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Abstra
t We 
hara
terise the modules B of homologi
al type FP

m

over a

�nitely generated Lie algebra L su
h that L is a split extension of an abelian ideal

A and an abelian subalgebra Q and A a
ts trivially on B. The 
hara
terisation is

in terms of the invariant � introdu
ed by R. Bryant and J. Groves and is a Lie

algebra version of the still open generalised FP

m

-Conje
ture for metabelian groups.

The 
ase m = 1 is treated separately as there the 
hara
terisation is proved without

restri
tions on the type of the extension.

Introdu
tion

The purpose of this paper is to formulate and establish in the split exten-

sion 
ase the 
ounterpart of the generalised FP

m

{Conje
ture suggested in [K 2,

Conje
ture 6℄ for �nitely generated metabelian Lie algebras. The original FP

m

{

Conje
ture [B-G 1℄ des
ribes when a �nitely generated metabelian group G is of

homologi
al type FP

m

in terms of the invariant

�

1

(G) � S(G) = f[�℄ = R

>0

� j � 2 Hom(G;R) n f0gg:

Though the FP

m

{Conje
ture for metabelian groups is still open it is known to

hold in the following 
ases : m = 2 [B-S℄, m = 3 and G a split extension of abelian

groups [B-H℄, G of �nite Prufer rank [

�

A℄, G a torsion analogue of a group of �nite

Prufer rank [K 1℄. A proof of the pro-p version of the FP

m

-Conje
ture for �nitely

generated metabelian pro-p groups suggested in [King℄ 
ould be found in [K 3℄.

The question of �nite presentability of metabelian Lie algebras is addressed in

[B-G 1℄ and [B-G 2℄ where R. Bryant and J. Groves give a 
hara
terization of �nite
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presentability in terms of the invariant �. The question what restri
tions the �nite

presentability imposes on the stru
ture of a Lie algebra is treated in [W℄ where

links between �nite presentability and an HNN-
onstru
tion for Lie algebras are

investigated. This approa
h gives the surprising result that for a �nitely presented

Lie algebra without free subalgebras of rank two the ideals of 
odimension one are

�nitely generated as subalgebras.

In this paper we examine some �niteness homologi
al properties of modules

over metabelian Lie algebras. A module over a Lie algebra L (over a �eld K) is a

module over its universal enveloping algebra U(L). We are primary interested in

modules B over L su
h that some abelian ideal A of L with L=A abelian has the

property that A a
ts trivially on B. This in
ludes the 
ase of the trivial module

K.

Theorem A. Suppose L is a �nitely generated Lie algebra over a �eld K, A

is an abelian ideal in L with Q = L=A abelian and B is a �nitely generated (right)

module over the universal algebra U(Q) of Q. Then the following are equivalent:

1. B is �nitely presented as a module over L (i.e. as an module over the

universal algebra U(L) of L) where the a
tion of L is via the 
anoni
al proje
tion

� : L! Q.

2. A


K

B is �nitely generated over the universal algebra U(Q), where U(Q)

a
ts via the diagonal homomorphism � : U(Q)! U(Q)
 U(Q) sending q 2 Q to

q 
 1 + 1
 q.

3. �(Q;A) \ ��(Q;B) = 0.

Corollary B. Suppose L is a �nitely generated Lie algebra over a �eld with

an abelian ideal A su
h that Q = L=A is abelian. Then L is �nitely presented as

a Lie algebra if and only if A is �nitely presented as a module over U(L).

The group 
ounterpart of the equivalen
e of 
onditions 1 and 3 from Theorem

A is 
onsidered in [K 2, Prop 4℄. There only the 
ase of split extension groups is

solved leaving the question for non-split groups open.

The main result of this paper is the proof of the Lie algebra version of the

generalised FP

m

{Conje
ture suggested in [K 2, Conje
ture 6℄. In the Lie algebra


ase the Bryant-Groves invariant � will play the role of the Bieri-Strebel invariant

�

1

(G)




. Note we establish the result only for split extensions metabelian Lie

algebras. The group theoreti
 analogue of Theorem C is still an open problem.
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Theorem C. In the 
onditions of Theorem A if L is a split extension of A by

Q then B is of type FP

m

if and only if B
 (




m

A) is �nitely generated over U(Q)

via the diagonal a
tion if and only if whenever [v

2

℄; : : : ; [v

m+1

℄ 2 �(Q;A); [v

1

℄ 2

�(Q;B), 0 = [v

1

℄ + : : :+ [v

m+1

℄ then all [v

i

℄ are trivial.

1. Preliminaries on the invariant �

The 
lassi�
ation of the �nitely presented Lie algebras over a �eld K given

in [B-G 1℄, [B-G 2℄ depends on the invariant �(Q;A), where A is an abelian ideal

of L with abelian quotient Q = L=A. Let K[Q℄ be the polynomial algebra on n


ommuting variables where n is the dimension of Q, so K[Q℄ is isomorphi
 to the

universal enveloping algebra U(Q) of Q. By de�nition

�(Q;A) = f[�℄ j � 2 Hom

K

(Q;K((t))); � is extendable to a ring homomorphism

�

0

: K[Q℄=Ann(A)! K((t))g;

where [�℄ = � + Hom(Q;K[[t℄℄) 2 Hom(Q;K((t))=Hom(Q;K[[t℄℄), K is the al-

gebrai
 
losure of K, K((t)) is the �eld of fra
tions of K[[t℄℄ and Ann(A) is the

annihilator of V in K[Q℄. The main result of [B-G 1℄, [B-G 2℄ asserts that L

is �nitely presented as a Lie algebra if and only if the exterior square of A is

�nitely generated over K[Q℄ via the diagonal adjoint a
tion if and only if when-

ever [�

1

℄; [�

2

℄ 2 �(Q;A) n f0g the sum [�

1

℄ + [�

2

℄ is non-trivial i.e. �(Q;A) has

no non-trivial antipodal elements.

2. Proof of Proposition 1.

This se
tion is devoted to the proof of one of the impli
ations of Theorem A.

Our proof uses the te
hniques developed in [B-G 1, se
tion 2℄. As the proof is very

long and te
hni
al it is split in several steps.

Proposition 1. In the assumptions of Theorem A 2. implies 1.

Proof. 1. Let a

1

; : : : ; a

s

0

; y

1

; : : : ; y

n

be a generating set of L su
h that

a

1

; : : : ; a

s

0

2 A and the images x

1

; : : : ; x

n

of y

1

; : : : ; y

n

in Q = L=A form a basis of
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Q. Furthermore for all 1 � j < i � s

0

assume a

i;j

= [y

i

; y

j

℄ 2 fa

1

; : : : ; a

s

0

g [ f0g.

Let F be the free Lie algebra on the generators X

1

; : : : ; X

n

and U(F ) be its uni-

versal algebra. We de�ne

� : U(F )! U(Q)

to be the homomorphism of K-algebras sending X

i

to x

i

,

� : U(Q)! U(F )

the linear map sending x

i

1

: : : x

i

k

to X

i

1

: : :X

i

k

for i

1

� : : : � i

k

and

' : U(F )! U(L)

the K-algebra homomorphism sending X

i

to y

i

. Then � = � Æ ' where

� : U(L)! U(Q)

is the homomorphism of asso
iative K{algebras indu
ed by the 
anoni
al proje
-

tion L! Q.

The elements X

�

1

i

1

: : :X

�

k

i

k

and x

�

1

1

: : : x

�

n

n

of U(F ) and U(Q) are 
alled mono-

mials of degree �

1

+ : : :+ �

k

and �

1

+ : : :+ �

n

respe
tively. If f = f

1


 f

2

is a

monomial in U(F )
U(F ) (resp. U(Q)
U(Q) ) the degree of f is deg(f

1

)+deg(f

2

).

For a general element f of U(F ), U(Q), U(F )
U(F ) or U(Q)
U(Q) the degree

deg(f) is the maximal degree of the monomials in the support of f . By de�nition

for a subspa
e J of U(F ); U(Q), U(F )
U(F ) or U(Q)
U(Q) the subspa
e J

t

is

spanned by all elements of J of degree at most t.

Note that U(L) a
ts on A via the adjoint (right) a
tion. As A is abelian this

makes A right U(Q){module. If f = gx

i

is a monomial in U(Q) the image of

a 2 A under the a
tion of f denoted by a Æ f is (a Æ g) Æ x

i

= [a Æ g; y

i

℄ and this

de�nition is extended by linearity for arbitrary elements of U(Q). If f 2 U(L) we

write a Æ f for a Æ �(f).

2. We adopt the notations from [B-G 1℄ and for an element � 2 U(Q) write

�(u), �(v) and �(d) for �
 1; 1
 � 2 U(Q)
U(Q) and the image of � under the

diagonal homomorphism

Æ : U(Q)! U(Q)
 U(Q)
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sending q 2 Q to q 
 1 + 1 
 q. Similarly we de�ne for an element � 2 U(F )

elements �(U); �(V ) and �(D) in U(F )
 U(F ).

Now let b

1

; : : : ; b

m

be a generating set of B over U(Q). We remind the reader

that a

1

; : : : ; a

s

0

is a generating set of A as a U(Q)-module. Sin
e U(Q) is a Noethe-

rian ring the annihilator ideals Ann

U(Q)

b

i

and Ann

U(Q)

a

j

are �nitely generated

over U(Q) i.e.

Ann

U(Q)

b

i

=

X

t�1

g

i;t

U(Q); Ann

U(Q)

a

j

=

X

t�1

eg

j;t

U(Q)

Ann

U(Q)
U(Q)

(b

i


 a

j

) = Ann

U(Q)

(b

i

)
 U(Q) + U(Q)
Ann

U(Q)

(a

j

) (1)

We 
laim that for every 1 � r � m; 1 � s � s

0

; 1 � k � n there exist elements

�

rskj

;  

rskj

; f

rski

(d) 2 U(Q) 
 U(Q) and an integer l independent of r; s and k

su
h that

x

k

(v)

l+1

+

X

0�i�l

x

k

(v)

i

f

rski

(d) +

X

j�1

g

rj

(u)�

rskj

+

X

j�1

eg

sj

(v) 

rskj

= 0 (2)

In the 
ase when B = A formula (2) is proved in [B-G 1℄. The general 
ase 
an

be proved using the same argument. For 
ompleteness we sket
h a proof. The

U(Q)-submodule of B 
 A generated by fb

r


 (a

s

Æ x

j

k

)g

j�0

is �nitely generated,

say by fb

r


 (a

s

Æ x

j

k

)g

0�j�l

. Then for some f

rski

(d) 2 U(Q)
 U(Q)

x

k

(v)

l+1

+

X

i�l

x

k

(v)

i

f

rski

(d) 2 Ann

U(Q)
U(Q)

(b

r


 a

s

)

Now (2) follows immediately from (1).

3. Let � : �

i�m

e

i

U(L)! B be the homomorphism of U(L){modules sending

the generator e

i

of the free module �

i�m

e

i

U(L) to b

i

. Then B is �nitely presented

over U(L) if and only if Ker � is �nitely generated over U(L). De�ne

e

X = fe

i

'�(g

ij

)g

i;j�1

;

X

t

=fe

i

'(f

1

)(a

j

Æ�(f

2

)) j f

1

; f

2

monomials in U(F ); deg(f

1

f

2

) � t; i � m; j � s

0

g

and write V

t

for the U(L)-submodule of Ker� � �

i�m

e

i

U(L) generated by the

�nite set X

t

[

e

X. We aim to prove that for suÆ
iently big t

V

t

= V

t+1

:
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Then V = [

m�1

V

m

is �nitely generated over U(L) and Ker �=V is a surje
tive

image of the quotient of Ker � through the U(L)-submodule generated by [

t�1

X

t

.

This quotient is the kernel of the homomorphism of U(Q){modules�

i�m

e

i

U(Q)!

B sending e

i

to b

i

. The latter is �nitely generated over U(Q) as U(Q) is Noetherian

and hen
e Ker �=V is �nitely generated over U(Q). Finally as V is �nitely

generated over U(L) we dedu
e that Ker � is �nitely generated over U(L), as

required.

Lemma 1.1. If f

1

; f

2

; f

3

are monomials in U(F ) su
h that deg(f

1

f

2

f

3

) < 2t

then

e

i

'(f

1

)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

)) 2 V

t

Proof. We indu
t on deg(f

1

). If f

1

= 1 then deg(f

2

) < t or deg(f

3

) < t, say

deg(f

3

) < t. Then e

i

(a

k

Æ �(f

3

)) and 
onsequently e

i

(a

k

Æ �(f

3

))(a

j

Æ �(f

2

)) are

elements of V

t

.

If f

1

= gY for some Y = X

j

we have

e

i

'(f

1

)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

)) = e

i

'(g)['(Y ); a

j

Æ �(f

2

)℄(a

k

Æ �(f

3

))+

e

i

'(g)(a

j

Æ �(f

2

))['(Y ); a

k

Æ �(f

3

)℄ + e

i

'(g)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

))'(Y ) =

�e

i

'(g)(a

j

Æ �(f

2

Y ))(a

k

Æ �(f

3

))� e

i

'(g)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

Y ))

+e

i

'(g)(a

j

Æ �(f

2

))(a

k

Æ �(f

3

))'(Y )

By indu
tion all summands are elements of V

t

and the proof is 
ompleted.

Lemma 1.2. Let

� : U(L)
 U(A)! U(L)

be the linear map sending �

1


�

2

to �

1

�

2

. We 
onsider U(L)
U(A) as a (right)

module over U(L) 
 U(L), where the a
tion is 
omponent wise, �rst 
omponent

U(L) a
ts via right multipli
ation and the se
ond via the adjoint a
tion of L on

A i.e. for w

1

; : : : ; w

k

2 A; l 2 L the image of w

1

: : : w

k

2 S

k

A � U(A) under the

a
tion of l is (w

1

: : : w

k

) Æ l =

P

1�i�k

w

1

: : : (w

i

Æ l) : : :w

k

. We write � for the

des
ribed a
tion of U(L)
 U(L) on U(L)
 U(A). Then

1. for all � 2 (Ker �
 �)

2t+1

we have

e

i

�((1
 a

j

) � ('
 ')(�)) 2 V

t

;
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2. the map � : U(L) 
 U(A) ! U(L) is a homomorphism of U(L){modules

where U(L) a
ts diagonally on the domain i.e. via the diagonal homomorphism

U(L)! U(L)
 U(L) sending l 2 L to l 
 1 + 1
 l.

Proof. By [B-G 1, Lemma 2.2(2)℄ Ker(�
 �)

2t+1

is spanned by p�q, where

p; q are monomials in U(F ) 
 U(F ), deg(pq) � 2t � 1 and � is [X

�

; X

�

℄ 
 1

or 1 
 [X

�

; X

�

℄ for some � > �. As (U(L) 
 A) � (' 
 ')(1 
 [X

�

; X

�

℄) �

U(L) 
 (A Æ [y

�

; y

�

℄) = 0 we have to 
onsider only the 
ase � = [X

�

; X

�

℄ 
 1.

We write p = p

1

(u)p

2

(v); q = q

1

(u)q

2

(v) for some monomials p

1

; p

2

; q

1

; q

2

2 U(F ).

Then (1
a

j

)�('
')(p�q) = '(p

1

[X

�

; X

�

℄q

1

)
(a

j

Æ�(p

2

q

2

)) and using [y

�

; y

�

℄ =

a

�;�

2 fa

1

; : : : ; a

s

0

g [ f0g we get

�((1
 a

j

) � ('
 ')(p�q)) = '(p

1

)a

�;�

'(q

1

)(a

j

Æ �(p

2

q

2

)) =

'(p

1

)[a

�;�

; '(q

1

)℄(a

j

Æ �(p

2

q

2

)) + '(p

1

)'(q

1

)a

�;�

(a

j

Æ �(p

2

q

2

)) =

'(p

1

)(a

�;�

Æ '(q

1

))(a

j

Æ �(p

2

q

2

)) + '(p

1

q

1

)a

�;�

(a

j

Æ �(p

2

q

2

)):

By Lemma 1.1 both summands are in V

t

.

The se
ond part of the lemma follows immediately from the de�nition of the

map �.

Proposition 1.3. For suÆ
iently big t V

t

= V

t+1

.

Proof. Let e

0

be the maximal degree of the elements f

rski

(d); �

rskj

;  

rskj

de�ned in (2) for all possible r; s; k; j; i. We �x t

0

= maxfln; e

0

� l � 1g, where l

is the positive integer used in (2), e

0

is the maximal degree of a monomial in (2).

Let f

1

; f

2

be monomials in U(F ) with deg(f

1

f

2

) = t + 1 � t

0

+ 1. If f

1

6= 1

we write f

1

= gY for some Y 2 fX

1

; : : : ; X

n

g. Then

'(f

1

)(a

j

Æ �(f

2

)) = '(g)'(Y )(a

j

Æ �(f

2

)) = '(g)['(Y ); a

j

Æ �(f

2

)℄+

'(g)(a

j

Æ �(f

2

))'(Y ) = �'(g)(a

j

Æ �(f

2

Y )) + '(g)(a

j

Æ �(f

2

))'(Y )

i.e. e

i

'(f

1

)(a

j

Æ �(f

2

)) is in the U(L)-submodule generated by the elements

e

i

'(f)(a

j

Æ �(f

3

)) for deg(f) < deg(f

1

); deg(ff

3

) � deg(f

1

f

2

). Therefore to 
om-

plete the proof of the proposition it is suÆ
ient to show e

i

(a

j

Æ �(f)) 2 V

t

for all

monomials f in U(F ) with deg(f) = t+ 1.
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As t + 1 � ln + 1 we 
an assume f = X

l+1

k

X

�

1

1

: : :X

�

k�1

k�1

X

�

k+1

k+1

: : :X

�

n

n

(remember �(f) 2 U(Q) and U(Q) is 
ommutative). Then (2) implies

(x

l+1

k

x

�

1

1

: : : x

�

k�1

k�1

x

�

k+1

k+1

: : : x

�

n

n

)(v) + �+ � + 
 = 0; (3)

where

� =

X

i�l

x

k

(v)

i

f

rski

(d)(x

�

1

1

: : : x

�

k�1

k�1

x

�

k+1

k+1

: : : x

�

n

n

)(v);

� =

X

j

g

rj

(u)�

rskj

(x

�

1

1

: : : x

�

k�1

k�1

x

�

k+1

k+1

: : : x

�

n

n

)(v);


 =

X

j

eg

sj

(v) 

rskj

(x

�

1

1

: : : x

�

k�1

k�1

x

�

k+1

k+1

: : : x

�

n

n

)(v):

The degrees of the elements involved in (3) is bounded above by

e

0

+

X

1�j 6=k�n

�

j

= e

0

+ deg(f)� l � 1 = e

0

+ t� l � 2t+ 1:

Note that � belongs to the U(Q)-submodule of U(Q)
U(Q) (via the diagonal

a
tion) generated by the subspa
e (U(Q)
 U(Q))

t

. We 
an lift � to an elements

e� from the U(F ){submodule of U(F ) 
 U(F ) generated by (U(F ) 
 U(F ))

t

i.e.

(� 
 �)(e�) = �. We 
an �nd

e

� =

P

j

(�g

r;j

)(U)

e

�

j

, e
 =

P

j

(�eg

s;j

)(V )e


j

both in

(U(F )
 U(F ))

2t+1

su
h that (�
 �)(

e

�) = �; (�
 �)(e
) = 
. Then (3) implies

f(V ) + e�+

e

� + e
 2 Ker(�
 �)

2t+1

: (4)

Now Proposition 1.3 follows from Lemma 1.4. Indeed Lemma 1.4 together with

(4) implies e

r

(a

s

Æ �(f)) = e

r

�((1
 a

s

) � ('
 ')(f(V ))) 2 V

t

.

Lemma 1.4. For � 2 fe�;

e

�; e
g or � 2 Ker(�
 �)

2t+1

e

r

�((1
 a

s

) � ('
 ')(�)) 2 V

t

:

Proof. If � =

e

� then e

r

�((1
 a

s

) � ('
 ')(�)) 2

P

j

e

r

('�g

rj

)U(L) � V

t

.

If � = e
 then (1
 a

s

) � ('
 ')(�) = 0.

If � = e� we use Lemma 1.2(2) to dedu
e e

r

�((1
a

s

)� ('
')(�)) � e

r

�((1


a

s

) � (U(L)
 U(L))

t

)U(L) � V

t

.
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Finally if � 2 Ker(�
�)

2t+1

we use Lemma 1.2(1). This 
ompletes the proof

of Lemma 1.4, Proposition 1.3 and Proposition 1.

3. Proofs of the main theorems

Lemma 2. In the 
onditions of Theorem A if B is �nitely presented over

U(L) then B 
 A is �nitely generated over U(Q) via the diagonal a
tion.

Proof. Consider the following diagram with �rst row an exa
t 
omplex of

U(L){modules and se
ond row an exa
t 
omplex of U(Q){modules

R

1

�

1

�! R

0

= �

i�m

e

i

U(L)

�

0

�! B ! 0

# 1

B

Q

1

= B 
A
 U(A)

d

1

�! Q

0

= B 
 U(A)

d

0

�! B ! 0

(5)

where R

0

; R

1

are free U(L){modules of �nite rank, �

0

(e

i

) = b

i

; d

0

(b
 �) = b�(�),

� is the augmentation map U(A)! K and d

1

(b
 a
 �) = b
 a�.

Let � : U(Q)! U(L) be the 
omposition ' Æ �, where ' and � are the maps

de�ned in se
tion 2. We �x a �nite generating set f

P

i

e

i

�

i;j

g

j

� �

i�m

e

i

U(Q)

over U(Q) of the kernel of the U(Q){homomorphism �

i�m

e

i

U(Q) ! B sending

e

i

to b

i

. Then

Ker �

0

=

X

i�m

(e

i

A)U(L) +

X

j

(

X

i�m

e

i

�(�

i;j

))U(L)

and we 
an assume R

1

has a �nite basis X

1

[ X

2

su
h that �

1

(X

1

) � [

i�m

e

i

A,

X

2

= fx

2;j

g

j

; �

1

(x

2;j

) =

P

i�m

e

i

�(�

i;j

).

Now we want to 
onstru
t homomorphisms of U(A){modules �

i

: R

i

! Q

i

for i = 0; 1 that extend the identity on B and 
ommute with the di�erential of the

diagram (5). De�ne �

0

: R

0

! Q

0

by

�

0

(e

i

�(x

k

1

1

: : : x

k

n

n

)�) = (b

i

Æ (x

k

1

1

: : : x

k

n

n

))
 � for � 2 U(A):

The de�nition of �

1

is as follows: �

1

(X

2

) = 0 and for x 2 X

1

; � 2 U(A) su
h that

�

1

(x) = e

i

a

�

1

(x�(x

k

1

1

: : : x

k

n

n

)�) = ((b

i


 a) Æ Æ(x

k

1

1

: : : x

k

n

n

))
 �;
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where Æ : U(Q)! U(Q)
 U(Q) is the diagonal map and (b

i


 a) Æ Æ(x

k

1

1

: : : x

k

n

n

)

is the image of b

i


 a under the diagonal a
tion of x

k

1

1

: : : x

k

n

n

.

Now we extend the rows of the diagram (5) to proje
tive resolutions R and Q

over U(L) and U(A) respe
tively and extend �

0

; �

1

, to a 
hain map � : R ! Q of


omplexes over U(A). The resolution Q is 
hosen in a spe
ial way. By de�nition

it is B 
F where F is the \standard" resolution over U(A)

F : : : :! F

i

= ^

i

A
U(A)! F

i�1

= ^

i�1

A
U(A)! : : :! F

0

= U(A)! K ! 0

with di�erential

�

i

(a

1

^ : : : ^ a

i

) =

X

j

(�1)

j

(a

1

^ : : : ^ â

j

^ : : : ^ a

i

)
 a

j

:

The 
omplex F is exa
t by [C-E, Ch 13, Thm 7.1℄. Now the 
hain map � indu
es an

isomorphism between H

i

(R


U(A)

K) and H

i

(Q


U(A)

K) ' B
H

i

(F) ' B
^

i

A

and H

1

(R


U(A)

K) is �nitely generated over U(Q). Then B
A ' H

1

(Q


U(A)

K)

is an U(Q){module via �

1

and by the de�nition of �

1

the a
tion of U(Q) is the

diagonal one. This 
ompletes the proof of Lemma 2.

Lemma 3. If L is a split extension of A by Q and B is of homologi
al

type FP

m

over U(L) then B 
 (^

m

A) is �nitely generated over U(Q), where

U(Q) a
ts via the diagonal homomorphism U(Q) !




m+1

U(Q) sending q 2 Q

to

P

0�i�m

1
 : : :
 1

| {z }

i times


q 
 1
 : : :
 1

| {z }

m�i times

.

Proof. Suppose

R : : : :! R

i

�

i

�! : : :

�

1

�!R

0

�

0

�!B ! 0

is a free resolution of B over U(L) su
h that R

i

for i � m is �nitely generated and

Q = B 
 F is the resolution 
onsidered in the proof of Lemma 2.

Now we 
onstru
t a 
hain map � : R ! Q over U(A) indu
ing identity on B.

First R

i

= T

i




U(A)

U(L) ' T

i




K

U(Q) for some free U(A){submodule T

i

of R

i

.

We want to de�ne � in su
h a way that �

i

(tf) = �

i

(t)

f

for all t 2 T

i

, f a monomial

in U(Q), where upper index f denotes the image under the diagonal a
tion of f .

We pro
eed by indu
tion on i. Suppose we have 
onstru
ted �

i�1

, then there

10



exists a homomorphism of U(A){modules �

i

: R

i

! Q

i

su
h that ��

i

= �

i�1

�.

We set �

i

(tf) = �

i

(t)

f

for t 2 T

i

; f a monomial in U(Q). It is easy to 
he
k that

�

i

is a homomorphism of U(A){modules and ��

i

= �

i�1

�. Finally �

i

indu
es an

isomorphism between the homology groups H

i

(Q


U(A)

K) and H

i

(R


U(A)

K).

The latter is a �nitely generated U(Q){module for i � m and by 
onstru
tion the

indu
ed by � a
tion of U(Q) on H

i

(Q


U(A)

K) ' B 
 (^

i

A) is the diagonal one.

Theorem 4. Suppose A and B are �nitely generated U(Q){modules.

1. B 
 (




m

A) is �nitely generated over U(Q) via the diagonal a
tion if and

only if whenever [v

2

℄; : : : ; [v

m+1

℄ 2 �(Q;A); [v

1

℄ 2 �(Q;B) and 0 = [v

1

℄ + : : : +

[v

m+1

℄ we have all [v

i

℄ trivial.

2. If B 
 (^

m

A) is �nitely generated over U(Q) via the diagonal a
tion then

B 
 (




m

A) is �nitely generated over U(Q) via the diagonal a
tion.

Proof. 1. We writeM for B
(




m

A) and view it as a module over




m+1

U(Q).

Then the diagonal embedding � : U(Q)!




m+1

U(Q) indu
es a map

�

�

: �(Q

m+1

;M)! �(Q;M)

By [B-G 2, Prop. 3.1℄M is �nitely generated over U(Q) via the diagonal a
tion if

and only if (�

�

)

�1

(0) = 0. As shown in [B-G 2℄ there is a dire
t produ
t formula

�(Q

m+1

;M) ' �(Q;B)� (�(Q;A))

m

and under this isomorphism �

�

sends ([v

1

℄; [v

2

℄; : : : ; [v

m+1

℄) to

P

j

[v

j

℄. This implies

immediately the �rst part of the theorem.

2. Now we assume the se
ond part of the theorem is wrong and then by the

�rst part there exist [v

2

℄; : : : ; [v

m+1

℄ 2 �(Q;A) not all zero and [v

1

℄ 2 �(Q;B)

su
h that [v

1

℄ + : : :+ [v

m+1

℄ = 0.

Lemma 4.1[G℄ Suppose �

i

: Q! K((t

i

)) ' K((t)) is a linear map of ve
tor

spa
es over K, M is a �nitely generated U(Q)-module su
h that [�

i

℄ 2 �(Q;M).

Then there exists a non-trivial linear map

w

i

:M ! K((t

i

))

su
h that

w

i

(mq) = w

i

(m)�

i

(q) for all m 2M; q 2 Q

11



We apply the above lemma for the linear maps �

i

= �

i

v

i

, where �

i

: K((t))!

K((t

i

)) is the isomorphism of K-algebras sending t to t

i

and obtain linear maps

w

1

: B ! K((t

1

)); w

i

: A! K((t

i

)) for all 2 � i � m+ 1

with the properties des
ribed in Lemma 4.1. Using the maps w

i

we 
onstru
t

another linear map

' = w

1


w

2


 : : :
w

m+1

: B
 (




m

A)! R = K((t

1

))
K((t

2

))
 : : :
K((t

m+1

))

that will play an important role in the 
ompletion of the proof of Theorem 4.

Let

� : B 
 (




m

A)! B 
 (




m

A)

be the linear map given by �(b
a

1


: : :
a

m

) =

P

�2S

m

(�1)

�

b
a

�(1)


: : :
a

�(m)

.

As the image of � fa
tors through B 
 (

^

m

A) it is �nitely generated over U(Q).

Note that Im � is a module over U(Q)
S and � is a homomorphism of U(Q)
S{

modules, where S = f� 2




m

U(Q) j �� = � for all � 2 S

m

g. As




m

U(Q)

is integral over S the K-algebra




m+1

U(Q) is integral over U(Q) 
 S and so

V = Im �(




m+1

U(Q)) is �nitely generated over U(Q).

Now let s be the positive integer with the properties '(V ) � J

s

and '(V ) 6�

J

s+1

, where J is the ideal of R generated by t

1

� t

2

; t

2

� t

3

; : : : ; t

m

� t

m+1

. Then

for v 2 V the image of the diagonal a
tion of q 2 Q on '(v) is '(v)

P

i

�

i

(q) �

'(v)

P

i

�

i

�

i

(q) modulo J

s+1

, where �

i

: K((t

i

)) ! K((t

1

)) is the isomorphism

of K-algebras sending t

i

to t

1

. As

P

i

[v

i

℄ = 0 we have

P

i

�

i

�

i

(q) 2 K[[t

1

℄℄

and hen
e '(V ) + J

s+1

=J

s+1

lies in a �nitely generated K[[t

1

℄℄{submodule of

J

s

=J

s+1

' K((t

1

)).

Finally we 
hoose v

i

and q 2 Q su
h that Im �

i

is not a subset of K[[t

i

℄℄

and �

i

(q) =2 K[[t

i

℄℄ and de�ne h = (




i�1

1) 
 q 
 (




m�i+1

1) 2




m+1

U(Q). Then

for v 2 V we have '(vh) = '(v)�

i

(q) � '(v)�

i

(�

i

(q)) modulo J

s+1

and hen
e

'(V )+ J

s+1

=J

s+1

is invariant under multipli
ation with f

j

for every j � 1 where

f = �

i

(�

i

(q)) 2 K((t

1

)) nK[[t

1

℄℄. In parti
ular '(V ) + J

s+1

=J

s+1


annot lie in a

�nitely generated K[[t

1

℄℄{submodule of J

s

=J

s+1

' K((t

1

)), a 
ontradi
tion.
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Theorem 5. If A and B are �nitely generated U(Q){modules and B
(


m

A)

is �nitely generated over U(Q) via the diagonal a
tion then B is of type FP

m

over

U(L), where the Lie algebra L is the split extension of A by Q.

Proof. The proof of Theorem 5 is based on the existen
e of some spe
ial long

exa
t sequen
es given by Lemma 5.1.

Lemma 5.1 For every k � 1 the 
omplex

0! ^

k

A

�

k;k

�! : : :

�

i+1;k

�! ^

i

A
 S

k�i

A

�

i;k

�! : : :

�

1;k

�!S

k

A! 0

with di�erentials �

i;k

sending the element (a

1

^ : : : ^ a

i

)
 (b

1


 : : :
 b

k�i

) to

X

1�j�i

(�1)

i�j

(a

1

^ : : : ^ â

j

^ : : : ^ a

i

)
 (a

j


 b

1


 : : :
 b

k�i

)

is exa
t.

Proof. Choose a basis A

0

of A and order it linearly. Then ^

i

A
 S

k�i

A has

a basis f(a

1

^ : : :^ a

i

)
 (b

1


 : : :
 b

k�i

) j a

1

; : : : ; a

i

; b

1

; : : : ; b

k�i

2 A

0

; a

1

< : : : <

a

i

; b

1

� : : : � b

k�i

g = X

i;k

. We 
all an element of X

i;k

good if b

1

� a

1

and de�ne

by (^

i

A
S

k�i

A)

good

the spa
e spanned by the good elements. A partial order on

X

i;k

is de�ned by (a

1

^ : : :^a

i

)
 (b

1


 : : :
b

k�i

) � (a

0

1

^ : : :^a

0

i

)
 (b

0

1


 : : :
b

0

k�i

)

if and if a

j

� a

0

j

for all j � i.

Claim 1. ^

i

A
 S

k�i

A = (^

i

A
 S

k�i

A)

good

+ Im �

i+1;k

Proof. We show that a non-good element (a

1

^ : : :^ a

i

)
 (b

1


 : : :
 b

k�i

) of

X

i;k


an be expressed modulo the image of �

i+1;k

as a sum of smaller elements of

X

i;k

. Indeed (a

1

^: : :^a

i

)
(b

1


: : :
b

k�i

)+(�1)

i+1

�

i+1;k

(b

1

^a

1

^: : :^a

i

)
(b

2




: : :
b

k�i

) is a sum of elements of X

i;k

smaller than (a

1

^ : : :^a

i

)
(b

1


 : : :
b

k�i

).

This 
ompletes the proof of the 
laim.

It follows immediately from Claim 1 that

^

i

A
 S

k�i

A = (^

i

A
 S

k�i

A)

good

+ �

i+1;k

((^

i+1

A
 S

k�i�1

A)

good

) (6)

We 
laim that the sum in (6) is exa
t and

�

i+1;k

((^

i+1

A
 S

k�i�1

A)

good

) ' (^

i+1

A
 S

k�i�1

A)

good
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For both statements it is suÆ
ient to 
onsider the 
ase when A is �nite dimensional.

In this 
ase we de�ne �(i; k) to be the dimension of (^

i

A 
 S

k�i

A)

good

i.e. the

number of good elements in X

i;k

.

Claim 2. dim

K

(^

i

A
 S

k�i

A) = �(i; k) + �(i+ 1; k)

Proof. Note that the dimension of ^

i

A 
 S

k�i

A is the 
ardinality of X

i;k

.

It remains to show that �(i + 1; k) is the number of non-good elements in X

i;k

.

This 
an be done by showing a bije
tion between the non-good elements in X

i;k

and the good elements of X

i+1;k

. If (a

1

^ : : :^ a

i

)
 (b

1


 : : :
 b

k�i

) is a non-good

element from X

i;k

then (b

1

^ a

1

^ : : :
 a

i

)
 (b

2


 : : :
 b

k�i

) is a good element of

X

i+1;k

. The inverse holds too and the proof of Claim 2 is 
ompleted.

Note that Claim 2 together with (6) shows that

^

i

A
 S

k�i

A = (^

i

A
 S

k�i

A)

good

� �

i+1;k

((^

i+1

A
 S

k�i�1

A)

good

)

and that the restri
tion of �

i+1;k

on (^

i+1

A
S

k�i�1

A)

good

is inje
tive. Similarly

the restri
tion of �

i;k

on (^

i

A 
 S

k�i

A)

good

is inje
tive and hen
e Im �

i+1;k

=

Ker �

i;k

. This 
ompletes the proof of Lemma 5.1.

Now we de�ne V

i

for i � 1 to be the subspa
e of




i

A generated by the elements

P

�2S

n

(�1)

�

a

�(1)


: : :
a

�(n)

for a

1

; : : : ; a

n

2 A. LetW

i

be the U(A){submodule

of




i�1

A
 U(A) generated by V

i

� (




i�1

A)
A � (




i�1

A)
 U(A).

Claim 3 The map '

i

: V

i


U(A)!W

i

sending v

1


 : : :
 v

i


� to v

1


 : : :


v

i�1


 v

i

� has kernel W

i+1

.

Proof. We identify V

i

with ^

i

A via the map sending

P

�2S

n

(�1)

�

a

�(1)




: : :
 a

�(n)

to a

1

^ : : : ^ a

n

. Write U(A) as a dire
t sum of the symmetri
 powers

of A, the restri
tion of '

i

on ^

i

A 
 S

k�i

A is pre
isely the map �

i;k

de�ned in

Lemma 5.1. Then Lemma 5.1 
ompletes the proof.

Lemma 5.2. Under the assumptions of Theorem 5 for every i � m the

module B
W

i

is of type FP

k

over U(L) if and only if B
W

i+1

is of type FP

k�1

over U(L), where U(A) a
ts on B 
W

i

via its a
tion on the 
omponent W

i

and

U(Q) a
ts on B
(




i�1

A)
U(A) via the diagonal map U(Q)!




i+1

U(Q) sending

an element q from Q to

P

0�j�i

1
 : : :
 1

| {z }

j times


q 
 1
 : : :
 1

| {z }

i�j times

.
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Proof. The short exa
t sequen
e of U(A){modules 0!W

i+1

! V

i


U(A)!

W

i

! 0 gives rise to a short exa
t sequen
e of U(L){modules

0! B 
W

i+1

! B 
 V

i


 U(A)! B 
W

i

! 0 (7)

where U(Q) a
ts diagonally on all modules in (7). By Theorem 4(1) B 
 (




i

A)

is �nitely generated over U(Q) via the diagonal a
tion for all i � m and hen
e

its submodule B 
 V

i

is �nitely generated over U(Q). Then (B 
 V

i

) 
 U(A) '

(B
V

i

)


U(Q)

U(L) is indu
ed from a module of type FP

1

over U(Q) and is itself

of type FP

1

over U(L). The dimension shifting argument [B, Prop 1.4℄ applied

to (7) 
ompletes the proof.

Finally we are ready to 
omplete the proof of Theorem 5. Applying Lemma

5.2 several times we obtain B 
W

1

is of type FP

m�1

over U(L) if and only if

B 
W

m

is of type FP

0

(i.e. �nitely generated) over U(L). Note that B 
 V

m

is a generating set of B 
W

m

over U(A). By assumption B 
 (




m

A) is �nitely

generated over U(Q) and so B 
 V

m

is �nitely generated over U(Q). Finally it

remains to show that B 
W

1

is of type FP

m�1

over U(L) if and only if B is of

type FP

m

over U(L). This follows immediately from dimension shifting argument

for the short exa
t sequen
e of U(L)-modules

0! B 
W

1

! B 


K

U(A) ' B 


U(Q)

U(L)! B ! 0

indu
ed from the short exa
t sequen
e 0!W

1

! U(A)! K ! 0.

Proof of Theorem A. 1, 2 by Proposition 1 and Lemma 2 and 2, 3 by

Theorem 4(1).

Proof of Corollary B. It is a straight 
orollary of Theorem A and the


lassi�
ation of �nitely presented Lie algebras in [B-G 1℄, [B-G 2℄.

Proof of Theorem C. The theorem follows from Lemma 3, Theorem 4 and

Theorem 5.
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