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Abstract We characterise the modules B of homological type FP,, over a
finitely generated Lie algebra L such that L is a split extension of an abelian ideal
A and an abelian subalgebra QQ and A acts trivially on B. The characterisation is
in terms of the invariant A introduced by R. Bryant and J. Groves and is a Lie
algebra version of the still open generalised F P, -Conjecture for metabelian groups.
The case m =1 is treated separately as there the characterisation is proved without
restrictions on the type of the extension.

Introduction

The purpose of this paper is to formulate and establish in the split exten-
sion case the counterpart of the generalised F'P,,—Conjecture suggested in [K 2,
Conjecture 6] for finitely generated metabelian Lie algebras. The original FP,,—
Conjecture [B-G 1] describes when a finitely generated metabelian group G is of
homological type F'P,, in terms of the invariant

BHG) € S(G) = {[x] = Roox | x € Hom(G,R) \ {0}}.

Though the FP,,~Conjecture for metabelian groups is still open it is known to
hold in the following cases : m = 2 [B-S], m = 3 and G a split extension of abelian
groups [B-H], G of finite Prufer rank [A], G' a torsion analogue of a group of finite
Prufer rank [K 1]. A proof of the pro-p version of the F'P,,-Conjecture for finitely
generated metabelian pro-p groups suggested in [King] could be found in [K 3].
The question of finite presentability of metabelian Lie algebras is addressed in
[B-G 1] and [B-G 2] where R. Bryant and J. Groves give a characterization of finite
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presentability in terms of the invariant A. The question what restrictions the finite
presentability imposes on the structure of a Lie algebra is treated in [W] where
links between finite presentability and an HNN-construction for Lie algebras are
investigated. This approach gives the surprising result that for a finitely presented
Lie algebra without free subalgebras of rank two the ideals of codimension one are
finitely generated as subalgebras.

In this paper we examine some finiteness homological properties of modules
over metabelian Lie algebras. A module over a Lie algebra L (over a field K) is a
module over its universal enveloping algebra U(L). We are primary interested in
modules B over L such that some abelian ideal A of L with L/A abelian has the
property that A acts trivially on B. This includes the case of the trivial module
K.

Theorem A. Suppose L is a finitely generated Lie algebra over a field K, A
is an abelian ideal in L with QQ = L/A abelian and B is a finitely generated (right)
module over the universal algebra U(Q) of Q. Then the following are equivalent:

1. B is finitely presented as a module over L (i.e. as an module over the
universal algebra U(L) of L) where the action of L is via the canonical projection
m:L— Q.

2. A®gk B is finitely generated over the universal algebra U(Q), where U(Q)
acts via the diagonal homomorphism 0 : U(Q) — U(Q) @ U(Q) sending q € Q to
g®1+1®4q.

3. AQ,A)N—-A(Q, B) =0.

Corollary B. Suppose L is a finitely generated Lie algebra over a field with
an abelian ideal A such that Q = L/A is abelian. Then L is finitely presented as
a Lie algebra if and only if A is finitely presented as a module over U(L).

The group counterpart of the equivalence of conditions 1 and 3 from Theorem
A is considered in [K 2, Prop 4]. There only the case of split extension groups is
solved leaving the question for non-split groups open.

The main result of this paper is the proof of the Lie algebra version of the
generalised F' P,,—Conjecture suggested in [K 2, Conjecture 6]. In the Lie algebra
case the Bryant-Groves invariant A will play the role of the Bieri-Strebel invariant
Y1(G)¢. Note we establish the result only for split extensions metabelian Lie
algebras. The group theoretic analogue of Theorem C is still an open problem.

2



Theorem C. In the conditions of Theorem A if L is a split extension of A by
Q then B is of type FP,, if and only if B® (®" A) is finitely generated over U(Q)
via the diagonal action if and only if whenever [va], ..., [vmi1] € A(Q, A),[v1] €
A(Q,B), 0 =[vi] + ...+ [Um+1] then all [v;] are trivial.

1. Preliminaries on the invariant A

The classification of the finitely presented Lie algebras over a field K given
in [B-G 1], [B-G 2] depends on the invariant A(Q, A), where A is an abelian ideal
of L with abelian quotient Q = L/A. Let K|[Q] be the polynomial algebra on n
commuting variables where n is the dimension of @, so K[Q)] is isomorphic to the
universal enveloping algebra U(Q) of ). By definition

A(Q,A) ={[x] | x € Homx(Q,K((t))), x is extendable to a ring homomorphism

X'+ K[Q]/Ann(A) — K((t))},
where [x] = x + Hom(Q, K[[t]]) € Hom(Q, K((t))/Hom(Q, K[[t]]), K is the al-
gebraic closure of K, K((t)) is the field of fractions of K|[t]] and Ann(A) is the
annihilator of V' in K[Q]. The main result of [B-G 1], [B-G 2] asserts that L
is finitely presented as a Lie algebra if and only if the exterior square of A is
finitely generated over K[Q)] via the diagonal adjoint action if and only if when-
ever [x1], [x2] € A(Q, A) \ {0} the sum [x1] + [x2] is non-trivial i.e. A(Q, A) has

no non-trivial antipodal elements.
2. Proof of Proposition 1.

This section is devoted to the proof of one of the implications of Theorem A.
Our proof uses the techniques developed in [B-G 1, section 2]. As the proof is very
long and technical it is split in several steps.

Proposition 1. In the assumptions of Theorem A 2. implies 1.
Proof. 1. Let aj,...,as,,¥y1,...,yn be a generating set of L such that

ai,...,as, € A and the images x1,...,z, of y1,...,y, in Q = L/A form a basis of
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Q. Furthermore for all 1 < j < i < s assume a; ; = [¥i,y;] € {a1,...,as,} U{0}.
Let F be the free Lie algebra on the generators X, ..., X,, and U(F) be its uni-
versal algebra. We define

p:UF) = U@Q)

to be the homomorphism of K-algebras sending X; to xz;,
v:U(Q) = U(F)

the linear map sending x;, ...x;, to X;, ... X;, fori; <... <4, and
p:U(F) = U(L)

the K-algebra homomorphism sending X; to y;. Then p = 7 o ¢ where
7:U(L) - U(Q)

is the homomorphism of associative K—algebras induced by the canonical projec-
tion L — Q.

The elements X7 ... X" and a .. &P of U(F) and U(Q) are called mono-
mials of degree oy + ...+ g and (31 + ...+ B, respectively. If f = f1 ® f2is a
monomial in U(F)QU (F) (resp. U(Q)®U(Q) ) the degree of f is deg(f1)+deg(f2)-
For a general element f of U(F), U(Q), U(F)QU(F) or U(Q) ® U(Q) the degree
deg(f) is the maximal degree of the monomials in the support of f. By definition
for a subspace J of U(F),U(Q), U(F)QU(F) or U(Q) ® U(Q) the subspace J; is
spanned by all elements of J of degree at most ¢.

Note that U(L) acts on A via the adjoint (right) action. As A is abelian this
makes A right U(Q)-module. If f = gx; is a monomial in U(Q) the image of
a € A under the action of f denoted by ao f is (a0 g)ox; = [aog,y;] and this
definition is extended by linearity for arbitrary elements of U(Q). If f € U(L) we
write a o f for a o 7(f).

2. We adopt the notations from [B-G 1] and for an element A € U(Q) write
Au), A(v) and A(d) for A® 1,1® A € U(Q) ® U(Q) and the image of A\ under the
diagonal homomorphism

0:U(Q) = UQ)eUQ)
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sending ¢ € @ to ¢ ® 1 + 1 ® ¢g. Similarly we define for an element A € U(F)
elements A(U), A(V) and A(D) in U(F) @ U(F).

Now let by, ..., b, be a generating set of B over U(Q). We remind the reader
that ay,...,as, is a generating set of A as a U(Q)-module. Since U(Q) is a Noethe-
rian ring the annihilator ideals Anngg)b; and Anny(gya; are finitely generated
over U(Q) i.e.

Annygybi = Zgi,tU(Q), Annygya; = Zﬁj,tU(Q
t>1 t>1

Anny@yeu@) (b @ aj) = Anny gy (b)) @ U(Q) +U(Q) @ Annygy(a;) (1)

We claim that for every 1 < r < m,1 < s < 59,1 < k < n there exist elements
Grskjs Urskjs frsei(d) € U(Q) @ U(Q) and an integer [ independent of r,s and k
such that

$k(U)l+1 —+ Z xk(l})ifrsk'b + ZQTJ ¢rskg + ngg wrsk‘] =0 (2)

0<i<li j>1 j>1

In the case when B = A formula (2) is proved in [B-G 1]. The general case can
be proved using the same argument. For completeness we sketch a proof. The
U(Q)-submodule of B ® A generated by {b, ® (a, o x1)};>¢ is finitely generated,
say by {b, ® (aso xi)}Oﬁjgl- Then for some f..i(d) € U(Q) ® U(Q)

T l+1 + Z ZL'k; frskz E AnnU(Q)®U(Q) (br ® as)
1<l

Now (2) follows immediately from (1).

3. Let 0 : ®j<me;U(L) — B be the homomorphism of U(L)-modules sending
the generator e; of the free module ®;<,,e;U(L) to b;. Then B is finitely presented
over U(L) if and only if Ker 0 is finitely generated over U(L). Define

X = {esov(gi) i g1,

Xi={eip(f1)(a;jop(f2)) | f1, f2 monomials in U(F),deg(f1f2) < ¢,i <m,j < so}

and write V; for the U(L)-submodule of Kerd C ®;<me;U(L) generated by the
finite set X; U X. We aim to prove that for sufficiently big ¢

Vi = Vi1

5



Then V' = U, >1 Vi, is finitely generated over U(L) and Ker 0/V is a surjective
image of the quotient of Ker 0 through the U(L)-submodule generated by U;>1X¢.
This quotient is the kernel of the homomorphism of U(Q)-modules ®;<,e;U(Q) —
B sending e; to b;. The latter is finitely generated over U(Q) as U(Q) is Noetherian
and hence Ker 0/V is finitely generated over U(Q). Finally as V is finitely
generated over U(L) we deduce that Ker 0 is finitely generated over U(L), as
required.

Lemma 1.1. If f1, fo, f3 are monomials in U(F') such that deg(f1fafs) < 2t
then

eip(fi)(aj o p(f2))(ax o p(f3)) € Vi

Proof. We induct on deg(f;). If f1 = 1 then deg(f2) < t or deg(f3) < t, say

deg(fs) < t. Then e;(ax o p(fs)) and consequently e;(ar o p(f3))(aj o p(f2)) are
elements of V;.

If fi = gY for some Y = X; we have

eip(f1)(aj 0 p(f2))(ak © p(fs)) = eip(9)[(Y), a; o p(f2)l(ar © p(f3))+

eip(9)(aj o p(f2))lp(Y), ar o p(f3)] + eip(g)(aj o p(f2))(ar o p(f3))p(Y) =
—eip(g)(aj o p(f2Y))(ak 0 p(f3)) — eip(g)(a; o p(f2))(ar o p(f3Y))
+eip(g)(aj o p(f2))(ar © p(f3))p(Y)
By induction all summands are elements of V; and the proof is completed.
Lemma 1.2. Let
p:UL)®U(A) = U(L)
be the linear map sending A1 @ Ay to Ao, We consider U(L) @ U(A) as a (right)

module over U(L) ® U(L), where the action is component wise, first component
U(L) acts via right multiplication and the second via the adjoint action of L on
Ad.e. forwy,...,wy € Al € L the image of wy ... w, € S¥A C U(A) under the
action of L is (wy...wg) ol =Y icpwi...(w;ol)...wy. We write x for the
described action of U(L) @ U(L) on U(L) @ U(A). Then

1. for all A € (Ker p® p)aty+1 we have

eip((1® aj) * (9 @ p)(N) € Vi
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2. the map p : U(L) @ U(A) — U(L) is a homomorphism of U(L)-modules
where U(L) acts diagonally on the domain i.e. via the diagonal homomorphism
U(L) > U(L)®U(L) sendingl e Ltol®1+1&1.

Proof. By [B-G 1, Lemma 2.2(2)] Ker(p ® p)at+1 is spanned by pAgq, where
p,q are monomials in U(F) ® U(F), deg(pg) < 2t —1 and A is [X,, Xp| ® 1
or 1 ® [Xq,Xg] for some a > 3. As (U(L) ® A) * (¢ @ ¢)(1 ® [Xq, Xp]) C
U(L) ® (Ao [ya,ys]) = 0 we have to consider only the case A = [X,, X3| ® 1.
We write p = p1(u)p2(v), ¢ = q1(u)g2(v) for some monomials py, p2, g1, g2 € U(F).
Then (1®a;)*(p®¢)(PAq) = ©(p1[Xa, Xpla1) @ (a;0p(p2g2)) and using [y, yg] =
Qg € {a1,...,as} U{0} we get

(1@ az) * (0 ® ©)(PAQ)) = ©(P1)aa,pp(q1)(a; o p(p2q2)) =

@(p1)[aa,p, P(q1)](aj 0 p(p2q2)) + @(p1)P(q1)aa,s(aj o p(p2q2)) =
(1) (aa,p o @(qr))(aj o p(p2g2)) + ¢(p1d1)aa,plaj o p(p2q2))-

By Lemma 1.1 both summands are in V;.
The second part of the lemma follows immediately from the definition of the

map fi.
Proposition 1.3. For sufficiently bigt V; = Viq1.
Proof. Let ey be the maximal degree of the elements f,sxi(d), drskj, Vrskj
defined in (2) for all possible r, s, k, j,i. We fix tg = maxz{ln,eq — 1 — 1}, where [
is the positive integer used in (2), eg is the maximal degree of a monomial in (2).

Let f1, fo be monomials in U(F) with deg(fif2) =t+1>to+ 1. If f1 #1
we write f; = gY for some Y € {X1,...,X,,}. Then

e(f1)(aj o p(f2)) = p(9)p(Y)(aj o p(f2)) = p(9)[p(Y),a; o p(f2)]+

e(9)(ajop(f2))p(Y) = —p(g)(aj o p(f2Y)) + ¢(g)(aj o p(f2))p(Y)

i.e. eip(fi)(aj o p(f2)) is in the U(L)-submodule generated by the elements

eip(f)(aj o p(fs)) for deg(f) < deg(f1),deg(ffs) < deg(fif2). Therefore to com-
plete the proof of the proposition it is sufficient to show e;(a; o p(f)) € V; for all

monomials f in U(F) with deg(f) =¢+ 1.
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As t+1 > In+1 we can assume f = X TIXP L XRXE X o

(remember p(f) € U(Q) and U(Q) is commutative). Then (2) implies

(abttar Vat g (v) F a4+ B4+ =0, (3)
where
a = Zwk frskz ( ng 11 gril .- -xﬁ")(v)a
1<l
3= S 0 o )0
7= Z Gog (0)hrons (257 2 gt ) (v).

The degrees of the elements involved in (3) is bounded above by

eo + Z aj=eg+deg(f)—l—1=ey+t—-1<2t+1.
1<j#k<n

Note that a belongs to the U(Q)-submodule of U(Q)®U(Q) (via the diagonal
action) generated by the subspace (U(Q) @ U(Q)):. We can lift o to an elements
a from the U(F)-submodule of U(F) ® U(F') generated by (U(F) ® U(F)); i.e.

(p® p)(@) = . We can find § = ZjSVgT,j)(U)ij ¥ = >_;(gs,5)(V)7; both in
(U(F) @ U(F))2t41 such that (p® p)(8) = B, (p @ p)(7) = 7. Then (3) implies

f(V)+6Z+5+7EKer(p®p)2t+1. (4)

Now Proposition 1.3 follows from Lemma 1.4. Indeed Lemma 1.4 together with
(4) implies ey (as 0 p(f)) = erp((1 @ as) x (p @ 9)(f(V))) € V.

Lemma 1.4. For A € {&, 3,7} or A € Ker(p® p)ari1

erti((1® as) * (p @ p)(N)) € Vi

Proof. If A = B then erp((1® as) * (¢ ® ©)(A)) € Zj er(orgr;)U(L) € V.

If A =7 then (1®as) * (p @ p)(A) = 0.

If A = & we use Lemma 1.2(2) to deduce e, u((1®as)* (¢®@p)(A)) Ceru((1®
as) x (U(L) @ U(L)))U(L) € Vi.



Finally if A € Ker(p® p)ar+1 we use Lemma 1.2(1). This completes the proof
of Lemma 1.4, Proposition 1.3 and Proposition 1.

3. Proofs of the main theorems

Lemma 2. In the conditions of Theorem A if B is finitely presented over
U(L) then B ® A is finitely generated over U(Q) via the diagonal action.

Proof. Consider the following diagram with first row an exact complex of
U(L)-modules and second row an exact complex of U(Q)—modules

Ry 2y Ry=@icmeiUL) 2 B = 0

d d s (5)
Q1 =B®A®UA) - Q=BoUA) = B — 0
where Ry, Ry are free U(L)-modules of finite rank, dy(e;) = b;, do(b® X) = be(N),
¢ is the augmentation map U(A) — K and d1(b® a® \) = b® al.

Let a: U(Q) — U(L) be the composition ¢ o v, where ¢ and v are the maps
defined in section 2. We fix a finite generating set {>_. e;\;;}; C @i<meiU(Q)
over U(Q) of the kernel of the U(Q)-homomorphism ®;<pe;U(Q) — B sending
e; to b;. Then

Ker 9y =Y (e;A)U(L) + Z(Z eic(Ni)U(L)

1<m 1<m

and we can assume R; has a finite basis X; U X, such that 01(X1) C Uj<me; A,

Xy = {225}, 01(22,5) = X i< €it(Nij)-
Now we want to construct homomorphisms of U(A)-modules 3; : R; — Q;

for ¢« = 0,1 that extend the identity on B and commute with the differential of the
diagram (5). Define 3y : Ry — Qo by
Bo(esa(zh .. k) )X) = (bio (aF .. zF)) @ X for A € U(A).

n

The definition of f; is as follows: 31(X2) = 0 and for x € X1, A € U(A) such that
01(x) = e;a

Bl(a:oz(ajlfl zFN) = (b ®a)o 5($’f1 czF)) @ A,
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where ¢ : U(Q) = U(Q) ® U(Q) is the diagonal map and (b; ® a) o §(z¥ ... zk)
is the image of b; ® a under the diagonal action of z¥ ... zkn,

Now we extend the rows of the diagram (5) to projective resolutions R and Q
over U(L) and U(A) respectively and extend [y, 51, to a chain map f: R — Q of
complexes over U(A). The resolution Q is chosen in a special way. By definition

it is B ® F where F is the “standard” resolution over U(A)
Fiooo—= F, = NAQU(A) = Fi_1 = N"PAQU(A) — ... » Fy =U(A) - K =0
with differential

Oi(ar Ao Aai) =D (1) (ar AL Aag AL N ag) @ aj.
j
The complex F is exact by [C-E, Ch 13, Thm 7.1]. Now the chain map 3 induces an
isomorphism between H;(R®y 4y K) and Hi(Q®ua) K) ~ BQ H;(F) ~ BOA'A
and Hi(R®ya) K) is finitely generated over U(Q). Then B® A ~ H1(Q®y4) K)
is an U(Q)-module via 1 and by the definition of ; the action of U(Q) is the
diagonal one. This completes the proof of Lemma 2.

Lemma 3. If L is a split extension of A by Q and B is of homological
type FP,, over U(L) then B ® (AN™A) is finitely generated over U(Q), where
U(Q) acts via the diagonal homomorphism U(Q) —®""" U(Q) sending q € Q
10 Y cicm 19...010¢®1®... 0L

i times m—i times

Proof. Suppose
R:... =R 2LR-2B 0

is a free resolution of B over U(L) such that R; for ¢ < m is finitely generated and
QO = B ® F is the resolution considered in the proof of Lemma 2.

Now we construct a chain map o : R — Q over U(A) inducing identity on B.
First R; = T; @ua) U(L) ~ T; @ U(Q) for some free U(A)-submodule T; of R;.
We want to define « in such a way that oy (tf) = a;(t)/ for all t € Tj, f a monomial
in U(Q), where upper index f denotes the image under the diagonal action of f.
We proceed by induction on i. Suppose we have constructed «;_;, then there
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exists a homomorphism of U(A)-modules g; : R; — @; such that 03; = a;_10.
We set a;(tf) = B;(t)f for t € T}, f a monomial in U(Q). It is easy to check that
«; is a homomorphism of U(A)-modules and d«o; = «;_10. Finally «; induces an
isomorphism between the homology groups H;(Q ®u 4y K) and H;(R ®ua) K).
The latter is a finitely generated U(())-module for ¢ < m and by construction the
induced by « action of U(Q) on H;(Q ®ya) K) ~ B® (A'A) is the diagonal one.

Theorem 4. Suppose A and B are finitely generated U(Q)-modules.

1. B® (®" A) is finitely generated over U(Q) via the diagonal action if and
only if whenever [va], ..., [vm+1] € A(Q,A),[v1] € A(Q,B) and 0 = [v1] + ... +
[Umt1] we have all [v;] trivial.

2. If B® (A™A) is finitely generated over U(Q) via the diagonal action then
B ® (®" A) is finitely generated over U(Q) via the diagonal action.

Proof. 1. We write M for B®(®" A) and view it as a module over ®"" U(Q).

Then the diagonal embedding 6 : U(Q) —=®""" U(Q) induces a map

0" AQ™T, M) — A(Q, M)

By [B-G 2, Prop. 3.1] M is finitely generated over U(Q) via the diagonal action if
and only if (9*)71(0) = 0. As shown in [B-G 2] there is a direct product formula

A(Q™, M) ~ A(Q, B) x (A(Q, A))™

and under this isomorphism 6 sends ([v1], [va], . . ., [m+1]) to 3_;[v;]. This implies
immediately the first part of the theorem.

2. Now we assume the second part of the theorem is wrong and then by the
first part there exist [va],..., [vm+1] € A(Q, A) not all zero and [v1] € A(Q, B)
such that [v1] + ...+ [Um+1] = 0.

Lemma 4.1[G] Suppose «; : Q — K((t;)) ~ K((t)) is a linear map of vector
spaces over K, M is a finitely generated U(Q)-module such that [o;] € A(Q, M).
Then there exists a non-trivial linear map

w; : M — K((t:))

such that
w;(mq) = w;(m)ai(q) for allm e M,q € Q
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We apply the above lemma for the linear maps «; = p;v;, where p; : K((t)) —
K ((t;)) is the isomorphism of K-algebras sending ¢ to ¢; and obtain linear maps

wy: B — K((t1)),w; : A— K((t;)) forall2 <i<m+1

with the properties described in Lemma 4.1. Using the maps w; we construct

another linear map

P=w QWs®...Qwpy1: BO(® A) > R=K((t1)) 9K ((t2))®...® K ((tm1))

that will play an important role in the completion of the proof of Theorem 4.
Let
a:B®(®"A) = B® (®"A)

be the linear map given by a(b®a1®...®a,) = cs (—1)7b@05(1)®. . .®0g (m)-
As the image of a factors through B ® (A" A) it is finitely generated over U(Q).
Note that Im « is a module over U(Q)® S and « is a homomorphism of U(Q)® S—
modules, where S = {A €®” U(Q) | Ao = Aforallo € S,,}. As ®"U(Q)
is integral over S the K-algebra ®" " U(Q) is integral over U(Q) ® S and so
V =1Im o(®"U(Q)) is finitely generated over U(Q).

Now let s be the positive integer with the properties (V) C J* and ¢(V) €
J5T1 where J is the ideal of R generated by t; — ta,t —t3,...,tm — tmy1. Then
for v € V the image of the diagonal action of ¢ € @ on ¢(v) is ¢(v) >, ai(q) =
¢(v) Y, miai(q) modulo J**1, where m; : K((t;)) — K((t1)) is the isomorphism
of K-algebras sending t; to ¢1. As Y .[v;] = 0 we have Y, ma;(q) € K[[t1]]
and hence (V) + J*T1/J5*! lies in a finitely generated K[[t;1]]-submodule of
JS T3 ~ K ((ty)).

Finally we choose v; and ¢ € @ such that I'm «; is not a subset of K[[t;]]
and a;(q) ¢ K[[t;]] and define h = (® 1) @ ¢® (8" 1) €®™"" U(Q). Then
for v € V we have p(vh) = p(v)a;(q) = o(v)m(a;(q)) modulo J¥+! and hence
o(V) + J5T1/J5F1 is invariant under multiplication with f7 for every j > 1 where
f=mi(ai(q)) € K((t1)) \ K[[t1]]. In particular o(V) + J5+1/J*F1 cannot lie in a
finitely generated K|[[t;]]-submodule of J*¢/J**1 ~ K((t1)), a contradiction.
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Theorem 5. If A and B are finitely generated U(Q)-modules and BQ(®™A)
is finitely generated over U(Q) via the diagonal action then B is of type F P, over
U(L), where the Lie algebra L is the split extension of A by Q).

Proof. The proof of Theorem 5 is based on the existence of some special long

exact sequences given by Lemma 5.1.

Lemma 5.1 For every k > 1 the complex
k1 9k.k Qit1,k 4 k—i 19k 01,k Ak
0 >N A—. ... 5 NARS T'A— ...—/—S5"A =0
with differentials 0; ) sending the element (a1 A ... ANa;) @ (b1 @ ... bg_;) to
Z (—l)i_j(al/\.../\&j/\.../\ai)®(aj®bl®...®bk_i)
1<j<i
18 exact.

Proof. Choose a basis Ay of A and order it linearly. Then A*A ® S¥~%A has
abasis {(a1 A ... Na;) @ (1 ®...Qbk—;) |a1,...,ai,b1,...,bk—; € Ap,a; < ...<
aj, b1 < ... <bg_;} = X . We call an element of X; ; good if by > a; and define
by (A*'A® S*~"A) 400a the space spanned by the good elements. A partial order on
X 1, is defined by (a1 A.. . Aa;) @ (01®...®bk—;) < (¢)A...ANa)) (V| ®...®b,_,)
if and if a; < a;- for all j <.

Claim 1. N'A® SF A = (/\ZA ® Sk_iA)good +Im 8¢+1,k

Proof. We show that a non-good element (a3 A... Aa;) @ (b1 ®...®bk_;) of
X; 1 can be expressed modulo the image of 0;41 & as a sum of smaller elements of
X; k- Indeed (a1A...Aa;)@(b1®. .. Qbk—i)+(—1)T10ip1 k(b1 Aa1A. . . Aa;) @ (b2 ®
...®bg_;) is a sum of elements of A; ; smaller than (a1 A.. . Aa;))Q(01®...Qbk_;).
This completes the proof of the claim.

It follows immediately from Claim 1 that
NA®SHIA = (NA® S* ™ A)good + Oip1k(NTA® ST A)gooa) — (6)
We claim that the sum in (6) is exact and
Dir i (NFLA® SF71A) og) = (NHA ® SF=71A) o

13



For both statements it is sufficient to consider the case when A is finite dimensional.
In this case we define p(i, k) to be the dimension of (A°A ® S¥*A) p0q i-e. the
number of good elements in & .

Claim 2. dimg(A*A® SFTA) = u(i, k) + p(i + 1, k)

Proof. Note that the dimension of A’A ® S¥~*A is the cardinality of Xi k-
It remains to show that p(i + 1,%) is the number of non-good elements in Aj j.
This can be done by showing a bijection between the non-good elements in Aj
and the good elements of Xj41 5. If (a1 A...Aa;)® (b1 ®...Qbk_;) is a non-good
element from &; j then (i Aai A...®a;) @ (ba®...® bg_;) is a good element of
Xit1,x- The inverse holds too and the proof of Claim 2 is completed.

Note that Claim 2 together with (6) shows that
NARS A= (NA® S " A) good ® Dir1 x(NTTA® SFT171A) s0a)

and that the restriction of 911 on (ATLA® SF~"71A) .4 is injective. Similarly
the restriction of 9; x on (A'A ® S*7"A) 00q is injective and hence I'm 941 =
Ker 0; ). This completes the proof of Lemma 5.1.

Now we define V; for ¢ > 1 to be the subspace of ®' A generated by the elements
Zaesib(—l)a U5 (1)®. . .QUy(n) for ai, ..., a, € A. Let W; be the U(A)-submodule
of ® 7 A®U(A) generated by V; C (¥ A)@ A C (¥ A) @ U(A).

Claim 3 The map ¢; : V;QU(A) — W, sending v ®...Quv; A to 11 ®...®
Vi—1 @ v;\ has kernel Wiyq.

Proof. We identify V; with A*A via the map sending > ¢ (=1)7 ag(1) ®
o ® g(n) to ar A... Aay. Write U(A) as a direct sum of the symmetric powers
of A, the restriction of ; on AA ® S¥=%A is precisely the map 0;j defined in
Lemma 5.1. Then Lemma 5.1 completes the proof.

Lemma 5.2. Under the assumptions of Theorem 5 for every i < m the
module BQ W, is of type F Py, over U(L) if and only if BQW, 1 is of type F Py_1
over U(L), where U(A) acts on B @ W; wvia its action on the component W; and
U(Q) acts on B&(®'™ A)@U(A) via the diagonal map U(Q) - U(Q) sending
an element q from Q to 3 5 ;c; 1®...91®¢®1®...01.

-~

j times t—j times
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Proof. The short exact sequence of U(A)-modules 0 — W;; — V;QU(A) —
W; — 0 gives rise to a short exact sequence of U(L)-modules

0—->BW;y1 -BV,QU(A) - BW,; =0 (7)

where U(Q) acts diagonally on all modules in (7). By Theorem 4(1) B @ (" A)
is finitely generated over U(Q) via the diagonal action for all ¢ < m and hence
its submodule B ® V; is finitely generated over U(Q). Then (B V;) @ U(A) ~
(B®V;)®ug)U(L) is induced from a module of type F'Py, over U(Q) and is itself
of type F'P,, over U(L). The dimension shifting argument [B, Prop 1.4] applied
to (7) completes the proof.

Finally we are ready to complete the proof of Theorem 5. Applying Lemma
5.2 several times we obtain B ® Wy is of type F'P,,_1 over U(L) if and only if
B ® W, is of type FPy (i.e. finitely generated) over U(L). Note that B ® V,,
is a generating set of B ® W,, over U(A). By assumption B ® (®" A) is finitely
generated over U(Q) and so B ® V,, is finitely generated over U(Q). Finally it
remains to show that B ® Wy is of type F'P,,_; over U(L) if and ouly if B is of
type F P, over U(L). This follows immediately from dimension shifting argument
for the short exact sequence of U(L)-modules

0—-BW, = BegU(A)~Beyg UL)—B—0

induced from the short exact sequence 0 - Wy, — U(A) - K — 0.

Proof of Theorem A. 1 < 2 by Proposition 1 and Lemma 2 and 2 < 3 by
Theorem 4(1).

Proof of Corollary B. It is a straight corollary of Theorem A and the
classification of finitely presented Lie algebras in [B-G 1], [B-G 2].

Proof of Theorem C. The theorem follows from Lemma 3, Theorem 4 and
Theorem 5.
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