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Abstrat. Previous results on genera g of F

q

2

-maximal urves are improved:

(1) Either g � b(q

2

� q + 4)=6 ; or g = b(q � 1)

2

=4 ; or g = q(q � 1)=2 .

(2) The hypothesis on the existene of a partiular Weierstrass point in [2℄ is proved.

(3) For q � 1 (mod 3), q � 13, no F

q

2

-maximal urve of genus (q�1)(q�2)=6 exists.

(4) For q � 2 (mod 3), q � 11, the non-singular F

q

2

-model of the plane urve

of equation y

q

+ y = x

(q+1)=3

is the unique F

q

2

-maximal urve of genus g =

(q � 1)(q � 2)=6.

(5) Assume dim(D

X

) = 5, and har(F

q

2
) � 5. For q � 1 (mod 4), q � 17, the

Fermat urve of equation x

(q+1)=2

+ y

(q+1)=2

+ 1 = 0 is the unique F

q

2

-maximal

urve of genus g = (q � 1)(q � 3)=8. For q � 3 (mod 4), q � 19, there are

exatly two F

q

2

-maximal urves of genus g = (q� 1)(q� 3)=8, namely the above

Fermat urve and the non-singular F

q

2

-model of the plane urve of equation

y

q

+ y = x

(q+1)=4

.

The above results provide some new evidenes on maximal urves in onnetion with

Castelnuovo's bound and Halphen's theorem, espeially with extremal urves; see for

instane the onjeture stated in Introdution.

1. Introdution

An F

q

2

-maximal urve X of genus g is de�ned to be a projetive, geometrially ir-

reduible, non-singular algebrai urve de�ned over F

q

2

suh that the number of its

F

q

2

-rational points attains the Hasse-Weil upper bound, namely

#X (F

q

2

) = q

2

+ 1 + 2qg :

F

q

2

-maximal urves espeially those with large genus are urrently investigated also in

onnetion with oding theory and ryptography based on Goppa's method [30, Ch. 4,

Set. 7℄. It is well known that g � q(q � 1)=2, see [36℄, and that g reahes this upper

limit if and only if X is F

q

2

-isomorphi to the Hermitian urve, see [39℄. In [16℄ it is

proven that

either g � b(q � 1)

2

=4 ; or g = q(q � 1)=2 :(1.1)
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For q odd, g = (q� 1)

2

=4 ours if and only if X is F

q

2

-isomorphi to the non-singular

model of the plane urve of equation y

q

+ y = x

(q+1)=2

, see [15, Thm. 3.1℄. For q even,

a similar result is obtained in [2℄ under an extra-ondition that X has a partiular

Weierstrass point: g = b(q � 1)

2

=4 = q(q � 2)=4 if and only if X is F

q

2

-isomorphi to

the non-singular model of the plane urve of equation y

q=2

+ : : :+ y

2

+ y = x

q+1

. These

results together with some evidenes oming from [12℄, [13℄, [21℄ make it plausible that

only few F

q

2

-maximal urves an have genus lose to the upper limit. As a matter of

fat, in the range

b(q � 1)(q � 3)=8 � g < b(q � 1)

2

=4 ;

only twelve examples up to F

q

2

-isomorphisms are known to exist and the spetrum of

their genera is listed below:

(I) g = b(q

2

� q + 4)=6 for q � 0; 1; 2 (mod 3), see Remark 3.4;

(II) g = (q

2

� q � 2)=6 for q � 2 (mod 3), see [12, Thm. 6.2℄ or [21, Thm. 5.1℄;

(III) g = b((q � 1)(q � 2)=6 for q � 0; 2 (mod 3), see the ase N = 4 in (2.8), and

Set. 4.1;

(IV) g = b(q

2

� 2q + 5)=8 for q � 0; 1; 3 (mod 4), see Remark 4.10;

(V) g = b(q � 1)(q � 3)=8 for q � 0; 1; 3 (mod 4), see the ase N = 5 in (2.8), and

Set. 4.2.

Theorem 3.1 in this paper together with (1.1) prove the following result, see Corollary

3.3:

either g � b(q

2

� q + 4)=6 ; or g = b(q � 1)

2

=4 ; or g = q(q � 1)=2 :(1.2)

This result is the best possible sine the upper bound in (1.2) annot be improved as it

is attained by the urves ited in (I) for every q. In other words the third largest genus

of an F

q

2

-maximal urve equals g = b(q

2

� q + 4)=6 independently of q; by ontrast,

the fourth largest genus might heavily depend on q. The above examples also show

that the gap between the �rst and seond as well as the seond and third largest genus

is approximately onstant times q

2

, while the gap between the third and forth is only

1 for q � 2 (mod 3), and at most onstant times q for q � 0 (mod 3).

The essential idea of the proof of Theorem 3.1 is to show that every F

q

2

-maximal

urve of genus g > b(q

2

� q + 4)=6 has a non-singular model X over F

q

2

embedded in

P

3

(

�

F

q

2

) suh that X has degree q+1 and lies on an F

q

2

-rational quadrati oneQ whose

vertex V belongs to X . This idea will be worked out using the \natural embedding

theorem", see [37, Thm. 2.5℄, together with Weierstrass point theory, Castelnuovo's

genus bound, Halphen's theorem and some other tools. Atually, for q even the vertex

V is a partiular F

q

2

-rational Weierstrass point of X , sine the order-sequene of X

at V (i.e. the possible intersetion numbers of X with hyperplanes at V ) turns out to

be (0; 1; (q + 2)=2; q + 1). Similarly for q odd, an F

q

2

-rational Weierstrass point with

order-sequene (0; 1; (q + 1)=2; q + 1) is shown to exist. An F

q

2

-rational point of X
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with suh a partiular order-sequene fores X to have genus b(q � 1)

2

=4 as notied

in [37, Remark 2.6(1)℄. Then, the already quoted haraterization theorems from [15℄,

and [2℄ will be applied to omplete the proof of Theorem 3.1. It should be noted that

Theorem 3.1 improves both [17, Prop. 2.5℄ and the main result in [2℄.

Curves with genera as in (III) and (V) above turn out be extremal in P

4

(

�

F

q

2

) and in

P

5

(

�

F

q

2

) respetively, as suh genera are Castelnuovo's numbers 

0

(q + 1; r), r = 4; 5,

see (2.1). Extremal urves in zero harateristi have been widely investigated, see, for

instane, [4℄ and the referenes therein. Several relevant properties of extremal urves

are known to hold true in positive harateristi thanks to Rathmann's work [38℄ (see

also [6℄). For the present purpose, the key result on extremal urves is Lemma 2.3

stated in Set. 2.1. Indeed, this lemma together with other results will give both the

non-existene of F

q

2

-maximal urves of genus (q�1)(q�2)=3 for q � 1 (mod 3), and a

haraterization of a F

q

2

-maximal urve with suh a genus for q � 2 (mod 3), q � 11;

see Theorem 4.5. Under two additional hypotheses, namely the urve is naturally

embedded in P

5

(

�

F

q

2

) and har(F

q

2

) � 5, the aforementioned key result will also be

an essential ingredient in haraterizing F

q

2

-maximal urves of genus (q � 1)(q � 3)=8

for q � 1; 3 (mod 4), q � 11; see Theorem 4.9. This theorem is related to a previous

haraterization of plane F

q

2

-maximal urves of degree (q + 1)=2 stated in [11℄. Also,

in view of the results in Set. 4.1 and [2, Proof of Prop. 2.4℄, it seems plausible that

any two F

q

2

-maximal urves of genus q(q�3)=6 for q � 0 (mod 3) are F

q

2

-isomorphi.

On the ontrary, due to the examples in [1, Set. 5℄, no similar result for urves of

genus q(q � 4)=8, q � 0 (mod 4) an hold. For a further interesting question related

to these matters, see Remark 2.14.

The genera in (I) and (IV) above oinide with Halphen's number 

1

(q+1; r), r = 3; 4,

see (2.2). Extensions of results around Halphen's theorem from zero harateristi to

positive harateristi are also possible again by Rathmann's work [38℄ and Ballio's

paper [5℄. Unfortunately, we do not have so far a lassi�ation theorem for F

q

2

-maximal

urves with suh genera. What we urrently know in this diretion is that extremal

urves lie on speial surfaes suh as srolls, see e.g. [4, Ch. III, Thm. 2.5℄, and

that urves with enough large degree and genus equal to Halphen's number are Cohen-

Maaulay urves lying on Castelnuovo surfaes, see the main theorem in [10℄. These

fats together with the general form of the above mentioned \natural embedding theo-

rem" stating that every F

q

2

-maximal urve is naturally embedded in a high-dimensional

projetive spae over F

q

2

as a urve of degree q + 1 ontained in a Hermitian variety

of degree q + 1, see [37, Thm. 3.4℄, seem to be a good starting point of a lassi�ation

projet for suh F

q

2

-maximal urves.

Finally, we stress that (1.2) provides evidene for the following onjeture.
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Conjeture. With notation as in (2.1) and (2.2), there is no F

q

2

-maximal urve of

genus g suh that



1

(q + 1; r) < g < 

0

(q + 1; r) :

2. Bakground

Our purpose in this setion is to reall some results onerning upper bounds on the

genus of urves, Weierstrass Point Theory and Frobenius orders as well as some results

on maximal urves.

Convention. The word urve will mean a projetive, geometrially irreduible, non-

singular algebrai urve.

2.1. Castelnuovo's genus bound and Halphen's theorem. Throughout this sub-setion,

X denotes a urve de�ned over an algebraially losed �eld F. Let D be an r-

dimensional, r � 2, base-point-free linear series of degree d de�ned on X ; D is assumed

to be simple, that is X is birational to �(X ), where � denotes a morphism assoiated

to D. Castelnuovo showed that the genus g of X is upper bounded by a funtion

depending on r and d. More preisely, let � be the unique integer with 0 � � � r � 2

and d� 1 � � (mod (r � 1)), and de�ne Castelnuovo's number 

0

(d; r) by



0

(d; r) :=

d� 1� �

2(r � 1)

(d� r + �) :(2.1)

Lemma 2.1. (Castelnuovo's genus bound for urves in projetive spaes, [8℄, [4, p.

116℄, [33, IV, Thm. 6.4℄, [3, Thm. 3.3℄, [38, Cor. 2.8℄)

g � 

0

(d; r; �) :

Remark 2.2.



0

(d; r; �) �

(

(d� 1� (r � 1)=2)

2

=2(r � 1) for r odd,

(d� 1� (r � 1)=2)

2

� 1=4)=2(r� 1) for r even.

Curves with genus equal to Castelnuovo's number have several remarkable properties;

see e.g. [3℄, [14, Ch. 3℄, [4, Ch. 3, Set. 2℄. We will use the following one, whih is in

fat impliitly ontained in the proof of Castelnuovo's genus bound taking into aount

the Riemann-Roh theorem; see e.g. [3, p. 361 and Lemma 3.5℄.

Lemma 2.3. Assume g = 

0

(d; r), and de�ne �

0

by d = m(r � 1) + �

0

with �

0

2

f2; : : : ; rg: If m � 2:, then:

(1) the dimension of the linear series 2D is 3r � 1;

(2) there exists a base-point-free (�

0

�2)-dimensional omplete linear series D

0

of degree

(�

0

� 2)(m + 1) suh that (m� 1)D +D

0

is the anonial linear series:
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The following theorem going bak to Halphen improves Castelnuovo's genus bound for

ertain urves in P

3

(F).

Lemma 2.4. (Halphen's theorem, [31, Thm. 3.1℄, [14, Thm. 3.13℄, [5℄) Assume d � 7,

and d = 17 or d � 25 when har(F) > 0. If X is embedded in P

3

(F), then X lies on a

quadri surfae provided that

g > 

1

(d; 3) := b(d

2

� 3d+ 6)=6 :

Remark 2.5. For a historial aount of Halphen's theorem, see [33, p. 349℄ or Intro-

dution in [31℄ and [32℄. The proof in harateristi 0 due to Eisenbud and Harris

[14, Thm. 3.13℄ depends on the Uniform Position Priniple applied to the generi

hyperplane setion of X , and it still works verbatim in positive harateristi.

Halphen's theorem extends to ertain urves in P

r

(F) for r � 4, and it turns out to

be very useful when one looks for a bound 

�

(d; r) for the genus of a urve of degree

d in P

r

(F) not lying on any irreduible surfae of degree less than r + � � 1. For our

purpose, the smallest ase � = 1 is needed:

Lemma 2.6. ([14, Thm. 3.22℄, [38, Cor. 2.8℄) Suppose that X is a urve in P

r

(F) of

degree d and genus g. Assume

d �

8

>

>

<

>

>

:

36r if r � 6,

288 if r = 7,

2

r+1

if r � 8.

Then X lies on a surfae of degree less than or equal to r � 1 provided that

g > 

1

(d; r) :=

d� 1� �

1

2r

(d� r + �

1

+ 1) +

(

0 if �

1

� r � 2

1 if �

1

= r � 1

;(2.2)

where �

1

is the unique integer suh that 0 � �

1

� r � 1 and d� 1 � �

1

(mod r):

Notie that (2.2) for r = 3 oinides with the formula in Lemma 2.4. A full aount

of results related to Halphen's theorem is found in the already mentioned [14℄, [31℄, as

well as in [10℄ and [9℄.

2.2. Weierstrass Point Theory and Frobenius orders. Our referene in this sub-setion

is St�ohr-Voloh's paper [41℄. Let X be a urve de�ned over an algebraially losed �eld

F of harateristi p, g its genus, and D an r-dimensional, r � 1, simple base-point-

free linear series of degree d de�ned on X . The (D; P )-order sequene of P 2 X is

the stritly inreasing sequene j

0

(P ) = 0 < j

1

(P ) < : : : < j

r

(P ) enumerating the set

fv

P

(D) : D 2 Dg, with v

P

(D) being the weight of the divisor D at P , see [41, p. 3℄. If

� is a morphism assoiated to D, then

D = f�

�

(H) : H hyperplane in P

r

(F)g ;
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and the (D; P )-order sequene onsists of all possible intersetion numbers of X with

hyperplanes at P in the usual order whenever X � P

r

(F). Furthermore, the (D; P )-

order sequene is the same for all but �nitely many points [41, pp. 4-6℄. and eah of

the exeptional points is alled a D-Weierstrass point of X . Aording to [41, p. 6℄,

there exists a divisor R = R

D

on X , the so-alled rami�ation divisor, with support

onsisting of all D-Weierstrass points of X and degree

deg(R) =

r

X

i=0

�

i

(2g � 2) + (r + 1)d ;(2.3)

where �

0

= 0 < �

1

= 1 < : : : < �

r

is the D-order sequene of X , that is the (D; P )-order

sequene at a general (i.e. a non D-Weierstrass) point P 2 X . It should be noted

that the well known Weierstrass points of X appear in this ontext as the Weierstrass

points of the anonial linear series on X in whih ase

H(P ) := N

0

n fj

i

(P ) + 1 : i = 0; : : : ; g � 1g

is a numerial semigroup whose elements are alled Weierstrass non-gaps at P . The

stritly inreasing sequene enumerating H(P ) is usually denoted by (m

i

(P ) : i =

0; 1; : : : ).

A general rule to ompute the (D; P )-orders and v

P

(R) is given by the following lemma.

Lemma 2.7. ([41, p. 5, Thm. 1.5℄)

(1) j

i

(P ) � �

i

for eah P and eah i;

(2) v

P

(R) �

P

r

i=0

(j

i

(P ) � �

i

); and equality holds if and only if det(

�

j

i

(P )

�

k

�

) 6� 0

(mod p):

To every point P 2 X there is attahed the ag of osulating subspaes ofP

r

(F) relative

to a morphism � assoiated to D. For eah i, 0 � i � r � 1, the ith osulating spae

L

i

(P ) of X at P (with respet to �) is the i-dimensional subspae in P

r

(F) de�ned as

the intersetion of all hyperplanes H in P

r

(F) satisfying v

P

(�

�

(H)) � j

i+1

(P ). Clearly,

L

0

(P ) = f�(P )g � L

1

(P ) � : : : � L

r�1

(P ). Also, L

i

(P ) is uniquely determined

by D up to projetive equivalene beause any two morphisms assoiated to D are

projetively equivalent. We will refer to L

1

(P ) and L

r�1

(P ) as the tangent line and

osulating hyperplane of X at P , respetively.

Lemma 2.8. ([41, Proof of Thm. 1.1℄) Let H be a hyperplane in P

r

(F), and i 2

f0; : : : ; r � 1g. Then H � L

i

(P ) if and only if v

P

(�

�

(H)) � j

i+1

(P ).

In the ase where F is the algebrai losure of a �nite �eld F

`

with ` elements, and both

X and D are de�ned over F

`

, one an also de�ne the so-alled F

`

-Frobenius divisor

S = S

D;`

assoiated do D, see [41, p. 9℄, whose degree is given by

deg(S) =

r�1

X

i=0

�

i

(2g � 2) + (`+ r)d ;(2.4)
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where � = 0 < : : : < �

r�1

is a suitable subsequene of the D-order sequene [41, Prop.

2.1℄.

Lemma 2.9. ([41, Prop. 2.4(a), Cor. 2.6℄)

v

P

(S) �

r

X

i=1

(j

i

(P )� �

i�1

)

provided that P 2 X (F

`

). In partiular X (F

`

) � Supp(S):

2.3. F

q

2

-maximal urves. Throughout this sub-setion, X denotes an F

q

2

-maximal

urve of genus g. Whenever onepts and results apply from previous sub-setions,

the �eld F will be the algebrai losure

�

F

q

2

of F

q

2

. A deep result depending on the

zeta funtion is the so-alled Fundamental Equivalene on divisors [15, Cor.1.2℄:

qP + Fr

X

(P ) � (q + 1)Q ; P 2 X ; Q 2 X (F

q

2

) ;(2.5)

where Fr

X

denotes the Frobenius morphism on X relative to F

q

2

. As a onsequene,

X is equipped with the base-point-free linear series

D

X

:= j(q + 1)P

0

j ; P

0

2 X (F

q

2

);

whih is independent of the hoie of the point P

0

in X (F

q

2

), and has projetive

dimension dim(D

X

) at least 2. Note that (2.5) is equivalent to

�

�

(L

r�1

(P )) = qP + Fr

X

(P ) ;(2.6)

� being a morphism assoiated to D

X

. Set N := dim(D

X

). The following result shows

that X has a non-singular model over F

q

2

given by a urve in P

N

(

�

F

q

2

) of degree q+1.

Lemma 2.10. (Natural embedding theorem, [37, Thm. 2.5℄, [15, Prop. 1.9℄) The lin-

ear series D

X

is very ample; i.e. any morphism assoiated to D

X

is a lose embedding.

Equivalently, q is a Weierstrass non-gap at any point of X :

The natural embedding theorem together with Castelnuovo's genus bound (Lemma

2.1) and its orollary stated in Remark 2.2 provide a very useful upper bound on the

genus g of F

q

2

-maximal urves, namely

g �

(

(q � (N � 1)=2)

2

=2(N � 1) for odd N ,

(q � (N � 1)=2)

2

� 1=4)=2(N � 1) for even N .

(2.7)

Corollary 2.11. (1) ([36℄) g � q(q � 1)=2;

(2) ([40, Prop. 3℄) If dim(D

X

) � 3, then g � (q � 1)

2

=4;

We point out that Lemma 2.10 together with Corollary 2.11 yields the following lemma

that strengthens the R�uk-Stihtenoth's haraterization of the Hermitian urve [39℄
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Lemma 2.12. ([17, Thm. 2.4℄) For a F

q

2

-maximal urve X of genus g, the following

statements are equivalent:

(1) g > (q � 1)

2

=4;

(2) dim(D

X

) = 2;

(3) X is F

q

2

-isomorphi to the Hermitian urve of equation Y

q

Z + Y Z

q

= X

q+1

;

(4) g = q(q � 1)=2:

As a onsequene, we have the following result

Corollary 2.13. ([16℄) The genus g of a F

q

2

-maximal urve satis�es either

g � b(q � 1)

2

=4 or g = q(q � 1)=2 :

Remark 2.14. Castelnuovo's number 

0

(q+1; N) in (2.1) is attained by an F

q

2

-maximal

urve in the ases q � N � 2; 0 (mod (N � 1)). The existene of suh a urve X is

strongly related to the existene of a point P

1

2 X (F

q

2

) suh that m is a Weierstrass

non-gap at P

1

satisfyingm(N�1) � q+1 (�). Sine m

N

(P

1

) = q+1 andm

N�1

(P

1

) = q

by Lemma 2.15(2), ifm is a Weierstrass non-gap at P

1

, thenm must satisfym(N�1) �

q. Hene, property (�) ours when either m(N � 1) = q+1 (�

1

) or m(N � 1) = q (�

2

).

The smallest possibilities for N are investigated in the sequel, namely N = 3 in Set.

3 while N 2 f4; 5g in Set. 4.

In ase (�

1

), g = 

0

(q + 1; N) = (q � 1)((q + 1)=(N � 1) � 1)=2 by [37, Remark

2.6(1)℄. There exists just one F

q

2

-maximal urve (up to F

q

2

-isomorphism) satisfying

(�

1

), namely the non-singular F

q

2

-model of the plane urve of equation y

q

+ y =

x

(q+1)=(N�1)

[15, Thm. 2.3℄.

In ase (�

2

), g = 

0

(q + 1; N) = q(q � (N � 1))=2(N � 1) by [37, Remark 2.6(1)℄. van

der Geer and van der Vlugt, see [26, Thm. 3.1℄ and [27, Remark 5.2℄, by means of �bre

produt of ertain Artin-Shreier p-extensions of the projetive line showed that suh

urves do exist. Garia and Stihtenoth, see [20, Set. V, Ex. E℄, notied that suh

urves admit a plane model of type

F (y) = f(x) ;(2.8)

where F 2 F

q

2

[Y ℄ is a p-linear polynomial of degree q=(N � 1) whose linear oeÆient

is di�erent from zero, and where f 2 F

q

2

[X℄ is a polynomial of degree q + 1. Here

P

1

is the unique point over x = 1. For N � 1 = p, see also [18, Ex. 1.2℄ and [28,

Prop. 3.5℄. Unlike the previous ase, several pairwise non F

q

2

-isomorphi F

q

2

-maximal

urves satisfying (�

2

) are known to exist; see [1, Set. 5℄. It has been onjetured [15,

p. 46℄ that a plane F

q

2

-model for a F

q

2

-maximal urve satisfying (�

2

) has equation

of type (2.8) with f(x) = x

q+1

. Conversely, the following question arises: Determine

the polynomials F and f suh that suh that the plane urve of equation (2.8) has an

F

q

2

-maximal non-singular model. Examples of suh urves arise for instane in [23℄,



THE GENUS OF A MAXIMAL CURVE 9

[24℄, and [28℄. Examples of F

q

2

-maximal urves de�ned by (2.8), where either F or f

are F

q

2

-rational funtions, an be found in [28℄ and [18℄.

Finally, some results on Weierstrass Point Theory and Frobenius orders with respet

to the linear series D

X

. With the same notation as in Set. 2.2, Lemma 2.10 together

with (2.5) fores the �rst N non-gaps at P 2 X to have the following behaviour:

m

1

(P ) < : : : < m

N�1

(P ) = q < m

N

(P ) :(2.9)

Furthermore,

Lemma 2.15. ([15, Thm. 1.4, Prop. 1.5(ii)(iii)℄)

(1) j

1

(P ) = 1 for any P ; j

N

(P ) = q + 1 if P 2 X (F

q

2

); and j

N

(P ) = q otherwise;

(2) j

N�i

(P ) +m

i

(P ) = q + 1 for i = 0; : : : ; N; provided that P 2 X (F

q

2

);

(3) q �m

i

(P ) is a (D

X

; P )-order for i = 0; : : : ; N � 1; provided that P 62 X (F

q

2

);

(4) �

N

= �

N�1

= q;

(5) �

1

= 1 if N � 3:

Then, we have one of the main features of the linear series D

X

, namely

X (F

q

2

) � Supp(R

D

X

) :

Lemma 2.16. Let X be a F

q

2

-maximal urve of genus g. Set N := dim(D

X

).

(1) If X is hyperellipti, then q � 2N � 2:

(2) The urve X is hyperellipti provided that either j

N�1

(P ) = j

N

(P ) � 2 for P 2

X (F

q

2

), or j

N�1

(P ) = j

N

(P )� 1 otherwise:

(3) If there exists P 2 X (F

q

2

) with j

N�1

(P ) = j

N

(P )� 1, then q = N � 1.

Proof. If X is hyperellipti, m

1

(P ) = g + 1 at a general point P . Then from (2.9),

m

N�1

(P ) = g + N � 1 = q and so g = q � N + 1. On the other hand #X (F

q

2

) �

2(q

2

+ 1) and maximality of X yields 2g � q. From these omputations (1) follows.

Let P 2 X (F

q

2

) suh that j

N�1

(P ) 2 fq � 1; qg. Then from Lemma 2.15(2) we have

m

1

(P ) 2 f2; 1g and so either X is hyperellipti or m

N

= N = q + 1. Finally, let

P 62 X (F

q

2

) suh that j

N�1

(P ) = q�1. Then from (2.5), (q�1)P +D � qP +Fr

X

(P )

with P 62 Supp(D), so that D � P + Fr

X

(P ); i.e. X is hyperellipti.

Lemma 2.17. Let X be a F

q

2

-maximal urve so that j

N�1

(P ) = N�1 for every point

P 2 X , where N = dim(D

X

). Then

(N � 1)N(g � 1) = (q + 1)(q �N) :

Proof. The set of D

X

-Weierstrass points of X oinides with the set of F

q

2

-rational

points, and v

P

(R

D

X

) = 1 for P 2 X (F

q

2

); f. Lemmas 2.15(1), 2.7. Hene the result

follows from (2.3) taking into aount the maximality of X .
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3. On maximal urves embedded in a quadri surfae

The R�uk-Stihtenoth theorem together with [17, Thm. 2.4℄, stated in the previous

setion as Lemma 2.12, gives a omplete lassi�ation of F

q

2

-maximal urves of genus

g > (q � 1)

2

=4. The objetive of this setion is to obtain a similar theorem valid for

(q

2

� q + 4)=6 < g � (q� 1)

2

=4. Notation and terminology are the same as in Set. 2.

Theorem 3.1. Let X be a F

q

2

-maximal urve of genus g, and � a F

q

2

-morphism

assoiated to D

X

. Assume q � 7. Then the following onditons are equivalent:

(1) b(q

2

� q + 4)=6 < g � b(q � 1)

2

=4;

(2) dim(D

X

) = 3; �(X ) lies on a quadri surfae in P

3

; and g 6= (q

2

� 2q + 3)=6

whenever q � 3; 5 (mod 6);

(3) dim(D

X

) = 3; dim(2D

X

) = 8; and g 6= (q

2

� 2q+3)=6 whenever q � 3; 5 (mod 6);

(4) dim(D

X

) = 3 and there exists P 2 X (F

q

2

) suh that j

2

(P ) = (q+1)=2 if q is odd,

or j

2

(P ) = (q + 2)=2 otherwise;

(5) X is F

q

2

-isomorphi to the non-singular F

q

2

-model of either y

q

+ y = x

(q+1)=2

if q

is odd, or y

q=2

+ y

q=4

+ : : :+ y

2

+ y = x

q+1

otherwise:

(6) g = (q � 1)

2

=4 if q is odd or g = q(q � 2)=4 otherwise. In partiular the genus g

equals Castelnuovo's number 

0

(q + 1; 3):

Under stronger hypotheses, this theorem was partially proved in [17, Prop. 2.5℄ for q

odd, and in [2℄ for q even.

Remark 3.2. For q = 2; 3; 4; 5 the spetrum of the genera of F

q

2

-maximal urves is

f0; 1g; f0; 1; 3g; f0; 1; 2; 6g; f0; 1; 2; 3; 4; 10g, respetively; see [21, Remark 6.1℄.

From Theorem 3.1 and Remark 3.2, Corollary 2.13 an be strengthen as follows:

Corollary 3.3. The genus g of a F

q

2

-maximal urve satis�es either

g � b(q

2

� q + 4)=6 or g = b

(q�1)

2

4

 or g = (q � 1)q=2 :

Remark 3.4. F

q

2

-maximal urves of genus b(q

2

� q + 4)=6 do exist as the following

examples show, see [21℄, [13, Thm. 2.1℄:

(i) If q � 2 (mod 3), the non-singular F

q

2

-model of x

(q+1)=3)

+ x

2(q+1)=3

+ y

q+1

= 0 is

F

q

2

-maximal and has genus (q

2

� q + 4)=6.

(ii) If q � 1 (mod 3), the non-singular F

q

2

-model of y

q

� yx

2(q�1)=3

+ x

(q�1)=3

= 0 is

F

q

2

-maximal and has genus (q

2

� q)=6.

(iii) If q = p

t

� 0 (mod 3), the non-singular F

q

2

-model of y

q

+ y + (

P

t

i=1

x

q=p

i

)

2

= 0

is F

q

2

-maximal and has genus (q

2

� q)=6.

It may be that no further in�nite family exists. Also, eah of the above urves is F

q

2

-

overed by the Hermitian urve via a suitable morphism of degree 3; and it would be

of interest to prove or disprove uniqueness of some (perhaps all) of these examples.
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Remark 3.5. In searhing quantitative results for the number of F

`

-rational points of

a urve of genus g, the maximum number N

`

(g) of F

`

-rational points on suh urves

play an important role; see e.g. [26℄. Corollary 3.3 exludes ertain values for N

q

2

(g)

whenever (q

2

� q + 4)=6 < g < (q � 1)

2

=4 or (q � 1)

2

=4 < g < q(q � 1)=2. More

preisely, for suh values of g, we have N

q

2

(g) < q

2

+ 1 + 2qg. A similar resuly follows

from Theorem 4.5(a). Hene from deeper results due to J.P. Serre and K. Lauter one

an dedue N

q

2

(g) � q

2

+ 1 + 2qg � m, where m 2 f1; 2; 3g, f. [29℄. One an also

obtain improvements on some entries in the tables of lo. it. For instane, we have

N

64

(11) � 238, N

81

(13) � 314, N

81

(15) � 350, while the upper bounds in the tables

are respetively 241, 316, 352. It should be noted that the above onsiderations will

extend to a more general ase, one the onjeture stated in the introdution has been

proved.

In proving Theorem 3.1, we will need some tehnial results onerning F

q

2

-maximal

X with dim(D

X

) = 3.

Lemma 3.6. Let X be a F

q

2

-maximal urve with dim(D

X

) = 3, and � a F

q

2

-morphism

assoiated to D

X

. Assume q � 4:

(1) dim(2D

X

) � 8.

(2) If dim(2D

X

) = 8, then �(X ) lies on a quadri surfae in P

3

(

�

F

q

2

).

(3) The quadri surfae Q in part (2) is uniquely determinated by the property �(X ) �

Q, and it is de�ned over F

q

2

:

Proof. (1) Let P 2 X (F

q

2

) and set m

i

:= m

i

(P ). From Lemma 2.15(2), m

2

= q and

m

3

= q + 1. Then, as 2m

1

� m

2

= q and q � 4, it is easy to see that there are at least

8 positive Weierstrass non-gaps in [m

1

; 2m

3

℄ and so dim(2D

X

) � 8.

(2) See [33, p. 352℄.

(3) If �(X ) lies on Q, then �(X ) also lies on Fr(Q), where Fr is the Frobenius ollina-

tion on P

3

(

�

F

q

2

) relative to F

q

2

. Clearly Q = Fr(Q) if and only if Q is de�ned over F

q

2

.

It this were not the ase in our situation, then X would be ontained in the intersetion

of two distint quadris, ontraditing the hypothesis q + 1 = deg(�(X )) � 4 by the

B�ezout theorem.

Lemma 3.7. Let X be a F

q

2

-maximal urve with dim(D

X

) = 3, � a morphism asso-

iated to D

X

, and P 2 X . Suppose that �(X ) lies on a quadri surfae Q in P

3

(

�

F

q

2

),

and that q � 5. Then

(1) j

2

(P ) 2 f2; j

3

(P )=2; (j

3

(P ) + 1)=2g;

(2) j

2

(P ) > 2 if and only if the tangent line L

1

(P ) of X at P lies on Q;

(3) either q is even, j

2

(P ) = q=2 and P 62 X (F

q

2

) or q is odd, j

2

(P ) = (q + 1)=2 and

P 2 X (F

q

2

) provided that j

2

(P ) > 2 and that Q is non-singular at �(P ):
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Proof. Set j

i

:= j

i

(P ), i = 0; : : : ; 3. Let x

0

= 1; x

1

; x

2

; x

3

be F

q

2

-rational funtions on

X , suh that v

P

(x

i

) = j

i

. Up to a projetive ollineation in P

3

(

�

F

q

2

), we an assume

� = (x

0

: x

1

: x

2

: x

3

). Let (X

0

; : : : ; X

3

) be oordinates in P

3

(

�

F

q

2

) suh that eah x

i

is the pull-bak via � of X

i

=X

0

restrited to �(X ). Then �(P ) = (1 : 0 : 0 : 0) and

L

1

(P ) is given by X

2

= X

3

= 0; see [41, proof of Thm. 1.1℄. Let the quadri Q have

homogeneous equation

F (X

0

; X

1

; X

2

; X

3

) = a

00

X

2

0

+ a

01

X

0

X

1

+ a

02

X

0

X

2

+ a

03

X

0

X

3

+ a

11

X

2

1

+ a

12

X

1

X

2

+

a

13

X

1

X

3

+ a

22

X

2

2

+ a

23

X

2

X

3

+ a

33

X

2

3

:

Then a

00

= 0 beause of F (�(P )) = 0. Furthermore, x

1

; x

2

and x

3

are related in the

funtion �eld over

�

F

q

2

of X by F (1; x

1

; x

2

; x

3

) = 0. In addition, the valuation at P of

the funtions x

1

; x

2

; x

3

; x

2

1

; x

1

x

2

; x

1

x

3

; x

2

2

; x

2

x

3

; x

2

3

are respetively

1; j

2

; j

3

; 2; j

2

+ 1; j

3

+ 1; 2j

2

; j

3

+ j

2

; 2j

3

:(3.1)

Hene, a

01

= 0.

(1) j

2

+ 1 < j

3

by Lemma 2.16 and the hypothesis q � 5. So from the inequalities

2 � j

2

< j

2

+ 1 < j

3

< j

3

+ 1 < j

3

+ j

2

< 2j

3

and (3.1) we obtain part (1).

(2) We have from (3.1) that j

2

> 2 if and only if a

11

= 0. Now, as F (X

0

; X

1

; 0; 0) =

a

11

X

2

1

, the last ondition is equivalent to L

1

(P ) � Q and the result follows.

(3) If j

2

> 2, from the proof of part (1) we get a

11

= a

02

= a

12

= 0. An easy

omputation shows then thatQ is non-singular at �(P ) if and only if a

03

6= 0. Therefore

2j

2

= j

3

, and the result follows from Lemma 2.15(1).

Proposition 3.8. Let X be a F

q

2

-maximal urve and � a F

q

2

-morphism assoiated to

D

X

. Suppose that q is even, q > 4, and that �(X ) lies on a quadri Q in P

3

(

�

F

q

2

).

Then

(1) Q is a one;

(2) the vertex V of Q belongs to �(X ); if V = �(

~

V ), then

~

V 2 X (F

q

2

) and j

2

(

~

V ) =

(q + 2)=2:

Proof. General properties of quadris of a 3-dimensional projetive spae over a �nite

�eld an be found in [35℄. Here we will use the following properties: Let P 2 Q be a

non-singular point of Q and denote by T

P

Q the tangent plane of Q at P .

� If P 2 �(X ), then T

P

Q � L

1

(P );

� Let ` and `

1

be lines suh that P 2 ` � Q, and `

1

� T

P

Q. If ` 6= `

1

, then T

P

Q is

generated by ` and `

1

;

� There exist lines ` and `

1

suh that P 2 ` \ `

1

, and Q \ T

P

Q = ` [ `

1

;

If Q is non-singular, then
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� No two tangent hyperplanes of Q at di�erent points oinide.

To simplify our notation we shall identify X and �(X ), aording to Lemma 2.10.

(1) Sine X is non-degenerate, Q is irreduible. Then Q is a one if and only if Q is

singular, as this ase an only our when Q has just one singular point.

Suppose that Q is non-singular. Then from Lemma 3.7(3), j

2

(Q) = 2 for eah Q 2

X (F

q

2

). Note that there exists P 2 X nX (F

q

2

) suh that j

2

(P ) > 2; in fat, otherwise

Lemma 2.17 would yield 6(g � 1) = (q + 1)(q � 3); but then q would be odd, a

ontradition. Hene j

2

(P ) = q=2 by Lemma 3.7(3). Let Q

1

2 X (F

q

2

). We have

Q

1

62 L

1

(P ), as X \ L

1

(P ) � X \ L

2

(P ) = fP;Fr

X

(P )g (f. (2.6)), and hene the

plane H = H

Q

1

generated by L

1

(P ) and Q

1

is well de�ned. Then H 6= L

2

(P ), and the

intersetion divisor of X and H beomes

X �H =

q

2

P +D ;(3.2)

where D = D

Q

1

is a divisor on X of degree (q + 2)=2 with Q

1

2 Supp(D), and

P 62 Supp(D). In addition, Lemma 3.7(2) assures the existene of a line ` = `

Q

1

suh

that

Q \H = L

1

(P ) [ ` :(3.3)

Atually, the line ` is de�ned over F

q

2

. In fat, Q is de�ned over F

q

2

by Lemma 3.6(3),

and Q

1

2 X (F

q

2

) n L

1

(P ) implies that Q

1

2 `.

Claim 1. X \ ` � X (F

q

2

):

Proof of Claim 1. If there exists Q 2 X \ ` n X (F

q

2

), then Fr

X

(Q) 2 ` as ` is de�ned

over F

q

2

. Thus ` � L

2

(Q), and hene `\X � fQ;Fr

X

(Q)g. It follows Q

1

62 `, but this

is a ontradition.

Claim 2. If Q 2 Supp(D) n fFr

X

(P )g, then Q 2 X (F

q

2

) and v

Q

(D) = 1:

Proof of Claim 2. Sine Supp(D) n fFr

X

(P )g � ` \ X , we have Q 2 X (F

q

2

) by Claim

1. Now if v

Q

(D) � 2, then H � L

1

(Q) by j

2

(Q) = 2 and Lemma 2.8. Also, ` 6= L

1

(Q)

beause L

1

(Q) 6� Q by Lemma 3.7(2). Therefore the plane H is generated by the

lines ` and L

1

(Q), and hene H = T

Q

1

Q. Let `

1

be the line de�ned by Q

1

2 `

1

, and

Q \ T

Q

1

Q = ` \ `

1

. From (3.3), we infer that L

1

(P ) = `

1

and so Q

1

2 L

1

(P ), but this

is a ontradition.

Claim 3. Fr

X

(P ) 62 Supp(D):

Proof of Claim 3. Suppose on the ontrary that Fr

X

(P ) 2 Supp(D). Equivalently,

Fr

X

(P ) 2 L

1

(P ) by Claim 1. Then v

Fr

X

(P )

(D) = 1. In fat, using a similar argument

to that in the proof the previous laim, one an show that v

Fr

X

(P )

(D) 6= 1 together with

L

1

(P ) 6= L

1

(Fr

X

(P )) implies H = T

Fr

X

(P )

Q in ontradition with (2.6). Hene, for
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eah Q 2 X (F

q

2

), the divisorD in (3.2) may also be written asD = D

Q

= Fr

X

(P )+D

0

Q

in suh a way that (3.3) holds true, Supp(D

0

Q

) � X (F

q

2

), and deg(D

0

Q

) = q=2. Notie

that H

Q

is generated by L

1

(P ) and Q

0

(�) where Q

0

is any point of Supp(D

0

Q

). Now

let Q

1

; Q

2

2 X (F

q

2

) suh that Q

2

62 Supp(D

0

Q

1

). Then Supp(D

0

Q

1

) \ Supp(D

0

Q

2

) = ;,

otherwise H

Q

1

= H

Q

2

by (�). This yields that q=2 must divide the number of F

q

2

-

rational points of X , whih is a ontradition beause #X (F

q

2

) = q

2

+ 1 + 2gq is an

odd number.

So far we have shown that eah Q

1

2 X (F

q

2

) gives rise to a planeH

Q

1

, to a line ` = `

Q

1

,

and to a divisorD = D

Q

1

suh that (3.2) and (3.3) hold withD = Q

1

+Q

2

+: : :+Q

(q+2)=2

being the sum of (q + 2)=2 F

q

2

-rational points. Notie that Supp(D) = X \ `. Let `

1

be hosen in suh a way that Q

1

2 `

1

and that

Q\ T

Q

1

Q = ` [ `

1

:(3.4)

Clearly, `

1

is F

q

2

-rational, and thus X \ `

1

� X (F

q

2

) as in the proof of Claim 1.

Therefore

X � T

Q

1

Q = 2Q

1

+Q

2

+ : : :+Q

(q+2)=2

+D

0

;(3.5)

where D

0

is a divisor on X of degree (q � 2)=2 suh that Q

1

62 Supp(D

0

) � X (F

q

2

).

Claim 4. Supp(D) \ Supp(D

0

) = ;, and v

S

(D

0

) = 1 for eah S 2 Supp(D

0

):

Proof of Claim 4. Let S 2 Supp(D

0

). Suppose on the ontrary that S = Q

i

for some

i. Then T

Q

1

Q ontains L

1

(Q

i

) whih is di�erent from ` as j

2

(Q

i

) = 2. Hene T

Q

1

Q is

generated by L

1

(Q

i

) and `. These lines also generate T

Q

i

Q and so i = 1 ontraditing

Q

1

62 Supp(D

0

).

Finally suppose on the ontrary that v

S

(D

2

) � 2. Replaing ` by `

1

, the above argu-

ment shows that T

S

Q = T

Q

1

Q, whene S = Q

1

follows, again a ontradition.

Therefore, to eah Q

1

we have assoiated two lines ` and `

1

suh that both (3.4)

and (3.5) hold where D

0

is a divisor of degree (q � 2)=2, Supp(D

0

) � X (F

q

2

), and

Supp(D) \ Supp(D

0

) = fQ

1

g. As it is well-known, Q has just two families of lines

ontained in Q and any two lines of the same family are disjoint. This implies again

that #X (F

q

2

) must be a multiple of q=2, ontraditing the F

q

2

-maximality of X .

(2) As q is even, from Lemma 2.17 there exists P 2 X suh that j

2

(P ) > 2. Suppose

that P 62 X (F

q

2

). From j

2

(P )P+D � (q+1)P

0

, we �nd that j

2

(P )Fr

X

(P )+Fr

X

(D) �

(q+1)P

0

and so j

2

(Fr

X

(P )) = j

2

(P ) > 2. Therefore L

1

(P )[L

1

(Fr

X

(P ) � Q by Lemma

3.7(2), and hene V 2 L

1

(P ) \ L

1

(Fr

X

(P )). Now, sine V is F

q

2

-rational by Lemma

3.6(3), we have Fr

X

(P ) 6= V , and hene L

1

(Fr

X

(P )) is generated by Fr

X

(P ) and V ;

in partiular L

1

(Fr

X

(P )) � L

2

(P ) and thus 1 = v

Fr

X

(P )

(X � L

2

(P )) � j

2

(Fr

X

(P )) by

Lemma 2.8, a ontradition.
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Therefore P must be F

q

2

-rational and hene Q must have a singularity at P by Lemma

3.7(3). Then P = V and j

2

(P ) = (q + 2)=2 by Lemma 3.7(1) and the assumption of q

being even.

Proof of Theorem 3.1. (1))(2) : From the hypothesis on g, dim(D

X

) = 3 follows by

(2.7) and Lemma 2.12. Sine 

1

(q + 1; 3) in Lemma 2.4 is equal to b(q

2

� q + 4)=6,

that lemma together with Lemma 2.10 shows that �(X ) lies on a quadri provided that

q 62 f7; 8; 9; 11; 13; 17; 19; 23g.

Assume q = 8. Then g > (q

2

�q+4)=6 = 10. By virtue of Lemma 3.6(1)(2), it is enough

to show that dim(2D

X

) � 8. Suppose on the ontrary that dim(2D

X

) � 9. Then from

Lemma 2.1 and Remark 2.2, g � (q � 1)(q � 2)=4 = 10:5 follows, a ontradition.

Now, let q be odd, q � 7. Our goal is to show that the seond positive D

X

-order �

2

(see setions 2.2, 2.3) is equal to two. In fat, if this is the ase, then the Generi

Order of Contat Theorem [34, Thm. 3.5℄ yields that the urve X (that is �(X ) by

previous identi�ation) is reexive. Reexivity fores the monodromy group of X to

be isomorphi to the symmetri group S

q+1

, see ([7, p. 264℄, [38, Cor. 2.2℄). Hene

the points of a general hyperplane setion of X lie in uniform position [38, Cor. 1.8℄.

Then Lemma 2.4 holds true; see Remark 2.5.

Suppose on the ontrary that �

2

> 2. Let S be the F

q

2

-Frobenius divisor assoiated to

D

X

. From Lemmas 2.9, 2.7(1), 2.15(4)(5), v

P

(S) � �

2

+ 1 � 4 for any P 2 X (F

q

2

).

Then by (2.4) and the F

q

2

-maximality of X , (3q � 1)(2g � 2) � (q + 1)(q

2

� 4q � 1).

On the other hand, 2g � 2 > (q + 1)(q � 2)=3 by hypothesis, and thus 5q + 5 < 0, a

ontradition.

(3))(2) : This follows from Lemma 3.6(2).

(2))(4) : Let q be odd. There exists P 2 X suh that j

2

(P ) > 2, otherwise g would be

equal to (q

2

�2q+3)=6 by Lemma 2.17. If suh a point P 2 X should not be in X (F

q

2

),

then by Lemma 3.7(3) both P and Fr

X

(P ) would be singular points of the quadri, a

ontradition. Therefore P 2 X (F

q

2

) and hene j

2

(P ) = (q + 1)=2 by Lemma 3.7(1).

If q is even, the result follows from Proposition 3.8(2).

(4))(5) : From Lemma 2.15(2) and the hypothesis, m

1

(P ) = (q + 1)=2 for q is odd,

and m

1

(P ) = q=2 for q even. In the odd ase, (dim(D

X

) � 1)m

1

(P ) = q + 1, and (5)

follows from [15, Thm. 2.3℄. In the even ase, (dim(D

X

) � 1)m

1

(P ) = q, and hene

g = q(q � 2)=4 by [37, Remark 2.6(1)℄. Then (5) follows from the main result in [2℄.

The impliations (5))(6), (6))(1), and (5))(3) are trivial.

4. On F

q

2

-maximal urves whose genus equals Castelnuovo's number

In this setion we investigate ertain F

q

2

-maximal urves whose genus equals Casteln-

uovo's number 

0

(q + 1; N) for N 2 f4; 5g.
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4.1. The ase q � 1; 2 (mod 3). The main result is Theorem 4.5 whih provides a

omplete desription of F

q

2

-maximal urves of genus g = (q � 1)(q � 2)=6, q � 1; 2

(mod 3), q � 11: Suh F

q

2

-maximal urves an only exist for q � 2 (mod 3), and they

are F

q

2

-isomorphi to the non-singular F

q

2

-model of the plane urve of equation

y

q

+ y = x

(q+1)=3

:(4.1)

To do this let X denote an F

q

2

-maximal urve of genus g = (q � 1)(q � 2)=6 with

q � 1; 2 (mod 3), equipped with the linear series D

X

as de�ned before. The �rst step

is to ompute the dimension of D

X

.

Lemma 4.1. dim(D

X

) = 4: In partiular, g = 

0

(q + 1; 4):

Proof. From (2.7) and Lemma 2.12, dim(D

X

) 2 f3; 4g. Suppose on the ontrary that

dim(D

X

) = 3. If �

2

= 2, (2.3) beomes deg(R) = (3 + q)(2g� 2) + 4(q + 1), while F

q

2

-

maximality of X implies deg(R) � q

2

+ 1 + 2gq as v

P

(R) � 1 for every P 2 F

q

2

(X ).

But then g � (q

2

� 2q + 3)=6 ontraditing the hypothesis on g. If �

2

> 2, then

�

2

� 5 by the p-adi riteriom [41, Cor. 1.9℄ and q 6� 0 (mod 3). Replaing the

rami�ation divisor R by the Frobenius divisor S in the previous argument yields again

a ontradition. In fat, (2.4) reads urrently deg(S) = (1+q)(2g�2)+(q

2

+3)(q+1),

while deg(S) � (q

2

+1+2gq)(�

2

+1) by the F

q

2

-maximality of X and the lower bound

v

P

(S) � �

2

+ 1 for P 2 F

q

2

(X ) whih has been shown in the proof of Theorem 3.1.

Taking �

2

� 5 into aount, this gives (5q � 1)(2g � 2) � (q + 1)(q

2

� 6q � 3), whene

2q

2

� 3q + 13 � 0 follows for g = (q � 1)(q � 2)=6; a ontradition.

We take advantage of the urrent hypothesis that the genus of X is equal to Casteln-

uovo's number 

0

(q+1; 4) by means of Lemma 2.3(1). Indeed, this lemma implies that

dim(2D

X

) = 11 whih allows to ompute the possibilities for (D

X

; P )-orders. To show

how to do this, set j

i

= j

i

(P ) and denote by �

P

the set of (2D

X

; P )-orders. Then �

P

ontains both the following sets �

1

and �

2

:

�

1

:=f0; 1; 2; j

3

; j

4

; j

4

+ 1; j

4

+ j

2

; j

4

+ j

3

; 2j

4

g(4.2)

�

2

:=fj

2

; j

2

+ 1; j

3

+ 1; 2j

2

; j

3

+ j

2

; 2j

3

g ;

where j

4

= q + 1 for P 2 X (F

q

2

), and j

4

= q otherwise (f. Lemma 2.15(1)).

Lemma 4.2. Let X be a F

q

2

-maximal urve and P 2 X a point with j

2

(P ) = 2. If

dim(D

X

) = 4, dim(2D

X

) = 11, and q � 9, then j

3

(P ) = 3.

Proof. The hypothesis on q together with Lemma 2.16 implies that

j

3

< j

4

� 2 for P 2 X (F

q

2

) and j

3

< j

4

� 1 otherwise :(4.3)

Suppose j

3

> 3. If P 2 X (F

q

2

), from (4.2) and (4.3)

�

P

= �

1

[ f3; j

3

+ 1; j

3

+ 2g ;
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and 2j

2

; 2j

3

2 �

P

. Thus j

3

= 2j

2

= 4 so that 2j

3

= 8 = j

4

= q + 1; i.e. q = 7. If

P 62 X (F

q

2

) and j

3

> 4, from (4.2) and (4.3) we have

�

P

= �

1

[ f3; 4; j

3

+ 1g ;

and (j

3

+ 2; 2j

3

) 2 f(q; q + 1); (q; q + 2); (q + 1; q + 2). Then j

3

� 4, a ontradition.

Finally, if P 62 X (F

q

2

) and j

3

= 4, then (4.2) together with (4.3) gives

�

P

= �

1

[ f3; 5; 6; 8g :

Hene j

4

= q = 8, and this ompletes the proof.

The previous lemma together with Lemma 2.17 gives the following result.

Corollary 4.3. Let X be a F

q

2

-maximal urve suh that dim(D

X

) = 4 and

dim(2D

X

) = 11. Assume q � 9. If j

2

(P ) = 2 for any P 2 X ; then q � 1; 2 (mod 3)

and g = (q

2

� 3q + 8)=12:

Now, we investigate the ase j

2

(P ) > 2 for some P 2 X .

Lemma 4.4. Let X be a F

q

2

-maximal urve and P 2 X a point with j

2

(P ) > 2.

Suppose that dim(D

X

) = 4; dim(2D

X

) = 11; and that q � 7.

(1) If P 2 X (F

q

2

) and g > (q� 2)q=8 for q even, then either q � 2 (mod 3); j

2

(P ) =

(q + 1)=3; j

3

(P ) = (2q + 2)=3; or q � 0 (mod 3); j

2

(P ) = (q + 3)=3; j

3

(P ) =

(2q + 3)=3;

(2) If P 62 X (F

q

2

), then either q � 1 (mod 3); j

2

(P ) = (q + 2)=3; j

3

(P ) = (2q + 1)=3;

or q � 0 (mod 3); j

2

(P ) = q=3; j

3

(P ) = 2q=3; or q is odd, j

2

(P ) = (q � 1)=2;

j

3

(P ) = (q + 1)=2; or q is even, j

2

(P ) = q=2; j

3

(P ) = (q + 2)=2:

Proof. Suppose �rst that j

3

> j

2

+ 1. Aording to (4.2) and (4.3) we have only three

possibilities, namely

�

P

= �

1

[ fj

2

; j

2

+ 1; j

3

+ 1g ;

and (j

3

+ j

2

; 2j

3

) 2 f(j

4

; j

4

+ 1); (j

4

; j

4

+ j

2

); (j

4

+ 1; j

4

+ j

2

)g. The �rst one annot

atually our by j

3

6= j

2

+1; from the seond one j

4

� 0 (mod 3), j

2

= j

4

=3, j

3

= 2j

4

=3

follow, while the third one gives j

4

� 1 (mod 3), j

2

= (j

4

+2)=3, and j

3

= (2j

4

+1)=3.

Suppose next that j

3

= j

2

+1. Then 2j

2

62 fj

3

; j

3

+1g by j

2

> 2. Moreover, 2j

2

6= j

4

+1;

otherwise j

2

= (j

4

+ 1)=2; j

3

= (j

4

+ 3)=2 and from (4.2) and (4.3) we would have

�

P

= �

1

[ fj

2

; j

3

+ 1; j

4

+ 2; j

4

+ 3g

whih implies j

4

+j

2

= j

4

+3; whene j

4

= 5 and so q � 5. If 2j

2

= j

4

, then P 62 X (F

q

2

);

otherwise j

3

= (q + 3)=2 and hene m

1

= (q � 1)=2 by Lemma 2.15(2), and this would

imply dim(D

X

) � 5. Finally, assume that 2j

2

62 fj

3

; j

3

+1; j

4

; j

4

+1g. Then from (4.2)

and (4.3)

�

P

= fj

2

; j

3

+ 1; 2j

2

g ;
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and j

3

+ j

2

2 fj

4

; j

4

+ 1g. If j

3

+ j

2

= j

4

+ 1, then 2j

2

= j

4

, whene j

3

+ j

2

= j

4

. Then

j

2

= (j

4

� 1)=2 and j

3

= (j

4

+ 1)=2. We laim that P 62 X (F

q

2

). In fat, otherwise

j

2

= q=2, j

3

= (q+2)=2 and hene m

1

= q=2, m

2

= (q+2)=2 by Lemma 2.15(2) whih

yields g � (q � 2)q=8, a ontradition.

Theorem 4.5. Assume q � 11.

(1) If q � 1 (mod 3); there is no F

q

2

-maximal urve of genus (q � 1)(q � 2)=6:

(2) If q � 2 (mod 3); the following statements are equivalent for a F

q

2

-maximal urve

X of genus g:

(a) g = (q � 1)(q � 2)=6;

(b) 9P 2 X (F

q

2

); 9m 2 H(P ) suh that 3m = q + 1;

() X is F

q

2

-isomorphi to the non-singular F

q

2

-model of the urve (4.1):

Proof. (1) Suppose on the ontrary that X is an F

q

2

-maximal urve of genus g =

(q� 1)(q� 2)=3 with q � 1 (mod 3). Sine q+1 =

q�1

3

� 3+ 2, we have g = 

0

(q+1; 3)

by Lemma 4.1. Hene, Lemma 2.3 implies that dim(2D

X

) = 11 and that

q�4

3

D

X

is the

anonial linear series on X . Then

a

1

i

1

+ : : :+ a

(q�4)=3

i

(q�4)=3

+ 1 62 H(P ) ;(4.4)

where the i

j

's are (D

X

; P )-orders, and the a

j

's are non-negative integers suh that

P

j

a

j

� (q � 4)=3. We hoose then P 2 X with j

2

(P ) > 2 aording to Corollary

4.3. By Lemma 4.4, P 62 X (F

q

2

). Thus, we have to analyze three ases. As before,

m

i

= m

i

(P ) stands for the ith Weierstrass non-gap at P . Reall that m

3

= q by (2.9)).

Case 1: j

2

(P ) = (q+2)=3; j

3

(P ) = (2q+1)=3. From Lemma 2.15(3), fq�m

2

; q�m

1

g �

f1; (q+2)=3; (2q+1)=3g. We have that q�m

1

= (q+2)=3, sine otherwisem

1

= (q�1)=3

and hene q � m

4

, a ontradition. Thus m

1

= (2q�2)=3. However this leads again to

a ontradition sine, by (4.4), (q � 7)=3 + (q + 2)=3 + 1 = (2q � 2)=3 does not belong

to H(P ).

Case 2: q odd, j

2

(P ) = (q � 1)=2; j

3

(P ) = (q + 1)=2. From (4.4), 2j

2

(P ) + 1 = q does

not belong to H(P ), a ontradition.

Case 3: q even, j

2

(P ) = q=2; j

3

(P ) = (q + 2)=2. Arguing as in Case 1 we have either

m

1

= q=2� 1 or m

1

= q=2. In the former ase, q� 2 2 H(P ) and thus Lemma 2.15(3)

implies j

2

(P ) = 2. Sine this is not admitted urrently, the latter ase an only our.

Then m

1

= q=2 and m

2

= q � 1. Now, as dim(2D

X

) = 11, from (2.5) m

9

= 2q follows.

Sine a similar result to Lemma 2.15(3) holds, namely 2q�m

i

is a (2D

X

; P )-order for

i = 0; : : : ; 9, and the set of (2D

X

; P )-orders is

f0; 1; 2; q=2; (q + 2)=2; (q + 4)=2; q; q + 1; q + 2; 3q=2; 3q=2; 2qg ;

we onlude that 2q � m

4

= q=2 + 2; whene m

4

= 3q=2 � 2. Finally from (4.4),

` :=

q�4

3

(q=2 + 1) + 1 62 H(P ). On the other hand, ` = m

4

+

q�10

6

m

2

2 H(P ), a

ontradition.
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(2) (a))(b) : In virtue of Lemma 4.1, we have g = 

0

(q + 1; 4). By q + 1 =

q�2

3

� 3 + 3,

Lemma 2.3 shows that dim(2D

X

) = 11 and that

q�5

3

D

X

+ D

0

is the anonial linear

series, where D

0

is a base-point-free 1-dimensional linear series of degree (q + 1)=3.

Let P 2 X and assume j

2

(P ) > 2 aording to Corollary 4.3. If P 2 X (F

q

2

), from

Lemma 4.4(1) the result follows. Otherwise, P 62 X (F

q

2

), and we have two possibilities

aording as q is odd or even (Lemma 4.4(2)).

Case 1: q is odd j

2

(P ) = (q � 1)=2, j

3

(P ) = (q + 1)=2. A similar property to (4.4)

holds, namely Æ + 1 62 H(P ) for any (

q�5

3

D

X

; P )-order Æ. Hene 2j

2

(P ) = 1 = q is not

in H(P ), a ontradition.

Case 2: q is even, j

2

(P ) = q=2, j

3

(P ) = (q + 2)=2. From the Case 3 in the proof of

part (1), we have m

1

= q=2. Notie that the degree (q+1)=3 of the above linear series

D

0

is oprime to m

1

. Then by the well known Riemann's inequality for the genus g

applied to D

0

and the linear series orresponding to m

1

we obtain g � (q � 2)

2

=6, a

ontradition.

The impliation (b))() is a speial ase of [15, Thm. 2.3℄ while ())(a) is trivial.

4.2. The ase of (q � 1)(q � 3)=8, q odd. The main result is Theorem 4.9 whih is

analogous to Theorem 4.5. It states that for p � 5 and q large enough, the non-

singular F

q

2

-model of the urve of equation

y

q

+ y = x

(q+1)=4

; q � 3 (mod 4) ;(4.5)

together with the Fermat urve of degree (q + 1)=2

x

(q+1)=2

+ y

(q+1)=2

+ 1 = 0 :(4.6)

are the unique F

q

2

-maximal urves of genus g = (q � 1)(q � 3)=8 provided that

dim(D

X

) = 5 holds. The extra-ondition on dim(D

X

) is assumed sine the argu-

ment in Lemma 4.1 only proves that dim(D

X

) 2 f4; 5g. Then g = 

0

(q + 1; 5), and

one again we take advantage of the hypothesis on the genus by means of Lemma 2.3.

The above two urves are in fat not isomorphi even over

�

F

q

2

; see [11, Remark 4.1℄.

The urve in (4.6) was haraterized in [11℄ as the unique (up to F

q

2

-isomorphism)

plane F

q

2

-maximal urve of degree (q + 1)=2 provided that q is odd and q � 11.

As dim(2D

X

) = 14 by Lemma 2.3(1), we are able again to ompute the possibilities

for the sequene of (D

X

; P )-orders for P 2 X . The proofs of the following two results

will be omited sine they are similar to those of Lemmas 4.2, 4.4, and Corollary 4.3.

By Lemma 2.15(1) j

1

(P ) = 1 and either j

5

(P ) = q + 1 if P 2 X (F

q

2

), or j

5

(P ) = q

otherwise.

Lemma 4.6. Let X be a F

q

2

-maximal urve and P 2 X . Assume that dim(D

X

) =

5; dim(2D

X

) = 14; and that q � 11:
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(1) If j

3

(P ) = 3, then j

4

(P ) = 4:

(2) Let j

2

(P ) = 2 but j

3

(P ) > 3. If P 2 X (F

q

2

); then q is odd, j

3

(P ) = (q + 1)=2;

and j

4

(P ) = (q + 3)=2: If P 62 X (F

q

2

); then q is even; j

3

(P ) = q=2; and j

4

(P ) =

(q + 2)=2:

(3) Let P 2 X (F

q

2

) and j

2

(P ) > 2: Assume g > (q� 2)

2

=9 if q � 2 (mod 3) and g >

(q�3)q=9 if q � 0 (mod 3): Then either q � 3 (mod 4); j

2

(P ) = (q+1)=4; j

3

(P ) =

2(q + 1)=4; j

4

(P ) = 3(q + 1)=4; or q � 0 (mod 4); j

2

(P ) = (q + 4)=4; j

3

(P ) =

(2q + 4)=4; j

4

(P ) = (3q + 4)=4:

(4) Let P 62 X (F

q

2

) and j

2

(P ) > 2: Then either q � 1 (mod 4); j

2

(P ) = (q + 3)=4;

j

3

(P ) = (2q + 2)=4; j

4

(P ) = (3q + 1)=4; or q � 0 (mod 4); j

2

(P ) = q=4; j

3

(P ) =

2q=4; j

4

(P ) = 3q=4; or q � 1 (mod 3); j

2

(P ) = (q � 1)=3; j

3

(P ) = (q + 2)=3;

j

4

(P ) = (2q + 1)=3; or q � 0 (mod 3); j

2

(P ) = q=3; j

3

(P ) = (q + 3)=3; 2q=3:

Corollary 4.7. Let X be a F

q

2

-maximal urve of genus g. Assume that dim(D

X

) = 5;

dim(2D

X

) = 14; and that q � 11. If j

3

(P ) = 3 for every P 2 X ; then q � 0; 4 (mod 5)

and g = (q

2

� 4q + 15)=20:

Corollary 4.8. Let X be a F

q

2

-maximal urve of genus (q � 1)(q � 3)=8 with q odd.

Assume dim(D

X

) = 5 and q � 11. Then:

(1) X is F

q

2

-isomorphi to the non-singular F

q

2

-model of (4.5) if and only if there

exists P 2 X (F

q

2

) with j

2

(P ) > 2;

(2) X is F

q

2

-isomorphi to (4.6) if and only if there exists P 2 X (F

q

2

) with j

2

(P ) = 2;

and j

3

(P ) > 3:

Proof. (1) Let P be the unique point over x = 1. It is straightforward to hek that

m

3

(P ) = 3(q + 1)=4. Hene j

2

(P ) = (q + 1)=4 by Lemma 2.15(2). Conversely, from

Lemma 4.6(3) we have j

4

(P ) = 3(q+1)=4 and so m

1

(P ) = (q+1)=4 by Lemma 2.15(3).

Now, the result follows from [15, Thm. 2.3℄.

(2) We have D

X

= 2D, where D is the linear series ut out by lines on X ([11, Thm.

3.5℄) and hene every F

q

2

-rational inexion point P ([11, Lemma 3.6℄) satis�es both

j

2

(P ) = 2 and j

3

(P ) > 3. Conversely, from Lemmas 4.6(2), 2.15(2) we obtain both

m

1

(P ) = (q � 1)=2 and m

2

(P ) = (q + 1)=2. Hene the result from [11, Thm. 1.1℄.

Theorem 4.9. Let X be a F

q

2

-maximal urve of genus g = (q � 1)(q � 3)=8 with q

odd: Assume dim(D

X

) = 5; and p � 5:

(1) If q � 1 (mod 4) and q � 17; then X is F

q

2

-isomorphi to the Fermat urve (4.6):

(2) If q � 3 (mod 4) and q � 19; then X is F

q

2

-isomorphi to either (4.6) or the

non-singular F

q

2

-model of(4.5):

Proof. We have already observed that g = 

0

(q + 1; 5) and thus dim(2D

X

) = 14. In

partiular, by Corollary 4.7 there exists P 2 X with j

3

(P ) > 3.
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(1) Let q � 1 (mod 4). If P 2 X (F

q

2

), then Lemma 4.6(2)(3) yields j

2

(P ) = 2 and

the result follows from Corollary 4.8(2). To show that this is atually the only possible

ase, assume on the ontrary that P 62 X (F

q

2

). Note that K :=

q�5

4

D

X

is the anonial

linear series by Lemma 2.3(2), and hene that Æ + 1 62 H(P ) for any (K; P )-order

Æ. Reall that m

4

= q by (2.9). Now, Lemma 4.6 together with p � 5 leads to the

following two ases.

Case 1: j

2

(P ) = (q + 3)=4; j

3

(P ) = (2q + 2)=4; j

4

(P ) = (3q + 1)=4: Here, fq �m

3

; q �

m

2

; q � m

1

g � f1; (q + 3)=4; (2q + 2)=4; (3q + 1)=4g by Lemma 2.15(3). Thus m

1

=

(2q � 2)=4; m

2

= (3q � 3); m

3

= q � 1. Now, Æ = (q � 9)=4 + (3q + 1)=4 = q � 2 is a

(K; P )-order and hene q � 1 62 H(P ), a ontradition.

Case 2: q � 1 (mod 3); j

2

(P ) = (q� 1)=3; j

3

(P ) = (q+2)=3; j

4

(P ) = (2q+1)=3: Here,

Æ = 3j

2

(P ) is a (K; P )-order (as (q � 5)=4 � 3) and so q annot belong to H(P ), a

ontradition.

(2) q � 3 (mod 4): As above, if we show that P 2 X (F

q

2

), the result will follow from

Corollary 4.8. If P 62 X (F

q

2

), Lemma 4.6(2)(4) together with p � 5 yields j

2

(P ) =

(q � 1)=3. Now, Lemma 2.3(2) implies that Æ + 1 62 H(P ) for every (

q�7

4

D

X

; P )-order

Æ. On the other hand, as (q � 7)=4 � 3, 3j

2

(P ) + 1 = q 2 H(P ), a ontradition.

Remark 4.10. As pointed out in Introdution, F

q

2

-maximal urves of genus g = b(q

2

�

2q+5)=8 do exist. This genus equals Halphen's number 

1

(4; q+1), f. (2.2). So far,

the following examples are known:

(i) For q � 0 (mod 4), urves of genus (q

2

�2q)=8 belong to a family of F

q

2

-maximal

urves onstruted by van der Geer and van der Vlugt, see [25, Prop. 5.2(ii)℄, via

�bre produts of ertain Artin-Shreier p-extensions of the projetive line. See

also [21, Thm. 3.3℄. It seems plausible that a plane model for suh a urve may

be obtained from the proof of [19, Prop. 1.1℄.

(ii) For q � 1 (mod 4), urves of genus (q�1)

2

=8 have been onstruted as a quotient

of the Hermitian urve H by a subgroup of the automorphism group of H; see

[13, Prop. 3.3(3)℄.

(iii) For q � 3 (mod 4), urves of genus (q

2

� 2q + 5)=8 have been onstruted in a

similar way as in (II) above; see [13, Prop. 3.3(3)(1)℄ or [21, Ex. 5.10℄.

For the urves mentioned in (ii) and (iii), no plane model seems to be available in the

literature.
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