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Abstra
t

In this paper we dis
uss some properties of a one dimensional wave

equations. Our main purpose is to study how the ex
itations are trans-

mitted through the system's rod. More pre
isely, we will obtain prop-

erties giving the pre
ise behavior of one end of the rod from data given

in the other end.

1. Introdu
tion

In this paper we dis
uss some properties of the following nonhomogeneous

mixed boundary value problem:

u

tt

� u

xx

= f(t; x); 0 < x < `; t > 0;

BC

(

u(t; 0) = �(t)

u

x

(t; `) = �(t);

IC

(

u(0; x) = '(x)

u

t

(0; x) =  (x):

(1.1)

We study this problem looking for results that give us the behavior of the

end x = ` of the rod, from data given in the other end x = 0. More pre
isely,

we want information about the velo
ity u

t

(t; `) and the stress u

x

(t; `) in the

end of the rod. We suppose that the fun
tion �(t) is given, and in the other

side, the fun
tion �(t) 2 L

2

(0; T ) is unknown a priori. We use the ideas of

Lions and Magenes [5℄, of solutions in transposition sense, to prove existen
e

and uniqueness of solution for our 
ase that has mixed boundary 
ondition.

We obtain sharp properties about the behavior of the ends of the rod, in

parti
ular, an auxiliary fun
tion, that depends on �(t), that gives the pre
ise

behavior of the other end. The te
hniques used are well known and the paper

is �nished with an appli
ation to a model of a me
hani
al system.
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2 A.F. NEVES

2. Existen
e and Uniqueness of Solutions

We will start by given the de�nition of solution in sense of transposition (
f.

Lions and Magenes, [5℄) for 
ase where the boundary 
onditions are mixed.

In the homogeneous 
ase:

u

tt

� u

xx

= f(t; x); 0 < x < `; t > 0;

u(t; 0) = 0;

u

x

(t; `) = 0;

(2.1)

as usual in the 
ontext of wave equations, we introdu
e the variable u

t

= v

and look at the problem as an evolution equation in Hilbert spa
e

H = H

1;0

� L

2

(0; `);

where H

1;0

is the Hilbert Spa
e

H

1;0

= fu 2 H

1

(0; `) : u(0) = 0g

with the inner produ
t

(u

1

; u

2

) =

Z

`

0

u

0

1

u

0

2

dx:

We have, by standard methods of semigroups, the following result:

Proposition 2.1 The operator A is the in�nitesimal generator of a C

0

Group,

therefore for every initial 
ondition (';  ) 2 H and f 2 L

1

(0; T ;L

2

(0; `))

there exists a unique solution of (2.1), u 2 C(0; T ;H

1;0

) \ C

1

(0; T ;L

2

(0; `)).

Moreover, there exists a 
onstant C = C(T ) su
h that

ku

t

k

L

2

(0;`)

+ ku

x

k

L

2

(0;`)

� C

h

k(';  )k

H

+ kfk

L

1

(0;T ;L

2

(0;`))

i

and also

u(t; `)

2

+

Z

T

0

u

x

(t; 0)

2

dt � C

h

k(';  )k

2

H

+ kfk

2

L

1

(0;T ;L

2

(0;`))

i

: (2.2)

The estimate (2.2) 
an be obtained as follows: The �rst term is estimated

using S
hwarz and Poin
ar�e inequalities

u(t; `)

2

=

Z

`

0

d

dx

(u

2

)dx =

Z

`

0

2uu

x

dx � 
ku

x

k

2

L

2

(0;`)

and the se
ond term is estimated using multiplier te
hniques. We multiply the

di�erential equation in (2.1) by q(x)u

x

, with q 2 C

1

([0; `℄) su
h that q(0) = �1

and q(`) = 0, and integrate by parts with respe
t to x and t, see J.L. Lions,

[3℄, for details.
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The problem with nonhomogeneous boundary 
onditions:

u

tt

� u

xx

= 0; 0 < x < `; t > 0;

BC

(

u(t; 0) = �(t)

u

x

(t; `) = �(t);

IC

(

u(0; x) = '(x)

u

t

(0; x) =  (x);

(2.3)

in the 
ase where � and � are smooth fun
tions, 
an be treated as usual through

an appropriate 
hange of variables. In fa
t by taking

u = U + w;

where

U =

 

1 +

x

`

�

x

2

2`

2

!

�(t) +

x

2

2`

�(t);

one 
an see that w will satisfy the problem (2.1).

The general 
ase, when � and � are L

2

fun
tions, the solutions will be

understood in the sense of transposition, see [3℄, [4℄, [5℄. For every f 2

L

1

(0; T ;L

2

(0; `)), in view of the time-reversibility and as a 
onsequen
e of

the previous Proposition, the problem

�u

tt

� �u

xx

= f(t; x); 0 < x < `; t > 0;

BC

(

�u(t; 0) = 0

�u

x

(t; `) = 0;

IC

(

�u(T; x) = 0

�u

t

(T; x) = 0;

has a unique solution �u 2 C(0; T ;H

1;0

) \ C

1

(0; T ;L

2

(0; `)) satisfying

k�u(t; `)k

L

2

(0;T )

+ k�u

x

(t; 0)k

L

2

(0;T )

� Ckfk

L

1

(0;T ;L

2

(0;`))

: (2.4)

Multiplying by �u the di�erential equation in (2.3) and integrating formally by

parts with respe
t to x and t, we obtain the following identity:

Z

T

0

Z

`

0

ufdxdt = �

Z

`

0

'(x)�u

t

(0; x)dx+ h ; �u(0)i

+

Z

T

0

�(t)�u(t; `)dt+

Z

T

0

�(t)�u

x

(t; 0)dr: (2.5)

The right hand side of (2.5) is well de�ned 
onsidering ' 2 L

2

(0; `), �; � 2

L

2

(0; T ) and understanding h ; �u(0)i in the sense of the duality of H

1;0

, ap-

plying  2 (H

1;0

)

0

to the elements �u(0) 2 H

1;0

.

De�nition 2.1 A fun
tion u : [0; T ℄ ! L

2

(0; `) is a (weak) solution of (2.3)

in the sense of transposition if (2.5) holds for every f 2 L

1

(0; T ;L

2

(0; `))
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We have the following result.

Proposition 2.2 For every �; � 2 L

2

(0; T ), ' 2 L

2

(0; `) and  2 (H

1;0

)

0

there exists a unique solution u (in the sense of transposition) of (2.3) in the


lass

u 2 C(0; T ;L

2

(0; `)) (2.6)

u

t

2 C(0; T ; (H

1;0

)

0

): (2.7)

Moreover there exists a positive 
onstant C su
h that

kuk

L

1

(0;T ;L

2

(0;`))

� C

h

k�k

L

2

+ k�k

L

2

+ k'k

L

2

+ k k

(H

1;0

)

0

i

(2.8)

Proof. Under the hypotheses and in view of the estimate (2.4) the right hand

side of (2.5) de�nes a linear and 
ontinuous form L on f 2 L

1

(0; T ;L

2

(0; `)).

Therefore, there exists a unique u 2 L

1

(0; T ;L

2

(0; `)) satisfying (2.5). Fur-

thermore, sin
e kuk

L

1

(0;T ;L

2

(0;`))

= kLk we have the estimate (2.8).

The properti (2.6) 
an be proved by a density argument. When the data

� and � are smooth, the solution of (2.3) satis�es (2.6), therefore, one 
an

use (2.8) to prove (2.6). The regularity property (2.7) needs a more re�ned

argument. It 
an be proved pro
eeding as in [4, theorem 4.2, p. 46℄.

Hereafter, we will be assuming the fun
tion �(t) regular, C

2

for instan
e,

the fun
tions � 2 L

2

lo


(0;1), ' 2 H

2

(0; `) and  2 H

1

(0; `). We will also be

assuming the 
ompatibility 
onditions:

'(0) = �(0);  (0) = _�(0) and �(0) = '

0

(`):

In order to use the D'Alembert formula as a useful tool in our problems,

we will extend the Initial Conditions '(x) and  (x) in su
h way that the

Boundary Conditions in (2.3) will be automati
ally satis�ed:

'1) '(�t) = �'(t) + �(t) + �(0)� _�(0)t

'2) '(`+ t) = '(`� t) +

R

t

0

�(s)ds+ �(0)t

 1)  (�t) = � (t) + _�(t) + _�(0)

 2)  (`+ t) =  (`� t) + �(t)� �(0):

(2.9)

It is easy to see that (2.9) extends '(x) and  (x) to the whole line in an unique

way. Therefore, hereafter we will suppose that '(x) and  (x) are de�ned in

whole line and we 
an state the following result:
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Theorem 2.1 If f(t; :) is extended, outside of [0; `℄, odd with respe
t to x = 0

and even with respe
t to x = `, then the fun
tion u(t; x) de�ned by

u(t; x) =

'(x + t) + '(x� t)

2

+

1

2

Z

x+t

x�t

 (s)ds

+

1

2

Z

t

0

Z

x+(t��)

x�(t��)

f(�; �)d�d� (2.10)

is the solution of the problem (1.1).

Proof: The D'Alembert formula implies that u(t; x) given by (2.10) satis�es

u

tt

� u

xx

= f(t; x), and the initial 
onditions.

Integrating  1) of (2.9) from 0 to t we obtain

Z

t

�t

 (s)ds = �(t)� �(0) + _�(0)t; (2.11)

and, from '1),

'(t) + '(�t) = �(t) + �(0)� _�(0)t (2.12)

therefore, adding (2.11) and (2.12), and using that f(�; :) is odd with respe
t

to x = 0, we 
an see that u(t; x) satis�es

u(t; 0) = �(t):

On the other hand, di�erentiating '2) we obtain

'

0

(`+ t) + '

0

(`� t) = �(t) + �(0);

from  2),

 (`+ t)�  (`� t) = �(t)� �(0):

Therefore

u

x

(t; `) =

'

0

(`+ t) + '

0

(`� t)

2

+

 (`+ t)�  (`� t)

2

+

1

2

Z

t

0

(f(�; `+ (t� �))� f(�; `� (t� �))d�

= �(t);

sin
e f(�; :) is even with respe
t to x = `. The theorem is proved.

3. Results on the Boundary Behavior



6 A.F. NEVES

Theorem 3.1 Setting �(t) = u

x

(t; 0), the solutions of (1.1) satisfy for t > `:

u

x

(t; `) =

_�(t+ `) + �(t+ `)

2

+

�(t� `)� _�(t� `)

2

(3.1)

u

t

(t; `) =

_�(t+ `) + �(t+ `)

2

�

�(t� `)� _�(t� `)

2

+

Z

t

0

f(�; `+ (t� �)d� (3.2)

where f(t; :) is extended in order to be odd with respe
t to x = 0 and even with

respe
t to x = `

Proof: It is enough to prove the 
ase where f � 0. From (2.10) we have

�(t) = u

x

(t; 0) =

'

0

(t) + '

0

(�t)

2

+

 (t)�  (�t)

2

: (3.3)

>From '1) and  1) of (2.9), we have respe
tively

'

0

(�t) = '

0

(t)� _�(t) + _�(0) and  (�t) = � (t) + _�(t) + �(0):

Therefore (3.3) implies that,

'

0

(t) +  (t) = _�(t) + �(t): (3.4)

Plugging (3.4) in (3.3) we obtain

'

0

(�t)�  (�t) = �(t)� _�(t): (3.5)

Sin
e

u

x

(t; `) =

'

0

(`+ t) +  (`+ t)

2

+

'

0

(`� t)�  (`� t)

2

(3.6)

and

u

t

(t; `) =

'

0

(`+ t) +  (`+ t)

2

�

'

0

(`� t)�  (`� t)

2

; (3.7)

the theorem follows from (3.4) and (3.5).

Now we will study the in
uen
e of �(t) on the behavior of the other side.

Therefore, we will 
onsider the problem (1.1) with null for
ing term, f = 0,

and also with null initial 
ondition, ' =  = 0. Consider also the following

auxiliary fun
tion a(t), t � 0, de�ned re
ursively by:

a(t) = _�(t� `)� ja(t� 2`)j; t � 2`; (3.8)
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where a(t) for 0 � t � 2` is given by:

a(t) =

(

0; 0 � t � `

_�(t� `); ` � t � 2`

(3.9)

We have the following result.

Theorem 3.2 If �(t) = 2a

�

(t), then the solution u of (2.3) with ' =  = 0

satis�es

u

t

(t; `) = 2a

+

(t);

where a

+

and a

�

are respe
tively the positive and negative part of the fun
tion

a.

Proof: From (3.6) and (3.7) we have that

u

t

(t; `)� u

x

(t; `) = �'

0

(`� t) +  (`� t) (3.10)

and also, sin
e '

0

(`� t) =  (`� t) = 0, for t 2 [0; `℄,

u

t

(t; `) = u

x

(t; `); 8t 2 [0; `℄

that is

u

t

(t; `) = 2a(t) + �(t) = 2a

+

(t); 8t 2 [0; `℄:

Next one 
an see using the equalities (2.9), that

'

0

(`+ t) +  (`+ t) = �'

0

(`� t) +  (`� t) + 2�(t) (3.11)

and, for t � `,

'

0

(`+ t) +  (`+ t) = �['

0

(t� `) +  (t� `)℄ + 2 _�(t� `) + 2�(t);

'

0

(`� t)�  (`� t) = '

0

(t� `) +  (t� `)� 2 _�(t� `):

(3.12)

Therefore, when t � `

u

t

(t; `) = �['

0

(t� `) +  (t� `)℄ + 2 _�(t� `) + �(t); (3.13)

but '

0

(t� `) =  (t� `) = 0, for t 2 [`; 2`℄, then

u

t

(t; `) = 2 _�(t� `) + �(t) = 2a(t) + �(t) = 2a

+

(t); 8t 2 [`; 2`℄:

Now, sin
e �(t) = 2a

�

(t), we have

a(t) + �(t) = ja(t)j; (3.14)
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therefore, using the de�nition of the fun
tion a(t),

2a(t) + �(t) = 2 _�(t� `)� 2ja(t� 2`)j+ �(t)

= 2 _�(t� `)� 2a(t� 2`)� 2�(t� 2`) + �(t):

Then, for t 2 [2`; 3`℄, sin
e

a(t� 2`) = 0 and '

0

(3`� t) =  (3`� t) = 0;

we obtain from (3.13), using (3.11) with t� 2` instead of t, that

u

t

(t; `) = 2a(t) + �(t) = 2a

+

(t); 8t 2 [2`; 3`℄:

To 
omplete the prove we will show that

u

t

(t; `) = 2a(t) + �(t) (3.15)

remains true for every t > 3`.

The proof will be pro
eeded by indu
tion. Suppose (3.15) holds for t 2

[0; T

0

℄, where T

0

� 3`. We will prove (3.15) for t 2 [0; T

0

+ 2`℄. In fa
t, using

(3.13) and (3.14)

2a(t) + �(t) = 2 _�(t� `)� 2ja(t� 2`)j+ �(t)

= u

t

(t; `) + '

0

(t� `) +  (t� `)� 2ja(t� 2`)j

= u

t

(t; `) + '

0

(t� `) +  (t� `)� 2a(t� 2`)� 2�(t� 2`);


hanging t by t� 2` in the equalities (3.12),

2a(t) + �(t) = u

t

(t; `)� '

0

(3`� t) +  (3`� t)� 2a(t� 2`);

and using our indu
tion hypothesis, we obtain

2a(t)+ �(t) = u

t

(t; `)+ [�'

0

(3`� t)+ (3`� t)℄� [u

t

(t� 2`; `)� u

x

(t� 2`; `)℄:

The result now follows from (3.10).

4. Appli
ation

Consider the problem that has di�erent levels of stress, 0 and m depending

on the dire
tion of the movement, More pre
isely:

u

tt

� u

xx

= 0 0 < x < `; t > 0;

BC

(

u(t; 0) = �(t)

u

x

(t; `) 2 �(u

t

(t; `));

IC

(

u(0; x) = '(x)

u

t

(0; x) =  (x);

(4.1)

where � is a real multi valued fun
tion whose graph has the following shape:
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The problem (4.1) has existen
e and uniqueness of solutions, the proof 
an

be done using the Theory of Maximal Monotone Operators, see [2℄, and, it


an be 
onsidered as a model of pump me
hanisms, see [1℄ and the referen
es

therein.

We should observe that the fun
tion �, for x < 0, doesn't need to be ne
es-

sarily a straight line as it was showed in the above diagram, but a de
reasing

graph. We should also observe that, u

t

(t; `) � 0, t > 0, in (4.1), is equivalent

to the estimate 0 � u

x

(t; `) � m for the stress. What we want is to obtain

a 
ondition on �(t) that implies this kind of behavior. We have the following

result.

Theorem 4.1 Let u be the solution of (4.1), with null initial 
ondition, ' =

 = 0. Then �(t) satisfying 2a(t) � �m for t 2 [0; T ℄ is a ne
essary and

suÆ
ient 
ondition to u

t

(t; `) � 0, for t in this interval. Moreover the solution

u satis�es:

u

t

(t; `) = 2a

+

(t);

u

x

(t; `) = 2a

�

(t); 8t 2 [0; T ℄;

(4.2)

in parti
ular u(t; `) =

R

t

0

2a

+

(s)ds, where a

+

and a

�

are respe
tively the posi-

tive and negative part of the fun
tion a.

Proof. Suppose 2a(t) � �m for t 2 [0; T ℄ and let ~u be the solution of (2.3)

with null initial 
ondition and �(t) = 2a

�

(t), then, using the result of theorem

3.2, we have that the 
ouple (~u

t

(t; `); ~u

x

(t; `)) satis�es ~u

x

(t; `) 2 �(~u

t

(t; `)) for

t 2 [0; T ℄. Therefore, from the uniqueness of solutions of the two problems,

we have that the two solutions ~u and u 
oin
ide in the interval [0; T ℄. Then,

u satis�es (4.2), and, in parti
ular, u

t

(t; `) � 0 for t in this interval.

On the other hand, setting �(t) = u

x

(t; `), we have, a

ording to Tra
e

Theorem p. 15 of [6℄, that �(t) 2 L

2

(0; T ). So, in parti
ular, the formula

(2.10), with f � 0, 
an be applied to our problem.

First of all observe that for t 2 [0; `℄, u

x

(t; `) = u

t

(t; `) = 0, this 
an be seen

using (3.10) with '

0

(`� t) =  (`� t) = 0, to show that u

x

(t; `) = u

t

(t; `), and
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then the boundary 
ondition

u

t

(t; `) = �(u

t

(t; `));

implies the observation.

For t 2 [`; 2`℄, we have, doing the same 
omputation we did in the theorem

3.2,

u

t

(t; `) = 2a(t) + �(t) (4.3)

but then, sin
e u

t

(t; `) � 0 implies �(t) � m, we have from (4.3)

2a(t) � �m; for t 2 [`; 2`℄:

In parti
ular, (4.2) holds, and,

a(t) + �(t) = ja(t)j; 8 t 2 [0; 2`℄ \ [0; T ℄: (4.4)

Of 
ourse, if T � 2` the theorem is proved, otherwise, using (4.3), (4.4) and

the argument used in the theorem 3.2, we 
an prove that (4.3) remains true

for t 2 [0; 4`℄. Therefore repeating the argument we just have done we will go

one step further, and thus so on.
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