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ian operators.
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1 Introdu
tion

In this paper we shall study some existen
e and non-existen
e results for the

following quasilinear system:

8

>

<

>

:

��

p

u = �a(x)juj

p�2

u+ (� + 1)
(x)juj

��1

ujvj

�+1

;

��

q

v = �b(x)jvj

q�2

v + (� + 1)
(x)juj

�+1

jvj

��1

v:

(1)

Here �; �; �; �; p > 1; q > 1 are real numbers, �

p

and �

q

are 
orrespondingly

the p� and q�Lapla
e operators and a(x); b(x); 
(x) - given fun
tions.

The system (1) will be 
onsidered in a bounded domain 
 � IR

N

with Diri
hlet

boundary 
ondition

u = v = 0: (2)

Systems involving quasilinear operators of p�Lapla
ian type have been studied

by various authors [2, 9℄. Among other results, existen
e and non-existen
e theorems

were obtained. For su
h purpose the method of sub-super solutions, the blow-up

method and the Mountain Pass Theorem have been used (see e.g. [2, 4℄).

Our main tool here is the so-
alled Fibering Method introdu
ed and developed

by S. I. Pohozaev in [11, 12, 13℄. Its general nature enables us to prove existen
e

and multipli
ity theorems for (1),(2) in a somewhat more 
onstru
tive and expli
it

way. The Fibering Method was applied to a single equation of p�Lapla
ian type by

Drabek and Pohozaev in [3℄.

Dealing with existen
e theorems, the parameters � and �, appearing in (1),

will be naturally related to �

1

and �

1

, the �rst eigenvalue of (��

p

;W

1;p

0

) and

(��

q

;W

1;q

0

) respe
tively. The existen
e and properties of the �rst eigenvalue of

p�Lapla
ian operators, subje
t to homogeneous Diri
hlet boundary 
onditions in a

bounded domain, are obtained in [1, 8, 3, 5, 6℄.

This paper is organized as follows. In se
tion 2 we introdu
e some notation,

de�ne the fun
tions spa
es that will be used throughout the paper and state our basi


assumptions. For 
onvenien
e of the reader we also 
olle
t some of the properties of

the p�Lapla
ian eigenvalues and 
orresponding eigenfun
tions. Se
tion 3 
ontains

a slight modi�
ation of the Fibering Method, adapted for ve
tor-valued problems.

The main results of this paper, that is, the existen
e and multipli
ity theorems for

the problem (1),(2) are presented in se
tion 4. Finally, in se
tion 5 we prove a

non-existen
e result for 
lassi
al solutions, using the 
elebrated Pohozaev Identity

[10℄.
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2 The p-Lapla
ian operator and its eigenvalues

Let 
 � IR

N

be a bounded domain and 1 < p; q <1. We de�ne the Sobolev

spa
es Y

p

= W

1;p

0

(
) and Y

q

=W

1;q

0

(
) equipped with the norms

jjujj

p

=

�

Z




jruj

p

dx

�

1=p

; jjvjj

q

=

�

Z




jrvj

q

dx

�

1=q

: (3)

respe
tively. Then we denote Y = Y

p

� Y

q

and for (u; v) 2 Y

jj(u; v)jj = jjujj

p

p

+ jjvjj

q

q

: (4)

Now 
onsider the eigenvalue equation for the p�Lapla
e operator:

8

>

<

>

:

��

p

u = �a(x)juj

p�2

u in 
;

u = 0 in �
:

(5)

where a 2 L

1

(
). The problem (5) is 
losely related with our main problem (1),(2).

For we need the following lemma.

Lemma 1([3, 1, 8℄). There exists a number �

1

> 0 su
h that:

�

1

= inf

Z




jruj

p

dx

Z




a(x)juj

p

dx

; (6)

where the in�mum is taken over u 2 Y

p

su
h that

R




a(x)juj

p

dx > 0;

(i) there exists a positive fun
tion ' 2 Y

p

\ L

1

(

�


) whi
h is solution of (5)

with � = �

1

.

(ii) �

1

is simple, in the sense that any two eigenfun
tions, 
orresponding to

�

1

, di�er by a 
onstant multiplier;

(iii) �

1

is isolated, whi
h means that there are no eigenvalues less than �

1

and

no eigenvalues in the interval (�

1

; �

1

+ Æ) for some Æ > 0 suÆ
iently small.
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Note that we 
onsider (5) in a weak sense, that is,

8

>

>

<

>

>

:

Z




jruj

p�2

rurvdx = �

Z




a(x)juj

p�2

uvdx;

u = 0 in �


for any v 2 Y

p

.

Now we state the assumptions that we shall assume throughout this paper.

Let �; �; �; �; p > 1; q > 1 be real numbers. We shall suppose that

1 < p < p

�

; 1 < q < q

�

; (7)

N � p

p

(�+ 1) +

N � q

q

(� + 1) < N; (8)

where

p

�

= Np=(N � p); q

�

= Nq=(N � q)

are the well-known 
riti
al exponents (see [9, 2℄). We assume that the system (1) is

super-homogeneous in the sense that

�+ 1

p

+

� + 1

q

> 1: (9)

It 
an be seen that the latter 
ondition is equivalent to

d = (�+ 1)(� + 1)� (�� p+ 1)(� � q + 1) > 0: (10)

Moreover, sin
e (8) is equivalent to

N <

� + � + 2

�+1

p

+

�+1

q

� 1

; (11)

one 
an observe that our system is sub
riti
al [9℄ whi
h avoids non-
ompa
tness

problems. See [9℄ for more details on this point.

Note that (8) implies

� + 1 < p

�

; � + 1 < q

�

:

The fun
tions a(x), b(x) and 
(x) are supposed to be bounded in 
:

a; b; 
 2 L

1

(
) (12)

and

a(x) = a

1

(x)� a

2

(x); a

1

; a

2

� 0; a

1

(x)�= 0: (13)
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b(x) = b

1

(x)� b

2

(x); b

1

; b

2

� 0; b

1

(x)�= 0: (14)

By the Sobolev inequality it 
an be easily seen that (7), (8) and (12) imply

that the integrals

Z




a(x)juj

p

dx

and

Z




b(x)jvj

q

dx

are �nite for (u; v) 2 Y . Now we 
an de�ne the following fun
tionals on Y

p

and Y

q

:

f

1

(u) =

Z




a(x)juj

p

dx (15)

and

f

2

(v) =

Z




b(x)jvj

q

dx: (16)

Sin
e a and b are bounded it is standard to 
he
k that f

1

and f

2

are weakly lower


ontinuous. Similarly, the 
onditions (7), (8) and (12) imply that the fun
tional

f

3

(u; v) =

Z





(x)juj

�+1

jvj

�+1

dx (17)

is weakly lower 
ontinuous in Y .

We shall also suppose that




+

(x)�= 0: (18)

and

Z





(x)j'j

�+1

j j

�+1

dx < 0 (19)

The fun
tions ' 2 Y

p

and  2 Y

q

above are the �rst eigenfun
tions of �

p

and �

q


orrespondingly.

We end this se
tion with the following

De�nition (weak solution). We say that (u; v) 2 Y is a weak solution of

(1) if

Z




jruj

p�2

(ru;rz)dx = �

Z




a(x)juj

p�2

uzdx+ (� + 1)

Z





(x)juj

��1

ujvj

�+1

zdx

Z




jrvj

q�2

(rv;rw)dx = �

Z




b(x)jvj

q�2

vwdx+ (� + 1)

Z





(x)juj

�+1

jvj

��1

vwdx

for any (z; w) 2 Y .
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3 The Fibering Method for systems of quasilinear

PDEs

The system (1) has a variational stru
ture. Indeed, denote

F (x; u; v) :=

�

p

a(x)juj

p

+

�

q

b(x)jvj

q

+ 
(x)juj

�+1

jvj

�+1

(20)

and 
onsider

F(x; u; v;ru;rv) =

1

p

jruj

p

+

1

q

jrvj

q

� F (x; u; v): (21)

Let J : Y ! IR be de�ned by

J(u; v) :=

Z




F(x; u; v;ru;rv)dx;

or, in a more detailed form,

J(u; v) =

1

p

Z




jruj

p

dx�

�

p

Z




a(x)juj

p

dx +

1

q

Z




jrvj

q

dx�

�

q

Z




b(x)jvj

q

dx

�

Z





(x)juj

�+1

jvj

�+1

dx:

(22)

Clearly the 
riti
al points of J are the weak solutions of the problem (1), (2).

The 
ornerstone of the Fibering method 
onsists of the following. We express

(u; v) 2 Y in the form

u = rz; v = �w; (23)

where the fun
tions z 2 Y

p

, w 2 Y

q

, and r; � are real numbers. Sin
e we look for

non-trivial solutions we must assume that r 6= 0 and � 6= 0. Substituting (23) in

(22) we obtain

J(rz; �w) =

jrj

p

p

Z




jrzj

p

dx�

�jrj

p

p

Z




a(x)jzj

p

dx

+

j�j

q

q

Z




jrwj

q

dx�

�j�j

q

q

Z




b(x)jwj

q

dx

� jrj

�+1

j�j

�+1

Z





(x)jzj

�+1

jwj

�+1

dx:

(24)

If (u; v) 2 Y is a 
riti
al point of J then

�J

�r

(rz; �w) = 0 and

�J

��

(rz; �w) = 0: (25)
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Assuming that

A :=

Z




jrzj

p

dx� �

Z




a(x)jzj

p

dx 6= 0; (26)

B :=

Z




jrwj

q

dx� �

Z




b(x)jwj

q

dx 6= 0; (27)

C :=

Z





(x)jzj

�+1

jwj

�+1

dx 6= 0; (28)

we 
an write (24) in the following way

J(rz; �w) =

jrj

p

p

A+

j�j

q

q

B � jrj

�+1

j�j

�+1

C: (29)

The 
onditions (25) are equivalent to

�J

�r

= 0, jrj

p�2

rA� (� + 1)jrj

��1

rj�j

�+1

C = 0;

�J

��

= 0, j�j

q�2

�B � (� + 1)jrj

�+1

j�j

��1

�C = 0;

that is,

8

>

<

>

:

jrj

p�2

A� (�+ 1)jrj

��1

j�j

�+1

C = 0

j�j

q�2

B � (� + 1)jrj

�+1

j�j

��1

C = 0:

(30)

Resolving the system (30) we obtain as an intermediate step that

jrj

p���1

= j�j

�+1

C(� + 1)=A:

Hen
e A and C must have the same sign. Analogously

j�j

q���1

= jrj

�+1

C(� + 1)=B

and B and C must also have the same sign. Thus A;B and C must have the same

sign! Note that the 
onditions (26), (27) and (28) have been essentially used. Hen
e

the solution of (30) is given by

jrj =

 

(� + 1)

��q+1

jBj

�+1

(� + 1)

�+1

jCj

q

jAj

��q+1

!

1=d

; (31)

j�j =

 

(� + 1)

��p+1

jAj

�+1

(� + 1)

�+1

jCj

p

jBj

��p+1

!

1=d

; (32)

where d > 0 is given in (9).
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The fa
t that A;B;C must have the simultaneously the same sign leads us to


onsider two 
ases. In the next se
tions we shall assume that

A > 0; B > 0; C > 0 (33)

or

A < 0; B < 0; C < 0: (34)

Thus, in both 
ases (33) and (34), the fun
tions r = r(z; w) and � = �(z; w) are well

de�ned. Now we insert the expressions for r = r(z; w) and � = �(z; w), determined

by (31) and (32), into (29). In this way we obtain a fun
tional

I(z; w) = J(r(z; w)z; �(z; w)w) (35)

given by

I(z; w) = K

�

�

�

�

Z




jrzj

p

dx� �

Z




a(x)jzj

p

dx

�

�

�

�

(�+ 1)q=d

�

�

�

�

�

Z




jrwj

q

dx� �

Z




b(x)jwj

q

dx

�

�

�

�

(� + 1)p=d

�

�

�

�

Z





(x)jzj

�+1

jwj

�+1

dx

�

�

�

�

pq=d

;

(36)

where

K =

�

(�+1)

(��q+1)p=d

p(�+1)

(�+1)p=d

+

(�+1)

(��p+1)q=d

q(�+1)

(�+1)q=d

�

1

(�+1)

(�+1)q=d

(�+1)

(�+1)

p=d

�

sign

�

R





(x)jzj

�+1

jwj

�+1

dx

�

:

Therefore, provided z and w satisfy (33) or (34), we have

�J

�r

�

�

�

�

�

r=r(z;w);�=�(z;w)

= 0 (37)

and

�J

��

�

�

�

�

�

r=r(z;w);�=�(z;w)

= 0: (38)

Next we introdu
e the following notation: for any fun
tional f : Y ! IR we

denote by

f

0

(z; w)(h

1

; h

2

)

the Gatêaux derivative of f at (z; ; w) 2 Y in dire
tion of (h

1

; h

2

) 2 Y .

Let

E

1

(z) =

Z




jrzj

p

dx� �

Z




a(x)jzj

p

dx; (39)
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E

2

(w) =

Z




jrwj

q

dx� �

Z




b(x)jwj

q

dx; (40)

and

E

(1)

i

(z; w)(h

1

; h

2

) =

�

�"

�

�

�

�

�

"=0;�=0

E

i

(z + "h

1

; w + �h

2

);

E

(2)

i

(z; w)(h

1

; h

2

) =

�

��

�

�

�

�

�

"=0;�=0

E

i

(z + "h

1

; w + �h

2

);

I

(1)

(z; w)(h

1

; h

2

) =

�

�"

�

�

�

�

�

"=0;�=0

I(z + "h

1

; w + �h

2

);

I

(2)

(z; w)(h

1

; h

2

) =

�

��

�

�

�

�

�

"=0;�=0

I(z + "h

1

; w + �h

2

):

It is easy to see that the following lemma holds. We omit the straightforward

details.

Lemma 2. (1) The fun
tional I is homogeneous of degree 0, that is, for every

z 2 Y

p

, w 2 Y

q

su
h that

R





(x)jzj

�+1

jwj

�+1

dx 6= 0 and every t 6= 0 we have

I(tz; tw) = I(z; w):

(2) I is even and

I

0

(z; w)(z; w) = 0:

Remark 1. If (z; w) 2 Y is a 
riti
al point of I, by well-known properties of

p�Lapla
e Diri
hlet integral (see [7℄) it follows that (jzj; jwj) 2 Y is also a 
riti
al

point of I.

The next two lemmas are dire
t 
onsequen
es of the results proved in [11, 12,

13℄.

Lemma 3. Let (z; w) be a 
riti
al point of I, whi
h satis�es (33) or (34).

Then the fun
tion (u; v) de�ned by

u(x) = rz(x); v(x) = �w(x)

where r 6= 0 and � 6= 0 are determined by (31) and (32), is a 
riti
al pont of J .

Proof. Sin
e (z; w) is a 
riti
al point of I we have

I

0

(z; w)(h

1

; h

2

) = (I

(1)

(z; w)(h

1

; h

2

); I

(2)

(z; w)(h

1

; h

2

)) = 0:
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Therefore, sin
e

�J

�r

�

�

�

�

�

r=r(z;w);�=�(z;w)

=

�J

��

�

�

�

�

�

r=r(z;w);�=�(z;w)

= 0:

(see (37) and (38)), by the 
hain rule we have

0 = I

(1)

(z; w)(h

1

; h

2

)

= r(z; w)J

(1)

(rz; �w)(h

1

; h

2

) +

�J

�r

�

�

�

�

�

r=r(z;w);�=�(z;w)

�r

�z

+

�J

��

�

�

�

�

�

r=r(z;w);�=�(z;w)

��

�z

= r(z; w)J

(1)

(rz; �w)(h

1

; h

2

):

Thus J

(1)

(u; v) = 0. Analogously J

(2)

(u; v) = 0 and therefore J

0

(u; v) = 0.

Lemma 4. Let E

1

and E

2

be de�ned by (39) and (40). Consider

E

1

(z; w) = 


1

and E

2

(z; w) = 


2

;

where 


i

2 IR, (i = 1; 2). Suppose that

det

 

E

(1)

1

E

(1)

2

E

(2)

1

E

(2)

2

!

6= 0 if E

1

(z; w) = 


1

and E

2

(z; w) = 


2

; (41)

Then every 
riti
al point of I with the 
onditions E

1

(z; w) = 


1

and E

2

(z; w) =




2

is a 
riti
al point of I.

Proof. Let (z; w) be a 
onditional 
riti
al point of I. By the Euler Theorem

there exist m

1

; m

2

2 IR su
h that

I

0

(z; w) = m

1

E

0

1

(z; w) +m

2

E

0

2

(z; w): (42)

Sin
e by Lemma 2 we have I

0

(z; w)(z; w) = 0, by (42) we obtain:

m

1

E

(1)

1

+m

2

E

(1)

2

= 0;

m

1

E

(2)

1

+m

2

E

(2)

2

= 0:

Now by (41) we have

det

 

E

(1)

1

E

(1)

2

E

(2)

1

E

(2)

2

!

6= 0;

Therefore m

1

= m

2

= 0. Thus I

0

(z; w) = 0, that is, (z; w) is a 
riti
al point of I.
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4 Existen
e and multipli
ity results

Our �rst aim is to prove the existen
e of a 
riti
al point of I with appropriate


onstraints. This in turn will be an a
tual 
riti
al point of I and hen
e a 
riti
al

point of J - a weak solution of (1). We have already pointed out that the existen
e

and multipli
ity results are in 
onne
tion with the �rst eigenvalues �

1

and �

1

of the

p and q�Lapla
ian respe
tively. We distinguish the following six 
ases:

(1) 0 � � < �

1

; 0 � � < �

1

;

(2) 0 � � < �

1

; � = �

1

;

(3) 0 � � < �

1

; � > �

1

;

(4) � = �

1

; � = �

1

;

(5) � = �

1

; � > �

1

;

(6) � > �

1

; � > �

1

:

The rest three possible 
ases 
an be treated analogously. In order not to

in
rease the volume of the paper, we shall not present details for the 
ases (2), (3)

and (5) merely pointing out that the methods of the next subse
tions 
arry over to

these 
ases.

4.1 Existen
e theorem for � 2 [0; �

1

), � 2 [0; �

1

)

The form of the fun
tional J suggests that we 
onsider

E

1

(z) = 1 and E

2

(w) = 1: (43)

as the 
onstraints in Lemma 4. Indeed, we 
al
ulate

E

(1)

1

= pE

1

(z) = pA;

E

(2)

1

= E

(1)

2

= 0;

E

(2)

2

= qE

2

(w) = qB:

Therefore

det

 

E

(1)

1

E

(1)

2

E

(2)

1

E

(2)

2

!

= pqAB > 0;

and the 
onditions of Lemma 4 are ful�lled. Moreover, sin
e we are assuming (43),

the inequalities (33) hold, that is, 1 = E

1

= A > 0, 1 = E

2

= B > 0 and

C =

Z





(x)jzj

�+1

jwj

�+1

dx > 0:

11



Further, the fun
tional I be
omes

I(z; w) = K

1

�

Z





(x)jzj

�+1

jwj

�+1

dx

�

pq=d

: (44)

The main result in this subse
tion is the following

Theorem 1. Suppose that (7)� (18) hold and that, in addition, � 2 [0; �

1

),

� 2 [0; �

1

). Then the problem (1); (2) has at least two positive weak solutions

(u

i

; v

i

) 2 Y , i = 1; 2.

The proof of this theorem will be a 
onsequen
e of the next two propositions.

Proposition 1. Suppose that the 
onditions (7) � (18) hold and that, in

addition, � 2 [0; �

1

), � 2 [0; �

1

). Then the problem (1); (2) has at least one positive

weak solution (u

1

; v

1

) 2 Y .

Proof. The formulas (39) and (40) suggest to 
onsider an auxiliary problem:

�nd a maximizer (z

�

; w

�

) of

0 < M

�;�

:= sup

�

Z





(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) = 1 and E

2

(w) = 1

�

: (45)

We 
laim that the problem (45) has a solution. Indeed, the sets

X

�

= fz 2 Y

p

j E

1

(z) = 1g ;

and

X

�

= fw 2 Y

q

j E

2

(w) = 1g ;

are non-empty. By Lemma 1 we have that for any z 2 X

�

:

jjzjj

p

p

= �

Z




a(x)jzj

p

dx+ 1 �

�

�

1

jjzjj

p

p

+ 1;

that is,

jjzjj

p

p

�

�

1

�

1

� �

and analogously

jjwjj

q

q

�

�

1

�

1

� �

:

Sin
e 0 � � < �

1

and 0 � � < �

1

, we have

jj(z; w)jj = jjzjj

p

p

+ jjwjj

q

q

�

�

1

�

1

� �

+

�

1

�

1

� �

:

12



Therefore a maximizing sequen
e (z

n

; w

n

) for (45) is bounded in Y . Thus we 
an

suppose that (z

n

; w

n

) 
onverges weakly in Y to some (z

�

; w

�

). By (17)

Z





(x)jz

n

j

�+1

jw

n

j

�+1

dx!

Z





(x)jz

�

j

�+1

jw

�

j

�+1

dx =M

�;�

> 0:

In parti
ular z

�

�= 0 and w

�

�= 0.

The weakly lower semi
ontinuity of the 
orresponding norms, (7), (8) and

E

1

(z

n

) = 1, E

2

(w

n

) = 1 imply that

E

1

(z

�

) � 1; E

1

(w

�

) � 1:

sin
e

jjz

�

jj

p

p

� lim inf

n!1

jjz

n

jj

p

p

;

jjw

�

jj

q

q

� lim inf

n!1

jjw

n

jj

q

q

;

Z




a(x)jz

�

j

p

dx = lim

n!1

Z




a(x)jz

n

j

p

dx;

Z




b(x)jw

�

j

q

dx = lim

n!1

Z




b(x)jw

n

j

p

dx:

If E

1

(z

�

) < 1 then there exists a number t

1

> 1 su
h that E

1

(t

1

z

�

) = 1 and hen
e

t

1

z

�

2 X

�

. If E

2

(w

�

) < 1 then there exists a number t

2

> 1 su
h that E

2

(t

2

w

�

) = 1

and hen
e t

2

w

�

2 X

�

. Therefore

Z





(x)jt

1

z

�

j

�+1

jt

2

w

�

j

�+1

dx = t

�+1

1

t

�+1

2

Z





(x)jz

�

j

�+1

jw

�

j

�+1

dx

= t

�+1

1

t

�+1

2

M

�;�

> M

�;�

= sup

�

Z





(x)jzj

�+1

jwj

�+1

dx > 0

�

;

a 
ontradi
tion. Thus E

1

(z

�

) = 1 or E

2

(w

�

) = 1. If E

1

(z

�

) = 1, E

2

(w

�

) < 1 or

E

1

(z

�

) < 1, E

2

(w

�

) = 1 we 
an obtain another 
ontradi
tion. Hen
e (z

�

; w

�

) 2

X

�

� X

�

is a solution of (45). By Lemma 4 it follows that (z

�

; w

�

) is a 
riti
al

point of I. By Remark 1 we may assume z

�

� 0 and w

�

� 0. Thus, by Lemma 3,

(u

1

= r

1

z

�

; v

1

= �

1

w

�

) is a 
riti
al point of J . Therefore (u; v) 2 Y is a non-negative

weak solution of (1), (2). Using the same arguments as in [3℄ we dedu
e that u

1

> 0,

v

1

> 0 in 
. This 
ompletes the proof.

13



Remark 2. In the s
alar 
ase it is known that weak solutions of

��

p

u = �a(x)juj

p�2

u+ b(x)juj

q�2

u

belong to C

1;�

lo


(
) for some � (see [3℄). Sin
e our system is sub
riti
al (see (11)), we

expe
t that a similar result holds for (1). The regularity problem for weak solutions

of quasilinear variational ellipti
 systems will be studied elsewhere.

Proposition 2. Suppose that (7)�(18) hold and that, in addition, � 2 [0; �

1

),

� 2 [0; �

1

). Then the problem (1); (2) has another positive weak solution (u

2

; v

2

) 2 Y .

Proof. Consider the following:

0 <

^

M

�;�

:= sup

�

Z





(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) + E

2

(w) = 1

�

: (46)

Then the set

X

�;�

= f(z; w) 2 Y j E

1

(z) + E

2

(w) = 1g

is not empty. By E

1

(z) + E

2

(w) = 1 and Lemma 1, for any (z; w) 2 X

�;�

we have

jjzjj

p

p

+ jjwjj

q

q

� 1 +

�

�

1

jjzjj

p

p

+

�

�

1

jjwjj

q

q

;

that is,

�

1

� �

�

1

jjzjj

p

p

+

�

1

� �

�

1

jjwjj

q

q

� 1:

Sin
e ea
h of the summands above is stri
tly positive (re
all that � < �

1

, � < �

1

),

the latter inequality implies

jjzjj

p

p

�

�

1

�

1

� �

and

jjwjj

q

q

�

�

1

�

1

� �

:

Therefore jj(z; w)jj is bounded. Hen
e we may suppose that a maximizing

sequen
e (z

n

; w

n

) for (46) is bounded in Y . Thus we 
an assume that (z

n

; w

n

)


onverges weakly in Y to some (z

�

; w

�

). By (17) it follows that

Z





(x)jz

n

j

�+1

jw

n

j

�+1

dx!

Z





(x)jz

�

j

�+1

jw

�

j

�+1

dx =

^

M

�;�

> 0:

In parti
ular z

�

�= 0 and w

�

�= 0.

The weakly lower semi
ontinuity of the 
orresponding norms, (7), (8) and

E

1

(z

n

) + E

2

(w

n

) = 1 imply that

E

1

(z

�

) + E

1

(w

�

) � 1;

14



that is

(jjz

�

jj

p

p

� �

Z




a(x)jz

�

j

p

dx) + (jjw

�

jj

q

q

� �

1

Z




b(x)jw

�

j

q

dx) � 1:

Sin
e � < �

1

, � < �

1

both summands above are positive. Hen
e

0 < E

1

(z

�

) + E

2

(w

�

) � 1:

We 
laim that a
tually

E

1

(z

�

) + E

2

(w

�

) = 1:

Indeed, if E

1

(z

�

) + E

2

(w

�

) < 1 there exists t > 1 be su
h that

t(E

1

(z

�

) + E

2

(w

�

)) = 1:

Then (t

1=p

z

�

; t

1=q

w

�

) 2 X

�;�

and

Z





(x)jt

1=p

z

�

j

�+1

jt

1=q

w

�

j

�+1

dx = t

�+1

p

+

�+1

q

Z





(x)jz

�

j

�+1

jw

�

j

�+1

dx

= t

�+1

p

+

�+1

q

^

M

�;�

>

^

M

�;�

= sup

�

Z





(x)jzj

�+1

jwj

�+1

dx > 0 j

E

1

(z) + E

2

(w) = 1g ;

a 
ontradi
tion (note that we have used (9)). Therefore we have proved the 
laim.

Hen
e (z

�

; w

�

) 2 X

�;�

is a solution of (46). By an analogue of Lemma 4 for one


onstraint of type E(z; w) = 
onst, (z

�

; w

�

) is a 
riti
al point of I. Indeed, sin
e in

our 
ase E(z; w) = E

1

(z)+E

2

(w) = 1 the 
ondition E

0

(z; w)(z; w) 6= 0 if E(z; w) = 1

is easily veri�ed. The rest of the proof is the same as that of Proposition 1.

Proof of Theorem 1. It remains to show that the solutions found in

Propositions 1 and 2 are distin
t. The proof is by 
ontradi
tion. Suppose that

(u

1

; v

1

) = (u

2

; v

2

). By the proofs of Propositions 1 and 2 it follows that

E

1

(u

1

)

r

p

1

=

E

2

(v

1

)

�

q

1

= 1

and

E

1

(u

2

)

r

p

2

+

E

2

(v

2

)

�

q

2

= 1;

where r

i

; �

i

, i = 1; 2 are determined by (31) and (32), with z

�

i

; w

�

i

, i = 1; 2. These

relations imply that if the solutions are not distin
t then there exists a number

m > 1 su
h that

r

p

1

=

r

p

2

m

; �

q

1

=

�

q

2

m

0

;

1

m

+

1

m

0

= 1:
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By (31) and (32) we have

r

1

= (


1

C

�q

)

1=d

; �

1

= (


2

C

�p

)

1=d

;

r

2

= (


1

C

�q

(1� s)

�+1

s

�+1�q

)

1=d

; �

2

= (


2

C

�p

s

�+1

(1� s)

�+1�p

)

1=d

;

where we have introdu
ed a parameter s = E

1

(z

�

2

). We note that the exa
t values

of 


1

and 


2

are not important for the proof. Sin
e s 2 (0; 1), it is easy to show that

the 
onditions m > 1 and m

0

> 1 are equivalent to

s

�+1�q

< (1� s)

�+1

and

s

�+1

> (1� s)

�+1�p

:

From the last two inequalities, whi
h simultaneously hold for 
ertain s 2 (0; 1), we

obtain that

s

d

> 1;

where d > 0 is given by (10). This is impossible for s 2 (0; 1). Thus we have rea
hed

a 
ontradi
tion. This 
on
ludes the proof.

4.2 The eigenvalue 
ase � = �

1

, � = �

1

We 
onsider the problem (46) with � = �

1

and � = �

1

. In this 
ase the


orresponding set X

�;�

is not bounded in Y . Therefore we need to impose an addi-

tional 
ondition on our data. Hen
eforth we shall suppose that the 
ondition (19)

is ful�lled.

Theorem 2. Suppose that (7) � (19) hold and � = �

1

, � = �

1

. Then the

problem (1); (2) has at least one positive weak solution (u; v) 2 Y .

Proof. The arguments of the proof of this theorem would be the same as

those of Proposition 2 if we 
an prove that the problem (46) with � = �

1

, � = �

1

has a solution.

Let (z

n

; w

n

) be a maximizing sequen
e su
h that

E

1

(z

n

) + E

2

(w

n

) = 1;

Z





(x)jz

n

j

�+1

jw

n

j

�+1

dx = m̂

n

!

^

M

�

1

;�

1

> 0:
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Suppose that jj(z

n

; w

n

)jj ! 1 and put

s

n

=

z

n

jj(z

n

; w

n

)jj

1=p

; t

n

=

w

n

jj(z

n

; w

n

)jj

1=q

; jj(s

n

; t

n

)jj = 1:

Then

jj(z

n

; w

n

)jj [ (jjs

n

jj

p

p

� �

1

Z




a(x)js

n

j

p

dx) + (jjt

n

jj

p

p

� �

1

Z




b(x)jt

n

j

q

dx) ℄ = 1:

Therefore

jjs

n

jj

p

p

� �

1

Z




a(x)js

n

j

p

dx+ jjt

n

jj

q

q

� �

1

Z




b(x)jt

n

j

q

dx =

1

jj(z

n

; w

n

)jj

! 0; n!1:

Hen
e

jj(s

n

; t

n

)jj � �

1

Z




a(x)js

n

j

p

dx� �

1

Z




b(x)jt

n

j

p

dx

=

1

jj(z

n

; w

n

)jj

! 0:

(47)

and thus

lim

n!1

�

�

1

Z




a(x)js

n

j

p

dx+ �

1

Z




b(x)jt

n

j

p

dx

�

= 1;

sin
e jj(s

n

; t

n

)jj = 1. We may assume that (s

n

; t

n

) 
onverges weakly in Y to some

(s

�

; t

�

). Thus

�

1

Z




a(x)js

�

j

p

dx + �

1

Z




b(x)jt

�

j

p

dx = 1;

whi
h implies that (s

�

; t

�

)�= (0; 0). Furthermore

jj(s

�

; t

�

)jj � lim inf

n!1

jj(s

n

; t

n

)jj = 1:

Now from (47) we dedu
e that

(jjs

�

jj

p

p

� �

1

Z




a(x)js

�

j

p

dx) + (jjt

�

jj

q

q

� �

1

Z




b(x)jt

�

j

q

dx) = 0:

The variational properties of the �rst eigenvalue of the p and q�Lapla
ian imply

that both summands in the above relation are non-negative. Hen
e both are zero,

whi
h means, by Lemma 1, that

s

�

= 


1

'; t

�

= 


2

 :

Sin
e

Z





(x)jz

n

j

�+1

jw

n

j

�+1

dx = jj(z

n

; w

n

)jj

�+1

p

+

�+1

q

Z





(x)js

n

j

�+1

jt

n

j

�+1

dx

= m̂

n

!

^

M

�

1

;�

1

> 0;
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we 
on
lude that

Z





(x)js

�

j

�+1

jt

�

j

�+1

dx � 0;

and therefore

Z





(x)j'j

�+1

j j

�+1

dx � 0;

whi
h 
ontradi
ts (19). Thus we 
an assume that (z

n

; w

n

) is bounded and

lim

n!1

(z

n

; w

n

) = (z

�

; w

�

)

weakly in Y . Then

Z





(x)jz

n

j

�+1

jw

n

j

�+1

dx!

Z





(x)jz

�

j

�+1

jw

�

j

�+1

dx =M

�

1

;�

1

> 0:

This means that z

�

6= 0 and w

�

6= 0. Furthermore

0 � E

1

(z

�

) + E

2

(w

�

) � 1:

We 
laim that

0 < E

1

(z

�

) + E

2

(w

�

) � 1:

Indeed, �rst suppose that

0 = E

1

(z

�

) + E

2

(w

�

);

that is

0 = (jjz

�

jj

p

p

� �

1

Z




a(x)jz

�

j

p

dx) + (jjw

�

jj

q

q

� �

1

Z




b(x)jw

�

j

q

dx):

Therefore by Lemma 1 we know that

z

�

= k

1

'; w

�

= k

2

 ;

for some k

1

; k

2

6= 0, and then

Z





(x)jz

�

j

�+1

jw

�

j

�+1

dx = jkj

�+1

1

jkj

�+1

2

Z





(x)j'j

�+1

j j

�+1

dx =

^

M

�

1

;�

1

> 0;

whi
h is a 
ontradi
tion sin
e (19) holds.

Next, suppose that

0 < E

1

(z

�

) + E

2

(w

�

) < 1:

Then we 
an �nd t > 1 su
h that

t(E

1

(z

�

) + E

2

(w

�

)) = 1:
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Further

Z





(x)jt

1=p

z

�

j

�+1

jt

1=q

w

�

j

�+1

dx = t

�+1

p

+

�+1

q

Z





(x)jz

�

j

�+1

jw

�

j

�+1

dx

= t

�+1

p

+

�+1

q

^

M

�;�

>

^

M

�;�

= sup

�

Z





(x)jzj

�+1

jwj

�+1

dx > 0 j

E

1

(z) + E

2

(w) = 1g ;

another 
ontradi
tion.

In this way we have proved that

E

1

(z

�

) + E

2

(w

�

) = 1;

and therefore (z

�

; w

�

) is a maximizer of the problem (46) with � = �

1

, � = �

1

. The

rest of the proof is the same as that of the Proposition 1. This 
ompletes the proof.

4.3 Existen
e of three distin
t solutions for � > �

1

, � > �

1

Theorem 3. Suppose that (7) � (19) hold, � > �

1

and � > �

1

. Then there

exist Æ > 0 and � > 0 su
h that for � 2 (�

1

; �

1

+ Æ), � 2 (�

1

; �

1

+ �) the problem

(1); (2) has at least three positive weak solutions in Y .

The proof of the above theorem will be a 
onsequen
e of several lemmas.

To begin with, we de�ne

M

�;�

:= sup

�

Z





(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) = 1 and E

2

(w) = 1

�

; (48)

and

~

M

�;�

:= sup

�

Z





(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) � 1 and E

2

(w) � 1

�

: (49)

Lemma 5. The problems (48) and (49) are equivalent.

Proof. Sin
e 


+

�=0 (see (18)) any maximizer of (48) is a maximizer of (49).

Suppose for a moment that (z; w) 2 Y is a maximizer of (49) and E

1

(z) < 1 or

E

2

(w) < 1. For instan
e, let E

1

(z) < 1. Therefore there exists k > 1 su
h that

E

1

(z) = 1. Then

Z





(x)jkzj

�+1

jwj

�+1

dx = k

�+1

Z





(x)jz

�

j

�+1

jw

�

j

�+1

dx = k

�+1

~

M

�;�

; >

~

M

�;�

(50)
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whi
h is a 
ontradi
tion. Thus E

1

(z) = E

2

(w) = 1. Therefore any maximizer of

(49) is a maximizer of (48).

Lemma 6. Let (7) - (19) hold. Then there exist Æ

1

> 0 and "

1

> 0 su
h that

for any � 2 (�

1

; �

1

+ Æ

1

) and � 2 (�

1

; �

1

+ "

1

) the problem (47) has a non-trivial

solution (z

1

; w

1

) 2 Y .

Proof. From Lemma 5 we shall dedu
e the existen
e of Æ

1

> 0 and "

1

> 0


orresponding to the problem (49). Suppose that the 
laim is not true, that is, there

exist sequen
es Æ

s

! 0, Æ

s

> 0, and "

s

! 0, "

s

> 0, su
h that the problem (49) with

� = �

s

= �

1

+ Æ

s

and � = �

s

= �

1

+ "

s

does not have solution. Fix an integer s and


onsider (49) with �

s

and �

s

. Denoting by (z

s

n

; w

s

n

) the 
orresponding maximizing

sequen
e, we have

lim

n!1

Z





(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx =

~

M

�

s

;�

s

> 0;

E

1

(z

s

n

) � 1;

and

E

2

(w

s

n

) � 1:

If (z

s

n

; w

s

n

) would be bounded, we may assume that it 
onverges weakly in Y to some

(z

s

0

; w

s

0

), when n!1. Then

Z





(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx!

Z





(x)jz

s

0

j

�+1

jw

s

0

j

�+1

dx =

~

M

�

s

;�

s

> 0;

Z




jrz

s

0

j

p

dx� �

s

Z




a(x)jz

s

0

j

p

dx � 1;

Z




jrw

s

0

j

q

dx� �

s

Z




b(x)jw

s

0

j

q

dx � 1:

Therefore (z

s

0

; w

s

0

) is a solution of (49) - a 
ontradi
tion. Thus we may 
onsider

(z

s

n

; w

s

n

) to be unbounded. Let

(h

s

n

; t

s

n

) =

(z

s

n

; w

s

n

)

jj(z

s

n

; w

s

n

)jj

:

Sin
e jj(h

s

n

; t

s

n

)jj = 1 we may assume that

lim

n!1

(h

s

n

; t

s

n

) = (h

s

0

; t

s

0

)
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weakly in Y . Then

Z





(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx = jj(z

s

n

; w

s

n

)jj

�+�+2

Z





(x)jh

s

n

j

�+1

jt

s

n

j

�+1

dx!

~

M

�

s

;�

s

> 0;

therefore

Z





(x)jh

s

0

j

�+1

jt

s

0

j

�+1

dx � 0: (51)

From the inequality E

1

(z

s

n

) � 1, that is,

jj(z

s

n

; w

s

n

)jj

p

(jjh

s

n

jj

p

p

� �

s

Z




a(x)jh

s

n

j

p

dx) � 1

it follows that

jjh

s

n

jj

p

p

� �

s

Z




a(x)jh

s

n

j

p

dx �

1

jj(z

s

n

; w

s

n

)jj

p

:

By letting n!1 we get

jjh

s

0

jj

p

p

� �

s

Z




a(x)jh

s

0

j

p

dx � 0: (52)

On the other hand, summing up

�

s

Z




a(x)jh

s

n

j

p

dx � jjh

s

n

jj

p

p

�

1

jj(z

s

n

; w

s

n

)jj

p

;

and

�

s

Z




b(x)jt

s

n

j

q

dx � jjt

s

n

jj

q

q

�

1

jj(z

s

n

; w

s

n

)jj

q

;

and letting n!1, we obtain

�

s

Z




a(x)jh

s

0

j

p

dx + �

s

Z




b(x)jt

s

0

j

q

dx � 1: (53)

Clearly jj(h

s

0

; t

s

0

)jj � 1. This allows us to suppose that (h

s

0

; t

s

0

) 
onverges weakly in Y

to some (h

0

; t

0

). Letting s!1 in (53), we get that

�

1

Z




a(x)jh

0

j

p

dx + �

1

Z




b(x)jt

0

j

q

dx � 1:

Hen
e (h

0

; t

0

)�= (0; 0). Next, from the inequality (52) we obtain

0 � jjh

0

jj

p

p

� �

s

Z




a(x)jh

0

j

p

dx � 0:

The latter and the Lemma 1 imply that h

0

= l', l 6= 0. Starting with E

2

(w

s

n

) � 1

we 
an obtain t

0

= k , k 6= 0, in a similar way. Then by (51) we get that

Z





(x)jh

0

j

�+1

jt

0

j

�+1

dx � 0;
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and thus

jlj

�+1

jkj

�+1

Z





(x)j'j

�+1

j j

�+1

dx � 0:

This 
ontradi
ts our assumption (19).

Therefore there exist Æ

1

> 0 and "

1

> 0 su
h that for any � 2 (�

1

; �

1

+ Æ

1

)

and � 2 (�

1

; �

1

+ "

1

) the problem (49) has a solution (z

1

; w

1

) 2 Y . By Lemma 5

(z

1

; w

1

) 2 Y is a solution of (48).

Lemma 7. The set

W

�

=

�

(z; w) 2 Y j

Z





(x)jzj

�+1

jwj

�+1

dx = �1

�

is not empty and m

�;�

< 0, � > �

1

, � > �

1

, where

m

�;�

= inf

�

E

1

(z) + E

2

(w) j

Z





(x)jzj

�+1

jwj

�+1

dx = �1

�

: (54)

Proof. Set z = ' and w =  . Then by (19) we have

Z





(x)jzj

�+1

jwj

�+1

dx =

Z





(x)j'j

�+1

j j

�+1

dx < 0:

Therefore there exists k 2 IR su
h that

Z





(x)jk'j

�+1

j j

�+1

dx = �1;

and hen
e (k';  ) 2 W

�

.

Sin
e � > �

1

and � > �

1

, we have

E

1

(k') = jkj

p

(�

1

� �)

Z




a(x)j'j

p

dx < 0;

and

E

2

(l ) = jlj

q

(�

1

� �)

Z




b(x)j j

q

dx < 0:

These inequalities imply that m

�;�

< 0.

Lemma 8. Assume that (7) - (19) hold. Then there exist Æ

2

> 0 and "

2

> 0

su
h that for any � 2 (�

1

; �

1

+ Æ

2

) and � 2 (�

1

; �

1

+ "

2

) the problem (54) has a

non-trivial solution (z

2

; w

2

) 2 Y satisfying E

1

(z

2

) + E

2

(w

2

) < 0.

Proof. The proof is by 
ontradi
tion and it is analogous to that of Lemma 6.

Assume that the opposite assertion holds. Then there exist sequen
es Æ

s

! 0,

Æ

s

> 0, and "

s

! 0, "

s

> 0, su
h that the problem (54) with � = �

s

= �

1

+ Æ

s

and
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� = �

s

= �

1

+ "

s

does not have solution. Fix an integer s and 
onsider (54) with �

s

and �

s

. Denote by (z

s

n

; w

s

n

) the 
orresponding maximizing sequen
e:

Z





(x)jz

n

j

�+1

jw

n

j

�+1

dx = �1;

Z




jrz

s

n

j

p

dx� �

s

Z




a(x)jz

s

n

j

p

dx+

Z




jrw

s

n

j

q

dx� �

s

Z




b(x)jw

s

n

j

q

dx! m

�

s

;�

s

< 0:

If (z

s

n

; w

s

n

) would be bounded, we 
an obtain as before that, there exists a solution

(z

s

0

; w

s

0

) of (54):

Z





(x)jz

s

0

j

�+1

jw

s

0

j

�+1

dx = �1

and

Z




jrz

s

0

j

p

dx� �

s

Z




a(x)jz

s

0

j

p

dx+

Z




jrw

s

0

j

q

dx� �

s

Z




b(x)jw

s

0

j

q

dx = m

�

s

;�

s

< 0;

whi
h is a 
ontradi
tion. Thus we may assume that (z

s

n

; w

s

n

) is unbounded. With

the same notation as in Lemma 6, it follows that

Z





(x)jh

s

n

j

�+1

jt

s

n

j

�+1

dx = �

1

jj(z

s

n

; w

s

n

)jj

�+�+2

! 0:

Sin
e the fun
tional f

3

(see (17)) is lower weakly 
ontinuous we obtain

Z





(x)jh

s

0

j

�+1

jt

s

0

j

�+1

dx = 0: (55)

Analogously to previous proofs, (55) enables us to 
on
lude that

Z





(x)j'j

�+1

j j

�+1

dx = 0:

This 
ontradi
ts (19). The fa
t that E

1

(z

2

) + E

2

(w

2

) < 0 follows from Lemma 7.

Lemma 9. Let (7) - (19) hold. Then there exist Æ

3

> 0 and "

3

> 0 su
h

that for any � 2 (�

1

; �

1

+ Æ

3

) and � 2 (�

1

; �

1

+ "

3

) the problem (47) has another

non-trivial solution (z

3

; w

3

) 2 Y .

Proof. Set

N

�;�

:= sup

�

Z





(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) + E

2

(w) = 1

�

: (56)

and

^

N

�;�

:= sup

�

Z





(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) + E

2

(w) � 1

�

: (57)
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Following the argument of Lemma 5 it is easy to prove that the problems (56)

and (57) are equivalent. (See the end of the proof of Proposition 2.) Therefore

we shall dedu
e the existen
e of Æ

3

> 0 and "

3

> 0 
orresponding to the problem

(57). Suppose that this is not true, that is, there exist sequen
es Æ

s

! 0, Æ

s

> 0,

and "

s

! 0, "

s

> 0, su
h that the problem (57) with � = �

s

= �

1

+ Æ

s

and

� = �

s

= �

1

+ "

s

does not have solution. Fix an integer s and 
onsider (57) with �

s

and �

s

. Denoting by (z

s

n

; w

s

n

) the 
orresponding maximizing sequen
e, we have

lim

n!1

Z





(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx =

^

N

�

s

;�

s

> 0;

E

1

(z

s

n

) + E

2

(w

s

n

) � 1:

If (z

s

n

; w

s

n

) would be bounded, we may assume that it 
onverges weakly in Y to some

(z

s

0

; w

s

0

), when n!1. Then

Z





(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx!

Z





(x)jz

s

0

j

�+1

jw

s

0

j

�+1

dx =

^

N

�

s

;�

s

> 0;

E

1

(z

s

0

) + E

2

(w

s

0

) � 1:

Therefore (z

s

0

; w

s

0

) is a solution of (57) - a 
ontradi
tion. Thus we may 
onsider

(z

s

n

; w

s

n

) to be unbounded. Let

h

s

n

=

z

s

n

jj(z

s

n

; w

s

n

)jj

1=p

; t

n

=

w

s

n

jj(z

s

n

; w

s

n

)jj

1=q

; jj(h

s

n

; t

s

n

)jj = 1:

Thus we may assume that

lim

n!1

(h

s

n

; t

s

n

) = (h

s

0

; t

s

0

)

weakly in Y . Then

Z





(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx = jj(z

s

n

; w

s

n

)jj

�+1

p

+

�+1

q

Z





(x)jh

s

n

j

�+1

jt

s

n

j

�+1

dx!

^

N

�

s

;�

s

> 0;

therefore

Z





(x)jh

s

0

j

�+1

jt

s

0

j

�+1

dx � 0: (58)

From the inequality E

1

(z

s

n

) + E

2

(w

s

n

) � 1, that is,

jj(z

s

n

; w

s

n

)jj [ (jjh

s

n

jj

p

p

� �

s

Z




a(x)jh

s

n

j

p

dx) + jjt

s

n

jj

q

q

� �

s

Z




b(x)jt

s

n

j

q

dx) ℄ � 1

it follows that

jjh

s

n

jj

p

p

� �

s

Z




a(x)jh

s

n

j

p

dx+ jjt

s

n

jj

q

q

� �

s

Z




b(x)jt

s

n

j

q

dx �

1

jj(z

s

n

; w

s

n

)jj

: (59)
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By letting n!1 we get

(jjh

s

0

jj

p

p

� �

s

Z




a(x)jh

s

0

j

p

dx) + (jjt

s

0

jj

q

q

� �

s

Z




b(x)jt

s

0

j

q

dx) � 0: (60)

On the other hand we 
an obtain from (59) that

�

s

Z




a(x)jh

s

0

j

p

dx + �

s

Z




b(x)jt

s

0

j

q

dx � 1: (61)

Clearly jj(h

s

0

; t

s

0

)jj � 1. This allows us to suppose that (h

s

0

; t

s

0

) 
onverges weakly in Y

to some (h

0

; t

0

). Letting s!1 in (61), it follows that

�

1

Z




a(x)jh

0

j

p

dx + �

1

Z




b(x)jt

0

j

q

dx � 1:

Hen
e (h

0

; t

0

)�= (0; 0).

Now from (60), by letting s!1, we infer

(jjh

0

jj

p

p

� �

1

Z




a(x)jh

0

j

p

dx) + (jjt

0

jj

q

q

� �

1

Z




b(x)jt

0

j

q

dx) � 0:

By the de�nition of �

1

and �

1

both summands above are non-negative. Therefore

jjh

0

jj

p

p

� �

s

Z




a(x)jh

0

j

p

dx = 0

and

jjt

0

jj

q

q

� �

s

Z




b(x)jt

0

j

q

dx = 0:

The last two equalities and Lemma 1 imply that h

0

= l', l 6= 0 and t

0

= k , k 6= 0.

Then by (58), letting s!1, we get that

Z





(x)jh

0

j

�+1

jt

0

j

�+1

dx � 0;

and thus

jlj

�+1

jkj

�+1

Z





(x)j'j

�+1

j j

�+1

dx � 0;

a 
ontradi
tion to (19). This 
ompletes the proof.

Proof of Theorem 3. Let Æ

1

, "

1

, (z

1

; w

1

) 2 Y , Æ

2

, "

2

, (z

2

; w

2

) 2 Y and Æ

2

,

"

2

, (z

2

; w

2

) 2 Y be as in Lemmas 6, 8, 9 respe
tively. Denote Æ = min(Æ

1

; Æ

2

; Æ

3

) and

" = min("

1

; "

2

; "

3

). Now we substitute (z

i

; w

i

), i = 1; 2; 3, in (31) and (32). In this

way we obtain three pairs of positive numbers: (r

i

; �

i

), i = 1; 2; 3. Set

u

i

= r

i

z

i

; v

i

= �

i

w

i

; i = 1; 2; 3:
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By Lemma 3, (u

1

; v

1

), (u

2

; v

2

) and (u

3

; v

3

) are weak solutions of (1),(2). By Lemma

6 it follows that

E

1

(u

1

)

r

p

1

= E

1

(z

1

) = 1;

and

E

2

(v

1

)

�

q

1

= E

2

(w

1

) = 1:

Thus

(u

1

; v

1

) 2 S = f(u; v) j

E

1

(u

1

)

r

p

1

= 1 and

E

2

(v

1

)

�

q

1

= 1g:

On the other hand, by Lemma 8 we have

E

1

(u

2

)

jr

2

j

p

+

E

2

(v

2

)

j�

2

j

q

= E

1

(z

2

) + E

2

(w

2

) < 0:

Hen
e at least one of E

1

(u

2

) and E

2

(v

2

) is negative. Therefore (u

2

; v

2

) does not

belong to S. We 
on
lude that (u

1

; v

1

) and (u

2

; v

2

) are distin
t. Similarly (u

2

; v

2

)

and (u

3

; v

3

) are distin
t. An argument analogous to that in the proof of Theorem 1

shows that (u

1

; v

1

) and (u

3

; v

3

) are distin
t too. The rest of the proof is the same

as that of Theorem 1. This 
ompletes the proof of Theorem 3.

5 A non-existen
e result of 
lassi
al solutions

In this se
tion we shall establish a non-existen
e result of 
lassi
al solutions

for a potential system asso
iated to (p; q)�Lapla
ian operators. However, it is 
lear

that `the 
onsidered solutions are 
lassi
al' does not seem to be a natural hypothesis

for this kind of problem. Indeed, the natural 
lass to 
onsider should be the 
lass of

weak solutions.

Our argument, whi
h is based on an earlier result by Pohozaev [10℄ (see also

[14, 6℄), enables only to 
onsider 
lassi
al solutions. We should mention that in

the s
alar 
ase, Guedda and Veron [6℄ proved a Pohozaev type identity for weak

solutions of the problem

8

>

<

>

:

�div (jruj

p�2

ru) = f(u; v) in 


u = 0 on �
;

under some suitable growth assumption on f . We are 
on�dent that a Pohozaev type

identity for weak solutions of potential systems asso
iated to p�Lapla
ian operators

still holds if the potential does not growth very fast. However, in the present paper

we shall not 
onsider this kind of generalization.
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Let 
 � IR be a smooth bounded domain. Consider the following quasilinear

potential system

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�div (jruj

p�2

ru) =

�F

�u

(x; u; v) in 


�div (jrvj

q�2

rv) =

�F

�v

(x; u; v) in 


u = v = 0 on �
;

(62)

where F 2 C

1

(
� IR� IR). Let (u; v) 2 (C

2

(
)\C

0

(

�


))

2

be a 
lassi
al solution of

(62). Then the Pohozaev Identity ([10℄) for (62) 
an be written in the form

N � p

p

Z




jruj

p

dx +

N � q

q

Z




jrvj

q

dx�N

Z




F (x; u; v)dx�

Z




D

x

F (x; u; v)dx

=�

 

1�

1

p

!

Z

�


jruj

p

(x; �)dx�

 

1�

1

q

!

Z

�


jrvj

q

(x; �)dx:

(63)

Now we are ready to prove the next

Theorem 4. Suppose that 
 is stri
tly-starshaped with respe
t to the origin.

Let a; b; 
 2 C

1

(

�


) and (u; v) 2 (C

2

(
) \ C

0

(

�


))

2

be a solution of (1); (2). Suppose

that the assumptions in se
tion 2 hold. In addition, assume that for any 
; � 2 IR

the following inequalities hold

N � p

p

+ 
 � 0;

N � q

q

+ � � 0;

and for x 2 
 we have

 

�N

p

� 
�

!

a(x)�

�

p

(ra(x); x) � 0;

 

�N

q

� ��

!

b(x)�

�

q

(rb(x); x) � 0;

�N
(x) �Nr(
(x); x)� ((� + 1)
 + (� + 1)�)
(x) � 0:

Then u = v = 0.
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Proof. Multiplying the �rst equation of (1) by 
u and integrating by parts

we get




Z




jruj

p

dx = 
�

Z




a(x)juj

p

dx + 
(�+ 1)

Z





(x)juj

�+1

jvj

�+1

dx: (64)

Similarly

�

Z




jrvj

q

dx = ��

Z




b(x)jvj

q

dx + �(� + 1)

Z





(x)juj

�+1

jvj

�+1

dx: (65)

Now we re
all that the potential F is given by (20). Then substitute (20) into (63).

Further, sum up the obtained identity with (64) and (65). Then the resulting iden-

tity, the inequalities given in the theorem, and the fa
t that 
 is stri
tly-starshaped

imply that u = v = 0.
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