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Abstract

In this paper we discuss some properties of a one dimensional wave
equations. Our main purpose is to study how the excitations are trans-
mitted through the system’s rod. More precisely, we will obtain prop-
erties giving the precise behavior of one end of the rod from data given
in the other end.

1. INTRODUCTION

In this paper we discuss some properties of the following nonhomogeneous
mixed boundary value problem:

Uy — Uz = f(t,x); 0<ax <l t>0,

u(t,0) = p(t) w(0,z) = p(z) (1.1)
Be { us(t,0) = n(0). ¢ { u(0,) = ().

We study this problem looking for results that give us the behavior of the
end x = ¢ of the rod, from data given in the other end x = 0. More precisely,
we want information about the velocity w,(t,¢) and the stress u,(¢,¢) in the
end of the rod. We suppose that the function p(t) is given, and in the other
side, the function n(t) € L?(0,T) is unknown a priori. We use the ideas of
Lions and Magenes [5], of solutions in transposition sense, to prove existence
and uniqueness of solution for our case that has mixed boundary condition.
We obtain sharp properties about the behavior of the ends of the rod, in
particular, an auxiliary function, that depends on p(t), that gives the precise
behavior of the other end. The techniques used are well known and the paper
is finished with an application to a model of a mechanical system.
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FAPESP, Brazil.
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2. EXISTENCE AND UNIQUENESS OF SOLUTIONS

We will start by given the definition of solution in sense of transposition (cf.
Lions and Magenes, [5]) for case where the boundary conditions are mixed.

In the homogeneous case:
U — Uz = f(t,x); O0<x <l t>0,

u(t,0) = 0, (2.1)
ug(t,0) =0,

as usual in the context of wave equations, we introduce the variable u; = v
and look at the problem as an evolution equation in Hilbert space

H =Ho X L2((),g)7
where H,  is the Hilbert Space
Hyy={ue H'0,¢): u(0) =0}

with the inner product
¢
(uy,u9) = /0 ujusde.

We have, by standard methods of semigroups, the following result:

Proposition 2.1 The operator A is the infinitesimal generator of a C° Group,
therefore for every initial condition (p,v) € H and f € L'(0,T;L?*(0,())
there exists a unique solution of (2.1), u € C(0,T; Hy) N C*(0,T; L*(0,0)).
Moreover, there exists a constant C = C(T) such that

luell 220 + tellz20) < C {60 )l + 1l 0.iz20.00)]

and also
T
ut, 02+ [ walt,07dt < C[l@ )+ 1l orzzonn] - (22)

The estimate (2.2) can be obtained as follows: The first term is estimated
using Schwarz and Poincaré inequalities

¢ d ¢
u(t, £)? :/ d—(u2)dx :/0 2t dr < cl|ug|| 22 4

0 dx
and the second term is estimated using multiplier techniques. We multiply the
differential equation in (2.1) by q(x)u,, with ¢ € C'*([0, £]) such that ¢(0) = —
and ¢(¢) = 0, and integrate by parts with respect to x and ¢, see J.L. Lions,
3], for details.
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The problem with nonhomogeneous boundary conditions:
Uy — Uz = 0; O0< <l t>0,

u(t.0) = p(t) wo.r) = pla) (2

in the case where p and 7 are smooth functions, can be treated as usual through
an appropriate change of variables. In fact by taking

u=U+w,
where ) )
r x x
U= (1 t7- 2—€2> p(t) + 2—577(75),

one can see that w will satisfy the problem (2.1).

The general case, when p and 1 are L? functions, the solutions will be
understood in the sense of transposition, see [3], [4], [5]. For every f €
LY(0,T;L?(0,¢)), in view of the time-reversibility and as a consequence of
the previous Proposition, the problem

Uy — Uge = f(t,x); O<ax <l t>0,

u(t,0) =0 w(T,z) =0
BC { (1, 0) = 0, 1€ { (T, ) = 0,

has a unique solution @ € C(0,T; Hy ) N C*(0,T; L*(0,¢)) satisfying
[a(t, Ol 2.0 + 172(E, 0) 201y < Cllfllr0i220.0)- (2.4)

Multiplying by @ the differential equation in (2.3) and integrating formally by
parts with respect to x and ¢, we obtain the following identity:

Tt
/ /ufd:rdt = —/ z)uy (0, x)dx + (¢, u(0))
o Jo
+/ u(t,?) dt—l—/ t)u,(t,0)dr. (2.5)
The right hand side of (2.5) is well defined considering ¢ € L?*(0,¢), p,n €

L*(0,7) and understanding (), @(0)) in the sense of the duality of H; g, ap-
plying ¢ € (Hi )" to the elements u(0) € H; .

Definition 2.1 A function u : [0,T] — L*(0,¢) is a (weak) solution of (2.3)
in the sense of transposition if (2.5) holds for every f € L*(0,T; L*(0,¢))
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We have the following result.

Proposition 2.2 For every p,n € L*(0,T), ¢ € L*(0,£) and ¢ € (Hyp)
there exists a unique solution u (in the sense of transposition) of (2.3) in the
class

u € C(0,T; L*(0,0)) (2.6)
u, € C(0,T5 (Hyp)'). (2.7)

Moreover there exists a positive constant C' such that

lull oo o200, < C [||M||L2 + [lnllzz + [lelle + ||¢||(H1,o)'] (2.8)

Proof. Under the hypotheses and in view of the estimate (2.4) the right hand
side of (2.5) defines a linear and continuous form L on f € L'(0,T; L?(0,¢)).
Therefore, there exists a unique u € L*®(0,T; L*(0,¢)) satisfying (2.5). Fur-
thermore, since ||u|| Lo (0,r;02(0,0)) = || L|| we have the estimate (2.8).

The properti (2.6) can be proved by a density argument. When the data
p and n are smooth, the solution of (2.3) satisfies (2.6), therefore, one can
use (2.8) to prove (2.6). The regularity property (2.7) needs a more refined
argument. It can be proved proceeding as in [4, theorem 4.2, p. 46]. 1

Hereafter, we will be assuming the function pu(t) regular, C* for instance,
the functions n € L .(0,00), ¢ € H?(0,¢) and ¢ € H'(0,¢). We will also be
assuming the compatibility conditions:

p(0) = p(0), ¥(0) =7(0) and n(0) =¢'(¢).

In order to use the D’Alembert formula as a useful tool in our problems,
we will extend the Initial Conditions ¢(z) and t(x) in such way that the
Boundary Conditions in (2.3) will be automatically satisfied:

1) p(=t) = —p(t) + p(t) + p(0) — A(0)t

02)  p(l+1t) =l —t) + fyn(s)ds + n(0)t 29)
Y1) p(—t) = —(t) + fa(t) + 12(0) '
P2) (L +t) =l —1t) +n(t) —n0)

It is easy to see that (2.9) extends ¢(x) and 9 (x) to the whole line in an unique
way. Therefore, hereafter we will suppose that p(z) and ¢ (z) are defined in
whole line and we can state the following result:
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Theorem 2.1 If f(t,.) is extended, outside of [0,{], odd with respect to x = 0
and even with respect to x = {, then the function u(t,z) defined by

u(t,z) = Sp(x—i_t);@(x_t)ﬂ-% Iitlb(S)ds

1 st pot(t—7)
+§/0 /a:(tT) f(r,&)dédr (2.10)

is the solution of the problem (1.1).

Proof: The D’Alembert formula implies that u(¢, z) given by (2.10) satisfies
U — Uz = f(t,x), and the initial conditions.

Integrating 1) of (2.9) from 0 to ¢ we obtain

[ ws)ds = ult) — (0) + O}, (2.11)

and, from ¢1),
p(t) + o(=t) = p(t) + p(0) — 4(0)t (2.12)

therefore, adding (2.11) and (2.12), and using that f(7,.) is odd with respect
to x = 0, we can see that u(t, x) satisfies

u(t,0) = p(t).
On the other hand, differentiating ¢2) we obtain

@' (L+t) + ¢ (€ —1t) =n(t) +n(0),

from 2),
(L +t) — (L —t) = n(t) — n(0).
Therefore
w(t, ) = 90'(5“);%0'(4—75) . WH);W—@
1 gt
+_/ (f(r, e+ (t—71))— f(r, L= (t —7))dr
2 Jo
= (1),
since f(7,.) is even with respect to x = ¢. The theorem is proved. ]

3. RESULTS ON THE BOUNDARY BEHAVIOR
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Theorem 3.1 Setting £(t) = u,(t,0), the solutions of (1.1) satisfy fort > ¢:

plt+ O +EE+0 =0 —plt—0

w(t,l) = pl+0+EE+0) Lt =0 —pt—10)
t\by 2 5
+/0 flr, 0+ (t—7)dr (3.2)

where f(t,.) is extended in order to be odd with respect to x = 0 and even with
respect to x =/

Proof: It is enough to prove the case where f = 0. From (2.10) we have

£(t) = ug(t,0) = 2 () +2(pl(_t) 4 20 _2¢(_t). (3.3)

JFrom 1) and 1) of (2.9), we have respectively
P'(=t) = (1) = fu(t) + 1(0) and  Y(—t) = —(t) + ju(t) + p(0).

Therefore (3.3) implies that,
(1) + (1) = falt) + £(2). (3.4)

Plugging (3.4) in (3.3) we obtain

(=) = (1) = &£(1) — flt) (3-5)
Since
= LLEOTUL JE0 vy
and
it - ECHOEVCD o) ovle=)
the theorem follows from (3.4) and (3.5). |

Now we will study the influence of ;(¢) on the behavior of the other side.
Therefore, we will consider the problem (1.1) with null forcing term, f = 0,
and also with null initial condition, ¢ = ¢ = 0. Consider also the following
auxiliary function a(t), ¢t > 0, defined recursively by:

a(t) = p(t—0) —la(t —20)|, t>2¢, (3.8)
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where a(t) for 0 <t < 2¢ is given by:

a(t) = { 0, 0 f tf ¢ (3.9)

We have the following result.

Theorem 3.2 If n(t) = 2a=(t), then the solution u of (2.3) with ¢ =1 =0
satisfies
Ut(t, E) = 2Cl+(t),

where a™ and a~ are respectively the positive and negative part of the function
a.

Proof: From (3.6) and (3.7) we have that
u(t, ) — ug(t,0) = = (L —t) + (0 —t) (3.10)
and also, since ¢'(¢ —t) = (¢ —t) = 0, for ¢ € [0, /],
u(t, 0) = ug(t, ), Vte|0,/]

that is
u(t, ) = 2a(t) + n(t) = 2a*(¢), Vte]0,4].

Next one can see using the equalities (2.9), that

PUl+t)+p(l+1t)=—¢' (L —1t)+ (L —t)+ 2n(t) (3.11)
and, for t > ¢,
G+ Ul = [t — 0+ 0= O]+ 2t - O+ 200,
Pl—1) =l —1t) = @'t =€) +(t =€) = 2(t = 0).
Therefore, when ¢t > ¢
u(t,0) = —[¢'(t = ) +(t — )] + 20(t — £) + n(t), (3.13)

but ¢'(t — ) =(t — £) =0, for t € [¢, 2{], then
ug(t, ) = 20(t — ) + n(t) = 2a(t) +n(t) = 2a*(t), Vt € [¢,20].

Now, since n(t) = 2a~(t), we have

a(t) +n(t) = la(t)], (3.14)
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therefore, using the definition of the function a(t),

2a(t) +n(t) = 240(t =€) = 2]a(t = 20)] +n(t)
= 24(t =€) — 2a(t — 20) — 2n(t — 2¢) + n(t).

Then, for t € [2¢, 3/], since
a(t—20) =0 and ¢'(30—t) =30 —1t) =0,
we obtain from (3.13), using (3.11) with ¢ — 2/ instead of ¢, that

ug(t, ) = 2a(t) +n(t) = 2a*(t), Vt € [20,30].

To complete the prove we will show that
u(t, ) = 2a(t) + n(t) (3.15)
remains true for every ¢ > 3.

The proof will be proceeded by induction. Suppose (3.15) holds for ¢ €
0, Tp], where Ty > 3¢. We will prove (3.15) for t € [0,y + 2¢]. In fact, using
(3.13) and (3.14)

2a(t) +0(t) = 24t =€) = 2a(t — 20)| + (1)
= w(t,0) + ¢ (t = 0) + ¢t —£) — 2|a(t — 20)|
= w(t,0) + ¢ (t —0) +(t —€) — 2a(t — 20) — 2n(t — 2¢),

changing ¢t by ¢ — 2/ in the equalities (3.12),
2a(t) +n(t) = w(t, £) — @' (3 — t) + (30 — t) — 2a(t — 2¢0),
and using our induction hypothesis, we obtain
2a(t) +1(t) = wy(t, £) + [—' (30 —t) +p(30 — t)] — [uy(t — 20, £) — ug(t — 2, 0)].
The result now follows from (3.10). ]

4. APPLICATION

Consider the problem that has different levels of stress, 0 and m depending
on the direction of the movement, More precisely:

Uy —Uze =0 O0<z </l t>0,

u(t,0) = pu(t) u(0,) = o) (4.1)
BC { U':c(tv é) € p(ut(tag))v 1€ { U’t(ovx) - w(ff),

where p is a real multi valued function whose graph has the following shape:



WAVE EQUATION 9

The problem (4.1) has existence and uniqueness of solutions, the proof can
be done using the Theory of Maximal Monotone Operators, see [2], and, it
can be considered as a model of pump mechanisms, see [1] and the references
therein.

We should observe that the function p, for < 0, doesn’t need to be neces-
sarily a straight line as it was showed in the above diagram, but a decreasing
graph. We should also observe that, u,(t,¢) > 0, ¢t > 0, in (4.1), is equivalent
to the estimate 0 < wu,(¢,¢) < m for the stress. What we want is to obtain
a condition on p(t) that implies this kind of behavior. We have the following
result.

Theorem 4.1 Let u be the solution of (4.1), with null initial condition, ¢ =
v = 0. Then p(t) satisfying 2a(t) > —m for t € [0,T] is a necessary and
sufficient condition to u,(t,€) > 0, fort in this interval. Moreover the solution
u satisfies:

w(t, 0) = 2a™ (1),

ug(t,0) = 2a=(t), Vtel0,T], (4.2)

in particular u(t,l) = [y 2a*(s)ds, where at and a~ are respectively the posi-
tive and negative part of the function a.

Proof. Suppose 2a(t) > —m for t € [0, 7] and let @ be the solution of (2.3)
with null initial condition and 7(¢) = 2a~(¢), then, using the result of theorem
3.2, we have that the couple (@.(t, ), U,(t,()) satisfies @, (t, ) € p(@(t,)) for
t € [0,T]. Therefore, from the uniqueness of solutions of the two problems,
we have that the two solutions @ and u coincide in the interval [0,7T]. Then,
u satisfies (4.2), and, in particular, u.(¢,¢) > 0 for ¢ in this interval.

On the other hand, setting n(t) = u,(t,£), we have, according to Trace
Theorem p. 15 of [6], that n(t) € L*(0,7). So, in particular, the formula
(2.10), with f = 0, can be applied to our problem.

First of all observe that for ¢ € [0, ], u,(t,¢) = u(t,¢) = 0, this can be seen
using (3.10) with ¢'(¢ —t) = (¢ —t) = 0, to show that u,(t, ) = u(t, £), and
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then the boundary condition

Uy (t, f) = P(Ut (t, é)) )

implies the observation.

For t € [¢,2(], we have, doing the same computation we did in the theorem
3.2,
ug(t, €) = 2a(t) +n(t) (4.3)

but then, since u.(t,¢) > 0 implies 7(t) < m, we have from (4.3)
2a(t) > —m, for t € [¢,2/].
In particular, (4.2) holds, and,

a(t) +n(t) = |a(t)], ¥V te0,20n[0,7). (4.4)

Of course, if T' < 2¢ the theorem is proved, otherwise, using (4.3), (4.4) and
the argument used in the theorem 3.2, we can prove that (4.3) remains true
for t € [0,4/]. Therefore repeating the argument we just have done we will go
one step further, and thus so on. |
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