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Abstract

It has been recently shown by Mo and Negreiros [11] that a neces-
sary condition for an invariant almost-complex structure on the com-
plex full flag manifold F(n) to admit a (1, 2)-symplectic invariant met-
ric is that its associated tournament is cone-free.

In this paper we find a canonical stair-shaped form for such tour-
naments and apply it to show that the condition is also sufficient. In
doing this we describe all the associated (1, 2)-symplectic metrics, and
get, in particular, a different and self-contained proof of a theorem of
Gray and Wolf [17] asserting that the Cartan-Killing metric on F(n)
is not (1,2)-symplectic for n > 3.
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1 Introduction

Denote by F (n) the usual manifold of full flags of subspaces of C* and endow
it with an almost-complex structure J and a Riemannian metric ds?. Let
M? be an arbitrary closed Riemann surface. A theorem due to Lichnerowicz
[9], proved independently by Gray [6], states: “If ¢ : M? — (F(n),J,ds?)
is J-holomorphic and ds? is (1,2)-symplectic with respect to J, then ¢ is
harmonic”. The importance of this theorem rests in the fact that it furnishes
solutions of the second order Euler-Lagrange partial differential equations,
satisfied by the harmonic maps from the solutions of first order partial dif-
ferential equations, the Cauchy-Riemann equations. This theorem drives the
attention to the problem of understanding the (1,2)-symplectic metrics on
the flag manifolds. Apart from the relation to harmonic maps the (1,2)-
symplectic metrics appear in twistor theory, as shown, for example, in Eells
and Salamon [5].

Our approach to this problem is based on a method derived by Burstall
and Salamon [4], relating harmonic maps on flag manifolds to tournament
theory. It is well known that an invariant almost-complex structure J on
the flag manifold F(n) is defined by means of a skew-hermitian sign matrix.
This matrix can be considered as the incidence matrix of an n-player tourna-
ment 17, providing a one-to-one correspondence between the set of invariant
almost-complex structures on F(n) and the tournaments with n players. Re-
lying on this natural association the method consists in studying properties
of J through the combinatorics of 7.

Recently Mo and Negreiros [10], [11] singled out the class of the so-called
cone-free tournaments in relation to the (1,2)-symplectic metric problem.
Namely, it was proved in [11] that a necessary condition for J to admit an
invariant (1, 2)-symplectic metric ds? is that the tournament 7 is cone-free,
a property which involves the 4-subtournaments of 7; (see Definition 3.1
below for a precise statement). In this paper we prove that this condition is
also sufficient, thus arriving at the following characterization.

Theorem 1.1 (F(n),.J) admits an invariant (1,2)-symplectic metric A if
and only if the associated tournament T is cone-free.



The sufficiency of the condition was studied by Paredes [14], [15], where an
affirmative answer was obtained for certain classes of tournaments, including
all tournaments with 5 < n < 7 players. For n = 3 and 4 this result was
proved in [11]. In Section 4 we offer a proof for arbitrary n (see Theorem
4.4).

In addition, given J consistent with Theorem 1.1), we exhibit an explicit
n-dimensional parametrization for all the possible invariant (1, 2)-symplectic
metrics for (F(n),J).

Our approach is based on a concrete characterization of the structure
of cone-free tournaments. Specifically, in Theorem 3.5 it is shown that a
tournament 7" is cone-free if and only if its incidence matrix is permutation-
similar to a stair-shaped incidence matrix of the following type
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The problem discussed here has a natural extension to the framework of
generalized flag manifolds associated to arbitrary complex semi-simple Lie
groups. Similar results can be proved in this more general set up, and will
appear elsewhere.

2 Preliminaries

2.1 Tournaments

We define an n-player tournament as a complete directed graph T'= (N, E)
(no loops or multiple edges) where N is an ordered set and |[N| = n. For
concreteness we shall always assume that N = {1,...,n}. Two tournaments
are isomorphic if one is obtained from the other via a rearrangement of V.
See Moon [12] for further details.

With each tournament 7" we assign its incidence matrix € = 5, which
is a real skew-symmetric matrix with all off-diagonal entries +1 (see [12]).
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Tournament isomorphism amounts to permutation similarity between the
associated incidence matrices.

If (a,b) € E we say that a wins against b and set g4, = 1, £, = —1. By
our conventions, 7" would then contain an arrow pointing from vertex a into
vertex b.

We define the valency of a vertex a of T" as the number of its wins. We
also define, in a strict sense, a winner in 7" as a (unique) vertex with valency
n—1, and a loser as a (unique) vertex with valency 0. Not every tournament
has a winner or a loser; however, when it exists, it is not part of any cycle.

The descending sequence of valencies of 1" is called the score vector asso-
ciated with T". Every non-increasing sequence of n non-negative integers with

ny .
total sum 5 | 18 ascore vector for some n-player tournament 1. However,

T need not be uniquely determined by its score vector.
Since T is complete, |E| = n(n — 1)/2. Moreover, E splits as a disjoint
union

E=F UE), By ={(a,b) € E: a<b}, By ={(a,b) € E: a>b}. (2)

2.2 Flag manifolds

In this section we discuss the correspondence between invariant almost com-
plex structures on the full flag manifold and tournaments or, equivalently,
their incidence matrices which are real skew-symmetric matrices with off-
diagonal entries in {£1}.

Consider the complex full flag manifold

F(n) = {(Vi,...,Va) : V; C Vyur dimVj = 5}

The natural action of the unitary group U (n) on F(n) is transitive, turning
the flag manifold into the homogeneous space U (n) /M where M is any
maximal torus of U (n), i.e., M Z U (1) x --- x U(1).
Let u(n) be the Lie algebra of skew-hermitian matrices. It decomposes
as
u(n)=pou(l)®---ou(l)

where p C u(n) is the subspace of zero-diagonal matrices. Let Ej; be the
canonical basis matrix Ej; = (a,5) with a,s = 1 if (r,s) = (j,k) and zero
otherwise. Put

pjk = ((CEjk + CEkJ) nu (n) .
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Of course, p = P pjk.

i#k
In order to give an invariant almost complex structure on F(n) it is
enough to present J : p — p, J2 = —1, which commutes with the adjoint rep-

resentation of the torus M on p. This condition implies that J (p;x) = p,i for
all j # k, which in turn guarantees that J (A) = A" with A} = eirV/—1Ajj,
such that £;, = £1 and satisfies €;; = —¢;. Thus an invariant almost com-
plex structure is completely determined by a skew-symmetric matrix (gj;),
with off-diagonal entries in {+1}.

For the computations we work in the complexification V' of p. It is easy to
check that V' is the subspace of complex matrices with zero-diagonal entries.
It decomposes as V' = P, ;. Vjr, where Vjx = spanc{Ej;}.

An almost complex structure J on p extends to a C-linear operator on V',
also denoted by J. Its eigenvalues are v/—1. If J is given by the incidence
matrix €, then the corresponding eigenspaces are

VO =@P{Vikrem=1  for V-1

and

VO =P (Vi e =—-1}  for  —v-L

Let ds? be an U (n)-invariant Riemannian metric on F(n). Like the in-
variant almost complex structures, ds? is completely determined by its value
at the origin, that is, by an inner product (-,-) in p, which is invariant under
the adjoint action of M. To describe these inner products, start with the
Cartan-Killing form on p:

(X,Y) = —tr (XY),

which is an M-invariant inner product. Any other inner product on p is of
the form (X,Y), = (AX,Y) with A : p — p positive-definite with respect
to (-,-). Furthermore, (-,-), is M-invariant if and only if the elements of
the standard basis v/—1 (Ejk + Eij), Eji, — Ej; are eigenvectors of A. Thus
A (E]k) = )\jkEjk with )\jk > 0 and )\kj = )\jk; and

(X,Y), =—-tr(A(X)Y).

We denote by ds? the invariant metric given by A.
Remark: Consider the n x n symmetric matrix, say A, whose entries are
Ajk, J # k, the eigenvalues of A, and )\;; = 0. Of course, the inner product
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depends only on the entries A. Furthermore, A (X) = Ao X where o stands
for the Hadamard product of two n x n matrices. Therefore, (X,Y), =
—tr ((Ao X)Y). In the sequel we also denote by A the matrix A.

The inner product (-, -), admits a natural extension to a symmetric bilin-
ear form on the complexification V' of p. We use the same notation (-, -), for
this bilinear form as well as for the corresponding complexified map A. Here
the two-dimensional real eigenspace p;x of A, whose basis is /=1 (Ej; + Ek;),
Eji — By, extends to complex spaces having basis Ej;, and Ej;, respectively.

A special class of invariant inner products is given by those A satisfying

Aij T Aje = Aig (3)

for all j between ¢ and k, or equivalently satisfying the relation

Aij = Ak 41

In this case A is defined by an adjoint operation as follows: Consider the real
diagonal matrix

Hy = diag{/ula s 7”71} (4)

whose eigenvalues are defined (up to an additive constant) by the conditions
Wi — Miv1 = Niiy1, ¢ = 1,...,n — 1. Then the action of A on the upper
triangular matrices is given by

A(Ejk) = ad (Hy) (Bje)  J <k

if A satisfy the conditions (3). Analogously, A = —ad (H,) on the lower tri-
angular matrices. In view of these relations a metric satisfying the equalities
(3) is called of adjoint type.

Now, let J and ds% be an invariant almost complex structure and a metric,
respectively. Then it is easily checked that ds3 is Hermitian, that is,

dsi (JX,JY) =ds3 (X,Y).
Let €2 = €, o stand for the corresponding Kahler form

Q(X,Y)=ds3 (X,JY) = —tr (A(X)J(Y)).



This form is also invariant under U (n). Relying on this invariance its exterior
differential is easily calculated from the standard formula: If XY, Z € p are
regarded as vector fields in F(n) then df2 at the origin is given by

—%dQ (X,Y.Z) = Q([X, Y], 2) + Q([X, 2], Y) = Q(IY, Z], X)

(see [8]).
For all i = 0,1, 2, 3 define the operator dQ*3~* as follows:

1. dQ» (XY, Z) = dQ(X,Y,Z) as long as i of the three matrices
X,Y,Z are in V' and the remaining are in V!

2. dQY37YX,Y,Z) = 0 as long as j of the three matrices X,Y, Z are in
V1% and the remaining are in V' with j # .

Since V1% and Vo are orthogonal complements in V, it is readily seen
that the four operators dQ"3~¢ are well defined and moreover

dQ = dQ3° + dO? + dQM + dOv3.

Moreover, by replacing X,Y,Z by X1, YT, Z1 it can be seen that dQ3° =
—[dQ%]* and dQ" = —[dQ*!]*.

According to the annihilation of these forms the triple (F(n),.J, ds?) is
distinguished as follows:

1. (F(n),J,ds?) is almost Kahler if dQ2 = 0. It is Kdhler if furthermore
J is integrable.

2. (F(n),J,ds?) is (r, s)-symplectic if dQ2"* = 0.

The following theorem by Burstall and Salamon [2] ensures that a suffi-
cient condition for J to be integrable is that d{2 = 0.

Theorem 2.1 (F(n),J,ds?) is an almost Kdihler manifold if and only if it
15 a Kahler manifold.



3 Cone-free tournaments

Up to isomorphism, there are four distinct 4-player tournaments. The two
of them which contain a single (directed) 3-cycle are called coned 3-cycles.

Each of them contains a cycle and a winner or a loser.

Definition 3.1 An n-player tournament T is called cone-free if its restric-
tion to any four vertices is never a coned 3-cycle.

In this section we show that the incidence matrix of a cone-free tourna-
ment is permutation similar to a stair-shaped matrix of the type shown in
(1). We start by providing a rigorous definition of stair-shaped tournaments.

We call a tournament 1" transitive if it contains no 3-cycle. In this case,
T is obviously cone-free, and is isomorphic to the canonical transitive tour-
nament 7" for which the subset E; in (2) is E. The incidence matrix of 7"
has a triangular form.

In what follows we shall denote by T'/U the restriction of 7" to U, which
is an m-player tournament if |U| = m.

Definition 3.2 A tournament 1" is called stair-shaped if there are integers
s,t (with 1 < s <t < n) such that the azioms below are satisfied. For all
UCN, with |U| =m < n.

A) T'/{1,...,t} is a mazimal canonical-transitive subtournament of T';
B) T'/{s,...,n} is a mazimal canonical-transitive subtournament of T';
C) If (z,z) € Ey thenx < s and t < z;

D) if o' <z and z < 2' then (z,x) € By implies (2',2") € Es.

A special case of a stair-shaped tournament is when (s,¢) = (1,n). In
such a case T" is a canonical transitive tournament.



Lemma 3.3 Stair-shaped tournaments are cone-free.

Proof: Let 7" be stair-shaped, and let s,t be the associated numbers. If
s =1 and t = n then 7" is transitive, hence contains no coned 3-cycles, and
there is nothing to prove. So, we shall assume that 1 < s < t < n and
subsequently, due to the maximality clause in axioms A and B, E5 in (2) is
not empty. The 3-cycles in T" are exactly the triples z,y,z € N with

r<a<b<ez, r<y<z, (z,z) € Es. (5)

Let U = {z,y,z,w} C N with |[U| = 4. Assume that z,y,z form a 3-
cycle in T". Due to axiom C, since x < y < z then the cycle arrows are
x — 1y — 2z — x, and moreover z < s <t < z.

We want to show that 7”/U is not a coned 3-cycle. To this end, we first
show that w is not a winner in U. Indeed, if z < w then by axiom B w loses
to z; if y < w < z then by axiom D w loses to y; if z < w < y then by axiom
D w loses to x; and if w < x then by axiom D w loses to z. By a similar
argument, w is not a loser in U either. Thus, 7"/U is not coned, implying
that 7" is cone-free. L]

Next we show our central result on the representation of cone-free tour-
naments. It requires the following.

Definition 3.4 A subtournament T/U of a tournament T'= (N, E) is said
to be 1-transitive if T/ (U U {p}) is transitive for allp € T.

In particular, /U itself must be transitive.

Theorem 3.5 A tournament T is cone-free if and only if it is isomorphic
to a stair-shaped tournament 1.

Proof: The “if” part is covered by Lemma 3.3. We now prove the “only if”
part. Let 1" be a cone-free n-tournament . If 1" is transitive, it is isomorphic
to the canonical-transitive tournament, which is stair-shaped. Thus, we shall
assume that 7' is not transitive, i.e. 1" contains 3-cycles.

Let T/U be a maximal 1-transitive subtournament of 7'. Since every 2-
player tournament is transitive, m := |U| > 0. Since 7T is not transitive,
m < n. By reordering N we obtain a new tournament 7", isomorphic to 7,



such that 7" /(U U {p}) is the canonical-transitive m + 1-player tournament
forall p e N.

In particular, 7" /U is canonical-transitive. Let s,t € N, s < t, be its
winner and loser. Define the subsets U; = {1,2,...,t} and Uy, = {s,s +
1,...,n}. It is easy to see that s is a winner in Us and ¢ is a loser in Uj.

We claim that the subtournament 7" /U; is transitive. Indeed, assume
that there exists a cycle z,y,z with 1 < x < y < z < t. Necessarily we
have z < t since ¢ is a loser in U; and cannot form cycles there. But then
T"/{x,y, z,t} forms a coned 3-cycle, in contradiction to the assumption that
T is cone-free.

So, T" /Uy is transitive, and by an analogous argument, 7" /U, is transi-
tive. By a suitable reordering of N, T"” can be made isomorphic to a new
tournament 7", for which 7"/U, and T"/U, are canonical-transitive. Note
that this reordering leaves unchanged the set U.

We shall show that 1" ¢,s as constructed above satisfy axioms A-D,
namely 7" is stair-shaped.

Let U’ := Uy N U,. The subtournament 7”/U" is transitive. In fact, it is
1-transitive, since for all p € N U" U {p} is a subset of U; or Uy. Moreover,
since by construction U C U; N Uy, and T/U is a maximal 1-transitive set,
we conclude that

U=U ={s,s+1,...,t}.

In fact, 7"/U; is a mazimal transitive subtournament of 7". Indeed, assume
that U; C U] and T"/Uj is transitive. It is easy to see that T7/(U; N U,) is
1-transitive. Since U C U] N Uy, and 17"/U is a maximal 1-transitive subset,
we conclude that U] = Uy, proving the maximality of 7"/U;.

By a similar argument, 7"/U, is a maximal transitive subtournament of
T'. Thus, T" satisfies axioms A and B.

In order to verify axiom C, we observe that without loss of generality
every edge of Ey belongs to a 3-cycle. Indeed, all the edges of E5 without
cycle can be inductively inverted without changing the sets U, U;, U, and
reducing Es.

So, let {z,y, 2z} be a 3-cycle in T, where x < y < z. Since U, is transitive,
we have x < s. Since U is transitive, we have ¢t < z. Independently of the
location of y, one of the two statements x,y € U; or y,z € Us must hold.
Since T"/U, and 1" /U, are canonical-transitive, we conclude that the arrows
in the 3-cycle are directed as v — y — 2z — . Note that only the rightmost
arrow represents an edge in Fy. Thus, 7" satisfies axiom C.
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Finally, we verify axiom D. If (z,2) € E, and 2’ < z, consider any y € U.
Since x,v, z, 2z’ cannot be a coned 3-cycle, 2’ cannot lose to all the others.
Since 2’ loses to y and z, we must have 2z’ — x as desired. Similarly, if ' > =
an analogous argument shows that z — z'.

Thus, 17" is a stair-shaped tournament isomorphic to 7. L]

A natural question related to the above theorem is whether there exists
uniqueness of the stair-shaped structure for a cone-free tournament. An
affirmative answer of this question would lead to canonical forms for such
tournaments.

In general, a cone-free tournament may have several maximal 1-transitive
subtournaments of different sizes, leading to different, possibly pairwise non-
similar, stair-shaped incidence matrices. For instance, the 4-tournament

4
3
1 2
has the following incidence matrices
0 + — — 0 + + —
-0 + + -0 + +
and
+ 0 + - = 0 +
+ - =0 + - =0

with respect to the orders (1,2,3,4) and (2, 3,4, 1), respectively. The maxi-
mal 1-transitive subtournaments are {1}, {2}, {3}, {4} as well as {3 — 4}.
Both incidence matrices may show up in the construction made in the proof
above. The first one appears if one takes {2} as maximal 1-transitive tour-
nament, whereas the second matrix comes out from {3 — 4}.

We do not know whether two maximal 1-transitive tournaments of the
same size necessarily lead to equal stair-shaped incidence matrices for a given
tournament. The lack of uniqueness in the stair-shaped representation of a
cone-free tournament 7" may be related to the co-existence of several non-
isomorphic 1-transitive subtournaments for 7.
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4 Proof of Theorem 1.1

Recall that a metric is called (i, 3 — 7)-symplectic if dQ2%3~% = 0. In this case,
we also have d2> %" = 0. Theorem 1.1 in the introduction is formulated in
terms of (1,2)-symplectic metrics. A special case of this theorem concerns
the standard complex structure in F(n) and is already known (see Borel [2]
and [11]). Denote by J. the corresponding almost complex structure. Then
in this particular case Theorem 1.1 reads:

Proposition 4.1 Let J, standard complez structure on F(n). Then J. cor-
responds to the canonical transitive tournament and A is (1,2)-symplectic if
and only if it is of adjoint type (see (3)).

We now attack Theorem 1.1 in its full generality. The proof that the con-
dition is sufficient is one of the main results of this paper. Before embarking
on it we outline the necessity proof of [11]: Let w = (wﬁ) be the matrix
formed by the Maurer-Cartan form of U (n). The space of (1,0)-cotangent
vectors at the origin identifies to p; o) = span{w;; : i — j}. The key point in
the proof is to compute df) using the moving frame method of Cartan. We
find a permutation 7 such that

A=Y Crtiyr(iyr ey ¥rtiyr (e (k)

i<j<k

where Cijp = pij — pir + i, Vijr = Im (Wij A wy, N ij) and finally f;; =
€ijAij- From this expression for d€ it is not hard to prove that the tournament
must be cone-free (see [11], Section 4).

Now, we proceed to the proof of the sufficiency of Theorem 1.1, namely
that there are invariant (1,2)-symplectic metrics if the tournament is cone-
free. First we calculate the conditions on J and A to be (1,2)-symplectic.
Using the formulas

(Eij, Evs| = 65 Eis — 05 By tr (EijErs) = 050,

a straighforward computation shows that dQ (Ej, Ejjr, Epr) = —3v—1af
where
Q¢ = 04t Ok Opir — Okt Opjr Ot

and
B = i Niir + €551 Njjr + Ekkr Mgk
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The expression for a shows that it is nonzero only when ¢ =k, j' =i, k' =
ori' =73, 5 =k, k" =i. Hence df) is completely determined by its values in
the triples

(Eij, Ej, Eri)  and (B, Egj, Eji) (6)

given by the triples {i,j,k}. Note that these sets are transposed to each
other so that if one of them contains a vector in V'° then the other con-
tains a vector in V. Let us say that the triple {7, 7,k} is of type {3,0} if
one of the corresponding sets (6) is contained in V', The triple is of type
{1,2} otherwise. The proof of the following lemma is immediate from the
definitions.

Lemma 4.2 The triple {i, j, k} is of type {3,0} if and only if the restriction
to {1, j,k} of the tournament corresponding to J is a cycle.

FEquivalently, {i,7,k} is of type {1,2} if and only if the tournament is
transitive in {i,j, k}.

Therefore, in order to check that an invariant metric A is (1, 2)-symplectic,
it is enough to compute df2 in one set of vectors (6), only for the transitive
subtournaments {4, j, k}.

Proposition 4.3 The invariant metric A is (1,2)-symplectic if and only if
for all transitive subtournaments Tz = {i, j, k} the following holds

where i is the winner of T3 while k s the loser.

Proof: For fixing ideas let us write T35 = {a, b, ¢} with a < b < ¢. From the
computations performed we have d) (Eg, Eye, Eco) = V—1af with

ﬂ = 6ab)\a,b + 6bc)\bc + 6ca)\ca,- (8)

In order to have the values of ¢,;, we must run through the six transitive
tournaments having vertices (a, b, ¢). Below we list the signs of (€4, €pe,s Eca)
with the winners (w) and losers ([) for each transitive tournament:

L (+,+,—-),w=a,l=c

2. (+,—,—),w=a,l=0.
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3. (+,—,+), w=c,l=b
4. (=, +,—),w=bl=c
5. (= +,+), w=bl=ua
6. (——,+),w=cl=ua

By a direct inspection at these tournaments we see that in the right hand
side of (8), Ay appears with a sign different from the other terms. Therefore,
B = 0if and only if Ay = \jj +Ajp with w = ¢ and [ = k. Now the statement
follows by Lemma 4.2. (]

Our central result gives an n-parameter description for all the (1,2)-
symplectic metrics on F(n). We only cover the non-transitive case, given
that the transitive case is covered by Proposition 4.1.

Theorem 4.4 Let € be the incidence matriz of a given complex structure J
on F(n). Assume that € is stair-shaped and not canonical-transitive. Then
A corresponds to a (1,2)-symplectic metric on (F(n),J) if and only if there
are n positive values Ay through A\, such that for alli < j:

(i) )\ij = ?c;i )\k Zf €ij = 1, and
(i) Aij= A+ D00 M + ZZ;; Ak, otherwise. Equivalently,
j—1
Aij =q— Z Ak
k=i+1
where ¢ =Y 7| Ap.

Proof: Our starting point is Proposition 4.3. Dividing N into three subsets:
{1,...,s—=1},{s,...,t}, and {t+1,...,n}, we see that each triple X = Ej,
Y = Eji, Z = E},; of basic matrices may be located in one of nine rectangular
regions. The requirement X,Y € V1% and Z € V% reduces the number of
cases to the following (see (1)):

l.i<j<k<s;

2. 1<) <s<k<t
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3.i1<s<ji<k<t
4. 1< j<s<t<k;
5. 1< s<j<t<k;
1<s<t<j<k
s<i1<ji<k<t

s<i1<j<t<ek;

© . »® N

s<i1<t<j<k;
10. t<i<j <k

11. k<s<t <1 <7
12. 1 <k<s<t<u.

It can be seen that (i) is equivalent to the totality of conditions on A which
emanate from cases 1-10, while (ii) emanates equally from cases 11 and 12. [

The sufficiency of the condition stated in Theorem 1.1 now follows as an
immediate corollary of Theorem 4.4.

Remark: Any metric A arising in the above theorem decomposes as A =
Ay + Ay, where A; corresponds to the entries {(i,7) : ¢ < j,&;; = +1} and
Ay to region where €;; = —1, 7 < j. The entries \;; of both A; and A, are
eigenvalues of ad (H) for some diagonal H. For A; take H = Hy as in (4)
while for A, take H = H,, with

Hy, = diag{vy,..., v}

with v, — vy = A\, and vipy —v; = =N ife=1,...,sori=1¢,...,n— 1.
Therefore the (1, 2)-symplectic metrics are combinations of metrics of adjoint
type, restricted to the proper regions.

Is is clear that the possible (1,2)-symplectic metrics A built in Theorem
4.4 cannot have all entries \;; = 1 if n > 4. As a consequence our theorem
provides an independent proof of the following result by Wolf and Gray.

Corollary 4.5 The Cartan-Killing metric on F(n) is not (1,2)-symplectic
for any J if n > 4.
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Proof: In fact, the Cartan-Killing metric is given by A = (\;;) with A;; =1
if 1 # j. L

Remark: Notice that for invariant forms the annihilation of both dQ3° and
dS) are equivalent to the nonexistence of cycles in the corresponding tourna-
ment. Therefore Q is (3,0) (or (0,3)) symplectic if and only if it is K&hler.

5 Partial flag manifolds

Let F = FY (ny,...,n;) denote the manifold of generalized flags of sub-
spaces of C" viewed as a homogeneous space as U (N) /U (ny) x - -+ x U (ng),
where ny + -+ + np = N. Its tangent space at the origin identifies with
a subspace p of the Lie algebra u(N), which complements the Lie algebra
u(ny)®- - -®u(ng) of the isotropy group. We can easily work with this appar-
ently more general situation like in the full flag manifold case. We write the
subspace of zero-diagonal complex matrices in blocks according to the parti-
tion determined by ni,...,ng. Let Vj; be the subspace having nonzero block
only in the position ¢j and put V = @ij Vij, which is the complexification of
p.

An invariant almost complex structure J : p — p is given by multipli-
cation by ++v/—1 on each block. To such a structure we can associate, in
the same way, a k-player tournament 1), as follows. Put J (A;) = (4})
and for i < j choose the orientation i — j if Aj; = /=1A;; and i < j if
A;j — —\/—_IA”

Analogous to the full flag manifold, an invariant metric is determined by
its value at the origin, which is of the form (X,Y), = (AX,Y) with A:p —p
positive-definite with respect to the Cartan-Killing metric (-,-). Again A is
multiplication by A;; on each V;; and hence is given by a k x k matrix (A,;)
which is also denoted by A.

By working with the block decomposition of matrices the study of the gen-
eralized flag manifold FV (ny, ..., n;) reduces to the understanding of F (k).
In particular, F(2) codifies any Grassmannian of n; subspaces FV (ny, N — ny).
We note in passing that the Grassmannians are symmetric spaces as happens
to F(2) = CP! (with the Fubini-Study metric), the only of the full flag man-
ifolds that is a symmetric space.
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6 Parabolic invariant almost complex struc-
tures

The canonical parabolic tournament Tp is defined by the incidence matrix
v = (7ij) given by

=1 if |i—j] is odd
Tig = { +1 i |i — j| is even. )

A tournament is called parabolic if it is equivalent to Tp. Similarly an invari-
ant almost complex structure is parabolic if this happens to its tournament.

It is easy to check that the canonical parabolic tournament is cone-free.
In fact, a 4-player subtournament of 7'» has nodes a < b < ¢ < d which are
joined by the following rules: Take ¢ < j. Then 7 — j if 7 — j is even and
1 < 7 if i — 7 is even.

According to the parity value of a, b, c,d one gets up to 16 distinct 4-
player subtournaments, some of which may be pairwise similar. We leave
to the reader the amusement of checking that none of these tournaments is
a cone. Therefore Tp is cone-free. (Alternatively, in [11] (1,2)-symplectic
metrics for parabolic J was exhibited. Hence the cone-free property of Tp
follows from Theorem 1.1.)

We propose here to find a stair-shaped parabolic tournaments. Such a
tournament has an incidence matrix of the form

cty + k4
e=| — ctp + (10)
X — th

where a + b + ¢ = n and ct; stands for the canonical transitive k-player
tournament. By the construction in Theorem 3.5, b is the size of a maximal
1-transitive tournament. Our method is based in the following remarks:

1. Let § and wéw ! be the incidence matrix of two equivalent tourna-
ments, where w is a permutation matrix. Let v° = (vf, . vg) be the

row sum vector of J:
n
k=1

Clearly, v° = de, where e = (1,...,1). Then the entries of v***"" are
obtained form v? by the permutation w. In fact, it is clear that v° = de,
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where e = (1,...,1). Hence,

v = ww e = w (de) .
2. The sum of the entries of the column a + j, 1 < 7 < b, of the matrix e
in (10) is
a—b—c+2(j—1)+1 (11)

Now, the entries of the columns of the canonical parabolic tournament
add up to 0 if n is odd, and to £1 if n is even. Hence, the expression in (11)
ensures that, for a stair-shaped parabolic €, we must have b = 1 if n is odd
and b =1 or 2 if n is even.

Lemma 6.1 If n is even then the stair-shaped € has b = 2.

Proof: As mentioned above, b is the number of elements in a 1-maximal
subtournament of Tp. Hence, it is enough to exhibit such a tournament
having two elements. This is given by {1,n}. In fact in Tp the following
3-tournaments hold, for any even e < n and odd o > 1:

1 « e 1 = o
N\ N
n n
These tournaments are transitive, showing that {1,n} is 1-transitive. L

Now, we can describe stair-shaped parabolic tournaments.

Proposition 6.2 Given the parabolic tournament Tp put n =2k + 1 if n is
odd and n =2 (k + 1) if n is even. Order {1,...,n} as follows:

1. {2,4,...,n—1,1,3,...,n—2,n} if n is odd.
2.{2,4,...,n—2,n,1,3,....,n— 1} if n is even.

In these orderings Tp has the following stair-shaped incidence matrices

Ctk + U
e=| - 0 +
L — Ctk

Here § = (0),,, if n =2k +1 and 0 = ( _01 (1)> ifn=2(k+1). Also,

U= (Uij)pp 1 Uij = +1if i > j and —1 otherwise, and L = —U"".
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Proof: The choice of the orderings was made after the construction of 7T’
in the proof of Theorem 3.5. Here we took as maximal 1-transitive tourna-
ments {1} for n odd and {n — 1} for n even. Then the even numbers are the
winners of 1 in the first case and of n in the second. In both cases the odd
numbers are the losers of 1. It is straighforward to check that the incidence
matrices are as stated. []

Once we have the permutation realizing the stair-shaped equivalence the
n-th parameter family of invariant (1, 2)-symplectic is readily obtained from
Theorem 4.4. Therefore we can recover Theorem 3.2 of [11] and get the in-
variant (1, 2)-symplectic metrics for the parabolic almost complex structures.
In order to write down these metrics we consider the permutations leading
to the orderings of Proposition 6.2:

o[ 2 HL<i<h
W= 206i—k)—1 fk+1<i<n

for n =2k +1 and

{2@ if1<i<k

)= 26—k —1 ifk+1<i<n

for n = 2k.

Theorem 6.3 Let J be the canonical parabolic invariant almost complex
structure in F(n). Then the invariant (1,2)-symplectic metrics A = (\;j)
are given by n parameters ay, ..., a, as follows: Given i < j,

o fateta i<kl
d@oD T g tran o a if li—g > k41

where 0 = 0, if n =2k +1 and 0 = o, if n = 2k.
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