Existence of Multiple Solutions
for Quasilinear Systems via

Fibering Method
Enzo Mitidieri' and Yuri Bozhkov?

L Dipartimento di Scienze Matematiche
Universita degli Studi div Trieste

Via Valerio 12/1, 34100 Trieste, Italia
E-mail: mitidierQuniv.trieste.it

2 Instituto de Matemdtica, Estatistica e Computacao Cientifica - IMECC
Unwersidade Estadual de Campinas - UNICAMP
C.P. 6065, 13083 — 970 - Campinas - SP, Brasil
E-mail: bozhkov@ime.unicamp.br

Abstract

Using the Fibering Method introduced by S. I. Pohozaev, we prove exis-
tence of multiple solutions for a Dirichlet problem associated to a quasilinear
system involving a pair of (p,q)-Laplacian operators.

1991 AMS Mathematics Classification numbers:
35J55, 35J60



1 Introduction

In this paper we shall study some existence and non-existence results for the
following quasilinear system:

—Apu = Aa(@)|ulf?u+ (a + De(@)[ul* ufv]H,

(1)

A = pb(x)|v| 0+ (B+ D)e(x) |ul o] Lo,

Here o, B, A, jt,p > 1,q > 1 are real numbers, A, and A, are correspondingly
the p— and ¢—Laplace operators and a(z), b(x), ¢(z) - given functions.
The system (1) will be considered in a bounded domain  C IR" with Dirichlet
boundary condition
u=uv=0. (2)

Systems involving quasilinear operators of p—Laplacian type have been studied
by various authors [2, 9]. Among other results, existence and non-existence theorems
were obtained. For such purpose the method of sub-super solutions, the blow-up
method and the Mountain Pass Theorem have been used (see e.g. [2, 4]).

Our main tool here is the so-called Fibering Method introduced and developed
by S. I. Pohozaev in [11, 12, 13]. Its general nature enables us to prove existence
and multiplicity theorems for (1),(2) in a somewhat more constructive and explicit
way. The Fibering Method was applied to a single equation of p—Laplacian type by
Drabek and Pohozaev in [3].

Dealing with existence theorems, the parameters A and u, appearing in (1),
will be naturally related to A; and p;, the first eigenvalue of (—Ap,Wol’p) and
(—Aq,I/VO1 ) respectively. The existence and properties of the first eigenvalue of
p—Laplacian operators, subject to homogeneous Dirichlet boundary conditions in a
bounded domain, are obtained in [1, 8, 3, 5, 6].

This paper is organized as follows. In section 2 we introduce some notation,
define the functions spaces that will be used throughout the paper and state our basic
assumptions. For convenience of the reader we also collect some of the properties of
the p—Laplacian eigenvalues and corresponding eigenfunctions. Section 3 contains
a slight modification of the Fibering Method, adapted for vector-valued problems.
The main results of this paper, that is, the existence and multiplicity theorems for
the problem (1),(2) are presented in section 4. Finally, in section 5 we prove a
non-existence result for classical solutions, using the celebrated Pohozaev Identity
[10].
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2 The p-Laplacian operator and its eigenvalues

Let Q@ ¢ IRY be a bounded domain and 1 < p, ¢ < co. We define the Sobolev
spaces Y, = Wy ?(Q) and Y, = W;%(Q2) equipped with the norms

1/p 1/q
— P o q
ful = ([ (VuPz) ol = ([ (vopdz) )

respectively. Then we denote Y =Y, x Y, and for (u,v) € Y
[ (u, 0) [ = Julf + [0l (4)
Now consider the eigenvalue equation for the p—Laplace operator:

—Apu = Xa(z)|ulP*u in €,

(5)
u=0 in  0f.

where a € L>(2). The problem (5) is closely related with our main problem (1),(2).
For we need the following lemma.

Lemma 1([3, 1, 8]). There exists a number Ay > 0 such that:

/ |Vu|Pdx
A =inf 2%—

/Qa(:r)|u|pdx’ )

Pdz > 0;
which is solution of (5)

where the infimum is taken over u € Y, such that [, a(z)|u

(i) there exists a positive function ¢ € Y, N L*®(Q)
with A = Ay.

(¢7) Ay is simple, in the sense that any two eigenfunctions, corresponding to
A1, differ by a constant multiplier;

(¢3i) Ay is isolated, which means that there are no eigenvalues less than A\, and

no eigenvalues in the interval (A, A\; + &) for some § > 0 sufficiently small.



Note that we consider (5) in a weak sense, that is,
/ |VulP?VuVudr = )\/ a(x)|ulP~2uvdz,
Q Q

uw =0 1in 02

for any v € Y),.
Now we state the assumptions that we shall assume throughout this paper.
Let o, B, A, ju,p > 1,q > 1 be real numbers. We shall suppose that

l<p<p', 1<g<d, (7)

N—-p
P

m+1ykﬁigw+&)<N, (8)
where
p*=Np/(N —p), ¢ =Ngq/(N—q)

are the well-known critical exponents (see [9, 2]). We assume that the system (1) is
super-homogeneous in the sense that

+1 B+l
ol O+l

; L 9)

It can be seen that the latter condition is equivalent to
d=(a+1)(f+1) —(a—p+1)(B—-qg+1)>0. (10)

Moreover, since (8) is equivalent to

a+3+2
atl 4 B+l
p + q 1

, (11)

one can observe that our system is subcritical [9] which avoids non-compactness
problems. See [9] for more details on this point.
Note that (8) implies

a+1<p’, B+1<4q".
The functions a(z), b(x) and ¢(x) are supposed to be bounded in 2:
a,b,c € L*(Q) (12)

and
a(z) = a1 (z) — az(x); ay,ay >0, ay(z)#£0. (13)



By the Sobolev inequality it can be easily seen that (7), (8) and (12) imply
that the integrals

Pd
/Qa(x)|u| T
and

/Q b(x)[v|"dx

are finite for (u,v) € Y. Now we can define the following functionals on Y, and Yj:

filw) = [ a(e) upde (15)

and
falv) = /Qb(x)|v|qu. (16)

Since a and b are bounded it is standard to check that f; and f, are weakly lower
continuous. Similarly, the conditions (7), (8) and (12) imply that the functional

Falu,v) = /Qc(x)|u|”‘+1|v|’3+1dx (17)

is weakly lower continuous in Y.
We shall also suppose that

¢ (x)#0. (18)

and
[ @)l de < 0 (19)
Q

The functions ¢ € Y, and 9 € Y, above are the first eigenfunctions of A, and A,
correspondingly.
We end this section with the following

Definition (weak solution). We say that (u,v) € Y is a weak solution of

(1) of

/ |VU|P*2(VU, Vz)d:c = )\/ a(x)|u|11*2uzdx + (Oz + 1)/ C($)|U|a71u|v|ﬂ+lzdx
Q Q 0

/ |Vu|T™(Vv, Vw)dr = ,u/ b(x)|v|T *vwdr + (B + 1)/ (@) Ju|* | owd
0 0 0

for any (z,w) €Y.



3 The Fibering Method for systems of quasilinear
PDEs

The system (1) has a variational structure. Indeed, denote
A I a+1,.18+1
F(a,u,v) = Za(z)ul” + Co(z)ol" + cl)|ul* o] (20)
and consider
1 1
F(xz,u,v,Vu, Vo) = =|Vulf + =|Vu|?! — F(z,u,v). (21)
D q
Let J:Y — IR be defined by
J(u,v) := / F(z,u,v, Vu, Vv)dz,
Q

or, in a more detailed form,

1 1
) = > f |vu|pdx—3/ o)l + - [ oftdr [ ) jojta
b pJa qJ/a q/o

= [ @l o e,
) 22)
Clearly the critical points of J are the weak solutions of the problem (1), (2).
The cornerstone of the Fibering method consists of the following. We express
(u,v) € Y in the form
u=rz, v=pw, (23)

where the functions z € Y, w € Y}, and 7, p are real numbers. Since we look for
non-trivial solutions we must assume that r» # 0 and p # 0. Substituting (23) in
(22) we obtain

p AlrlP
J(rz, pw) = ﬂ/ |Vz|Pdx — ﬂ/ a(z)|z|Pdx
p Jo p Jo
q q
+ ﬂ/ |Vw|qd:r—m/ b(x) [w]td (24)
q Jo q Ja

= el el)]z] ] da.
Q

If (u,v) € Y is a critical point of J then

aJ aJ
E(Tz,pw) =0 and a—p(rz,pw) = 0. (25)

6



Assuming that

A= / IV 2|Pda — A / 2)|zPdz # 0, (26)
B = / Vwl|tds — )\/ 2)w|'dz # 0, (27)
O = /Qc(x)|z|a+1|w|ﬂ+ldx £0, (28)

we can write (24) in the following way

[rf”

J(rz, pw) = p —A+ |pq| — |r|*FHp| . (29)

The conditions (25) are equivalent to

aJ

9 = 0 |rP2rA — (a+1)|r|* rp/tC =0,
0J g2 at1|,16-1
8—p=0<:>|p| pB — (6 +1)[r|*"|p|”pC =0,

that is,
{ PP A= (o + Dl e = 0

pl*72B — (B+ 1)|r[**H|p/"'C = 0.
Resolving the system (30) we obtain as an intermediate step that
[rPe=t = 1p| O (e + 1) /A.
Hence A and C must have the same sign. Analogously
|p|* Pt = Jr|* T C(B+1)/B

and B and C' must also have the same sign. Thus A, B and C' must have the same
sign! Note that the conditions (26), (27) and (28) have been essentially used. Hence
the solution of (30) is given by

(o + 1)8-a+y |+t M
Il = ((ﬂ T 1)ﬂ+1|c|q|,4|ﬂ—q+1> ) (31)

(3 + v\
e e I )

where d > 0 is given in (9).



The fact that A, B, C' must have the simultaneously the same sign leads us to
consider two cases. In the next sections we shall assume that

A>0, B>0, C>0 (33)

or

A<0, B<0, C<O. (34)

Thus, in both cases (33) and (34), the functions r = r(z,w) and p = p(z, w) are well
defined. Now we insert the expressions for r = r(z,w) and p = p(z, w), determined
by (31) and (32), into (29). In this way we obtain a functional

I(z,w) = J(r(z,w)z, p(z, w)w) (35)

given by
(a+1)g/d
I(z ‘/ |Vz|pdx—)\/ x)|z[Pdx

‘/ |Vw|ldx — u/ z)|w|'dx 6+ 1)p/a (36)

‘/ c(x)|z|*THw|P T da
Q

pq/d

where

K — (a+1)(B-atp/d (6+1)(@—p+1ia/d
- ( p(ﬂ+1)(ﬂ+l)P/d q(a+1)(a+1)Q/d

(a+1)(a+1)q/d1(g+1)(ﬂ+1)p/d) sign (fn C(x)|z|a+1|w|ﬂ+ld$) .

Therefore, provided z and w satisfy (33) or (34), we have

0J
a0 =0 (37)
r rzr(z,w),p:p(z,w)
and 5
J
o =0. (38)
P lr=r(zw),p=p(z;w)
Next we introduce the following notation: for any functional f : Y — IR we
denote by

fl(Zv w)(hb hZ)

the Gatéaux derivative of f at (z,,w) € Y in direction of (hy, he) € Y.
Let

Ei(z) = /|Vz|pd:r—)\/ z)|z[Pd, (39)

8



By(w) = /Q Vwl|tdz — p /Q b(x) |w|'dz, (40)

and
ED (z,w)(hy, hs) = % . Ei(z+¢chy,w+ ohy),
EP (z,w)(hy, hy) = % . Ei{(z +ehy,w + ohy),
IV (2, w)(hy, hy) = % o I(z +chy,w+ ohy),
IP(z,w)(hy, hy) = a% e I(z+ehy,w + ohy).

It is easy to see that the following lemma holds. We omit the straightforward
details.

Lemma 2. (1) The functional I is homogeneous of degree 0, that is, for every
z €Y, we Y, such that [oc(x)|z]*w|?Tlde # 0 and every t # 0 we have

I(tz,tw) = I(z,w).
(2) I is even and
I'(z,w)(z,w) = 0.

Remark 1. If (z,w) € Y is a critical point of I, by well-known properties of
p—Laplace Dirichlet integral (see [7]) it follows that (|z|,|w|) € Y is also a critical
point of I.

The next two lemmas are direct consequences of the results proved in [11, 12,
13].

Lemma 3. Let (z,w) be a critical point of I, which satisfies (33) or (34).
Then the function (u,v) defined by

u(x) =rz(z), v(r)= pw(r)
where r # 0 and p # 0 are determined by (31) and (32), is a critical pont of .J.
Proof. Since (z,w) is a critical point of I we have
II(Za w)(hla h2) = (I(l)(za w)(hla hZ)a 1(2)(Z7 w)(h17 h2)) = 0.

9



Therefore, since

01 o
or ~ Op

r=r(z,w),p=p(zw)

=0.

r=r(z,w),p=p(z.w)

(see (37) and (38)), by the chain rule we have
0 = I(l) (Z, ’U})(hl, h,g)

oJ or
= r(z, w)J(l)(rz, pw)(hy, he) + o %
r:r(z,w),p:p(z,w)
o o
8p r:r(z,w),p:p(z,w) 82:

= r(z,w)JY(rz, pw)(hi, h).
Thus JY (u,v) = 0. Analogously J® (u,v) = 0 and therefore J'(u, v) = 0.

Lemma 4. Let Ey, and Ey be defined by (39) and (40). Consider
Ei(z,w) =¢; and Ej(z,w) = ¢y,

where ¢; € R, (i = 1,2). Suppose that

£ g
det ( E%Q) E%2) ) #0 if Ei(z,w)=c1 and Ey(z,w) = s, (41)
1 2

Then every critical point of I with the conditions E1(z,w) = ¢; and Ey(z,w) =
co 18 a critical point of I.

Proof. Let (z,w) be a conditional critical point of I. By the Euler Theorem
there exist mq, ms € IR such that
I'(z,w) = m E{(z,w) + maEy(z, w). (42)
Since by Lemma 2 we have I'(z,w)(z, w) = 0, by (42) we obtain:
mi B + myEY =0,

mlE?) + m2E§2) =0.

E(l) E(l)
det ! 2 0,
< B 52 )7

Therefore m; = mgy = 0. Thus I'(z,w) = 0, that is, (2, w) is a critical point of I.

Now by (41) we have

10



4 Existence and multiplicity results

Our first aim is to prove the existence of a critical point of I with appropriate
constraints. This in turn will be an actual critical point of I and hence a critical
point of J - a weak solution of (1). We have already pointed out that the existence
and multiplicity results are in connection with the first eigenvalues A\; and p; of the
p and ¢g—Laplacian respectively. We distinguish the following six cases:

0<A<AL, 0<p<up,
0< A< AN, p=p,
0< A< A, >,
A=A, p=p,
A=A, >,

A> A, > .

— N N N e e

1
2
3
4
3
6

AN AN AN AN AN N

The rest three possible cases can be treated analogously. In order not to
increase the volume of the paper, we shall not present details for the cases (2), (3)
and (5) merely pointing out that the methods of the next subsections carry over to
these cases.

4.1 Existence theorem for A € [0,)1), u € [0, 1)

The form of the functional J suggests that we consider
Ei(2) =1 and FE(w)=1. (43)
as the constraints in Lemma 4. Indeed, we calculate
B = pEi(2) = p4,

EY = B =0,
ESY = qBy(w) = 4B.

E(l) E(l)
det L 2 =pgAB > 0,
( E£2) E§2) pq

Therefore

and the conditions of Lemma 4 are fulfilled. Moreover, since we are assuming (43),
the inequalities (33) hold, thatis, 1 = E; = A >0,1=FEy =B >0 and

C= / c(z) ]2 [w]P+ e > 0.
Q

11



Further, the functional I becomes

1

([ et@lelwp1ds
Q

The main result in this subsection is the following

I(z,w) =K

>pq/d'

Theorem 1. Suppose that (7) — (18) hold and that, in addition, A € [0, \;),
p € [0,u1). Then the problem (1),(2) has at least two positive weak solutions
(Ui,Ui) S Y, 1= 1,2

The proof of this theorem will be a consequence of the next two propositions.

Proposition 1. Suppose that the conditions (7) — (18) hold and that, in
addition, A € [0, A1), p € [0, u1). Then the problem (1), (2) has at least one positive
weak solution (uy,v;) € Y.

Proof. The formulas (39) and (40) suggest to consider an auxiliary problem:
find a maximizer (z*, w*) of

0 < M, :=sup {/ c(x)]z|* T w|Pde > 0| By(2) =1 and Fy(w) = 1} . (45)
Q
We claim that the problem (45) has a solution. Indeed, the sets
X)\:{ZE}/;)|E1(Z):]_},

and
X, ={weY, | E(w)=1},

are non-empty. By Lemma 1 we have that for any z € X:

A
lolp = 3 [ ala)lzlPde +1 < T 11f + 1

that is,
A1
P L
1 < 2
and analogously
]t < .
Hi— M
Since 0 < A < A; and 0 < g < Ay, we have
A 241
|z, w)| = |2]; + |wlf < +

D N R e

12



Therefore a maximizing sequence (z,,w,) for (45) is bounded in Y. Thus we can
suppose that (z,,w,) converges weakly in Y to some (z*,w*). By (17)

[ @)zl = [ e(@)]zt 7wt e = My, > 0.
Q Q

In particular z*£ 0 and w*= 0.
The weakly lower semicontinuity of the corresponding norms, (7), (8) and
Ei(z,) =1, Ey(w,) = 1 imply that

since
|27 |5 < liminf |z, |},
w2 < liminf a2,

Py = li Pde,
/Qa(x)|z| x = lim Qa(gv)|z| x

b 9dx = i b n|Pdx.
| bl e = Jim [ b, da

If Ey(z*) < 1 then there exists a number ¢; > 1 such that E)(¢;2*) = 1 and hence
t12* € X, If Ey(w*) < 1 then there exists a number ¢, > 1 such that Ey(tow*) =1
and hence tow* € X,. Therefore

[ @t 1" e = [ @) |
= t(thgHMA,u
> M,, = sup {/ c(x)|z|* T w]Pde > 0} :
Q

a contradiction. Thus E)(z*) = 1 or Ey(w*) = 1. If Ei(2*) = 1, Ex(w*) < 1 or
Ei(z*) < 1, Ey(w*) = 1 we can obtain another contradiction. Hence (z*,w*) €
X\ x X, is a solution of (45). By Lemma 4 it follows that (z*,w*) is a critical
point of 7. By Remark 1 we may assume z* > 0 and w* > 0. Thus, by Lemma 3,
(uy = 2%, v = pyw*) is a critical point of J. Therefore (u,v) € Y is a non-negative
weak solution of (1), (2). Using the same arguments as in [3] we deduce that u; > 0,
vy > 0 in . This completes the proof.

13



Remark 2. In the scalar case it is known that weak solutions of
—Ayu = Aa(x)|ul’*u + b(x)|u|! *u

belong to C}5”(Q) for some v (see [3]). Since our system is subcritical (see (11)), we

expect that a similar result holds for (1). The regularity problem for weak solutions
of quasilinear variational elliptic systems will be studied elsewhere.

Proposition 2. Suppose that (7) —(18) hold and that, in addition, A € [0, A1),
p € [0, py). Then the problem (1), (2) has another positive weak solution (ug,vy) € Y.

Proof. Consider the following:
0 < My, :=sup {/ c(z) 2| THw|dr > 0 | By(2) + Ey(w) = 1}. (46)
Q

Then the set
Xou={(z,w) €Y | Ei(2) + Ex(w) = 1}

is not empty. By Ei(z) + E2(w) =1 and Lemma 1, for any (z,w) € X, , we have
A p
[217 + lwlg < 1+ =21} + —[wlg,
A 241

that is,

A1 o — p

- A
el +

Since each of the summands above is strictly positive (recall that A < Ay, g < py),

Jwlf < 1.

the latter inequality implies

A1
p <
121> < 3=

and
M

i —
Therefore |(z,w)| is bounded. Hence we may suppose that a maximizing

[wl§ <

sequence (z,w,) for (46) is bounded in Y. Thus we can assume that (z,,w,)
converges weakly in Y to some (z*, w*). By (17) it follows that

[ @)zl = [ )]zt | e = My > 0.
Q Q

In particular 2*=£ 0 and w*=£ 0.
The weakly lower semicontinuity of the corresponding norms, (7), (8) and
Ei(z,) + Eo(wy,) = 1 imply that

E\ (") + Ey(w") < 1,

14



that is
(=1 = A [ a(@)|z*Pde) + (]2 — o [ blale’|de) < 1.
Since A < Ay, g < py both summands above are positive. Hence

0 < Ey(2") + By(w) < 1.

We claim that actually

Indeed, if F(z*) + Ey(w*) < 1 there exists ¢ > 1 be such that
t(EL(2") + Ey(w*)) = 1.
Then (t'/7z*,t"%0w*) € X, , and

IR R T e () |2 | fw* P da
Q

)

> M,, = sup {/ c(z)|z|*Hw| rdr > 0 |
Q

Ei(2) + Exy(w) =1},

a contradiction (note that we have used (9)). Therefore we have proved the claim.
Hence (z*,w*) € X, , is a solution of (46). By an analogue of Lemma 4 for one
constraint of type E(z,w) = const, (z*,w*) is a critical point of I. Indeed, since in
our case E(z,w) = Ey(z)+Ey(w) = 1 the condition F'(z, w)(z,w) # 0if E(z,w) =1
is easily verified. The rest of the proof is the same as that of Proposition 1.

Proof of Theorem 1. [t remains to show that the solutions found in
Propositions 1 and 2 are distinct. The proof is by contradiction. Suppose that
(uy,v1) = (ug,v2). By the proofs of Propositions 1 and 2 it follows that

Ey (Ul) . Ey (Ul)

= =1
i i
and
El(U,Q) n EQ(UQ) —1

P q )
Ty P2

where 7, p;, i = 1,2 are determined by (31) and (32), with z,w}, i = 1,2. These
relations imply that if the solutions are not distinct then there exists a number
m > 1 such that



By (31) and (32) we have

ri=(aC )", pp = (c,C "),

Sa+1

(1-— S)ﬂﬂ
(1 — s)atl-p

ro = (c,C 1
2 ( 1 Sﬂ-l-l—q

YW py = (eC7F )t

Y

where we have introduced a parameter s = F1(z5). We note that the exact values
of ¢; and ¢y are not important for the proof. Since s € (0, 1), it is easy to show that
the conditions m > 1 and m' > 1 are equivalent to

and
sa+1 > (1 - S)a+1fp'

From the last two inequalities, which simultaneously hold for certain s € (0, 1), we
obtain that

s> 1,
where d > 0 is given by (10). This is impossible for s € (0,1). Thus we have reached
a contradiction. This concludes the proof.

4.2 The eigenvalue case A = A\j, 4 =

We consider the problem (46) with A = A and g = ;. In this case the
corresponding set X , is not bounded in Y. Therefore we need to impose an addi-
tional condition on our data. Henceforth we shall suppose that the condition (19)
is fulfilled.

Theorem 2. Suppose that (7) — (19) hold and X\ = Ay, u = p1. Then the
problem (1), (2) has at least one positive weak solution (u,v) € Y.

Proof. The arguments of the proof of this theorem would be the same as
those of Proposition 2 if we can prove that the problem (46) with A = Ay, p = 1y
has a solution.

Let (z,,w,) be a maximizing sequence such that

El(zn) + E2(wn) = 17 / C(‘T)|Zn|06+1|wn|,8—1—1d:1j = mn - MM,M > 0'
Q

16



Suppose that |(z,,w,)| — co and put

Zn w,
Sp = Vi t, = - s 7t _ 1
" el " w1

Then
|Gz wa) [ [ (Isnlh — A /Q a(z)|sn|Pdz) + ([ta]}) — /Q b(z)|tn|'dz) | = 1.

Therefore

1
n”—)\/ WP+ ] — /b tallde = ———— 50, n— oo,
lsnlp = Au | al@)lsalde + [l — 1 | b(@)[ta]*da eSS n— o0
Hence
(5, ta)] = A [ (o) s = g | (o) P
47
1 (47
= —— — 0.
|Gz, wn)|
and thus
T [\ [ a(@lsalPde + i [ bo)ltalPde] =1,
since ||(sn,t,)] = 1. We may assume that (s,,?,) converges weakly in Y to some

(s*,t*). Thus
)\1/ a(x)|s* [Pdz +u1/ b(x) |t PP = 1,
Q Q
which implies that (s*,¢*)= (0,0). Furthermore

(s, #9)] < liminf (s, £a)] = 1

Now from (47) we deduce that

(11 = s [ _a@)ls"Pde) + (€13 = s [ bla)le* o) = 0.

The variational properties of the first eigenvalue of the p and ¢—Laplacian imply
that both summands in the above relation are non-negative. Hence both are zero,
which means, by Lemma 1, that

s*=crp, tF =yt

Since

atl B+l
[ @zl e = 1w 5 [ )]sl ) da

= mn — ]\4,\17!11 > 0,
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we conclude that
/ c(x)|s*|a+1|t*|’8+1dx > 07
Q

and therefore
[ @l dz > o,
Q

which contradicts (19). Thus we can assume that (z,,w,,) is bounded and
Jgrglo(zn,wn) = (2", w")
weakly in Y. Then
/Qc(x)|zn|a+1|wn|ﬂ+1dx = /Qc(x)|z*|o‘+1|w*|’8+1dx = My, > 0.
This means that z* # 0 and w* # 0. Furthermore
0 < Ey(2%) + Ep(w*) < 1.

We claim that
0 < E1(2%) + Eo(w") < 1.

Indeed, first suppose that
0= El(Z*) + EQ(’U)*),

that is
0= (12"l — s [ ale)|2*Pde) + (el = [ (o) ).

Therefore by Lemma 1 we know that
' =kip, w' =k,
for some kq, ko # 0, and then
| e@)z o P e = R | el ol dr = N > 0,

which is a contradiction since (19) holds.
Next, suppose that

0< E1(2") + By (w*) < 1.
Then we can find ¢ > 1 such that

HEL (") + By(w?)) = 1.
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Further

/C(x)|t1/pZ*|a+1|t1/qw*|ﬂ+1dl, _ to‘Tl-i-%/ c(x)|z*|a+1|w*|’8+1dx
Q Q
£ M,

> My, = sup {/ c(x)]2|* w]Pdz > 0 |
Q

Ei(2) + Exy(w) =1},

another contradiction.
In this way we have proved that

E\(z") 4+ Ey(w™) =1,

and therefore (2*, w*) is a maximizer of the problem (46) with A = Ay, = p;. The
rest of the proof is the same as that of the Proposition 1. This completes the proof.

4.3 Existence of three distinct solutions for A\ > A\, u >

Theorem 3. Suppose that (7) — (19) hold, A\ > Ay and p > py. Then there
exist 6 > 0 and o > 0 such that for A € (A, A\ +9), p € (1, pn + o) the problem
(1), (2) has at least three positive weak solutions in'Y .

The proof of the above theorem will be a consequence of several lemmas.

To begin with, we define

My, = sup{/ o)z w|P e > 0 | Ey(z)=1 and Eg(w)zl}, (48)
Q
and

My, := sup {/Qc(x)|z|°‘+1|w|ﬁ+1dx >0 | Ei(z) <1 and Ey(w) < 1}. (49)

Lemma 5. The problems (48) and (49) are equivalent.

Proof. Since ¢"=£0 (see (18)) any maximizer of (48) is a maximizer of (49).
Suppose for a moment that (z,w) € Y is a maximizer of (49) and E;(z) < 1 or
Ey(w) < 1. For instance, let Ey(z) < 1. Therefore there exists £ > 1 such that
Ei(z) = 1. Then

[ el lkzl wlde = k[ o)l o P e = K > B (50)
Q Q
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which is a contradiction. Thus F;(z) = Ey(w) = 1. Therefore any maximizer of
(49) is a maximizer of (48).

Lemma 6. Let (7) - (19) hold. Then there exist 6 > 0 and €1 > 0 such that
for any A € (A, A1 +01) and p € (g, 1 + £1) the problem (47) has a non-trivial
solution (z1,wy) €Y.

Proof. From Lemma 5 we shall deduce the existence of §; > 0 and ¢; > 0
corresponding to the problem (49). Suppose that the claim is not true, that is, there
exist sequences d; — 0, 6; > 0, and €, — 0, &5 > 0, such that the problem (49) with
A=As = A + 05 and p = ps = py + €5 does not have solution. Fix an integer s and
consider (49) with A; and us. Denoting by (22, w?) the corresponding maximizing
sequence, we have

lim [ @)+ g e = M., > 0

and

If (25, w?) would be bounded, we may assume that it converges weakly in Y to some
(25, ws), when n — oo. Then

[ ez s e > [ o)+ gl e = N, > 0.
Q Q

AL —)\S/ Sy < 1,
| 19zde = A [ a(@)|zpde <

/ |Vwg|%dx — us/ b(z)|wg|%dx < 1.
Q Q

Therefore (2§, w§) is a solution of (49) - a contradiction. Thus we may consider
(25, w?) to be unbounded. Let

(25, ws)
(hs , ts ) — n n .
G w)l
Since |(hs,t2)| = 1 we may assume that
n)»'n

nll_}f{.lo(h tn) = (hg, £5)

20



weakly in Y. Then
[ @)zl s P e = (e, wi) 14 [ el e P e My, > 0,
Q Q

therefore
[ @)l gl da > 0. (51)
Q

From the inequality Fi(z8) < 1, that is,
I w) (sl = A | alw) s Pda) <

it follows that

1
s — A / G A T —
[z, wi) [P
By letting n — co we get
[hgl? — A / )| PPdz < 0. (52)
On the other hand, summing up
1
A [ a@lg e > gl -t
|25, wi) P
and 1
s [ bl@)ltslde = 1 — o,
Q TG wp)|
and letting n — 0o, we obtain
A / ) |hsPd + y,s/ b(a)|t2)%da > 1. (53)

Clearly |(h5,t5)| < 1. This allows us to suppose that (h$, ;) converges weakly in Y
to some (hy, tp). Letting s — oo in (53), we get that

)\1/ a(z) | ho|Pdz + m/ b(x) [t da > 1.

Q Q

Hence (hy, ty)# (0,0). Next, from the inequality (52) we obtain
0 < [hol? — A / 2)|holPdz < 0.

The latter and the Lemma 1 imply that hy = lp, [ # 0. Starting with Fy(w?) <1
we can obtain ¢y = ki, k # 0, in a similar way. Then by (51) we get that

/ c(z) | ho|**LJto|*H1da > 0,
Q
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and thus
R [ @)l gl > 0.
Q

This contradicts our assumption (19).

Therefore there exist 6, > 0 and £; > 0 such that for any A € (A, A} + 67)
and g € (g1, 1 + €1) the problem (49) has a solution (z;,w;) € Y. By Lemma 5
(21,w1) €Y is a solution of (48).

Lemma 7. The set
W- = {(z,w) eV | [ elw)lzlH w]*dr = —1}
Q
is not empty and my, <0, A > Ay, p > pi, where

my,, = inf {El + Ey(w) | / (2)|2|* T w| M de = —1} : (54)

Proof. Set z = ¢ and w = 1. Then by (19) we have

[ @)zt e = | e@)lpl ) e < 0.
Q Q

Therefore there exists £ € IR such that
| el kgl ) e = -1,
Q

and hence (kp,¢) € W,
Since A > Ay and g > py, we have

Er(ky) = [k[P(\ — )\)/Qa(x)|g0|pd:r <0,
and
Ey(1) = % = ) | b(&) [0lde < 0.
These inequalities imply that m, , < 0.
Lemma 8. Assume that (7) - (19) hold. Then there exist 3 > 0 and ¢4 > 0

such that for any X € (A, A\ + 82) and p € (py, 1 + €2) the problem (54) has a
non-trivial solution (23, we) € Y satisfying Ei(zy) + E2(wg) < 0.

Proof. The proof is by contradiction and it is analogous to that of Lemma 6.
Assume that the opposite assertion holds. Then there exist sequences 65 — 0,
ds > 0, and £, — 0, €5 > 0, such that the problem (54) with A = A\; = A\; + 0, and
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p = pis = p1 + €5 does not have solution. Fix an integer s and consider (54) with A
and p;. Denote by (22, w?) the corresponding maximizing sequence:

[ )zl Pz = -1,
Q

Vo [Pde — A | a(z)|z, [Pde + | |Vw, |de — ps | b(2)|w,|?de — my, ., <O0.

If (2, w;) would be bounded, we can obtain as before that, there exists a solution
(25, ws) of (54):
@)1 g = 1
Q

and
/Q |V z5|Pda — )\S/Qa(x)|z§|pdx + /Q |Vwg|%dx — /Ls/ﬂb(:r)|w8|qd:r =y, pu, <0,

which is a contradiction. Thus we may assume that (z5,w?) is unbounded. With
the same notation as in Lemma 6, it follows that

1
s |a+ligs |B+1 _
NI e = e O

Since the functional f;5 (see (17)) is lower weakly continuous we obtain
[ @) et e = o, (55)
Q
Analogously to previous proofs, (55) enables us to conclude that

| e@) el da = o.
Q

This contradicts (19). The fact that Ej(23) + E2(we) < 0 follows from Lemma 7.

Lemma 9. Let (7) - (19) hold. Then there exist 05 > 0 and €3 > 0 such
that for any A € (A, A\ + 03) and p € (u1, p + €3) the problem (47) has another
non-trivial solution (23, w;3) € Y.

Proof. Set
Ny i=sup {/ c(x)| 2| w|PTrde >0 | By (2) + Ey(w) = 1}. (56)
Q
and
Ny i= sup {/ (@) e > 0 | Eu(z) + Ba(w) < 1}. (57)
Q
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Following the argument of Lemma 5 it is easy to prove that the problems (56)
and (57) are equivalent. (See the end of the proof of Proposition 2.) Therefore
we shall deduce the existence of d3 > 0 and €3 > 0 corresponding to the problem
(57). Suppose that this is not true, that is, there exist sequences d; — 0, 0, > 0,
and £, — 0, &5 > 0, such that the problem (57) with A = Ay = A\ + §; and
p = pis = p1 + €5 does not have solution. Fix an integer s and consider (57) with A
and ps. Denoting by (25, w;) the corresponding maximizing sequence, we have

lim [ (@)l e = Ny, ., >0

E\(2,) + Bz (w;) < 1.

If (25, w?) would be bounded, we may assume that it converges weakly in Y to some
(z5,w§), when n — co. Then

[ ezl gl e = [ el gl e = R, >0
Q

Therefore (25, w§) is a solution of (57) - a contradiction. Thus we may consider
(25, w?) to be unbounded. Let

S S

Z, w

hy =1t = e e [t =1
[ (=25, wi) M7 (25, ws) M
Thus we may assume that
Tim (15, ) = (3. 1)
weakly in Y. Then
sja+ly,, s |8+1 _ a+1+ﬂ+ s |a+1l|s |B+1
@)z [ w7 dw = (2, w) | o) By |t P e — N, > 0,
therefore
[ e@) gl ) e > 0. (58)
Q

From the inequality F;(z2) + E2(ws) < 1, that is,

I wi)l [ (UBal = A [ a(@)lisPda) + 105 — ps [ o) lts]7de) ] < 1
it follows that

sl = A [ ate) b Pde + 115 — pe [ o)ty de <
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By letting n — co we get

0 0 (S)q—s x) |t S U
(I3l = A | a@)lngdz) + (1312 — s | () t5|%dz) < 0 (60)

On the other hand we can obtain from (59) that

A [ al@)hilrde + s [ bl de > 1. (61)

Clearly | (RS, t5)| < 1. This allows us to suppose that (h$, ) converges weakly in Y
to some (hy, tp). Letting s — oo in (61), it follows that

)\1/ a(:r)|h0|pda:+u1/ b(x) [t > 1.
Q Q

Hence (hyg, t)Z (0, 0).
Now from (60), by letting s — oo, we infer

(ol = A [ al@)lhol?dz) + (ol = s [ bla)lto|'de) < 0.

By the definition of A\; and p; both summands above are non-negative. Therefore
Iholl = A | a)lholdz = 0

and
ltolg — 1 /Q b(z)|to|%dr = 0.

The last two equalities and Lemma 1 imply that hg = lp, [ # 0 and ty = kv, k # 0.
Then by (58), letting s — 0o, we get that

/ c(z) | ho|**to|*Hrda > 0,
Q

and thus
[ el el ol > 0,
Q

a contradiction to (19). This completes the proof.

Proof of Theorem 3. Let 0y, €1, (21,w1) € Y, o, €9, (22,w2) € Y and 0o,
g9, (22, w3) € Y be as in Lemmas 6, 8, 9 respectively. Denote ¢ = min(dy, s, d3) and
e = min(ey,e9,¢3). Now we substitute (z;, w;), i = 1,2,3, in (31) and (32). In this
way we obtain three pairs of positive numbers: (r;, p;), i = 1,2, 3. Set

Uy = Tizg;, Uj = PiWq, T = 17 273
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By Lemma 3, (uy,vy), (u2,vs) and (us, vs) are weak solutions of (1),(2). By Lemma
6 it follows that

El(ul)
7"117 = El(Zl) =1,
and (o)
v
2 ql :Eg(wl) = ]_
P1
Thus
By (uy) E5(v1)
(ul,vl) - S = {(u)v) | 7-71) —= 1 and p(f = 1}

On the other hand, by Lemma 8 we have
Ey (U2) E2(Uz)

|72|P | p2]?

= E1(22) + Ey(ws) < 0.

Hence at least one of Ej(uy) and Ey(v,) is negative. Therefore (ug,vs) does not
belong to S. We conclude that (uy,v;) and (ug,vs) are distinct. Similarly (ug, v)
and (us,vs) are distinct. An argument analogous to that in the proof of Theorem 1
shows that (u1,v;) and (us,vs) are distinct too. The rest of the proof is the same
as that of Theorem 1. This completes the proof of Theorem 3.

5 A non-existence result of classical solutions

In this section we shall establish a non-existence result of classical solutions
for a potential system associated to (p, g)—Laplacian operators. However, it is clear
that ‘the considered solutions are classical’ does not seem to be a natural hypothesis
for this kind of problem. Indeed, the natural class to consider should be the class of
weak solutions.

Our argument, which is based on an earlier result by Pohozaev [10] (see also
[14, 6]), enables only to consider classical solutions. We should mention that in
the scalar case, Guedda and Veron [6] proved a Pohozaev type identity for weak
solutions of the problem

—div (|[VuP?Vu) = f(u,v) in Q
u=0 on 0f2,

under some suitable growth assumption on f. We are confident that a Pohozaev type
identity for weak solutions of potential systems associated to p—Laplacian operators
still holds if the potential does not growth very fast. However, in the present paper
we shall not consider this kind of generalization.
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Let 2 C IR be a smooth bounded domain. Consider the following quasilinear
potential system

—div ([Vu|P?Vu) = %E(z,u,v) in Q
—div ([Vo]"?Vv) = %E(z,u,v) in Q (62)

u=v=0 on O,

where F € C'(Q2 x R x R). Let (u,v) € (C?(2) NC°(2))? be a classical solution of
(62). Then the Pohozaev Identity ([10]) for (62) can be written in the form

N — N —
J/ |VulPde  + 7(1/ |Vv|qu—N/ F(x,u,v)d:r—/DxF(:r,u,v)dx
p Ja q Jo Q Q

:—(1—%>AJVUV@JOM%—(L—é)éJVM%LVML

(63)
Now we are ready to prove the next

Theorem 4. Suppose that € is strictly-starshaped with respect to the origin.
Let a,b,c € CHQ) and (u,v) € (C%(2) N C°(Q))? be a solution of (1), (2). Suppose
that the assumptions in section 2 hold. In addition, assume that for any v,0 € R
the following inequalities hold

N_
Sl >,
p

N —q

+0 >0,

and for x € Q0 we have

—Ne(z) = NV(c(z),z) = ((@+ 1)y + (B + 1)o)c(z) = 0.
Then u=v=0.

27



Proof. Multiplying the first equation of (1) by yu and integrating by parts
we get

7/ |Vu|”d:r:7)\/ a(:r)|u|pdx+’y(a+1)/ c(@) | o dr. (64)
Q Q Q

Similarly
a/ |Vv|qda::a,u/ b(x)|v|qda:+a(ﬁ+1)/ c(@)ul* HoP de. (65)
Q Q Q

Now we recall that the potential F" is given by (20). Then substitute (20) into (63).
Further, sum up the obtained identity with (64) and (65). Then the resulting iden-
tity, the inequalities given in the theorem, and the fact that €2 is strictly-starshaped
imply that u =v = 0.
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