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Abstrat

It has been reently shown by Mo and Negreiros [11℄ that a nees-

sary ondition for an invariant almost-omplex struture on the om-

plex full ag manifold F (n) to admit a (1; 2)-sympleti invariant met-

ri is that its assoiated tournament is one-free.

In this paper we �nd a anonial stair-shaped form for suh tour-

naments and apply it to show that the ondition is also suÆient. In

doing this we desribe all the assoiated (1; 2)-sympleti metris, and

get, in partiular, a di�erent and self-ontained proof of a theorem of

Gray and Wolf [17℄ asserting that the Cartan-Killing metri on F (n)

is not (1; 2)-sympleti for n > 3.
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1 Introdution

Denote by F (n) the usual manifold of full ags of subspaes of C

n

and endow

it with an almost-omplex struture J and a Riemannian metri ds

2

. Let

M

2

be an arbitrary losed Riemann surfae. A theorem due to Lihnerowiz

[9℄, proved independently by Gray [6℄, states: \If � : M

2

! (F (n) ; J; ds

2

)

is J-holomorphi and ds

2

is (1; 2)-sympleti with respet to J , then � is

harmoni". The importane of this theorem rests in the fat that it furnishes

solutions of the seond order Euler-Lagrange partial di�erential equations,

satis�ed by the harmoni maps from the solutions of �rst order partial dif-

ferential equations, the Cauhy-Riemann equations. This theorem drives the

attention to the problem of understanding the (1; 2)-sympleti metris on

the ag manifolds. Apart from the relation to harmoni maps the (1; 2)-

sympleti metris appear in twistor theory, as shown, for example, in Eells

and Salamon [5℄.

Our approah to this problem is based on a method derived by Burstall

and Salamon [4℄, relating harmoni maps on ag manifolds to tournament

theory. It is well known that an invariant almost-omplex struture J on

the ag manifold F (n) is de�ned by means of a skew-hermitian sign matrix.

This matrix an be onsidered as the inidene matrix of an n-player tourna-

ment T

J

, providing a one-to-one orrespondene between the set of invariant

almost-omplex strutures on F (n) and the tournaments with n players. Re-

lying on this natural assoiation the method onsists in studying properties

of J through the ombinatoris of T

J

.

Reently Mo and Negreiros [10℄, [11℄ singled out the lass of the so-alled

one-free tournaments in relation to the (1; 2)-sympleti metri problem.

Namely, it was proved in [11℄ that a neessary ondition for J to admit an

invariant (1; 2)-sympleti metri ds

2

is that the tournament T

J

is one-free,

a property whih involves the 4-subtournaments of T

J

(see De�nition 3.1

below for a preise statement). In this paper we prove that this ondition is

also suÆient, thus arriving at the following haraterization.

Theorem 1.1 (F (n) ; J) admits an invariant (1; 2)-sympleti metri � if

and only if the assoiated tournament T

J

is one-free.
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The suÆieny of the ondition was studied by Paredes [14℄, [15℄, where an

aÆrmative answer was obtained for ertain lasses of tournaments, inluding

all tournaments with 5 � n � 7 players. For n = 3 and 4 this result was

proved in [11℄. In Setion 4 we o�er a proof for arbitrary n (see Theorem

4.4).

In addition, given J onsistent with Theorem 1.1), we exhibit an expliit

n-dimensional parametrization for all the possible invariant (1; 2)-sympleti

metris for (F (n) ; J).

Our approah is based on a onrete haraterization of the struture

of one-free tournaments. Spei�ally, in Theorem 3.5 it is shown that a

tournament T is one-free if and only if its inidene matrix is permutation-

similar to a stair-shaped inidene matrix of the following type
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�

�

�

�

�

�

�

�

.

.

.

.
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.

: : :

: : :

�

�

�
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+

+

�

�

�

+

+

+

(1)

The problem disussed here has a natural extension to the framework of

generalized ag manifolds assoiated to arbitrary omplex semi-simple Lie

groups. Similar results an be proved in this more general set up, and will

appear elsewhere.

2 Preliminaries

2.1 Tournaments

We de�ne an n-player tournament as a omplete direted graph T = (N;E)

(no loops or multiple edges) where N is an ordered set and jN j = n. For

onreteness we shall always assume that N = f1; : : : ; ng. Two tournaments

are isomorphi if one is obtained from the other via a rearrangement of N .

See Moon [12℄ for further details.

With eah tournament T we assign its inidene matrix " = "

T

, whih

is a real skew-symmetri matrix with all o�-diagonal entries �1 (see [12℄).
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Tournament isomorphism amounts to permutation similarity between the

assoiated inidene matries.

If (a; b) 2 E we say that a wins against b and set "

ab

= 1, "

ba

= �1. By

our onventions, T would then ontain an arrow pointing from vertex a into

vertex b.

We de�ne the valeny of a vertex a of T as the number of its wins. We

also de�ne, in a strit sense, a winner in T as a (unique) vertex with valeny

n�1, and a loser as a (unique) vertex with valeny 0. Not every tournament

has a winner or a loser; however, when it exists, it is not part of any yle.

The desending sequene of valenies of T is alled the sore vetor asso-

iated with T . Every non-inreasing sequene of n non-negative integers with

total sum

�

n

2

�

is a sore vetor for some n-player tournament T . However,

T need not be uniquely determined by its sore vetor.

Sine T is omplete, jEj = n(n � 1)=2. Moreover, E splits as a disjoint

union

E = E

1

[ E

2

; E

1

= f(a; b) 2 E : a < bg; E

2

= f(a; b) 2 E : a > bg: (2)

2.2 Flag manifolds

In this setion we disuss the orrespondene between invariant almost om-

plex strutures on the full ag manifold and tournaments or, equivalently,

their inidene matries whih are real skew-symmetri matries with o�-

diagonal entries in f�1g.

Consider the omplex full ag manifold

F (n) = f(V

1

; : : : ; V

n

) : V

j

� V

j+1

; dimV

j

= jg:

The natural ation of the unitary group U (n) on F (n) is transitive, turning

the ag manifold into the homogeneous spae U (n) =M where M is any

maximal torus of U (n), i.e., M

�

=

U (1)� � � � � U (1).

Let u (n) be the Lie algebra of skew-hermitian matries. It deomposes

as

u (n) = p� u (1)� � � � � u (1)

where p � u (n) is the subspae of zero-diagonal matries. Let E

jk

be the

anonial basis matrix E

jk

= (a

rs

) with a

rs

= 1 if (r; s) = (j; k) and zero

otherwise. Put

p

jk

= (CE

jk

+ C E

kj

) \ u (n) :
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Of ourse, p =

L

j 6=k

p

jk

.

In order to give an invariant almost omplex struture on F (n) it is

enough to present J : p! p, J

2

= �1, whih ommutes with the adjoint rep-

resentation of the torusM on p. This ondition implies that J (p

jk

) = p

jk

for

all j 6= k, whih in turn guarantees that J (A) = A

0

with A

0

jk

= "

jk

p

�1A

jk

suh that "

jk

= �1 and satis�es "

kj

= �"

jk

. Thus an invariant almost om-

plex struture is ompletely determined by a skew-symmetri matrix ("

jk

),

with o�-diagonal entries in f�1g.

For the omputations we work in the omplexi�ation V of p. It is easy to

hek that V is the subspae of omplex matries with zero-diagonal entries.

It deomposes as V =

L

j 6=k

V

jk

, where V

jk

= span

C

fE

jk

g.

An almost omplex struture J on p extends to a C -linear operator on V ,

also denoted by J . Its eigenvalues are �

p

�1. If J is given by the inidene

matrix "

jk

then the orresponding eigenspaes are

V

10

=

M

fV

jk

: "

jk

= 1g for

p

�1

and

V

01

=

M

fV

jk

: "

jk

= �1g for �

p

�1:

Let ds

2

be an U (n)-invariant Riemannian metri on F (n). Like the in-

variant almost omplex strutures, ds

2

is ompletely determined by its value

at the origin, that is, by an inner produt (�; �) in p, whih is invariant under

the adjoint ation of M . To desribe these inner produts, start with the

Cartan-Killing form on p:

hX; Y i = �tr (XY ) ;

whih is an M -invariant inner produt. Any other inner produt on p is of

the form (X; Y )

�

= h�X; Y i with � : p ! p positive-de�nite with respet

to h�; �i. Furthermore, (�; �)

�

is M -invariant if and only if the elements of

the standard basis

p

�1 (E

jk

+ E

kj

), E

jk

� E

kj

are eigenvetors of �. Thus

� (E

jk

) = �

jk

E

jk

with �

jk

> 0 and �

kj

= �

jk

, and

(X; Y )

�

= �tr (� (X)Y ) :

We denote by ds

2

�

the invariant metri given by �.

Remark: Consider the n � n symmetri matrix, say A, whose entries are

�

jk

, j 6= k, the eigenvalues of �, and �

jj

= 0. Of ourse, the inner produt
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depends only on the entries A. Furthermore, � (X) = A ÆX where Æ stands

for the Hadamard produt of two n � n matries. Therefore, (X; Y )

�

=

�tr ((A ÆX)Y ). In the sequel we also denote by � the matrix A.

The inner produt (�; �)

�

admits a natural extension to a symmetri bilin-

ear form on the omplexi�ation V of p. We use the same notation (�; �)

�

for

this bilinear form as well as for the orresponding omplexi�ed map �. Here

the two-dimensional real eigenspae p

jk

of �, whose basis is

p

�1 (E

jk

+ E

kj

),

E

jk

�E

kj

, extends to omplex spaes having basis E

jk

and E

kj

, respetively.

A speial lass of invariant inner produts is given by those � satisfying

�

ij

+ �

jk

= �

ik

(3)

for all j between i and k, or equivalently satisfying the relation

�

ij

=

j�1

X

k=i

�

k;k+1

:

In this ase � is de�ned by an adjoint operation as follows: Consider the real

diagonal matrix

H

�

= diagf�

1

; : : : ; �

n

g (4)

whose eigenvalues are de�ned (up to an additive onstant) by the onditions

�

i

� �

i+1

= �

i;i+1

, i = 1; : : : ; n � 1. Then the ation of � on the upper

triangular matries is given by

� (E

jk

) = ad (H

�

) (E

jk

) j < k

if � satisfy the onditions (3). Analogously, � = �ad (H

�

) on the lower tri-

angular matries. In view of these relations a metri satisfying the equalities

(3) is alled of adjoint type.

Now, let J and ds

2

�

be an invariant almost omplex struture and a metri,

respetively. Then it is easily heked that ds

2

�

is Hermitian, that is,

ds

2

�

(JX; JY ) = ds

2

�

(X; Y ) :

Let 
 = 


J;�

stand for the orresponding K�ahler form


 (X; Y ) = ds

2

�

(X; JY ) = �tr (� (X)J (Y )) :
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This form is also invariant under U (n). Relying on this invariane its exterior

di�erential is easily alulated from the standard formula: If X; Y; Z 2 p are

regarded as vetor �elds in F (n) then d
 at the origin is given by

�

1

3

d
 (X; Y; Z) = 
 ([X; Y ℄; Z) + 
 ([X;Z℄; Y )� 
 ([Y; Z℄; X)

(see [8℄).

For all i = 0; 1; 2; 3 de�ne the operator d


i;3�i

as follows:

1. d


i;3�i

(X; Y; Z) = d
 (X; Y; Z) as long as i of the three matries

X; Y; Z are in V

10

and the remaining are in V

01

;

2. d


i;3�i

(X; Y; Z) = 0 as long as j of the three matries X; Y; Z are in

V

10

and the remaining are in V

01

, with j 6= i.

Sine V

10

and V

01

are orthogonal omplements in V , it is readily seen

that the four operators d


i;3�i

are well de�ned and moreover

d
 = d


30

+ d


21

+ d


12

+ d


03

:

Moreover, by replaing X; Y; Z by X

T

; Y

T

; Z

T

it an be seen that d


30

=

�[d


03

℄

�

and d


12

= �[d


21

℄

�

.

Aording to the annihilation of these forms the triple (F (n) ; J; ds

2

) is

distinguished as follows:

1. (F (n) ; J; ds

2

) is almost K�ahler if d
 = 0. It is K�ahler if furthermore

J is integrable.

2. (F (n) ; J; ds

2

) is (r; s)-sympleti if d


rs

= 0.

The following theorem by Burstall and Salamon [2℄ ensures that a suÆ-

ient ondition for J to be integrable is that d
 = 0.

Theorem 2.1 (F (n) ; J; ds

2

) is an almost K�ahler manifold if and only if it

is a K�ahler manifold.
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3 Cone-free tournaments

Up to isomorphism, there are four distint 4-player tournaments. The two

of them whih ontain a single (direted) 3-yle are alled oned 3-yles.
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�

�
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�

�
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�

�

A

A

A

A

A

A

A

A

A

A

H

H

Eah of them ontains a yle and a winner or a loser.

De�nition 3.1 An n-player tournament T is alled one-free if its restri-

tion to any four verties is never a oned 3-yle.

In this setion we show that the inidene matrix of a one-free tourna-

ment is permutation similar to a stair-shaped matrix of the type shown in

(1). We start by providing a rigorous de�nition of stair-shaped tournaments.

We all a tournament T transitive if it ontains no 3-yle. In this ase,

T is obviously one-free, and is isomorphi to the anonial transitive tour-

nament T

0

for whih the subset E

1

in (2) is E. The inidene matrix of T

0

has a triangular form.

In what follows we shall denote by T=U the restrition of T to U , whih

is an m-player tournament if jU j = m.

De�nition 3.2 A tournament T

0

is alled stair-shaped if there are integers

s; t (with 1 � s � t � n) suh that the axioms below are satis�ed. For all

U � N , with jU j = m < n.

A) T

0

=f1; : : : ; tg is a maximal anonial-transitive subtournament of T

0

;

B) T

0

=fs; : : : ; ng is a maximal anonial-transitive subtournament of T

0

;

C) If (z; x) 2 E

2

then x < s and t < z;

D) if x

0

� x and z � z

0

then (z; x) 2 E

2

implies (z

0

; x

0

) 2 E

2

:

A speial ase of a stair-shaped tournament is when (s; t) = (1; n). In

suh a ase T

0

is a anonial transitive tournament.
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Lemma 3.3 Stair-shaped tournaments are one-free.

Proof: Let T

0

be stair-shaped, and let s; t be the assoiated numbers. If

s = 1 and t = n then T

0

is transitive, hene ontains no oned 3-yles, and

there is nothing to prove. So, we shall assume that 1 < s � t < n and

subsequently, due to the maximality lause in axioms A and B, E

2

in (2) is

not empty. The 3-yles in T

0

are exatly the triples x; y; z 2 N with

x < a � b < z; x < y < z; (z; x) 2 E

2

: (5)

Let U = fx; y; z; wg � N with jU j = 4: Assume that x; y; z form a 3-

yle in T

0

. Due to axiom C, sine x < y < z then the yle arrows are

x! y ! z ! x, and moreover x < s � t < z.

We want to show that T

0

=U is not a oned 3-yle. To this end, we �rst

show that w is not a winner in U . Indeed, if z < w then by axiom B w loses

to z; if y < w < z then by axiom D w loses to y; if x < w < y then by axiom

D w loses to x; and if w < x then by axiom D w loses to z. By a similar

argument, w is not a loser in U either. Thus, T

0

=U is not oned, implying

that T

0

is one-free.

Next we show our entral result on the representation of one-free tour-

naments. It requires the following.

De�nition 3.4 A subtournament T=U of a tournament T = (N;E) is said

to be 1-transitive if T= (U [ fpg) is transitive for all p 2 T .

In partiular, T=U itself must be transitive.

Theorem 3.5 A tournament T is one-free if and only if it is isomorphi

to a stair-shaped tournament T

0

.

Proof: The \if" part is overed by Lemma 3.3. We now prove the \only if"

part. Let T be a one-free n-tournament . If T is transitive, it is isomorphi

to the anonial-transitive tournament, whih is stair-shaped. Thus, we shall

assume that T is not transitive, i.e. T ontains 3-yles.

Let T=U be a maximal 1-transitive subtournament of T . Sine every 2-

player tournament is transitive, m := jU j > 0. Sine T is not transitive,

m < n. By reordering N we obtain a new tournament T

00

, isomorphi to T ,
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suh that T

00

=(U [ fpg) is the anonial-transitive m + 1-player tournament

for all p 2 N .

In partiular, T

00

=U is anonial-transitive. Let s; t 2 N , s � t, be its

winner and loser. De�ne the subsets U

1

= f1; 2; : : : ; tg and U

2

= fs; s +

1; : : : ; ng. It is easy to see that s is a winner in U

2

and t is a loser in U

1

:

We laim that the subtournament T

00

=U

1

is transitive. Indeed, assume

that there exists a yle x; y; z with 1 � x < y < z � t: Neessarily we

have z < t sine t is a loser in U

1

and annot form yles there. But then

T

00

=fx; y; z; tg forms a oned 3-yle, in ontradition to the assumption that

T is one-free.

So, T

00

=U

1

is transitive, and by an analogous argument, T

00

=U

2

is transi-

tive. By a suitable reordering of N , T

00

an be made isomorphi to a new

tournament T

0

, for whih T

0

=U

1

and T

0

=U

2

are anonial-transitive. Note

that this reordering leaves unhanged the set U .

We shall show that T

0

; t; s as onstruted above satisfy axioms A-D,

namely T

0

is stair-shaped.

Let U

0

:= U

1

\ U

2

: The subtournament T

0

=U

0

is transitive. In fat, it is

1-transitive, sine for all p 2 N U

0

[ fpg is a subset of U

1

or U

2

: Moreover,

sine by onstrution U � U

1

\ U

2

, and T=U is a maximal 1-transitive set,

we onlude that

U = U

0

= fs; s+ 1; : : : ; tg:

In fat, T

0

=U

1

is a maximal transitive subtournament of T

0

: Indeed, assume

that U

1

� U

0

1

and T

0

=U

0

1

is transitive. It is easy to see that T

0

=(U

0

1

\ U

2

) is

1-transitive. Sine U � U

0

1

\ U

2

, and T

0

=U is a maximal 1-transitive subset,

we onlude that U

0

1

= U

1

; proving the maximality of T

0

=U

1

.

By a similar argument, T

0

=U

2

is a maximal transitive subtournament of

T

0

: Thus, T

0

satis�es axioms A and B.

In order to verify axiom C, we observe that without loss of generality

every edge of E

2

belongs to a 3-yle. Indeed, all the edges of E

2

without

yle an be indutively inverted without hanging the sets U , U

1

, U

2

and

reduing E

2

.

So, let fx; y; zg be a 3-yle in T , where x < y < z: Sine U

2

is transitive,

we have x < s: Sine U

1

is transitive, we have t < z: Independently of the

loation of y, one of the two statements x; y 2 U

1

or y; z 2 U

2

must hold.

Sine T

0

=U

1

and T

0

=U

2

are anonial-transitive, we onlude that the arrows

in the 3-yle are direted as x! y ! z ! x. Note that only the rightmost

arrow represents an edge in E

2

: Thus, T

0

satis�es axiom C.
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Finally, we verify axiom D. If (z; x) 2 E

2

and z

0

< z, onsider any y 2 U .

Sine x; y; z; z

0

annot be a oned 3-yle, z

0

annot lose to all the others.

Sine z

0

loses to y and z, we must have z

0

! x as desired. Similarly, if x

0

> x

an analogous argument shows that z ! x

0

.

Thus, T

0

is a stair-shaped tournament isomorphi to T .

A natural question related to the above theorem is whether there exists

uniqueness of the stair-shaped struture for a one-free tournament. An

aÆrmative answer of this question would lead to anonial forms for suh

tournaments.

In general, a one-free tournament may have several maximal 1-transitive

subtournaments of di�erent sizes, leading to di�erent, possibly pairwise non-

similar, stair-shaped inidene matries. For instane, the 4-tournament

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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A
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�

�

A

A

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

H

H

1 2

3

4

has the following inidene matries

0

B

B

�

0 + � �

� 0 + +

+ � 0 +

+ � � 0

1

C

C

A

and

0

B

B

�

0 + + �

� 0 + +

� � 0 +

+ � � 0

1

C

C

A

with respet to the orders (1; 2; 3; 4) and (2; 3; 4; 1), respetively. The maxi-

mal 1-transitive subtournaments are f1g, f2g, f3g, f4g as well as f3 ! 4g.

Both inidene matries may show up in the onstrution made in the proof

above. The �rst one appears if one takes f2g as maximal 1-transitive tour-

nament, whereas the seond matrix omes out from f3! 4g.

We do not know whether two maximal 1-transitive tournaments of the

same size neessarily lead to equal stair-shaped inidene matries for a given

tournament. The lak of uniqueness in the stair-shaped representation of a

one-free tournament T may be related to the o-existene of several non-

isomorphi 1-transitive subtournaments for T .
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4 Proof of Theorem 1.1

Reall that a metri is alled (i; 3� i)-sympleti if d


i;3�i

= 0. In this ase,

we also have d


3�i;i

= 0. Theorem 1.1 in the introdution is formulated in

terms of (1; 2)-sympleti metris. A speial ase of this theorem onerns

the standard omplex struture in F (n) and is already known (see Borel [2℄

and [11℄). Denote by J



the orresponding almost omplex struture. Then

in this partiular ase Theorem 1.1 reads:

Proposition 4.1 Let J



standard omplex struture on F (n). Then J



or-

responds to the anonial transitive tournament and � is (1; 2)-sympleti if

and only if it is of adjoint type (see (3)).

We now attak Theorem 1.1 in its full generality. The proof that the on-

dition is suÆient is one of the main results of this paper. Before embarking

on it we outline the neessity proof of [11℄: Let ! =

�

!

ij

�

be the matrix

formed by the Maurer-Cartan form of U (n). The spae of (1; 0)-otangent

vetors at the origin identi�es to p

(1;0)

= spanf!

i|

: i! jg. The key point in

the proof is to ompute d
 using the moving frame method of Cartan. We

�nd a permutation � suh that

d
 =

X

i<j<k

C

�(i)�(j)�(k)

 

�(i)�(j)�(k)

where C

ijk

= �

ij

� �

ik

+ �

jk

,  

ijk

= Im

�

!

ij

^ !

ik

^ !

jk

�

and �nally �

ij

=

"

ij

�

ij

. From this expression for d
 it is not hard to prove that the tournament

must be one-free (see [11℄, Setion 4).

Now, we proeed to the proof of the suÆieny of Theorem 1.1, namely

that there are invariant (1; 2)-sympleti metris if the tournament is one-

free. First we alulate the onditions on J and � to be (1; 2)-sympleti.

Using the formulas

[E

ij

; E

rs

℄ = Æ

jr

E

is

� Æ

si

E

rj

tr (E

ij

E

rs

) = Æ

is

Æ

jr

a straighforward omputation shows that d
 (E

ii

0

; E

jj

0

; E

kk

0

) = �3

p

�1��

where

� = Æ

ij

0

Æ

jk

0

Æ

ki

0

� Æ

ik

0

Æ

kj

0

Æ

ji

0

and

� = "

ii

0

�

ii

0

+ "

jj

0

�

jj

0

+ "

kk

0

�

kk

0

:
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The expression for � shows that it is nonzero only when i

0

= k, j

0

= i, k

0

= j

or i

0

= j, j

0

= k, k

0

= i. Hene d
 is ompletely determined by its values in

the triples

(E

ij

; E

jk

; E

ki

) and (E

ik

; E

kj

; E

ji

) ; (6)

given by the triples fi; j; kg. Note that these sets are transposed to eah

other so that if one of them ontains a vetor in V

10

then the other on-

tains a vetor in V

01

. Let us say that the triple fi; j; kg is of type f3; 0g if

one of the orresponding sets (6) is ontained in V

10

. The triple is of type

f1; 2g otherwise. The proof of the following lemma is immediate from the

de�nitions.

Lemma 4.2 The triple fi; j; kg is of type f3; 0g if and only if the restrition

to fi; j; kg of the tournament orresponding to J is a yle.

Equivalently, fi; j; kg is of type f1; 2g if and only if the tournament is

transitive in fi; j; kg.

Therefore, in order to hek that an invariant metri � is (1; 2)-sympleti,

it is enough to ompute d
 in one set of vetors (6), only for the transitive

subtournaments fi; j; kg.

Proposition 4.3 The invariant metri � is (1; 2)-sympleti if and only if

for all transitive subtournaments T

3

= fi; j; kg the following holds

�

ik

= �

ij

+ �

jk

(7)

where i is the winner of T

3

while k is the loser.

Proof: For �xing ideas let us write T

3

= fa; b; g with a < b < . From the

omputations performed we have d
 (E

ab

; E

b

; E

a

) =

p

�1�� with

� = "

ab

�

ab

+ "

b

�

b

+ "

a

�

a

: (8)

In order to have the values of "

rs

, we must run through the six transitive

tournaments having verties (a; b; ). Below we list the signs of ("

ab

; "

b

; "

a

)

with the winners (w) and losers (l) for eah transitive tournament:

1. (+;+;�), w = a, l = .

2. (+;�;�), w = a, l = b.

13



3. (+;�;+), w = , l = b.

4. (�;+;�), w = b, l = .

5. (�;+;+), w = b, l = a.

6. (�;�;+), w = , l = a.

By a diret inspetion at these tournaments we see that in the right hand

side of (8), �

wl

appears with a sign di�erent from the other terms. Therefore,

� = 0 if and only if �

ik

= �

ij

+�

jk

with w = i and l = k. Now the statement

follows by Lemma 4.2.

Our entral result gives an n-parameter desription for all the (1; 2)-

sympleti metris on F (n). We only over the non-transitive ase, given

that the transitive ase is overed by Proposition 4.1.

Theorem 4.4 Let " be the inidene matrix of a given omplex struture J

on F (n). Assume that " is stair-shaped and not anonial-transitive. Then

� orresponds to a (1; 2)-sympleti metri on (F (n) ; J) if and only if there

are n positive values �

1

through �

n

suh that for all i < j:

(i) �

ij

=

P

j�1

k=i

�

k

if "

ij

= 1, and

(ii) �

ij

= �

n

+

P

i

k=1

�

k

+

P

n�1

k=j

�

k

, otherwise. Equivalently,

�

ij

= q �

j�1

X

k=i+1

�

k

where q =

P

n

k=1

�

n

.

Proof: Our starting point is Proposition 4.3. Dividing N into three subsets:

f1; : : : ; s�1g, fs; : : : ; tg, and ft+1; : : : ; ng, we see that eah triple X = E

ij

,

Y = E

jk

, Z = E

ki

of basi matries may be loated in one of nine retangular

regions. The requirement X; Y 2 V

10

and Z 2 V

01

redues the number of

ases to the following (see (1)):

1. i < j < k < s;

2. i < j < s � k � t;

14



3. i < s � j < k � t;

4. i < j � s � t < k;

5. i < s � j � t < k;

6. i < s � t < j < k;

7. s � i < j < k � t;

8. s � i < j � t < k;

9. s � i � t < j < k;

10. t < i < j < k;

11. k < s � t < i < j;

12. j < k < s � t < i.

It an be seen that (i) is equivalent to the totality of onditions on � whih

emanate from ases 1-10, while (ii) emanates equally from ases 11 and 12.

The suÆieny of the ondition stated in Theorem 1.1 now follows as an

immediate orollary of Theorem 4.4.

Remark: Any metri � arising in the above theorem deomposes as � =

�

1

+ �

2

, where �

1

orresponds to the entries f(i; j) : i < j; "

ij

= +1g and

�

2

to region where "

ij

= �1, i < j. The entries �

ij

of both �

1

and �

2

are

eigenvalues of ad (H) for some diagonal H. For �

1

take H = H

�

as in (4)

while for �

2

take H = H

�

2

with

H

�

2

= diagf�

1

; : : : ; �

n

g

with �

n

� �

1

= �

n

and �

i+1

� �

i

= ��

i;i+1

if i = 1; : : : ; s or i = t; : : : ; n� 1.

Therefore the (1; 2)-sympleti metris are ombinations of metris of adjoint

type, restrited to the proper regions.

Is is lear that the possible (1; 2)-sympleti metris � built in Theorem

4.4 annot have all entries �

ij

= 1 if n � 4. As a onsequene our theorem

provides an independent proof of the following result by Wolf and Gray.

Corollary 4.5 The Cartan-Killing metri on F (n) is not (1; 2)-sympleti

for any J if n � 4.
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Proof: In fat, the Cartan-Killing metri is given by � = (�

ij

) with �

ij

= 1

if i 6= j.

Remark: Notie that for invariant forms the annihilation of both d


30

and

d
 are equivalent to the nonexistene of yles in the orresponding tourna-

ment. Therefore 
 is (3; 0) (or (0; 3)) sympleti if and only if it is K�ahler.

5 Partial ag manifolds

Let F = F

N

(n

1

; : : : ; n

k

) denote the manifold of generalized ags of sub-

spaes of C

n

viewed as a homogeneous spae as U (N) =U (n

1

)�� � ��U (n

k

),

where n

1

+ � � � + n

k

= N . Its tangent spae at the origin identi�es with

a subspae p of the Lie algebra u (N), whih omplements the Lie algebra

u (n

1

)�� � ��u (n

k

) of the isotropy group. We an easily work with this appar-

ently more general situation like in the full ag manifold ase. We write the

subspae of zero-diagonal omplex matries in bloks aording to the parti-

tion determined by n

1

; : : : ; n

k

. Let V

ij

be the subspae having nonzero blok

only in the position ij and put V =

L

ij

V

ij

, whih is the omplexi�ation of

p.

An invariant almost omplex struture J : p ! p is given by multipli-

ation by �

p

�1 on eah blok. To suh a struture we an assoiate, in

the same way, a k-player tournament T

J

as follows. Put J (A

ij

) =

�

A

0

ij

�

and for i < j hoose the orientation i ! j if A

0

ij

=

p

�1A

ij

and i  j if

A

0

ij

= �

p

�1A

ij

.

Analogous to the full ag manifold, an invariant metri is determined by

its value at the origin, whih is of the form (X; Y )

�

= h�X; Y i with � : p! p

positive-de�nite with respet to the Cartan-Killing metri h�; �i. Again � is

multipliation by �

ij

on eah V

ij

and hene is given by a k � k matrix (�

�j

)

whih is also denoted by �.

By working with the blok deomposition of matries the study of the gen-

eralized ag manifold F

N

(n

1

; : : : ; n

k

) redues to the understanding of F (k).

In partiular, F (2) odi�es any Grassmannian of n

1

subspaes F

N

(n

1

; N � n

1

).

We note in passing that the Grassmannians are symmetri spaes as happens

to F (2) = C P

1

(with the Fubini-Study metri), the only of the full ag man-

ifolds that is a symmetri spae.
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6 Paraboli invariant almost omplex stru-

tures

The anonial paraboli tournament T

P

is de�ned by the inidene matrix

 = (

ij

) given by



ij

=

�

�1 if ji� jj is odd

+1 if ji� jj is even.

(9)

A tournament is alled paraboli if it is equivalent to T

P

. Similarly an invari-

ant almost omplex struture is paraboli if this happens to its tournament.

It is easy to hek that the anonial paraboli tournament is one-free.

In fat, a 4-player subtournament of T

P

has nodes a < b <  < d whih are

joined by the following rules: Take i < j. Then i ! j if i � j is even and

i j if i� j is even.

Aording to the parity value of a; b; ; d one gets up to 16 distint 4-

player subtournaments, some of whih may be pairwise similar. We leave

to the reader the amusement of heking that none of these tournaments is

a one. Therefore T

P

is one-free. (Alternatively, in [11℄ (1; 2)-sympleti

metris for paraboli J was exhibited. Hene the one-free property of T

P

follows from Theorem 1.1.)

We propose here to �nd a stair-shaped paraboli tournaments. Suh a

tournament has an inidene matrix of the form

" =

0

�

t

a

+ �

u

� t

b

+

�

l

� t



1

A

(10)

where a + b +  = n and t

k

stands for the anonial transitive k-player

tournament. By the onstrution in Theorem 3.5, b is the size of a maximal

1-transitive tournament. Our method is based in the following remarks:

1. Let Æ and wÆw

�1

be the inidene matrix of two equivalent tourna-

ments, where w is a permutation matrix. Let v

Æ

=

�

v

Æ

1

; : : : ; v

Æ

n

�

be the

row sum vetor of Æ:

v

Æ

j

=

n

X

k=1

Æ

jk

:

Clearly, v

Æ

= Æe, where e = (1; : : : ; 1). Then the entries of v

wÆw

�1

are

obtained form v

Æ

by the permutation w. In fat, it is lear that v

Æ

= Æe,
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where e = (1; : : : ; 1). Hene,

v

wÆw

�1

= wÆw

�1

e = w (Æe) :

2. The sum of the entries of the olumn a+ j, 1 � j � b, of the matrix "

in (10) is

a� b� + 2 (j � 1) + 1: (11)

Now, the entries of the olumns of the anonial paraboli tournament

add up to 0 if n is odd, and to �1 if n is even. Hene, the expression in (11)

ensures that, for a stair-shaped paraboli ", we must have b = 1 if n is odd

and b = 1 or 2 if n is even.

Lemma 6.1 If n is even then the stair-shaped " has b = 2.

Proof: As mentioned above, b is the number of elements in a 1-maximal

subtournament of T

P

. Hene, it is enough to exhibit suh a tournament

having two elements. This is given by f1; ng. In fat in T

P

the following

3-tournaments hold, for any even e < n and odd o > 1:

1  e

- #

n

1 ! o

- "

n

These tournaments are transitive, showing that f1; ng is 1-transitive.

Now, we an desribe stair-shaped paraboli tournaments.

Proposition 6.2 Given the paraboli tournament T

P

put n = 2k + 1 if n is

odd and n = 2 (k + 1) if n is even. Order f1; : : : ; ng as follows:

1. f2; 4; : : : ; n� 1; 1; 3; : : : ; n� 2; ng if n is odd.

2. f2; 4; : : : ; n� 2; n; 1; 3; : : : ; n� 1g if n is even.

In these orderings T

P

has the following stair-shaped inidene matries

" =

0

�

t

k

+ U

� Æ +

L � t

k

1

A

:

Here Æ = (0)

1�1

if n = 2k + 1 and Æ =

�

0 1

�1 0

�

if n = 2 (k + 1). Also,

U = (U

ij

)

k�k

is U

ij

= +1 if i > j and �1 otherwise, and L = �U

T

.
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Proof: The hoie of the orderings was made after the onstrution of T

0

in the proof of Theorem 3.5. Here we took as maximal 1-transitive tourna-

ments f1g for n odd and fn! 1g for n even. Then the even numbers are the

winners of 1 in the �rst ase and of n in the seond. In both ases the odd

numbers are the losers of 1. It is straighforward to hek that the inidene

matries are as stated.

One we have the permutation realizing the stair-shaped equivalene the

n-th parameter family of invariant (1; 2)-sympleti is readily obtained from

Theorem 4.4. Therefore we an reover Theorem 3.2 of [11℄ and get the in-

variant (1; 2)-sympleti metris for the paraboli almost omplex strutures.

In order to write down these metris we onsider the permutations leading

to the orderings of Proposition 6.2:

�

o

(i) =

�

2i if 1 � i � k

2 (i� k)� 1 if k + 1 � i � n

for n = 2k + 1 and

�

e

(i) =

�

2i if 1 � i � k

2 (i� k)� 1 if k + 1 � i � n

for n = 2k.

Theorem 6.3 Let J be the anonial paraboli invariant almost omplex

struture in F (n). Then the invariant (1; 2)-sympleti metris � = (�

ij

)

are given by n parameters a

1

; : : : ; a

n

as follows: Given i < j,

�

�(i)�(j)

=

�

a

i

+ � � �+ a

j�1

if ji� jj � k + 1

a

j

+ � � �+ a

n

+ � � �+ a

i

if ji� jj > k + 1

where � = �

o

if n = 2k + 1 and � = �

e

if n = 2k.
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