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Abstract

In this paper we will study two one dimensional equations: the
Strongly Damped Wave Equation and the Heat Equation, both with
mixed boundary conditions. We will prove existence of global strong
solutions and the existence of compact global attractors for these equa-
tions in two different spaces.

1. INTRODUCTION

In this paper we study existence of strong solutions and existence of global
compact attractors for the following one dimensional problems:
The Strongly Damped Wave Equation,

Uy — Ugy — Ueg = (1), 0<z <l 0<t<T;
{ u(t,0) =0 (1.1)
U (b, 0) + we (2, 0) = plu(t, £)),
and the Heat Equation
2zt — 2z + G(2) = h
{ 2(0) =0 (1.2)
2z (0) = p(2(1)).

*E-mail: aloisio@ime.unicamp.br - Research partially supported by PRONEX and
FAPESP, Brazil.
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Here ¢ and 1" are positive constants, p : IR — IR is a non-increasing
and bounded function, g,h € L'(0,T;L*(0,¢)), and G is an operator from
a sub space of H! into L?. In the case where p is not continuous, we will
understand p(xy), at a point of discontinuity x¢, as being the whole interval
[p(xg 4+ 0), p(xy — 0)]. In this case p will be a multi-valued function, and the
7equal signs” in the last equations of (1.1) and 1.2 will be changed to ”belong
signs”. So, the boundary conditions at x = ¢ will be written respectively as

Uy (8, 0) + wy(t, £) € p(ug(t,l)) and z,(f) € p(z(0))
or equivalently,
(u(t, €),  ug(t,l) +u(t,0)) €' and (2(¢), z,(¢)) € T
where I" is the graph of the multi-valued function p

The existence of global solutions for these two problems can be obtained
using the Theory of Monotone Operators. The problem 1.2 gives rise to a
maximal monotone operator A that is of sub differential type, A = Jp, where ¢
is a lower semi continuous and convex functional. This problem was studied in
[2] under some conditions on G, in particular the existence of strong solutions
was proved.

Our goal is to obtain existence of global compact attractor. To reach this
goal, first of all, we will obtain a relation between the solutions of the two
problems. With this relation we can use one problem to get properties of the
other, in particular this relation we will be used to prove the existence of strong
solutions for the problem 1.1. Once we have existence of solutions, we will start
working in order to get the existence of the attractors. For our purpose, we
will study the problem 1.2 in two different spaces L? and H' and using the
relation between the solutions we will prove the existence of attractors for the
problems. More specifically, setting u; = v, where u(t) is solution operator
given by 1.1, we will study the evolution of three operators, z(t) given by 1.2,
in the spaces L? and H*, u(t) + v(¢) in the space H' and v(¢) in the space L?.

To obtain the results we will use the following procedures: To prove the
bounded dissipativeness of the problem 1.1 we will construct an appropriate
equivalent norm in the space. The bounded dissipativeness of 1.2 in H' will be
obtained using the Uniform Gronwall Lemma with some appropriate estimates.
The prove of the compactness of the operators will be done using arguments
of Aubin-Lion’s type.

Asymptotic behavior of parabolic equations with monotone principal part
was recently studied by Carvalho and Gentile in [4], the difference with our
case, problem 1.2, is that our functional ¢ is not equivalent to the norm of the
space.
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2. ABSTRACT FORMULATION AND EXISTENCE OF SOLUTIONS

As usual in wave equations context, setting v = u;, the equation (1.1) can
be seen as a system:

Uy = v
vp=(u4v)ptg, O<z<l 0<t<T,;

{ u(t,0) =0
U':c(tv é) + Uz(tvg) = p(v(t,ﬁ)),

(2.1)

Therefore, our problem (1.1) can be viewed as an evolution equation
W+ Aw = f(t) (2.2)

in the Hilbert space
H = H,y x L*0,0),

Hy o= {ue€ H'0,¢) : u(0) = 0},

with the inner product:

/
(s, v0), (g, v))e = / (il + vy02)d,
0

and
A:DA)CH:—H

given by
Au,v) = (v, —(u+v)"),

on the domain

D(A) = {(u,v) € Hig x Hyp:
(u+wv) € H*0,¢) and (u+v)'(¢) € p(v(£))} (2.3)

Throughout the paper we will denote respectively by (-, -) and | - | the
usual inner product e norm of L*. We will use the terminology of [3, Brézis]
and [5, Hale].

Lemma 2.1 The operator A is mazimal monotone.

Proof: If wy = (uy,v1) and wy = (ug,v) are in D(A), we have integrating
by parts that

<’U}1 — Wa, Aw1 — AU}2>

= —(01(6) = 02(£) [(n +01)'(€) = (2 + 02) ()] + fy (v] = v})?d.
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Since p is non-increasing and (u; +v;)'(¢) € p(v;(€)), ¢ = 1,2, we have
<’U}1 — Wy, A’U}l - A’U}2> Z 0,

therefore, A is a monotone operator.

We will prove that A is maximal by showing that R(/ + A) = H. In fact, if
(f,9) € H we consider z as being the unique solution of the ODE problem:

z—22" = f+2g:=he L*0,/)
2(0) =0, Z(0)=a€clR

where a will be chosen conveniently. Since z € H*(0,¢) N Hyp and f € Hi,
setting

u:%(z—i-f) and v:%(z—f)

we have that u,v € Hyy, u+v =2z € H*(0,() and

u—v=rf
v—(u+v)" =g.
Therefore, it remains to be proved that (u + v)'(¢) € p(v(¢)) or equivalently
2'(0) € p(2(¢)), where
_ 1
o) = (5o = 110)).

We will obtain that condition choosing the constant a appropriately. Setting

M= (1?2 (1)>

we have from the variation constant formula

( j(é)) ) —ae < ! ) - %/OE el ( h?s) ) ds. (2.4)

oM 0 _ V2sinh (£/v/2)
1 cosh (£/+/2)
we have that the right hand side of (2.4) is a straight line in plane, parametrized

by a, with positive slope. Therefore, there will be a unique a that gives the
intersection with the non-increasing graph of p. The lemma is proved. 1

Since

Considering solutions in the sense of Brézis [3], that is
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Definition 2.1 Let f bein L'(0,T;H). A continuous function w : [0,T] — H
is a solution (or strong solution) of

w(t) + Aw(t) = f(1) (2.5)

if w satisfies

(i) w(t) € D(A), Vt € (0,7),

(ii) w(t) is absolutely continuous (AC) on every compact set K C (0,7)
(therefore w(t) exists a.e. in (0,T)),

(ii1) w(t) + A(w(t)) = f(t), a.e. in (0,T).
Moreover, w € C([0,T]; H) is a weak solution of (2.5) if there exist sequences
(fn) € LY(0,T;H) and (w,) € C([0,T);H) such that w,, are strong solutions

of
win(t) + A(wn(t)) = fa(t),

fn— fin LY0,T;H) and w,, — w uniformly in [0, T].

We have from theorem 3.4 of [3] the existence of weak solution for the problem
2.1.

In order to prove that this weak solution is in fact strong we will look for a
relation between the solutions of 2.1 and the solutions of 1.2.

The problem 1.2 was studied in [2], where G is an operator
G: Hyy— L*(0,0)

not necessarily local and h € L?(0,T; L*(0,¢)). The problem can be written
as the abstract evolution problem in L?(0, £)

Z+ Az = F(t,2) (2.6)
where A : D(A) C Hyy — L*(0,£) is the operator given by
Az = =2"
on the domain

D(A) = {z € Hion H0,0) : 2'(£) € p(z(0))}. (2.7)

JFrom lemmas 2.1 and 2.2 of [2] we have that the operator A is strictly
monotone
(Azy — Azy, 21 — 20) > |2} — 25|? (2.8)
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and of sub-differential type, A = d¢, where ¢ : L?(0,¢) — IR U {400} is a
proper, convex and lower semi-continuous function defined by

+ f de if z¢€ Hl,O
p(z) = { " (2.9)
400 otherwise,
where p is given by
p(z) = / —p(s)ds. (2.10)
0

We should observe that ¢ may assume negative values, but the following esti-

mate is true
2 < kip(2) + ko, V2 € Hyp. (2.11)

where ky, ko are constants, in particular ¢ is bounded below.

Indeed, since |p(s)| is bounded (by a constant k), we have for z € Hy g

p(2(0) > —k|2(0) ——k|/ 2)dz | > k/ 12 (2)|dz

and then

[ s [ (or-ia) s

implies the estimate (2.11).

When G is Lipschtz continuous and h € L*(0,T;L?*(0,()), it was proved,
theorems 3.2 and 4.1 of [2], that the solutions of (1.2) are strong, in particular
2(t) € D(A), for every t € (0,7). Moreover, from theorem 3.6 of [3], the
solution z satisfies:

\/E%(t) e L*(0,T; L*(0, 0)) (2.12)

and, when z(0) € D(¢) = Hy,

dz

dt( ) € L*(0,T; L*(0,£)). (2.13)

Consider the following relations between the problems (2.1) and (1.2):

2(t, @) = u(t, @) +o(t,2) - ult, O)¢(2), (2.14)
G(z) = ( )$) (2.15)

where € : [0,¢] — IR is a smooth function satisfying £(0) = 0, £(¢) = 1 and
§'(6)=0
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The operator G given in (2.15) can be considered with values in L?(0, ¢) and
also with values in H; , in both of these cases G is Lipschtz continuous and
G also satisfies

|G(2)| < ¢ |7, (2.17)

since

2(0)] = I/0 #(@)dz] <[], (2.18)

It is easy to see that if (u,v) is a solution of (2.1) than z, given by (2.14),
is the a solution of (1.2) with A given by (2.16) and with initial condition
2(0) = u(0) 4+ v(0).

Reciprocally, if z is a solution of (1.2), we consider the problem in H; o given
by

du
%(t) +u(t) — J(t)u(t) =0
u(0) =0

where J(t)u(t) = G(u(t)) + 2(t).

Since J(t) : Hi o — Hiy, for t > 0, is globally Lipschtz, this problem has
existence and uniqueness of solutions, see theorem 1.4 of [3]. If u(¢) is this
unique solution, then considering v(t) given by the relation (2.14) and ¢ by
the relation (2.16) we have that (u, v) satisfies the problem (2.1) with u(0) =0
and v(0) = z(0).

Under these condition we can prove the following result:
Theorem 2.1 If g € L*(0,T;L*(0,0)), then for every wy = (ug,v9) € H

there exists a unique strong solution w = (u,v) € C([0,T];H) of (2.1) such
that w(0) = wy. Moreover, the solution w = (u,v) satisfy:

\/E%(u +v)(t) € L*(0,T; L*(0,¢)) (2.19)
and, for v(0) € Hy,
%(u+v)(t) € L*(0,7; L*(0,0)). (2.20)

Proof: Since z given by (2.14) is a strong solution (1.2), in particular z(t) €
D(A), D(A) given in (2.7), for every ¢ € (0,7"). It is easy to see that (u,v) is
a strong solution of (2.1).
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JFrom (2.14)

i(—F)_%
u U—dt

it +o(t, 06 and  w(t, ) = 2(t,0). (2.21)

and z(t, () € L*(0,T), according to the Trace Theorem for Lipschitz domain,
p.15 of [7], therefore (2.19) and (2.20) follow respectively from (2.12) and
(2.13). The proof is complete. |

Although we are interested in the study the influence of the nonlinear bound-
ary condition in the problems, we should observe that we have existence of
strong solution in more general situation. In fact, we can consider

U — Ugy — Upge + ¢(Lx,u,u) =0, 0<z <l 0<t<T;

{ u(t,0) = 0 (2.22)
Uy (T, 0) + uge(t, 0) = p(ue(t, 0)),

where

q1) the application (t,z) — ¢(t,z,w) belongs to L*(0,T; L*(0,()), for every
fixed w € H;

q2) there exists k£ > 0, such that

lq(t, x,w1) —q(t, @, w2)|200,0) < kllwy —well3, VE€[0,T], Yw,w, € H.

This problem can be viewed as an abstract evolution equation in the Hilbert
space H
W+ Aw + B(t,w) =0 (2.23)

where B : [0,T] x H — H is given by
B =(0,q). (2.24)
JFrom the assumptions ¢; and ¢, we have that B satisfies:
By) for every w € H, the application ¢t — B(t,w) belongs to L*(0,T;H);
By) there exists k£ > 0, such that
|B(t, w,) — B(t,wq)|| < k||lwy —wyl|, Vte€[0,T], Yw,wy € H.
Under the above assumptions we have

Theorem 2.2 For every wy € H, there exists a unique strong solution w €

C([0, T];H) of (2.23)) satisfying w(0) = wy.
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Proof: We will use the method of Brézis [3]. Since, for every w € C([0,T]; H),
B(t,w(t)) € L*(0,T;H), we can consider the sequence w, in C([0,T];H),
defined by wg(t) = wy and wy,; is the weak solution of

Wnt1(t) + A(wn11(t)) = =B(t, wn(1))
wn+1(0) = Wy

which exists by the theorem 2.1. Using the first inequality of lemma 3.1 of [3],
we obtain

[wn11(t) = wa(t)]] < /0IIB(U,wn(U))—B(ann—l(a))da

< / l9a(0) — a1 (0) |do,

therefore (kt)"
w1 (t) — wa(®)|| < . [|wy — wol| Lo

Thus, the sequence w, converges uniformly to w in [0,7], so w is a weak
solution of

w(t) + A(w(t)) = —=B(t, w(t))

w(0) = wy.
Now, since B(t,w(t)) = (0,q(t,-,w(t))) and it is easy to see that ¢(,-, w(t)) €
L*(0,T; L*(0,()), we have from theorem 2.1 that w is a strong solution of
(2.23). The proof is completed. |

It is not difficult to see that the strong solutions, given by this theorem,
depend on continuously of the initial data. More specifically, we have that
there exists a positive constant ¢ such that

lw(t) — @ ()] oo o.17570) < €llwo — Wol|,

where w(t) and w(t) are solutions of (2.23) with initial conditons wy and @y,
respectively.

3. EXISTENCE OF ATTRACTORS IN L2

We will start by constructing an equivalent norm in the space H

Lemma 3.1 If W(w) is given by

W(w) =W(u,v) = /0 [%(u')2 + %122 + 20uv | dx (3.1)
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where

0<f< (3.2)

202+ 1
then, WY2 is an equivalent norm in H.

Moreover, there exists a positive constant A such that

¢
| 1008 =12 280" 2819] do < =\ (1 +1gP)
for every f,g € L*(0,7).

Proof: Using the Poincaré (Ju| < (¢/+/2)|u'[) and the Schwarz inequalities, we

have L
) < [ e < T+ o)

Using (3.2) we can see that

Therefore, if n = 1/2 — 3¢/+/2, we have
0 (Ju'[? + [o?) < W (u,0) < (Ju'* + [v]?),
then W1'/2 is an equivalent norm in .

The second part of the lemma follows noting that

l
/0 (B2 = 1) f? = 2B9° — 28 fg] dw < (B¢ = V)| fI* — 2B]g|* + 28| f]|g|

and, for  satisfying (3.2), the right hand side this inequality is a negative
definite form. 1

Theorem 3.1 If g,h € L>®(IR™"; L*(0,()), then the problems (2.1) and (1.2)
are bounded dissipative. More precisely, if (u,v) and z are the solutions of
(2.1) and (1.2), with initial conditions (ugy, vy) and zy, respectively, then there
exist positive constants ¢y, co and pu such that

I(u(®), v@)ll < ell(uo, vo)lln €™ + c2 (3.3)
lz(t)] < ci|zo] e ™ + ey, (3.4)

Moreover, for zy € Hyy and r positive, there exist positive constants a,b, with
b =0b(r) depending on r, such that

t+r
/ ©(2(s))ds < a|zl* e +b, t>0. (3.5)
¢
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Proof: From the relation between the two problems the estimate (3.4) follows
from (3.3). To prove (3.3) it is enough to consider initial data in the domain
D(A). Using the equation (2.1) and the Poincaré inequality (|v|* < (¢£2/2)[v']?),
we obtain after an integration by parts that for almost every ¢

W) = (), v() <

[ 1 =0 = 2507 = 200 e + (56)
28u(f) + v(0)](u+v)'(£) + /0 28u+vlg(t)de.  (3.7)

The first integral, line (3.6), can be estimated using lemma 3.1

/0 (B2 — 1)())? — 28(u')? — 260 ] dx < —A (lW]? + |2

To estimate the terms in line 3.7, we observe that (u + v)'(¢) satisfies the
boundary condition, so it is bounded by some constant M, then using (2.18)
we can show that there exists a positive constant ¢, such that, for every ¢ > 0

[28u(l) + v(0)](u+v)'(£) < ¢ ((5 (Ju']* + [0']?) + %M2> :

Using the Poincaré inequality we obtain also
¢ 1
[ s ogtors < (5 + 0P+ Slal?).
0

Choosing ¢ sufficiently small, we obtain positive constants u;, = 1,2, and
K, such that

W(t) < = (' + ') + K < —pW(t) + K.

Solving this differential inequality we obtain

K
W(t) < e ™'W(0) + e
2

that implies (3.3)

To prove the last inequality. We have that A is the sub differential of the
functional ¢ and ¢(0) = 0, therefore ¢(z) < (Az, z). So, multiplying (1.2) by
z we obtain

512+ e(z) < = (G(2), 2) + (b, 2).
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The operator G satisfies (2.17), then, using (2.11), we obtain for every ¢ > 0
a constant M depending on 0 such that

[(G(2(1), 2() | < 0 (2(t) + M(|2()]* + 1)
and, since
|(h(t), () | < e (2 +1),

we have grouping the equivalent terms and choosing a convenient small value
for 0, we obtain

d

ZIFOF +9(:(0) < ar+alz(0)),

for some positive constants a;, as. Integrating this inequality from ¢ to t 4 r
we obtain

t+r t+r
/ ©(2(s))ds < |2(t)|* + arr + ag/ |2(5)|?ds.
t t
This inequality and (3.4) imply (3.5). ]

Theorem 3.2 If h € L>®(IR *;L*(0,¢)), then the solution operator Tj(t) :
L*(0,¢) — L?(0,¢), associated to the solution of (1.2), is a compact operator
fort > 0.

Proof: Multiplying the equation (1.2) by ¢ € H;, we obtain

(21, @) = 2a(t,€) G(0) = (22, Pa) — (G(2), @) + (h, ), (3.8)
therefore (3.5) and (3.8) imply that z, € L*(0,T; H} ;) and

| Wl e < ()7 (39)

To prove the compactness it is enough to consider initial data in a dense
sub set of L?(0,¢). Let B be the bounded set B = B(r) N Hy o, where B(r)
the ball of L?(0, ¢) with center in zero and radius r, and T}(t)(zo) the solution
of (1.2) with initial condition z.

i From (3.5) and (3.9)
B = {Ti(.)(20); 20 € B}

is a bounded set in the Banach Space

dv

W ={ve L2(0,T; Hip); v = =

€ L*(0,T; Hi,}.
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Therefore, from [6, thm 5.1], B is precompact set in L?(0,T; L%(0,¢)). Then,
if (z,,) is a sequence in B, taking subsequences if necessary, we can suppose
that (7},(-)(z,)) converges to some function z(-) € L?(0,T’; L*(0,¢)), and also,
for almost every 7 € (0,7,

Th(7)(2n) = 2(7), as n — oc. (3.10)
Consider now the evolution operator S(-)(z, h) given by
S(t)(z, h) = (Th(t)z, hy),

where h; is the translation of h, hy(7) = h(t + 7). ;From [8] S(t): t > 0is a
dynamical system. Therefore, for ¢ > 0, there exists 7 € (0, ¢) such that (3.10)
is true, then

(Th(t)zn, he) = S(t)(zn,h) =St —71)S(7)(2n, h) = St — 7)(Th(7) 20, hr)
— St —71)(2(1),hs) = (Th.(t = 7)2(7), ht)
implies the compactness of T),(t).

Denoting by v,,(t) the dynamical system given by the problem 2.1, when
the initial condition u(0) = ug € Hi is fixed, we have from the two previous
theorems and the relation 2.14, the following result

Theorem 3.3 Under the above conditions the two dynamical systems z(t) and
Uy, (t), have compact global attractors in L*(0, ().

4. EXISTENCE OF ATTRACTORS IN H,

We will start doing some estimates of the solution z(¢) of (1.2) when the initial
condition z(0) € Hyp. Using theorem 3.6 of [3], we have that ¢ — ¢(2(¢)) is
absolutely continuous and

5 P(E(0) = (Ae(t), 2(1)), ae.
then J
So(a(1)) = — A0 + (A(t), ~G(2) + B, (11)

and integrating in ¢t we obtain

/0 Az(s)Pds + o (=(1))
< / A(3)] [h(s) - G(z(s))]ds
< (2(0)) + / —| Az (s |ds+/ |G (2(s))] ds+/ |h(s)|*ds.
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Using (2.11) and (2.17), we obtain, for ¢ € [0,71], that

%/0 |Az(s)2ds + o(2(t)) < ¢(2(0)) +c1 + 02/0 ©o(z(s))ds.

for some constants ¢y, ¢s.

Thus, from Gronwall inequality, there exists a constant C'(¢(2(0)),T) de-
pending on ¢(2(0)) and T such that

p(2(1)) < Clp(2(0)),T) (4.2)

/0 Az(s)Pds < C(e(=(0)), T), (4.3)

in particular, we have z € L*(0,T; Hy o) N L*(0,T; H*(0,()).

Moreover, if 21 (¢) and 2,(t) are solutions with initial condition on H; p, we
have using (2.8)

[(z21(1)" = (2(0)']* < (Aa(t) — Aza(t), 21(t) — 22(1) =
1d

52 151(0) = (0P = (G (1) = G (1), 2(t) - 2(1).

Since G is Lipschtz, we obtain after an integration in t
12 1 2
/ (6~ Gl o+ gl =00
1 )2
21(0) — 22(0)" + ¢ |Z1 ) — za(s)[*ds,

(N} I

therefore, from Gronwall inequality, there exists a constant C' depending on
T, such that

|21(t) — 22(t)| < €' [21(0) — 22(0)] (4.4)
and ,
/0 |(21(5))" = (22(5))']*ds < C [21(0) — 22(0)? (4.5)
for t € [0, T7].

Lemma 4.1 If z(t) = T(t)zo, t > 0, denotes the solution of the problem (1.2)
with initial condition z(0) = zy, then the following operators are continuous:

i) R™ — Hpy
t — T(t)ZU,
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for fized zo € Hyp, and

ZZ) Hl,g — Hl,O
20 — T(t)Zo

for fixed t > 0.

Proof: Let (t,) be a sequence in IR * converging to ¢, we know that (z(¢,))
converges to z(t) in L?(0,¢) and, using lemma 3.6 of [3], (¢(z(t,))) converges
to ¢(z(t)). Then, from (2.11), |(2(¢,))’| is bounded, therefore, there exists a
sub sequence of (z(t,)), that we will keep denoting by (2(t,)), that converges
weakly to z(t) in Hy p.

First of all we claim that the weak convergence implies the convergence of
(2(tn, €)). In fact considering a smooth function ¢ such that ¢(0) = 0 and
o(¢) # 0, we obtain integrating by parts

/0 2 (tn, v)d(x)dx = z(t,, £) (L) —/0 2(tn, )¢ (x)dx

and
/0 2t 2)(x)da = =(t, 0)6(0) — /0 ot )¢ () da

Thus, passing to the limit, z(¢,,¢) — z(t,¢), what proves our claim. Next,
since p is continuous and

l2(ta) e = 200 (2(tn) — p(2(tn, 0))],

we have ||2(t,) ||z, — [|2(t)] #,, that implies the strong convergence of (z(¢,))
to z(t) and the continuity of the first operator is proved.

Now we will prove the continuity of the second operator, In fact, what we
have is a stronger result:

Theorem 4.1 If (z,) is a bounded sequence in Hyy and converges to zy in
the L*(0,¢)-norm, then the corresponding solutions of (1.2) z,(t) = T(t)zo,
converges to z(t) = T'(t)zy in Hyy, for fired t > 0, as n — oco. In particular
the operator ii) given in lemma 4.1 is a compact operator.

Proof: We have (p(zp,)) bounded, then from (4.2) and (2.11), both sequences
(p(2(t))) and (|(2,(t))'|) are uniformly bounded for ¢t € [0,7]. The conver-
gence 2, — 2p in L?*(0,¢) and (4.5) imply the convergence

2z, — 7 1n L2(0, T; Hyp),
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therefore z,,(7) — z(7) in H; for almost every 7 € [0,7].
For t € [0,T],

|o(2n(t)) = p(2()] < [0(2a(t)) = ¢ (2a(7))]
+ p(zn(7)) = e(2(7))] + le(2(7)) = @(2(1))].)(4.6)

The first term in the right hand side satisfies

Planlt) = p(en() = [ Lln(s))ds

and from (4.1)
d
dt”
therefore the sequences (d/dt(¢(z,(t)))) are a uniform bounded in L?(0, ¢) for
every t € [0,7]. Then (4.6) implies ¢(z,(t)) = ¢(2(¢)) for every t € [0,T7], as
n — oo. Therefore, the same argument we have just used in the first part of
the theorem implies that z,(t) — 2(t) in H, p-norm, as n — oo. |

(2(t) < |Gz()* + ()%, (4.7)

Theorem 4.2 If h € L>(0,00;L*(0,)), then there exists a bounded set in
H g that attracts all the solutions of the problem (1.2) with initial condition
in a sub set of Hyg that it is bounded in L*(0,¢). In particular, the problem
(1.2) is bounded bounded dissipative in H, .

Proof: If z(t) is a solution of the problem (1.2) with initial condition in H g
we have, using (4.7), that ¢(z(t)) satisfies the differential inequality

Zo(2(0) < ap(t) +ax+ BOF, >0 (4.8)

where a1, as are constants.

For solution with initial conditions in H; and bounded in L?(0,¢), (3.5)
implies that ftHT ©(z(s))ds is less than a fixed constant for ¢ sufficiently large,
then we can use the Uniform Gronwall Lema, see [9, pg. 89|, to obtain the

result of the theorem. |

As consequence of the two previous theorems and the relation 2.14 we have

Theorem 4.3 Under the above conditions, the dynamical system z(t) given
by 1.2 has a compact global attractor in Hyo. Moreover, for v(0) € Hp,
u(t) + v(t), given by 2.1 has also a compact global attractor in Hy o.
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