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Abstra
t

It has been re
ently shown by Mo and Negreiros [11℄ that a ne
es-

sary 
ondition for an invariant almost-
omplex stru
ture on the 
om-

plex full 
ag manifold F (n) to admit a (1; 2)-symple
ti
 invariant met-

ri
 is that its asso
iated tournament is 
one-free.

In this paper we �nd a 
anoni
al stair-shaped form for su
h tour-

naments and apply it to show that the 
ondition is also suÆ
ient. In

doing this we des
ribe all the asso
iated (1; 2)-symple
ti
 metri
s, and

get, in parti
ular, a di�erent and self-
ontained proof of a theorem of

Gray and Wolf [17℄ asserting that the Cartan-Killing metri
 on F (n)

is not (1; 2)-symple
ti
 for n > 3.
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1 Introdu
tion

Denote by F (n) the usual manifold of full 
ags of subspa
es of C

n

and endow

it with an almost-
omplex stru
ture J and a Riemannian metri
 ds

2

. Let

M

2

be an arbitrary 
losed Riemann surfa
e. A theorem due to Li
hnerowi
z

[9℄, proved independently by Gray [6℄, states: \If � : M

2

! (F (n) ; J; ds

2

)

is J-holomorphi
 and ds

2

is (1; 2)-symple
ti
 with respe
t to J , then � is

harmoni
". The importan
e of this theorem rests in the fa
t that it furnishes

solutions of the se
ond order Euler-Lagrange partial di�erential equations,

satis�ed by the harmoni
 maps from the solutions of �rst order partial dif-

ferential equations, the Cau
hy-Riemann equations. This theorem drives the

attention to the problem of understanding the (1; 2)-symple
ti
 metri
s on

the 
ag manifolds. Apart from the relation to harmoni
 maps the (1; 2)-

symple
ti
 metri
s appear in twistor theory, as shown, for example, in Eells

and Salamon [5℄.

Our approa
h to this problem is based on a method derived by Burstall

and Salamon [4℄, relating harmoni
 maps on 
ag manifolds to tournament

theory. It is well known that an invariant almost-
omplex stru
ture J on

the 
ag manifold F (n) is de�ned by means of a skew-hermitian sign matrix.

This matrix 
an be 
onsidered as the in
iden
e matrix of an n-player tourna-

ment T

J

, providing a one-to-one 
orresponden
e between the set of invariant

almost-
omplex stru
tures on F (n) and the tournaments with n players. Re-

lying on this natural asso
iation the method 
onsists in studying properties

of J through the 
ombinatori
s of T

J

.

Re
ently Mo and Negreiros [10℄, [11℄ singled out the 
lass of the so-
alled


one-free tournaments in relation to the (1; 2)-symple
ti
 metri
 problem.

Namely, it was proved in [11℄ that a ne
essary 
ondition for J to admit an

invariant (1; 2)-symple
ti
 metri
 ds

2

is that the tournament T

J

is 
one-free,

a property whi
h involves the 4-subtournaments of T

J

(see De�nition 3.1

below for a pre
ise statement). In this paper we prove that this 
ondition is

also suÆ
ient, thus arriving at the following 
hara
terization.

Theorem 1.1 (F (n) ; J) admits an invariant (1; 2)-symple
ti
 metri
 � if

and only if the asso
iated tournament T

J

is 
one-free.
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The suÆ
ien
y of the 
ondition was studied by Paredes [14℄, [15℄, where an

aÆrmative answer was obtained for 
ertain 
lasses of tournaments, in
luding

all tournaments with 5 � n � 7 players. For n = 3 and 4 this result was

proved in [11℄. In Se
tion 4 we o�er a proof for arbitrary n (see Theorem

4.4).

In addition, given J 
onsistent with Theorem 1.1), we exhibit an expli
it

n-dimensional parametrization for all the possible invariant (1; 2)-symple
ti


metri
s for (F (n) ; J).

Our approa
h is based on a 
on
rete 
hara
terization of the stru
ture

of 
one-free tournaments. Spe
i�
ally, in Theorem 3.5 it is shown that a

tournament T is 
one-free if and only if its in
iden
e matrix is permutation-

similar to a stair-shaped in
iden
e matrix of the following type

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.

.

.

.

: : :

: : :

�

�

�

+

+

+

�

�

�

+

+

+

(1)

The problem dis
ussed here has a natural extension to the framework of

generalized 
ag manifolds asso
iated to arbitrary 
omplex semi-simple Lie

groups. Similar results 
an be proved in this more general set up, and will

appear elsewhere.

2 Preliminaries

2.1 Tournaments

We de�ne an n-player tournament as a 
omplete dire
ted graph T = (N;E)

(no loops or multiple edges) where N is an ordered set and jN j = n. For


on
reteness we shall always assume that N = f1; : : : ; ng. Two tournaments

are isomorphi
 if one is obtained from the other via a rearrangement of N .

See Moon [12℄ for further details.

With ea
h tournament T we assign its in
iden
e matrix " = "

T

, whi
h

is a real skew-symmetri
 matrix with all o�-diagonal entries �1 (see [12℄).
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Tournament isomorphism amounts to permutation similarity between the

asso
iated in
iden
e matri
es.

If (a; b) 2 E we say that a wins against b and set "

ab

= 1, "

ba

= �1. By

our 
onventions, T would then 
ontain an arrow pointing from vertex a into

vertex b.

We de�ne the valen
y of a vertex a of T as the number of its wins. We

also de�ne, in a stri
t sense, a winner in T as a (unique) vertex with valen
y

n�1, and a loser as a (unique) vertex with valen
y 0. Not every tournament

has a winner or a loser; however, when it exists, it is not part of any 
y
le.

The des
ending sequen
e of valen
ies of T is 
alled the s
ore ve
tor asso-


iated with T . Every non-in
reasing sequen
e of n non-negative integers with

total sum

�

n

2

�

is a s
ore ve
tor for some n-player tournament T . However,

T need not be uniquely determined by its s
ore ve
tor.

Sin
e T is 
omplete, jEj = n(n � 1)=2. Moreover, E splits as a disjoint

union

E = E

1

[ E

2

; E

1

= f(a; b) 2 E : a < bg; E

2

= f(a; b) 2 E : a > bg: (2)

2.2 Flag manifolds

In this se
tion we dis
uss the 
orresponden
e between invariant almost 
om-

plex stru
tures on the full 
ag manifold and tournaments or, equivalently,

their in
iden
e matri
es whi
h are real skew-symmetri
 matri
es with o�-

diagonal entries in f�1g.

Consider the 
omplex full 
ag manifold

F (n) = f(V

1

; : : : ; V

n

) : V

j

� V

j+1

; dimV

j

= jg:

The natural a
tion of the unitary group U (n) on F (n) is transitive, turning

the 
ag manifold into the homogeneous spa
e U (n) =M where M is any

maximal torus of U (n), i.e., M

�

=

U (1)� � � � � U (1).

Let u (n) be the Lie algebra of skew-hermitian matri
es. It de
omposes

as

u (n) = p� u (1)� � � � � u (1)

where p � u (n) is the subspa
e of zero-diagonal matri
es. Let E

jk

be the


anoni
al basis matrix E

jk

= (a

rs

) with a

rs

= 1 if (r; s) = (j; k) and zero

otherwise. Put

p

jk

= (CE

jk

+ C E

kj

) \ u (n) :
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Of 
ourse, p =

L

j 6=k

p

jk

.

In order to give an invariant almost 
omplex stru
ture on F (n) it is

enough to present J : p! p, J

2

= �1, whi
h 
ommutes with the adjoint rep-

resentation of the torusM on p. This 
ondition implies that J (p

jk

) = p

jk

for

all j 6= k, whi
h in turn guarantees that J (A) = A

0

with A

0

jk

= "

jk

p

�1A

jk

su
h that "

jk

= �1 and satis�es "

kj

= �"

jk

. Thus an invariant almost 
om-

plex stru
ture is 
ompletely determined by a skew-symmetri
 matrix ("

jk

),

with o�-diagonal entries in f�1g.

For the 
omputations we work in the 
omplexi�
ation V of p. It is easy to


he
k that V is the subspa
e of 
omplex matri
es with zero-diagonal entries.

It de
omposes as V =

L

j 6=k

V

jk

, where V

jk

= span

C

fE

jk

g.

An almost 
omplex stru
ture J on p extends to a C -linear operator on V ,

also denoted by J . Its eigenvalues are �

p

�1. If J is given by the in
iden
e

matrix "

jk

then the 
orresponding eigenspa
es are

V

10

=

M

fV

jk

: "

jk

= 1g for

p

�1

and

V

01

=

M

fV

jk

: "

jk

= �1g for �

p

�1:

Let ds

2

be an U (n)-invariant Riemannian metri
 on F (n). Like the in-

variant almost 
omplex stru
tures, ds

2

is 
ompletely determined by its value

at the origin, that is, by an inner produ
t (�; �) in p, whi
h is invariant under

the adjoint a
tion of M . To des
ribe these inner produ
ts, start with the

Cartan-Killing form on p:

hX; Y i = �tr (XY ) ;

whi
h is an M -invariant inner produ
t. Any other inner produ
t on p is of

the form (X; Y )

�

= h�X; Y i with � : p ! p positive-de�nite with respe
t

to h�; �i. Furthermore, (�; �)

�

is M -invariant if and only if the elements of

the standard basis

p

�1 (E

jk

+ E

kj

), E

jk

� E

kj

are eigenve
tors of �. Thus

� (E

jk

) = �

jk

E

jk

with �

jk

> 0 and �

kj

= �

jk

, and

(X; Y )

�

= �tr (� (X)Y ) :

We denote by ds

2

�

the invariant metri
 given by �.

Remark: Consider the n � n symmetri
 matrix, say A, whose entries are

�

jk

, j 6= k, the eigenvalues of �, and �

jj

= 0. Of 
ourse, the inner produ
t
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depends only on the entries A. Furthermore, � (X) = A ÆX where Æ stands

for the Hadamard produ
t of two n � n matri
es. Therefore, (X; Y )

�

=

�tr ((A ÆX)Y ). In the sequel we also denote by � the matrix A.

The inner produ
t (�; �)

�

admits a natural extension to a symmetri
 bilin-

ear form on the 
omplexi�
ation V of p. We use the same notation (�; �)

�

for

this bilinear form as well as for the 
orresponding 
omplexi�ed map �. Here

the two-dimensional real eigenspa
e p

jk

of �, whose basis is

p

�1 (E

jk

+ E

kj

),

E

jk

�E

kj

, extends to 
omplex spa
es having basis E

jk

and E

kj

, respe
tively.

A spe
ial 
lass of invariant inner produ
ts is given by those � satisfying

�

ij

+ �

jk

= �

ik

(3)

for all j between i and k, or equivalently satisfying the relation

�

ij

=

j�1

X

k=i

�

k;k+1

:

In this 
ase � is de�ned by an adjoint operation as follows: Consider the real

diagonal matrix

H

�

= diagf�

1

; : : : ; �

n

g (4)

whose eigenvalues are de�ned (up to an additive 
onstant) by the 
onditions

�

i

� �

i+1

= �

i;i+1

, i = 1; : : : ; n � 1. Then the a
tion of � on the upper

triangular matri
es is given by

� (E

jk

) = ad (H

�

) (E

jk

) j < k

if � satisfy the 
onditions (3). Analogously, � = �ad (H

�

) on the lower tri-

angular matri
es. In view of these relations a metri
 satisfying the equalities

(3) is 
alled of adjoint type.

Now, let J and ds

2

�

be an invariant almost 
omplex stru
ture and a metri
,

respe
tively. Then it is easily 
he
ked that ds

2

�

is Hermitian, that is,

ds

2

�

(JX; JY ) = ds

2

�

(X; Y ) :

Let 
 = 


J;�

stand for the 
orresponding K�ahler form


 (X; Y ) = ds

2

�

(X; JY ) = �tr (� (X)J (Y )) :
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This form is also invariant under U (n). Relying on this invarian
e its exterior

di�erential is easily 
al
ulated from the standard formula: If X; Y; Z 2 p are

regarded as ve
tor �elds in F (n) then d
 at the origin is given by

�

1

3

d
 (X; Y; Z) = 
 ([X; Y ℄; Z) + 
 ([X;Z℄; Y )� 
 ([Y; Z℄; X)

(see [8℄).

For all i = 0; 1; 2; 3 de�ne the operator d


i;3�i

as follows:

1. d


i;3�i

(X; Y; Z) = d
 (X; Y; Z) as long as i of the three matri
es

X; Y; Z are in V

10

and the remaining are in V

01

;

2. d


i;3�i

(X; Y; Z) = 0 as long as j of the three matri
es X; Y; Z are in

V

10

and the remaining are in V

01

, with j 6= i.

Sin
e V

10

and V

01

are orthogonal 
omplements in V , it is readily seen

that the four operators d


i;3�i

are well de�ned and moreover

d
 = d


30

+ d


21

+ d


12

+ d


03

:

Moreover, by repla
ing X; Y; Z by X

T

; Y

T

; Z

T

it 
an be seen that d


30

=

�[d


03

℄

�

and d


12

= �[d


21

℄

�

.

A

ording to the annihilation of these forms the triple (F (n) ; J; ds

2

) is

distinguished as follows:

1. (F (n) ; J; ds

2

) is almost K�ahler if d
 = 0. It is K�ahler if furthermore

J is integrable.

2. (F (n) ; J; ds

2

) is (r; s)-symple
ti
 if d


rs

= 0.

The following theorem by Burstall and Salamon [2℄ ensures that a suÆ-


ient 
ondition for J to be integrable is that d
 = 0.

Theorem 2.1 (F (n) ; J; ds

2

) is an almost K�ahler manifold if and only if it

is a K�ahler manifold.
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3 Cone-free tournaments

Up to isomorphism, there are four distin
t 4-player tournaments. The two

of them whi
h 
ontain a single (dire
ted) 3-
y
le are 
alled 
oned 3-
y
les.

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

H

H

�

�

A

A

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

H

H

�

�

A

A

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

H

H

Ea
h of them 
ontains a 
y
le and a winner or a loser.

De�nition 3.1 An n-player tournament T is 
alled 
one-free if its restri
-

tion to any four verti
es is never a 
oned 3-
y
le.

In this se
tion we show that the in
iden
e matrix of a 
one-free tourna-

ment is permutation similar to a stair-shaped matrix of the type shown in

(1). We start by providing a rigorous de�nition of stair-shaped tournaments.

We 
all a tournament T transitive if it 
ontains no 3-
y
le. In this 
ase,

T is obviously 
one-free, and is isomorphi
 to the 
anoni
al transitive tour-

nament T

0

for whi
h the subset E

1

in (2) is E. The in
iden
e matrix of T

0

has a triangular form.

In what follows we shall denote by T=U the restri
tion of T to U , whi
h

is an m-player tournament if jU j = m.

De�nition 3.2 A tournament T

0

is 
alled stair-shaped if there are integers

s; t (with 1 � s � t � n) su
h that the axioms below are satis�ed. For all

U � N , with jU j = m < n.

A) T

0

=f1; : : : ; tg is a maximal 
anoni
al-transitive subtournament of T

0

;

B) T

0

=fs; : : : ; ng is a maximal 
anoni
al-transitive subtournament of T

0

;

C) If (z; x) 2 E

2

then x < s and t < z;

D) if x

0

� x and z � z

0

then (z; x) 2 E

2

implies (z

0

; x

0

) 2 E

2

:

A spe
ial 
ase of a stair-shaped tournament is when (s; t) = (1; n). In

su
h a 
ase T

0

is a 
anoni
al transitive tournament.

8



Lemma 3.3 Stair-shaped tournaments are 
one-free.

Proof: Let T

0

be stair-shaped, and let s; t be the asso
iated numbers. If

s = 1 and t = n then T

0

is transitive, hen
e 
ontains no 
oned 3-
y
les, and

there is nothing to prove. So, we shall assume that 1 < s � t < n and

subsequently, due to the maximality 
lause in axioms A and B, E

2

in (2) is

not empty. The 3-
y
les in T

0

are exa
tly the triples x; y; z 2 N with

x < a � b < z; x < y < z; (z; x) 2 E

2

: (5)

Let U = fx; y; z; wg � N with jU j = 4: Assume that x; y; z form a 3-


y
le in T

0

. Due to axiom C, sin
e x < y < z then the 
y
le arrows are

x! y ! z ! x, and moreover x < s � t < z.

We want to show that T

0

=U is not a 
oned 3-
y
le. To this end, we �rst

show that w is not a winner in U . Indeed, if z < w then by axiom B w loses

to z; if y < w < z then by axiom D w loses to y; if x < w < y then by axiom

D w loses to x; and if w < x then by axiom D w loses to z. By a similar

argument, w is not a loser in U either. Thus, T

0

=U is not 
oned, implying

that T

0

is 
one-free.

Next we show our 
entral result on the representation of 
one-free tour-

naments. It requires the following.

De�nition 3.4 A subtournament T=U of a tournament T = (N;E) is said

to be 1-transitive if T= (U [ fpg) is transitive for all p 2 T .

In parti
ular, T=U itself must be transitive.

Theorem 3.5 A tournament T is 
one-free if and only if it is isomorphi


to a stair-shaped tournament T

0

.

Proof: The \if" part is 
overed by Lemma 3.3. We now prove the \only if"

part. Let T be a 
one-free n-tournament . If T is transitive, it is isomorphi


to the 
anoni
al-transitive tournament, whi
h is stair-shaped. Thus, we shall

assume that T is not transitive, i.e. T 
ontains 3-
y
les.

Let T=U be a maximal 1-transitive subtournament of T . Sin
e every 2-

player tournament is transitive, m := jU j > 0. Sin
e T is not transitive,

m < n. By reordering N we obtain a new tournament T

00

, isomorphi
 to T ,

9



su
h that T

00

=(U [ fpg) is the 
anoni
al-transitive m + 1-player tournament

for all p 2 N .

In parti
ular, T

00

=U is 
anoni
al-transitive. Let s; t 2 N , s � t, be its

winner and loser. De�ne the subsets U

1

= f1; 2; : : : ; tg and U

2

= fs; s +

1; : : : ; ng. It is easy to see that s is a winner in U

2

and t is a loser in U

1

:

We 
laim that the subtournament T

00

=U

1

is transitive. Indeed, assume

that there exists a 
y
le x; y; z with 1 � x < y < z � t: Ne
essarily we

have z < t sin
e t is a loser in U

1

and 
annot form 
y
les there. But then

T

00

=fx; y; z; tg forms a 
oned 3-
y
le, in 
ontradi
tion to the assumption that

T is 
one-free.

So, T

00

=U

1

is transitive, and by an analogous argument, T

00

=U

2

is transi-

tive. By a suitable reordering of N , T

00


an be made isomorphi
 to a new

tournament T

0

, for whi
h T

0

=U

1

and T

0

=U

2

are 
anoni
al-transitive. Note

that this reordering leaves un
hanged the set U .

We shall show that T

0

; t; s as 
onstru
ted above satisfy axioms A-D,

namely T

0

is stair-shaped.

Let U

0

:= U

1

\ U

2

: The subtournament T

0

=U

0

is transitive. In fa
t, it is

1-transitive, sin
e for all p 2 N U

0

[ fpg is a subset of U

1

or U

2

: Moreover,

sin
e by 
onstru
tion U � U

1

\ U

2

, and T=U is a maximal 1-transitive set,

we 
on
lude that

U = U

0

= fs; s+ 1; : : : ; tg:

In fa
t, T

0

=U

1

is a maximal transitive subtournament of T

0

: Indeed, assume

that U

1

� U

0

1

and T

0

=U

0

1

is transitive. It is easy to see that T

0

=(U

0

1

\ U

2

) is

1-transitive. Sin
e U � U

0

1

\ U

2

, and T

0

=U is a maximal 1-transitive subset,

we 
on
lude that U

0

1

= U

1

; proving the maximality of T

0

=U

1

.

By a similar argument, T

0

=U

2

is a maximal transitive subtournament of

T

0

: Thus, T

0

satis�es axioms A and B.

In order to verify axiom C, we observe that without loss of generality

every edge of E

2

belongs to a 3-
y
le. Indeed, all the edges of E

2

without


y
le 
an be indu
tively inverted without 
hanging the sets U , U

1

, U

2

and

redu
ing E

2

.

So, let fx; y; zg be a 3-
y
le in T , where x < y < z: Sin
e U

2

is transitive,

we have x < s: Sin
e U

1

is transitive, we have t < z: Independently of the

lo
ation of y, one of the two statements x; y 2 U

1

or y; z 2 U

2

must hold.

Sin
e T

0

=U

1

and T

0

=U

2

are 
anoni
al-transitive, we 
on
lude that the arrows

in the 3-
y
le are dire
ted as x! y ! z ! x. Note that only the rightmost

arrow represents an edge in E

2

: Thus, T

0

satis�es axiom C.

10



Finally, we verify axiom D. If (z; x) 2 E

2

and z

0

< z, 
onsider any y 2 U .

Sin
e x; y; z; z

0


annot be a 
oned 3-
y
le, z

0


annot lose to all the others.

Sin
e z

0

loses to y and z, we must have z

0

! x as desired. Similarly, if x

0

> x

an analogous argument shows that z ! x

0

.

Thus, T

0

is a stair-shaped tournament isomorphi
 to T .

A natural question related to the above theorem is whether there exists

uniqueness of the stair-shaped stru
ture for a 
one-free tournament. An

aÆrmative answer of this question would lead to 
anoni
al forms for su
h

tournaments.

In general, a 
one-free tournament may have several maximal 1-transitive

subtournaments of di�erent sizes, leading to di�erent, possibly pairwise non-

similar, stair-shaped in
iden
e matri
es. For instan
e, the 4-tournament

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

H

H

�

�

A

A

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

H

H

1 2

3

4

has the following in
iden
e matri
es

0

B

B

�

0 + � �

� 0 + +

+ � 0 +

+ � � 0

1

C

C

A

and

0

B

B

�

0 + + �

� 0 + +

� � 0 +

+ � � 0

1

C

C

A

with respe
t to the orders (1; 2; 3; 4) and (2; 3; 4; 1), respe
tively. The maxi-

mal 1-transitive subtournaments are f1g, f2g, f3g, f4g as well as f3 ! 4g.

Both in
iden
e matri
es may show up in the 
onstru
tion made in the proof

above. The �rst one appears if one takes f2g as maximal 1-transitive tour-

nament, whereas the se
ond matrix 
omes out from f3! 4g.

We do not know whether two maximal 1-transitive tournaments of the

same size ne
essarily lead to equal stair-shaped in
iden
e matri
es for a given

tournament. The la
k of uniqueness in the stair-shaped representation of a


one-free tournament T may be related to the 
o-existen
e of several non-

isomorphi
 1-transitive subtournaments for T .
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4 Proof of Theorem 1.1

Re
all that a metri
 is 
alled (i; 3� i)-symple
ti
 if d


i;3�i

= 0. In this 
ase,

we also have d


3�i;i

= 0. Theorem 1.1 in the introdu
tion is formulated in

terms of (1; 2)-symple
ti
 metri
s. A spe
ial 
ase of this theorem 
on
erns

the standard 
omplex stru
ture in F (n) and is already known (see Borel [2℄

and [11℄). Denote by J




the 
orresponding almost 
omplex stru
ture. Then

in this parti
ular 
ase Theorem 1.1 reads:

Proposition 4.1 Let J




standard 
omplex stru
ture on F (n). Then J





or-

responds to the 
anoni
al transitive tournament and � is (1; 2)-symple
ti
 if

and only if it is of adjoint type (see (3)).

We now atta
k Theorem 1.1 in its full generality. The proof that the 
on-

dition is suÆ
ient is one of the main results of this paper. Before embarking

on it we outline the ne
essity proof of [11℄: Let ! =

�

!

ij

�

be the matrix

formed by the Maurer-Cartan form of U (n). The spa
e of (1; 0)-
otangent

ve
tors at the origin identi�es to p

(1;0)

= spanf!

i|

: i! jg. The key point in

the proof is to 
ompute d
 using the moving frame method of Cartan. We

�nd a permutation � su
h that

d
 =

X

i<j<k

C

�(i)�(j)�(k)

 

�(i)�(j)�(k)

where C

ijk

= �

ij

� �

ik

+ �

jk

,  

ijk

= Im

�

!

ij

^ !

ik

^ !

jk

�

and �nally �

ij

=

"

ij

�

ij

. From this expression for d
 it is not hard to prove that the tournament

must be 
one-free (see [11℄, Se
tion 4).

Now, we pro
eed to the proof of the suÆ
ien
y of Theorem 1.1, namely

that there are invariant (1; 2)-symple
ti
 metri
s if the tournament is 
one-

free. First we 
al
ulate the 
onditions on J and � to be (1; 2)-symple
ti
.

Using the formulas

[E

ij

; E

rs

℄ = Æ

jr

E

is

� Æ

si

E

rj

tr (E

ij

E

rs

) = Æ

is

Æ

jr

a straighforward 
omputation shows that d
 (E

ii

0

; E

jj

0

; E

kk

0

) = �3

p

�1��

where

� = Æ

ij

0

Æ

jk

0

Æ

ki

0

� Æ

ik

0

Æ

kj

0

Æ

ji

0

and

� = "

ii

0

�

ii

0

+ "

jj

0

�

jj

0

+ "

kk

0

�

kk

0

:
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The expression for � shows that it is nonzero only when i

0

= k, j

0

= i, k

0

= j

or i

0

= j, j

0

= k, k

0

= i. Hen
e d
 is 
ompletely determined by its values in

the triples

(E

ij

; E

jk

; E

ki

) and (E

ik

; E

kj

; E

ji

) ; (6)

given by the triples fi; j; kg. Note that these sets are transposed to ea
h

other so that if one of them 
ontains a ve
tor in V

10

then the other 
on-

tains a ve
tor in V

01

. Let us say that the triple fi; j; kg is of type f3; 0g if

one of the 
orresponding sets (6) is 
ontained in V

10

. The triple is of type

f1; 2g otherwise. The proof of the following lemma is immediate from the

de�nitions.

Lemma 4.2 The triple fi; j; kg is of type f3; 0g if and only if the restri
tion

to fi; j; kg of the tournament 
orresponding to J is a 
y
le.

Equivalently, fi; j; kg is of type f1; 2g if and only if the tournament is

transitive in fi; j; kg.

Therefore, in order to 
he
k that an invariant metri
 � is (1; 2)-symple
ti
,

it is enough to 
ompute d
 in one set of ve
tors (6), only for the transitive

subtournaments fi; j; kg.

Proposition 4.3 The invariant metri
 � is (1; 2)-symple
ti
 if and only if

for all transitive subtournaments T

3

= fi; j; kg the following holds

�

ik

= �

ij

+ �

jk

(7)

where i is the winner of T

3

while k is the loser.

Proof: For �xing ideas let us write T

3

= fa; b; 
g with a < b < 
. From the


omputations performed we have d
 (E

ab

; E

b


; E


a

) =

p

�1�� with

� = "

ab

�

ab

+ "

b


�

b


+ "


a

�


a

: (8)

In order to have the values of "

rs

, we must run through the six transitive

tournaments having verti
es (a; b; 
). Below we list the signs of ("

ab

; "

b


; "


a

)

with the winners (w) and losers (l) for ea
h transitive tournament:

1. (+;+;�), w = a, l = 
.

2. (+;�;�), w = a, l = b.

13



3. (+;�;+), w = 
, l = b.

4. (�;+;�), w = b, l = 
.

5. (�;+;+), w = b, l = a.

6. (�;�;+), w = 
, l = a.

By a dire
t inspe
tion at these tournaments we see that in the right hand

side of (8), �

wl

appears with a sign di�erent from the other terms. Therefore,

� = 0 if and only if �

ik

= �

ij

+�

jk

with w = i and l = k. Now the statement

follows by Lemma 4.2.

Our 
entral result gives an n-parameter des
ription for all the (1; 2)-

symple
ti
 metri
s on F (n). We only 
over the non-transitive 
ase, given

that the transitive 
ase is 
overed by Proposition 4.1.

Theorem 4.4 Let " be the in
iden
e matrix of a given 
omplex stru
ture J

on F (n). Assume that " is stair-shaped and not 
anoni
al-transitive. Then

� 
orresponds to a (1; 2)-symple
ti
 metri
 on (F (n) ; J) if and only if there

are n positive values �

1

through �

n

su
h that for all i < j:

(i) �

ij

=

P

j�1

k=i

�

k

if "

ij

= 1, and

(ii) �

ij

= �

n

+

P

i

k=1

�

k

+

P

n�1

k=j

�

k

, otherwise. Equivalently,

�

ij

= q �

j�1

X

k=i+1

�

k

where q =

P

n

k=1

�

n

.

Proof: Our starting point is Proposition 4.3. Dividing N into three subsets:

f1; : : : ; s�1g, fs; : : : ; tg, and ft+1; : : : ; ng, we see that ea
h triple X = E

ij

,

Y = E

jk

, Z = E

ki

of basi
 matri
es may be lo
ated in one of nine re
tangular

regions. The requirement X; Y 2 V

10

and Z 2 V

01

redu
es the number of


ases to the following (see (1)):

1. i < j < k < s;

2. i < j < s � k � t;

14



3. i < s � j < k � t;

4. i < j � s � t < k;

5. i < s � j � t < k;

6. i < s � t < j < k;

7. s � i < j < k � t;

8. s � i < j � t < k;

9. s � i � t < j < k;

10. t < i < j < k;

11. k < s � t < i < j;

12. j < k < s � t < i.

It 
an be seen that (i) is equivalent to the totality of 
onditions on � whi
h

emanate from 
ases 1-10, while (ii) emanates equally from 
ases 11 and 12.

The suÆ
ien
y of the 
ondition stated in Theorem 1.1 now follows as an

immediate 
orollary of Theorem 4.4.

Remark: Any metri
 � arising in the above theorem de
omposes as � =

�

1

+ �

2

, where �

1


orresponds to the entries f(i; j) : i < j; "

ij

= +1g and

�

2

to region where "

ij

= �1, i < j. The entries �

ij

of both �

1

and �

2

are

eigenvalues of ad (H) for some diagonal H. For �

1

take H = H

�

as in (4)

while for �

2

take H = H

�

2

with

H

�

2

= diagf�

1

; : : : ; �

n

g

with �

n

� �

1

= �

n

and �

i+1

� �

i

= ��

i;i+1

if i = 1; : : : ; s or i = t; : : : ; n� 1.

Therefore the (1; 2)-symple
ti
 metri
s are 
ombinations of metri
s of adjoint

type, restri
ted to the proper regions.

Is is 
lear that the possible (1; 2)-symple
ti
 metri
s � built in Theorem

4.4 
annot have all entries �

ij

= 1 if n � 4. As a 
onsequen
e our theorem

provides an independent proof of the following result by Wolf and Gray.

Corollary 4.5 The Cartan-Killing metri
 on F (n) is not (1; 2)-symple
ti


for any J if n � 4.
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Proof: In fa
t, the Cartan-Killing metri
 is given by � = (�

ij

) with �

ij

= 1

if i 6= j.

Remark: Noti
e that for invariant forms the annihilation of both d


30

and

d
 are equivalent to the nonexisten
e of 
y
les in the 
orresponding tourna-

ment. Therefore 
 is (3; 0) (or (0; 3)) symple
ti
 if and only if it is K�ahler.

5 Partial 
ag manifolds

Let F = F

N

(n

1

; : : : ; n

k

) denote the manifold of generalized 
ags of sub-

spa
es of C

n

viewed as a homogeneous spa
e as U (N) =U (n

1

)�� � ��U (n

k

),

where n

1

+ � � � + n

k

= N . Its tangent spa
e at the origin identi�es with

a subspa
e p of the Lie algebra u (N), whi
h 
omplements the Lie algebra

u (n

1

)�� � ��u (n

k

) of the isotropy group. We 
an easily work with this appar-

ently more general situation like in the full 
ag manifold 
ase. We write the

subspa
e of zero-diagonal 
omplex matri
es in blo
ks a

ording to the parti-

tion determined by n

1

; : : : ; n

k

. Let V

ij

be the subspa
e having nonzero blo
k

only in the position ij and put V =

L

ij

V

ij

, whi
h is the 
omplexi�
ation of

p.

An invariant almost 
omplex stru
ture J : p ! p is given by multipli-


ation by �

p

�1 on ea
h blo
k. To su
h a stru
ture we 
an asso
iate, in

the same way, a k-player tournament T

J

as follows. Put J (A

ij

) =

�

A

0

ij

�

and for i < j 
hoose the orientation i ! j if A

0

ij

=

p

�1A

ij

and i  j if

A

0

ij

= �

p

�1A

ij

.

Analogous to the full 
ag manifold, an invariant metri
 is determined by

its value at the origin, whi
h is of the form (X; Y )

�

= h�X; Y i with � : p! p

positive-de�nite with respe
t to the Cartan-Killing metri
 h�; �i. Again � is

multipli
ation by �

ij

on ea
h V

ij

and hen
e is given by a k � k matrix (�

�j

)

whi
h is also denoted by �.

By working with the blo
k de
omposition of matri
es the study of the gen-

eralized 
ag manifold F

N

(n

1

; : : : ; n

k

) redu
es to the understanding of F (k).

In parti
ular, F (2) 
odi�es any Grassmannian of n

1

subspa
es F

N

(n

1

; N � n

1

).

We note in passing that the Grassmannians are symmetri
 spa
es as happens

to F (2) = C P

1

(with the Fubini-Study metri
), the only of the full 
ag man-

ifolds that is a symmetri
 spa
e.
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6 Paraboli
 invariant almost 
omplex stru
-

tures

The 
anoni
al paraboli
 tournament T

P

is de�ned by the in
iden
e matrix


 = (


ij

) given by




ij

=

�

�1 if ji� jj is odd

+1 if ji� jj is even.

(9)

A tournament is 
alled paraboli
 if it is equivalent to T

P

. Similarly an invari-

ant almost 
omplex stru
ture is paraboli
 if this happens to its tournament.

It is easy to 
he
k that the 
anoni
al paraboli
 tournament is 
one-free.

In fa
t, a 4-player subtournament of T

P

has nodes a < b < 
 < d whi
h are

joined by the following rules: Take i < j. Then i ! j if i � j is even and

i j if i� j is even.

A

ording to the parity value of a; b; 
; d one gets up to 16 distin
t 4-

player subtournaments, some of whi
h may be pairwise similar. We leave

to the reader the amusement of 
he
king that none of these tournaments is

a 
one. Therefore T

P

is 
one-free. (Alternatively, in [11℄ (1; 2)-symple
ti


metri
s for paraboli
 J was exhibited. Hen
e the 
one-free property of T

P

follows from Theorem 1.1.)

We propose here to �nd a stair-shaped paraboli
 tournaments. Su
h a

tournament has an in
iden
e matrix of the form

" =

0

�


t

a

+ �

u

� 
t

b

+

�

l

� 
t




1

A

(10)

where a + b + 
 = n and 
t

k

stands for the 
anoni
al transitive k-player

tournament. By the 
onstru
tion in Theorem 3.5, b is the size of a maximal

1-transitive tournament. Our method is based in the following remarks:

1. Let Æ and wÆw

�1

be the in
iden
e matrix of two equivalent tourna-

ments, where w is a permutation matrix. Let v

Æ

=

�

v

Æ

1

; : : : ; v

Æ

n

�

be the

row sum ve
tor of Æ:

v

Æ

j

=

n

X

k=1

Æ

jk

:

Clearly, v

Æ

= Æe, where e = (1; : : : ; 1). Then the entries of v

wÆw

�1

are

obtained form v

Æ

by the permutation w. In fa
t, it is 
lear that v

Æ

= Æe,
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where e = (1; : : : ; 1). Hen
e,

v

wÆw

�1

= wÆw

�1

e = w (Æe) :

2. The sum of the entries of the 
olumn a+ j, 1 � j � b, of the matrix "

in (10) is

a� b� 
+ 2 (j � 1) + 1: (11)

Now, the entries of the 
olumns of the 
anoni
al paraboli
 tournament

add up to 0 if n is odd, and to �1 if n is even. Hen
e, the expression in (11)

ensures that, for a stair-shaped paraboli
 ", we must have b = 1 if n is odd

and b = 1 or 2 if n is even.

Lemma 6.1 If n is even then the stair-shaped " has b = 2.

Proof: As mentioned above, b is the number of elements in a 1-maximal

subtournament of T

P

. Hen
e, it is enough to exhibit su
h a tournament

having two elements. This is given by f1; ng. In fa
t in T

P

the following

3-tournaments hold, for any even e < n and odd o > 1:

1  e

- #

n

1 ! o

- "

n

These tournaments are transitive, showing that f1; ng is 1-transitive.

Now, we 
an des
ribe stair-shaped paraboli
 tournaments.

Proposition 6.2 Given the paraboli
 tournament T

P

put n = 2k + 1 if n is

odd and n = 2 (k + 1) if n is even. Order f1; : : : ; ng as follows:

1. f2; 4; : : : ; n� 1; 1; 3; : : : ; n� 2; ng if n is odd.

2. f2; 4; : : : ; n� 2; n; 1; 3; : : : ; n� 1g if n is even.

In these orderings T

P

has the following stair-shaped in
iden
e matri
es

" =

0

�


t

k

+ U

� Æ +

L � 
t

k

1

A

:

Here Æ = (0)

1�1

if n = 2k + 1 and Æ =

�

0 1

�1 0

�

if n = 2 (k + 1). Also,

U = (U

ij

)

k�k

is U

ij

= +1 if i > j and �1 otherwise, and L = �U

T

.
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Proof: The 
hoi
e of the orderings was made after the 
onstru
tion of T

0

in the proof of Theorem 3.5. Here we took as maximal 1-transitive tourna-

ments f1g for n odd and fn! 1g for n even. Then the even numbers are the

winners of 1 in the �rst 
ase and of n in the se
ond. In both 
ases the odd

numbers are the losers of 1. It is straighforward to 
he
k that the in
iden
e

matri
es are as stated.

On
e we have the permutation realizing the stair-shaped equivalen
e the

n-th parameter family of invariant (1; 2)-symple
ti
 is readily obtained from

Theorem 4.4. Therefore we 
an re
over Theorem 3.2 of [11℄ and get the in-

variant (1; 2)-symple
ti
 metri
s for the paraboli
 almost 
omplex stru
tures.

In order to write down these metri
s we 
onsider the permutations leading

to the orderings of Proposition 6.2:

�

o

(i) =

�

2i if 1 � i � k

2 (i� k)� 1 if k + 1 � i � n

for n = 2k + 1 and

�

e

(i) =

�

2i if 1 � i � k

2 (i� k)� 1 if k + 1 � i � n

for n = 2k.

Theorem 6.3 Let J be the 
anoni
al paraboli
 invariant almost 
omplex

stru
ture in F (n). Then the invariant (1; 2)-symple
ti
 metri
s � = (�

ij

)

are given by n parameters a

1

; : : : ; a

n

as follows: Given i < j,

�

�(i)�(j)

=

�

a

i

+ � � �+ a

j�1

if ji� jj � k + 1

a

j

+ � � �+ a

n

+ � � �+ a

i

if ji� jj > k + 1

where � = �

o

if n = 2k + 1 and � = �

e

if n = 2k.
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