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Abstrat We haraterise the modules B of homologial type FP

m

over a

�nitely generated Lie algebra L suh that L is a split extension of an abelian ideal

A and an abelian subalgebra Q and A ats trivially on B. The haraterisation is

in terms of the invariant � introdued by R. Bryant and J. Groves and is a Lie

algebra version of the still open generalised FP

m

-Conjeture for metabelian groups.

The ase m = 1 is treated separately as there the haraterisation is proved without

restritions on the type of the extension.

Introdution

The purpose of this paper is to formulate and establish in the split exten-

sion ase the ounterpart of the generalised FP

m

{Conjeture suggested in [K 2,

Conjeture 6℄ for �nitely generated metabelian Lie algebras. The original FP

m

{

Conjeture [B-G 1℄ desribes when a �nitely generated metabelian group G is of

homologial type FP

m

in terms of the invariant

�

1

(G) � S(G) = f[�℄ = R

>0

� j � 2 Hom(G;R) n f0gg:

Though the FP

m

{Conjeture for metabelian groups is still open it is known to

hold in the following ases : m = 2 [B-S℄, m = 3 and G a split extension of abelian

groups [B-H℄, G of �nite Prufer rank [

�

A℄, G a torsion analogue of a group of �nite

Prufer rank [K 1℄. A proof of the pro-p version of the FP

m

-Conjeture for �nitely

generated metabelian pro-p groups suggested in [King℄ ould be found in [K 3℄.

The question of �nite presentability of metabelian Lie algebras is addressed in

[B-G 1℄ and [B-G 2℄ where R. Bryant and J. Groves give a haraterization of �nite
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presentability in terms of the invariant �. The question what restritions the �nite

presentability imposes on the struture of a Lie algebra is treated in [W℄ where

links between �nite presentability and an HNN-onstrution for Lie algebras are

investigated. This approah gives the surprising result that for a �nitely presented

Lie algebra without free subalgebras of rank two the ideals of odimension one are

�nitely generated as subalgebras.

In this paper we examine some �niteness homologial properties of modules

over metabelian Lie algebras. A module over a Lie algebra L (over a �eld K) is a

module over its universal enveloping algebra U(L). We are primary interested in

modules B over L suh that some abelian ideal A of L with L=A abelian has the

property that A ats trivially on B. This inludes the ase of the trivial module

K.

Theorem A. Suppose L is a �nitely generated Lie algebra over a �eld K, A

is an abelian ideal in L with Q = L=A abelian and B is a �nitely generated (right)

module over the universal algebra U(Q) of Q. Then the following are equivalent:

1. B is �nitely presented as a module over L (i.e. as an module over the

universal algebra U(L) of L) where the ation of L is via the anonial projetion

� : L! Q.

2. A


K

B is �nitely generated over the universal algebra U(Q), where U(Q)

ats via the diagonal homomorphism � : U(Q)! U(Q)
 U(Q) sending q 2 Q to

q 
 1 + 1
 q.

3. �(Q;A) \ ��(Q;B) = 0.

Corollary B. Suppose L is a �nitely generated Lie algebra over a �eld with

an abelian ideal A suh that Q = L=A is abelian. Then L is �nitely presented as

a Lie algebra if and only if A is �nitely presented as a module over U(L).

The group ounterpart of the equivalene of onditions 1 and 3 from Theorem

A is onsidered in [K 2, Prop 4℄. There only the ase of split extension groups is

solved leaving the question for non-split groups open.

The main result of this paper is the proof of the Lie algebra version of the

generalised FP

m

{Conjeture suggested in [K 2, Conjeture 6℄. In the Lie algebra

ase the Bryant-Groves invariant � will play the role of the Bieri-Strebel invariant

�

1

(G)



. Note we establish the result only for split extensions metabelian Lie

algebras. The group theoreti analogue of Theorem C is still an open problem.
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Theorem C. In the onditions of Theorem A if L is a split extension of A by

Q then B is of type FP

m

if and only if B
 (




m

A) is �nitely generated over U(Q)

via the diagonal ation if and only if whenever [v

2

℄; : : : ; [v

m+1

℄ 2 �(Q;A); [v

1

℄ 2

�(Q;B), 0 = [v

1

℄ + : : :+ [v

m+1

℄ then all [v

i

℄ are trivial.

1. Preliminaries on the invariant �

The lassi�ation of the �nitely presented Lie algebras over a �eld K given

in [B-G 1℄, [B-G 2℄ depends on the invariant �(Q;A), where A is an abelian ideal

of L with abelian quotient Q = L=A. Let K[Q℄ be the polynomial algebra on n

ommuting variables where n is the dimension of Q, so K[Q℄ is isomorphi to the

universal enveloping algebra U(Q) of Q. By de�nition

�(Q;A) = f[�℄ j � 2 Hom

K

(Q;K((t))); � is extendable to a ring homomorphism

�

0

: K[Q℄=Ann(A)! K((t))g;

where [�℄ = � + Hom(Q;K[[t℄℄) 2 Hom(Q;K((t))=Hom(Q;K[[t℄℄), K is the al-

gebrai losure of K, K((t)) is the �eld of frations of K[[t℄℄ and Ann(A) is the

annihilator of V in K[Q℄. The main result of [B-G 1℄, [B-G 2℄ asserts that L

is �nitely presented as a Lie algebra if and only if the exterior square of A is

�nitely generated over K[Q℄ via the diagonal adjoint ation if and only if when-

ever [�

1

℄; [�

2

℄ 2 �(Q;A) n f0g the sum [�

1

℄ + [�

2

℄ is non-trivial i.e. �(Q;A) has

no non-trivial antipodal elements.

2. Proof of Proposition 1.

This setion is devoted to the proof of one of the impliations of Theorem A.

Our proof uses the tehniques developed in [B-G 1, setion 2℄. As the proof is very

long and tehnial it is split in several steps.

Proposition 1. In the assumptions of Theorem A 2. implies 1.

Proof. 1. Let a

1

; : : : ; a

s

0

; y

1

; : : : ; y

n

be a generating set of L suh that

a

1

; : : : ; a

s

0

2 A and the images x

1

; : : : ; x

n

of y

1

; : : : ; y

n

in Q = L=A form a basis of
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Q. Furthermore for all 1 � j < i � s

0

assume a

i;j

= [y

i

; y

j

℄ 2 fa

1

; : : : ; a

s

0

g [ f0g.

Let F be the free Lie algebra on the generators X

1

; : : : ; X

n

and U(F ) be its uni-

versal algebra. We de�ne

� : U(F )! U(Q)

to be the homomorphism of K-algebras sending X

i

to x

i

,

� : U(Q)! U(F )

the linear map sending x

i

1

: : : x

i

k

to X

i

1

: : :X

i

k

for i

1

� : : : � i

k

and

' : U(F )! U(L)

the K-algebra homomorphism sending X

i

to y

i

. Then � = � Æ ' where

� : U(L)! U(Q)

is the homomorphism of assoiative K{algebras indued by the anonial proje-

tion L! Q.

The elements X

�

1

i

1

: : :X

�

k

i

k

and x

�

1

1

: : : x

�

n

n

of U(F ) and U(Q) are alled mono-

mials of degree �

1

+ : : :+ �

k

and �

1

+ : : :+ �

n

respetively. If f = f

1


 f

2

is a

monomial in U(F )
U(F ) (resp. U(Q)
U(Q) ) the degree of f is deg(f

1

)+deg(f

2

).

For a general element f of U(F ), U(Q), U(F )
U(F ) or U(Q)
U(Q) the degree

deg(f) is the maximal degree of the monomials in the support of f . By de�nition

for a subspae J of U(F ); U(Q), U(F )
U(F ) or U(Q)
U(Q) the subspae J

t

is

spanned by all elements of J of degree at most t.

Note that U(L) ats on A via the adjoint (right) ation. As A is abelian this

makes A right U(Q){module. If f = gx

i

is a monomial in U(Q) the image of

a 2 A under the ation of f denoted by a Æ f is (a Æ g) Æ x

i

= [a Æ g; y

i

℄ and this

de�nition is extended by linearity for arbitrary elements of U(Q). If f 2 U(L) we

write a Æ f for a Æ �(f).

2. We adopt the notations from [B-G 1℄ and for an element � 2 U(Q) write

�(u), �(v) and �(d) for �
 1; 1
 � 2 U(Q)
U(Q) and the image of � under the

diagonal homomorphism

Æ : U(Q)! U(Q)
 U(Q)
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sending q 2 Q to q 
 1 + 1 
 q. Similarly we de�ne for an element � 2 U(F )

elements �(U); �(V ) and �(D) in U(F )
 U(F ).

Now let b

1

; : : : ; b

m

be a generating set of B over U(Q). We remind the reader

that a

1

; : : : ; a

s

0

is a generating set of A as a U(Q)-module. Sine U(Q) is a Noethe-

rian ring the annihilator ideals Ann

U(Q)

b

i

and Ann

U(Q)

a

j

are �nitely generated

over U(Q) i.e.

Ann

U(Q)

b

i

=

X

t�1

g

i;t

U(Q); Ann

U(Q)

a

j

=

X

t�1

eg

j;t

U(Q)

Ann

U(Q)
U(Q)

(b

i


 a

j

) = Ann

U(Q)

(b

i

)
 U(Q) + U(Q)
Ann

U(Q)

(a

j

) (1)

We laim that for every 1 � r � m; 1 � s � s

0

; 1 � k � n there exist elements

�

rskj

;  

rskj

; f

rski

(d) 2 U(Q) 
 U(Q) and an integer l independent of r; s and k

suh that

x

k

(v)

l+1

+

X

0�i�l

x

k

(v)

i

f

rski

(d) +

X

j�1

g

rj

(u)�

rskj

+

X

j�1

eg

sj

(v) 

rskj

= 0 (2)

In the ase when B = A formula (2) is proved in [B-G 1℄. The general ase an

be proved using the same argument. For ompleteness we sketh a proof. The

U(Q)-submodule of B 
 A generated by fb

r


 (a

s

Æ x

j

k

)g

j�0

is �nitely generated,

say by fb

r


 (a

s

Æ x

j

k

)g

0�j�l

. Then for some f

rski

(d) 2 U(Q)
 U(Q)

x

k

(v)

l+1

+

X

i�l

x

k

(v)

i

f

rski

(d) 2 Ann

U(Q)
U(Q)

(b

r


 a

s

)

Now (2) follows immediately from (1).

3. Let � : �

i�m

e

i

U(L)! B be the homomorphism of U(L){modules sending

the generator e

i

of the free module �

i�m

e

i

U(L) to b

i

. Then B is �nitely presented

over U(L) if and only if Ker � is �nitely generated over U(L). De�ne

e

X = fe

i

'�(g

ij

)g

i;j�1

;

X

t

=fe

i

'(f

1

)(a

j

Æ�(f

2

)) j f

1

; f

2

monomials in U(F ); deg(f

1

f

2

) � t; i � m; j � s

0

g

and write V

t

for the U(L)-submodule of Ker� � �

i�m

e

i

U(L) generated by the

�nite set X

t

[

e

X. We aim to prove that for suÆiently big t

V

t

= V

t+1

:
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Then V = [

m�1

V

m

is �nitely generated over U(L) and Ker �=V is a surjetive

image of the quotient of Ker � through the U(L)-submodule generated by [

t�1

X

t

.

This quotient is the kernel of the homomorphism of U(Q){modules�

i�m

e

i

U(Q)!

B sending e

i

to b

i

. The latter is �nitely generated over U(Q) as U(Q) is Noetherian

and hene Ker �=V is �nitely generated over U(Q). Finally as V is �nitely

generated over U(L) we dedue that Ker � is �nitely generated over U(L), as

required.

Lemma 1.1. If f

1

; f

2

; f

3

are monomials in U(F ) suh that deg(f

1

f

2

f

3

) < 2t

then

e

i

'(f

1

)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

)) 2 V

t

Proof. We indut on deg(f

1

). If f

1

= 1 then deg(f

2

) < t or deg(f

3

) < t, say

deg(f

3

) < t. Then e

i

(a

k

Æ �(f

3

)) and onsequently e

i

(a

k

Æ �(f

3

))(a

j

Æ �(f

2

)) are

elements of V

t

.

If f

1

= gY for some Y = X

j

we have

e

i

'(f

1

)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

)) = e

i

'(g)['(Y ); a

j

Æ �(f

2

)℄(a

k

Æ �(f

3

))+

e

i

'(g)(a

j

Æ �(f

2

))['(Y ); a

k

Æ �(f

3

)℄ + e

i

'(g)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

))'(Y ) =

�e

i

'(g)(a

j

Æ �(f

2

Y ))(a

k

Æ �(f

3

))� e

i

'(g)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

Y ))

+e

i

'(g)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

))'(Y )

By indution all summands are elements of V

t

and the proof is ompleted.

Lemma 1.2. Let

� : U(L)
 U(A)! U(L)

be the linear map sending �

1


�

2

to �

1

�

2

. We onsider U(L)
U(A) as a (right)

module over U(L) 
 U(L), where the ation is omponent wise, �rst omponent

U(L) ats via right multipliation and the seond via the adjoint ation of L on

A i.e. for w

1

; : : : ; w

k

2 A; l 2 L the image of w

1

: : : w

k

2 S

k

A � U(A) under the

ation of l is (w

1

: : : w

k

) Æ l =

P

1�i�k

w

1

: : : (w

i

Æ l) : : :w

k

. We write � for the

desribed ation of U(L)
 U(L) on U(L)
 U(A). Then

1. for all � 2 (Ker �
 �)

2t+1

we have

e

i

�((1
 a

j

) � ('
 ')(�)) 2 V

t

;
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2. the map � : U(L) 
 U(A) ! U(L) is a homomorphism of U(L){modules

where U(L) ats diagonally on the domain i.e. via the diagonal homomorphism

U(L)! U(L)
 U(L) sending l 2 L to l 
 1 + 1
 l.

Proof. By [B-G 1, Lemma 2.2(2)℄ Ker(�
 �)

2t+1

is spanned by p�q, where

p; q are monomials in U(F ) 
 U(F ), deg(pq) � 2t � 1 and � is [X

�

; X

�

℄ 
 1

or 1 
 [X

�

; X

�

℄ for some � > �. As (U(L) 
 A) � (' 
 ')(1 
 [X

�

; X

�

℄) �

U(L) 
 (A Æ [y

�

; y

�

℄) = 0 we have to onsider only the ase � = [X

�

; X

�

℄ 
 1.

We write p = p

1

(u)p

2

(v); q = q

1

(u)q

2

(v) for some monomials p

1

; p

2

; q

1

; q

2

2 U(F ).

Then (1
a

j

)�('
')(p�q) = '(p

1

[X

�

; X

�

℄q

1

)
(a

j

Æ�(p

2

q

2

)) and using [y

�

; y

�

℄ =

a

�;�

2 fa

1

; : : : ; a

s

0

g [ f0g we get

�((1
 a

j

) � ('
 ')(p�q)) = '(p

1

)a

�;�

'(q

1

)(a

j

Æ �(p

2

q

2

)) =

'(p

1

)[a

�;�

; '(q

1

)℄(a

j

Æ �(p

2

q

2

)) + '(p

1

)'(q

1

)a

�;�

(a

j

Æ �(p

2

q

2

)) =

'(p

1

)(a

�;�

Æ '(q

1

))(a

j

Æ �(p

2

q

2

)) + '(p

1

q

1

)a

�;�

(a

j

Æ �(p

2

q

2

)):

By Lemma 1.1 both summands are in V

t

.

The seond part of the lemma follows immediately from the de�nition of the

map �.

Proposition 1.3. For suÆiently big t V

t

= V

t+1

.

Proof. Let e

0

be the maximal degree of the elements f

rski

(d); �

rskj

;  

rskj

de�ned in (2) for all possible r; s; k; j; i. We �x t

0

= maxfln; e

0

� l � 1g, where l

is the positive integer used in (2), e

0

is the maximal degree of a monomial in (2).

Let f

1

; f

2

be monomials in U(F ) with deg(f

1

f

2

) = t + 1 � t

0

+ 1. If f

1

6= 1

we write f

1

= gY for some Y 2 fX

1

; : : : ; X

n

g. Then

'(f

1

)(a

j

Æ �(f

2

)) = '(g)'(Y )(a

j

Æ �(f

2

)) = '(g)['(Y ); a

j

Æ �(f

2

)℄+

'(g)(a

j

Æ �(f

2

))'(Y ) = �'(g)(a

j

Æ �(f

2

Y )) + '(g)(a

j

Æ �(f

2

))'(Y )

i.e. e

i

'(f

1

)(a

j

Æ �(f

2

)) is in the U(L)-submodule generated by the elements

e

i

'(f)(a

j

Æ �(f

3

)) for deg(f) < deg(f

1

); deg(ff

3

) � deg(f

1

f

2

). Therefore to om-

plete the proof of the proposition it is suÆient to show e

i

(a

j

Æ �(f)) 2 V

t

for all

monomials f in U(F ) with deg(f) = t+ 1.
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As t + 1 � ln + 1 we an assume f = X

l+1

k

X

�

1

1

: : :X

�

k�1

k�1

X

�

k+1

k+1

: : :X

�

n

n

(remember �(f) 2 U(Q) and U(Q) is ommutative). Then (2) implies

(x

l+1

k

x

�

1

1

: : : x

�

k�1

k�1

x

�

k+1

k+1

: : : x

�

n

n

)(v) + �+ � +  = 0; (3)

where

� =

X

i�l

x

k

(v)

i

f

rski

(d)(x

�

1

1

: : : x

�

k�1

k�1

x

�

k+1

k+1

: : : x

�

n

n

)(v);

� =

X

j

g

rj

(u)�

rskj

(x

�

1

1

: : : x

�

k�1

k�1

x

�

k+1

k+1

: : : x

�

n

n

)(v);

 =

X

j

eg

sj

(v) 

rskj

(x

�

1

1

: : : x

�

k�1

k�1

x

�

k+1

k+1

: : : x

�

n

n

)(v):

The degrees of the elements involved in (3) is bounded above by

e

0

+

X

1�j 6=k�n

�

j

= e

0

+ deg(f)� l � 1 = e

0

+ t� l � 2t+ 1:

Note that � belongs to the U(Q)-submodule of U(Q)
U(Q) (via the diagonal

ation) generated by the subspae (U(Q)
 U(Q))

t

. We an lift � to an elements

e� from the U(F ){submodule of U(F ) 
 U(F ) generated by (U(F ) 
 U(F ))

t

i.e.

(� 
 �)(e�) = �. We an �nd

e

� =

P

j

(�g

r;j

)(U)

e

�

j

, e =

P

j

(�eg

s;j

)(V )e

j

both in

(U(F )
 U(F ))

2t+1

suh that (�
 �)(

e

�) = �; (�
 �)(e) = . Then (3) implies

f(V ) + e�+

e

� + e 2 Ker(�
 �)

2t+1

: (4)

Now Proposition 1.3 follows from Lemma 1.4. Indeed Lemma 1.4 together with

(4) implies e

r

(a

s

Æ �(f)) = e

r

�((1
 a

s

) � ('
 ')(f(V ))) 2 V

t

.

Lemma 1.4. For � 2 fe�;

e

�; eg or � 2 Ker(�
 �)

2t+1

e

r

�((1
 a

s

) � ('
 ')(�)) 2 V

t

:

Proof. If � =

e

� then e

r

�((1
 a

s

) � ('
 ')(�)) 2

P

j

e

r

('�g

rj

)U(L) � V

t

.

If � = e then (1
 a

s

) � ('
 ')(�) = 0.

If � = e� we use Lemma 1.2(2) to dedue e

r

�((1
a

s

)� ('
')(�)) � e

r

�((1


a

s

) � (U(L)
 U(L))

t

)U(L) � V

t

.
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Finally if � 2 Ker(�
�)

2t+1

we use Lemma 1.2(1). This ompletes the proof

of Lemma 1.4, Proposition 1.3 and Proposition 1.

3. Proofs of the main theorems

Lemma 2. In the onditions of Theorem A if B is �nitely presented over

U(L) then B 
 A is �nitely generated over U(Q) via the diagonal ation.

Proof. Consider the following diagram with �rst row an exat omplex of

U(L){modules and seond row an exat omplex of U(Q){modules

R

1

�

1

�! R

0

= �

i�m

e

i

U(L)

�

0

�! B ! 0

# 1

B

Q

1

= B 
A
 U(A)

d

1

�! Q

0

= B 
 U(A)

d

0

�! B ! 0

(5)

where R

0

; R

1

are free U(L){modules of �nite rank, �

0

(e

i

) = b

i

; d

0

(b
 �) = b�(�),

� is the augmentation map U(A)! K and d

1

(b
 a
 �) = b
 a�.

Let � : U(Q)! U(L) be the omposition ' Æ �, where ' and � are the maps

de�ned in setion 2. We �x a �nite generating set f

P

i

e

i

�

i;j

g

j

� �

i�m

e

i

U(Q)

over U(Q) of the kernel of the U(Q){homomorphism �

i�m

e

i

U(Q) ! B sending

e

i

to b

i

. Then

Ker �

0

=

X

i�m

(e

i

A)U(L) +

X

j

(

X

i�m

e

i

�(�

i;j

))U(L)

and we an assume R

1

has a �nite basis X

1

[ X

2

suh that �

1

(X

1

) � [

i�m

e

i

A,

X

2

= fx

2;j

g

j

; �

1

(x

2;j

) =

P

i�m

e

i

�(�

i;j

).

Now we want to onstrut homomorphisms of U(A){modules �

i

: R

i

! Q

i

for i = 0; 1 that extend the identity on B and ommute with the di�erential of the

diagram (5). De�ne �

0

: R

0

! Q

0

by

�

0

(e

i

�(x

k

1

1

: : : x

k

n

n

)�) = (b

i

Æ (x

k

1

1

: : : x

k

n

n

))
 � for � 2 U(A):

The de�nition of �

1

is as follows: �

1

(X

2

) = 0 and for x 2 X

1

; � 2 U(A) suh that

�

1

(x) = e

i

a

�

1

(x�(x

k

1

1

: : : x

k

n

n

)�) = ((b

i


 a) Æ Æ(x

k

1

1

: : : x

k

n

n

))
 �;

9



where Æ : U(Q)! U(Q)
 U(Q) is the diagonal map and (b

i


 a) Æ Æ(x

k

1

1

: : : x

k

n

n

)

is the image of b

i


 a under the diagonal ation of x

k

1

1

: : : x

k

n

n

.

Now we extend the rows of the diagram (5) to projetive resolutions R and Q

over U(L) and U(A) respetively and extend �

0

; �

1

, to a hain map � : R ! Q of

omplexes over U(A). The resolution Q is hosen in a speial way. By de�nition

it is B 
F where F is the \standard" resolution over U(A)

F : : : :! F

i

= ^

i

A
U(A)! F

i�1

= ^

i�1

A
U(A)! : : :! F

0

= U(A)! K ! 0

with di�erential

�

i

(a

1

^ : : : ^ a

i

) =

X

j

(�1)

j

(a

1

^ : : : ^ â

j

^ : : : ^ a

i

)
 a

j

:

The omplex F is exat by [C-E, Ch 13, Thm 7.1℄. Now the hain map � indues an

isomorphism between H

i

(R


U(A)

K) and H

i

(Q


U(A)

K) ' B
H

i

(F) ' B
^

i

A

and H

1

(R


U(A)

K) is �nitely generated over U(Q). Then B
A ' H

1

(Q


U(A)

K)

is an U(Q){module via �

1

and by the de�nition of �

1

the ation of U(Q) is the

diagonal one. This ompletes the proof of Lemma 2.

Lemma 3. If L is a split extension of A by Q and B is of homologial

type FP

m

over U(L) then B 
 (^

m

A) is �nitely generated over U(Q), where

U(Q) ats via the diagonal homomorphism U(Q) !




m+1

U(Q) sending q 2 Q

to

P

0�i�m

1
 : : :
 1

| {z }

i times


q 
 1
 : : :
 1

| {z }

m�i times

.

Proof. Suppose

R : : : :! R

i

�

i

�! : : :

�

1

�!R

0

�

0

�!B ! 0

is a free resolution of B over U(L) suh that R

i

for i � m is �nitely generated and

Q = B 
 F is the resolution onsidered in the proof of Lemma 2.

Now we onstrut a hain map � : R ! Q over U(A) induing identity on B.

First R

i

= T

i




U(A)

U(L) ' T

i




K

U(Q) for some free U(A){submodule T

i

of R

i

.

We want to de�ne � in suh a way that �

i

(tf) = �

i

(t)

f

for all t 2 T

i

, f a monomial

in U(Q), where upper index f denotes the image under the diagonal ation of f .

We proeed by indution on i. Suppose we have onstruted �

i�1

, then there

10



exists a homomorphism of U(A){modules �

i

: R

i

! Q

i

suh that ��

i

= �

i�1

�.

We set �

i

(tf) = �

i

(t)

f

for t 2 T

i

; f a monomial in U(Q). It is easy to hek that

�

i

is a homomorphism of U(A){modules and ��

i

= �

i�1

�. Finally �

i

indues an

isomorphism between the homology groups H

i

(Q


U(A)

K) and H

i

(R


U(A)

K).

The latter is a �nitely generated U(Q){module for i � m and by onstrution the

indued by � ation of U(Q) on H

i

(Q


U(A)

K) ' B 
 (^

i

A) is the diagonal one.

Theorem 4. Suppose A and B are �nitely generated U(Q){modules.

1. B 
 (




m

A) is �nitely generated over U(Q) via the diagonal ation if and

only if whenever [v

2

℄; : : : ; [v

m+1

℄ 2 �(Q;A); [v

1

℄ 2 �(Q;B) and 0 = [v

1

℄ + : : : +

[v

m+1

℄ we have all [v

i

℄ trivial.

2. If B 
 (^

m

A) is �nitely generated over U(Q) via the diagonal ation then

B 
 (




m

A) is �nitely generated over U(Q) via the diagonal ation.

Proof. 1. We writeM for B
(




m

A) and view it as a module over




m+1

U(Q).

Then the diagonal embedding � : U(Q)!




m+1

U(Q) indues a map

�

�

: �(Q

m+1

;M)! �(Q;M)

By [B-G 2, Prop. 3.1℄M is �nitely generated over U(Q) via the diagonal ation if

and only if (�

�

)

�1

(0) = 0. As shown in [B-G 2℄ there is a diret produt formula

�(Q

m+1

;M) ' �(Q;B)� (�(Q;A))

m

and under this isomorphism �

�

sends ([v

1

℄; [v

2

℄; : : : ; [v

m+1

℄) to

P

j

[v

j

℄. This implies

immediately the �rst part of the theorem.

2. Now we assume the seond part of the theorem is wrong and then by the

�rst part there exist [v

2

℄; : : : ; [v

m+1

℄ 2 �(Q;A) not all zero and [v

1

℄ 2 �(Q;B)

suh that [v

1

℄ + : : :+ [v

m+1

℄ = 0.

Lemma 4.1[G℄ Suppose �

i

: Q! K((t

i

)) ' K((t)) is a linear map of vetor

spaes over K, M is a �nitely generated U(Q)-module suh that [�

i

℄ 2 �(Q;M).

Then there exists a non-trivial linear map

w

i

:M ! K((t

i

))

suh that

w

i

(mq) = w

i

(m)�

i

(q) for all m 2M; q 2 Q

11



We apply the above lemma for the linear maps �

i

= �

i

v

i

, where �

i

: K((t))!

K((t

i

)) is the isomorphism of K-algebras sending t to t

i

and obtain linear maps

w

1

: B ! K((t

1

)); w

i

: A! K((t

i

)) for all 2 � i � m+ 1

with the properties desribed in Lemma 4.1. Using the maps w

i

we onstrut

another linear map

' = w

1


w

2


 : : :
w

m+1

: B
 (




m

A)! R = K((t

1

))
K((t

2

))
 : : :
K((t

m+1

))

that will play an important role in the ompletion of the proof of Theorem 4.

Let

� : B 
 (




m

A)! B 
 (




m

A)

be the linear map given by �(b
a

1


: : :
a

m

) =

P

�2S

m

(�1)

�

b
a

�(1)


: : :
a

�(m)

.

As the image of � fators through B 
 (

^

m

A) it is �nitely generated over U(Q).

Note that Im � is a module over U(Q)
S and � is a homomorphism of U(Q)
S{

modules, where S = f� 2




m

U(Q) j �� = � for all � 2 S

m

g. As




m

U(Q)

is integral over S the K-algebra




m+1

U(Q) is integral over U(Q) 
 S and so

V = Im �(




m+1

U(Q)) is �nitely generated over U(Q).

Now let s be the positive integer with the properties '(V ) � J

s

and '(V ) 6�

J

s+1

, where J is the ideal of R generated by t

1

� t

2

; t

2

� t

3

; : : : ; t

m

� t

m+1

. Then

for v 2 V the image of the diagonal ation of q 2 Q on '(v) is '(v)

P

i

�

i

(q) �

'(v)

P

i

�

i

�

i

(q) modulo J

s+1

, where �

i

: K((t

i

)) ! K((t

1

)) is the isomorphism

of K-algebras sending t

i

to t

1

. As

P

i

[v

i

℄ = 0 we have

P

i

�

i

�

i

(q) 2 K[[t

1

℄℄

and hene '(V ) + J

s+1

=J

s+1

lies in a �nitely generated K[[t

1

℄℄{submodule of

J

s

=J

s+1

' K((t

1

)).

Finally we hoose v

i

and q 2 Q suh that Im �

i

is not a subset of K[[t

i

℄℄

and �

i

(q) =2 K[[t

i

℄℄ and de�ne h = (




i�1

1) 
 q 
 (




m�i+1

1) 2




m+1

U(Q). Then

for v 2 V we have '(vh) = '(v)�

i

(q) � '(v)�

i

(�

i

(q)) modulo J

s+1

and hene

'(V )+ J

s+1

=J

s+1

is invariant under multipliation with f

j

for every j � 1 where

f = �

i

(�

i

(q)) 2 K((t

1

)) nK[[t

1

℄℄. In partiular '(V ) + J

s+1

=J

s+1

annot lie in a

�nitely generated K[[t

1

℄℄{submodule of J

s

=J

s+1

' K((t

1

)), a ontradition.
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Theorem 5. If A and B are �nitely generated U(Q){modules and B
(


m

A)

is �nitely generated over U(Q) via the diagonal ation then B is of type FP

m

over

U(L), where the Lie algebra L is the split extension of A by Q.

Proof. The proof of Theorem 5 is based on the existene of some speial long

exat sequenes given by Lemma 5.1.

Lemma 5.1 For every k � 1 the omplex

0! ^

k

A

�

k;k

�! : : :

�

i+1;k

�! ^

i

A
 S

k�i

A

�

i;k

�! : : :

�

1;k

�!S

k

A! 0

with di�erentials �

i;k

sending the element (a

1

^ : : : ^ a

i

)
 (b

1


 : : :
 b

k�i

) to

X

1�j�i

(�1)

i�j

(a

1

^ : : : ^ â

j

^ : : : ^ a

i

)
 (a

j


 b

1


 : : :
 b

k�i

)

is exat.

Proof. Choose a basis A

0

of A and order it linearly. Then ^

i

A
 S

k�i

A has

a basis f(a

1

^ : : :^ a

i

)
 (b

1


 : : :
 b

k�i

) j a

1

; : : : ; a

i

; b

1

; : : : ; b

k�i

2 A

0

; a

1

< : : : <

a

i

; b

1

� : : : � b

k�i

g = X

i;k

. We all an element of X

i;k

good if b

1

� a

1

and de�ne

by (^

i

A
S

k�i

A)

good

the spae spanned by the good elements. A partial order on

X

i;k

is de�ned by (a

1

^ : : :^a

i

)
 (b

1


 : : :
b

k�i

) � (a

0

1

^ : : :^a

0

i

)
 (b

0

1


 : : :
b

0

k�i

)

if and if a

j

� a

0

j

for all j � i.

Claim 1. ^

i

A
 S

k�i

A = (^

i

A
 S

k�i

A)

good

+ Im �

i+1;k

Proof. We show that a non-good element (a

1

^ : : :^ a

i

)
 (b

1


 : : :
 b

k�i

) of

X

i;k

an be expressed modulo the image of �

i+1;k

as a sum of smaller elements of

X

i;k

. Indeed (a

1

^: : :^a

i

)
(b

1


: : :
b

k�i

)+(�1)

i+1

�

i+1;k

(b

1

^a

1

^: : :^a

i

)
(b

2




: : :
b

k�i

) is a sum of elements of X

i;k

smaller than (a

1

^ : : :^a

i

)
(b

1


 : : :
b

k�i

).

This ompletes the proof of the laim.

It follows immediately from Claim 1 that

^

i

A
 S

k�i

A = (^

i

A
 S

k�i

A)

good

+ �

i+1;k

((^

i+1

A
 S

k�i�1

A)

good

) (6)

We laim that the sum in (6) is exat and

�

i+1;k

((^

i+1

A
 S

k�i�1

A)

good

) ' (^

i+1

A
 S

k�i�1

A)

good
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For both statements it is suÆient to onsider the ase when A is �nite dimensional.

In this ase we de�ne �(i; k) to be the dimension of (^

i

A 
 S

k�i

A)

good

i.e. the

number of good elements in X

i;k

.

Claim 2. dim

K

(^

i

A
 S

k�i

A) = �(i; k) + �(i+ 1; k)

Proof. Note that the dimension of ^

i

A 
 S

k�i

A is the ardinality of X

i;k

.

It remains to show that �(i + 1; k) is the number of non-good elements in X

i;k

.

This an be done by showing a bijetion between the non-good elements in X

i;k

and the good elements of X

i+1;k

. If (a

1

^ : : :^ a

i

)
 (b

1


 : : :
 b

k�i

) is a non-good

element from X

i;k

then (b

1

^ a

1

^ : : :
 a

i

)
 (b

2


 : : :
 b

k�i

) is a good element of

X

i+1;k

. The inverse holds too and the proof of Claim 2 is ompleted.

Note that Claim 2 together with (6) shows that

^

i

A
 S

k�i

A = (^

i

A
 S

k�i

A)

good

� �

i+1;k

((^

i+1

A
 S

k�i�1

A)

good

)

and that the restrition of �

i+1;k

on (^

i+1

A
S

k�i�1

A)

good

is injetive. Similarly

the restrition of �

i;k

on (^

i

A 
 S

k�i

A)

good

is injetive and hene Im �

i+1;k

=

Ker �

i;k

. This ompletes the proof of Lemma 5.1.

Now we de�ne V

i

for i � 1 to be the subspae of




i

A generated by the elements

P

�2S

n

(�1)

�

a

�(1)


: : :
a

�(n)

for a

1

; : : : ; a

n

2 A. LetW

i

be the U(A){submodule

of




i�1

A
 U(A) generated by V

i

� (




i�1

A)
A � (




i�1

A)
 U(A).

Claim 3 The map '

i

: V

i


U(A)!W

i

sending v

1


 : : :
 v

i


� to v

1


 : : :


v

i�1


 v

i

� has kernel W

i+1

.

Proof. We identify V

i

with ^

i

A via the map sending

P

�2S

n

(�1)

�

a

�(1)




: : :
 a

�(n)

to a

1

^ : : : ^ a

n

. Write U(A) as a diret sum of the symmetri powers

of A, the restrition of '

i

on ^

i

A 
 S

k�i

A is preisely the map �

i;k

de�ned in

Lemma 5.1. Then Lemma 5.1 ompletes the proof.

Lemma 5.2. Under the assumptions of Theorem 5 for every i � m the

module B
W

i

is of type FP

k

over U(L) if and only if B
W

i+1

is of type FP

k�1

over U(L), where U(A) ats on B 
W

i

via its ation on the omponent W

i

and

U(Q) ats on B
(




i�1

A)
U(A) via the diagonal map U(Q)!




i+1

U(Q) sending

an element q from Q to

P

0�j�i

1
 : : :
 1

| {z }

j times


q 
 1
 : : :
 1

| {z }

i�j times

.
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Proof. The short exat sequene of U(A){modules 0!W

i+1

! V

i


U(A)!

W

i

! 0 gives rise to a short exat sequene of U(L){modules

0! B 
W

i+1

! B 
 V

i


 U(A)! B 
W

i

! 0 (7)

where U(Q) ats diagonally on all modules in (7). By Theorem 4(1) B 
 (




i

A)

is �nitely generated over U(Q) via the diagonal ation for all i � m and hene

its submodule B 
 V

i

is �nitely generated over U(Q). Then (B 
 V

i

) 
 U(A) '

(B
V

i

)


U(Q)

U(L) is indued from a module of type FP

1

over U(Q) and is itself

of type FP

1

over U(L). The dimension shifting argument [B, Prop 1.4℄ applied

to (7) ompletes the proof.

Finally we are ready to omplete the proof of Theorem 5. Applying Lemma

5.2 several times we obtain B 
W

1

is of type FP

m�1

over U(L) if and only if

B 
W

m

is of type FP

0

(i.e. �nitely generated) over U(L). Note that B 
 V

m

is a generating set of B 
W

m

over U(A). By assumption B 
 (




m

A) is �nitely

generated over U(Q) and so B 
 V

m

is �nitely generated over U(Q). Finally it

remains to show that B 
W

1

is of type FP

m�1

over U(L) if and only if B is of

type FP

m

over U(L). This follows immediately from dimension shifting argument

for the short exat sequene of U(L)-modules

0! B 
W

1

! B 


K

U(A) ' B 


U(Q)

U(L)! B ! 0

indued from the short exat sequene 0!W

1

! U(A)! K ! 0.

Proof of Theorem A. 1, 2 by Proposition 1 and Lemma 2 and 2, 3 by

Theorem 4(1).

Proof of Corollary B. It is a straight orollary of Theorem A and the

lassi�ation of �nitely presented Lie algebras in [B-G 1℄, [B-G 2℄.

Proof of Theorem C. The theorem follows from Lemma 3, Theorem 4 and

Theorem 5.
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