada de método preditor-corretor de Mehotra.

1. INTRODUCTION

Many primal-dual methods for linear programming use a logarithmic barrier function
in order to generate a family of problems penalized by a parameter p; each problem is
solved approximately and the penalty parameter p is reduced at each iteration, forming
a sequence that converges to zero. Some of these methods have to use also a steplength o
because of the non-negativity restriction. This approach is attributed to Frisch [4] and is
studied in Fiacco & McCormick [3] in the context of nonlinear optimization but was first
considered for linear programming by Gill et al. [5].

In practical implementations, such as Mehrotra’s [12] predictor-corrector method in
PCx [2], the choices of the penalty parameter and of the steplength are done using heuris-
tics that are very effective in practice — but we lack the analytical tools to understand
why they work so fine.

In this work we propose to establish an analytical environment that allows us to state
the choices of penalty parameter and steplength as a clear optimization subproblem. This
is done by expressing the new iterate as a quadratic function of p for the predictor-
corrector method or as a linear function for a strict Newton step, and easily extended for
damped Newton steps.

More generally, whatever the step equations used, i.e., either the Newton equations
or any of the different versions of the predictor-corrector equation for the next step,

*University of Campinas. This research was sponsored by FAPESP - Fundacao de Amparo a Pesquisa
do Estado de Sao Paulo under grant number 95/6979-9
fDepartment of Applied Mathematics - University of Campinas

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 2

damped or not, it is always possible to parameterize the next iterate in terms of p and
the steplength a. Such parameterization is always a polynomial function of p and o and
this happens because step equations are linear.

However, performing the computation of the vectors that form this parameterization
of the next iterate presents positive as well as negative side effects.

As a positive consequence, we know by means of a formula involving known vectors
how the next iterate will be, without having to choose before hand the values of p and
«. This allows us to postpone such choice and focus our attention on the criteria that a
particular algorithm requires of the next iterate in order to converge, i.e. non negative
criteria or proximity to the central path. Having postulated and guaranteed that the
next iterate will satisfy such convergence criteria, without establishing yet the values of
4 and a, we can then choose “optimal” values of 1 and «, in the sense of guaranteeing a
faster convergence. Such postponed “optimal” choice depends upon locally minimizing a
suitable function of the next iterate, such as the dual gap or the complementarity =T z.

As a negative consequence, we have to perform extra system solves for each vector
multiplying a power of u. For example, in a primal-dual algorithm without corrector
step, after obtaining the Cholesky factor, it is necessary to solve only one linear system
after choosing p, whereas if such choice is postponed we have to solve two systems. As
another example, in a standard predictor-corrector algorithm it is necessary to solve two
systems for each Cholesky factor, as opposed to three system solves in our case. This
difficulty is structural and inherent to postponing the choice of .

Furthermore, despite we are using the same Cholesky factor, the overhead of the extra
system solves is not negligible. In a sample of typical Netlib problems that we studied, the
time to solve one positive-definite system once we have the Cholesky factor is in average
20% of the time needed to compute the Cholesky factor itself, and this average has a high
variance. This result goes against our intuition stemming from dense problems, where
such times are order of magnitude smaller than the time to compute one Cholesky factor.

The facts above impose an initial limit to what we could expect from implementations
that postpone the choice of p and o — we should only expect a reduction in CPU times
if the reduction in number of iterations is big enough as compared to an algorithm of
reference.

But what we aim more to show in this work is that, for a given step equation system
based on the logarithmic barrier function, parameterizing the next iterate in terms of a p
and « to be chosen later provides us the means to evaluate and improve the other parts
of the given algorithm.

We will show this as follows.

First we will show how the parameterization can be done by explicitly doing it in a
few examples of increasing complexity, i.e. we will develop the expressions in a standard
primal-dual context, then extend them to include corrector steps, assuming in both cases
that an initial feasible point is available.

Second we show how the parameterization itself can be used.

Since proximity to the central path is one of the few criteria available to guarantee
convergence, we chose it as the main criterion that the next iterate has to satisfy, and using
different proximity criteria we generate a family of algorithms having different polynomial
complexities.

We then extend these ideas to a self-dual context in order to relax the requirement of
an initial feasible point.

Self-dual methods were originally studied by Goldman and Tucker [6] [18] and were

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 3

rediscovered by Todd and Mizuno [22] in the context of interior point methods. An initial
implementation by Xu, Hung and Ye [20] showed promising results for Netlib problems,
especially for a new class of infeasible problems. Other recent works in self-dual algorithms
are those of Xu [19], Xu and Ye [21], and Hung and Ye [8].

‘We chose to perform iterations in a self-dual space in order to be free from feasibility
issues — in this framework given any initial non feasible solution we can always generate a
problem that in a sense is equivalent to the original linear program, and where all iterates
are feasible. The self-dual problem always has a finite optimal solution that we can use
either to find the solution to the original problem or to declare it infeasible or unbounded.

We develop the expressions of the parameterization in a usual primal-dual context
assuming that an initial feasible interior point is available. We do so in order to present
our ideas in a simpler and clearer way. When developing the expressions for a real im-
plementation we used the self-dual framework with bounded variables. Unfortunately in
this case the notation becomes excessively heavy and a little confusing.

To check the practical usefulness of the various algorithms based on the proposed
parameterization, we use PCx library, i.e., we use from the original implementation the
same routines for input, linear algebra, preconditioning, initial point and stopping criteria.
This way all comparisons became fair and meaningful. For each type of neighborhood
used we made a different implementation, so that computational results are available for
comparison.

Computational results showed that we achieved less iteration count in most of the
problems studied, although computational times were bigger.

We believe that these results are positive. Although the CPU times were bigger, the
reduction in number of iterations showed that the parameterization actually allowed for
a clearer insight of what are the real subproblems to be solved at each iteration.

Besides that, working in a self-dual framework in a predictor-corrector algorithm forces
us to solve seven linear systems for each Cholesky factor, which means five extra system
solves as compared to Mehrotra’s predictor-corrector algorithm. This way, practical im-
plementations using the self-dual framework become impossible for our parameterization.

This paper is organized as follows. In section 2 we develop the linear parameterization
for strict Newton step. In section 3 we extend this idea to a predictor-corrector and
damped step. We present an overview of the various neighborhoods of the central path in
section 4 and our general path-following algorithm in section 5. Some initial computational
results are shown in section 8.

2. FIRST DEGREE PARAMETERIZATION IN A PRIMAL-DUAL CONTEXT
We consider the standard linear programming problem and its dual

(P) min{cTa::Am:b,a:ZO} and (D) max{bTy:ATy+z:c, 220}

where A is a n X m matrix and b and c are vectors of dimension m and n respectively.
We assume that the sets

Fp={z€R"| Az =b,2>0} and Fp = {(y,2) ER" xR | ATy + 2 =¢c, 2> 0}

are both non empty and define F = Fp X Fp.
We solve (P) using the logarithmic barrier function technique that consists of solving

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 4

approximately the family of problems

(P,) : min cTa:—,uZInmj:Aa::b,ar>0 ,

=1

where p > 0 is the penalty parameter and should be chosen in a way that forms a
sequence converging to zero. For each p the problem P, has an objective function that
is strictly convex and so the global minimum is completely characterized by the Karush-
Kuhn-Tucker stationary condition

Az —b=0
ATy+2—c=0
zz—pe =0
>0, 2>0,

1)

where e is the vector of dimension n consisting only of ones and we adopt the convention
that if x and z are vectors of same dimension then xz denotes the vector whose components
are x;2;. The internal product will be denoted by 27 2.

The above notation zz to indicate the componentwise product of two vectors = and
z with same dimension has been established in recent works in interior point methods
[9][15] [16], due to the frequency that this concept is used and in order to simplify the
notation. In a similar way, if x is a vector and a is a scalar we denote by z® the vector
having components (x;)”.

In order to solve approximately each problem P, and defining w = (z,y, 2) we solve
also approximately the non linear system

Az —b 0
H(w):H(a:,y,z): AT?J"'Z*C = 0 (2)
Tz — e 0

using one iteration of Newton’s method, for which we need the Jacobian of H:

A0 O
J=| 0 AT T
zZ 0 X

where X and Z are the diagonal matrices whose elements are equal to x and z respectively.
In a way similar to what we did for vectors, we extend the power notation for diagonal
matrices: if X is a diagonal matrix and a is a scalar then we define X® as being the
diagonal matrix whose nonzero elements are (X; ;)"

We assume that the present point (z,y, z) is a feasible interior point, i.e.

Az —b _ 0
ATy 4+ 2—¢ a 0
z > 0,

z > 0.

The Newton direction éw = (6z, by, §z) that provides the approximate solution w =
(2,9,2) = (x + éz,y + 8y, z + 62) for the system H (w) = 0 is given by the solution of the

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 5

linear system J (w) Aw = —H (w), i.e.,

AAz =0
ATy +62=0 (3)
Zbx + X6z = pe — zz.
If we define
Pe = 21— 77'XAT (AZ7 X AT Az
Py, = (AZ7'XAT) ' Az!

W
I

AT (AZ7'X AT AZ!

then by direct calculation we obtain

bz = Py (e — x2)

6y = —Py (pe — v2) (4)
6z =P, (e — xz)

If now we define

Y5 = —Prx2

i = Pze

Y4 = Pyxz

v = —Pye)
v§5 = P.xz

Vi =—Pee

then we have
bx =i+ 75
6y =v{u+p (6)
6z =vip+ 75

i.e. we have expressed each new step and therefore each new iterate as linear function of
u. Note that the vectors v can be calculated without .

3. SECOND DEGREE PARAMETERIZATION
Suppose that we try to determine a single step such that

w=(2,9,2) = (z+ Az,y + Ay, z + Az)

solves exactly the nonlinear system (2). By direct substitution we see that such step must
satisfy the nonlinear system

AAz =0
ATAy+Az=0
ZAzx + XAz = pe —xz — AzAz

The idea behind a second degree step or predictor-corrector step is to consider that
the nonlinear term AzAz can be approximated by 6z6z where §z and §z are the solution
of the linear system (3) found in the previous section (as will be shown in section 7, near
the central path we have ||[AzAz — §z6z|| < fpu, i.e., AxzAzis close to §zdz and this agrees
with an intuitive idea of approximation).

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 6

The system now becomes linear:

AAz =0
ATAy + Az =0 (7)
ZAz 4+ XAz = pe — xz — 6zbz

By direct calculation we obtain

Az =P, (pe — xz — 6262)
Ay = =P, (pe — zz — 6262) (8)
Az =P, (pe —xz — 6z62)

But according to (6) we can express 6z and 6z as a linear function of p and so we have
pe—xz—8xdz = pe—xz—(Vip +v§) (Vip+v§) = —ivin® +(e —v§vi —vivg) p—az—
Y676+

We now define

¢g = —Pvi7i

U1 =P (e = 7571 = 7175)
o = =Pz (xz2 +7575)

¥s = Pyyivi

1 =Py (v57i + 176 —e))

Py = Py (x2 +v§75)

7;[;; =—P17i

Y1 ="P= (e —757% — 717

Yo = —P= (22 +757))

so that the final step can be expressed as a second degree function of p

Az = 5P + 9T+ o)
Ay = Pi®+ i+ ¢f
Az = Y5 + i+ 45

In the case of a damped step the next iterate w can be expressed as a function of «
and p since

W (a,p) = (z,9,2)+ a(Az, Ay, Az) (10)

z+ o (Y5p® + YTp+ ¥f)
= | y+a(ip®+iu+yf)
z 4 o (Y3p® + Pip +)

The next theorem gives the expression of the dual gap and will be needed for the
algorithm. We need a simple lemma.

Lemma 1. Vectors 6z and 6z are orthogonal; vectors Az and Az are orthogonal

Proof: We reproduce the proof in [13]. 6z and 6z satisfy system (3). Multiply the first
equation by 6y’ and the second by §z and combine them to see that §z7 6z = 0.
Use the same idea in system (7).

Theorem 2. Let g be the dual gap after a damped second degree step and let g be the
previous gap. Then g =anp+ (1 —a)g

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 7

Proof:

g = Zi’lﬁz = Z (.Z'I' + OéA.’L',J) (Zi + OtAZi)
=1

=1

= ixizi + i (ziAz; + z;Az;) + o? i Ax; Az;

=1 =1 i=1

= g+a2(uf:cizif¢5mi6zi) =g+ a(np—yg)

i=1
Note that the same theorem holds for first degree steps.

4. NEIGHBORHOODS OF THE CENTRAL PATH
The central path is defined as

C={(z,y,2) € F:zz= pe}

i.e., it is a continuous path parameterized by the real variable y — for each p the point in
the path is completely characterized as the unique solution of system (1). It was studied
by Bayer and Lagarias [1], Sonnevend [17] and Megiddo [11], among others. Since the
vector y is not needed in the implementations of interior point methods (IPM), we will
omit them in some contexts and consider only the pair (z, 2).

Quoting Hung and Ye [8], path-following algorithms generate a sequence of points
within certain neighborhoods of the central path C, which prevents iterates from prema-
turely getting too close to the boundary of the feasible region.

Now suppose we are given a current iterate (x, z). This iterate is a solution of a linear
system involving some p, therefore there is a unique point in the central path characterized
by p, which we call a p-center. In order to define a neighborhood we must be able to
quantify the distance from the vector xz to the u-center. Following the ideas of Peng et
al. [15], this quantification can be done defining the following proximity measures.

bp(xz,m) = Y (% —1—log <%)>

i=1

Tz
— —e

1w
1] n
by (z2,n) = 3 o Vi

In §; the square root of the vector is to be understood as the vector whose components
are the square roots of each component. Note that for all three measures its value is zero
if zz is the point in the central path.

The first measure, known as the logarithmic barrier function with respect to the barrier
parameter p, was introduced by Frisch [4] and historically it was the first to appear.
Although it is not practical for implementations, it is useful in the complexity analysis of
many IPMs because it has the barrier property: it becomes unbounded if xz approaches
the boundary of the nonnegative orthant. This measure is specially useful for large-update

6K (iCZ, ,LL) =

5

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 8

methods, that at each iteration drastically reduce p and then use several damped Newton
steps to recenter.

The second measure §x was introduced by Kojima et al. [10] and is the most used
measure for complexity analysis but it doesn’t have the barrier property.

The third one is due to Jansen et al. [9] and seems to lead to more concise proofs
of complexity, including that of damped steps algorithms. The motivation behind this
measure is to be able to work in a scaled space, where the notations and proofs become
more simple and where this measure is equivalent to the classical Euclidean norm. Recent
works from Peng et al. [16] propose new algorithms based on this measure that might have
their practical performance confirmed — but although the measure is promising, it has
not produced yet outstanding results regarding complexity or practical implementations.

We will focus only on measures § g and §; and for implementation purposes we will
use only Ok

‘We can now define the neighborhoods, initially using the Euclidean norm and later we
can extend them using other norms.

Associated with the first proximity measure we have the classical definition

% (0) = {2y e 7 [-

<1-5}
where 3 € (0,1). This definition has another equivalent form

No (B8) = {(2,y,2) € F: ||lzz — pel| < (1= B) p}

and we will freely use either form as convenient.
The second neighborhood, associated with 67, is defined as

B) zz [p
Nj(ﬂ)—{(a:,y,z)Gf.H’/# P §ﬁ}
where 8 >0

The first neighborhood has two natural extensions, N () where the definition is the
same but the norm is I, and

Ne (B) = {(2,y,2) € F: 2z > fu}

We can see that

CCMN2(B) CNw(B)CNL(B)CF

The extension of the second one is similar.

We say that a point is close to the central path under a certain proximity criterion N
if it belongs to any of the neighborhoods above for a given 3 > 0

We can now state a general path-following algorithm. However, we are not simply
seeking generality for it’s own sake. Rather we will restrict the general algorithm to the
“smallest” framework that encompasses all the algorithms that we actually implemented
and for which computational results are available.

5. ALGORITHM
We present here the schema for the algorithm that includes all implementations we did
— this schema permits first and second order steps, and various types of neighborhoods.

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 9

Step 0. Assume that a given proximity criterion N is given and let wy = (g, yo, 20) be
an initial feasible point close to the central path under this proximity criterion. Let
¢ > 0 be a tolerance for the duality gap and define py = x8 29 /n.

Step 1. If g, = x{zk < ¢ stop.

Step 2. Compute the function Awy, (1), i-e., compute according to (5) the vectors v that
allow the new step Awy, to be expressed as a function of u (or in the case of a second
degree parameterization compute according to (9) the vectors).

Step 3. minimize (approximately) gr+1 (@, 1) = anpy, + (1 — &) gr, subject to w1 =
wy, + aAwy, () being close to the central path.

Step 4. Set wi41 = wr + aAwy, and k := k + 1 and go to step 1.

In order to show that the above algorithm is well defined we must show that it termi-
nates properly and that all steps can be executed. There is no problem for steps 1 and
4. For step 0 the problem of finding an initial feasible point close to the central will be
dealt with when we extend our ideas to a self-dual framework. Sections 2 and 3 showed
that step 2 presents no problem. Step 3 originates by itself a nonlinear subproblem that
is well defined — we will see that we can state and solve this problem approximately (or
even exactly for some proximity criteria), provided that the restriction set is non-empty.
We will show that this is the case depending on the proximity criterion chosen.

Also depending on the proximity criterion there will be different polynomial complex-
ities associated. In the next section we will elaborate more on the restriction set for step
3 and on the polynomial complexities.

6. CONVERGENCE RESULTS
The results in this section guarantee the convergence of the algorithm described in the
previous section for the neighborhoods N; (3) and NZ (8), for specific values of 3 that
include those used in our implementations. Note that the complexity of the algorithm is
polynomial.

Theorem 3. Let N be the criterion in the algorithm defined by 8 € (0,1/2) and neigh-
borhood N> () and assume that only first degree steps are taken. Then step 3 admits an
approximate minimization. Furthermore the algorithm stops in O (y/nL) steps.

Proof: This is the classical primal-dual algorithm of Monteiro and Adler and the proof
can be found in [13].

In order to prove convergence results for predictor-corrector steps we will need some
technical lemmas. The following lemma, due to Ye [23], is a variation with tighter bounds
of a lemma first presented by Monteiro [13].

Lemma 4. Let p and q be two n-dimensional real vectors such that p”q > 0 and p+q = r.

Then)
idl

<
[pq| < 78

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH

Proof

2
lIpall

Lemma 5. Suppose that ||zz — pe|| < Op and that i =

Proof Define D = Z'/2X~1/2 p = Déx, ¢ = D~
system (3) by (XZ)fl/2

10

= > (ma)’
i=1
2 2
< Z piQi) Z piQi)
iq; >0 19 <0
2
< 2(> mm)
Piqi>0
2
< 2(> (pi+qi)2/4>
piqi>0
4
< /8
(1 —7)p. Then
2
V8(1-9)
16z. Multiply the last equation of

so that p+q = Déx + D716z =r = (mz)71/2 (e — z2).

Noting that ||zz — pe|| < 6u implies z;2; > (1 —) p and using lemma 4 we have

||6z62||

IN

IN

Lemma 6. Suppose that ||zz — pe|| < 6p and that i =

[AzAz|| <

Il < HrnWé = H(wzrm (e — =) VB

Sy AL
X;2;

=1

(zizi —)
i3 sty
1 a2
o oo
W Iz~ pe) + (u = i) el
\/-(179) (o2 — el + || (1 — i) e]])?
TR
(0 + vnr)”
N
(1 —7)p. Then
1 @+ var?)
m(ew”m) '

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 11

Proof Again define D = Z'/2X~1/2 p = DAz, ¢ = D~'Az. Multiply the last equation
of system (7) by (XZ)_l/2 so that p+q = DAz+D 1Az =r = (gz:z)_l/2 (e — xz — b262).
Note that —0u < x;2; — p < fp and so by lemma 4 and lemma 5 we have

2
|AzAz| = |pg|| < ||r,~||2 /\/§: ||(:cz)_1/2 (pe —zz — 6:652)H /\/g

Ti24

Z (:zczzz u —|— 63:15zz)

<
0) 1

1 N 2

= m”xz—pe-l—éa:ézﬂ
1 ~ 2

= mll(wz—ue)ﬂu—u)ewmzu

< m (lzz — pel + || (1 — i) el| + ||6z62]])
1 (9_’_\/57_)2 2

= 7@??5;(W+“%W+:§atEW)

S S POy SNV A}

- \/§(19)(9+\/—+\/§(19)>’u

Theorem 7. Let T and 0 satisfy

1 @+ van’\" | 6+ yar)’
%ﬁ%@“%*ﬁmm)*ﬁmw<mf*
If |xzz — pe|| < Op and L = (1 — 7) p then |22 — fie|| < Of

Proof:
Ti2i—p = (x; + Azy) (2; + Az)—fp = 2242 Az 2, Ax+ Az Azy—f = Ax; Az —6x;62;

therefore
|22 — pe|| = ||AzAz—bzbz| < ||AzAz| + ||6zbz||
2 2 2
< 1 9+ﬁ7+(9+ﬁr) +(9+\/ET)
V(6] B8) TVRa)

< 9(1-T)p="0

Note that if # = % and 7 = min(z2= 5/n 3 \/—) then the condition in theorem 7 is satisfied.

The theorem above just proved that step 3 in the general algorithm is well defined if
the neighborhood used is N5 (i) The choice 7 = #ﬁ guarantees that

Jh+1 1
<(1-—
gk (5\/?7>

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 12

which in turn guarantees that the algorithm finishes in O (y/nL) steps.
When neighborhood N> is used, the underlying minimization in step 3 is

ming = anu+(l1—a)g
s.t.

w € Nz (i)

1
w e N2 <—> =
4
fa a2 ~2
— < it e
122 = fe||” < it
- 9
Yo@s—p)? < it e
— 16

Z ((zi + aAz;) (2 + alz) — p)? < 3—6,&2 &

=1

but in this case

(o + o (U507 + T+ 45)) (2 + 0 (V5% + U7+ 45°)) — 1) — 2oi” <0
1

n
i—

This last inequation can be regrouped into a 8th degree real polynomial in the vari-
ables a and ji, because the vectors ¢/ do not depend upon ji and « and were previously
calculated. For each fixed « € (0, 1] the optimization problem above can be solved exactly
because the solution fi is the smallest positive root of a polynomial. Since it is compu-
tationally cheap to find roots of a polynomial for each «, we can solve this optimization
subproblem quite accurately — and we did so in one of our implementations described in
section 8.

We now proceed to generalize the previous result to the wider neighborhood N.

Lemma 8. Let p and q be two n-dimensional real vectors such that p”q = 0 and p+q = r.
Then

LTS
4 — =g

Proof We reproduce the proof by Ye [23]. The right hand inequality follows from
pi + q; = r;. For the left hand inequality

Pig; > Z Pig;
piqi<0

= — Z piq; (since p’'q = 0)
Piqi>0
r2
> - Z Z’ (using the right hand inequality)
piqi>0

> —|rl* /4

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH

Theorem 9. Let T and 0 satisfy

o\ 2
(O+1
(‘9+7—\/77+ 10) (9+7‘)2
_ 5 +

10 +(1-7)>0(1—-1).

If vz > 6p and L = (1 — 7) p then &2 > 6f

Proof According to the previous lemma we have

and so

(zizi — ﬂ)2 < (wizi — ﬂ)g
4(z;z;) — 46
((zizi — p) + (1 —))”
40
(Op+Tp)?
40

0+ 7')2

46

2
||(.’L'Z)71/2 (fie — xz — bx6z)

4
_ i (ﬂ — X2 — 61!,621)2

L3254

v

- i (ﬂ — T32; — 6:6,621)2
=1 9”

_|i(ue —22) + (i — p) e — 6262
On
 (|lme — zz|| + |ITpe] + [|662])?
Op
047)
(9@ + T/np + T/")
Op
0+71)> 2
(0+rvm+@5)

%

v

2N 2
(0+rvm+S55) (g4 rp
=] T,

+A=7)|n

> 0(1—1)p

13

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 14

Note that a possible choice to satisfy the condition in theorem 9 is

§ = =

_ . 1 1
T = min 530)"

Again this theorem proved that step 3 in the general algorithm is well defined if the
neighborhood used is N (%) The choice 7 = % guarantees that

Grt1 (1 7 i) 7
g 2n
which in turn guarantees that the algorithm finishes in O (nL) steps.
When neighborhood N is used, the underlying minimization in step 3 is

mng = anp+(1—a)g
s.t.
w e NZ(0.2)

and similarly the condition @ € NZ (0.2) is equivalent to n inequations

z;2; > 0.2[.
Using the second degree parameterization each of these inequations are equivalent to the
4th degree polynomial inequation

(zi+ e (U5 0% + ' A +45")) (2 +a (V3B + T B+ ¥57)) — 020 > 0.

The minimization in this case is much harder computationally. Fixing o € (0, 1], each
inequation has up to two intervals as solution set, associated with the roots of the poly-
nomial, and the overall solution set is obtained via interval calculation using up to 2n
intervals, in a O (n) computation for each fixed a. The associated optimal [is then avail-
able as the smallest positive element of the overall solution set — so we have to limit the
number of different « inspected to obtain the approximate minimization. The resulting
algorithm for neighborhood N (0.2) was implemented and the computational results are
shown in section 8.

7. SELF-DUAL FRAMEWORK
We now present the extension to a self-dual framework that was actually used for the
implementations, to account for the initial feasible point. In order to treat bounded
variables we chose to explicitly separate bounded variables from non bounded, as this
way the implementation is straightforward.
We define the primal problem

min c{erch
s.t.
(LP) Ajv+Az=0»
0<v<u
0<zx

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 15

where

ci,v,u € RF
e,z € RVF
b € R™

Al c Rmxk
Ay € Rmx(nf k)

and we define the corresponding dual problem

max b7y —uTw
s.t.
(LD) Afy—w<c
A3y < cy
w >0
where
y € R™
w € RF
and we define
min cgf
s.t.
(1) Av +Ayx bt —rf = 0
(2) —v Hur —r9f > 0
(HLP) (3) —ATy +w +aT —r3f > 0
(4) —Afy teaT —rafl > 0
(5) Wy —uwlw —cfv —clz —rs0 > 0
(6) rTy +rlw +rfv Tz g7 = —cp
w v z, T, > 0

7)

where we denote by s, h, z and k the slack variable of inequations (2), (3), (4) and (5)
respectively and

r1 = (Ayve + Az — b7o) /6o
ro = (uoTo—vo — so)/bo
rg = (617'0 — A{yo — ho + U}()) /90

T4 cato — A3 yo — 20) /6o

(
rs = (b"yo —ugwo — cfvo — 3o — ko) /0o
(vo

Co = h0+l‘020+80w0+7'0h]0)/90

where vg > 0, zg > 0, sg > 0, 29 > 0, wg > 0 and yg are an arbitrary initial point and
where 19 = kg = 6y = 1, so that (yo, wo, vo, Zo, To, B0, S0, ho, 20, ko) satisfy (HLP). We
also define 7 as the set of all points (yo,wo, vo, Zo, To, f0, S0, ho, 20, Ko) satisfying (HLP)
and such that (w,v,z,7,s,h,z, k) > 0.

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 16

This way the (self-) central path for (HLP) is defined as

C =< (y,w,v,2,7,0,8h,2kK) € Fi: = ue

No (B) =X (y,w,v,2,7,0,8,h,2,k) € F: — pe|| < Bu

Extension to other neighborhoods is done in a way similar to what we did in the
primal-dual context.

Using exactly the same arguments used in [22] but now in the context of bounded
variables it can be proved that (HLP):

e is self-dual in the sense that it is a linear problem whose dual is identical to (HLP);

e has a feasible interior point (yo, wo, vo, Zo, To, B0, S0, ho, 20, £0) that lies in the central
v ho + 28 20 + wl'so + Tk
n+k+1 ’

e has an optimal solution and its solution set is bounded;

path for py =

e has a strictly self-complementary solution, i.e., a solution

(y*7w*7v*7x*7 T*7 9* = 07 8*7 h*7 2*7 H*>

such that
v* + h*
¥ + 2"
w* st > 0.
T 4+ K*
Furthermore,

e (LP) has a feasible and bounded solution if and only if 7* > 0. In this case,
(v*/7*,2*/7*) is an optimal solution for (LP) and (y*/7*,w*/7*) is an optimal
solution for (LD).

e If 7* =0 then:
a) if cF'v* + cd'z* < 0 then (LP) is infeasible;
b) if bT'y* — uT'w* < 0 then (LD) is infeasible.

Cases a) and b) are not exclusive.

This all means that when we work in a self-dual framework we can always find a finite
solution to (HLP) with which we can completely solve the original problem.

There is a very practical consequence of system (HLP) being self-dual. Analyzing the
optimality condition for (HLP) we can see that it is almost identical to that of the original

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 17

(LP), in the sense that we have only to consider the primal form of the original problem,
especially in all linear algebra routines.

As an immediate consequence, all results in the previous sections remain valid, but
the first and second degree parameterizations have to be re-stated in this framework in
order to allow for a proper implementation. Unfortunately, the formulas and the notation
in this case become too heavy to be presented here — but they are straightforward.

It might seem that the system involved in (HLP) is too big. However, the system that
provides the Newton direction for the associated the Karush_Kuhn-Tucker condition for
(HLP) is

Ayd, + Asd, —bd, —1ridg = 0 (1)

—dy, +ud, —rodg —ds = 0 (2)

~ATdy +dy +c1dy —r3dg —dp, = 0 (3)

—AYd, + cod, —14dy —d., = 0 (4)

b'd, —uTdy —cldy, —cad, —rsdg —dx = 0 (5)
ridy+r3dy+rad, +7ids+75d; = 0 (6)
Sdy +Wds = pe; —ws (7

Hd,+Vd, = pes—vh (8)

Zd, +Xd, = pez—zxz 9)

kd: +71d, = p—TK (10)

and we can, with some algebra manipulation, show that this system can be solved using
the solution of a smaller system similar to AATz = b where A = [A; : A3]. Therefore the
computational effort is of the same magnitude of standard primal-dual algorithms.

8. COMPUTATIONAL RESULTS

As previously mentioned in the introduction, we were interested in being able to make
fair comparisons between actual implementations. To do so, we took as basis Mehrotra’s
[12] predictor-corrector implementation PCx [2], for which the code in C is available.
But we did some slight changes. First, Mehrotra’s heuristics for the initial point does
not generate a centered point, but by minimally tinkering with the parameters in his
heuristic we generated initial points that are self-centered with respect to N3. Second,
PCx allows for higher order Gondzio [7] corrections — we inhibited this feature in the
configuration file but allowed the original feature of conjugated gradient refinement. We
call this modified implementation PCx-r.

‘We then introduced into the original code, bypassing their main algorithm, the code for
our algorithms, therefore inheriting the same routines for pre-processing (input reading,
pre-conditioning via scaling, re-ordering of rows and columns, dense column handling
and symbolic Cholesky factorization), starting point, all linear algebra (Ng e Peyton
[14] routines for solving sparse linear systems as well as conjugated gradient refinement),
termination criteria and output writing.

In the development of our work we made many implementations, for different choices
of neighborhoods and parameter 3, using strictly predictor steps or predictor-corrector
steps, allowing or not the steplength « to be optimized, and using different strategies for
approximately solving the nonlinear subproblem. The computational results of all these
implementations are quite extensive and presenting them here would possible bring more

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 18

confusion then light in our understanding. We chose instead to pick three implementations
that illustrate better some possible conclusions.
The implementations not presented here were excluded for the following reasons.

e Algorithms with strictly predictor steps were excluded. We noticed that this family
of simpler implementations present, as is already known, iteration count and CPU
times that are bigger then its predictor-corrector counterparts.

e Jansen neighborhoods didn’t have a remarkable performance regarding iteration
count and CPU times, as compared with euclidean neighborhoods.

All codes were compiled with the same compiling options and in the same computer.
With this strategy, whatever difference in number of iterations and CPU times can only
be attributed to the implementation of the algorithms themselves. Also, this way CPU
times are not important in absolute terms, but only their relation with one another.

At each iteration of our algorithms we made a transformation that took the iterate
in PCx primal-dual environment and transformed it into a self-dual iterate, in which we
computed the next iterate and then transformed back to the primal-dual environment.

‘We made three implementations.

e .The first, which we call PCx-N2a, uses N3 (0.25) as neighborhood of the central
path and fixes &« = 1, optimizing only in the variable p. This way in step 3 of the
algorithm the objective function and the restriction set become

minngp
a,p
s.t.

- 9
Z (22 — p)? < —p?
— 16

or

(i + 0% i + 0% s+ 08, (2 + 0502 + 07+ 98) —)’
1

n

K3

9
<22
*IGM

using the notation for the primal-dual framework (in the self-dual framework, that

was actually used, this notation is much more extensive).

e The second, PCx-N2b, allows both « and p to be optimized, so that now the un-
derlying optimization subproblem is

minany 4+ (1 —a)g
au
s.t.

((zi+ o (V32 + 9% s+ 98,)) (20 + o (V512 + 9% u+45,)) — 1)
1

n
=

9
<_2
_16N

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 19

e The third, PCx-SN uses N (0.2) and also fixes o = 1. In this case the optimization

is
minnp
a,p
s.t.

(zi + 05 1% + YT 4+ 05 ;) (2 + 05 0% + 05 s+ 05 ,;) <021

fori=1,...,n

This optimization involves a set of n restrictions in u; each restriction has a solution
a set of up to two real intervals that p must belong to, and so the global feasible
set is the intersection of n sets of up to two intervals. In terms of computational
effort, it is complex and expensive to generate this feasible set, since we have to find
n times all the roots of a polynomial of degree four.

Note that convergence results were previously proved for all these algorithms.

Some further details: the problems we studied are a subset of the Netlib problems
— medium size problems, bounded and unbounded, and all feasible. We chose not to
study infeasible problems because we wanted to use the same original termination criteria
of PCx. Actually, because of the self-dual framework, we could have used a different
termination criteria that has been shown to be more efficient for infeasible problems [20].

The number of iterations and CPU times in seconds for each implementation are shown
in the table below. Column L indicates the number of non-zero elements in the Cholesky
factor L. All tests were performed using a Pentium 3 processor at 500 MHz running under
Windows NT, using Borland 5.0 C compiler.

PCx-r PCx-SN PCx-N2a PCx-N2b

Problem Rows | Cols L iter. | CPU | iter. | CPU | iter. CPU | iter. CPU
25FVAT 821 1571 33809 30 1.83 24 3.19 44 4.10 44 4.22
BANDM 305 472 3936 19 0.14 16 0.33 30 0.42 30 0.49
BNL2 2324 3489 81275 40 8.94 34 13.32 67 19.19 67 19.33
BOEING1 351 384 5725 21 0.25 29 1.11 54 1.26 54 1.39
BOEING2 166 143 1912 18 0.03 18 0.24 34 0.26 34 0.32
BORE3D 233 315 1034 18 0.03 15 0.11 28 0.09 28 0.17
CAPRI 271 353 3962 24 0.17 20 2.65 42 0.56 42 0.64
CYCLE | 1903 2857 56102 45 4.19 22 16.72 51 8.47 51 8.6
CZPROB 929 3523 3520 32 0.58 21 13.77 41 2.18 41 2.27
FIT2P | 3000 | 13525 3000 21 4.57 22 | 125.72 59 47.31 59 47.61
FFFFF800 524 854 9573 33 0.55 26 5.95 51 1.56 51 1.69
FORPLAN 161 421 3304 28 0.25 23 3.06 47 0.76 47 0.89
PILOT 1441 3652 | 200812 43 | 32.56 62 | 130.16 135 | 122.88 135 | 123.24
PILOT.WE 722 2789 15605 45 1.70 38 30.30 79 6.77 79 7.00

As mentioned before, we achieved less iteration count in most of the problems studied,
although computational times were bigger. There are two reasons for this. First, at each
iteration we have to solve seven linear systems using the same Cholesky factor in order to
calculate the predictor-corrector parameterization, as opposed to two system solves in the
usual predictor-corrector algorithm. Second, in this first version of our implementation
there are still some important parts of the code that need to be re-written for better speed,

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 20

such as the interval calculations routines and the routines that find roots of polynomials.
This is corroborated by the difference in CPU times between PCx_N2a and PCx-SN —
the former does not use interval calculation and has smaller CPU times although having
larger iteration count.

It is interesting to note that PCx-N2a and PCx-N2b achieved exactly the same number
of iterations — although optimization was also allowed for the steplength «, the optimum
was always found at o = 1. We believe that this happens because we are dealing with
feasible iterates algorithms — for instance for infeasible iterates algorithms using potential
reduction functions this does not happen.

9. CONCLUSIONS
As we had proposed in section in section 1, by parameterizing the next iterate in terms of &
and p we established an analytical environment where the choices of these parameters can
be stated as a clear optimization subproblem — which precludes the use of heuristics for
such choices. Although Mehrotra’s heuristics are very good — to the point that practical
implementations merely substitute them for similar ones — yet the need exists to replace
them for more analytical tools.

More then simply introducing an analytical resource, we showed that the type of
parameterization we made is useful as a means to evaluate and improve the other parts a
given algorithm, since these parts can also be expressed in terms of the parameterization.
This had not explicitly been done before and this might be the main contribution of our
work.

We can conclude that the use of a self-dual framework — although allowing for an
elegant treatment of the issues of initial point and infeasibility detection — presents the
great disadvantage of requiring a greater number of system solves at each iteration, and
the price we pay in practical implementations is so big as to become prohibitive. By
itself, the self-dual framework can not reduce the number of iteration count to the point
of compensating the extra system solves. This is particularly so for Netlib problems,
where the CPU times for computing each Cholesky factor is not remarkably greater than
each system solve, because of sparsity.

‘We also conclude that the optimization involving large neighborhoods should be per-
formed with extreme care, considering its greater computational complexity — but re-
search in this direction deserves further investigation since the reduction in iteration count
is significant.

There are two possible future developments using the idea of parameterizing the next
iterate the way we did.

One is to force the parameterization for the predictor-corrector algorithm to use =0
in the predictor step and then calculate p only at the corrector step. This way the
parameterization becomes of first order in p — therefore computationally cheaper as it
requires less system solves — and is more similar to the one used in Mehrotra’s algorithm.

Another one is to work out of the self-dual framework, directly using an infeasible-
iterates algorithm, in order so save system solves. In this framework it would also be
possible to use potential reduction algorithms instead of the central path.

REFERENCES

[1] D.A. Bayer and J.C. Lagarias. The nonlinear geometry of linear programming. I:
Affine and projective scaling trajectories. II: Legendre transform coordinates and

[7]

8]

[10]

[11]

[12]

[13]

[14]

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 21

central trajectories. Transactions of the American Mathematical Society, 314:499—
581, 1989.

J. Czyzyc, S. Mehrotra, M. Wagner, and S.J. Wright. PCz User Guide (Version 1.1).
Optimization Technology Center, 1997.

A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques. John Wiley & Sons, New York, 1968. Reprint :
Volume 4 of STAM Classics in Applied Mathematics, STAM Publications, Philadel-
phia, PA 191042688, USA, 1990.

K. R. Frisch. The logarithmic potential method for convex programming. Unpub-
lished manuscript, Institute of Economics, University of Oslo, Oslo, Norway, May
1955.

P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin, and M.H. Wright. On projected
Newton barrier methods for linear programming and an equivalence to Karmakar’s
projective method. Mathematical Programming, 36:183-209, 1986.

A.J. Goldman and A.W. Tucker. Polyedral convex cones. In H-W. Kuhn and A.W.
Tucker, editors, Linear Inequalities and Related Systems, pages 19-40. Princeton
University Press, Princeton, NJ, 1956.

J. Gondzio. Multiple centrality corrections in a primal-dual method for linear pro-
gramming. Computational Optimization and Applications, 6:137-156, 1996.

P. Hung and Y. Ye. An asymptotical O(y/nL)-iteration path-following linear pro-
gramming algorithm that uses wide neighbourhoods. SIAM Journal of Optimization,
6:570-586, 1996.

B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Primal-dual algorithms for linear
programming based on the logarithmic barrier methods. Journal of Optimization
Theory and Applications, 83:1-26, 1994.

M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for
linear programming. In N. Megiddo, editor, Progress in Mathematical Programming :
Interior Point and Related Methods, pages 29-47. Springer Verlag, New York, 1989.

N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo,
editor, Progress in Mathematical Programming : Interior Point and Related Methods,
pages 131-158. Springer Verlag, New York, 1989. Identical version in : Proceedings
of the 6th Mathematical Programming Symposium of Japan, Nagoya, Japan, pages
1-35, 1986.

S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
Journal on Optimization, 2(4):575-601, 1992.

R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms :
Part I : Linear programming. Mathematical Programming, 44:27-41, 1989.

E. Ng and B.W. Peyton. Block sparse Cholesky algorithms on advanced uniprocessor
computers. SIAM Journal on Scientific Conputing, 14:1034-1056, 1993.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

POSTPONING THE CHOICE OF PENALTY PARAMETER AND STEP LENGTH 22

J. Peng, C. Roos, and T. Terlaky. New complexity analysis of the primal-dual new-
ton method for linear optimization. Technical Report 98-05, Faculty of Technical
Mathematics and Informatics, Delft University of Technology, 1998. To appear in
Annals of Operation Research.

J. Peng, C. Roos, and T. Terlaky. A new class of polynomial primal-dual methods
for linear and semidefinite optimization. Technical report, Faculty of Information
Technology and Systems, Delft University of Technology, December 1999.

G. Sonnevend. An “analytic center” for polyhedrons and new classes of global algo-
rithms for linear (smooth, convex) programming. In A. Prekopa, J. Szelezsan, and
B. Strazicky, editors, System Modelling and Optimization : Proceedings of the 12th
IFIP—-Conference held in Budapest, Hungary, September 1985, volume 84 of Lecture
Notes in Control and Information Sciences, pages 866-876. Springer Verlag, Berlin,
West—Germany, 1986.

A.W. Tucker. Dual systems of homogeneous linear relations. In H-W. Kuhn and
A.W. Tucker, editors, Linear Inequalities and Related Systems, pages 3—18. Princeton
University Press, Princeton, NJ, 1956.

X. Xu. An O(y/nL)-iteration large-step infeasible path-following algorithm for linear
programming. Technical report, Department of Management Sciences, The Univer-
sity of Towa, Towa City, Towa 52242, USA, 1994.

X. Xu, P. Hung, and Y. Ye. A simplification of the homogeneous and self-dual linear
programming algorithm and its implementation. Annals of Operations Research,

62:151-172, 1996.

X. Xu and Y. Ye. A generalized homogeneous and self-dual algorithm for linear
programming. Operations Research Letters, 17(94-3), 1995.

Y. Ye, M.J. Todd, and S. Mizuno. An O(y/nL)-iteration homogeneous and self-dual
linear programming algorithm. Mathematics of Operations Research, 19:53—67, 1994.

Yinyu Ye. Interior Point Algorithms: Theory and Analysis. John Wiley and Sons,
New York, 1997.

