
On the Strongly Damped Wave Equation and

the Heat Equation with mixed boundary


onditions

Aloisio F. Neves

�

IMECC { UNICAMP - CP 6065

13081{970, Campinas, SP, Brazil

Abstra
t

In this paper we will study two one dimensional equations: the

Strongly Damped Wave Equation and the Heat Equation, both with

mixed boundary 
onditions. We will prove existen
e of global strong

solutions and the existen
e of 
ompa
t global attra
tors for these equa-

tions in two di�erent spa
es.

1. Introdu
tion

In this paper we study existen
e of strong solutions and existen
e of global


ompa
t attra
tors for the following one dimensional problems:

The Strongly Damped Wave Equation,

u

tt

� u

xx

� u

txx

= g(t); 0 < x < `; 0 < t < T ;

�

u(t; 0) = 0

u

x

(t; `) + u

tx

(t; `) = �(u

t

(t; `));

(1.1)

and the Heat Equation

z

t

� z

xx

+G(z) = h

�

z(0) = 0

z

x

(`) = �(z(`)):

(1.2)

�
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Here ` and T are positive 
onstants, � : IR ! IR is a non-in
reasing

and bounded fun
tion, g; h 2 L

1

(0; T ;L

2

(0; `)), and G is an operator from

a sub spa
e of H

1

into L

2

. In the 
ase where � is not 
ontinuous, we will

understand �(x

0

), at a point of dis
ontinuity x

0

, as being the whole interval

[�(x

0

+ 0); �(x

0

� 0)℄. In this 
ase � will be a multi-valued fun
tion, and the

"equal signs" in the last equations of (1.1) and 1.2 will be 
hanged to "belong

signs". So, the boundary 
onditions at x = ` will be written respe
tively as

u

x

(t; `) + u

tx

(t; `) 2 �(u

t

(t; `)) and z

x

(`) 2 �(z(`))

or equivalently,

(u

t

(t; `); u

x

(t; `) + u

tx

(t; `)) 2 � and (z(`); z

x

(`)) 2 �

where � is the graph of the multi-valued fun
tion �

The existen
e of global solutions for these two problems 
an be obtained

using the Theory of Monotone Operators. The problem 1.2 gives rise to a

maximal monotone operator A that is of sub di�erential type, A = �', where '

is a lower semi 
ontinuous and 
onvex fun
tional. This problem was studied in

[2℄ under some 
onditions on G, in parti
ular the existen
e of strong solutions

was proved.

Our goal is to obtain existen
e of global 
ompa
t attra
tor. To rea
h this

goal, �rst of all, we will obtain a relation between the solutions of the two

problems. With this relation we 
an use one problem to get properties of the

other, in parti
ular this relation we will be used to prove the existen
e of strong

solutions for the problem 1.1. On
e we have existen
e of solutions, we will start

working in order to get the existen
e of the attra
tors. For our purpose, we

will study the problem 1.2 in two di�erent spa
es L

2

and H

1

and using the

relation between the solutions we will prove the existen
e of attra
tors for the

problems. More spe
i�
ally, setting u

t

= v, where u(t) is solution operator

given by 1.1, we will study the evolution of three operators, z(t) given by 1.2,

in the spa
es L

2

and H

1

, u(t)+ v(t) in the spa
e H

1

and v(t) in the spa
e L

2

.

To obtain the results we will use the following pro
edures: To prove the

bounded dissipativeness of the problem 1.1 we will 
onstru
t an appropriate

equivalent norm in the spa
e. The bounded dissipativeness of 1.2 in H

1

will be

obtained using the UniformGronwall Lemma with some appropriate estimates.

The prove of the 
ompa
tness of the operators will be done using arguments

of Aubin-Lion's type.

Asymptoti
 behavior of paraboli
 equations with monotone prin
ipal part

was re
ently studied by Carvalho and Gentile in [4℄, the di�eren
e with our


ase, problem 1.2, is that our fun
tional ' is not equivalent to the norm of the

spa
e.
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2. Abstra
t Formulation and Existen
e of Solutions

As usual in wave equations 
ontext, setting v = u

t

, the equation (1.1) 
an

be seen as a system:

u

t

= v

v

t

= (u+ v)

xx

+ g; 0 < x < `; 0 < t < T ;

�

u(t; 0) = 0

u

x

(t; `) + v

x

(t; `) = �(v(t; `));

(2.1)

Therefore, our problem (1.1) 
an be viewed as an evolution equation

_w + Aw = f(t) (2.2)

in the Hilbert spa
e

H = H

1;0

� L

2

(0; `);

H

1;0

= fu 2 H

1

(0; `) : u(0) = 0g;

with the inner produ
t:

h(u

1

; v

1

); (u

2

; v

2

)i

H

=

Z

`

0

(u

0

1

u

0

2

+ v

1

v

2

)dx;

and

A : D(A) � H :! H

given by

A(u; v) = (�v; �(u+ v)

00

);

on the domain

D(A) = f(u; v) 2 H

1;0

�H

1;0

:

(u+ v) 2 H

2

(0; `) and (u+ v)

0

(`) 2 �(v(`))g (2.3)

Throughout the paper we will denote respe
tively by h � ; � i and j � j the

usual inner produ
t e norm of L

2

. We will use the terminology of [3, Br�ezis℄

and [5, Hale℄.

Lemma 2.1 The operator A is maximal monotone.

Proof: If w

1

= (u

1

; v

1

) and w

2

= (u

2

; v

2

) are in D(A), we have integrating

by parts that

hw

1

� w

2

; Aw

1

� Aw

2

i

= �(v

1

(`)� v

2

(`))[(u

1

+ v

1

)

0

(`)� (u

2

+ v

2

)

0

(`)℄ +

R

`

0

(v

0

1

� v

0

2

)

2

dx:
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Sin
e � is non-in
reasing and (u

i

+ v

i

)

0

(`) 2 �(v

i

(`)), i = 1; 2, we have

hw

1

� w

2

; Aw

1

� Aw

2

i � 0;

therefore, A is a monotone operator.

We will prove that A is maximal by showing that R(I +A) = H. In fa
t, if

(f; g) 2 H we 
onsider z as being the unique solution of the ODE problem:

�

z � 2z

00

= f + 2g := h 2 L

2

(0; `)

z(0) = 0; z

0

(0) = a 2 IR

where a will be 
hosen 
onveniently. Sin
e z 2 H

2

(0; `) \ H

1;0

and f 2 H

1;0

,

setting

u =

1

2

(z + f) and v =

1

2

(z � f)

we have that u; v 2 H

1;0

, u+ v = z 2 H

2

(0; `) and

�

u� v = f

v � (u+ v)

00

= g:

Therefore, it remains to be proved that (u + v)

0

(`) 2 �(v(`)) or equivalently

z

0

(`) 2 ~�(z(`)), where

~�(x) = �

�

1

2

(x� f(`)

�

:

We will obtain that 
ondition 
hoosing the 
onstant a appropriately. Setting

M =

�

0 1

1=2 0

�

we have from the variation 
onstant formula

�

z(`)

z

0

(`)

�

= ae

`M

�

0

1

�

�

1

2

Z

`

0

e

(`�s)M

�

0

h(s)

�

ds: (2.4)

Sin
e

e

`M

�

0

1

�

=

�

p

2 sinh (`=

p

2)


osh (`=

p

2)

�

we have that the right hand side of (2.4) is a straight line in plane, parametrized

by a, with positive slope. Therefore, there will be a unique a that gives the

interse
tion with the non-in
reasing graph of ~�. The lemma is proved.

Considering solutions in the sense of Br�ezis [3℄, that is
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De�nition 2.1 Let f be in L

1

(0; T ;H). A 
ontinuous fun
tion w : [0; T ℄!H

is a solution (or strong solution) of

_w(t) + Aw(t) = f(t) (2.5)

if w satis�es

(i) w(t) 2 D(A); 8t 2 (0; T ),

(ii) w(t) is absolutely 
ontinuous (AC) on every 
ompa
t set K � (0; T )

(therefore _w(t) exists a.e. in (0; T )),

(iii) _w(t) + A(w(t)) = f(t), a.e. in (0; T ).

Moreover, w 2 C([0; T ℄;H) is a weak solution of (2.5) if there exist sequen
es

(f

n

) 2 L

1

(0; T ;H) and (w

n

) 2 C([0; T ℄;H) su
h that w

n

are strong solutions

of

_w

n

(t) + A(w

n

(t)) = f

n

(t);

f

n

! f in L

1

(0; T ;H) and w

n

! w uniformly in [0; T ℄.

We have from theorem 3.4 of [3℄ the existen
e of weak solution for the problem

2.1.

In order to prove that this weak solution is in fa
t strong we will look for a

relation between the solutions of 2.1 and the solutions of 1.2.

The problem 1.2 was studied in [2℄, where G is an operator

G : H

1;0

! L

2

(0; `)

not ne
essarily lo
al and h 2 L

2

(0; T ;L

2

(0; `)). The problem 
an be written

as the abstra
t evolution problem in L

2

(0; `)

_z +Az = F (t; z) (2.6)

where A : D(A) � H

1;0

! L

2

(0; `) is the operator given by

Az = �z

00

on the domain

D(A) = fz 2 H

1;0

\H

2

(0; `) : z

0

(`) 2 �(z(`))g: (2.7)

>From lemmas 2.1 and 2.2 of [2℄ we have that the operator A is stri
tly

monotone

hAz

1

�Az

2

; z

1

� z

2

i � jz

0

1

� z

0

2

j

2

(2.8)
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and of sub-di�erential type, A = �', where ' : L

2

(0; `) ! IR [ f+1g is a

proper, 
onvex and lower semi-
ontinuous fun
tion de�ned by

'(z) =

(

p(z(`)) +

1

2

R

`

0

z

0

(x)

2

dx; if z 2 H

1;0

+1 otherwise,

(2.9)

where p is given by

p(x) =

Z

x

0

��(s)ds: (2.10)

We should observe that ' may assume negative values, but the following esti-

mate is true

jz

0

j

2

� k

1

'(z) + k

2

; 8z 2 H

1;0

: (2.11)

where k

1

; k

2

are 
onstants, in parti
ular ' is bounded below.

Indeed, sin
e j�(s)j is bounded (by a 
onstant k), we have for z 2 H

1;0

p(z(`)) � �kjz(`)j = �k j

Z

`

0

z

0

(x)dx j � �k

Z

`

0

jz

0

(x)jdx

and then

Z

`

0

�

1

4

z

0

(x)

2

� k

2

�

dx �

Z

`

0

�

1

2

z

0

(x)

2

� kjz

0

(x)j

�

dx � '(z)

implies the estimate (2.11).

When G is Lips
htz 
ontinuous and h 2 L

2

(0; T ;L

2

(0; `)), it was proved,

theorems 3.2 and 4.1 of [2℄, that the solutions of (1.2) are strong, in parti
ular

z(t) 2 D(A), for every t 2 (0; T ). Moreover, from theorem 3.6 of [3℄, the

solution z satis�es:

p

t

dz

dt

(t) 2 L

2

(0; T ;L

2

(0; `)) (2.12)

and, when z(0) 2 D(') = H

1;0

,

dz

dt

(t) 2 L

2

(0; T ;L

2

(0; `)): (2.13)

Consider the following relations between the problems (2.1) and (1.2):

z(t; x) = u(t; x) + v(t; x)� u(t; `)�(x); (2.14)

G(z) = z(`)�) (2.15)

h(t; x) = g(t; x) + v(t; x) + u(t; `)�

00

(x) (2.16)

where � : [0; `℄ ! IR is a smooth fun
tion satisfying �(0) = 0, �(`) = 1 and

�

0

(`) = 0.
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The operator G given in (2.15) 
an be 
onsidered with values in L

2

(0; `) and

also with values in H

1;0

, in both of these 
ases G is Lips
htz 
ontinuous and

G also satis�es

jG(z)j � 
 jz

0

j; (2.17)

sin
e

jz(`)j = j

Z

`

0

z

0

(x)dxj � kz

0

k

L

1

; (2.18)

It is easy to see that if (u; v) is a solution of (2.1) than z, given by (2.14),

is the a solution of (1.2) with h given by (2.16) and with initial 
ondition

z(0) = u(0) + v(0).

Re
ipro
ally, if z is a solution of (1.2), we 
onsider the problem in H

1;0

given

by

du

dt

(t) + u(t)� J(t)u(t) = 0

u(0) = 0

where J(t)u(t) = G(u(t)) + z(t).

Sin
e J(t) : H

1;0

! H

1;0

, for t > 0, is globally Lips
htz, this problem has

existen
e and uniqueness of solutions, see theorem 1.4 of [3℄. If u(t) is this

unique solution, then 
onsidering v(t) given by the relation (2.14) and g by

the relation (2.16) we have that (u; v) satis�es the problem (2.1) with u(0) = 0

and v(0) = z(0).

Under these 
ondition we 
an prove the following result:

Theorem 2.1 If g 2 L

2

(0; T ;L

2

(0; `)), then for every w

0

= (u

0

; v

0

) 2 H

there exists a unique strong solution w = (u; v) 2 C([0; T ℄;H) of (2.1) su
h

that w(0) = w

0

. Moreover, the solution w = (u; v) satisfy:

p

t

d

dt

(u+ v)(t) 2 L

2

(0; T ;L

2

(0; `)) (2.19)

and, for v(0) 2 H

1;0

,

d

dt

(u+ v)(t) 2 L

2

(0; T ;L

2

(0; `)): (2.20)

Proof: Sin
e z given by (2.14) is a strong solution (1.2), in parti
ular z(t) 2

D(A), D(A) given in (2.7), for every t 2 (0; T ). It is easy to see that (u; v) is

a strong solution of (2.1).
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>From (2.14)

d

dt

(u+ v) =

dz

dt

+ v(t; `)� and v(t; `) = z(t; `): (2.21)

and z(t; `) 2 L

2

(0; T ), a

ording to the Tra
e Theorem for Lips
hitz domain,

p.15 of [7℄, therefore (2.19) and (2.20) follow respe
tively from (2.12) and

(2.13). The proof is 
omplete.

Although we are interested in the study the in
uen
e of the nonlinear bound-

ary 
ondition in the problems, we should observe that we have existen
e of

strong solution in more general situation. In fa
t, we 
an 
onsider

u

tt

� u

xx

� u

txx

+ q(t; x; u; u

t

) = 0; 0 < x < `; 0 < t < T ;

�

u(t; 0) = 0

u

x

(t; `) + u

tx

(t; `) = �(u

t

(t; `));

(2.22)

where

q

1

) the appli
ation (t; x) ! q(t; x; w) belongs to L

2

(0; T ;L

2

(0; `)), for every

�xed w 2 H;

q

2

) there exists k > 0, su
h that

jq(t; x; w

1

)� q(t; x; w

2

)j

L

2

(0;`)

� kkw

1

�w

2

k

H

; 8t 2 [0; T ℄; 8w

1

; w

2

2 H:

This problem 
an be viewed as an abstra
t evolution equation in the Hilbert

spa
e H

_w + Aw +B(t; w) = 0 (2.23)

where B : [0; T ℄�H ! H is given by

B = (0; q): (2.24)

>From the assumptions q

1

and q

2

, we have that B satis�es:

B

1

) for every w 2 H, the appli
ation t! B(t; w) belongs to L

2

(0; T ;H);

B

2

) there exists k > 0, su
h that

kB(t; w

1

)� B(t; w

2

)k � kkw

1

� w

2

k; 8t 2 [0; T ℄; 8w

1

; w

2

2 H:

Under the above assumptions we have

Theorem 2.2 For every w

0

2 H, there exists a unique strong solution w 2

C([0; T ℄;H) of (2.23)) satisfying w(0) = w

0

.
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Proof: We will use the method of Br�ezis [3℄. Sin
e, for every w 2 C([0; T ℄;H),

B(t; w(t)) 2 L

2

(0; T ;H), we 
an 
onsider the sequen
e w

n

in C([0; T ℄;H),

de�ned by w

0

(t) = w

0

and w

n+1

is the weak solution of

_w

n+1

(t) + A(w

n+1

(t)) = �B(t; w

n

(t))

w

n+1

(0) = w

0

whi
h exists by the theorem 2.1. Using the �rst inequality of lemma 3.1 of [3℄,

we obtain

kw

n+1

(t)� w

n

(t)k �

Z

t

0

kB(�; w

n

(�))�B(�; w

n�1

(�))d�

� k

Z

t

0

kw

n

(�)� w

n�1

(�)kd�;

therefore

kw

n+1

(t)� w

n

(t)k �

(kt)

n

n!

kw

1

� w

0

k

L

1

:

Thus, the sequen
e w

n


onverges uniformly to w in [0; T ℄, so w is a weak

solution of

_w(t) + A(w(t)) = �B(t; w(t))

w(0) = w

0

:

Now, sin
e B(t; w(t)) = (0; q(t; �; w(t))) and it is easy to see that q(t; �; w(t)) 2

L

2

(0; T ;L

2

(0; `)), we have from theorem 2.1 that w is a strong solution of

(2.23). The proof is 
ompleted.

It is not diÆ
ult to see that the strong solutions, given by this theorem,

depend on 
ontinuously of the initial data. More spe
i�
ally, we have that

there exists a positive 
onstant 
 su
h that

kw(t)� ~w(t)k

L

1

([0;T ℄;H)

� 
kw

0

� ~w

0

k

H

;

where w(t) and ~w(t) are solutions of (2.23) with initial 
onditons w

0

and ~w

0

,

respe
tively.

3. Existen
e of Attra
tors in L

2

We will start by 
onstru
ting an equivalent norm in the spa
e H

Lemma 3.1 If W (w) is given by

W (w) = W (u; v) =

Z

`

0

�

1

2

(u

0

)

2

+

1

2

v

2

+ 2�uv

�

dx (3.1)
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where

0 < � <

2

2`

2

+ 1

(3.2)

then, W

1=2

is an equivalent norm in H.

Moreover, there exists a positive 
onstant � su
h that

Z

`

0

�

(�`

2

� 1)f

2

� 2�g

2

� 2�fg

�

dx � �� (jf j

2

+ jgj

2

)

for every f; g 2 L

2

(0; `).

Proof: Using the Poin
ar�e (juj � (`=

p

2)ju

0

j) and the S
hwarz inequalities, we

have

�

�`

p

2

(ju

0

j

2

+ jvj

2

) �

Z

`

0

2�uvdx �

�`

p

2

(ju

0

j

2

+ jvj

2

):

Using (3.2) we 
an see that

�`

p

2

<

1

2

:

Therefore, if � = 1=2� �`=

p

2, we have

� (ju

0

j

2

+ jvj

2

) � W (u; v) � (ju

0

j

2

+ jvj

2

);

then W

1=2

is an equivalent norm in H.

The se
ond part of the lemma follows noting that

Z

`

0

�

(�`

2

� 1)f

2

� 2�g

2

� 2�fg

�

dx � (�`

2

� 1)jf j

2

� 2�jgj

2

+ 2�jf jjgj

and, for � satisfying (3.2), the right hand side this inequality is a negative

de�nite form.

Theorem 3.1 If g; h 2 L

1

(IR

+

;L

2

(0; `)), then the problems (2.1) and (1.2)

are bounded dissipative. More pre
isely, if (u; v) and z are the solutions of

(2.1) and (1.2), with initial 
onditions (u

0

; v

0

) and z

0

, respe
tively, then there

exist positive 
onstants 


1

; 


2

and � su
h that

k(u(t); v(t))k

H

� 


1

k(u

0

; v

0

)k

H

e

��t

+ 


2

(3.3)

jz(t)j � 


1

jz

0

j e

��t

+ 


2

: (3.4)

Moreover, for z

0

2 H

1;0

and r positive, there exist positive 
onstants a; b, with

b = b(r) depending on r, su
h that

Z

t+r

t

'(z(s))ds � ajz

0

j

2

e

��t

+ b; t � 0: (3.5)
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Proof: From the relation between the two problems the estimate (3.4) follows

from (3.3). To prove (3.3) it is enough to 
onsider initial data in the domain

D(A). Using the equation (2.1) and the Poin
ar�e inequality (jvj

2

� (`

2

=2)jv

0

j

2

),

we obtain after an integration by parts that for almost every t

_

W (t) =

d

dt

W (u(t); v(t)) �

Z

`

0

�

(�`

2

� 1)(v

0

)

2

� 2�(u

0

)

2

� 2�u

0

v

0

�

dx+ (3.6)

[2�u(`) + v(`)℄(u+ v)

0

(`) +

Z

`

0

[2�u+ v℄g(t)dx: (3.7)

The �rst integral, line (3.6), 
an be estimated using lemma 3.1

Z

`

0

�

(�`

2

� 1)(v

0

)

2

� 2�(u

0

)

2

� 2�u

0

v

0

�

dx � �� (ju

0

j

2

+ jv

0

j

2

)

To estimate the terms in line 3.7, we observe that (u + v)

0

(`) satis�es the

boundary 
ondition, so it is bounded by some 
onstant M , then using (2.18)

we 
an show that there exists a positive 
onstant 
, su
h that, for every Æ > 0

[2�u(`) + v(`)℄(u+ v)

0

(`) � 


�

Æ

�

ju

0

j

2

+ jv

0

j

2

�

+

1

Æ

M

2

�

:

Using the Poin
ar�e inequality we obtain also

Z

`

0

(2�u+ v)g(t)dx � 


�

Æ

�

ju

0

j

2

+ jv

0

j

2

�

+

1

Æ

kgk

2

�

:

Choosing Æ suÆ
iently small, we obtain positive 
onstants �

i

, = 1; 2, and

K, su
h that

_

W (t) � ��

1

(ju

0

j

2

+ jv

0

j

2

) +K � ��

2

W (t) +K:

Solving this di�erential inequality we obtain

W (t) � e

��

2

t

W (0) +

K

�

2

:

that implies (3.3)

To prove the last inequality. We have that A is the sub di�erential of the

fun
tional ' and '(0) = 0, therefore '(z) � hAz; zi. So, multiplying (1.2) by

z we obtain

1

2

d

dt

jzj

2

+ '(z) � �hG(z); zi+ hh; zi :
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The operator G satis�es (2.17), then, using (2.11), we obtain for every Æ > 0

a 
onstant M depending on Æ su
h that

j hG(z(t)); z(t)i j � Æ'(z(t)) +M(jz(t)j

2

+ 1)

and, sin
e

j hh(t); z(t)i j � 


�

jz(t)j

2

+ 1

�

;

we have grouping the equivalent terms and 
hoosing a 
onvenient small value

for Æ, we obtain

d

dt

jz(t)j

2

+ '(z(t)) � a

1

+ a

2

jz(t)j

2

;

for some positive 
onstants a

1

; a

2

. Integrating this inequality from t to t + r

we obtain

Z

t+r

t

'(z(s))ds � jz(t)j

2

+ a

1

r + a

2

Z

t+r

t

jz(s)j

2

ds:

This inequality and (3.4) imply (3.5).

Theorem 3.2 If h 2 L

1

(IR

+

;L

2

(0; `)), then the solution operator T

h

(t) :

L

2

(0; `) ! L

2

(0; `), asso
iated to the solution of (1.2), is a 
ompa
t operator

for t > 0.

Proof: Multiplying the equation (1.2) by � 2 H

1;0

, we obtain

hz

t

; �i = z

x

(t; `) �(`)� hz

x

; �

x

i � hG(z); �i+ hh; �i; (3.8)

therefore (3.5) and (3.8) imply that z

t

2 L

2

(0; T ;H

0

1;0

) and

Z

T

0

kz

t

k

2

H

0

1;0

dt � C(jz(0)j; T ): (3.9)

To prove the 
ompa
tness it is enough to 
onsider initial data in a dense

sub set of L

2

(0; `). Let B be the bounded set B = B(r) \ H

1;0

, where B(r)

the ball of L

2

(0; `) with 
enter in zero and radius r, and T

h

(t)(z

0

) the solution

of (1.2) with initial 
ondition z

0

.

>From (3.5) and (3.9)

�

B = fT

h

(:)(z

0

); z

0

2 Bg

is a bounded set in the Bana
h Spa
e

W = fv 2 L

2

(0; T ;H

1;0

); v

t

=

dv

dt

2 L

2

(0; T ;H

0

1;0

g:
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Therefore, from [6, thm 5.1℄,

�

B is pre
ompa
t set in L

2

(0; T ;L

2

(0; `)). Then,

if (z

n

) is a sequen
e in B, taking subsequen
es if ne
essary, we 
an suppose

that (T

h

(�)(z

n

)) 
onverges to some fun
tion z(�) 2 L

2

(0; T ;L

2

(0; `)), and also,

for almost every � 2 (0; T ),

T

h

(�)(z

n

)! z(�); as n!1: (3.10)

Consider now the evolution operator S(�)(z; h) given by

S(t)(z; h) = (T

h

(t)z; h

t

);

where h

t

is the translation of h, h

t

(�) = h(t + �). >From [8℄ S(t) : t � 0 is a

dynami
al system. Therefore, for t > 0, there exists � 2 (0; t) su
h that (3.10)

is true, then

(T

h

(t)z

n

; h

t

) = S(t)(z

n

; h) = S(t� �)S(�)(z

n

; h) = S(t� �)(T

h

(�)z

n

; h

�

)

! S(t� �)(z(�); h

�

) = (T

h

�

(t� �)z(�); h

t

)

implies the 
ompa
tness of T

h

(t).

Denoting by v

u

0

(t) the dynami
al system given by the problem 2.1, when

the initial 
ondition u(0) = u

0

2 H

1;0

is �xed, we have from the two previous

theorems and the relation 2.14, the following result

Theorem 3.3 Under the above 
onditions the two dynami
al systems z(t) and

v

u

0

(t), have 
ompa
t global attra
tors in L

2

(0; `).

4. Existen
e of attra
tors in H

1;0

We will start doing some estimates of the solution z(t) of (1.2) when the initial


ondition z(0) 2 H

1;0

. Using theorem 3.6 of [3℄, we have that t ! '(z(t)) is

absolutely 
ontinuous and

d

dt

'(z(t)) = hAz(t); z

t

(t)i; a:e:

then

d

dt

'(z(t)) = �jAz(t)j

2

+ hAz(t);�G(z) + hi; (4.1)

and integrating in t we obtain

Z

t

0

jAz(s)j

2

ds+ '(z(t))

� '(z(0)) +

Z

t

0

jAz(s)j jh(s)�G(z(s))jds

� '(z(0)) +

Z

t

0

1

2

jAz(s)j

2

ds+

Z

t

0

jG(z(s))j

2

ds+

Z

t

0

jh(s)j

2

ds:
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Using (2.11) and (2.17), we obtain, for t 2 [0; T ℄, that

1

2

Z

t

0

jAz(s)j

2

ds+ '(z(t)) � '(z(0)) + 


1

+ 


2

Z

t

0

'(z(s))ds:

for some 
onstants 


1

; 


2

.

Thus, from Gronwall inequality, there exists a 
onstant C('(z(0)); T ) de-

pending on '(z(0)) and T su
h that

'(z(t)) � C('(z(0)); T ) (4.2)

Z

t

0

jAz(s)j

2

ds � C('(z(0)); T ); (4.3)

in parti
ular, we have z 2 L

1

(0; T ;H

1;0

) \ L

2

(0; T ;H

2

(0; `)).

Moreover, if z

1

(t) and z

2

(t) are solutions with initial 
ondition on H

1;0

, we

have using (2.8)

j(z

1

(t))

0

� (z

2

(t))

0

j

2

� hAz

1

(t)�Az

2

(t); z

1

(t)� z

2

(t)i =

�

1

2

d

dt

jz

1

(t)� z

2

(t)j

2

� hG(z

1

(t))�G(z

2

(t)); z

1

(t)� z

2

(t)i :

Sin
e G is Lips
htz, we obtain after an integration in t

1

2

Z

t

0

j(z

1

(s))

0

� (z

2

(s))

0

j

2

ds+

1

2

jz

1

(t)� z

2

(t)j

2

�

1

2

jz

1

(0)� z

2

(0)j

2

+ 


Z

t

0

jz

1

(s)� z

2

(s)j

2

ds;

therefore, from Gronwall inequality, there exists a 
onstant C depending on

T , su
h that

jz

1

(t)� z

2

(t)j � C jz

1

(0)� z

2

(0)j (4.4)

and

Z

t

0

j(z

1

(s))

0

� (z

2

(s))

0

j

2

ds � C jz

1

(0)� z

2

(0)j

2

(4.5)

for t 2 [0; T ℄.

Lemma 4.1 If z(t) = T (t)z

0

; t � 0, denotes the solution of the problem (1.2)

with initial 
ondition z(0) = z

0

, then the following operators are 
ontinuous:

i) IR

+

! H

1;0

t ! T (t)z

0

;
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for �xed z

0

2 H

1;0

, and

ii) H

1;0

! H

1;0

z

0

! T (t)z

0

:

for �xed t > 0.

Proof: Let (t

n

) be a sequen
e in IR

+


onverging to t, we know that (z(t

n

))


onverges to z(t) in L

2

(0; `) and, using lemma 3.6 of [3℄, ('(z(t

n

))) 
onverges

to '(z(t)). Then, from (2.11), j(z(t

n

))

0

j is bounded, therefore, there exists a

sub sequen
e of (z(t

n

)), that we will keep denoting by (z(t

n

)), that 
onverges

weakly to z(t) in H

1;0

.

First of all we 
laim that the weak 
onvergen
e implies the 
onvergen
e of

(z(t

n

; `)). In fa
t 
onsidering a smooth fun
tion � su
h that �(0) = 0 and

�(`) 6= 0, we obtain integrating by parts

Z

`

0

z

0

(t

n

; x)�(x)dx = z(t

n

; `)�(`)�

Z

`

0

z(t

n

; x)�

0

(x)dx

and

Z

`

0

z

0

(t; x)�(x)dx = z(t; `)�(`)�

Z

`

0

z(t; x)�

0

(x)dx

Thus, passing to the limit, z(t

n

; `) ! z(t; `), what proves our 
laim. Next,

sin
e p is 
ontinuous and

kz(t

n

)k

2

H

1;0

= 2['(z(t

n

))� p(z(t

n

; `))℄;

we have kz(t

n

)k

H

1;0

! kz(t)k

H

1;0

that implies the strong 
onvergen
e of (z(t

n

))

to z(t) and the 
ontinuity of the �rst operator is proved.

Now we will prove the 
ontinuity of the se
ond operator, In fa
t, what we

have is a stronger result:

Theorem 4.1 If (z

0

n

) is a bounded sequen
e in H

1;0

and 
onverges to z

0

in

the L

2

(0; `)-norm, then the 
orresponding solutions of (1.2) z

n

(t) = T (t)z

0

n


onverges to z(t) = T (t)z

0

in H

1;0

, for �xed t > 0, as n ! 1. In parti
ular

the operator ii) given in lemma 4.1 is a 
ompa
t operator.

Proof: We have ('(z

0

n

)) bounded, then from (4.2) and (2.11), both sequen
es

('(z

n

(t))) and (j(z

n

(t))

0

j) are uniformly bounded for t 2 [0; T ℄. The 
onver-

gen
e z

0

n

! z

0

in L

2

(0; `) and (4.5) imply the 
onvergen
e

z

n

! z in L

2

(0; T ;H

1;0

);
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therefore z

n

(�)! z(�) in H

1;0

for almost every � 2 [0; T ℄.

For t 2 [0; T ℄,

j'(z

n

(t))� '(z(t))j � j'(z

n

(t))� '(z

n

(�))j

+ j'(z

n

(�))� '(z(�))j + j'(z(�))� '(z(t))j:)(4.6)

The �rst term in the right hand side satis�es

'(z

n

(t))� '(z

n

(�)) =

Z

t

�

d

ds

'(z

n

(s))ds

and from (4.1)

d

dt

'(z(t)) � jG(z(t))j

2

+ jh(t)j

2

; (4.7)

therefore the sequen
es (d=dt('(z

n

(t)))) are a uniform bounded in L

2

(0; `) for

every t 2 [0; T ℄. Then (4.6) implies '(z

n

(t))! '(z(t)) for every t 2 [0; T ℄, as

n ! 1. Therefore, the same argument we have just used in the �rst part of

the theorem implies that z

n

(t)! z(t) in H

1;0

-norm, as n!1.

Theorem 4.2 If h 2 L

1

(0;1;L

2

(0; `)), then there exists a bounded set in

H

1;0

that attra
ts all the solutions of the problem (1.2) with initial 
ondition

in a sub set of H

1;0

that it is bounded in L

2

(0; `). In parti
ular, the problem

(1.2) is bounded bounded dissipative in H

1;0

.

Proof: If z(t) is a solution of the problem (1.2) with initial 
ondition in H

1;0

we have, using (4.7), that '(z(t)) satis�es the di�erential inequality

d

dt

'(z(t)) � a

1

'(z(t)) + a

2

+ jh(t)j

2

; t > 0 (4.8)

where a

1

; a

2

are 
onstants.

For solution with initial 
onditions in H

1;0

and bounded in L

2

(0; `), (3.5)

implies that

R

t+r

t

'(z(s))ds is less than a �xed 
onstant for t suÆ
iently large,

then we 
an use the Uniform Gronwall Lema, see [9, pg. 89℄, to obtain the

result of the theorem.

As 
onsequen
e of the two previous theorems and the relation 2.14 we have

Theorem 4.3 Under the above 
onditions, the dynami
al system z(t) given

by 1.2 has a 
ompa
t global attra
tor in H

1;0

. Moreover, for v(0) 2 H

1;0

,

u(t) + v(t), given by 2.1 has also a 
ompa
t global attra
tor in H

1;0

.



REFERENCES 17

Referen
es

[1℄ Boldrini, J.L. and Neves, A.F., Periodi
 motions of su
ker rod pumping

systems, Nonlinear Analysis T.M.A., vol. 22, n

o

�

7, (1994), 797-808.

[2℄ Bon�m, V. & Neves. A.F.; A one dimensional heat equation with mixed

boundary 
onditions, J. of Di�erential Equations, vol. 139, n

o

�

2, (1997).

319-338.

[3℄ Br�ezis, H., Op�erateurs Maximaux Monotones et Semi-Groupes de Contra
-

tions dans les Espa
es de Hilbert, North-Holland, Amsterdam, 1973.

[4℄ Carvalho, A.N. & Gentile, C.B. Asymptoti
 behavior of nonlinerar paraboli


equations with monotone prin
ipal part, Cadernos de Matem�ati
a, Vol. 01,

No. 1, 145-166, S~ao Carlos, Brazil, 2000.

[5℄ Hale, J.K., Asymptoti
 behavior of dissipative systems, Mathemati
al sur-

vey and monographs, 25, AMS, Providen
e, 1988.

[6℄ Lions, J. L. Quelques M�ethodes de R�esolution des Probl�emes aux Limites

non Lin�eaires, Dunod, Paris, 1969.

[7℄ Ne�
as, J., Les M�ethodes Dire
tes en Th�erie des

�

Equations Elliptiques, Mas-

son, 1967

[8℄ Sell, G.R., Nonautonomous di�erential equations and topologial dynami
s

I, II, Trans. Amer. Math. So
., 127, (1967), 241-283.

[9℄ Temam, R., In�nite Dimensional Dynami
al Systems in Me
hani
s and

Physi
s, Springer-Verlag, New York, 1988.


