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Abstrat

In this paper we will study two one dimensional equations: the

Strongly Damped Wave Equation and the Heat Equation, both with

mixed boundary onditions. We will prove existene of global strong

solutions and the existene of ompat global attrators for these equa-

tions in two di�erent spaes.

1. Introdution

In this paper we study existene of strong solutions and existene of global

ompat attrators for the following one dimensional problems:

The Strongly Damped Wave Equation,

u

tt

� u

xx

� u

txx

= g(t); 0 < x < `; 0 < t < T ;

�

u(t; 0) = 0

u

x

(t; `) + u

tx

(t; `) = �(u

t

(t; `));

(1.1)

and the Heat Equation

z

t

� z

xx

+G(z) = h

�

z(0) = 0

z

x

(`) = �(z(`)):

(1.2)

�
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Here ` and T are positive onstants, � : IR ! IR is a non-inreasing

and bounded funtion, g; h 2 L

1

(0; T ;L

2

(0; `)), and G is an operator from

a sub spae of H

1

into L

2

. In the ase where � is not ontinuous, we will

understand �(x

0

), at a point of disontinuity x

0

, as being the whole interval

[�(x

0

+ 0); �(x

0

� 0)℄. In this ase � will be a multi-valued funtion, and the

"equal signs" in the last equations of (1.1) and 1.2 will be hanged to "belong

signs". So, the boundary onditions at x = ` will be written respetively as

u

x

(t; `) + u

tx

(t; `) 2 �(u

t

(t; `)) and z

x

(`) 2 �(z(`))

or equivalently,

(u

t

(t; `); u

x

(t; `) + u

tx

(t; `)) 2 � and (z(`); z

x

(`)) 2 �

where � is the graph of the multi-valued funtion �

The existene of global solutions for these two problems an be obtained

using the Theory of Monotone Operators. The problem 1.2 gives rise to a

maximal monotone operator A that is of sub di�erential type, A = �', where '

is a lower semi ontinuous and onvex funtional. This problem was studied in

[2℄ under some onditions on G, in partiular the existene of strong solutions

was proved.

Our goal is to obtain existene of global ompat attrator. To reah this

goal, �rst of all, we will obtain a relation between the solutions of the two

problems. With this relation we an use one problem to get properties of the

other, in partiular this relation we will be used to prove the existene of strong

solutions for the problem 1.1. One we have existene of solutions, we will start

working in order to get the existene of the attrators. For our purpose, we

will study the problem 1.2 in two di�erent spaes L

2

and H

1

and using the

relation between the solutions we will prove the existene of attrators for the

problems. More spei�ally, setting u

t

= v, where u(t) is solution operator

given by 1.1, we will study the evolution of three operators, z(t) given by 1.2,

in the spaes L

2

and H

1

, u(t)+ v(t) in the spae H

1

and v(t) in the spae L

2

.

To obtain the results we will use the following proedures: To prove the

bounded dissipativeness of the problem 1.1 we will onstrut an appropriate

equivalent norm in the spae. The bounded dissipativeness of 1.2 in H

1

will be

obtained using the UniformGronwall Lemma with some appropriate estimates.

The prove of the ompatness of the operators will be done using arguments

of Aubin-Lion's type.

Asymptoti behavior of paraboli equations with monotone prinipal part

was reently studied by Carvalho and Gentile in [4℄, the di�erene with our

ase, problem 1.2, is that our funtional ' is not equivalent to the norm of the

spae.
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2. Abstrat Formulation and Existene of Solutions

As usual in wave equations ontext, setting v = u

t

, the equation (1.1) an

be seen as a system:

u

t

= v

v

t

= (u+ v)

xx

+ g; 0 < x < `; 0 < t < T ;

�

u(t; 0) = 0

u

x

(t; `) + v

x

(t; `) = �(v(t; `));

(2.1)

Therefore, our problem (1.1) an be viewed as an evolution equation

_w + Aw = f(t) (2.2)

in the Hilbert spae

H = H

1;0

� L

2

(0; `);

H

1;0

= fu 2 H

1

(0; `) : u(0) = 0g;

with the inner produt:

h(u

1

; v

1

); (u

2

; v

2

)i

H

=

Z

`

0

(u

0

1

u

0

2

+ v

1

v

2

)dx;

and

A : D(A) � H :! H

given by

A(u; v) = (�v; �(u+ v)

00

);

on the domain

D(A) = f(u; v) 2 H

1;0

�H

1;0

:

(u+ v) 2 H

2

(0; `) and (u+ v)

0

(`) 2 �(v(`))g (2.3)

Throughout the paper we will denote respetively by h � ; � i and j � j the

usual inner produt e norm of L

2

. We will use the terminology of [3, Br�ezis℄

and [5, Hale℄.

Lemma 2.1 The operator A is maximal monotone.

Proof: If w

1

= (u

1

; v

1

) and w

2

= (u

2

; v

2

) are in D(A), we have integrating

by parts that

hw

1

� w

2

; Aw

1

� Aw

2

i

= �(v

1

(`)� v

2

(`))[(u

1

+ v

1

)

0

(`)� (u

2

+ v

2

)

0

(`)℄ +

R

`

0

(v

0

1

� v

0

2

)

2

dx:
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Sine � is non-inreasing and (u

i

+ v

i

)

0

(`) 2 �(v

i

(`)), i = 1; 2, we have

hw

1

� w

2

; Aw

1

� Aw

2

i � 0;

therefore, A is a monotone operator.

We will prove that A is maximal by showing that R(I +A) = H. In fat, if

(f; g) 2 H we onsider z as being the unique solution of the ODE problem:

�

z � 2z

00

= f + 2g := h 2 L

2

(0; `)

z(0) = 0; z

0

(0) = a 2 IR

where a will be hosen onveniently. Sine z 2 H

2

(0; `) \ H

1;0

and f 2 H

1;0

,

setting

u =

1

2

(z + f) and v =

1

2

(z � f)

we have that u; v 2 H

1;0

, u+ v = z 2 H

2

(0; `) and

�

u� v = f

v � (u+ v)

00

= g:

Therefore, it remains to be proved that (u + v)

0

(`) 2 �(v(`)) or equivalently

z

0

(`) 2 ~�(z(`)), where

~�(x) = �

�

1

2

(x� f(`)

�

:

We will obtain that ondition hoosing the onstant a appropriately. Setting

M =

�

0 1

1=2 0

�

we have from the variation onstant formula

�

z(`)

z

0

(`)

�

= ae

`M

�

0

1

�

�

1

2

Z

`

0

e

(`�s)M

�

0

h(s)

�

ds: (2.4)

Sine

e

`M

�

0

1

�

=

�

p

2 sinh (`=

p

2)

osh (`=

p

2)

�

we have that the right hand side of (2.4) is a straight line in plane, parametrized

by a, with positive slope. Therefore, there will be a unique a that gives the

intersetion with the non-inreasing graph of ~�. The lemma is proved.

Considering solutions in the sense of Br�ezis [3℄, that is
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De�nition 2.1 Let f be in L

1

(0; T ;H). A ontinuous funtion w : [0; T ℄!H

is a solution (or strong solution) of

_w(t) + Aw(t) = f(t) (2.5)

if w satis�es

(i) w(t) 2 D(A); 8t 2 (0; T ),

(ii) w(t) is absolutely ontinuous (AC) on every ompat set K � (0; T )

(therefore _w(t) exists a.e. in (0; T )),

(iii) _w(t) + A(w(t)) = f(t), a.e. in (0; T ).

Moreover, w 2 C([0; T ℄;H) is a weak solution of (2.5) if there exist sequenes

(f

n

) 2 L

1

(0; T ;H) and (w

n

) 2 C([0; T ℄;H) suh that w

n

are strong solutions

of

_w

n

(t) + A(w

n

(t)) = f

n

(t);

f

n

! f in L

1

(0; T ;H) and w

n

! w uniformly in [0; T ℄.

We have from theorem 3.4 of [3℄ the existene of weak solution for the problem

2.1.

In order to prove that this weak solution is in fat strong we will look for a

relation between the solutions of 2.1 and the solutions of 1.2.

The problem 1.2 was studied in [2℄, where G is an operator

G : H

1;0

! L

2

(0; `)

not neessarily loal and h 2 L

2

(0; T ;L

2

(0; `)). The problem an be written

as the abstrat evolution problem in L

2

(0; `)

_z +Az = F (t; z) (2.6)

where A : D(A) � H

1;0

! L

2

(0; `) is the operator given by

Az = �z

00

on the domain

D(A) = fz 2 H

1;0

\H

2

(0; `) : z

0

(`) 2 �(z(`))g: (2.7)

>From lemmas 2.1 and 2.2 of [2℄ we have that the operator A is stritly

monotone

hAz

1

�Az

2

; z

1

� z

2

i � jz

0

1

� z

0

2

j

2

(2.8)
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and of sub-di�erential type, A = �', where ' : L

2

(0; `) ! IR [ f+1g is a

proper, onvex and lower semi-ontinuous funtion de�ned by

'(z) =

(

p(z(`)) +

1

2

R

`

0

z

0

(x)

2

dx; if z 2 H

1;0

+1 otherwise,

(2.9)

where p is given by

p(x) =

Z

x

0

��(s)ds: (2.10)

We should observe that ' may assume negative values, but the following esti-

mate is true

jz

0

j

2

� k

1

'(z) + k

2

; 8z 2 H

1;0

: (2.11)

where k

1

; k

2

are onstants, in partiular ' is bounded below.

Indeed, sine j�(s)j is bounded (by a onstant k), we have for z 2 H

1;0

p(z(`)) � �kjz(`)j = �k j

Z

`

0

z

0

(x)dx j � �k

Z

`

0

jz

0

(x)jdx

and then

Z

`

0

�

1

4

z

0

(x)

2

� k

2

�

dx �

Z

`

0

�

1

2

z

0

(x)

2

� kjz

0

(x)j

�

dx � '(z)

implies the estimate (2.11).

When G is Lipshtz ontinuous and h 2 L

2

(0; T ;L

2

(0; `)), it was proved,

theorems 3.2 and 4.1 of [2℄, that the solutions of (1.2) are strong, in partiular

z(t) 2 D(A), for every t 2 (0; T ). Moreover, from theorem 3.6 of [3℄, the

solution z satis�es:

p

t

dz

dt

(t) 2 L

2

(0; T ;L

2

(0; `)) (2.12)

and, when z(0) 2 D(') = H

1;0

,

dz

dt

(t) 2 L

2

(0; T ;L

2

(0; `)): (2.13)

Consider the following relations between the problems (2.1) and (1.2):

z(t; x) = u(t; x) + v(t; x)� u(t; `)�(x); (2.14)

G(z) = z(`)�) (2.15)

h(t; x) = g(t; x) + v(t; x) + u(t; `)�

00

(x) (2.16)

where � : [0; `℄ ! IR is a smooth funtion satisfying �(0) = 0, �(`) = 1 and

�

0

(`) = 0.
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The operator G given in (2.15) an be onsidered with values in L

2

(0; `) and

also with values in H

1;0

, in both of these ases G is Lipshtz ontinuous and

G also satis�es

jG(z)j �  jz

0

j; (2.17)

sine

jz(`)j = j

Z

`

0

z

0

(x)dxj � kz

0

k

L

1

; (2.18)

It is easy to see that if (u; v) is a solution of (2.1) than z, given by (2.14),

is the a solution of (1.2) with h given by (2.16) and with initial ondition

z(0) = u(0) + v(0).

Reiproally, if z is a solution of (1.2), we onsider the problem in H

1;0

given

by

du

dt

(t) + u(t)� J(t)u(t) = 0

u(0) = 0

where J(t)u(t) = G(u(t)) + z(t).

Sine J(t) : H

1;0

! H

1;0

, for t > 0, is globally Lipshtz, this problem has

existene and uniqueness of solutions, see theorem 1.4 of [3℄. If u(t) is this

unique solution, then onsidering v(t) given by the relation (2.14) and g by

the relation (2.16) we have that (u; v) satis�es the problem (2.1) with u(0) = 0

and v(0) = z(0).

Under these ondition we an prove the following result:

Theorem 2.1 If g 2 L

2

(0; T ;L

2

(0; `)), then for every w

0

= (u

0

; v

0

) 2 H

there exists a unique strong solution w = (u; v) 2 C([0; T ℄;H) of (2.1) suh

that w(0) = w

0

. Moreover, the solution w = (u; v) satisfy:

p

t

d

dt

(u+ v)(t) 2 L

2

(0; T ;L

2

(0; `)) (2.19)

and, for v(0) 2 H

1;0

,

d

dt

(u+ v)(t) 2 L

2

(0; T ;L

2

(0; `)): (2.20)

Proof: Sine z given by (2.14) is a strong solution (1.2), in partiular z(t) 2

D(A), D(A) given in (2.7), for every t 2 (0; T ). It is easy to see that (u; v) is

a strong solution of (2.1).
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>From (2.14)

d

dt

(u+ v) =

dz

dt

+ v(t; `)� and v(t; `) = z(t; `): (2.21)

and z(t; `) 2 L

2

(0; T ), aording to the Trae Theorem for Lipshitz domain,

p.15 of [7℄, therefore (2.19) and (2.20) follow respetively from (2.12) and

(2.13). The proof is omplete.

Although we are interested in the study the inuene of the nonlinear bound-

ary ondition in the problems, we should observe that we have existene of

strong solution in more general situation. In fat, we an onsider

u

tt

� u

xx

� u

txx

+ q(t; x; u; u

t

) = 0; 0 < x < `; 0 < t < T ;

�

u(t; 0) = 0

u

x

(t; `) + u

tx

(t; `) = �(u

t

(t; `));

(2.22)

where

q

1

) the appliation (t; x) ! q(t; x; w) belongs to L

2

(0; T ;L

2

(0; `)), for every

�xed w 2 H;

q

2

) there exists k > 0, suh that

jq(t; x; w

1

)� q(t; x; w

2

)j

L

2

(0;`)

� kkw

1

�w

2

k

H

; 8t 2 [0; T ℄; 8w

1

; w

2

2 H:

This problem an be viewed as an abstrat evolution equation in the Hilbert

spae H

_w + Aw +B(t; w) = 0 (2.23)

where B : [0; T ℄�H ! H is given by

B = (0; q): (2.24)

>From the assumptions q

1

and q

2

, we have that B satis�es:

B

1

) for every w 2 H, the appliation t! B(t; w) belongs to L

2

(0; T ;H);

B

2

) there exists k > 0, suh that

kB(t; w

1

)� B(t; w

2

)k � kkw

1

� w

2

k; 8t 2 [0; T ℄; 8w

1

; w

2

2 H:

Under the above assumptions we have

Theorem 2.2 For every w

0

2 H, there exists a unique strong solution w 2

C([0; T ℄;H) of (2.23)) satisfying w(0) = w

0

.
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Proof: We will use the method of Br�ezis [3℄. Sine, for every w 2 C([0; T ℄;H),

B(t; w(t)) 2 L

2

(0; T ;H), we an onsider the sequene w

n

in C([0; T ℄;H),

de�ned by w

0

(t) = w

0

and w

n+1

is the weak solution of

_w

n+1

(t) + A(w

n+1

(t)) = �B(t; w

n

(t))

w

n+1

(0) = w

0

whih exists by the theorem 2.1. Using the �rst inequality of lemma 3.1 of [3℄,

we obtain

kw

n+1

(t)� w

n

(t)k �

Z

t

0

kB(�; w

n

(�))�B(�; w

n�1

(�))d�

� k

Z

t

0

kw

n

(�)� w

n�1

(�)kd�;

therefore

kw

n+1

(t)� w

n

(t)k �

(kt)

n

n!

kw

1

� w

0

k

L

1

:

Thus, the sequene w

n

onverges uniformly to w in [0; T ℄, so w is a weak

solution of

_w(t) + A(w(t)) = �B(t; w(t))

w(0) = w

0

:

Now, sine B(t; w(t)) = (0; q(t; �; w(t))) and it is easy to see that q(t; �; w(t)) 2

L

2

(0; T ;L

2

(0; `)), we have from theorem 2.1 that w is a strong solution of

(2.23). The proof is ompleted.

It is not diÆult to see that the strong solutions, given by this theorem,

depend on ontinuously of the initial data. More spei�ally, we have that

there exists a positive onstant  suh that

kw(t)� ~w(t)k

L

1

([0;T ℄;H)

� kw

0

� ~w

0

k

H

;

where w(t) and ~w(t) are solutions of (2.23) with initial onditons w

0

and ~w

0

,

respetively.

3. Existene of Attrators in L

2

We will start by onstruting an equivalent norm in the spae H

Lemma 3.1 If W (w) is given by

W (w) = W (u; v) =

Z

`

0

�

1

2

(u

0

)

2

+

1

2

v

2

+ 2�uv

�

dx (3.1)
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where

0 < � <

2

2`

2

+ 1

(3.2)

then, W

1=2

is an equivalent norm in H.

Moreover, there exists a positive onstant � suh that

Z

`

0

�

(�`

2

� 1)f

2

� 2�g

2

� 2�fg

�

dx � �� (jf j

2

+ jgj

2

)

for every f; g 2 L

2

(0; `).

Proof: Using the Poinar�e (juj � (`=

p

2)ju

0

j) and the Shwarz inequalities, we

have

�

�`

p

2

(ju

0

j

2

+ jvj

2

) �

Z

`

0

2�uvdx �

�`

p

2

(ju

0

j

2

+ jvj

2

):

Using (3.2) we an see that

�`

p

2

<

1

2

:

Therefore, if � = 1=2� �`=

p

2, we have

� (ju

0

j

2

+ jvj

2

) � W (u; v) � (ju

0

j

2

+ jvj

2

);

then W

1=2

is an equivalent norm in H.

The seond part of the lemma follows noting that

Z

`

0

�

(�`

2

� 1)f

2

� 2�g

2

� 2�fg

�

dx � (�`

2

� 1)jf j

2

� 2�jgj

2

+ 2�jf jjgj

and, for � satisfying (3.2), the right hand side this inequality is a negative

de�nite form.

Theorem 3.1 If g; h 2 L

1

(IR

+

;L

2

(0; `)), then the problems (2.1) and (1.2)

are bounded dissipative. More preisely, if (u; v) and z are the solutions of

(2.1) and (1.2), with initial onditions (u

0

; v

0

) and z

0

, respetively, then there

exist positive onstants 

1

; 

2

and � suh that

k(u(t); v(t))k

H

� 

1

k(u

0

; v

0

)k

H

e

��t

+ 

2

(3.3)

jz(t)j � 

1

jz

0

j e

��t

+ 

2

: (3.4)

Moreover, for z

0

2 H

1;0

and r positive, there exist positive onstants a; b, with

b = b(r) depending on r, suh that

Z

t+r

t

'(z(s))ds � ajz

0

j

2

e

��t

+ b; t � 0: (3.5)
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Proof: From the relation between the two problems the estimate (3.4) follows

from (3.3). To prove (3.3) it is enough to onsider initial data in the domain

D(A). Using the equation (2.1) and the Poinar�e inequality (jvj

2

� (`

2

=2)jv

0

j

2

),

we obtain after an integration by parts that for almost every t

_

W (t) =

d

dt

W (u(t); v(t)) �

Z

`

0

�

(�`

2

� 1)(v

0

)

2

� 2�(u

0

)

2

� 2�u

0

v

0

�

dx+ (3.6)

[2�u(`) + v(`)℄(u+ v)

0

(`) +

Z

`

0

[2�u+ v℄g(t)dx: (3.7)

The �rst integral, line (3.6), an be estimated using lemma 3.1

Z

`

0

�

(�`

2

� 1)(v

0

)

2

� 2�(u

0

)

2

� 2�u

0

v

0

�

dx � �� (ju

0

j

2

+ jv

0

j

2

)

To estimate the terms in line 3.7, we observe that (u + v)

0

(`) satis�es the

boundary ondition, so it is bounded by some onstant M , then using (2.18)

we an show that there exists a positive onstant , suh that, for every Æ > 0

[2�u(`) + v(`)℄(u+ v)

0

(`) � 

�

Æ

�

ju

0

j

2

+ jv

0

j

2

�

+

1

Æ

M

2

�

:

Using the Poinar�e inequality we obtain also

Z

`

0

(2�u+ v)g(t)dx � 

�

Æ

�

ju

0

j

2

+ jv

0

j

2

�

+

1

Æ

kgk

2

�

:

Choosing Æ suÆiently small, we obtain positive onstants �

i

, = 1; 2, and

K, suh that

_

W (t) � ��

1

(ju

0

j

2

+ jv

0

j

2

) +K � ��

2

W (t) +K:

Solving this di�erential inequality we obtain

W (t) � e

��

2

t

W (0) +

K

�

2

:

that implies (3.3)

To prove the last inequality. We have that A is the sub di�erential of the

funtional ' and '(0) = 0, therefore '(z) � hAz; zi. So, multiplying (1.2) by

z we obtain

1

2

d

dt

jzj

2

+ '(z) � �hG(z); zi+ hh; zi :
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The operator G satis�es (2.17), then, using (2.11), we obtain for every Æ > 0

a onstant M depending on Æ suh that

j hG(z(t)); z(t)i j � Æ'(z(t)) +M(jz(t)j

2

+ 1)

and, sine

j hh(t); z(t)i j � 

�

jz(t)j

2

+ 1

�

;

we have grouping the equivalent terms and hoosing a onvenient small value

for Æ, we obtain

d

dt

jz(t)j

2

+ '(z(t)) � a

1

+ a

2

jz(t)j

2

;

for some positive onstants a

1

; a

2

. Integrating this inequality from t to t + r

we obtain

Z

t+r

t

'(z(s))ds � jz(t)j

2

+ a

1

r + a

2

Z

t+r

t

jz(s)j

2

ds:

This inequality and (3.4) imply (3.5).

Theorem 3.2 If h 2 L

1

(IR

+

;L

2

(0; `)), then the solution operator T

h

(t) :

L

2

(0; `) ! L

2

(0; `), assoiated to the solution of (1.2), is a ompat operator

for t > 0.

Proof: Multiplying the equation (1.2) by � 2 H

1;0

, we obtain

hz

t

; �i = z

x

(t; `) �(`)� hz

x

; �

x

i � hG(z); �i+ hh; �i; (3.8)

therefore (3.5) and (3.8) imply that z

t

2 L

2

(0; T ;H

0

1;0

) and

Z

T

0

kz

t

k

2

H

0

1;0

dt � C(jz(0)j; T ): (3.9)

To prove the ompatness it is enough to onsider initial data in a dense

sub set of L

2

(0; `). Let B be the bounded set B = B(r) \ H

1;0

, where B(r)

the ball of L

2

(0; `) with enter in zero and radius r, and T

h

(t)(z

0

) the solution

of (1.2) with initial ondition z

0

.

>From (3.5) and (3.9)

�

B = fT

h

(:)(z

0

); z

0

2 Bg

is a bounded set in the Banah Spae

W = fv 2 L

2

(0; T ;H

1;0

); v

t

=

dv

dt

2 L

2

(0; T ;H

0

1;0

g:
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Therefore, from [6, thm 5.1℄,

�

B is preompat set in L

2

(0; T ;L

2

(0; `)). Then,

if (z

n

) is a sequene in B, taking subsequenes if neessary, we an suppose

that (T

h

(�)(z

n

)) onverges to some funtion z(�) 2 L

2

(0; T ;L

2

(0; `)), and also,

for almost every � 2 (0; T ),

T

h

(�)(z

n

)! z(�); as n!1: (3.10)

Consider now the evolution operator S(�)(z; h) given by

S(t)(z; h) = (T

h

(t)z; h

t

);

where h

t

is the translation of h, h

t

(�) = h(t + �). >From [8℄ S(t) : t � 0 is a

dynamial system. Therefore, for t > 0, there exists � 2 (0; t) suh that (3.10)

is true, then

(T

h

(t)z

n

; h

t

) = S(t)(z

n

; h) = S(t� �)S(�)(z

n

; h) = S(t� �)(T

h

(�)z

n

; h

�

)

! S(t� �)(z(�); h

�

) = (T

h

�

(t� �)z(�); h

t

)

implies the ompatness of T

h

(t).

Denoting by v

u

0

(t) the dynamial system given by the problem 2.1, when

the initial ondition u(0) = u

0

2 H

1;0

is �xed, we have from the two previous

theorems and the relation 2.14, the following result

Theorem 3.3 Under the above onditions the two dynamial systems z(t) and

v

u

0

(t), have ompat global attrators in L

2

(0; `).

4. Existene of attrators in H

1;0

We will start doing some estimates of the solution z(t) of (1.2) when the initial

ondition z(0) 2 H

1;0

. Using theorem 3.6 of [3℄, we have that t ! '(z(t)) is

absolutely ontinuous and

d

dt

'(z(t)) = hAz(t); z

t

(t)i; a:e:

then

d

dt

'(z(t)) = �jAz(t)j

2

+ hAz(t);�G(z) + hi; (4.1)

and integrating in t we obtain

Z

t

0

jAz(s)j

2

ds+ '(z(t))

� '(z(0)) +

Z

t

0

jAz(s)j jh(s)�G(z(s))jds

� '(z(0)) +

Z

t

0

1

2

jAz(s)j

2

ds+

Z

t

0

jG(z(s))j

2

ds+

Z

t

0

jh(s)j

2

ds:
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Using (2.11) and (2.17), we obtain, for t 2 [0; T ℄, that

1

2

Z

t

0

jAz(s)j

2

ds+ '(z(t)) � '(z(0)) + 

1

+ 

2

Z

t

0

'(z(s))ds:

for some onstants 

1

; 

2

.

Thus, from Gronwall inequality, there exists a onstant C('(z(0)); T ) de-

pending on '(z(0)) and T suh that

'(z(t)) � C('(z(0)); T ) (4.2)

Z

t

0

jAz(s)j

2

ds � C('(z(0)); T ); (4.3)

in partiular, we have z 2 L

1

(0; T ;H

1;0

) \ L

2

(0; T ;H

2

(0; `)).

Moreover, if z

1

(t) and z

2

(t) are solutions with initial ondition on H

1;0

, we

have using (2.8)

j(z

1

(t))

0

� (z

2

(t))

0

j

2

� hAz

1

(t)�Az

2

(t); z

1

(t)� z

2

(t)i =

�

1

2

d

dt

jz

1

(t)� z

2

(t)j

2

� hG(z

1

(t))�G(z

2

(t)); z

1

(t)� z

2

(t)i :

Sine G is Lipshtz, we obtain after an integration in t

1

2

Z

t

0

j(z

1

(s))

0

� (z

2

(s))

0

j

2

ds+

1

2

jz

1

(t)� z

2

(t)j

2

�

1

2

jz

1

(0)� z

2

(0)j

2

+ 

Z

t

0

jz

1

(s)� z

2

(s)j

2

ds;

therefore, from Gronwall inequality, there exists a onstant C depending on

T , suh that

jz

1

(t)� z

2

(t)j � C jz

1

(0)� z

2

(0)j (4.4)

and

Z

t

0

j(z

1

(s))

0

� (z

2

(s))

0

j

2

ds � C jz

1

(0)� z

2

(0)j

2

(4.5)

for t 2 [0; T ℄.

Lemma 4.1 If z(t) = T (t)z

0

; t � 0, denotes the solution of the problem (1.2)

with initial ondition z(0) = z

0

, then the following operators are ontinuous:

i) IR

+

! H

1;0

t ! T (t)z

0

;
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for �xed z

0

2 H

1;0

, and

ii) H

1;0

! H

1;0

z

0

! T (t)z

0

:

for �xed t > 0.

Proof: Let (t

n

) be a sequene in IR

+

onverging to t, we know that (z(t

n

))

onverges to z(t) in L

2

(0; `) and, using lemma 3.6 of [3℄, ('(z(t

n

))) onverges

to '(z(t)). Then, from (2.11), j(z(t

n

))

0

j is bounded, therefore, there exists a

sub sequene of (z(t

n

)), that we will keep denoting by (z(t

n

)), that onverges

weakly to z(t) in H

1;0

.

First of all we laim that the weak onvergene implies the onvergene of

(z(t

n

; `)). In fat onsidering a smooth funtion � suh that �(0) = 0 and

�(`) 6= 0, we obtain integrating by parts

Z

`

0

z

0

(t

n

; x)�(x)dx = z(t

n

; `)�(`)�

Z

`

0

z(t

n

; x)�

0

(x)dx

and

Z

`

0

z

0

(t; x)�(x)dx = z(t; `)�(`)�

Z

`

0

z(t; x)�

0

(x)dx

Thus, passing to the limit, z(t

n

; `) ! z(t; `), what proves our laim. Next,

sine p is ontinuous and

kz(t

n

)k

2

H

1;0

= 2['(z(t

n

))� p(z(t

n

; `))℄;

we have kz(t

n

)k

H

1;0

! kz(t)k

H

1;0

that implies the strong onvergene of (z(t

n

))

to z(t) and the ontinuity of the �rst operator is proved.

Now we will prove the ontinuity of the seond operator, In fat, what we

have is a stronger result:

Theorem 4.1 If (z

0

n

) is a bounded sequene in H

1;0

and onverges to z

0

in

the L

2

(0; `)-norm, then the orresponding solutions of (1.2) z

n

(t) = T (t)z

0

n

onverges to z(t) = T (t)z

0

in H

1;0

, for �xed t > 0, as n ! 1. In partiular

the operator ii) given in lemma 4.1 is a ompat operator.

Proof: We have ('(z

0

n

)) bounded, then from (4.2) and (2.11), both sequenes

('(z

n

(t))) and (j(z

n

(t))

0

j) are uniformly bounded for t 2 [0; T ℄. The onver-

gene z

0

n

! z

0

in L

2

(0; `) and (4.5) imply the onvergene

z

n

! z in L

2

(0; T ;H

1;0

);
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therefore z

n

(�)! z(�) in H

1;0

for almost every � 2 [0; T ℄.

For t 2 [0; T ℄,

j'(z

n

(t))� '(z(t))j � j'(z

n

(t))� '(z

n

(�))j

+ j'(z

n

(�))� '(z(�))j + j'(z(�))� '(z(t))j:)(4.6)

The �rst term in the right hand side satis�es

'(z

n

(t))� '(z

n

(�)) =

Z

t

�

d

ds

'(z

n

(s))ds

and from (4.1)

d

dt

'(z(t)) � jG(z(t))j

2

+ jh(t)j

2

; (4.7)

therefore the sequenes (d=dt('(z

n

(t)))) are a uniform bounded in L

2

(0; `) for

every t 2 [0; T ℄. Then (4.6) implies '(z

n

(t))! '(z(t)) for every t 2 [0; T ℄, as

n ! 1. Therefore, the same argument we have just used in the �rst part of

the theorem implies that z

n

(t)! z(t) in H

1;0

-norm, as n!1.

Theorem 4.2 If h 2 L

1

(0;1;L

2

(0; `)), then there exists a bounded set in

H

1;0

that attrats all the solutions of the problem (1.2) with initial ondition

in a sub set of H

1;0

that it is bounded in L

2

(0; `). In partiular, the problem

(1.2) is bounded bounded dissipative in H

1;0

.

Proof: If z(t) is a solution of the problem (1.2) with initial ondition in H

1;0

we have, using (4.7), that '(z(t)) satis�es the di�erential inequality

d

dt

'(z(t)) � a

1

'(z(t)) + a

2

+ jh(t)j

2

; t > 0 (4.8)

where a

1

; a

2

are onstants.

For solution with initial onditions in H

1;0

and bounded in L

2

(0; `), (3.5)

implies that

R

t+r

t

'(z(s))ds is less than a �xed onstant for t suÆiently large,

then we an use the Uniform Gronwall Lema, see [9, pg. 89℄, to obtain the

result of the theorem.

As onsequene of the two previous theorems and the relation 2.14 we have

Theorem 4.3 Under the above onditions, the dynamial system z(t) given

by 1.2 has a ompat global attrator in H

1;0

. Moreover, for v(0) 2 H

1;0

,

u(t) + v(t), given by 2.1 has also a ompat global attrator in H

1;0

.
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