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Abstrat

In this paper we disuss some properties of a one dimensional wave

equations. Our main purpose is to study how the exitations are trans-

mitted through the system's rod. More preisely, we will obtain prop-

erties giving the preise behavior of one end of the rod from data given

in the other end.

1. Introdution

In this paper we disuss some properties of the following nonhomogeneous

mixed boundary value problem:

u

tt

� u

xx

= f(t; x); 0 < x < `; t > 0;

BC

(

u(t; 0) = �(t)

u

x

(t; `) = �(t);

IC

(

u(0; x) = '(x)

u

t

(0; x) =  (x):

(1.1)

We study this problem looking for results that give us the behavior of the

end x = ` of the rod, from data given in the other end x = 0. More preisely,

we want information about the veloity u

t

(t; `) and the stress u

x

(t; `) in the

end of the rod. We suppose that the funtion �(t) is given, and in the other

side, the funtion �(t) 2 L

2

(0; T ) is unknown a priori. We use the ideas of

Lions and Magenes [5℄, of solutions in transposition sense, to prove existene

and uniqueness of solution for our ase that has mixed boundary ondition.

We obtain sharp properties about the behavior of the ends of the rod, in

partiular, an auxiliary funtion, that depends on �(t), that gives the preise

behavior of the other end. The tehniques used are well known and the paper

is �nished with an appliation to a model of a mehanial system.

�

E-mail: aloisio�ime.uniamp.br - Researh partially supported by PRONEX and

FAPESP, Brazil.

1



2 A.F. NEVES

2. Existene and Uniqueness of Solutions

We will start by given the de�nition of solution in sense of transposition (f.

Lions and Magenes, [5℄) for ase where the boundary onditions are mixed.

In the homogeneous ase:

u

tt

� u

xx

= f(t; x); 0 < x < `; t > 0;

u(t; 0) = 0;

u

x

(t; `) = 0;

(2.1)

as usual in the ontext of wave equations, we introdue the variable u

t

= v

and look at the problem as an evolution equation in Hilbert spae

H = H

1;0

� L

2

(0; `);

where H

1;0

is the Hilbert Spae

H

1;0

= fu 2 H

1

(0; `) : u(0) = 0g

with the inner produt

(u

1

; u

2

) =

Z

`

0

u

0

1

u

0

2

dx:

We have, by standard methods of semigroups, the following result:

Proposition 2.1 The operator A is the in�nitesimal generator of a C

0

Group,

therefore for every initial ondition (';  ) 2 H and f 2 L

1

(0; T ;L

2

(0; `))

there exists a unique solution of (2.1), u 2 C(0; T ;H

1;0

) \ C

1

(0; T ;L

2

(0; `)).

Moreover, there exists a onstant C = C(T ) suh that

ku

t

k

L

2

(0;`)

+ ku

x

k

L

2

(0;`)

� C

h

k(';  )k

H

+ kfk

L

1

(0;T ;L

2

(0;`))

i

and also

u(t; `)

2

+

Z

T

0

u

x

(t; 0)

2

dt � C

h

k(';  )k

2

H

+ kfk

2

L

1

(0;T ;L

2

(0;`))

i

: (2.2)

The estimate (2.2) an be obtained as follows: The �rst term is estimated

using Shwarz and Poinar�e inequalities

u(t; `)

2

=

Z

`

0

d

dx

(u

2

)dx =

Z

`

0

2uu

x

dx � ku

x

k

2

L

2

(0;`)

and the seond term is estimated using multiplier tehniques. We multiply the

di�erential equation in (2.1) by q(x)u

x

, with q 2 C

1

([0; `℄) suh that q(0) = �1

and q(`) = 0, and integrate by parts with respet to x and t, see J.L. Lions,

[3℄, for details.
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The problem with nonhomogeneous boundary onditions:

u

tt

� u

xx

= 0; 0 < x < `; t > 0;

BC

(

u(t; 0) = �(t)

u

x

(t; `) = �(t);

IC

(

u(0; x) = '(x)

u

t

(0; x) =  (x);

(2.3)

in the ase where � and � are smooth funtions, an be treated as usual through

an appropriate hange of variables. In fat by taking

u = U + w;

where

U =

 

1 +

x

`

�

x

2

2`

2

!

�(t) +

x

2

2`

�(t);

one an see that w will satisfy the problem (2.1).

The general ase, when � and � are L

2

funtions, the solutions will be

understood in the sense of transposition, see [3℄, [4℄, [5℄. For every f 2

L

1

(0; T ;L

2

(0; `)), in view of the time-reversibility and as a onsequene of

the previous Proposition, the problem

�u

tt

� �u

xx

= f(t; x); 0 < x < `; t > 0;

BC

(

�u(t; 0) = 0

�u

x

(t; `) = 0;

IC

(

�u(T; x) = 0

�u

t

(T; x) = 0;

has a unique solution �u 2 C(0; T ;H

1;0

) \ C

1

(0; T ;L

2

(0; `)) satisfying

k�u(t; `)k

L

2

(0;T )

+ k�u

x

(t; 0)k

L

2

(0;T )

� Ckfk

L

1

(0;T ;L

2

(0;`))

: (2.4)

Multiplying by �u the di�erential equation in (2.3) and integrating formally by

parts with respet to x and t, we obtain the following identity:

Z

T

0

Z

`

0

ufdxdt = �

Z

`

0

'(x)�u

t

(0; x)dx+ h ; �u(0)i

+

Z

T

0

�(t)�u(t; `)dt+

Z

T

0

�(t)�u

x

(t; 0)dr: (2.5)

The right hand side of (2.5) is well de�ned onsidering ' 2 L

2

(0; `), �; � 2

L

2

(0; T ) and understanding h ; �u(0)i in the sense of the duality of H

1;0

, ap-

plying  2 (H

1;0

)

0

to the elements �u(0) 2 H

1;0

.

De�nition 2.1 A funtion u : [0; T ℄ ! L

2

(0; `) is a (weak) solution of (2.3)

in the sense of transposition if (2.5) holds for every f 2 L

1

(0; T ;L

2

(0; `))
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We have the following result.

Proposition 2.2 For every �; � 2 L

2

(0; T ), ' 2 L

2

(0; `) and  2 (H

1;0

)

0

there exists a unique solution u (in the sense of transposition) of (2.3) in the

lass

u 2 C(0; T ;L

2

(0; `)) (2.6)

u

t

2 C(0; T ; (H

1;0

)

0

): (2.7)

Moreover there exists a positive onstant C suh that

kuk

L

1

(0;T ;L

2

(0;`))

� C

h

k�k

L

2

+ k�k

L

2

+ k'k

L

2

+ k k

(H

1;0

)

0

i

(2.8)

Proof. Under the hypotheses and in view of the estimate (2.4) the right hand

side of (2.5) de�nes a linear and ontinuous form L on f 2 L

1

(0; T ;L

2

(0; `)).

Therefore, there exists a unique u 2 L

1

(0; T ;L

2

(0; `)) satisfying (2.5). Fur-

thermore, sine kuk

L

1

(0;T ;L

2

(0;`))

= kLk we have the estimate (2.8).

The properti (2.6) an be proved by a density argument. When the data

� and � are smooth, the solution of (2.3) satis�es (2.6), therefore, one an

use (2.8) to prove (2.6). The regularity property (2.7) needs a more re�ned

argument. It an be proved proeeding as in [4, theorem 4.2, p. 46℄.

Hereafter, we will be assuming the funtion �(t) regular, C

2

for instane,

the funtions � 2 L

2

lo

(0;1), ' 2 H

2

(0; `) and  2 H

1

(0; `). We will also be

assuming the ompatibility onditions:

'(0) = �(0);  (0) = _�(0) and �(0) = '

0

(`):

In order to use the D'Alembert formula as a useful tool in our problems,

we will extend the Initial Conditions '(x) and  (x) in suh way that the

Boundary Conditions in (2.3) will be automatially satis�ed:

'1) '(�t) = �'(t) + �(t) + �(0)� _�(0)t

'2) '(`+ t) = '(`� t) +

R

t

0

�(s)ds+ �(0)t

 1)  (�t) = � (t) + _�(t) + _�(0)

 2)  (`+ t) =  (`� t) + �(t)� �(0):

(2.9)

It is easy to see that (2.9) extends '(x) and  (x) to the whole line in an unique

way. Therefore, hereafter we will suppose that '(x) and  (x) are de�ned in

whole line and we an state the following result:
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Theorem 2.1 If f(t; :) is extended, outside of [0; `℄, odd with respet to x = 0

and even with respet to x = `, then the funtion u(t; x) de�ned by

u(t; x) =

'(x + t) + '(x� t)

2

+

1

2

Z

x+t

x�t

 (s)ds

+

1

2

Z

t

0

Z

x+(t��)

x�(t��)

f(�; �)d�d� (2.10)

is the solution of the problem (1.1).

Proof: The D'Alembert formula implies that u(t; x) given by (2.10) satis�es

u

tt

� u

xx

= f(t; x), and the initial onditions.

Integrating  1) of (2.9) from 0 to t we obtain

Z

t

�t

 (s)ds = �(t)� �(0) + _�(0)t; (2.11)

and, from '1),

'(t) + '(�t) = �(t) + �(0)� _�(0)t (2.12)

therefore, adding (2.11) and (2.12), and using that f(�; :) is odd with respet

to x = 0, we an see that u(t; x) satis�es

u(t; 0) = �(t):

On the other hand, di�erentiating '2) we obtain

'

0

(`+ t) + '

0

(`� t) = �(t) + �(0);

from  2),

 (`+ t)�  (`� t) = �(t)� �(0):

Therefore

u

x

(t; `) =

'

0

(`+ t) + '

0

(`� t)

2

+

 (`+ t)�  (`� t)

2

+

1

2

Z

t

0

(f(�; `+ (t� �))� f(�; `� (t� �))d�

= �(t);

sine f(�; :) is even with respet to x = `. The theorem is proved.

3. Results on the Boundary Behavior
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Theorem 3.1 Setting �(t) = u

x

(t; 0), the solutions of (1.1) satisfy for t > `:

u

x

(t; `) =

_�(t+ `) + �(t+ `)

2

+

�(t� `)� _�(t� `)

2

(3.1)

u

t

(t; `) =

_�(t+ `) + �(t+ `)

2

�

�(t� `)� _�(t� `)

2

+

Z

t

0

f(�; `+ (t� �)d� (3.2)

where f(t; :) is extended in order to be odd with respet to x = 0 and even with

respet to x = `

Proof: It is enough to prove the ase where f � 0. From (2.10) we have

�(t) = u

x

(t; 0) =

'

0

(t) + '

0

(�t)

2

+

 (t)�  (�t)

2

: (3.3)

>From '1) and  1) of (2.9), we have respetively

'

0

(�t) = '

0

(t)� _�(t) + _�(0) and  (�t) = � (t) + _�(t) + �(0):

Therefore (3.3) implies that,

'

0

(t) +  (t) = _�(t) + �(t): (3.4)

Plugging (3.4) in (3.3) we obtain

'

0

(�t)�  (�t) = �(t)� _�(t): (3.5)

Sine

u

x

(t; `) =

'

0

(`+ t) +  (`+ t)

2

+

'

0

(`� t)�  (`� t)

2

(3.6)

and

u

t

(t; `) =

'

0

(`+ t) +  (`+ t)

2

�

'

0

(`� t)�  (`� t)

2

; (3.7)

the theorem follows from (3.4) and (3.5).

Now we will study the inuene of �(t) on the behavior of the other side.

Therefore, we will onsider the problem (1.1) with null foring term, f = 0,

and also with null initial ondition, ' =  = 0. Consider also the following

auxiliary funtion a(t), t � 0, de�ned reursively by:

a(t) = _�(t� `)� ja(t� 2`)j; t � 2`; (3.8)
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where a(t) for 0 � t � 2` is given by:

a(t) =

(

0; 0 � t � `

_�(t� `); ` � t � 2`

(3.9)

We have the following result.

Theorem 3.2 If �(t) = 2a

�

(t), then the solution u of (2.3) with ' =  = 0

satis�es

u

t

(t; `) = 2a

+

(t);

where a

+

and a

�

are respetively the positive and negative part of the funtion

a.

Proof: From (3.6) and (3.7) we have that

u

t

(t; `)� u

x

(t; `) = �'

0

(`� t) +  (`� t) (3.10)

and also, sine '

0

(`� t) =  (`� t) = 0, for t 2 [0; `℄,

u

t

(t; `) = u

x

(t; `); 8t 2 [0; `℄

that is

u

t

(t; `) = 2a(t) + �(t) = 2a

+

(t); 8t 2 [0; `℄:

Next one an see using the equalities (2.9), that

'

0

(`+ t) +  (`+ t) = �'

0

(`� t) +  (`� t) + 2�(t) (3.11)

and, for t � `,

'

0

(`+ t) +  (`+ t) = �['

0

(t� `) +  (t� `)℄ + 2 _�(t� `) + 2�(t);

'

0

(`� t)�  (`� t) = '

0

(t� `) +  (t� `)� 2 _�(t� `):

(3.12)

Therefore, when t � `

u

t

(t; `) = �['

0

(t� `) +  (t� `)℄ + 2 _�(t� `) + �(t); (3.13)

but '

0

(t� `) =  (t� `) = 0, for t 2 [`; 2`℄, then

u

t

(t; `) = 2 _�(t� `) + �(t) = 2a(t) + �(t) = 2a

+

(t); 8t 2 [`; 2`℄:

Now, sine �(t) = 2a

�

(t), we have

a(t) + �(t) = ja(t)j; (3.14)
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therefore, using the de�nition of the funtion a(t),

2a(t) + �(t) = 2 _�(t� `)� 2ja(t� 2`)j+ �(t)

= 2 _�(t� `)� 2a(t� 2`)� 2�(t� 2`) + �(t):

Then, for t 2 [2`; 3`℄, sine

a(t� 2`) = 0 and '

0

(3`� t) =  (3`� t) = 0;

we obtain from (3.13), using (3.11) with t� 2` instead of t, that

u

t

(t; `) = 2a(t) + �(t) = 2a

+

(t); 8t 2 [2`; 3`℄:

To omplete the prove we will show that

u

t

(t; `) = 2a(t) + �(t) (3.15)

remains true for every t > 3`.

The proof will be proeeded by indution. Suppose (3.15) holds for t 2

[0; T

0

℄, where T

0

� 3`. We will prove (3.15) for t 2 [0; T

0

+ 2`℄. In fat, using

(3.13) and (3.14)

2a(t) + �(t) = 2 _�(t� `)� 2ja(t� 2`)j+ �(t)

= u

t

(t; `) + '

0

(t� `) +  (t� `)� 2ja(t� 2`)j

= u

t

(t; `) + '

0

(t� `) +  (t� `)� 2a(t� 2`)� 2�(t� 2`);

hanging t by t� 2` in the equalities (3.12),

2a(t) + �(t) = u

t

(t; `)� '

0

(3`� t) +  (3`� t)� 2a(t� 2`);

and using our indution hypothesis, we obtain

2a(t)+ �(t) = u

t

(t; `)+ [�'

0

(3`� t)+ (3`� t)℄� [u

t

(t� 2`; `)� u

x

(t� 2`; `)℄:

The result now follows from (3.10).

4. Appliation

Consider the problem that has di�erent levels of stress, 0 and m depending

on the diretion of the movement, More preisely:

u

tt

� u

xx

= 0 0 < x < `; t > 0;

BC

(

u(t; 0) = �(t)

u

x

(t; `) 2 �(u

t

(t; `));

IC

(

u(0; x) = '(x)

u

t

(0; x) =  (x);

(4.1)

where � is a real multi valued funtion whose graph has the following shape:
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The problem (4.1) has existene and uniqueness of solutions, the proof an

be done using the Theory of Maximal Monotone Operators, see [2℄, and, it

an be onsidered as a model of pump mehanisms, see [1℄ and the referenes

therein.

We should observe that the funtion �, for x < 0, doesn't need to be nees-

sarily a straight line as it was showed in the above diagram, but a dereasing

graph. We should also observe that, u

t

(t; `) � 0, t > 0, in (4.1), is equivalent

to the estimate 0 � u

x

(t; `) � m for the stress. What we want is to obtain

a ondition on �(t) that implies this kind of behavior. We have the following

result.

Theorem 4.1 Let u be the solution of (4.1), with null initial ondition, ' =

 = 0. Then �(t) satisfying 2a(t) � �m for t 2 [0; T ℄ is a neessary and

suÆient ondition to u

t

(t; `) � 0, for t in this interval. Moreover the solution

u satis�es:

u

t

(t; `) = 2a

+

(t);

u

x

(t; `) = 2a

�

(t); 8t 2 [0; T ℄;

(4.2)

in partiular u(t; `) =

R

t

0

2a

+

(s)ds, where a

+

and a

�

are respetively the posi-

tive and negative part of the funtion a.

Proof. Suppose 2a(t) � �m for t 2 [0; T ℄ and let ~u be the solution of (2.3)

with null initial ondition and �(t) = 2a

�

(t), then, using the result of theorem

3.2, we have that the ouple (~u

t

(t; `); ~u

x

(t; `)) satis�es ~u

x

(t; `) 2 �(~u

t

(t; `)) for

t 2 [0; T ℄. Therefore, from the uniqueness of solutions of the two problems,

we have that the two solutions ~u and u oinide in the interval [0; T ℄. Then,

u satis�es (4.2), and, in partiular, u

t

(t; `) � 0 for t in this interval.

On the other hand, setting �(t) = u

x

(t; `), we have, aording to Trae

Theorem p. 15 of [6℄, that �(t) 2 L

2

(0; T ). So, in partiular, the formula

(2.10), with f � 0, an be applied to our problem.

First of all observe that for t 2 [0; `℄, u

x

(t; `) = u

t

(t; `) = 0, this an be seen

using (3.10) with '

0

(`� t) =  (`� t) = 0, to show that u

x

(t; `) = u

t

(t; `), and
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then the boundary ondition

u

t

(t; `) = �(u

t

(t; `));

implies the observation.

For t 2 [`; 2`℄, we have, doing the same omputation we did in the theorem

3.2,

u

t

(t; `) = 2a(t) + �(t) (4.3)

but then, sine u

t

(t; `) � 0 implies �(t) � m, we have from (4.3)

2a(t) � �m; for t 2 [`; 2`℄:

In partiular, (4.2) holds, and,

a(t) + �(t) = ja(t)j; 8 t 2 [0; 2`℄ \ [0; T ℄: (4.4)

Of ourse, if T � 2` the theorem is proved, otherwise, using (4.3), (4.4) and

the argument used in the theorem 3.2, we an prove that (4.3) remains true

for t 2 [0; 4`℄. Therefore repeating the argument we just have done we will go

one step further, and thus so on.
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