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1 Introdution

In this paper we shall study some existene and non-existene results for the

following quasilinear system:

8

>

<

>

:

��

p

u = �a(x)juj

p�2

u+ (� + 1)(x)juj

��1

ujvj

�+1

;

��

q

v = �b(x)jvj

q�2

v + (� + 1)(x)juj

�+1

jvj

��1

v:

(1)

Here �; �; �; �; p > 1; q > 1 are real numbers, �

p

and �

q

are orrespondingly

the p� and q�Laplae operators and a(x); b(x); (x) - given funtions.

The system (1) will be onsidered in a bounded domain 
 � IR

N

with Dirihlet

boundary ondition

u = v = 0: (2)

Systems involving quasilinear operators of p�Laplaian type have been studied

by various authors [2, 9℄. Among other results, existene and non-existene theorems

were obtained. For suh purpose the method of sub-super solutions, the blow-up

method and the Mountain Pass Theorem have been used (see e.g. [2, 4℄).

Our main tool here is the so-alled Fibering Method introdued and developed

by S. I. Pohozaev in [11, 12, 13℄. Its general nature enables us to prove existene

and multipliity theorems for (1),(2) in a somewhat more onstrutive and expliit

way. The Fibering Method was applied to a single equation of p�Laplaian type by

Drabek and Pohozaev in [3℄.

Dealing with existene theorems, the parameters � and �, appearing in (1),

will be naturally related to �

1

and �

1

, the �rst eigenvalue of (��

p

;W

1;p

0

) and

(��

q

;W

1;q

0

) respetively. The existene and properties of the �rst eigenvalue of

p�Laplaian operators, subjet to homogeneous Dirihlet boundary onditions in a

bounded domain, are obtained in [1, 8, 3, 5, 6℄.

This paper is organized as follows. In setion 2 we introdue some notation,

de�ne the funtions spaes that will be used throughout the paper and state our basi

assumptions. For onveniene of the reader we also ollet some of the properties of

the p�Laplaian eigenvalues and orresponding eigenfuntions. Setion 3 ontains

a slight modi�ation of the Fibering Method, adapted for vetor-valued problems.

The main results of this paper, that is, the existene and multipliity theorems for

the problem (1),(2) are presented in setion 4. Finally, in setion 5 we prove a

non-existene result for lassial solutions, using the elebrated Pohozaev Identity

[10℄.
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2 The p-Laplaian operator and its eigenvalues

Let 
 � IR

N

be a bounded domain and 1 < p; q <1. We de�ne the Sobolev

spaes Y

p

= W

1;p

0

(
) and Y

q

=W

1;q

0

(
) equipped with the norms

jjujj

p

=

�

Z




jruj

p

dx

�

1=p

; jjvjj

q

=

�

Z




jrvj

q

dx

�

1=q

: (3)

respetively. Then we denote Y = Y

p

� Y

q

and for (u; v) 2 Y

jj(u; v)jj = jjujj

p

p

+ jjvjj

q

q

: (4)

Now onsider the eigenvalue equation for the p�Laplae operator:

8

>

<

>

:

��

p

u = �a(x)juj

p�2

u in 
;

u = 0 in �
:

(5)

where a 2 L

1

(
). The problem (5) is losely related with our main problem (1),(2).

For we need the following lemma.

Lemma 1([3, 1, 8℄). There exists a number �

1

> 0 suh that:

�

1

= inf

Z




jruj

p

dx

Z




a(x)juj

p

dx

; (6)

where the in�mum is taken over u 2 Y

p

suh that

R




a(x)juj

p

dx > 0;

(i) there exists a positive funtion ' 2 Y

p

\ L

1

(

�


) whih is solution of (5)

with � = �

1

.

(ii) �

1

is simple, in the sense that any two eigenfuntions, orresponding to

�

1

, di�er by a onstant multiplier;

(iii) �

1

is isolated, whih means that there are no eigenvalues less than �

1

and

no eigenvalues in the interval (�

1

; �

1

+ Æ) for some Æ > 0 suÆiently small.
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Note that we onsider (5) in a weak sense, that is,

8

>

>

<

>

>

:

Z




jruj

p�2

rurvdx = �

Z




a(x)juj

p�2

uvdx;

u = 0 in �


for any v 2 Y

p

.

Now we state the assumptions that we shall assume throughout this paper.

Let �; �; �; �; p > 1; q > 1 be real numbers. We shall suppose that

1 < p < p

�

; 1 < q < q

�

; (7)

N � p

p

(�+ 1) +

N � q

q

(� + 1) < N; (8)

where

p

�

= Np=(N � p); q

�

= Nq=(N � q)

are the well-known ritial exponents (see [9, 2℄). We assume that the system (1) is

super-homogeneous in the sense that

�+ 1

p

+

� + 1

q

> 1: (9)

It an be seen that the latter ondition is equivalent to

d = (�+ 1)(� + 1)� (�� p+ 1)(� � q + 1) > 0: (10)

Moreover, sine (8) is equivalent to

N <

� + � + 2

�+1

p

+

�+1

q

� 1

; (11)

one an observe that our system is subritial [9℄ whih avoids non-ompatness

problems. See [9℄ for more details on this point.

Note that (8) implies

� + 1 < p

�

; � + 1 < q

�

:

The funtions a(x), b(x) and (x) are supposed to be bounded in 
:

a; b;  2 L

1

(
) (12)

and

a(x) = a

1

(x)� a

2

(x); a

1

; a

2

� 0; a

1

(x)�= 0: (13)
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b(x) = b

1

(x)� b

2

(x); b

1

; b

2

� 0; b

1

(x)�= 0: (14)

By the Sobolev inequality it an be easily seen that (7), (8) and (12) imply

that the integrals

Z




a(x)juj

p

dx

and

Z




b(x)jvj

q

dx

are �nite for (u; v) 2 Y . Now we an de�ne the following funtionals on Y

p

and Y

q

:

f

1

(u) =

Z




a(x)juj

p

dx (15)

and

f

2

(v) =

Z




b(x)jvj

q

dx: (16)

Sine a and b are bounded it is standard to hek that f

1

and f

2

are weakly lower

ontinuous. Similarly, the onditions (7), (8) and (12) imply that the funtional

f

3

(u; v) =

Z




(x)juj

�+1

jvj

�+1

dx (17)

is weakly lower ontinuous in Y .

We shall also suppose that



+

(x)�= 0: (18)

and

Z




(x)j'j

�+1

j j

�+1

dx < 0 (19)

The funtions ' 2 Y

p

and  2 Y

q

above are the �rst eigenfuntions of �

p

and �

q

orrespondingly.

We end this setion with the following

De�nition (weak solution). We say that (u; v) 2 Y is a weak solution of

(1) if

Z




jruj

p�2

(ru;rz)dx = �

Z




a(x)juj

p�2

uzdx+ (� + 1)

Z




(x)juj

��1

ujvj

�+1

zdx

Z




jrvj

q�2

(rv;rw)dx = �

Z




b(x)jvj

q�2

vwdx+ (� + 1)

Z




(x)juj

�+1

jvj

��1

vwdx

for any (z; w) 2 Y .
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3 The Fibering Method for systems of quasilinear

PDEs

The system (1) has a variational struture. Indeed, denote

F (x; u; v) :=

�

p

a(x)juj

p

+

�

q

b(x)jvj

q

+ (x)juj

�+1

jvj

�+1

(20)

and onsider

F(x; u; v;ru;rv) =

1

p

jruj

p

+

1

q

jrvj

q

� F (x; u; v): (21)

Let J : Y ! IR be de�ned by

J(u; v) :=

Z




F(x; u; v;ru;rv)dx;

or, in a more detailed form,

J(u; v) =

1

p

Z




jruj

p

dx�

�

p

Z




a(x)juj

p

dx +

1

q

Z




jrvj

q

dx�

�

q

Z




b(x)jvj

q

dx

�

Z




(x)juj

�+1

jvj

�+1

dx:

(22)

Clearly the ritial points of J are the weak solutions of the problem (1), (2).

The ornerstone of the Fibering method onsists of the following. We express

(u; v) 2 Y in the form

u = rz; v = �w; (23)

where the funtions z 2 Y

p

, w 2 Y

q

, and r; � are real numbers. Sine we look for

non-trivial solutions we must assume that r 6= 0 and � 6= 0. Substituting (23) in

(22) we obtain

J(rz; �w) =

jrj

p

p

Z




jrzj

p

dx�

�jrj

p

p

Z




a(x)jzj

p

dx

+

j�j

q

q

Z




jrwj

q

dx�

�j�j

q

q

Z




b(x)jwj

q

dx

� jrj

�+1

j�j

�+1

Z




(x)jzj

�+1

jwj

�+1

dx:

(24)

If (u; v) 2 Y is a ritial point of J then

�J

�r

(rz; �w) = 0 and

�J

��

(rz; �w) = 0: (25)
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Assuming that

A :=

Z




jrzj

p

dx� �

Z




a(x)jzj

p

dx 6= 0; (26)

B :=

Z




jrwj

q

dx� �

Z




b(x)jwj

q

dx 6= 0; (27)

C :=

Z




(x)jzj

�+1

jwj

�+1

dx 6= 0; (28)

we an write (24) in the following way

J(rz; �w) =

jrj

p

p

A+

j�j

q

q

B � jrj

�+1

j�j

�+1

C: (29)

The onditions (25) are equivalent to

�J

�r

= 0, jrj

p�2

rA� (� + 1)jrj

��1

rj�j

�+1

C = 0;

�J

��

= 0, j�j

q�2

�B � (� + 1)jrj

�+1

j�j

��1

�C = 0;

that is,

8

>

<

>

:

jrj

p�2

A� (�+ 1)jrj

��1

j�j

�+1

C = 0

j�j

q�2

B � (� + 1)jrj

�+1

j�j

��1

C = 0:

(30)

Resolving the system (30) we obtain as an intermediate step that

jrj

p���1

= j�j

�+1

C(� + 1)=A:

Hene A and C must have the same sign. Analogously

j�j

q���1

= jrj

�+1

C(� + 1)=B

and B and C must also have the same sign. Thus A;B and C must have the same

sign! Note that the onditions (26), (27) and (28) have been essentially used. Hene

the solution of (30) is given by

jrj =

 

(� + 1)

��q+1

jBj

�+1

(� + 1)

�+1

jCj

q

jAj

��q+1

!

1=d

; (31)

j�j =

 

(� + 1)

��p+1

jAj

�+1

(� + 1)

�+1

jCj

p

jBj

��p+1

!

1=d

; (32)

where d > 0 is given in (9).
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The fat that A;B;C must have the simultaneously the same sign leads us to

onsider two ases. In the next setions we shall assume that

A > 0; B > 0; C > 0 (33)

or

A < 0; B < 0; C < 0: (34)

Thus, in both ases (33) and (34), the funtions r = r(z; w) and � = �(z; w) are well

de�ned. Now we insert the expressions for r = r(z; w) and � = �(z; w), determined

by (31) and (32), into (29). In this way we obtain a funtional

I(z; w) = J(r(z; w)z; �(z; w)w) (35)

given by

I(z; w) = K

�

�

�

�

Z




jrzj

p

dx� �

Z




a(x)jzj

p

dx

�

�

�

�

(�+ 1)q=d

�

�

�

�

�

Z




jrwj

q

dx� �

Z




b(x)jwj

q

dx

�

�

�

�

(� + 1)p=d

�

�

�

�

Z




(x)jzj

�+1

jwj

�+1

dx

�

�

�

�

pq=d

;

(36)

where

K =

�

(�+1)

(��q+1)p=d

p(�+1)

(�+1)p=d

+

(�+1)

(��p+1)q=d

q(�+1)

(�+1)q=d

�

1

(�+1)

(�+1)q=d

(�+1)

(�+1)

p=d

�

sign

�

R




(x)jzj

�+1

jwj

�+1

dx

�

:

Therefore, provided z and w satisfy (33) or (34), we have

�J

�r

�

�

�

�

�

r=r(z;w);�=�(z;w)

= 0 (37)

and

�J

��

�

�

�

�

�

r=r(z;w);�=�(z;w)

= 0: (38)

Next we introdue the following notation: for any funtional f : Y ! IR we

denote by

f

0

(z; w)(h

1

; h

2

)

the Gatêaux derivative of f at (z; ; w) 2 Y in diretion of (h

1

; h

2

) 2 Y .

Let

E

1

(z) =

Z




jrzj

p

dx� �

Z




a(x)jzj

p

dx; (39)

8



E

2

(w) =

Z




jrwj

q

dx� �

Z




b(x)jwj

q

dx; (40)

and

E

(1)

i

(z; w)(h

1

; h

2

) =

�

�"

�

�

�

�

�

"=0;�=0

E

i

(z + "h

1

; w + �h

2

);

E

(2)

i

(z; w)(h

1

; h

2

) =

�

��

�

�

�

�

�

"=0;�=0

E

i

(z + "h

1

; w + �h

2

);

I

(1)

(z; w)(h

1

; h

2

) =

�

�"

�

�

�

�

�

"=0;�=0

I(z + "h

1

; w + �h

2

);

I

(2)

(z; w)(h

1

; h

2

) =

�

��

�

�

�

�

�

"=0;�=0

I(z + "h

1

; w + �h

2

):

It is easy to see that the following lemma holds. We omit the straightforward

details.

Lemma 2. (1) The funtional I is homogeneous of degree 0, that is, for every

z 2 Y

p

, w 2 Y

q

suh that

R




(x)jzj

�+1

jwj

�+1

dx 6= 0 and every t 6= 0 we have

I(tz; tw) = I(z; w):

(2) I is even and

I

0

(z; w)(z; w) = 0:

Remark 1. If (z; w) 2 Y is a ritial point of I, by well-known properties of

p�Laplae Dirihlet integral (see [7℄) it follows that (jzj; jwj) 2 Y is also a ritial

point of I.

The next two lemmas are diret onsequenes of the results proved in [11, 12,

13℄.

Lemma 3. Let (z; w) be a ritial point of I, whih satis�es (33) or (34).

Then the funtion (u; v) de�ned by

u(x) = rz(x); v(x) = �w(x)

where r 6= 0 and � 6= 0 are determined by (31) and (32), is a ritial pont of J .

Proof. Sine (z; w) is a ritial point of I we have

I

0

(z; w)(h

1

; h

2

) = (I

(1)

(z; w)(h

1

; h

2

); I

(2)

(z; w)(h

1

; h

2

)) = 0:
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Therefore, sine

�J

�r

�

�

�

�

�

r=r(z;w);�=�(z;w)

=

�J

��

�

�

�

�

�

r=r(z;w);�=�(z;w)

= 0:

(see (37) and (38)), by the hain rule we have

0 = I

(1)

(z; w)(h

1

; h

2

)

= r(z; w)J

(1)

(rz; �w)(h

1

; h

2

) +

�J

�r

�

�

�

�

�

r=r(z;w);�=�(z;w)

�r

�z

+

�J

��

�

�

�

�

�

r=r(z;w);�=�(z;w)

��

�z

= r(z; w)J

(1)

(rz; �w)(h

1

; h

2

):

Thus J

(1)

(u; v) = 0. Analogously J

(2)

(u; v) = 0 and therefore J

0

(u; v) = 0.

Lemma 4. Let E

1

and E

2

be de�ned by (39) and (40). Consider

E

1

(z; w) = 

1

and E

2

(z; w) = 

2

;

where 

i

2 IR, (i = 1; 2). Suppose that

det

 

E

(1)

1

E

(1)

2

E

(2)

1

E

(2)

2

!

6= 0 if E

1

(z; w) = 

1

and E

2

(z; w) = 

2

; (41)

Then every ritial point of I with the onditions E

1

(z; w) = 

1

and E

2

(z; w) =



2

is a ritial point of I.

Proof. Let (z; w) be a onditional ritial point of I. By the Euler Theorem

there exist m

1

; m

2

2 IR suh that

I

0

(z; w) = m

1

E

0

1

(z; w) +m

2

E

0

2

(z; w): (42)

Sine by Lemma 2 we have I

0

(z; w)(z; w) = 0, by (42) we obtain:

m

1

E

(1)

1

+m

2

E

(1)

2

= 0;

m

1

E

(2)

1

+m

2

E

(2)

2

= 0:

Now by (41) we have

det

 

E

(1)

1

E

(1)

2

E

(2)

1

E

(2)

2

!

6= 0;

Therefore m

1

= m

2

= 0. Thus I

0

(z; w) = 0, that is, (z; w) is a ritial point of I.
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4 Existene and multipliity results

Our �rst aim is to prove the existene of a ritial point of I with appropriate

onstraints. This in turn will be an atual ritial point of I and hene a ritial

point of J - a weak solution of (1). We have already pointed out that the existene

and multipliity results are in onnetion with the �rst eigenvalues �

1

and �

1

of the

p and q�Laplaian respetively. We distinguish the following six ases:

(1) 0 � � < �

1

; 0 � � < �

1

;

(2) 0 � � < �

1

; � = �

1

;

(3) 0 � � < �

1

; � > �

1

;

(4) � = �

1

; � = �

1

;

(5) � = �

1

; � > �

1

;

(6) � > �

1

; � > �

1

:

The rest three possible ases an be treated analogously. In order not to

inrease the volume of the paper, we shall not present details for the ases (2), (3)

and (5) merely pointing out that the methods of the next subsetions arry over to

these ases.

4.1 Existene theorem for � 2 [0; �

1

), � 2 [0; �

1

)

The form of the funtional J suggests that we onsider

E

1

(z) = 1 and E

2

(w) = 1: (43)

as the onstraints in Lemma 4. Indeed, we alulate

E

(1)

1

= pE

1

(z) = pA;

E

(2)

1

= E

(1)

2

= 0;

E

(2)

2

= qE

2

(w) = qB:

Therefore

det

 

E

(1)

1

E

(1)

2

E

(2)

1

E

(2)

2

!

= pqAB > 0;

and the onditions of Lemma 4 are ful�lled. Moreover, sine we are assuming (43),

the inequalities (33) hold, that is, 1 = E

1

= A > 0, 1 = E

2

= B > 0 and

C =

Z




(x)jzj

�+1

jwj

�+1

dx > 0:

11



Further, the funtional I beomes

I(z; w) = K

1

�

Z




(x)jzj

�+1

jwj

�+1

dx

�

pq=d

: (44)

The main result in this subsetion is the following

Theorem 1. Suppose that (7)� (18) hold and that, in addition, � 2 [0; �

1

),

� 2 [0; �

1

). Then the problem (1); (2) has at least two positive weak solutions

(u

i

; v

i

) 2 Y , i = 1; 2.

The proof of this theorem will be a onsequene of the next two propositions.

Proposition 1. Suppose that the onditions (7) � (18) hold and that, in

addition, � 2 [0; �

1

), � 2 [0; �

1

). Then the problem (1); (2) has at least one positive

weak solution (u

1

; v

1

) 2 Y .

Proof. The formulas (39) and (40) suggest to onsider an auxiliary problem:

�nd a maximizer (z

�

; w

�

) of

0 < M

�;�

:= sup

�

Z




(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) = 1 and E

2

(w) = 1

�

: (45)

We laim that the problem (45) has a solution. Indeed, the sets

X

�

= fz 2 Y

p

j E

1

(z) = 1g ;

and

X

�

= fw 2 Y

q

j E

2

(w) = 1g ;

are non-empty. By Lemma 1 we have that for any z 2 X

�

:

jjzjj

p

p

= �

Z




a(x)jzj

p

dx+ 1 �

�

�

1

jjzjj

p

p

+ 1;

that is,

jjzjj

p

p

�

�

1

�

1

� �

and analogously

jjwjj

q

q

�

�

1

�

1

� �

:

Sine 0 � � < �

1

and 0 � � < �

1

, we have

jj(z; w)jj = jjzjj

p

p

+ jjwjj

q

q

�

�

1

�

1

� �

+

�

1

�

1

� �

:

12



Therefore a maximizing sequene (z

n

; w

n

) for (45) is bounded in Y . Thus we an

suppose that (z

n

; w

n

) onverges weakly in Y to some (z

�

; w

�

). By (17)

Z




(x)jz

n

j

�+1

jw

n

j

�+1

dx!

Z




(x)jz

�

j

�+1

jw

�

j

�+1

dx =M

�;�

> 0:

In partiular z

�

�= 0 and w

�

�= 0.

The weakly lower semiontinuity of the orresponding norms, (7), (8) and

E

1

(z

n

) = 1, E

2

(w

n

) = 1 imply that

E

1

(z

�

) � 1; E

1

(w

�

) � 1:

sine

jjz

�

jj

p

p

� lim inf

n!1

jjz

n

jj

p

p

;

jjw

�

jj

q

q

� lim inf

n!1

jjw

n

jj

q

q

;

Z




a(x)jz

�

j

p

dx = lim

n!1

Z




a(x)jz

n

j

p

dx;

Z




b(x)jw

�

j

q

dx = lim

n!1

Z




b(x)jw

n

j

p

dx:

If E

1

(z

�

) < 1 then there exists a number t

1

> 1 suh that E

1

(t

1

z

�

) = 1 and hene

t

1

z

�

2 X

�

. If E

2

(w

�

) < 1 then there exists a number t

2

> 1 suh that E

2

(t

2

w

�

) = 1

and hene t

2

w

�

2 X

�

. Therefore

Z




(x)jt

1

z

�

j

�+1

jt

2

w

�

j

�+1

dx = t

�+1

1

t

�+1

2

Z




(x)jz

�

j

�+1

jw

�

j

�+1

dx

= t

�+1

1

t

�+1

2

M

�;�

> M

�;�

= sup

�

Z




(x)jzj

�+1

jwj

�+1

dx > 0

�

;

a ontradition. Thus E

1

(z

�

) = 1 or E

2

(w

�

) = 1. If E

1

(z

�

) = 1, E

2

(w

�

) < 1 or

E

1

(z

�

) < 1, E

2

(w

�

) = 1 we an obtain another ontradition. Hene (z

�

; w

�

) 2

X

�

� X

�

is a solution of (45). By Lemma 4 it follows that (z

�

; w

�

) is a ritial

point of I. By Remark 1 we may assume z

�

� 0 and w

�

� 0. Thus, by Lemma 3,

(u

1

= r

1

z

�

; v

1

= �

1

w

�

) is a ritial point of J . Therefore (u; v) 2 Y is a non-negative

weak solution of (1), (2). Using the same arguments as in [3℄ we dedue that u

1

> 0,

v

1

> 0 in 
. This ompletes the proof.

13



Remark 2. In the salar ase it is known that weak solutions of

��

p

u = �a(x)juj

p�2

u+ b(x)juj

q�2

u

belong to C

1;�

lo

(
) for some � (see [3℄). Sine our system is subritial (see (11)), we

expet that a similar result holds for (1). The regularity problem for weak solutions

of quasilinear variational ellipti systems will be studied elsewhere.

Proposition 2. Suppose that (7)�(18) hold and that, in addition, � 2 [0; �

1

),

� 2 [0; �

1

). Then the problem (1); (2) has another positive weak solution (u

2

; v

2

) 2 Y .

Proof. Consider the following:

0 <

^

M

�;�

:= sup

�

Z




(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) + E

2

(w) = 1

�

: (46)

Then the set

X

�;�

= f(z; w) 2 Y j E

1

(z) + E

2

(w) = 1g

is not empty. By E

1

(z) + E

2

(w) = 1 and Lemma 1, for any (z; w) 2 X

�;�

we have

jjzjj

p

p

+ jjwjj

q

q

� 1 +

�

�

1

jjzjj

p

p

+

�

�

1

jjwjj

q

q

;

that is,

�

1

� �

�

1

jjzjj

p

p

+

�

1

� �

�

1

jjwjj

q

q

� 1:

Sine eah of the summands above is stritly positive (reall that � < �

1

, � < �

1

),

the latter inequality implies

jjzjj

p

p

�

�

1

�

1

� �

and

jjwjj

q

q

�

�

1

�

1

� �

:

Therefore jj(z; w)jj is bounded. Hene we may suppose that a maximizing

sequene (z

n

; w

n

) for (46) is bounded in Y . Thus we an assume that (z

n

; w

n

)

onverges weakly in Y to some (z

�

; w

�

). By (17) it follows that

Z




(x)jz

n

j

�+1

jw

n

j

�+1

dx!

Z




(x)jz

�

j

�+1

jw

�

j

�+1

dx =

^

M

�;�

> 0:

In partiular z

�

�= 0 and w

�

�= 0.

The weakly lower semiontinuity of the orresponding norms, (7), (8) and

E

1

(z

n

) + E

2

(w

n

) = 1 imply that

E

1

(z

�

) + E

1

(w

�

) � 1;

14



that is

(jjz

�

jj

p

p

� �

Z




a(x)jz

�

j

p

dx) + (jjw

�

jj

q

q

� �

1

Z




b(x)jw

�

j

q

dx) � 1:

Sine � < �

1

, � < �

1

both summands above are positive. Hene

0 < E

1

(z

�

) + E

2

(w

�

) � 1:

We laim that atually

E

1

(z

�

) + E

2

(w

�

) = 1:

Indeed, if E

1

(z

�

) + E

2

(w

�

) < 1 there exists t > 1 be suh that

t(E

1

(z

�

) + E

2

(w

�

)) = 1:

Then (t

1=p

z

�

; t

1=q

w

�

) 2 X

�;�

and

Z




(x)jt

1=p

z

�

j

�+1

jt

1=q

w

�

j

�+1

dx = t

�+1

p

+

�+1

q

Z




(x)jz

�

j

�+1

jw

�

j

�+1

dx

= t

�+1

p

+

�+1

q

^

M

�;�

>

^

M

�;�

= sup

�

Z




(x)jzj

�+1

jwj

�+1

dx > 0 j

E

1

(z) + E

2

(w) = 1g ;

a ontradition (note that we have used (9)). Therefore we have proved the laim.

Hene (z

�

; w

�

) 2 X

�;�

is a solution of (46). By an analogue of Lemma 4 for one

onstraint of type E(z; w) = onst, (z

�

; w

�

) is a ritial point of I. Indeed, sine in

our ase E(z; w) = E

1

(z)+E

2

(w) = 1 the ondition E

0

(z; w)(z; w) 6= 0 if E(z; w) = 1

is easily veri�ed. The rest of the proof is the same as that of Proposition 1.

Proof of Theorem 1. It remains to show that the solutions found in

Propositions 1 and 2 are distint. The proof is by ontradition. Suppose that

(u

1

; v

1

) = (u

2

; v

2

). By the proofs of Propositions 1 and 2 it follows that

E

1

(u

1

)

r

p

1

=

E

2

(v

1

)

�

q

1

= 1

and

E

1

(u

2

)

r

p

2

+

E

2

(v

2

)

�

q

2

= 1;

where r

i

; �

i

, i = 1; 2 are determined by (31) and (32), with z

�

i

; w

�

i

, i = 1; 2. These

relations imply that if the solutions are not distint then there exists a number

m > 1 suh that

r

p

1

=

r

p

2

m

; �

q

1

=

�

q

2

m

0

;

1

m

+

1

m

0

= 1:
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By (31) and (32) we have

r

1

= (

1

C

�q

)

1=d

; �

1

= (

2

C

�p

)

1=d

;

r

2

= (

1

C

�q

(1� s)

�+1

s

�+1�q

)

1=d

; �

2

= (

2

C

�p

s

�+1

(1� s)

�+1�p

)

1=d

;

where we have introdued a parameter s = E

1

(z

�

2

). We note that the exat values

of 

1

and 

2

are not important for the proof. Sine s 2 (0; 1), it is easy to show that

the onditions m > 1 and m

0

> 1 are equivalent to

s

�+1�q

< (1� s)

�+1

and

s

�+1

> (1� s)

�+1�p

:

From the last two inequalities, whih simultaneously hold for ertain s 2 (0; 1), we

obtain that

s

d

> 1;

where d > 0 is given by (10). This is impossible for s 2 (0; 1). Thus we have reahed

a ontradition. This onludes the proof.

4.2 The eigenvalue ase � = �

1

, � = �

1

We onsider the problem (46) with � = �

1

and � = �

1

. In this ase the

orresponding set X

�;�

is not bounded in Y . Therefore we need to impose an addi-

tional ondition on our data. Heneforth we shall suppose that the ondition (19)

is ful�lled.

Theorem 2. Suppose that (7) � (19) hold and � = �

1

, � = �

1

. Then the

problem (1); (2) has at least one positive weak solution (u; v) 2 Y .

Proof. The arguments of the proof of this theorem would be the same as

those of Proposition 2 if we an prove that the problem (46) with � = �

1

, � = �

1

has a solution.

Let (z

n

; w

n

) be a maximizing sequene suh that

E

1

(z

n

) + E

2

(w

n

) = 1;

Z




(x)jz

n

j

�+1

jw

n

j

�+1

dx = m̂

n

!

^

M

�

1

;�

1

> 0:

16



Suppose that jj(z

n

; w

n

)jj ! 1 and put

s

n

=

z

n

jj(z

n

; w

n

)jj

1=p

; t

n

=

w

n

jj(z

n

; w

n

)jj

1=q

; jj(s

n

; t

n

)jj = 1:

Then

jj(z

n

; w

n

)jj [ (jjs

n

jj

p

p

� �

1

Z




a(x)js

n

j

p

dx) + (jjt

n

jj

p

p

� �

1

Z




b(x)jt

n

j

q

dx) ℄ = 1:

Therefore

jjs

n

jj

p

p

� �

1

Z




a(x)js

n

j

p

dx+ jjt

n

jj

q

q

� �

1

Z




b(x)jt

n

j

q

dx =

1

jj(z

n

; w

n

)jj

! 0; n!1:

Hene

jj(s

n

; t

n

)jj � �

1

Z




a(x)js

n

j

p

dx� �

1

Z




b(x)jt

n

j

p

dx

=

1

jj(z

n

; w

n

)jj

! 0:

(47)

and thus

lim

n!1

�

�

1

Z




a(x)js

n

j

p

dx+ �

1

Z




b(x)jt

n

j

p

dx

�

= 1;

sine jj(s

n

; t

n

)jj = 1. We may assume that (s

n

; t

n

) onverges weakly in Y to some

(s

�

; t

�

). Thus

�

1

Z




a(x)js

�

j

p

dx + �

1

Z




b(x)jt

�

j

p

dx = 1;

whih implies that (s

�

; t

�

)�= (0; 0). Furthermore

jj(s

�

; t

�

)jj � lim inf

n!1

jj(s

n

; t

n

)jj = 1:

Now from (47) we dedue that

(jjs

�

jj

p

p

� �

1

Z




a(x)js

�

j

p

dx) + (jjt

�

jj

q

q

� �

1

Z




b(x)jt

�

j

q

dx) = 0:

The variational properties of the �rst eigenvalue of the p and q�Laplaian imply

that both summands in the above relation are non-negative. Hene both are zero,

whih means, by Lemma 1, that

s

�

= 

1

'; t

�

= 

2

 :

Sine

Z




(x)jz

n

j

�+1

jw

n

j

�+1

dx = jj(z

n

; w

n

)jj

�+1

p

+

�+1

q

Z




(x)js

n

j

�+1

jt

n

j

�+1

dx

= m̂

n

!

^

M

�

1

;�

1

> 0;
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we onlude that

Z




(x)js

�

j

�+1

jt

�

j

�+1

dx � 0;

and therefore

Z




(x)j'j

�+1

j j

�+1

dx � 0;

whih ontradits (19). Thus we an assume that (z

n

; w

n

) is bounded and

lim

n!1

(z

n

; w

n

) = (z

�

; w

�

)

weakly in Y . Then

Z




(x)jz

n

j

�+1

jw

n

j

�+1

dx!

Z




(x)jz

�

j

�+1

jw

�

j

�+1

dx =M

�

1

;�

1

> 0:

This means that z

�

6= 0 and w

�

6= 0. Furthermore

0 � E

1

(z

�

) + E

2

(w

�

) � 1:

We laim that

0 < E

1

(z

�

) + E

2

(w

�

) � 1:

Indeed, �rst suppose that

0 = E

1

(z

�

) + E

2

(w

�

);

that is

0 = (jjz

�

jj

p

p

� �

1

Z




a(x)jz

�

j

p

dx) + (jjw

�

jj

q

q

� �

1

Z




b(x)jw

�

j

q

dx):

Therefore by Lemma 1 we know that

z

�

= k

1

'; w

�

= k

2

 ;

for some k

1

; k

2

6= 0, and then

Z




(x)jz

�

j

�+1

jw

�

j

�+1

dx = jkj

�+1

1

jkj

�+1

2

Z




(x)j'j

�+1

j j

�+1

dx =

^

M

�

1

;�

1

> 0;

whih is a ontradition sine (19) holds.

Next, suppose that

0 < E

1

(z

�

) + E

2

(w

�

) < 1:

Then we an �nd t > 1 suh that

t(E

1

(z

�

) + E

2

(w

�

)) = 1:

18



Further

Z




(x)jt

1=p

z

�

j

�+1

jt

1=q

w

�

j

�+1

dx = t

�+1

p

+

�+1

q

Z




(x)jz

�

j

�+1

jw

�

j

�+1

dx

= t

�+1

p

+

�+1

q

^

M

�;�

>

^

M

�;�

= sup

�

Z




(x)jzj

�+1

jwj

�+1

dx > 0 j

E

1

(z) + E

2

(w) = 1g ;

another ontradition.

In this way we have proved that

E

1

(z

�

) + E

2

(w

�

) = 1;

and therefore (z

�

; w

�

) is a maximizer of the problem (46) with � = �

1

, � = �

1

. The

rest of the proof is the same as that of the Proposition 1. This ompletes the proof.

4.3 Existene of three distint solutions for � > �

1

, � > �

1

Theorem 3. Suppose that (7) � (19) hold, � > �

1

and � > �

1

. Then there

exist Æ > 0 and � > 0 suh that for � 2 (�

1

; �

1

+ Æ), � 2 (�

1

; �

1

+ �) the problem

(1); (2) has at least three positive weak solutions in Y .

The proof of the above theorem will be a onsequene of several lemmas.

To begin with, we de�ne

M

�;�

:= sup

�

Z




(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) = 1 and E

2

(w) = 1

�

; (48)

and

~

M

�;�

:= sup

�

Z




(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) � 1 and E

2

(w) � 1

�

: (49)

Lemma 5. The problems (48) and (49) are equivalent.

Proof. Sine 

+

�=0 (see (18)) any maximizer of (48) is a maximizer of (49).

Suppose for a moment that (z; w) 2 Y is a maximizer of (49) and E

1

(z) < 1 or

E

2

(w) < 1. For instane, let E

1

(z) < 1. Therefore there exists k > 1 suh that

E

1

(z) = 1. Then

Z




(x)jkzj

�+1

jwj

�+1

dx = k

�+1

Z




(x)jz

�

j

�+1

jw

�

j

�+1

dx = k

�+1

~

M

�;�

; >

~

M

�;�

(50)
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whih is a ontradition. Thus E

1

(z) = E

2

(w) = 1. Therefore any maximizer of

(49) is a maximizer of (48).

Lemma 6. Let (7) - (19) hold. Then there exist Æ

1

> 0 and "

1

> 0 suh that

for any � 2 (�

1

; �

1

+ Æ

1

) and � 2 (�

1

; �

1

+ "

1

) the problem (47) has a non-trivial

solution (z

1

; w

1

) 2 Y .

Proof. From Lemma 5 we shall dedue the existene of Æ

1

> 0 and "

1

> 0

orresponding to the problem (49). Suppose that the laim is not true, that is, there

exist sequenes Æ

s

! 0, Æ

s

> 0, and "

s

! 0, "

s

> 0, suh that the problem (49) with

� = �

s

= �

1

+ Æ

s

and � = �

s

= �

1

+ "

s

does not have solution. Fix an integer s and

onsider (49) with �

s

and �

s

. Denoting by (z

s

n

; w

s

n

) the orresponding maximizing

sequene, we have

lim

n!1

Z




(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx =

~

M

�

s

;�

s

> 0;

E

1

(z

s

n

) � 1;

and

E

2

(w

s

n

) � 1:

If (z

s

n

; w

s

n

) would be bounded, we may assume that it onverges weakly in Y to some

(z

s

0

; w

s

0

), when n!1. Then

Z




(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx!

Z




(x)jz

s

0

j

�+1

jw

s

0

j

�+1

dx =

~

M

�

s

;�

s

> 0;

Z




jrz

s

0

j

p

dx� �

s

Z




a(x)jz

s

0

j

p

dx � 1;

Z




jrw

s

0

j

q

dx� �

s

Z




b(x)jw

s

0

j

q

dx � 1:

Therefore (z

s

0

; w

s

0

) is a solution of (49) - a ontradition. Thus we may onsider

(z

s

n

; w

s

n

) to be unbounded. Let

(h

s

n

; t

s

n

) =

(z

s

n

; w

s

n

)

jj(z

s

n

; w

s

n

)jj

:

Sine jj(h

s

n

; t

s

n

)jj = 1 we may assume that

lim

n!1

(h

s

n

; t

s

n

) = (h

s

0

; t

s

0

)
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weakly in Y . Then

Z




(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx = jj(z

s

n

; w

s

n

)jj

�+�+2

Z




(x)jh

s

n

j

�+1

jt

s

n

j

�+1

dx!

~

M

�

s

;�

s

> 0;

therefore

Z




(x)jh

s

0

j

�+1

jt

s

0

j

�+1

dx � 0: (51)

From the inequality E

1

(z

s

n

) � 1, that is,

jj(z

s

n

; w

s

n

)jj

p

(jjh

s

n

jj

p

p

� �

s

Z




a(x)jh

s

n

j

p

dx) � 1

it follows that

jjh

s

n

jj

p

p

� �

s

Z




a(x)jh

s

n

j

p

dx �

1

jj(z

s

n

; w

s

n

)jj

p

:

By letting n!1 we get

jjh

s

0

jj

p

p

� �

s

Z




a(x)jh

s

0

j

p

dx � 0: (52)

On the other hand, summing up

�

s

Z




a(x)jh

s

n

j

p

dx � jjh

s

n

jj

p

p

�

1

jj(z

s

n

; w

s

n

)jj

p

;

and

�

s

Z




b(x)jt

s

n

j

q

dx � jjt

s

n

jj

q

q

�

1

jj(z

s

n

; w

s

n

)jj

q

;

and letting n!1, we obtain

�

s

Z




a(x)jh

s

0

j

p

dx + �

s

Z




b(x)jt

s

0

j

q

dx � 1: (53)

Clearly jj(h

s

0

; t

s

0

)jj � 1. This allows us to suppose that (h

s

0

; t

s

0

) onverges weakly in Y

to some (h

0

; t

0

). Letting s!1 in (53), we get that

�

1

Z




a(x)jh

0

j

p

dx + �

1

Z




b(x)jt

0

j

q

dx � 1:

Hene (h

0

; t

0

)�= (0; 0). Next, from the inequality (52) we obtain

0 � jjh

0

jj

p

p

� �

s

Z




a(x)jh

0

j

p

dx � 0:

The latter and the Lemma 1 imply that h

0

= l', l 6= 0. Starting with E

2

(w

s

n

) � 1

we an obtain t

0

= k , k 6= 0, in a similar way. Then by (51) we get that

Z




(x)jh

0

j

�+1

jt

0

j

�+1

dx � 0;
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and thus

jlj

�+1

jkj

�+1

Z




(x)j'j

�+1

j j

�+1

dx � 0:

This ontradits our assumption (19).

Therefore there exist Æ

1

> 0 and "

1

> 0 suh that for any � 2 (�

1

; �

1

+ Æ

1

)

and � 2 (�

1

; �

1

+ "

1

) the problem (49) has a solution (z

1

; w

1

) 2 Y . By Lemma 5

(z

1

; w

1

) 2 Y is a solution of (48).

Lemma 7. The set

W

�

=

�

(z; w) 2 Y j

Z




(x)jzj

�+1

jwj

�+1

dx = �1

�

is not empty and m

�;�

< 0, � > �

1

, � > �

1

, where

m

�;�

= inf

�

E

1

(z) + E

2

(w) j

Z




(x)jzj

�+1

jwj

�+1

dx = �1

�

: (54)

Proof. Set z = ' and w =  . Then by (19) we have

Z




(x)jzj

�+1

jwj

�+1

dx =

Z




(x)j'j

�+1

j j

�+1

dx < 0:

Therefore there exists k 2 IR suh that

Z




(x)jk'j

�+1

j j

�+1

dx = �1;

and hene (k';  ) 2 W

�

.

Sine � > �

1

and � > �

1

, we have

E

1

(k') = jkj

p

(�

1

� �)

Z




a(x)j'j

p

dx < 0;

and

E

2

(l ) = jlj

q

(�

1

� �)

Z




b(x)j j

q

dx < 0:

These inequalities imply that m

�;�

< 0.

Lemma 8. Assume that (7) - (19) hold. Then there exist Æ

2

> 0 and "

2

> 0

suh that for any � 2 (�

1

; �

1

+ Æ

2

) and � 2 (�

1

; �

1

+ "

2

) the problem (54) has a

non-trivial solution (z

2

; w

2

) 2 Y satisfying E

1

(z

2

) + E

2

(w

2

) < 0.

Proof. The proof is by ontradition and it is analogous to that of Lemma 6.

Assume that the opposite assertion holds. Then there exist sequenes Æ

s

! 0,

Æ

s

> 0, and "

s

! 0, "

s

> 0, suh that the problem (54) with � = �

s

= �

1

+ Æ

s

and
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� = �

s

= �

1

+ "

s

does not have solution. Fix an integer s and onsider (54) with �

s

and �

s

. Denote by (z

s

n

; w

s

n

) the orresponding maximizing sequene:

Z




(x)jz

n

j

�+1

jw

n

j

�+1

dx = �1;

Z




jrz

s

n

j

p

dx� �

s

Z




a(x)jz

s

n

j

p

dx+

Z




jrw

s

n

j

q

dx� �

s

Z




b(x)jw

s

n

j

q

dx! m

�

s

;�

s

< 0:

If (z

s

n

; w

s

n

) would be bounded, we an obtain as before that, there exists a solution

(z

s

0

; w

s

0

) of (54):

Z




(x)jz

s

0

j

�+1

jw

s

0

j

�+1

dx = �1

and

Z




jrz

s

0

j

p

dx� �

s

Z




a(x)jz

s

0

j

p

dx+

Z




jrw

s

0

j

q

dx� �

s

Z




b(x)jw

s

0

j

q

dx = m

�

s

;�

s

< 0;

whih is a ontradition. Thus we may assume that (z

s

n

; w

s

n

) is unbounded. With

the same notation as in Lemma 6, it follows that

Z




(x)jh

s

n

j

�+1

jt

s

n

j

�+1

dx = �

1

jj(z

s

n

; w

s

n

)jj

�+�+2

! 0:

Sine the funtional f

3

(see (17)) is lower weakly ontinuous we obtain

Z




(x)jh

s

0

j

�+1

jt

s

0

j

�+1

dx = 0: (55)

Analogously to previous proofs, (55) enables us to onlude that

Z




(x)j'j

�+1

j j

�+1

dx = 0:

This ontradits (19). The fat that E

1

(z

2

) + E

2

(w

2

) < 0 follows from Lemma 7.

Lemma 9. Let (7) - (19) hold. Then there exist Æ

3

> 0 and "

3

> 0 suh

that for any � 2 (�

1

; �

1

+ Æ

3

) and � 2 (�

1

; �

1

+ "

3

) the problem (47) has another

non-trivial solution (z

3

; w

3

) 2 Y .

Proof. Set

N

�;�

:= sup

�

Z




(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) + E

2

(w) = 1

�

: (56)

and

^

N

�;�

:= sup

�

Z




(x)jzj

�+1

jwj

�+1

dx > 0 j E

1

(z) + E

2

(w) � 1

�

: (57)
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Following the argument of Lemma 5 it is easy to prove that the problems (56)

and (57) are equivalent. (See the end of the proof of Proposition 2.) Therefore

we shall dedue the existene of Æ

3

> 0 and "

3

> 0 orresponding to the problem

(57). Suppose that this is not true, that is, there exist sequenes Æ

s

! 0, Æ

s

> 0,

and "

s

! 0, "

s

> 0, suh that the problem (57) with � = �

s

= �

1

+ Æ

s

and

� = �

s

= �

1

+ "

s

does not have solution. Fix an integer s and onsider (57) with �

s

and �

s

. Denoting by (z

s

n

; w

s

n

) the orresponding maximizing sequene, we have

lim

n!1

Z




(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx =

^

N

�

s

;�

s

> 0;

E

1

(z

s

n

) + E

2

(w

s

n

) � 1:

If (z

s

n

; w

s

n

) would be bounded, we may assume that it onverges weakly in Y to some

(z

s

0

; w

s

0

), when n!1. Then

Z




(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx!

Z




(x)jz

s

0

j

�+1

jw

s

0

j

�+1

dx =

^

N

�

s

;�

s

> 0;

E

1

(z

s

0

) + E

2

(w

s

0

) � 1:

Therefore (z

s

0

; w

s

0

) is a solution of (57) - a ontradition. Thus we may onsider

(z

s

n

; w

s

n

) to be unbounded. Let

h

s

n

=

z

s

n

jj(z

s

n

; w

s

n

)jj

1=p

; t

n

=

w

s

n

jj(z

s

n

; w

s

n

)jj

1=q

; jj(h

s

n

; t

s

n

)jj = 1:

Thus we may assume that

lim

n!1

(h

s

n

; t

s

n

) = (h

s

0

; t

s

0

)

weakly in Y . Then

Z




(x)jz

s

n

j

�+1

jw

s

n

j

�+1

dx = jj(z

s

n

; w

s

n

)jj

�+1

p

+

�+1

q

Z




(x)jh

s

n

j

�+1

jt

s

n

j

�+1

dx!

^

N

�

s

;�

s

> 0;

therefore

Z




(x)jh

s

0

j

�+1

jt

s

0

j

�+1

dx � 0: (58)

From the inequality E

1

(z

s

n

) + E

2

(w

s

n

) � 1, that is,

jj(z

s

n

; w

s

n

)jj [ (jjh

s

n

jj

p

p

� �

s

Z




a(x)jh

s

n

j

p

dx) + jjt

s

n

jj

q

q

� �

s

Z




b(x)jt

s

n

j

q

dx) ℄ � 1

it follows that

jjh

s

n

jj

p

p

� �

s

Z




a(x)jh

s

n

j

p

dx+ jjt

s

n

jj

q

q

� �

s

Z




b(x)jt

s

n

j

q

dx �

1

jj(z

s

n

; w

s

n

)jj

: (59)
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By letting n!1 we get

(jjh

s

0

jj

p

p

� �

s

Z




a(x)jh

s

0

j

p

dx) + (jjt

s

0

jj

q

q

� �

s

Z




b(x)jt

s

0

j

q

dx) � 0: (60)

On the other hand we an obtain from (59) that

�

s

Z




a(x)jh

s

0

j

p

dx + �

s

Z




b(x)jt

s

0

j

q

dx � 1: (61)

Clearly jj(h

s

0

; t

s

0

)jj � 1. This allows us to suppose that (h

s

0

; t

s

0

) onverges weakly in Y

to some (h

0

; t

0

). Letting s!1 in (61), it follows that

�

1

Z




a(x)jh

0

j

p

dx + �

1

Z




b(x)jt

0

j

q

dx � 1:

Hene (h

0

; t

0

)�= (0; 0).

Now from (60), by letting s!1, we infer

(jjh

0

jj

p

p

� �

1

Z




a(x)jh

0

j

p

dx) + (jjt

0

jj

q

q

� �

1

Z




b(x)jt

0

j

q

dx) � 0:

By the de�nition of �

1

and �

1

both summands above are non-negative. Therefore

jjh

0

jj

p

p

� �

s

Z




a(x)jh

0

j

p

dx = 0

and

jjt

0

jj

q

q

� �

s

Z




b(x)jt

0

j

q

dx = 0:

The last two equalities and Lemma 1 imply that h

0

= l', l 6= 0 and t

0

= k , k 6= 0.

Then by (58), letting s!1, we get that

Z




(x)jh

0

j

�+1

jt

0

j

�+1

dx � 0;

and thus

jlj

�+1

jkj

�+1

Z




(x)j'j

�+1

j j

�+1

dx � 0;

a ontradition to (19). This ompletes the proof.

Proof of Theorem 3. Let Æ

1

, "

1

, (z

1

; w

1

) 2 Y , Æ

2

, "

2

, (z

2

; w

2

) 2 Y and Æ

2

,

"

2

, (z

2

; w

2

) 2 Y be as in Lemmas 6, 8, 9 respetively. Denote Æ = min(Æ

1

; Æ

2

; Æ

3

) and

" = min("

1

; "

2

; "

3

). Now we substitute (z

i

; w

i

), i = 1; 2; 3, in (31) and (32). In this

way we obtain three pairs of positive numbers: (r

i

; �

i

), i = 1; 2; 3. Set

u

i

= r

i

z

i

; v

i

= �

i

w

i

; i = 1; 2; 3:
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By Lemma 3, (u

1

; v

1

), (u

2

; v

2

) and (u

3

; v

3

) are weak solutions of (1),(2). By Lemma

6 it follows that

E

1

(u

1

)

r

p

1

= E

1

(z

1

) = 1;

and

E

2

(v

1

)

�

q

1

= E

2

(w

1

) = 1:

Thus

(u

1

; v

1

) 2 S = f(u; v) j

E

1

(u

1

)

r

p

1

= 1 and

E

2

(v

1

)

�

q

1

= 1g:

On the other hand, by Lemma 8 we have

E

1

(u

2

)

jr

2

j

p

+

E

2

(v

2

)

j�

2

j

q

= E

1

(z

2

) + E

2

(w

2

) < 0:

Hene at least one of E

1

(u

2

) and E

2

(v

2

) is negative. Therefore (u

2

; v

2

) does not

belong to S. We onlude that (u

1

; v

1

) and (u

2

; v

2

) are distint. Similarly (u

2

; v

2

)

and (u

3

; v

3

) are distint. An argument analogous to that in the proof of Theorem 1

shows that (u

1

; v

1

) and (u

3

; v

3

) are distint too. The rest of the proof is the same

as that of Theorem 1. This ompletes the proof of Theorem 3.

5 A non-existene result of lassial solutions

In this setion we shall establish a non-existene result of lassial solutions

for a potential system assoiated to (p; q)�Laplaian operators. However, it is lear

that `the onsidered solutions are lassial' does not seem to be a natural hypothesis

for this kind of problem. Indeed, the natural lass to onsider should be the lass of

weak solutions.

Our argument, whih is based on an earlier result by Pohozaev [10℄ (see also

[14, 6℄), enables only to onsider lassial solutions. We should mention that in

the salar ase, Guedda and Veron [6℄ proved a Pohozaev type identity for weak

solutions of the problem

8

>

<

>

:

�div (jruj

p�2

ru) = f(u; v) in 


u = 0 on �
;

under some suitable growth assumption on f . We are on�dent that a Pohozaev type

identity for weak solutions of potential systems assoiated to p�Laplaian operators

still holds if the potential does not growth very fast. However, in the present paper

we shall not onsider this kind of generalization.
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Let 
 � IR be a smooth bounded domain. Consider the following quasilinear

potential system

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�div (jruj

p�2

ru) =

�F

�u

(x; u; v) in 


�div (jrvj

q�2

rv) =

�F

�v

(x; u; v) in 


u = v = 0 on �
;

(62)

where F 2 C

1

(
� IR� IR). Let (u; v) 2 (C

2

(
)\C

0

(

�


))

2

be a lassial solution of

(62). Then the Pohozaev Identity ([10℄) for (62) an be written in the form

N � p

p

Z




jruj

p

dx +

N � q

q

Z




jrvj

q

dx�N

Z




F (x; u; v)dx�

Z




D

x

F (x; u; v)dx

=�

 

1�

1

p

!

Z

�


jruj

p

(x; �)dx�

 

1�

1

q

!

Z

�


jrvj

q

(x; �)dx:

(63)

Now we are ready to prove the next

Theorem 4. Suppose that 
 is stritly-starshaped with respet to the origin.

Let a; b;  2 C

1

(

�


) and (u; v) 2 (C

2

(
) \ C

0

(

�


))

2

be a solution of (1); (2). Suppose

that the assumptions in setion 2 hold. In addition, assume that for any ; � 2 IR

the following inequalities hold

N � p

p

+  � 0;

N � q

q

+ � � 0;

and for x 2 
 we have

 

�N

p

� �

!

a(x)�

�

p

(ra(x); x) � 0;

 

�N

q

� ��

!

b(x)�

�

q

(rb(x); x) � 0;

�N(x) �Nr((x); x)� ((� + 1) + (� + 1)�)(x) � 0:

Then u = v = 0.
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Proof. Multiplying the �rst equation of (1) by u and integrating by parts

we get



Z




jruj

p

dx = �

Z




a(x)juj

p

dx + (�+ 1)

Z




(x)juj

�+1

jvj

�+1

dx: (64)

Similarly

�

Z




jrvj

q

dx = ��

Z




b(x)jvj

q

dx + �(� + 1)

Z




(x)juj

�+1

jvj

�+1

dx: (65)

Now we reall that the potential F is given by (20). Then substitute (20) into (63).

Further, sum up the obtained identity with (64) and (65). Then the resulting iden-

tity, the inequalities given in the theorem, and the fat that 
 is stritly-starshaped

imply that u = v = 0.
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